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ABSTRACT

The proximity of coral reefs to coastal urban areas and shipping lanes predisposes
corals to petroleum pollution from multiple sources. Previous research has evaluated
petroleum toxicity to coral using a variety of methodologies, including monitoring effects
of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and
larval stage corals. Variability in toxicant, bioassay conditions, species and other
methodological disparities among studies prevents comprehensive conclusions regarding
the toxicity of hydrocarbons to corals. This research evaluated the 48-hour toxicity of 1-
methylnaphthalene to Porites divaricata using a continuous-flow passive dosing system.
The range-finding exposure evaluated the dosing protocol and verified the effectiveness of
the passive dosing technique at maintaining exposure concentrations. The full-toxicity
exposures resulted in a precise estimate of toxic threshold concentrations for use in the
target lipid model. The target lipid model promoted comparisons across different species
by calculating the critical target lipid body burden of 355.7 umol/ g lipid for P. divaricata.
This indicates a greater resilience to petroleum hydrocarbon exposure compared to other
species for which these data are available.
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INTRODUCTION

As one of the few productive ecosystems that thrive within oligotrophic seas, coral

reefs are regarded as diverse and complex marine communities (Loya and Rinkevich 1980,
Knap et al. 1983, Ballou et al. 1987b, Haapkylae et al. 2007). Coral reefs are an essential
aspect of the geology and ecology of tropical and subtropical oceans. Moreover, coral reefs
are vital to the geochemical mass balance of the oceans in regards to fluxes of magnesium,
calcium, strontium, and carbonate (Knap et al. 1983). These ecosystems are a major
fisheries habitat, protect against coastal erosion, and form the basis for most tropical tourist
industries (Knap et al. 1983, Ballou et al. 1987b, Shigenaka 2001). Coral reefs grow in
coastal environments that are generally located adjacent to highly populated areas,
increasing the possibility for anthropogenic impacts on these ecosystems.

The complex communities associated with coral reefs depend on the structural role
provided by hermatypic corals (Ballou et al. 1987b, Shigenaka 2001). Corals provide
shelter from predators, substrate for colonization of algae and invertebrates, and are a direct
source of nutrients for multiple species whose primary diet consists of coral tissue (Loya
and Rinkevich 1980, Shigenaka 2001, Haapkylae et al. 2007). It is widely accepted that
many of the world’s coral reef ecosystems are in decline, due to an abundance of natural
and anthropogenic disturbances.

The diverse and complex nature of coral reefs is often related to physical features
such as location, depth, local geography, and topography, and indicates a wide spectrum
of disturbances to which corals have adapted over geologic time (Nystrom et al. 2000).
Disturbances to reefs are increasingly related to human dominance of coastal areas, which
has led to increased sediment, nutrients, and other pollutant inputs into the sea. These
impacts are amplified by poor land management, and combine to cause increased stress to
corals and coral reefs (Knap et al. 1983, Shigenaka 2001). The increased stress on corals
may permit diseases caused by infectious or opportunistic microorganisms to spread
rapidly across populations and when coupled with increased nutrients, may permit
increased predation (i.e., crown-of-thorns starfish) or overgrowth from algae (Shigenaka
2001). Further examples of human-induced disturbances that directly or indirectly impact

coral animals and the reefs they construct include over-fishing, destructive fishing



methods, sedimentation due to dredging, drilling activities, physical habitat alteration, and
invasive species (Knap et al. 1983, Shigenaka 2001).

Corals are known to be long-lived and slow-growing animals that may take decades
to recover from disturbance (Cubit et al. 1987). The more persistent, and often more
frequent, occurrence of anthropogenic disturbances on coral reefs leaves little time for
recovery. Toxic substances produced by humans often have no natural counterpart, and
their release into the marine environment may expose organisms to compounds to which
they have adapted poorly, or not at all (Nystrom et al. 2000). Damage to the coral animal
will likely disrupt associated communities, and has the potential to negatively impact the

entire ecosystem (Shigenaka 2001).
Petroleum Inputs and Exposure Scenarios

Crude oil pollution is often considered a primarily anthropogenic contribution to
the sea; however, natural seeps are the highest contributors of petroleum hydrocarbons to
the marine environment, accounting for 46% of the total worldwide input (NRC 2003).
These seeps exist where crude oil migrates directly from oil-bearing rocks through the
sediment and into the water column via cracks and faults in the sea bed (Al-Dahash and
Mahmoud 2013). They have limited ecological impact, and the constant, slow rate of
release over an extended period of time has allowed microbes and benthic organisms to
acclimate and even evolve to utilize the petroleum hydrocarbons (NRC 2003). Conversely,
the impacts of large and abrupt anthropogenic inputs of petroleum hydrocarbons into
relatively pristine waters are of greater concern as potentially affected organisms may lack
the adaptive features to use or detoxify the hydrocarbons.

Anthropogenic input of petroleum hydrocarbons can be divided into three main
sources. Extraction accounts for 3% of the worldwide total, attributed to offshore
production releases from platforms and pipelines, or operational discharges such as loading
and cleaning operations, effluents, ballast water, and leakage (NRC 2003). Transportation
is the second main source, accounting for 12% of the worldwide input of petroleum
hydrocarbons (NRC 2003). This includes tanker accidents and operations, marine terminal
and refinery spills, and spills from land-based storage tanks (Dodge et al. 1984, Burns and
Knap 1989). The third main source of petroleum hydrocarbon input into the sea is

consumption. Consumption of crude oil accounts for 37% of the worldwide total, and 92%
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of the anthropogenic load (El-Sikaily et al. 2003, NRC 2003). Terrestrial runoff,
recreational vessels, non-tanker accidents, and aircraft dumping are all grouped here, with
land-based runoff as the largest contributor of consumption-based crude oil (NRC 2003).
Coastal expansion of urban areas has increased this input, placing a significant threat on
shallow, fragile coastal ecosystems.

Marine organisms may be exposed to petroleum hydrocarbons in two ways, acutely
or chronically (NRC 2003). Acute exposures are typically the result of large, catastrophic
spills with immediate short-term effects. The close proximity between tanker routes and
many of the world’s coral reefs has resulted in significant oil pollution of reefs from tanker
accidents in the Persian Gulf, Wake Island, the Florida Keys, and Puerto Rico (Knap et al.
1983). Acute exposure is often related to the proximity to spills originating from refineries,
production activities, storage facilities, and offshore platforms (Dodge et al. 1984).
Accidental or deliberate release from tankers and pipelines due to war-related incidents has
also resulted in acute exposures (Haapkylae et al. 2007, Al-Dahash and Mahmoud 2013).
Although these spills generally have a short duration, they have the potential to cause long-
term impacts depending on the amount and location of the spill (NRC 2003).

Chronic exposure results from continuous exposure to small amounts of oil over
long periods of time (NRC 2003). This typically occurs in close proximity to natural seeps,
but anthropogenic sources are also common. Point sources, like leaking pipelines,
production discharges, or runoff from land-based facilities contain a strong gradient of high
to low oil concentration. Non-point sources, such as atmospheric fallout and terrestrial
runoff, also result in chronic exposure, but contain no distinct gradient of concentration.
Large spills with acute exposure scenarios may not cause complete mortality, but oil can
become trapped in sediments, producing a chronic exposure scenario. Chronic exposures
can result in sublethal effects, including altered metabolism, cell structure and function, or
enhancement of chromosome mutation. This cascade of biological consequences
associated with chronic pollution from frequent smaller spills is often considered to be a
larger threat than those associated with acute exposure from tanker accidents (Loya and
Rinkevich 1980, Capuzzo 1987). Oil pollution in the sea, whether from anthropogenic or

natural sources, chronic or acute, is a major environmental concern (NRC 2003).



Composition and Toxic Mode of Action of Petroleum Hydrocarbons

Crude oil is a complex mixture of several thousand compounds, with each oil
containing widely varying amounts of chemicals (NRC 2003, Haapkylae et al. 2007).
Hydrocarbons, as saturates, olefins, and aromatics, make up 97% of most petroleum (NRC
2003). Of these compounds, aromatics are usually the most stable and may persist in the
environment for long periods of time. Aromatics include at least one benzene ring, with an
inverted relationship between abundance and molecular weight. Monocyclic aromatic
hydrocarbons (MAH)—Dbenzene, toluene, ethyl-benzene, and xylene (BTEX)—are more
volatile and often found in higher proportions than polycyclic aromatics. Polycyclic
aromatic hydrocarbons (PAH), or polyaromatics, account for nearly 20% of the total
hydrocarbons in crude oil and include compounds that can cause the most serious
environmental effects (El-Sikaily et al. 2003, Haapkylae et al. 2007).

The hydrophobic nature of PAHs causes adherence to particulate material in the
water column where they can enter the food chain or become deposited in sediments (El-
Sikaily et al. 2003). The hydrophobicity of PAHs also means a low aqueous solubility
coupled with high lipid solubility, which according to the equilibrium partitioning theory,
allows the PAHSs to partition across permeable membranes into organismal tissue lipids
until equilibrium is reached (NRC 2003). The partitioning of petroleum hydrocarbons into
tissues produces a toxic response in the organism that is related to the solubility and
bioavailability of specific compounds (Neff and Anderson 1981, Capuzzo 1987, NRC
2003). Bioavailability and solubility of hydrocarbons may be chemically modified through
photo-oxidation or other weathering processes (NRC 2003). Since the toxicity of petroleum
products is related to the water-soluble fraction (WSF) or water-accommodated fraction
(WAF), the relative solubility and persistence of constituent aromatic hydrocarbons results
in crude oils with different toxic effects due to the toxicity of the hydrocarbons present
(Capuzzo 1987, NRC 2003, Barata et al. 2005, McGrath et al. 2005, Redman et al. 2012,
Butler et al. 2013).

Nonionic aromatic hydrocarbons are type 1 narcotic chemicals with similar toxic
modes of action (Di Toro et al. 2000, McGrath et al. 2004), and are important contributors
to aquatic toxicity (McGrath and Di Toro 2009, Redman et al. 2012). Toxicity depends on

the aqueous concentration of constituent hydrocarbons, which controls partitioning into an
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organism. Originally it was assumed the chemicals affected the whole organism (McCarty
et al. 1991), but is now thought to involve interactions with just the hydrophobic portions
of the cellular membranes (Sikkema et al. 1995, Di Toro et al. 2000). Lipophilic
hydrocarbons alter membrane structure and function by partitioning into the lipid bilayer,
modifying membrane fluidity and permeability (Sikkema et al. 1995, McGrath et al. 2004,
de Hoop etal. 2011). The narcotic lethality of hydrocarbons has been linked to the chemical
concentration in the target lipid, rather than the whole organism, and is assumed to be
independent of species (Di Toro et al. 2000).

The Target Lipid Model

The target lipid model (TLM) assesses aquatic toxicity of nonpolar organic
chemicals with a narcotic toxic effect (McGrath et al. 2004), and is based on the assumption
that mortality occurs when the concentration in the target lipid reaches a threshold
concentration (Di Toro et al. 2000). The TLM estimates this critical target lipid body
burden (CTLBB; pmol chemical/ g lipid) using the specific endpoint [i.e., the
concentration lethal to 50% of the population: LCso (mmol/L)] and the target lipid—water
partition coefficient (KLw), which is defined as the ratio of chemical concentration in the
lipid (CL) to the aqueous concentration (Cw) (Di Toro et al. 2000).

1) CTLBB = LCsy * Kpy
CL

2) KLW= cw
Experimental determination of the LCso for a specific narcotic chemical allows calculation
of an organism’s CTLBB using the TLM.

3) log LCsy = log CTLBB — log Ky,
The target lipid model uses Krw, which is calculated using the linear free energy
relationship between K w and the octanol-water partition coefficient (Kow), as octanol has
been determined a good surrogate for organism lipid tissues (Di Toro et al. 2000).

4) logK;y = —0.945 * log Ky
It is assumed that the target lipid has the same chemical partitioning property in all
organisms, therefore the universal narcosis slope (-0.945) is representative of this
ubiquitous mode of action (Di Toro et al. 2000). Combining Equations 3 and 4 results in
the TLM.



5) log LCsy =1log CTLBB — 0.945 * log Koy,
McGrath and Di Toro (2009) refined the TLM to include a chemical class correction (Ac:
MAHs=-0.109, PAHs= -0.352) for hydrocarbons with increased toxicity, and more precise
universal narcosis slope (-0.936) determined with updated Kow.

6) logLCsy =log CTLBB — 0.936 * log Koy + Ac
The species-specific CTLBB must be determined in a controlled laboratory experiment by
measuring the LCso for a single hydrocarbon with known Kow. The CTLBB is expressed
in umol chemical/g octanol, but because of the relationship between Kow and Kpw, the
units are assumed to be pmol chemical/g lipid (McGrath et al. 2004). If TLM assumptions
are true and partitioning is the same for all species, the CTLBB can be used to estimate the
LCso for other type 1 narcotic chemicals with similar toxic modes of action using their

respective Kow.
Toxicity of Mixtures

The toxic unit (TU) approach to evaluating mixture toxicity is a means of
normalizing the toxicity of different chemicals in a mixture (Di Toro and McGrath 2000).

The TU is the ratio of the aqueous concentration (Cw) to the effect concentration (LCs).

7 TU =&

LCsg
Type 1 narcotic chemicals are known to have an additive effect (Capuzzo 1987, Di Toro
and McGrath 2000, Barata et al. 2005, Redman et al. 2012, Butler et al. 2013), and
combining the toxic effect of all constituents’ results in the mixture toxicity.

8) TUnixture = %i TU;
If the combined TU for a chemical mixture is greater than 1, the mixture is toxic at that
concentration (Di Toro and McGrath 2000, McGrath and Di Toro 2009). The TLM and the
additivity of TUs can be used to predict the toxicity of chemical mixtures.

The TLM assumes the target is lipid, and that concentration is limited by aqueous
solubility of the chemical (Di Toro and McGrath 2000, Di Toro et al. 2000, McGrath et al.
2004, McGrath and Di Toro 2009). This cutoff exists because kinetics related to molecular
size and solubility prevent accumulation in the organismal lipid at a sufficient level to cause
an effect; LCsos are greater than solubility (McGrath et al. 2004). Negri et al. (2016)
determined the WAF of natural gas condensate was dominated by BTEX and alkyl



substituted benzenes and naphthalenes, while the parent condensate was composed mainly
of n-alkanes and branched alkanes. Similarly, crude oil WAF was also found to contain
82% naphthalene and alkylated derivatives (Mercurio et al. 2004). Endicott crude oil WAF
(600 mg/L loading) shows the same dominance of lower molecular weight aromatics
compared to the source oil, which had measurable amounts of higher molecular weight
polyaromatics (Fig. 1) (Redman and Parkerton 2015).

Multiple other studies have characterized the soluble portion of petrogenic
hydrocarbons as being dominated by alkylated PAHs (Neff and Anderson 1981,
Hawthorne et al. 2006, Achten and Andersson 2015), which are usually more abundant
than parent PAHs (NRC 2003). Alkylation of aromatic hydrocarbons implies increasing
lipophilicity, thereby increasing partitioning into the cell and altering toxicity (Achten and
Andersson 2015). Hawthorne et al. (2006) found parent and alkylated hydrocarbons to
contribute 1% and 99% of the toxicity of crude oil WAF respectively. Therefore, to avoid
underestimating toxic effects, estimates of species-specific CTLBBs should be made using
alkylated, low molecular weight aromatic hydrocarbons with log Kow <5.5 (McGrath and
Di Toro 2009).
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Figure 1. Concentration of aromatic hydrocarbons (C6—-C16) present in Endicott Crude Qil
(A) and Endicott Crude Oil WAF (B). Adapted from Redman and Parkerton (2015).



Passive Dosing

Determining the LCso for use in the TLM must be completed using a constant
concentration throughout the exposure to provide reliable data to generate dose-response
curves (McGrath and Di Toro 2009, Butler et al. 2013, Redman and Parkerton 2015). Most
petroleum PAHSs are sparingly soluble, and obtaining constant exposure concentrations can
be challenging due to loss mechanisms (sorption, volatilization, and degradation) (Smith
etal. 2010, Butler et al. 2013). Exposure vessels with 10% headspace resulted in a 35-55%
evaporation of total PAH over 24 h (Negri et al. 2016), while others saw 64% decline in
total PAH over 84 h (Kegler et al. 2015). The passive dosing technique was developed to
combat the issue of degradation whereby the chemical is partitioned from a solvent solution
into a biocompatible polymer such as polydimethylsiloxane (PDMS) (Butler et al. 2013).
A key criterion for successful use of the passive dosing system is to ensure excess mass of
hydrocarbon in both the loading solution and PDMS O-ring reservoirs to prevent small
amounts of depletion from affecting the target concentrations (Butler 2013). The excessive
amount of hydrocarbon loaded into the PDMS O-rings has been proven to produce an
accurate and precise constant aqueous concentration for the exposure duration despite

potential losses that occur in the test system (Smith et al. 2010, Butler et al. 2013).



HYRDROCARBON TOXICITY TO CORALS

Every oil spill in the marine environment is a unique ecological problem, as

potential effects depend on the local physical, chemical, and biological factors that
influence the oil (Haapkylae et al. 2007). Weather conditions, seasonal factors, dosage,
type of oil, previous exposure to oil, and type of remedial action are a few of the many
influential factors determining the toxicity of spilled oil (NRC 2003, Haapkylae et al.
2007). During the past 50 years, multiple studies have attempted to measure the lethal and
sublethal effects of oil on corals. Some studies have evaluated community-level effects of
an actual oil spill, while others focused on subcellular changes in response to controlled
laboratory experiments. The following sections provide a brief summary of the previous
research conducted and a more detailed explanation of each study completed is found in

Appendix 1.
Incidents resulting in Acute and Chronic Exposure of Petroleum to Corals

Oil spills in the marine environment are a significant ecological problem, but have
the potential to provide an invaluable opportunity to assess impacts of oil exposure on the
associated organisms. Over the last 50 years, many accidents have exposed benthic
organisms to petroleum hydrocarbons. Ecosystem evaluations often overlooked possible
damage to corals and other subtidal communities, presumably due to dangerous conditions
associated with floating oil and logistical issues during the spill. Understanding the impacts
of acute and chronic exposure on corals requires baseline data of the coral community,
which is lacking in a majority of areas where spills have occurred. Appendix 1 Table 1
summarizes studies which evaluated the effects of both acute and chronic release of
petroleum hydrocarbons on coral individuals, populations, and communities.

Analysis of acute and chronic exposures of coral reefs revealed a variety of effects
on coral. No detectable impacts on coral were found after the Gulf War oil spill (Vogt
1995), whereas other spills resulted in major deterioration of the reef community.
Community-level changes in response to petroleum pollution include decreases in species’
abundance, diversity, and coral cover (Fishelson 1973, Bak 1987, Cubit et al. 1987, Jackson
et al. 1989, Guzman et al. 1991, Guzman et al. 1994). Branching coral species were found
to be more sensitive when compared to encrusting or massive species, leading to a decrease

in rugosity of the reef (Fishelson 1973, Bak 1987). Multiple acute and chronic exposures
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have led to tissue loss and increased coral mortality (Rinkevich and Loya 1977, Cubit et
al. 1987, Green et al. 1997, White et al. 2012, Fragoso ados Santos et al. 2015), which have
been correlated with hydrocarbon uptake (Burns and Knap 1989). Bioaccumulation of
petroleum hydrocarbons from the water column has been reported by multiple studies
(Sabourin et al. 2013, Ko et al. 2014), altering cellular physiologic conditions. Increases in
protein to lipid ratios have been found (Burns and Knap 1989), as well as altered protein
metabolic condition, increased mitochondrial chaperoning, and increased xenobiotic and
detoxification responses following both chronic and acute exposures (Downs et al. 2006,
Downs et al. 2012). Increases in number of oil-degrading bacteria in the mucus bacterial
community were also measured following chronic pollution (Al-Dahash and Mahmoud
2013).

Sublethal effects of corals exposed to petroleum products include increases in
bleaching, tissue swelling, mucus production, coral injury, and bacterial infections
(Jackson et al. 1989, Guzman et al. 1991, Guzman et al. 1994, Green et al. 1997, White et
al. 2012). Colony size and growth rate were found to decrease following exposure to
petroleum pollution (Guzman et al. 1991, Guzman et al. 1994). Exposure also resulted in
immediate polyp retraction and sclerite enlargement in deep sea corals (White et al. 2012).
Declines in number of breeding colonies, ova per polyp, and planula larvae released per
coral head were established following chronic exposure to Iranian crude oil (Rinkevich and
Loya 1977). Along with decreased gonad size, these alterations in reproductive features
reduced settlement rates and decreased fecundity (Guzman and Holst 1993).

Overall, oil spills in close proximity to coral reefs provide a unique opportunity to
assess the effects of hydrocarbons on corals in situ. Although injurious, it is important to
understand how corals react to acute and chronically spilled oil in their natural
environment. However, in the absence of pre-spill baseline data, it can be difficult to
discern between negative impacts of the oil spill and a decline in coral health linked to
some other pre-existing stressor. Most coastal ecosystems are already affected by other
anthropogenic stressors, and oil spills in two locations may have drastically different
effects due to the compounding stressors present. Differences in type of pollutant spilled,
as well as physical conditions at the time of the release also limit comparisons between oil

spills.
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In-situ Studies Examining Effects of Petroleum Hydrocarbons on Coral

Field experiments exposing coral to oil are a means of limiting differences in type
of oil or physical condition, as well as accounting for lack of baseline data in certain areas.
Researchers are able to collect data prior to exposure, and choose the precise way in which
exposure will take place. Experiments conducted in situ are limited, and this review
consists of three complete experiments, all conducted before 1990. Appendix 1 Table 2
summarizes the in situ experiments examining the effects of oil exposure on corals.

Experiments conducted in situ provide a controlled situation to monitor the effects
of oil on reef corals, while managing other variables that usually prevent comparability
between studies. Researchers have identified a greater affinity for oil in branching species
when compared to massive or encrusting forms, with tissue damage occurring if oil adheres
to the surface of the coral (Johannes et al. 1972). Exposure to oil resulted in only slight,
but not significant reductions in coral cover, with no reduction in growth of individual
corals (Ballou et al. 19874, Ballou et al. 1987b, LeGore et al. 1989, Dodge et al. 1995). On
the contrary, exposure to dispersed oil resulted in significant reductions in coral cover and
growth, lasting two years, with little evidence of recovery (Ballou et al. 1987a, Ballou et
al. 1987b, Dodge et al. 1995). Although initially significant damage occurred, full recovery
of all corals in the TROPICS experiment with regard to growth, sclerochronology, and

coral cover resulted after 10 years (Dodge et al. 1995, Ward et al. 2003).
Ex situ Laboratory Experiments Examining Effects of Petroleum on Adult Corals

Although the effects of acute and chronic releases of oil and in situ field
experiments are important for understanding coral’s reaction in their natural environment,
they are accompanied by certain disadvantages; limited control of physical variables, high
costs, and lack of baseline preparedness for evaluation of effects associated with acute
exposures. Thus, researchers have employed laboratory experiments to examine effects of
petroleum hydrocarbons and dispersant mixtures on corals and their multiple life stages.
Using this type of experiment provides the means to control physical variables,
concentrations, exposure scenarios, and which toxicant or organism to use, while limiting

environmental exposure. Laboratory experiments also provide the opportunity to calculate
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precise endpoints, such as the concentration lethal to 50% of the population (LCso), which
is often used as a measure of toxicity for chemical compounds.

Of the research conducted on the effects of petroleum hydrocarbons on corals,
laboratory experiments are the most numerous. For this reason, controlled laboratory
experiments were divided into two groups based on the life stage of the coral tested. The
first group consists of research using adult corals, while the second group contains those
using any stage of the reproductive cycle. Laboratory experiments evaluating the effects
of exposure of petroleum hydrocarbons on adult stage corals are summarized in
chronologic order in Appendix 1 Table 3.

Overall, the wide variety of bioassay conditions and exposure durations described
in the foregoing experiments have resulted in high variability in the effect petroleum has
on adult corals. Following exposure to oil or WAF, levels of mortality were variable, from
extreme situations resulting in tissue flaking or rupture, to no significant mortality (Reimer
1975, Elgershuizen and De Kruijf 1976, Cohen et al. 1977, Peters et al. 1981, Wyers et al.
1986, Shafir et al. 2007, DeLeo et al. 2015). Sublethal changes were more common, and
were typically related to alterations in polyp behavior. Researchers found abnormal feeding
and stimulus reactions, mouth opening with exposed actinopharynx and mesenterial
filament extrusion, breakdown of polypal pulsation synchrony, and polyp retraction or
extreme elongation (Reimer 1975, Cohen et al. 1977, Ducklow and Mitchell 1979a, Neff
and Anderson 1981). There were also increases in mucus bacterial populations, increased
symbiont extrusion leading to slight or extensive bleaching, and decreased photosynthetic
yield (Reimer 1975, Ducklow and Mitchell 1979a, Neff and Anderson 1981, Mercurio et
al. 2004). Bioaccumulation was common in these exposures, which led to changes in
normal cellular architecture and shifts in metabolic homeostasis (Peters et al. 1981, Rougee
et al. 2006). Most effects of hydrocarbon exposure were temporary, with a return to normal
behavior following recovery in clean seawater.

If dispersants or dispersed oil were used in the exposure, the resulting effects were
more pronounced when compared to oil alone. Similar sublethal alterations in behavior
were examined, including tentacle retraction, inhibition of feeding and tactile response, and
nematocyst discharge; in most cases damage was more permanent with poor recovery

(Lewis 1971, Elgershuizen and De Kruijf 1976). Tissue rupture followed by increased
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mortality was common, with dispersed oil leading to the highest mortality in studies which
considered both oil and dispersed oil (Eisler 1975, Shafir et al. 2007, DeLeo et al. 2015).
An initial reduction in carbon fixation and incorporation of photosynthetic products was
also found following exposure to dispersed oil, when oil alone failed to solicit the same
response (Cook and Knap 1983).

The effects of petroleum PAHSs or other petroleum products on corals were also
evaluated. Phenanthrene was found to significantly reduce calcium deposition following
rapid accumulation and slow depuration (Neff and Anderson 1981). Naphthalene was also
rapidly accumulated, and the relatively rapid depuration period was consistent with
observations in other marine organisms (Solbakken et al. 1983). Benzo(a)pyrene and a 13-
PAH mixture led to cellular changes consistent with detoxification of a xenobiotic (Ramos
and Garcia 2007, Woo et al. 2014). Gasoline was found to result in significant loss of

sclerites and tissue in a gorgonian (White and Strychar 2011).
Ex situ Laboratory Experiments Testing the Effects of Petroleum on Coral Reproduction

It has been previously established that coral gametes and larvae are more sensitive
compared to their adult form. This early life-stage sensitivity coupled with the buoyant
nature of gametes and larvae increases the potential for oil exposure if a spill occurs during
spawning season. Laboratory experiments evaluating the effects of petroleum hydrocarbon
exposure on any stage of coral reproduction are summarized in chronological order in
Appendix 1 Table 4.

Overall, exposing corals to petroleum pollution during any stage of reproduction
significantly alters reproductive output. When oil or oil WAF was used, larvae were
prematurely released, the number of female gonads per polyp was reduced, and significant
reductions in settlement and metamorphosis occurred (Loya and Rinkevich 1979,
Rinkevich and Loya 1979, Te 1991, Kushmaro et al. 1997, Epstein et al. 2000, Goodbody-
Gringley et al. 2013, Hartmann et al. 2015, Negri et al. 2016). Multiple studies found
delayed settlement, free floating metamorphosis, post-metamorphic deformation and
increased mortality of larvae (Te 1991, Kushmaro et al. 1997, Epstein et al. 2000,
Goodbody-Gringley et al. 2013). Hydrocarbon exposure also led to significant inhibition
of fertilization with unusual embryonic development and disruption of cell membranes
(Mercurio et al. 2004).
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When dispersants were utilized, researchers found increased mortality, coupled
with fertilization, metamorphosis and settlement inhibition (Epstein et al. 2000, Lane and
Harrison 2000, Negri and Heyward 2000, Goodbody-Gringley et al. 2013). Major
behavioral anomalies and structural deformations of planulae also occurred following
dispersed oil exposure (Epstein et al. 2000). Studies that examined effects of both oil and
dispersed oil found a greater toxic effect associated with dispersed oil compared to oil

alone.
Limitations of Previous Research Examining Hydrocarbon Toxicity to Corals

Coral reefs thrive in coastal waters that are often adjacent to urban centers and
major shipping lanes, which predisposes the potential for exposure to petroleum. A
necessity to understanding the impacts of oil pollution on coral reefs is to increase our
knowledge on the effects to the basic element of a coral reef: the coral animal (Shigenaka
2001). Acute and chronic exposures in history have either lacked guantitative baseline coral
community data that are required to assess changes, or neglected to measure hydrocarbon
concentrations during the spill. This lack of data prevents the comparison of results
between spills, and helps to explain some of the variation in observed effects.

As a way of addressing this data gap, field and laboratory studies aimed at
quantifying the effects of petroleum pollution on corals have been designed to allow
researchers the ability to control exposures and compounding stressors. To date, field
studies are limited in number, but include research that quantifies actual exposure
concentrations and baseline coral community data. Observed effects range from no effect
in oiled sites to an initial reduction in coral cover in dispersed oil sites with full recovery
in under 10 years (Ballou et al. 1987b, Dodge et al. 1995). Results of the TROPICS
experiment indicated that dispersed oil initially led to more severe effects on coral when
compared to oil alone, with the difference still present after two years. Other field
experiments resulted in no significant difference between oil and dispersed oil. These
differences were likely related to differences in oil type, dispersant used, species tested, or
the physical conditions during the spills.

Laboratory experiments are designed to limit differences between exposure
scenarios as a means of comparing toxicity between different corals and oils. Though lab

studies may use environmentally unrealistic concentrations or exposure durations, they are
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necessary in order to assess relative species sensitivity and to provide essential information
for use in toxicological models. To date, previous laboratory research has examined 34
different species of coral from 23 genera. Members of subclasses Hexacorallia and
Octocorallia were used, encompassing shallow, intermediate, and deep-water species. Use
of multiple species is beneficial to understanding species sensitivity differences, but makes
comparisons of different toxicants challenging.

A key issue in evaluating published toxicity data is whether or not the study has
reported measured concentrations in exposure media, as the real utility of toxicity tests is
the comparison of threshold concentrations of oil with values measured in the field
(Bejarano et al. 2014). This is not limited to lab studies, as there is often a lack of detailed
exposure-response data for field and mesocosm studies. Use of nominal concentrations is
cautioned because they may either over or underestimate the lethality of a toxicant; all
components of oil do not dissolve into water, and an LCsp reported as 10 ppm may actually
be caused by concentrations closer to 1 ppm (Shigenaka 2001). There are large
discrepancies in toxicity estimates between studies reporting measured versus nominal
values, and this is particularly important when comparing the toxicity of chemically
dispersed to physically dispersed oil. Thus, analytical chemistry is necessary to evaluate
the concentration of the exposure medium when conducting laboratory experiments with
petroleum products. Nominal concentrations were used in 27 of the 45 laboratory
experiments reviewed here. Concentrations were not specified for 4 studies, and 14
experiments used measured concentrations. Of the 14 experiments with measured
concentrations, 6 used measured stock solutions serially diluted to treatment concentrations
that were not measured. The remaining eight exposure studies using measured
concentrations were from four experiments (Peters et al. 1981, Cook and Knap 1983,
Dodge et al. 1984, Wyers et al. 1986, Knap 1987, Goodbody-Gringley et al. 2013),
providing the most accurate estimate of toxic threshold concentrations, and the best
opportunity to compare toxicity among studies.

It is important to not only analyze the actual concentration of the toxicant, but also
the composition of toxicant that the organism is exposed to (McGrath and Di Toro 2009,
Bejarano et al. 2014). Petroleum is composed of thousands of chemicals, some of which

are extremely volatile and may not remain in solution after preparation. One issue with the
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use of WAF or WSF is the compositional difference created by the variety of preparation
techniques utilized (mixing energy, headspace volume, ratio of oil to dispersant), which
have since been standardized (Singer et al. 2000, Aurand and Coelho 2005). Of the 48
laboratory experiments described here, 30 different toxicants were used, comprised of 15
crude oils, 8 refined products, 6 PAHs or PAH mixtures, and an unspecified petroleum
toxicant. Although the broad range of toxicants provides a wide view of petroleum toxicity
to corals, comparison of effects between studies are cautioned due to the compositional
differences between toxicants. No two petroleum products are compositionally the same,
and most studies lack quantitative chemical composition analyses, preventing extrapolation
of results. Of the studies included in this review, Knap (1987) is the only laboratory study
to quantify the composition of the toxicant.

Aside from compositional differences between studies, the route of exposure also
influences the toxicity of petroleum products. Petroleum was floated on the surface of the
water in 7 experiments, mixed into water in 17 experiments, WAF or WSF created and
used in 20 experiments, corals immersed in toxicant or poured over coral in 3 experiments,
and one experiment used oil-coated dosing vessels. Corals are benthic organisms as adults
and will only be exposed to floating whole oil as gametes or larvae floating on the surface,
or if exposed to air during extreme low tides. Exposure routes should focus on the portion
of toxicant that is bioavailable to the coral animal, the water-soluble portion.

Bioassay conditions are another factor that may influence toxicity of petroleum
hydrocarbons to corals. Static exposure assays were utilized in 35 of the laboratory
experiments, while flow-through exposures were conducted for 9 experiments. Eisler
(1975) showed an increase in toxicity in static conditions compared to flow-though,
indicated by lower LCsp values. Similar results were found during another experiment,
where static conditions produced mortality, and flow-through conditions produced no
mortality (Cohen et al. 1977). These results indicated that corals have increased sensitivity
to static conditions when compared to flow-through. These differences in toxicity were
likely related to the compounding effects associated with static exposure, which could
include decreased oxygen and increased waste products. Aeration was used in seven of the
static exposures to prevent depletion of oxygen, but likely resulted in significant increases

in evaporation of certain compounds. The type of vessel utilized also has an impact on
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toxicity, as open vessels have the potential to allow volatile fractions to escape, whereas
closed vessels prevent volatility once equilibrium is reached between the aqueous and gas
phases. Te (1991) found a significant increase in mortality associated with a closed vessel,
but the open vessel resulted in no mortality.

To increase the potential for comparisons across studies, it is important to follow
standardized toxicity testing protocols that have been developed. Future coral toxicological
studies should limit the differences in exposure media preparation, exposure scenarios and
bioassay conditions. Coupling standardized protocols, such as those established by the
Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF)
(Aurand and Coelho 2005), or Redman and Parkerton (2015), with more descriptive
compositional analyses and quantifiable chemistry will increase the comparability of
studies and potential to extrapolate results to real world situations.

Although there are a number of studies assessing petroleum toxicity to corals,
methodological disparities between studies have prevented comprehensive conclusions
regarding the toxicity of hydrocarbons to corals. Every spill event is unique due to the large
variation in toxicant, physical, chemical, and biological factors; results from one spill
cannot be extrapolated to others with confidence. The same holds true for laboratory
studies; differences in study design, toxicant used, and species tested prevent direct

comparison of results.
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STATEMENT OF RESEARCH

This study evaluated the toxicity of a petroleum hydrocarbon to a representative

coral species in a controlled laboratory exposure. Hypotheses tested can be found in Table
1. Determination of the toxicity of a low molecular weight PAH, 1-methylnaphthalene, to
Porites divaricata was used to calculate the 48-h toxic threshold for use in the TLM. A
passive dosing method was employed, utilizing PDMS o-rings loaded with 1-
methylnaphthalene (1-MN) in a methanol solvent to maintain constant concentrations
throughout the exposure duration (Butler et al. 2013). An initial range-finding test was
carried out to determine the appropriate range of concentrations to use in the full-toxicity
test and to verify the effectiveness of the passive dosing method. Following the range-
finding test, a full-toxicity test was conducted to obtain refined estimates of threshold
concentrations as inputs to the TLM. Sublethal effects and lethality were used to determine
the concentrations causing a 50% effect on the population (ECso), and the concentration
causing 50% mortality (LCso). These values were used in the TLM to calculate the CTLBB
in order to compare species sensitivity. Estimates of the toxicity of other narcotic

hydrocarbons were predicted based on the CTLBB determined for 1-MN.

Table 1. Hypotheses tested and analytical methods used during this research.

Null Hypotheses Analytical Method

1-MN has no effect on the gross visual Semi-quantitative scoring system

condition of P. divaricata. developed to measure gross physical coral
condition.

1-MN has no effect on the photosynthetic ~ Pulse amplitude modulation (PAM)

efficiency of P. divaricata symbionts. fluorometry

1-MN has no effect on calcification of P.  Buoyant wet weight determination
divaricata.

1-MN has no effect on the histological Semi-quantitative scoring system
characteristics or cellular architecture of developed to measure tissue and cellular
P. divaricata. characteristics

1-MN has no effect on survival of P. Percent recent mortality measurements
divaricata
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METHODOLOGY

Porites divaricata was collected from a nearshore Florida reef (SAL-15-1685-

SRP), returned to the lab, cut into 2-cm fragments (branch tips) and attached to small
aragonite tiles using cyanoacrylate gel adhesive. Corals were acclimated in the laboratory
in a 1100-liter (L) indoor recirculating seawater system for 6-9 weeks (wk); system
temperature was maintained at 25°C, and water motion was supplied by powerheads and a
wave maker. Natural seawater taken from Port Everglades, FL at high tide was used and
lighting was provided by LED lights (Photon 32), programmed to mimic sunrise and sunset
(photoperiod 12:12). These lights produced a spectrum suited for coral growth without the
addition of ultraviolet radiation to avoid phototransformation of toxicant during the
exposure. Corals were not fed during the experiments as P. divaricata is predominantly

autotrophic (Kanwisher and Wainwright 1967).
PDMS O-ring Loading

Stock solutions were prepared by dissolving known amounts of 1-MN (Acros
Organics, 97%) in methanol (Fisher Scientific, HPLC Grade) in 500-mL volumetric flasks.

Stock solutions of 1-MN in methanol (MeOH) were prepared using the equation:

VWater

*

Kymeon-poms + Kppms-water +

Vbpms
Crmeon = —]

Vveon Vepms

]] * CTarget

where Cwmeon is the concentration of 1-methylnapthalene added to methanol (mg/L); Crarget
is the target concentration in seawater (mg/L); Vmeon is the volume of the methanol dosing
solution (mL); Vrpwms is the volume of PDMS O-rings (O-Rings West) in the mixing vessel
(mL); Vwater is the volume of seawater in the recirculating flow-through system (mL);
KwmeoH-poms IS the partition coefficient of 1-methylnapthalene between methanol and
PDMS (5.012); and Kppwms-water IS the partition coefficient of 1-methylnapthalene between
PDMS and water (954.99) (Butler 2013).

Range-Finding Exposure

The range-finding exposure to 1-MN consisted of five treatments, with three
replicate dosing systems per treatment, and five corals per replicate. A seawater control
(with O-rings), a methanol control (with O-rings), and three concentrations of 1-MN were

tested (nominally 500 pg/L, 5,000 pg/L, and 25,000 pg/L). The seawater control was used
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to rule out any effect of the O-rings, and possible effects of the chamber system. The
methanol control was used to determine if a solvent effect resulted from loading of the O-
rings.

The calculated amount of 1-MN required for each experimental concentration was
dissolved in methanol and mixed for 24 h (Table 2). Dosing solutions were transferred to
1000-mL Erlenmeyer flasks containing 114 PDMS O-rings each (38 for each replicate).
The mass of each O-ring averaged 1.06 g, giving a total mass of 120.70 g for each loading
solution, and 40.23 g in each exposure system. Calculated depletion of 1-MN in both
reservoirs was 4.42% in the MeOH loading solution, and 7.41% in the PDMS O-rings.
Loading vessels were placed on a shaker table for 72 h for partitioning of 1-MN into the
PDMS O-rings for all experiments conducted (Smith et al. 2010, Butler et al. 2013).

Table 2. Calculated and measured amounts of 1-MN dissolved into the 500-mL MeOH O-
ring loading solutions to obtain respective treatment concentrations during the range-finding
exposure.

Target Concentration Calculated Cwmeon Range-finding Exp.
500 ug/L 1,282.5mg 1,286.6 mg

5,000 pg/L 12,825.3 mg 12,829.5 mg

25,000 pg/L 64,126.6 mg 64,125.9 mg

Full-Toxicity Exposures

Six treatments (nominally 1,000 pg/L, 2,000 ug/L, 4,000 pg/L, 8,000 pg/L, 16,000
Mg/L) and a seawater control with O-rings were tested in each of the full-toxicity exposures,
with five coral fragments in each of the four replicate systems. Calculated amounts of 1-
MN for each concentration were added to each volumetric flask of MeOH (Table 3) and
mixed for 24 h. Dosing solutions were then transferred to 1000-mL Erlenmeyer flasks
containing 152 PDMS O-rings each (38 for each replicate). The mass of each O-ring
averaged 1.06 g, giving a total mass of 160.93 g for each loading solution, and 40.23 g in
each exposure system. Calculated depletion of 1-MN in both reservoirs was 5.89% in the
MeOH loading solution, and 7.36% in the PDMS O-rings. Loading vessels were placed on
a shaker table for 72 h for partitioning of 1-MN into the PDMS O-rings for all experiments
conducted (Smith et al. 2010, Butler et al. 2013).
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Table 3. Calculated and measured amounts of 1-MN dissolved into the 500 mL MeOH O-ring
loading solutions to obtain respective treatment concentrations in the dosing system.

Treatment Cwmeon Experiment #1 Experiment #2
1,000 pg/L 2,584.5 mg 2,584.7 mg 2,587.9 mg
2,000 pg/L 5,168.9 mg 5,170.4 mg 5,176.6 mg
4,000 pg/L 10,337.9 mg 10,345.8 mg 10,343.8 mg
8,000 pg/L 20,675.8 mg 20,679.1 mg 20,679.7 mg
16,000 pg/L 41,351.6 mg 41,352.7 mg 41,353.4 mg

Dosing system

The three exposures completed in this study used the same toxicant preparation and
dosing methodology. All exposures were conducted using a continuous-flow recirculating
passive dosing system (Fig. 2) in a 48-h constant exposure using chambers similar to those
described and employed by the Chemical Response to Oil Spills Ecological Effect
Research Forum (CROSERF) (Singer et al. 1993, Aurand and Coelho 2005).

v v

Sample port [ ]

2L Coral fragments — E l il csfgm?;r

Dosing vessel ) >
o [ =]
O-rings 0
o - /
~ ) ) Peristaltic pump
Viton tubing P
| Stirplate >

Figure 2. Recirculating-flow exposure system. Porites divaricata fragments (5) in a 500-mL
glass chamber with 3 O-rings was connected to a multi-channel peristaltic pump by Viton
tubing (arrows) with a flow rate of 5 mL/min. Each chamber was supplied by a separate 2-L
dosing vessel with 35 O-rings which was stirred vigorously throughout the exposure. Adapted
from Renegar et al. (2016).
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Seawater for use in the exposures was sourced from the acclimation system, filtered
to 1 um, aerated, and kept at 25°C until use. Treatments were randomly assigned to
chambers, which were filled with 500 mL filtered seawater and three loaded O-rings.
Corresponding dosing vessels were filled with 2300 mL filtered seawater and 35 loaded
O-rings and had <10% headspace to limit volatile loss. Peristaltic pumps were started with
dosing vessels stirred vigorously throughout the 16-h equilibration period to ensure
targeted concentrations were reached. Following the equilibration period, randomly
assigned corals were added to each chamber, and the test was initiated.

Coral fragments, solutions, and equipment were monitored for continuous
operation within designated limits throughout the duration of exposure. Following the 48-
h exposures, surviving coral fragments were transferred back to the laboratory system and
immediately analyzed for photosynthetic efficiency and buoyant wet weight before
removing two corals from each chamber for histological analysis. During the 4-wk post-
exposure recovery period, coral fragments were maintained under the same conditions as
described for pre-exposure with condition of each coral assessed daily for 1 wk, and weekly
thereafter, using PAM fluorometry, buoyant wet weight, and visual health metrics as

described below.
Water Quality and Chemical Analysis

Water samples for basic water quality [temperature, pH, dissolved oxygen (DO),
phosphate (PO4), ammonia (NHz3), nitrite (NO.), and nitrate (NO3)] were collected during
laboratory acclimation, and at the start and end of the exposure and analyzed with a HACH
DR850 colorimeter and YSI 556 Multiprobe System. Alkalinity was determined by
potentiometric titration with a Mettler-Toledo DL22 autotitrator. Samples for 1-MN
analysis were collected with no headspace in volatile organic analyte vials (Thermo
Scientific) with Teflon-lined caps from the effluent line of each chamber at the beginning
(0 h, immediately prior to addition of coral fragments), middle (24 h, range finding only),
and end (48 h) of the exposure to verify the stability of the concentration throughout the
exposure. Samples were preserved at 4°C and the concentration of 1-MN was quantified
using a Horiba Aqualog spectrophotometer after extraction with dichloromethane by The
Geochemical and Environmental Research Group at Texas A&M University. Duplicate

samples were also collected at each time, and verified for accuracy.
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Coral Condition and Mortality

Coral condition was visually assessed by semi-quantitative scores based on the

criteria found in Table 4. Individual criteria scores for each coral were averaged to obtain

a single coral score at each time. If a criterion was un-scoreable (i.e., tissue swelling after

tissue had receded); it was left blank as opposed to a zero to avoid artificially lowering the

score at that time point. Coral condition was assessed weekly during the pre-exposure and

post-exposure periods. During the exposure, coral condition was assessed hourly for the

first 8 hours (h) after exposure initiation, and every 12 h thereafter for the remainder of the

48-h exposure.

Table 4. Criteria for scoring coral condition characteristics. Scores for color, polyps, mucus,
and tissue were assigned to each coral.

Range Diagnostic criteria
Color: appears normal
Polyps: fully extended or loosely retracted
0-normal ) g
Mucus: normal mucus production
Tissue: no tissue swelling, no mesenterial filaments
Color: slight lightening of coloration
L-mild Polyps: retracted anql slightly closed
Mucus: normal to slightly elevated
Tissue: slight coenenchyme swelling and/or polyp distension
Color: moderate lightening of color
5 Polyps: evident polyp retraction with full polyp closure
-moderate : !
Mucus: moderately elevated mucus production
Tissue: moderate coenenchyme swelling and/or polyp distension
Color: significant lightening of coloration, bleaching
3-severe Polyps: polyps tightly retracted and skeletal ridges exposed

Mucus: mucus sheets evident
Tissue: severe coenenchyme swelling and/or polyp distension

Percent mortality was also visually assessed consistent with established methods of

tissue mortality determination in corals (Lirman et al. 2013). As partial coral mortality is

possible (Fig. 3), the percent mortality reported is the mean mortality of all corals in each

treatment (n=20).

23



Figure 3. Examples of partial coral mortality following exposure to 1-MN.

Photosynthetic Efficiency

A pulse-amplitude-modulation (PAM) fluorometer (Diving-PAM, Walz,
Germany) was utilized to gauge photosynthetic efficiency of symbiotic zooxanthellae
weekly during the pre-exposure period, immediately before the exposure period,
immediately after the exposure period, daily for 1 wk post-exposure, and weekly thereafter
for the remainder of the post-exposure period. PAM fluorometry measured the light
adapted effective quantum yield [(Fm—F)/Fm or AF/Fm] of the autotrophic endosymbiotic
zooxanthellae by applying a saturation pulse of light, and determining yield from the ratio
of initial fluorescence (F) to maximum fluorescence (Fm). The following parameters were
chosen to determine yield for P. divaricata: measuring light intensity = 3, damping = 2,
gain = 3, saturation intensity = 7, and saturation width = 0.8. These were determined by a
combination of published literature values (Martinez et al. 2007), and parameter adjustment
until the saturation curve had the characteristic plateau required for accurate depiction of
effective quantum vyield (Fig. 4). Lights were kept at an intensity equivalent to 30 minutes
post sunrise for the duration of each set of measurements to ensure differences in
photosynthetic efficiency were not due to changes in light intensity. Between
measurements, the fiber optic light sensor was adjusted between 2 mm and 10 mm to

maintain initial fluorescence readings between 350 and 400 units without adjustment of
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measurement parameters. Measurements were taken from each side of the branch tip (4

total) to represent the whole coral fragment.

F

Figure 4. Saturation curves used to adjust settings on the Diving PAM Fluorometer. A)
Representative curve with incorrect settings. B) Representative curve with correct settings.
The fluorescence signal starts at initial fluorescence (F), and rises with the initiation of the
saturation pulse, until it plateaus at the maximum fluorescence (Fm) and returns to the
initial value post saturation pulse.

Calcification

Calcification of the coral fragments was evaluated using buoyant wet weight
(Davies 1989). Buoyant weight is a non-destructive method of measuring growth rates for
corals over short time intervals, which removes variability between fragments resulting
from tissue thickness and provides weights explicitly related to the mass of the skeleton.
Measurements were taken immediately prior to the exposure, immediately following the
exposure, after 1 wk of recovery (Full-toxicity Exp. 2 only), and at the end of 4 wk of
recovery, to determine if there were long-term effects of the exposure to 1-MN on P.
divaricata calcification. Growth rates are expressed as percent change per day, and

normalized to initial fragment size (Ferrier-Pages et al. 2000).
Histology

Samples for histological analysis were collected at initiation of exposure (10
randomly selected coral fragments), end of exposure (two of the surviving coral fragments
per chamber), after 1 wk of post-exposure recovery (one surviving coral fragment per
chamber) and at the end of the post-exposure recovery period (the remaining coral
fragments). Coral samples were fixed in glutaraldehyde fixative solution [2 mL of 70%
glutaraldehyde in 68 mL of cacodylic buffer (2.16 g cacodylic acid in 200 mL of 0.22 um

filtered seawater)]. Samples were maintained at 4°C in the fixative solution for 4-6 days,
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and divided into subsets for histological analysis. Histological samples were decalcified
after primary fixation in 5% hydrochloric acid (HCI)/ethylenediaminetetraacetic acid
(EDTA) in seawater solution, dehydrated in a graded series of ethanol and xylene, and
embedded in Paraplast Plus®. Longitudinal and transverse sections (4 um) were made and
mounted on slides. Sections were cleared in xXylene and stained with Harris’s hematoxylin
and eosin (H&E). Stained slides were viewed in an Olympus BX43 light microscope at
magnifications ranging from 4-60x and photographed with an Olympus DP21 digital
camera for image analysis of cellular structures.

Overall cellular changes were assessed histologically using a semi-quantitative
scale, which evaluates general condition of coral and algal cells, epidermal and
gastrodermal integrity, and presence of tissue ruptures. Two slides per coral fragment were
made, with two longitudinal and two cross sections on each. Analysis of each slide
followed a scoring rubric (Appendix 2) which assessed the severity and extent of multiple
categories (general cellular condition, zooxanthellae, gastrodermal and epidermal integrity

of the surface and basal body walls).
Statistical analysis

All data were tested for normality (Shapiro-Wilk) and homoscedasticity
(Bartlett/Levene) and transformed to meet these assumptions where applicable, or
nonparametric methods were used. Kruskal-Wallis analysis of variance (ANOVA)
(0=0.05) on ranks of untransformed data was used to compare mean coral condition during
pre-exposure, exposure, and post-exposure periods, histological changes (full exposure 2)
and water quality data between treatments. Post-hoc analysis of non-parametric data
(Multiple Comparisons) was used where applicable. One-way ANOVA (a=0.05) was used
to compare mean effective quantum yield, histological changes (range-finding exposure),
and growth rate among treatments over the pre-exposure and post-exposure periods. Post-
hoc analysis (Tukey’s Test) was used to determine which treatments were significantly
different from others. Threshold concentrations were determined using GraphPad Prism 6
(ECs0) and methods established by the EPA (LCso) (USEPA 2002). Statistical tests were
performed using the statistical software R (V 3.1.2) and Statistica 13.
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RANGE-FINIDING EXPOSURE RESULTS

Hydrocarbon chemistry and water quality

Measured concentrations of 1-MN throughout the exposure period for each
treatment are shown in Table 5. Samples were obtained at the start, middle, and end of the
exposure to verify consistency of target concentration, resulting in stability over time with
minimal loss. Eliminating the controls from analysis of loss/gain resulted in a spread of -
7.6% to +11% across all 1-MN treatments.

Significant increases (p<0.05) in nutrient levels [PO4 (0.1 + 0.04 mg/L), NH3 (0.11
+0.08 mg/L), and NO (0.03 + 0.003 mg/L)] and a significant decrease in pH (7.59 + 0.05)
were found in the 25,966.7 pg/L treatment chambers due to coral tissue necrosis. No
significant differences (p>0.05) in pH (7.98 £ 0.02), alkalinity (122.7 = 7.5 mg/L), PO4
(0.04 £ 0.02 mg/L), NH3 (0.03 + 0.02 mg/L), NO2 (0.01 £ 0.002 mg/L), NO3 (0.08 + 0.02
mg/L) or DO (48.5 + 3.4%) were found among the seawater control, MeOH control,

Table 5. Measured concentrations (mean = SD) of 1-methylnaphthalene (ug/L) for each
treatment replicate at each time point of the Range-finding exposure.

Treatment TO T24 T48 Mean Loss/ Treatment
(n=3) Gain (%) Mean (n=3)

MeOH 10.4 8.9 5.0 8.08+2.80 -52

Control

MeOH 45 9.9 4.4 6.3+3.2 +0.50

Control 6.59+1.1

MeOH 6.8 6.0 35 5.4+1.7 -47

Control

SW 4.0 4.6 2.5 3.7+1.1 -39

Control

SW 6.8 5.8 9.3 7.3x1.8 +37

Control 6.07+1.7

SW 8.9 9.7 3.0 7.2+3.6 -66

Control

500 645.8 584.8 596.3 608.9+32.4 -7.6

500 674.8 641.0 674.8 663.5+19.5 0 643.6 + 24.6

500 644.2 671.5 659.5 658.4+13.7 +2.3

5,000 41206 4,376.1 4590.7 4,3625+ 2353 +11 543714+

5,000 5,810.2 5,821.1 5,646.7 5,759.3+97.7 -2.8 7'79 9' -

5,000 6,142.4 6,109.7 6,316.8 6,189.6+111.3 +2.8 '

25,000 25,539.2 25,092.3 24,056.8 24,896.1+760.4 -5.8
25,000 26,607.4 26,302.2 26,585.6 26,498.4+170.3 -0.08
25,000 27,5775 25,811.7 26,127.8 26,505.6+941.6 -5.2

25,966.7 +
757.05
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643.6 ng/L or 5,437.1 ug/L treatments, and no difference in temperature (26.4°C+0.2) was
found among all treatments. Dissolved oxygen levels decreased in all exposure systems

because chambers were sealed to prevent volatile loss of 1-MN.
Coral Condition

Progressive coral physical response is shown is Figure 5. Overall, corals in both the
seawater and methanol control treatments exhibited normal polyp extension, with limited
mucus production and no tissue swelling during the 48-h exposure period (Fig. 5A). Corals
exposed to the lowest concentration, 643.6 pg/L, displayed mild polyp distension and a
qualitative delay in tactile response after 48 h (Fig. 5B). The 5,437.1 pg/L exposed corals
had progressive polyp retraction, moderate tissue swelling and mucus production after 24
h (Fig. 5C). The corals exposed to 25,966.7 pg/L exhibited full polyp retraction and
abundant mucus production within 6 h of exposure, with 100% mortality occurring after
24 h (Fig. 5D). As no partial mortality was observed, the graphical method was used to
calculate an LCsp of 12,123 pg/L (USEPA 2002). Utilization of this method prevented

calculation of a 95% confidence interval.

Figure 5. Porites divaricata. Coral physical response to 1-methylnaphthalene exposure at 12
and 48 h. A) Control treatment, B) 643.6 ug/L treatment, C) 5,437.1 ug/L treatment, D)
25,966.7 pg/L treatment. Adapted from Renegar et al. (2016)
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Comparison of mean coral condition score for each treatment at each interval over
the pre-exposure, exposure, and post-exposure periods (Fig. 6) revealed significant
treatment effects at all times from 1 h after initiation of exposure to 9 d post-exposure
(p<0.05). Post-hoc analysis indicated that the 5,437.1 pg/L and 25,966.7 pg/L corals scored
significantly higher than 643.6 pg/L and control treatments at the end of the exposure
period (p<0.05). After one day of recovery, the 643.6 ug/L corals scored similarly to
controls (p>0.05) while the 5,437.1 pg/L coral scores remained significantly higher than
controls (p<0.05) until after 1 wk of recovery when scores were no longer different
(p>0.05). After 9 d of recovery, no treatment effects on coral condition were observed
(p>0.05). Coral condition scores were used to calculate an ECso of 7,442 pg/L (95% CI:
4,905-11,290 pg/L).
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Figure 6. Mean coral condition score for each treatment during pre-exposure, exposure, and
post-exposure time periods. Each point represents the treatment mean score of all surviving
corals.
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Photosynthetic Efficiency

Mean quantum yield was not significantly different among treatments at the end of
the pre-exposure and exposure periods, or after 1 wk of recovery (p>0.05). However, mean
quantum yield of the 5,437.1 pg/L corals was significantly higher than the controls from 1
d to 3 d post-exposure, and higher than the 643.6 pg/L corals from 1 d to 4 d post-exposure
(p<0.05) (data not shown). After 1 wk of recovery, no significant differences among

treatments were found (p>0.05).
Cellular and Tissue Changes

Cellular and tissue characteristics were adversely affected by exposure to 1-MN.
Significant treatment effects were found in corals fixed immediately following the
exposure (F@g= 21.39, p=0.0003). Post-hoc analysis indicated a significant increase in
histological scores of 5,437.1 pg/L corals compared to SW controls, MeOH controls, and
643.6 pg/L corals (p= 0.00033, 0.0016, 0.0022 respectively). As concentrations increased,
polypal architecture became severely compromised or completely lost, with degeneration
of tentacles, hypertrophy of mucocytes, and increases in pigmented granular amoebocyte
density at higher concentrations (Fig. 7A, C, E, & G). The coenenchyme also lost normal
cellular architecture at higher concentrations; columnar epidermal cells became more
squamous and cells fragmented, mucocytes atrophied and lysed, and zooxanthellae density
in the gastrodermis decreased (Fig 7B, D, F & H). No significant differences were detected
among the SW controls, MeOH controls, or 643.6 ug/L corals at any sampled time
(p>0.05). After 1 wk of post-exposure recovery, no significant treatment effects were

indicated in the surviving corals (F@g)= 2.503, p= 0.133).
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Figure 7. Histological sections of Porites divaricata. SW Control polyp (A) and coenenchyme
(B); MeOH Control polyp (C) and coenenchyme (D); 643.6 pg/L polyp (E) and coenenchyme
(F); and 5,437.1 ug/L polyp (G) and coenenchyme (H). Scale bars are 200 um for polyp and
50 um for coenenchyme. me= mesenteries, mu= mucocytes, te= tentacle, zx= zooxanthellae,
ep= epidermis, gd= gastrodermis, am= pigmented granular amoebocyte.
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Mesenteries were also adversely affected by exposure to 1-MN. Mesenterial
architecture was severely compromised and degraded at higher concentrations of 1-MN.
The gastrodermal wall and cnidoglandular band of the mesenteries contained
hypertrophied mucocytes and pycnotic nuclei in the 5,437.1 pg/L exposed corals,

indicating the presence of necrotic cells (Fig. 8).

Figure 8. Mesenteries of Porites divaricata following the range-finding exposure to 1-MN. SW
Control (A), MeOH Control (B), 643.6 pg/L (C), 5,437.1 pg/L (D). Scale bars= 50 um. gd=
gastrodermis, am= granular amoebocyte, mu= mucocytes.
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RESULTS FROM EXPERIMENT 1

Hydrocarbon chemistry and water quality

Water quality results from the range-finding study indicated a depletion of
dissolved oxygen levels during the exposure. To alleviate this, all dosing vessels were
topped off with nitrox gas (34% oxygen), as opposed to normal air.

No significant differences in any tested parameter were found at the beginning of
the experiment (p>0.05). Treatment effects were present at the end of the exposure
(p<0.05); post-hoc analysis indicated significant increases in NO2 and NOs in the 16,000
Mg/L treatment compared to the 1,000 pg/L treatment (p=0.044 and p=0.043, respectively).
A significant decrease in pH was found in the 16,000 ug/L treatment compared to the
seawater control (p=0.037) and the 2,000 pg/L treatment (p=0.032). A significant decrease
in DO was found in the 16,000 pg/L treatment compared to the 2,000 pg/L treatment
(p=0.006). No significant differences in pH, alkalinity, POs, NH3, NO2, NO3 or DO were
found among the seawater control, 1,000 pg/L, 2,000 pg/L, 4,000 pg/L, and 8,000 ug/L
treatments (p>0.05), and no difference in temperature was found among all treatments
(p>0.05).

Concentration of 1-MN in each treatment was analyzed at the start and end of the
exposure (Table 6). The measured concentrations of 1-MN were found to be inconsistent
with predicted concentrations, particularly in the higher concentrations tested. Based on
coral response observed in the range-finding experiment (i.e., 100% mortality of corals in
the “16,000 pg/L” treatment, and partial mortality of corals in the “8,000 ug/L” treatment),
it is unlikely that the measured concentrations were accurate. For this reason, the nominal

concentrations were used.
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Table 6. Measured concentrations (mean £ SD) of 1-MN (ug/L) for each treatment replicate
of Exp. 1.

Treatment Oh 48 h Mean %L oss/Gain Mean
SW Control 0.0 0.0 0.0 -
SW Control 0.0 0.0 0.0 - 18+18
SW Control 0.8 6.4 3.6 +661.5
SW Control 1.0 6.5 1.1 +553.6
1,000 1,053.2 1,046.4 1,049.8+3.4 -0.6
1,000 975.4 818.8 897.1+78.3 -16.1
1000  1,0248 11152  1,070.0%452 +8.8 1,002.4+67.1
1,000 1,036.8 948.6 902.7+44.1 -8.5
2,000 1,925.0 1,882.7 1,903.9+21.1 -2.2
2,000 1,706.1 1,830.3 1,768.2+62.1 +7.3
2000 16986  1957.8  1828.2+1206  +15.3 1,853.8+59.6
2,000 1,881.4 1,948.2 1,914.8433.4 +3.6
4,000 3,461.8 3,806.3 3,634.1+172.3 +9.9
4,000 3,651.3 1,074.3 2,362.8+1,2885 -70.6
4,000 3,721.1 3,871.4 3,796.2+75.2 +4.0 3,389.2+ 5957
4,000 3,734.7 3,792.7 3,763.7+£29.0 +1.6
8,000 1,766.7 1,952.6 1,859.7+92.9 +10.5
8,000 1,807.5 NA 1,807.5 NA
8,000 1,747.1 1,679.2 1,713.2+34.0 -3.9 2,723.7+1,612.1

8,000 5,958.9 5,070.0 5,514.4+444 4 -14.9
16,000 2,511.7 3,013.8 2,762.8+251.0 +19.9
16,000 2,321.3 2,232.1 2,276.7+44.6 -3.8

16,000 3,274.4 2,752.5 3,013.5+260.9 -15.9
16,000 9,779.2 3,485.7 6,632.4+3,146.7 -64.4

Coral Condition

3,671.3+1,729.9

Coral condition was scored during pre-exposure, exposure, and post-exposure
periods using criteria outlined in Table 4. Mean scores for each time interval are shown in
Figure 9. Significant treatment effects were found at all intervals from 1 h after initiation
of exposure to 19 d post-exposure (p<0.05). Multiple comparisons post-hoc analysis found
scores from 16,000 pg/L corals to be significantly higher than the control (p=0.044) and
1,000 pg/L corals (p=0.013) within 1 h after exposure initiation. At the end of the exposure
period, the 8,000 ug/L corals scored significantly higher than the control (p=0.025) and
1,000 pg/L corals (p=0.037); the 16,000 pg/L treatment corals were no longer scored due
to complete mortality. The 1,000 pg/L and 2,000 pg/L treated corals were not significantly
different from the controls at any point (p<0.05). The 8,000 pg/L corals did not recover
(i.e., did not score similarly to the controls) for 19 d, after which no treatment effects on

coral condition were observed (p>0.05).
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Figure 9. Porites divaricata. Mean coral condition scores during pre-exposure, exposure, and
post-exposure periods of Exp. 1. Each point represents the treatment mean score of all
surviving corals.

Photosynthetic Efficiency

Mean effective quantum yield (AF/Fm) for each treatment over time is shown in
Figure 10. A post-exposure decline is observed for all treatments, similar to the range-
finding experiment. Mean quantum yield was compared between treatments at each time
interval (one-way ANOVA), and significant treatment effects were found at the end of the
exposure period (p=0.0001) and after 24 h of recovery (p=0.001). Post-hoc analysis
(Tukey’s HSD) of the treated corals indicated that photosynthetic efficiency in the 8,000
Ma/L treated corals was significantly less compared to all other treatments at the end of the
exposure period and after 24 h of recovery (p<0.05). After 48 h of recovery, 8,000 ug/L
corals were not significantly different than other treatments (p>0.05). Corals in the 16,000

Mg/L treatment were not measured post exposure due to complete mortality.
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Figure 10. Porites divaricata. Mean effective quantum yield (AF/F,) during pre-exposure and
post-exposure periods of Exp. 1. The two solid reference lines represent the 48-h exposure to
1-methylnaphthalene.

Calcification

Change in buoyant wet weight of each coral fragment over each measurement
period was normalized to the initial size of each coral fragment, as fragments with larger
surface area have the ability to calcify over larger areas (Ferrier-Pages et al. 2000). Mean
normalized growth rates expressed as percent per day (% d*), for each treatment during
each exposure period are shown in Figure 11. While no significant treatment effects were
found for each period (Kruskal-Wallis, p>0.05), a greater decrease in growth rate after the
exposure period was observed in the 4,000 pug/L and 8,000 pg/L relative to the other
treatments and the control. After the post-exposure period, growth rate in the 8,000 pg/L

corals remained lower than the other treatments, although not significantly different.
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Figure 11. Porites divaricata. Mean (xSE) normalized growth rate of each treatment during
each time period of Exp. 1, expressed as percent change per day (% d).

Mortality

Each coral fragment was visually assessed for the presence of lesions, and a percent
mortality was assigned. Mean mortality percentages for each treatment at each time interval
are shown in Figure 12. 100% mortality occurred in the 16,000 pg/L treated corals by the
end of the exposure period. Exposure to 8,000 pg/L resulted in partial coral mortality
(mean= 16.5%, n=20), although these corals were able to partially recover during the post-

exposure period.
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Figure 12. Porites divaricata. Mean percent mortality (full/partial) during pre-exposure,
exposure, and post-exposure periods of Exp. 1.

ECso and LCs

The 48-h ECso or LCsp could not be calculated without valid 1-MN concentrations,
as nominal concentrations are not suitable for this calculation. A best estimate is provided
in the discussion. Comparison of results from this experiment to the range-finding test
suggested the measured hydrocarbon concentrations were incorrect, and were likely closer
to the intended nominal values. For example, 5,437.1 pg/L-exposed corals in the range-
finding test were severely damaged, but lacked mortality after recovery. In contrast,
exposure to 16,000 pg/L (nominal, measured at less than 5,000 pg/L) in this experiment
resulted in almost 100% mortality before completion of the 48-h exposure. This, along with
the inconsistency between replicates of the same concentration, suggests the hydrocarbon

chemistry was incorrect, and the experiment was therefore repeated.
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RESULTS FROM EXPERIMENT 2

Hydrocarbon chemistry and water quality

Water quality of each chamber was analyzed for treatment effects on the parameters
tested (temperature, pH, dissolved oxygen, alkalinity, phosphate, ammonia, nitrite, and
nitrate) at the beginning and end of the experiment. Again, all dosing vessels were topped
off with nitrox gas (34% oxygen), as opposed to normal air to limit oxygen depletion.

No significant differences in any tested parameter were found at the beginning of
the experiment (Kruskal-Wallis ANOVA, p>0.05). Following the exposure, a significant
decrease in DO in the 8,615.1 pg/L treatment compared to control (p=0.001) and 139.7
Mo/l (p=0.044) treatments occurred. Alkalinity in the 5,412.5 pg/L and 8,615.1 ug/L
treatments was significantly greater than controls after the exposure (p=0.034 and 0.001)
No significant differences (p>0.05) in pH, PO4, NH3, NO2, NO3 or DO were found among
the seawater control, 139.7 pg/L, 1,140.8 pg/L, 2,810.3 pg/L, and 5,412.5 pg/L treatments,
and no difference in temperature was found among all treatments (p>0.05).

Concentration of 1-MN in each treatment replicate was analyzed at the beginning
and end of the exposure. Table 7 summarizes the mean concentration measured for each

treatment over the 48-h exposure.
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Table 7. Measured concentrations (mean +SD) of 1-methylnaphthalene (ug/L) for each
treatment replicate of Exp. 2.

Treatment TOh T48 h Mean Loss/Gain Treatment Mean
(%)

SW Control 0 0 0 0

SW Control 0 0 0 0 0

SW Control 0 0 0 0

SW Control 0 0 0 0

1,000 116.1 108.8 1125+ 3.6 -6.3

1,000 207.7 87.8 147.7 + 60 -57.7

1,000 106.4 1714 138.9+325 +61.0 139.7+174

1,000 167.2 152.4 1598+ 7.4 -8.9

2,000 1,105.0 1,125 1,115.2 +10.2 +1.8

2,000 1,130.5 1,119 1,1249+5.6 -1.0

2,000 11592 1160  11596+04  +0.1 11408211

2,000 1,190.8 1,136 1,163.6 £ 27.2 -4.6

4,000 3,047.3 2,413 2,730.3+316.9 -20.8

4,000 2,821.6 2,672 2,746.7+75.0 -5.3

4,000 2,902.4 2,693 2,797.9+104.6 -7.2 2,8103+93.5

4,000 3,039.5 2,893 2,966.5+73.0 -4.8

8,000 5,233.5 5,227 5,230.3+3.2 -0.1

8,000 5,200.2 5,404 5,302.0 + 101.8 +3.9

8,000 5,400.8 5,485 5,443.0 +42.3 +1.6 5412.5+169.6

8,000 5,586.7 5,763 5,674.6 +87.9 +3.1

16,000 8,217.5 8,215 8,216.3+1.2 0.0

16,000 8,488.0 8,513 8,500.7 £ 12.7 +0.3

16,000 8,850.8 8,805 8,827.7+23.1 -0.5 861512773

16,000 8,878.0 8,953 8,915.7 + 37.7 +0.8

The low variation among treatment replicates suggests accurate measurement of
test concentrations, which remained stable throughout the duration of the exposure. All
treatments returned concentrations less than calculated target concentrations. This is
presumably due to an incorrect partition coefficient from PDMS to water (Kppms-water), aS
the partition coefficient utilized was determined for freshwater (Butler 2013). The means

for all treatment replicates were used for overall treatment concentrations.
Coral Condition

Physical coral response is shown in Figure 13. Overall, control corals exhibited
normal behavior, with no mucus production and slight polyp retraction and tissue swelling
toward the end of the 48-h exposure (Fig. 13A). Corals in the 139.7 pg/L and 1,140.8 pg/L
treatments showed an initial response of mild polyp retraction, ending the exposure with

moderate tissue swelling, and a qualitative delay in tactile response (Fig. 13B & C
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respectively). Corals in the 2,810.3 pg/L treatment exhibited moderate polyp retraction and
mild tissue swelling after 12 h, with mild mucus production and moderate lightening of
color by the end of the 48-h exposure (Fig. 13D). The 5,412.5 pg/L exposed corals had
severe polyp retraction, moderate tissue swelling and mucus production after 12 h, with
severe lightening of coloration after 48 h (Fig. 13E). The corals exposed to 8,615.1 pg/L
exhibited severe polyp retraction within 2 h of exposure, with severe lightening of

coloration (bleaching) and tissue recession and sloughing occurring after 48 h (Fig. 13F).

Figure 13. Porites divaricata. Physical coral response at 12 h and 48 h of exposure to 1-MN.
SW control (A), 139.7 pg/L (B), 1,140.8 pg/L (C), 2,810.3 pg/L (D), 5,412.5 pg/L (E), 8,615.1
Hg/L (F).
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Coral condition was scored during pre-exposure, exposure, and post-exposure
periods using criteria outlined in Table 4, and mean scores for each time interval are shown
in Figure 14. Significant treatment effects were found at all intervals from 1 h after
initiation of exposure to 1 wk post-exposure (Kruskal-Wallis ANOVA, p<0.05). Post-hoc
analysis (multiple comparisons) found scores from 8,615.1 pg/L corals to be significantly
higher than control corals from 2 h after initiation of exposure (p=0.0043) through 1 wk of
recovery (p<0.05). From 2-36 h of the exposure, 8,615.1 pg/L corals also scored
significantly higher than 139.7 pg/L corals (p<0.05). The 5.412.0 pg/L treated corals
scored significantly higher than controls from 3 h after exposure initiation (p=0.032)
through the end of the 48-h exposure (p<0.05). After one wk of recovery, no treatment

effects were determined (p>0.05).
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Figure 14. Porites divaricata. Mean coral condition scores during pre-exposure, exposure, and
post-exposure time periods of Exp. 2. Each point represents the mean treatment score of all
surviving corals.

42



Cellular and Tissue Changes

Exposure to 1-MN negatively affected the cellular and tissue condition of corals.
Immediately following the exposure, normal cellular architecture was compromised in the
highest treatment, leading to significant treatment effects (p=0.0006). Post-hoc analysis
indicated a significant increase in scores for the 8,615.1 pg/L corals compared to both
controls and 139.7 pg/L treatments (p=0.0043 for both) (Fig. 15A). The coenenchyme of
8,615.1 pg/L-treated corals incurred abundant fragmentation and lysing immediately
following the exposure (Fig 16G). The surface body wall of the 8,615.1 pg/L exposed
corals exhibited full thickness ablation; epidermal and gastrodermal cells were missing,
and if present, they were lysed and necrotic. Abundance of pigmented granular
amoebocytes also increased with increasing concentration, with lysing of these cells
occurring at higher concentrations.

The 5,412.5 pg/L-treated corals exhibited many of the same responses as the high
concentration, but were not significantly different than controls immediately following the
exposure (p= 0.057) (Fig. 15A). The coenenchyme was fragmented and lysed, with
necrosis present in most areas (Fig. 16E). Gastrodermis of the basal body wall was
fragmented and necrotic, resulting in the gastrovascular cavity being filled with cell debris
and mucus. Lower treatments, although not significant, had increased mucous secretion

with some atrophy and necrosis of cells (Fig 16C).
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Figure 15. Boxplot of Porites divaricata histologic scores by treatment at 48 h (A), 1 wk post-
exposure (B), and 4 wk post-exposure (C). * denotes statistical difference from control
treatments.
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Figure 16. Histological sections of Porites divaricata coenenchyme at 40X magnification. SW
Control 48 h (A) and 4 wk (B); 2,810.3 pg/L 48 h (C) and 4 wk (D); 5,412.5 pg/L 48 h (E) and
4 wk (F); 8,615.1 pg/L 48 h (G) and 4 wk (H). Circle surrounds area of fragmented and
atrophied cells. Scale bars= 50 um. mu= mucocyte, ep= epidermis, gd= gastrodermis, am=

pigmented granular amoebocyte.
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Similar to the range-finding exposure, polypal architecture was also compromised
at higher concentrations (Fig. 17E and G). Control corals maintained normal polyp
structure, with tentacles and the actinopharynx clearly visible (Fig. 17A). As
concentrations increased, tentacles degraded and mucocytes in the basal portion of the
polyps hypertrophied and eventually lysed (Fig. 17E and G). The 8,615.1 pg/L-exposed
corals had no visible signs of polyp structure at the end of the exposure (Ellipse in Fig.
17G).

Treatment effects were also determined after 1 wk post-exposure (p= 0.0018) due
to the significant differences between 8,615.1 pg/L and control treatments (p= 0.0011) and
between 5,412.5 pg/L and control treatments (p= 0.022) (Fig. 15B). Surface body walls of
both treatments exhibited abundant atrophy and fragmentation, but most margins of broken
tissue contained acidophilic staining granules, indicating some form of tissue repair (FIG.
18). Again, the lower concentrations which remained statistically similar to controls (p>
0.05) exhibited hypertrophied mucocytes in the basal body wall and mesenteries with

abundant mucus release.
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Figure 17. Histological sections of Porites divaricata polyps at 10X magnification. SW Control
48 h (A) and 4 wk (B); 2,810.3 pg/L 48 h (C) and 4 wk (D); 5,412.5 pg/L 48 h (E) and 4 wk
(F); 8,615.1 pg/L 48 h (G) and 4 wk (H). Rectangle surrounds area of diminishing polyp
structure. Ellipse surrounds area of missing polyp structure. Scale bars= 200 pm. mu=
mucocytes, me= mesenteries, ep= epidermis, gd= gastrodermis, te= tentacle, ap=
actinopharynx.
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Figure 18. Histological sections of Porites divaricata coenenchyme at 40X magnification.
5,412.5 pg/L at 48 h (A) and 4 wk (B); 8,615.1 pg/L at 48 h (C), and 4 wk (D). Ellipses surround
acidophilic staining at damaged margin. Rectangle surrounds newly formed epidermis. Scale
bars= 50 um. ep= epidermis, gd= gastrodermis.

Similar to the range-finding exposure, mesenteries were atrophied, necrotic, and
infiltrated by mucocytes at higher concentrations (Fig. 19). Lower concentrations
contained some mucocytes in mesenteries, but were not as abundant as 5,412.5 pg/L and
8,615.1 pg/L treatments. The mesenteries of the 5,412.5 pg/L and 8,615.1 pg/L treatments
contained numerous pycnotic nuclei, with a degenerating and necrotic cnidoglandular band
(ellipses of Fig. 19E and F).
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Figure 19. Histological sections of Porites divaricata mesenteries at 40X magnification after
48 h. A) SW Control, B) 139.7 ug/L, C) 1,140.8 pg/L D) 2,810.3 pg/L E) 5,412.5 ug/L F) 8,615.1
pg/L. Ellipses surround necrotic cells. Rectangle surrounds necrotic amoebocytes. Scale
bars= 50 pm. mu=mucocytes, cn= cnidoglandular band, cd= calicodermis, gd= gastrodermis,
am= pigmented granular amoebocyte.

Following 4 wk of post-exposure recovery, no significant treatment effects were
determined (p= 0.056) (Fig 15C). Figures 16 and 17 (B, D, F, and H in both) show images
at 4 wk of post-exposure recovery. The coenenchyme (Fig 16) of higher treatments
contained fragmented cells and atrophied mucocytes, but lacked breaks and areas with no



epidermis. Epidermal cells were becoming more organized and columnar and polypal

architecture was beginning to recover normal structure (Fig 17).

Photosynthetic Efficiency

Mean effective quantum yield (AF/Fm) for each treatment over time is shown in
Figure 20, and illustrates a post-exposure decline for all treatments. Mean quantum yield
was compared between treatments at each time interval, with significant treatment effects
observable from one to five days post-exposure (p<0.05). Post-hoc analysis of the treated
corals indicated significantly decreased photosynthetic efficiency in the 8,615.1 pg/L
treated corals compared to all other treatments at the end of the exposure period (p<0.05),
lasting for five days when the corals were no longer measurable due to algae overgrowth
or mortality. Photosynthetic yield of the 5,412.5 pg/L treated corals was reduced following
the exposure, but only significantly different than the 1,140.8 pg/L treatment immediately
after exposure (p=0.047).
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Figure 20. Porites divaricata. Mean effective quantum yield (AF/Fr,) during pre-exposure and

post-exposure periods of Exp. 2. The two solid reference lines represent the beginning and
end of the 48-h exposure to 1-methylnaphthalene.
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Calcification

Mean normalized skeletal growth rates, expressed as percent change per day, for
each treatment during each exposure period are shown in Figure 21. Significant treatment
effects (one-way ANOVA) were found for the exposure (p=0.023) and 1 wk recovery
(p=0.001) time periods. Post-hoc analysis (Tukey’s HSD) revealed a significant decrease
in growth of the 8,615.1 pg/L-treated corals compared to the 139.7 ug/L-treated corals
during the exposure (p=0.028). After 1 wk of recovery, skeletal calcification of the 8,615.1
pg/L-treated corals was significantly less than controls (p=0.001), 139.7 pg/L (p=0.009),
and 2,810.3 pg/L (p=0.035) treatments, concurrent with a significant decrease in
calcification of the 5,412.5 pg/L corals compared to controls (p=0.007). By the end of
recovery (32 d after exposure completion), no significant treatment effects were observable
(p>0.05).

.SW Control

[]139.7 poiL
[]1,140.8 pgiL
[]2.810.3 pgiL

[]5.412.5 gL

1.51

il Bl s6151 pgiL
= 1.01
==
g
2
&
0.51
0.0-
Pre-Exposure Exposure Week 1 Week 4
Post-Exposure Post-Exposure

Figure 21. Porites divaricata. Mean normalized growth rate of each treatment during each
time period of Exp. 2, expressed as percent change per day (% d?)(xSE). (*) denotes
significant difference from the control during that time period.
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Mortality

Each coral fragment was visually assessed for the presence of lesions, and a percent
mortality was assigned. Mean mortality percentages for each treatment at each time interval
are shown in Figure 22. After the 48-h exposure, there was 86.7% mortality in the 8,615.1
pg/L-treated corals and 14.6% mortality in the 5,412.5 pg/L-treated corals with little to no

recovery during the post-exposure period for both treatments.
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Figure 22. Porites divaricata. Mean percent mortality (full/partial) during pre-exposure,
exposure, and post-exposure time periods of Exp. 2. Mean values are representative of all
coral fragments in each treatment at that time point.

ECso and LCso

Based on the physical changes P. divaricata experienced after exposure to 1-MN,
the 48-h ECso was calculated using a variable slope, dose-response model in GraphPad
Prism 6. A 48-h ECso of 4,543 pg/L (95% CI: 3,071-6,547 pg/L) was determined by

plotting mean coral condition scores against the log of the concentration.
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Exposure to 1-MN also caused mortality in multiple concentrations after 48 h,
providing the data necessary to calculate the concentration lethal to 50% of the population
(LCs0). According to the United States EPA acute toxicity data analysis guidelines (USEPA
2002), the Spearman-Karber method for determination of LCso was the appropriate test;
this technique is utilized when there are concentrations that cause no mortality, at least one
concentration that causes partial mortality, and at least one concentration causing 100%
mortality. According to this technique, the 48-h LCs for 1-MN to P. divaricata is 6,524
pg/L (95% CI: 5,659-7,500 pg/L).
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DISCUSSION
Hydrocarbon Chemistry

One purpose of the range-finding exposure was to demonstrate the effectiveness of
the passive dosing system at maintaining constant concentrations throughout the exposure
duration. Almost all of the aqueous concentrations were in agreement with predicted
values, with most concentrations higher than expected. Eliminating background
concentrations found in the control treatments, the mean variation between expected values
and achieved concentrations was 18.7% at time 0 h, and 15.5% for both time 24 h and 48
h. This variation is likely due to not rinsing the loaded O-rings prior to transferring them
to the exposure system. It is assumed some particulate hydrocarbon adhered to the surface
of the O-ring and added to the concentration in the seawater dosing system. Analyzing the
consistency of concentration throughout the exposure revealed an average fluctuation of
2.2% for all treatments. Although the concentrations were elevated, the ability of the
passive dosing system to maintain constant exposure concentrations regardless of loss was
verified during the range-finding exposure.

Stability of treatment concentrations is a necessity for determining threshold
concentrations in toxicological studies (McGrath et al. 2004, Bejarano et al. 2014). The
passive-dosing system was again verified during Experiment (Exp.) 2, with an average
fluctuation in 1-MN concentration over time of 1.7%. Failure to achieve target
concentrations and inaccurate analytical chemistry results prevented determination of
actual exposure concentrations during Exp. 1. Without actual concentrations, calculation
of ECso and LCsp was irrelevant; actual exposure concentrations were thus estimated for
Exp. 1, using measured values from Exp. 2. In order to accomplish this, deviations from
expected concentrations in Exp. 2 need examination.

Exp. 2 resulted in concentrations on average 47.4% lower than predicted. The
experimental protocol was adjusted to include rinsing the O-rings to avoid transferring
particulate hydrocarbon and subsequent increased concentrations as observed in the range-
finding exposure. The consistency of treatment concentrations between replicates suggests
the decrease in concentration was not an analytical error, but an error in calculation of the
amount of 1-MN loaded in the O-rings. The partition coefficient responsible for this error

is Kppms-water, Which represents the partitioning between the PDMS reservoir and seawater,
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as it was determined for freshwater (Butler 2013). The partitioning of hydrophobic organic
compounds, like 1-MN, depends on environmental factors, especially temperature (T) and
salinity (S) (Jonker et al. 2015). Partitioning from the PDMS phase to seawater is reduced
in response to decreased temperature and increased salinity. The decreased partitioning
from the PDMS reservoir into the seawater is represented by an increase in Kppms-water-
Jonker et al. (2015) developed a method to calculate condition-specific PDMS-water
partition coefficients [Kppms-water(T,S)] by correcting values determined under standard
conditions: Kepms-water (20°C, 0 ppt). Using this method, it was possible to estimate the
partition coefficient for the environmental conditions used in this set of experiments
(T=26°C, S=35 ppt).

The value for logKppms-water (20°C, 0 ppt) developed under standard conditions
initially utilized in calculations was 2.98. After adjustment for environmental conditions
using the equation by Jonker et al. (2015), logKrpms-water (26°C, 35 ppt) was calculated at
3.19. The observed difference in logKppms-water is attributed to the increased salinity of
seawater as temperature effects were very small. Table 8 shows the relationship between
expected and measured concentrations for Exp. 2. The expected concentrations were
determined using the amount of 1-MN from Table 2, while accounting for depletion in
MeOH (5.89%) and PDMS (7.36%) stages.

Table 8. Expected and measured concentrations (ug/L) of 1-MN during Exp. 2.

Expected concentration using  Expected concentration using  Measured mean (£SD)

Kprpoms-water(20°C, 0 ppt) Kroms-water (26°C, 35 ppt) treatment concentration
(n=4)

943 582 139.7+17.4

1,886 1,164 1,1408 +21.1

3,768 2,326 2,810.3+935

7,534 4,650 5,412.5 + 169.6

15,065 9,298 8,615.1 + 277.3

The measured concentrations for Exp. 2 better aligned with the values calculated
with the adjusted Kppms-water (26°C, 35 ppt). Using Kppms-waer (20°C, 0 ppt),
concentrations obtained varied by 47.4% from those estimated, while the adjusted Kppws-
water (26°C, 35 ppt) resulted in a 24.5% average variation from intended concentrations.
Although a deviation was still present, possibly due to insufficient equilibration in the
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dosing system or inadequate rinsing prior to transfer into the experimental system, the
difference was much less than the comparison with concentrations expected with Kppms-
water (20°C, 0 ppt). Therefore, the adjusted Kppms-water (26°C, 35 ppt) was used in an effort
to provide a better estimate of concentrations obtained in Exp. 1, using the amount of 1-
MN in Table 2 and accounting for depletion. The estimated exposure concentrations for

Exp. 1 are listed in Table 9, and are used to facilitate comparisons between experiments.

Table 9. Measured and estimated mean (+ SD) treatment concentrations (pg/L) during Exp.
1 using Kppms-water (26°C, 35 ppt).

Treatment Measured Concentration Estimated Concentration
1,000 1,002.4 +67.1 581

2,000 1,853.8 £59.6 1,163

4,000 3,389.2 + 595.7 2,326

8,000 2,723.7+1,612.1 4,650

16,000 3,671.3+1,729.9 9,298

Water Quality

Water quality was consistent across experiments. Elevated levels of nutrients were
present in higher 1-MN treatments, likely due to tissue necrosis and mortality. Increases in
nutrients examined (POs, NH3, NO2, NO3z) could be in response to waste products being
released from the coral fragments or mortality in bacteria of the holobiont. Mucus from
multiple species has been determined to contain high levels of lipids (Ducklow and
Mitchell 1979b), and elevated phosphate levels may be linked to increased mucus
production or degradation of cell membranes. Phosphate and nitrogenous waste
compounds will accumulate over time in a closed system regardless of stress, but it is
apparent that more waste was produced by corals and associated bacteria exposed to higher

concentrations of 1-MN.
Effects of 1-Methylnaphthalene on Porites divaricata

The range-finding exposure was conducted to verify the utility of the passive dosing
system and to determine a suitable range of five concentrations to use during full-toxicity

exposures. This was achieved, and the effects of 1-MN on P. divaricata will be discussed
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based on the response observed during the two full-toxicity experiments (Exp.1 and Exp.
2).

Coral condition. A comparison of coral condition scores between experiments
provides evidence that the concentrations obtained in each full-toxicity experiment were
similar. Both experiments resulted in treatment effects after only 1 h of exposure due to
elevated scores in the high concentrations. Figures 8 and 13 reveal a similar pattern: corals
exposed to concentrations above 5,000 pg/L showed an immediate response (polyp
retraction and tissue swelling) with delayed recovery, if recovery occurred at all. The
seawater controls and the three lowest concentrations in each experiment scored similarly
throughout the exposure with only a mild observable effect. It is important to note the full
recovery of coral condition scores for surviving fragments in the highest concentration of
Exp. 2, which was absent in Exp. 1 due to complete mortality.

Although the toxic concentrations of 1-MN and oil are not comparable between
studies, it is possible to compare the sublethal responses displayed by corals. Polyps of
Diploria strigosa retracted following exposure to higher concentrations of the WAF of
crude oil, with extreme tissue contraction and localized tissue rupture (Wyers et al. 1986).
Increases in mucus secretion and swelling of tissues of Manicina areolata was also found
following exposure to No. 2 fuel oil (Peters et al. 1981). These same effects were noted
during this study, with higher concentrations above 5,000 pg/L 1-MN resulting in much
greater effects.

Photosynthetic efficiency. Significant reduction in mean effective quantum yield
(AF/Fm) were found for the two highest treatments in both experiments. The second
highest treatment concentration recovered to control levels within two days of recovery
during Exp. 1 and within one day of recovery in Exp. 2. Corals in the highest concentration
were not measured due to complete mortality in Exp. 1, and never recovered to normal
levels in Exp. 2. Similar decreases in photosynthetic yield were found when Acropora
microphthalma was exposed to 190 pg/L mineral derived lubricant (Mercurio et al. (2004).

The presence of pigmented amoebocytes within P. divaricata tissue potentially
inhibits collection of reliable photosynthetic yield data because of their ability to absorb
the fluorescence signal. It seems unlikely that differences among treatments were in

response to zooxanthellae health or density, as histologic evaluation did not show any
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significant changes to the algal cells. Perhaps photosynthetic efficiency measurements are
not a reliable assessment metric for corals which contain these pigmented amoebocytes.

Calcification. Skeletal growth of the corals in each experiment varied slightly.
Growth decreased in both experiments at higher concentrations, but significant decreases
were only observable in Exp. 2 (Figures 10 and 15). Coral calcification depends on
alkalinity, which was significantly higher in the 5,412.5 pug/L and 8,615.1 pg/L treatments
compared to controls (Exp. 2), indicating a lack of calcification in these treatments. The
aragonite tiles to which coral fragments were affixed in Exp. 2 were weighed and
subtracted from the weight of the coral/tile combination at each time point, possibly
resulting in higher resolution measurements and greater potential to reveal treatment
effects. There was also a lack of 1 wk recovery measurements in Exp. 1. This time period
revealed the most significant effects on growth during Exp. 2, which were not observed
after 4 wk of recovery. Therefore, it is possible that the delayed effect on growth occurred
in the both experiments, but the data were not collected until Exp. 2. Reduced calcification
of Millepora spp. was found following exposure to 100 and 500 pg/L phenanthrene.
Phenanthrene is considered more toxic than 1-MN, which explains the decreased growth
rates at concentrations less than 10% of those used in this study.

Cellular Changes. The exposures resulted in significant treatment effects on the
cellular and tissue structure of P. divaricata following exposure to 1-MN. Corals in control
treatments maintained normal cellular architecture, with polyp structure remaining intact
and mesenteries presumably healthy. Treatments lower than 5,000 pg/L 1-MN were not
significantly different than controls at any time, however, there was a quantifiable effect
on mucocytes. At lower concentrations, mucocytes in the polyps were hypertrophied,
especially those lining the mesenteries and basal portions of the polyps. As concentrations
increased, atrophy became apparent in epidermal mucocytes, and those found within the
basal body wall gastrodermis were hypertrophied. Mucus release was abundant on the
surface of the coral, as well as within the gastrovascular cavity. Corals produce mucus for
a multitude of reasons, including heterotrophic feeding, sediment cleansing, or a defense
against desiccation or environmental stressors, and researchers have found that up to 90%

of ectodermal cells of some corals are mucocytes (Brown and Bythell 2005).
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Crude oil exposure has been linked to increased mucus secretion (Mitchell and Chet
1975), and has caused hypertrophy and hyperplasia of mucous secretory cells (now termed
mucocytes) in Manicina areolata (Peters et al. 1981). Neff and Anderson (1981) have
suggested mucus may bind or absorb pollutants and act as an avenue for release, protecting
the underlying coral tissue. This may be particularly true for type 1 narcotic chemicals,
which act via nonpolar narcosis. The composition of mucus is temporally variable, as well
as variable between species of coral, but has been shown to contain polysaccharides,
proteins, and lipids (Brown and Bythell 2005). Exposure to 1-MN during this study may
have been mitigated by the release of mucus after it had absorbed the pollutant.

Aside from mucocyte changes, exposure to higher concentrations of 1-MN (>5,000
Mg/L) also resulted in surface body wall fragmentation, atrophy, and lysing of cells. The
epidermis contained many ruptures over the skeletal ridges of the coenenchyme,
presumably due to intense tissue retraction into the polyps, which was a very common
response following exposure. Density of melanin-containing granular amoebocytes in the
epidermis and polyps also increased, potentially indicating some form of response to
cellular damage, as these cells have been previously categorized as part of the wound
healing process in Porites cylindrica (Palmer et al. 2011).

The two highest treatments, 5,412 pg/L and 8,615 pg/L 1-MN resulted in
considerable cellular and tissue damage. Polypal architecture was compromised or
completely lost due to degradation of tentacles and epidermal tissues, with the mouth and
actinopharynx rarely visible. Polyps contracted very tightly, causing tissue recession off of
the skeletal ridges. The margins of tissue loss were dominated by acidophilic-staining cells,
which have been suggested as part of the healing process of other corals following recent
injury (Renegar 2015). Although not all of the 8,615 pg/L-exposed corals survived, the
tissue structure of two fragments, which were severely compromised, showed evidence for
recovery. Tissue layers initially lost as a result of the exposure began to reform. After 4 wk
of post-exposure recovery, epithelial cells were intact, with polypal architecture returning.

Another noteworthy departure from normal cellular architecture was the effect on
the mesenteries of exposed corals. The mesenteries of control corals maintained normal
mesentery architecture with well-defined cnidoglandular bands. As concentrations

increased, the number of mucocytes was greater in the mesenteries and cnidoglandular
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bands, which is consistent with previous research using M. areolata (Peters et al. 1981).
Accompanying this change was the degeneration of the cnidoglandular band itself. At high
concentrations, atrophy was prevalent in the cnidoglandular band, with reductions in
number of acidophilic granular gland cells.

Mortality. Mortality also showed similarities between experiments. The seawater
controls and three lowest concentrations in both exposures resulted in no mortality
throughout the exposure and recovery periods. The two highest concentrations in each
experiment differed in percent mortality, but only slightly. The 4,650 pg/L treatment in
Exp. 1, and the 5,412 pg/L treatment in Exp. 2 resulted in mortality in both experiments,
averaging 16.6% and 14.6%, respectively. The highest concentrations tested, 9,298 ug/L
(Exp. 1) and 8,615 pg/L (Exp. 2) resulted in 100% and 86.7% mortality, respectively. If
the estimated concentrations for Exp. 1 are accurate, the difference in mortality can be
attributed to the difference in concentration corals were exposed to, with the higher
concentration resulting in higher mortality. Concentrations used in this research were not
environmentally realistic, and release of petroleum into marine environments would
typically not result in 1-MN concentrations of this magnitude. However, these elevated
concentrations were necessary to obtain mortality at sufficient levels to calculate the
threshold concentrations needed as inputs to the TLM.

ECso and LCso. The similarity in results for both experiments is further evidence
that the concentrations were similar between the two separate exposures, and provides
support for calculation of ECsg and LCsp for Exp. 1 using the estimated concentrations in
Table 9. Using the variable slope dose-response model in GraphPad Prism 6, the ECso for
Exp. 1 was calculated at 3,446 pg/L (95% CI: 2.961-3.991 ug/L). This differs from the
ECso from Exp. 2 [4,543 pg/L (95% CI: 3,071-6,547 ug/L)] by more than 1,000 pg/L. The
difference in ECso may be related to the use of the semi-quantitative coral condition scores
or estimated concentrations.

Using the estimated concentrations (Table 9), Exp. 1 resulted in a 48-h LCso of
5,569 pug/L (95% CI: 4,629-6,667 ug/L) (Spearman-Karber). This is similar to the 48-h
LCso for Exp. 2, which was calculated at 6,524 pg/L (95% CI: 5,659-7,500 pg/L) using
measured concentrations. The difference in LCsos is likely due to the use of estimated

concentrations for Exp. 1.
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The ECso determined in the range-finding experiment was 7,442 pg/L (95% CI:
4,905-11,290 pg/L). The ECsps calculated from subsequent tests were both lower, with
narrower 95% confidence intervals [Exp. 1 =3,446 pg/L (95% CI: 2.961-3.991 pg/L); Exp.
2 =4,543 pg/L (95% CI: 3,071-6,547 pg/L)], suggesting a more accurate estimate. The 48-
h LCso determined in the range-finding experiment was 12,123 pg/L. This was also higher
compared to both full-toxicity experiments [Exp. 1 =5,569 ug/L (95% CI: 4,629-6,667
Mg/L); Exp. 2 =6,524 pg/L (95% CI: 5,659-7,500 pg/L)]. Refinement of the test protocols
and subsequent decrease in variability of concentrations in Exp. 1 and Exp. 2 resulted in

more precise toxicity estimates for P. divaricata.
Comparative toxicity

The LCso calculated from Exp. 2 was used to compare 1-MN toxicity for P.
divaricata to other organisms. NOAA’s Office of Response and Restoration has created
the Chemical Aquatic Fate and Effects (CAFE) database to estimate the fate and effects of
multiple chemicals, oils, and dispersants (NOAA/ERD 2015). This tool allows direct
comparison of toxicological endpoints across different species. Figure 23 shows the
distribution of LCsos for 1-MN and other organisms using the CAFE database.

Although this model cannot fit a curve to the data without a minimum of five
species, it provides the basis to compare toxicities. With the amount of current available
48-h LCso data on 1-MN, it is apparent that P. divaricata ranks similarly, but may be more
sensitive than other organisms tested. Other studies have been completed with other forms
of naphthalene (parent and other alkylated derivatives), but comparing results and
evaluating species sensitivity with those findings is cautioned, as differences in alkylation
alter toxicity (Hawthorne et al. 2006, Achten and Andersson 2015). Due to a lack of directly
comparable data for the toxicity of 1-MN to coral, estimates of species sensitivity were
made using the TLM.
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Figure 23. Distribution of LCso values for 1-methylnaphthalene created using NOAAs CAFE
model.

Application of the Target Lipid Model

Results of this study indicated a 48-h LCso of 6,524 pg/L (95% CI: 5,659-7,500
pg/L) 1-methylnapthalene. The LCso obtained was used to estimate a CTLBB of 355.7
pmol/ g lipid for P. divaricata following the TLM. Calculation of CTLBB is similar to a
normalization procedure that corrects Type 1 narcotic chemicals with different Kows (Di
Toro et al. 2000), allowing comparisons between species even if different chemicals were
used. Due to a lack of comparable studies on the toxic effects of 1-MN, the calculated
CTLBB can be used to compare sensitivity of P. divaricata to other species for which
CTLBBs have been calculated. Table 10 shows a comparison of CTLBBs for saltwater
species based on work by McGrath and Di Toro (2009).
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Table 10. Comparisons of CTLBB (umol/g lipid) from McGrath and Di Toro (2009).
* = information from this study.

Species Common Name Habitat CTLBB
Oncorhynchus gorbuscha Pink Salmon Water Column 245
Rhepoxyinus abronius Amphipod Infauna 31.2
Mysidopsis bahia Mysid Epibenthic 34.3
Eohaustorius estuarius Amphipod Infauna 41.4
Leptocheirus plumulosus Amphipod Infauna 43.1
Portunus pelagicus Sand Crab Epibenthic 53.3
Ampelisca abdita Amphipod Infauna 53.8
Palaemonetes pugio Grass Shrimp Epibenthic 57.3
Jordanella floridae American Flagfish Water Column 67.1
Cyprinodon variegatus Sheepshead Minnow Water Column 114
Oithona davisae Copepod Epibenthic 142
Meanthes arenaceodentata Annelid Worm Infauna 182
Artemia salina nauplii Brine Shrimp Water Column 194
Menidia beryllina Inland Silverside Water Column 292
Porites divaricata* Thin Finger Coral Benthic *355.7

From this information, it can be concluded that P. divaricata is less sensitive to
type 1 narcotic chemical exposure compared to other organisms for which CTLBBs are
available. This is possibly linked to the elevated levels of mucous secretion when corals
are exposed to xenobiotics. The mucous secretion exhibited by corals may be protective,
acting as a physical barrier or avenue of toxicant release (Neff and Anderson 1981). The
increased resilience compared to other organisms disagrees with the initial comparisons
made using NOAA’s CAFE database. The organisms included in CAFE are not present in
the CTLBB comparisons, thus additional data may result in the same order of resilience
for the species being compared.

Calculation of the CTLBB also facilitated the prediction of the LCso for P.
divaricata for other narcotic chemicals found in petroleum using the TLM (Table 11).
According to the TLM and calculation of CTLBBs, toxicity of petroleum mixtures is most
related to lower molecular weight hydrocarbons, as the predicted LC50s are below the
solubility of each chemical in seawater. Fluorene, phenanthrene, and fluoranthene would

produce a toxic response, but only at concentrations above solubility. Although above
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solubility, the predicted LCso for fluoranthene aligns with an experimentally determined
value of 435.1 ug/L for P. divaricata (Martinez et al. 2007). The TLM and calculation of
the CTLBB for P. divaricata facilitated the comparison of toxic thresholds between studies

that tested different chemicals, and provides the basis for evaluating the toxicity of complex

hydrocarbon mixtures via the toxic unit approach.

Table 11. Predicted LC50s for low molecular weight MAHs and PAHSs found in petroleum.
Solubility in seawater was determined using the Setschenow Equation. LCse*= predicted LCsg
using the TLM. Solubilitysw= solubility at 35 ppt.

. MW Solubilit LCso* LCso*
Class ~ Chemical (@mol)  (ug/L) o (gl)  <Solubilitysw
MAH Benzene 78.11 1,515,221 329,374 Yes
MAH Toluene 92.14 443,172 133,694 Yes
MAH 0-Xylene 106.17 145,082 51,544 Yes
MAH Ethylbenzene 106.17 125,288 45,291 Yes
MAH p-Xylene 106.17 160,929 42,091 Yes
PAH Naphthalene 128.19 26,615 18,233 Yes
PAH 1-Methylnaphthalene 142.2 21,698 6,524 Yes
PAH Fluorene 166.2 1,466 5,631 No
PAH Phenanthrene 178.23 1,025 1,449 No
PAH Fluoranthene 202.26 183 445 No
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CONCLUSION

These experiments are the first in a series of tests that evaluate the toxicity of

petrogenic hydrocarbons to corals. Due to the variety of bioassay conditions, and
differences in species or toxicant utilized in previous research, comparisons across studies
and extrapolation to actual spill scenarios has been difficult. Providing data as inputs to
models that can predict toxicity of any petroleum compound is invaluable, and provides
the necessary information spill responders require to act appropriately following an oil
spill.

The range-finding exposure was used to refine the initial dosing and monitoring
protocol, as well as verifying the effectiveness of the passive dosing technique. The full-
toxicity exposures resulted in stable concentrations required for precise estimation of the
ECso and LCsp of 1-MN to P. divaricata. Effects monitored included physical and cellular
changes, decreases in growth rate, and altered photosynthetic efficiency. These parameters
were used to calculate the threshold concentrations required for the TLM to estimate a
CTLBB of 355.7 umol/g lipid, which indicates a greater resilience to type 1 narcotic
chemicals for P. divaricata compared to other organisms. Although this is based on results
of a single hydrocarbon, future work with other petroleum hydrocarbons will verify the
precision of the estimated CTLBB and facilitate further comparisons of species sensitivity

across studies.
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APPENDIX 1
The following sections include detailed information of each completed study that

evaluated the effects of petroleum hydrocarbons on corals.
Incidents resulting in Acute and Chronic Exposure of Petroleum to Corals

Fishelson (1973) examined chronic exposure of an unspecified oil and phosphate
loading following multiple spills from a land-based oil terminal and phosphate loading
harbor in the Red Sea. There was an obvious decrease in coral cover, with Acropora,
Seriatopora, and Stylophora among the most affected genera. Brain corals also decreased
in cover, which was coupled with an increase in algal growth, presumably due to phosphate
pollution (Fishelson, 1973). Rinkevich and Loya (1977) similarly examined the effects of
chronic Iranian crude oil release from multiple spills originating at a terminal in the same
area one year later. Examination of Stylophora pistillata revealed higher adult coral
mortality rates coupled with reproductive alterations. Declines in number of breeding
colonies, number of ovaria per polyp, number of planulae per coral head, and lower
settlement rates were all significant, which can have lasting effects on the population
(Rinkevich and Loya, 1977).

Venezuelan crude oil, refinery waste, and Corexit® dispersant were continuously
released into the Caribbean from a refinery in San Nicolas Bay, Aruba from 1923-1985,
causing chronic pollution of a nearby fringing reef (Bak, 1987). This type of point source
pollution contains a distinct concentration gradient, with decreasing concentration as
distance from source increases. A positive correlation was found between coral cover,
rugosity and distance from the refinery, with major deterioration of the reef directly in front
of- and down-current from the refinery. Acropora palmata was “decimated” along the
entire study area, while Orbicella annularis, and Agaricia agaricites were only absent
close to the refinery. Abundance of Diploria strigosa was highest near the refinery, and
less abundant as distance increased. This type of scenario proves valuable when examining
community changes in response to chronic oil pollution, and perhaps sheds light on
whether or not some corals are more capable of coping with chronic oil pollution.

Perhaps the most studied of all spills impacting coral reefs, the Bahia las Minas
spill released more than 8 million liters of medium weight crude oil from a ruptured storage

tank at Refineria Panama on Payardi Island, Panama (Burns and Knap, 1989). Oil leaked
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into the Caribbean with roughly 21,000 liters Corexit® 9527 used in the clean-up process.
The close proximity of the Smithsonian Tropical Research Institute’s marine laboratory at
Punta Galeta, provided ample baseline data to which all post-spill changes could be
compared. Burns and Knap (1989) found extensive mortality of sub-tidal reef corals, with
a positive correlation between hydrocarbon uptake of Siderastrea siderea and Agaricia
tenuifolia tissues and mortality. There was also an increase in protein to lipid ratios at
heavily oiled sites (Burns and Knap, 1989). A decrease in cover of Palythoa caribaeorum
and Zoanthus sociatus, as well as complete loss of Porites spp. was also observed (Cubit
et al., 1987; Jackson et al., 1989). Corals exhibited 22-30%, and 17% mortality in heavily
oiled and moderately oiled sites respectively, compared to no mortality in unoiled reefs
(Cubit et al., 1987). Abundance of scleractinian corals was reduced by 76%, 56%, and 45%
at depths of less than 3 m, 3-6 m, and 9-12 m, respectively. Extensive bleaching, tissue
swelling, mucous production, and increased bacterial infections were associated with
corals in the oiled sites compared to reference sites and pre-spill data (Guzman et al., 1991;
Jackson et al., 1989). Two years after the spill, coral cover decreased from 28% to 13%,
with reductions in colony size, growth rate, and diversity of corals present. More than half
of the decrease in cover was due to reductions in Acropora palmata and Orbicella
annularis. Recently dead areas on corals were commonly observed, with most corals
showing signs of recent stress, particularly S. siderea (Guzman et al., 1991). Five years
after the spill, oil continued to leach from mangrove sediments, prompting evaluation of
long-term, chronic effects on S. siderea. Gonad size was significantly reduced at the
heavily oiled sites, and a decrease in fecundity of corals with recent stress was noted
(Guzmaén and Holst, 1993). The percentage of injured corals remained significantly higher
at oiled sites, coupled with decreased abundance and diversity (Guzman et al., 1994).
Growth of Porites astreoides and S. siderea were both negatively correlated with sediment
hydrocarbon concentration, with higher concentration leading to decreased growth in both
species. Overall, extensive mortality of sub-tidal reef corals occurred following the Bahia
las Minas spill, with prolonged chronic effects on vital processes lasting well over five
years due to continual seepage of oil from mangrove sediments.

During the Gulf War in 1991, a very large amount of unspecified oil was

intentionally released into the Persian Gulf. From 1992-1994, corals on the Saudi Arabian
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coastline were examined for delayed responses associated with the oil spill (Vogt, 1995).
Corals showed no detectable impact from the Gulf War oil spill, and an increase in coral
cover was recorded for this time period. The lack of response could possibly be attributed
to the history of oil spills in this area, and the possible organismal adaptation to petroleum
hydrocarbon exposure. Al-Dahash and Mahmoud (2013) evaluated the coral bacterial
community near this same area in southern Kuwait, revealing that the chronic exposure to
natural oil seeps and multiple oil spills in the Persian Gulf has led to alterations in the
mucous bacterial community of Acropora clathrata and Porites harrisoni, to favor more
oil-degrading bacteria. Thus, due to both continuous release and small pollution events,
corals in this area are colonized by oil-utilizing bacteria, which may confer an advantage
and may be one of the causes why the Gulf War oil spill had no significant detectable
effects on corals.

In 1993, a fishing vessel ran aground at Rose Atoll National Wildlife Refuge,
American Samoa, releasing diesel fuel, lube oil, and ammonia onto a pristine oceanic reef
(Green et al., 1997). Aside from physical damage to the reef, injury and morality were
moderate to high up to 1 km from the wreck site after 6 months. Direct impact of the spilled
toxicants to coral communities could not be obtained because of logistic constraints,
although the reef structure was compromised for a variety of other reasons; reduction in
crustose coralline algae, cyanobacterial blooms, anoxia from organic loading and oxygen
reduction all had a negative effect on reef corals.

The M/V Kyowa Violet oil spill in December 2002 in Micronesia released
55,000—80,000 gallons of intermediate fuel oil onto the reef resulting in a large acute
exposure situation (Downs et al., 2006). The cellular physiological condition of Porites
lobata exhibited changes consistent with exposure to a xenobiotic. Differences in protein
metabolic condition suggested an increase in mitochondrial protein chaperoning, especially
membrane proteins. Alteration in poryphyrin metabolism indicated a major shift in cellular
metabolism. Oxidative stress was indicated by elevated levels of catalase and the gene
mutY DNA glycosylase (MutY). Significantly elevated levels of Cytochrome P450
(CYTP450) suggested corals were responding to aromatic hydrocarbon exposure. In a
related study, cellular physiology of Pocillopora damicornis in response to chronic PAH

exposure in Guam was also examined (Downs et al., 2012). Although protein metabolic
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condition was not significantly altered, other cellular biomarkers were elevated.
Mitochondrial chaperoning and protein import increased, concomitant with elevations of
oxidative damage and response and increased porphyrin production. These changes, along
with increases in xenobiotic and detoxification response biomarkers were consistent with
exposure to PAHSs.

Corals near Port Aransas on the South Texas coast are also subject to chronic
petroleum exposure (Sabourin et al., 2013). The tissues of Leptogorgia setacea were
determined to contain an average of 811 ppm of unspecified oil. The skeletons of these
corals had much greater potential for biodeposition of PAHs compared to coral body
tissues. Coral tissue PAH concentrations were consistently higher than surrounding
sediment samples, indicating contaminants were accumulated from the water column, as
opposed to the sediments. Similarly, PAH concentrations in coral tissues at Kenting Coral
Reef, Taiwan were two orders of magnitude higher than in sediments, providing evidence
for bioaccumulation from the water column, not surrounding sediments (Ko et al., 2014).
Sorption, or feeding on contaminated prey were two methods suggested as pathways of
accumulation from the water column. A preferential accumulation of low molecular weight
compounds and methylated PAHs was also found (Ko et al. 2014).

Deep water corals were assessed in the northern Gulf of Mexico in response to the
Deepwater Horizon (DWH) oil spill in 2010 (White et al., 2012). Of the colonies examined
at the study sites, 86% showed signs of negative impact, including excessive mucus
production, retracted polyps, tissue loss, and sclerite enlargement. There was also an oily
residue, termed “floc”, which covered a majority of the coral colonies and contained dead
polyp fragments and detached sclerites (White et al., 2012). Silva et al. (2015) examined
octocorals and antipatharians on mesophotic reefs from six sites near the DWH platform
(four sites within 100 km). Hypnogorgia pendula, Bebryce spp., Thesea nivea, Swiftia
exserta, Antipathes atlantica, Tichopathes sp., and Ellisella barbadensis were observed for
injuries and samples were taken for hydrocarbon analysis. Following the spill, injuries
increased; colonies were covered in mucus, a biofilm material and hydrozoans. Taller
growth forms sustained the most severe injuries; loss of branches, necrotic tissue, and
complete mortality. Detectable levels of hydrocarbons were also found in coral tissues and

surrounding sediments.
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Table A 5. Summary of acute and chronic releases of petroleum hydrocarbons with focus on

impacts to corals.

Name/ Date of Spill

Oil Type and
Amount

Gulf of Agaba (Gulf
of Eilat), 1973
Red Sea

Unspecified oil
and phosphate
loading

Gulf of Eilat
1974-1975
Red Sea

Iranian crude oil

Aruba 1923-1985
Caribbean Sea

Venezuelan
crude oil,
refinery waste,
and dispersant

Bahia las Minas
April 27th, 1986
Refineria Panama
on Payardi Island.
Caribbean coast.

>50,000 barrels
(8 million liters)
med-weight
crude oil (70%
Venezuelan
crude, 30%
Mexican
Isthmus crude)
with <21,000 L
Corexit® 9527

Scenario Coral(s) Examined Reference
Multlpl_e oil SP'”S Coral cover of all species. .
from oil terminal . Fishelson
Acropora, Seriatopora, and
and phosphate 1973
! Stylophora most reduced.
loading harbor
Chronic pollution . .
by oil terminal Stylophora pistillata adult and Rinkevich
. : - and Loya
with multiple large reproduction effects.
- 1977
spills
Decline in coral cover of all
Chronic pollution species, specifically Orbicella
of fringing reef by annularis, Agaricia agaricites, Bak 1987
large refinery Diploria strigosa, and
Acropora palmata.
Mortality and hydrocarbon Burns and
Acute exposure to uptake in S. siderea and A.
A o Knap 1989
oil spilled from tenuifolia.
ruptured storage
tank, covering Palythoa caribaeorum and Cubit et al.
mangroves and Zoanthus sociatus. Porites spp. 1987
seagrasses. Floated
over corals. Porites, zoanthids, and Jackson et al.
hydrocorals 1989
Sublethal changes, coral cover,
TWo vears post- and growth rate of P. Guzman,
); il P asteroides, A. Agaricites, S. Jackson, and
P siderea, A. cervicornis, O. Weil 1991
annularis
Siderastrea siderea Guzmén and
reproduction and fecundity of Holst 1993
corals.
Five years post-
spill P.asteroides, S.siderea, Guzman,
Diploria clivosa, and D. Burns, and

strigosa.

Jackson 1994

Saudi Arabian

Delayed response

Co_astllne Unspecified oil to Gulf War oil Corals ShOWEd no detectable Vogt 1995
Persian Gulf spill of 1991 impact.
1992-1994 P '
Rose Atoll National 100,000 gallons
Wildlife Refuge diesel fuel, 500 Physical damage . .
Jin Shiang Fa gallons lube oil,  and 6 week release Ree];:gétégtintg morgallty Grefgg(;t al.
fishing vessel 2500 pounds of chemicals. gn.
10/1/1993 ammonia
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Table Al Continued

Name/ Date of Spill Ol'IA‘Type and Scenario Coral(s) Examined Reference
mount
. 55,000-80,000 . Porites lobata cellular
MD\éc':r)rl]%V\ef? ;/6'3']“ gallons co!a\r;eteiirtlfcljjaell ?Irggfe d physiological condition Downs et al.
2002 ' intermediate 0\;er reefs consistent with exposure to a 2006
fuel oil ' xenobiotic of PAH origin.
Deepwater Deep water coral Paramuricea biscaya, Swiftia
HorizonpNorthern sites examined 3 pallida, paragorgia regalis,
Gull f of Macondo crude months after Acanthogorgia aspera, and White et al.
Mexico Aoril - Jul oil Deepwater Clavularia rudis analyzed for 2012
.20plO Y Horizon well was ~ impacts associated with DWH
capped. spill.
Chronic PAH Pocillopora damicornis.
Guam, Mariana Not applicable contamination at Cellular biomarkers consistent Downs et al.
Islands PP the port and with xenobiotic response were 2012
marina sites analyzed.
Unspecified ol Chronic petroleum Leptogorgia setacea tissues
Port Aransas, South  measured at 811 petroleu ptogorg Sabourin et
. contamination in examined for PAH
Texas Coast ppm in coral the port concentration al. 2013
tissue (mean) P
Qaro and Umm Al- Mucous associated oil Al-Dahash
Maradim Islands Unspecified oil Chronic exposure degrading bacteria of Porites and
South Kuwait ' P to natural oil seeps. compressa and Acropora Mahmoud
clathrata 2013
PAH concentrations in coral
Kenting Coral Reef, . Chronic PAH tissue higher than sediments.
Taiwan Not applicable contamination Bioaccumulation of PAHs from Koetal. 2014
water column.
Hypnogorgia pendula. Bebryce
spp. Thesea nivea. Swiftia
exserta. Antipathes atlantica.
Deepwater Horizon, Mesophotic reefs Tichopathes sp. Ellisella
Northern Gulf of (4 sites) examined barbadensis .
Mexico. MacongiclJ crude after DWH oil spill Increase in number of injured S'I\Zlgfé al.
September 2010 and and compared to colonies. Mucous and biofilm
2011 pre-spill data. material covered colonies.

Taller growth forms had most
severe injuries (necrotic tissue
and denuded skeleton)
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In-situ Studies Examining Effects of Hydrocarbons on Coral

The first field experiment exposing coral to oil was completed in 1971 at Eniwetok
Atoll, Marshall Islands (Johannes et al., 1972). As coral reefs can be exposed to air during
low tide, the authors hypothesized that floating oil may have deleterious effects on the
corals during this time. Santa Maria crude oil (SMCO) was poured over corals attached to
floating trays to simulate contact while exposed to air at low tide. When oil coated the
corals, temperature was elevated by 3 °C. Branching species, such as Acropora spp. and
Pocillopora spp., showed the highest affinity for oil, remaining covered after four weeks.
Large-polyped massive corals had the least affinity, presumably due to abundant mucous
production and large polyps providing the means to remove the oil droplets. Numerous
other corals showed intermediate affinities for the oil droplets. In all cases, tissue damage
occurred if oil adhered in patches greater than a few millimeters, while tissues remaining
free of oil showed no effect of exposure.

LeGore et al. (1989) utilized containment booms to expose corals in the Arabian
Gulf to oil, dispersed oil, and dispersant only for both 24, and 120 hours. The dispersed oil
treatment was the only plot to register an increase in hydrocarbon concentration in the
water column 15 cm above the coral. Following exposure, there was no significant effect
on Acropora spp., and growth and colonization appeared unaffected in all exposure plots.
However, seasonal bleaching was widespread and occurred in all exposure plots, with the
slowest recovery in the dispersed oil plots.

The Tropical Oil Pollution Investigations in Coastal Systems (TROPICS)
experiment conducted in 1984 on the Caribbean coast of Panama (Ballou et al., 1987b) is
perhaps the most comprehensive field experiment examining effects of oil exposure to
tropical marine communities. The TROPICS experiment is one-of-a-kind with respect to
the research conducted in the area prior to, and 20+ years following exposure to evaluate
long term effects. The researchers intended to simulate a severe but realistic spill scenario,
and to establish whether the use of dispersants will reduce or exacerbate the effects of an
oil spill on tropical environments (Ballou et al., 1987a). Although this study simulated an
oil spill on mangroves, seagrasses, and corals, only the effects on corals will be discussed

here.
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Immediately following exposure, percent coral cover in the dispersed oil site
declined abruptly, and continued to do so for an entire year (Ballou et al., 1987b). Growth
of Porites porites and Agaricia tenuifolia (which dominate the reef community) was
significantly reduced by dispersed oil. Contrary to the initial effects observed for dispersed
oil, untreated oil caused only a slight but non-significant reduction in cover, with no
significant reduction in growth of all species examined (Ballou et al., 1987a; Ballou et al.,
1987b). Short term effects of dispersed oil on corals were clear, with coral cover remaining
significantly lower for at least two years following exposure, showing little indication of
recovery (Dodge et al., 1995). Exposure to oil only treatments did not result in decreased
growth and coral cover. By 1994, after ten years of recovery, parameters at all sites were
indistinguishable and no significant changes to coral cover, growth, or sclerochronology
were found when comparing oil or dispersed oil sites to reference sites. In 2001 and 2002,
Ward et al. (2003) revisited the site to compare skeletal density and porosity of corals at
each site as a means of addressing long-term recovery. Although no significant differences
were determined for any of the treatment sites, analysis of Porites spp. revealed increased
skeletal porosity and decreased density at the oil only site, which is consistent with elevated
growth rates (Ward et al., 2003). These elevated growth rates were likely not related to

oil, as the spill was conducted 20 years prior.
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Table A 6. Summary of in situ experiments assessing the impact of hydrocarbons on corals.

Namg/ oil Type( Scenario Corgl Effects Measured Reference
Location Concentration Species
Oil poured
Eniwetok around corals 3 °C temperature elevation. Johannes
Atoll 200 mL mounted to 22 species of Oil adhered most to Mara osl
Marshall SMCO (0.6 floating trays Indo-Pacific branching species, least to and C%Ie;
Islands. 1971 mm slick) partially corals large-polyped massive 1972
' exposed to air species.
for 1.5 hours
Dispersed Site: % cover
declined abruptly.
Prudhoe Bay Significant reduption in Ballou et
crude oil (1-4 growth of P.porites and al. 1987 &
ppm) A.tenuifolia. E;allou ot
Dispersed oil . . Porites Untreated Oil Site: Slight | 1989
. Simulated oil - d . | b al.
TROPICS (commercial spill in porites, and ecrease in coral cover but
Experiment nonionic marr)lgrove Agaricia not S|gn|f|canrt]. No effect on
. : Iycol ether- ‘ tenuifolia growth rates.
Caribbean g seagrass, and .
coast of con%i?ﬁ(rjate) reef area. Sites dg?;'ir;ﬁg'
Panama averaged 50 were oil only, annularis, and N0 significant dose response
November ppm dispersed oil, Acropora on coverage, growth, or Dodge et
1984 Both declined ~ @"d untrelated cervicornis sclerochronology 10 years al. 1995
over time. control. also present. after dosing.
Measured by
uv o )
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Ex situ Laboratory Experiments Examining Effects of Hydrocarbons on Adult Corals

Lewis (1971) exposed four Caribbean corals to Barbados crude oil and ‘Corexit’
dispersant for 24 hours in finger bowls. All species tested were more sensitive to dispersant
compared to oil and exhibited tissue rupture, nematocyst discharge, tentacle retraction, and
inhibition of feeding/tactile response at all concentrations. These changes were exacerbated
in branching species, while encrusting corals showed less effect with a greater ability to
recover. Concentrations of both compounds above 100 ppm had harmful effects with
incomplete recovery after 24 hours.

Eisler (1975) conducted two experiments with the octocoral Heteroxenia
fuscescens using two crude oils and ST-5 dispersant, in static and flow-through exposures.
Results of the static exposure include LCsg values for each of the toxicants, indicating a
greater toxicity for the dispersant when compared to either oil alone. The 168-hour flow
through exposures solicited a similar response; dispersant only treatments were the most
toxic. The highest dispersed oil concentrations in either experiment failed to solicit a
mortality response. It should be noted that LCso values from the static exposure were lower
(higher toxicity) than those from the flow-through experiment, indicating possible
compounding effects associated with static exposures (i.e., oxygen depletion, waste
accumulation). Researchers also found bioaccumulation in corals exposed to higher
treatments of crude oil, but the bioaccumulated amount was less than 1% natural
hydrocarbon content.

Reimer (1975) completed a suite of experiments using four scleractinian corals and
marine diesel fuel and bunker oil. Concentrations that corals were exposed to were not
specified, as most of the experiments included immersing corals in oil or pouring oil
directly onto the corals and monitoring recovery in clean seawater. After 114 days of
recovery from a one minute immersion in oil, corals showed varying degrees of mortality,
from 0% to 100%. When oil was poured onto corals for 30 minutes, behavioral changes
included immediate polyp retraction with no tactile response to stimulus, mouths open with
exposed actinopharynx and mesenterial filament extrusion. Additionally, massive
expulsion of symbionts occurred with tissue rupture and flaking, causing 70% mortality

after 17 days. A 30 second immersion in oil resulted in tissue rupture and flaking, with
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extensive bleaching occurring within 5-13 days. Lastly, when 1-4 ml oil was added to
finger bowls containing coral, mouths opened and abnormal feeding reactions occurred.

Bak and Elgershuizen (1976) exposed 19 species of coral to five sand-oil
combinations to measure rejection efficiency. Researchers found no evidence of adsorption
or ingestion of oil, as oiled sediments was removed by ciliary currents and tentacular/
polypal movements, similar to normal sediment removal. Tissue death resulted if sediments
remained for two or more days, for both oiled and un-oiled sediments. Oiled sediment
failed to induce an obvious increase in mucus secretion compared to that secreted in
response to un-oiled sediments.

Elgershuizen and De Kruijf (1976) exposed Madracis mirabilis to four types of oil
and Shell LTX dispersant in 500-mL beakers by either floating the oil on the surface or
creating toxicant-seawater mixtures. No mortality was observed for floating oil treatments,
thus LCso values were greater than the highest concentration tested. Oil and seawater
mixtures were more toxic when compared to floating oil, but effects were temporary and
LCso could not be calculated. Exposure to dispersant only solicited more permanent effects
with poor recovery. Dispersed oil was the most toxic of the compounds examined, with
LCso values 10-50 times lower than oil-water mixtures. Authors suggest the increased
water soluble fraction of oil and the dispersants effect on membrane permeability as the
culprit for increased toxicity.

Cohenetal. (1977) used Iranian crude oil and H. fuscescens in both static and flow-
through exposures. Corals were more sensitive to static conditions, showing breakdown of
pulsation synchrony and decreased ability to respond to mechanical stimulus with
increased oil concentration. Static test concentrations were below LCsg values for 24 and
48 hours (LCso > 30 mL/L), while 72 hour LCso was calculated at 17 mL/L. The flow-
through exposure lead to a decrease in pulsation synchrony in corals closer to the surface
of the depth divided tank, but no mortality was observed in any of the colonies. The authors
concluded that corals are more sensitive to oil pollution under static conditions, which are
less representative of observed environmental characteristics, and that acute exposure to
comparatively high concentrations of crude oil is relatively non-toxic to H. fuscescens, but

adverse effects will emerge over extended exposure durations.

84



Ducklow and Mitchell (1979) also used H. fuscescens and Iranian crude oil, but
monitored coral health and changes to the mucous bacterial population following a five-
day exposure to floating oil. Polyp pulsation was initially impaired, with polyps closing,
and remaining so until the exposure was completed. Polyps elongated and lost their ability
to stand upright, collapsing and extending towards the bottom of the tank. Mucous bacteria
populations significantly increased following exposure to oil. All effects measured were
temporary, and returned to normal following the exposure.

Neff and Anderson (1981) exposed five species of corals to South Louisiana crude
oil, no. 2 fuel oil, and phenanthrene for 72 hours then incubated them with radio labeled
calcium chloride to measure calcification. Following exposure to crude oil WSF, Millepora
spp. showed no significant differences in calcification, while calcification in Madracis
decactis significantly increased in response to the same exposure. In response to the
exposure to no. 2 fuel oil WSF, calcium deposition in all corals was variable. Calcification
was significantly reduced in Oculina diffusa, while Millepora spp. and Favia fragum both
showed no effect from exposure to no. 2 fuel oil. Calcification in M. decactis and Orbicella
annularis increased with increasing no. 2 fuel oil concentration. Polyp extension in all
corals exposed to no. 2 fuel oil was reduced during the exposure, with some corals showing
slight bleaching. Millepora spp. was also exposed to phenanthrene, a PAH found in crude
oil and other refined products, resulting in high variability in calcification rate following
exposure, with only high concentrations causing a significant reduction. Based on the
results of this study, authors concluded that coral calcification after oil exposure is variable,
with some species more susceptible than others.

Peters et al. (1981) examined histopathological effects of hydrocarbon uptake
during a three-month exposure to the WAF of no. 2 fuel oil on Manicina areolata.
Hydrocarbon uptake was detected after 2 and 6 weeks exposure in high and low
concentrations respectively, causing extensive cellular changes, although no mortality
occurred throughout the exposure. Effects included increases in mucous secretory cell
activity, with proliferation and hypertrophy of epidermal cells and mesenteries, and
mesogleal swelling. Mucocytes also appeared in tips of mesenterial filaments, where they
are not normally found. After 12 weeks of exposure, mucocytes atrophied, and

degeneration and loss of symbionts in the gastrodermis and mesenteries was noted.
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Swelling, nematocyst fragmentation, and loss of granular gland cells in mesenterial
filaments was also apparent by the end of the exposure. Authors concluded that long term
chronic exposure to petroleum hydrocarbons has the ability to initiate cellular degeneration
and atrophy of coral tissue even at low concentrations, because these hydrocarbons
partition into the cells, disrupting vital biosynthetic processes of both coral and symbiont
cells.

Cook and Knap (1983) measured carbon fixation and incorporation of
photosynthetic products in Diploria strigosa following exposure to the WAF of Arabian
light crude oil and Corexit® 9527. Exposure to oil or dispersant alone resulted in no effect
on carbon fixation or incorporation of photosynthetic products at any time. Exposure to
dispersed oil led to an initial 85% reduction in carbon fixation after 1-3 hours, which
recovered after 3-5 hours. The same pattern occurred for incorporation of photosynthetic
products; an initial reduction, followed by recovery within 3—24 hours. Authors concluded
that dispersed oil has a much greater effect on photosynthesis in D. strigosa, although the
ability to rapidly recover suggests the effects are temporary.

Solbakken et al. (1983a) measured accumulation and depuration of petroleum
PAHs naphthalene and phenanthrene in 19 coral species following a 24-hour incubation.
Corals rapidly accumulated the lipid-soluble xenobiotics used, with uptake being a function
of specific compound and coral species. Naphthalene was most efficiently depurated by
day 10 of recovery, while significant levels of phenanthrene were still detectable within
21-37 days post exposure. This pattern of naphthalene being removed much faster relative
to phenanthrene has been reported for other marine organisms (Solbakken et al., 1983b)
with the depuration periods for both compounds being comparatively slower for other
subtropical marine organisms.

Multiple experiments exposing Diploria strigosa to Arabian light crude oil and
chemically dispersed oil for 6-24 hours, with a one year recovery period, were completed
in the 1980’s (Dodge et al., 1984; Knap, 1987; Wyers et al., 1986). Dodge et al. (1984)
examined skeletal growth characteristics of Diploria strigosa following the exposure and
found no significant differences between any of the treatments in regard to upward growth
or new endotheca length. When comparing the ratio of new fossa: old fossa, only 2 ppm

chemically enhanced water accommodated fraction (CEWAF) and 12-19 ppm oil WAF
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treatments showed a significant decrease compared to controls. Although the trend hinted
that dispersed oil has a negative effect on skeletal growth, the lack of significant differences
between treatments was attributed to the high variability within and between coral colonies.
Wyers et al. (1986) observed the external appearance of coral colonies for changes in
survival, behavior characteristics, and morphological changes during the same experiment.
No mortality occurred at any of the concentrations utilized, and no significant differences
in characteristics between any treatments were determined. However, CEWAF and WAF
of oil alone did lead to adverse effects at concentrations near 20 ppm. Mesenterial filament
extrusion, extreme tissue contraction, tentacle retraction, and localized tissue rupture were
common in these corals following the onset of exposure, but returned to pre-exposure
conditions within four days during the winter, and 24 hours during the summer. Authors
concluded that there were no significant differences in coral behavior when comparing
WAF and CEWAF, and the observed effects seemed unlikely to impair coral viability in
the long term. Knap (1987) measured the hydrocarbon uptake in D. strigosa during this
experiment, and found evidence for accumulation of the entire molecular weight range of
Arabian light crude oil regardless of concentration or whether the oil was physically or
chemically dispersed. Physically dispersed oil droplets were also found to adhere to coral
mucus with much more affinity than chemically dispersed oil droplets.

Thorhaug et al. (1989) completed a 10-hour experiment using three scleractinian
corals, fresh and weathered Venezuelan crude oil, and 11 different chemical dispersants in
order to rank them according to their toxicity. Some of the dispersed oil treatments led to
100% mortality, while others resulted in less the 50% mortality, allowing dispersants to be
ranked as high, medium, and low toxicity. Conco K, OFC D609, Corexit 9527, Kemarine,
ADP 7, and Janosolv were among the most toxic, while the less toxic dispersants included
Elastosol, Cold Clean, and Finasol.

Mercurio et al. (2004) used Acropora formosa in 48-hour exposures to WAF of
mineral derived lubricant (MDL) to assess hydrocarbon exposure impacts on
photosynthesis, disruption of symbiosis, and mortality in adult corals. Significant
differences were found for mortality, symbiont density, and photosynthetic yield at 48
hours when exposed to 190 pg/L MDL. The corals first exhibited lightening and bleaching

of the tips of branches, followed by mortality. Decreases in photosynthetic yield and
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symbiont density were more sensitive indicators of pollution stress when compared to
mortality.

Rougee et al. (2006) exposed Pocillopora damicornis to WAF of Intermediate Fuel
Oil (IFO) 180 to assess the potential for a shift in cellular homeostasis from petroleum
pollution. Significant changes in cellular biomarkers involved in cellular response and
protection, manipulation, and excretion of toxicants were observed. A significant
xenobiotic response, specifically CYTP450, was generated above 1 g/L, which indicated a
reaction to PAH exposure. Significant elevation of glutathione-S-transferase (GST-pi) also
indicated a detoxification response. Shifts in porphyrin metabolism were also apparent,
which was likely the result of PAH interactions in the cell. Oxidative damage response was
significantly elevated in 1 g/L treatments, and when coupled with elevated levels of MutY,
suggested DNA repair was occurring. Elevated levels of heat shock protein 70 (Hsp-70)
also indicated a shift in protein metabolic condition. Based on the changes to these cellular
biomarkers, the authors concluded that exposure to IFO180 WAF leads to stress and a shift
from metabolic homeostasis in the organism.

Martinez et al. (2007) examined the ultraviolet radiation (UVR) enhanced toxicity
of fluoranthene to Porites divaricata. When combined, fluoranthene and ecologically
relevant levels of UVR led to decreased photosynthetic efficiency and bleaching, with
mortality occurring within 3—6 days. Corals exposed to fluoranthene in the absence of UVR
showed initial decreases in measured parameters, but returned to normal levels within 4
days. The effects of PAH exposure on P. divaricata were significantly increased in the
presence of UVR.

Ramos and Garcia (2007) examined changes in the mixed function oxygenase
system (MFO) in Orbicella faveolata exposed to the PAH benzo(a)pyrene. The main
component of MFO is CYTP450, which is responsible for biotransformation of a variety
of compounds like PAHs. An increase in CYTP450 occurred in colonies exposed to
benzo(a)pyrene, as well as increased in enzymatic activity of antioxidant complexes,
demonstrating antioxidant defense to a xenobiotic. The MFO activity of O. faveolata
indicated a short term activation of detoxifying response, at levels consistent with

mollusks, echinoderms, and annelids.
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Shafir et al. (2007) exposed Stylophora pistillata and Pocillopora damicornis to the
WSF of Egyptian crude oil, CEWAF, and six common dispersants in a 24-hour exposure.
Corals exposed to all concentrations of oil WSF had 100% survivorship, with no impact
on lateral growth throughout the exposure or recovery phase. Corals exposed to dispersant
only had 100% mortality in all concentrations above 10% stock, with most corals surviving
below 10% stock dispersant levels. Dispersed oil treatments led to 100% mortality above
10% stock, with significant mortality in 4 of the 6 dispersants at 10%. Sublethal levels of
dispersed oil (<10%) led to delayed tissue development and growth in both corals
examined. The authors concluded that corals are more susceptible to dispersants and
dispersed oil when compared to oil only.

White and Strychar (2011) exposed the gorgonian Leptogorgia virgulata to
gasoline for 168-hours. After 48 hours, corals showed no visible signs of impact. After 120
hours of exposure, significant loss of tissue and sclerites occurred. Authors also noted that
the bases of the coral seemed more resilient compared to the tips.

Woo et al. (2014) subjected the soft coral Scleronephthya gracillimum to a mixture
of 13 petroleum PAHSs in equal proportion for 24 hours to assess gene expression. Genes
involved with oxidative stress were upregulated. Many signaling pathways associated with
protein kinase activation were altered, as well as downregulation of certain growth
inhibitors which may result in carcinogenesis or tumorigenesis. Induction of cellular redox
stress conditions resulted from exposure, suggesting a defense mechanism was initiated.
Polymerases involved in DNA repair were repressed, suggesting the cells had little ability
to repair damaged DNA. Fertilization and other developmental processes, as well as
intracellular protein processing were also altered.

DeLeo et al. (2015) assessed the effects of Macondo crude oil and Corexit® 9500
on three deep sea coral species in a suite of experiments using both mixtures and WAFs.
Mixtures utilized the entire prepared solution without separation, while WAFs only used
the aqueous phase of the toxicant following separation. Oil-only treatments (oil-seawater
mixtures and WAF) had either no or very low mortality, with very few significant
differences in health rating compared to controls. Health ratings of dispersant treatments
(dispersant-seawater mixtures and dispersant-only WAF) were all significantly lower than

controls and oil treatments. Dispersant-only treatments also showed increased mortality,
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with dispersant-only WAF producing higher mortality in all corals compared to dispersant-
seawater mixtures. The treatments causing the highest mortality, as well as the most
significant changes to health ratings contained CEWAF or dispersant only. It is also
apparent that CEWAF solutions were more toxic compared to treatments containing
oil/dispersant mixtures. The authors concluded that dispersants, in mixtures or WAFs, were
more toxic compared to untreated oil, and dispersant use during the Macondo spill may
have caused more damage to cold water corals than the initial release of oil.

Kegler et al. (2015) examined Pocillopora verrucosa following an 84 hour
exposure to diesel. Concentrations declined by almost 64% over the exposure duration
(0.69 — 0.25 mg/L TPAH). There were no significant effects on dark respiration rates or
net photosynthesis. Photosynthetic yield was also unaffected by exposure to diesel.

Renegar et al. (2016) assessed the effects of the petroleum PAH 1-
methylnaphthalene on Porites divaricata in a 48-hour continuous flow recirculating
passive dosing system. Hydrocarbon was partitioned into polydimethylsiloxane (PDMS)
O-rings to maintain constant concentrations throughout the exposure. Concentrations were
measured at the beginning, middle, and end of the 48-hour exposure and showed little loss
due to volatilization or degradation. Physical coral response, photosynthetic efficiency,
mortality, and histologic cellular changes were used to quantify the coral response. Corals
exposed to 5,427 ug/L exhibited progressive polyp retraction and moderate tissue swelling
and mucus production, with no mortality occurring throughout the exposure. The 25,832
pa/L 1-methylnaphthalene exposed corals exhibited full polyp retraction with substantial
mucus production within 6 h, and 100% mortality within 24 h. These two treatments scored
significantly higher than controls and lower concentrations following the exposure.
Histologically, corals exposed to 640 pg/L showed increased mucus production, while
5,427 ug/L corals had significantly less mucus area, presumably due to exhaustion of
mucous production capacity. The sublethal changes were used to calculate an ECsg of 6,695

Ma/L, while mortality data was used to calculate an LCso 0f 12,123 pg/L.
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Laboratory Experiments Testing the Effects of Hydrocarbons on Coral Reproduction

Loya and Rinkevich (1979) examined acute effects of Iranian crude oil on
Stylophora pistillata during reproduction. Following exposure to the WSF of crude oil,
corals immediately opened mouths and prematurely shed larvae at quantities significantly
higher than controls. Although spawning events usually take place at night, this induced
larval shedding had no connection to time of day. This forced spawning can increase
predation pressure and lead to an extended period of development in the water column
before settlement can occur. The authors concluded that the release of buoyant larvae in
combination with floating oil is the most severe problem associated with hydrocarbon
pollution.

Rinkevich and Loya (1979) assessed chronic effects of a weekly addition of floating
Iranian crude oil on Stylophora pistillata for 2-6 months during gametogenesis.
Researchers found a significant decrease in average number of female gonads per polyp
following exposure.

Te (1991) monitored metamorphosis, settlement, and calcification of Pocillopora
damicornis planula following exposure to a mixture of gasoline and motor oil for 15 days
in both open and closed vessels. No mortality was observed during the open vessel
exposure, with normal metamorphosis, settlement, and calcification at concentrations less
than 50 ppm; higher concentrations significantly inhibited settlement. The closed vessel
exposure led to 100% mortality in the 100 ppm treatment, with settlement significantly
reduced in treatments greater than or equal to 20 ppm. The effects of benzene, with or
without settlement plates, was also examined. No significant effects were found when
settlement plates were absent, although settlement was inhibited at 1 ppm. When settlement
plates were present, variability was high, but there was a significant treatment effect on
settlement. Differences in the water soluble fractions of the test compounds in seawater
prevented clear correlations between treatment and settlement rates, and authors do not list
post hoc test results to distinguish where treatment effects were present.

Kushmaro et al. (1997) examined the effects of Israel crude oil on Heteroxenia
fuscescens planula following a three-day exposure to floating oil or vessels coated in oil.
Significant decreases in metamorphosis and variable mortality occurred in response to

increasing concentrations of surface applied oil. Metamorphosis was inhibited by 50% in
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vessels coated with oil at 0.1 ppm. Free floating metamorphosis and post metamorphosis
deformation occurred at the higher oil loadings. The authors concluded that inhibition of
metamorphosis and mortality were significantly dependent upon crude oil concentration,
and settlement was less frequent on oil covered surfaces.

Epstein et al. (2000) evaluated effects of the WSF of Egyptian crude oil and five
dispersants on survivorship and settlement of Stylophora pistillata and Heteroxenia
fuscescens planula in 2-96 hour bioassays. No mortality was observed in S. pistillata after
exposure to oil WSF; although settlement was delayed, swimming behavior and settled
polyp morphology remained unaltered. Dispersant WSF was only toxic to S. pistillata at
higher concentrations, with settlement less than controls but similar to oil WSF. Planula
morphology was deformed at all concentrations except the lowest tested. All dispersant
only treatments at all concentrations exhibited detrimental effects to planula, exceeding oil
WSF impact. Following exposure to dispersed oil WSF, S. pistillata planula showed
complete mortality in all treatments greater than 10%, except those using Petrotech
dispersant. Settlement was inhibited in all treatments, and major behavioral anomalies and
structural deformations resulted. In H. fuscescens, all dispersed oil WSF concentrations led
to high toxicity with no settlement, and caused major behavioral anomalies and increased
structural deformations. It was apparent that dispersed oil had a marked increase in toxicity
when compared to oil or dispersant alone, with higher mortality rates, no settlement, and
significant alterations in behavior and morphology of both species.

Negri and Heyward (2000) assessed fertilization and metamorphosis of Acropora
millepora following a four-hour exposure to Wandoo platform heavy crude oil and
Corexit® EC9527A dispersant mixtures. Crude oil WAF failed to inhibit fertilization up
to 0.165 ppm total hydrocarbon content (THC), while metamorphosis was significantly
inhibited at 0.0824 ppm THC, and completely inhibited at 0.165 ppm THC. Fertilization
and metamorphosis were both significantly inhibited at 0.225 ppm THC when exposed to
1% v/v dispersed oil, with full inhibition occurring at 0.325 ppm and 1.13 ppm THC for
fertilization and metamorphosis respectively. Following exposure to dispersed oil at 10%
v/v dispersant/ oil, fertilization and metamorphosis were both significantly inhibited at
0.0325 ppm THC. When using dispersant only, fertilization and metamorphosis were
inhibited between 5 and 10 ppm THC. The authors concluded that both crude oil and
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dispersant contribute to observed toxicity, and the dispersed oil concentration that
significantly inhibited metamorphosis was equal to that which significantly inhibited
fertilization. It was also apparent that fertilization success was more sensitive to CEWAF
when compared to oil WAF. This could be attributed to the elevated levels of hydrocarbons
in the water column following dispersant application.

Lane and Harrison (2000) exposed planula of three scleractinian corals to WAF of
Fuel oil 467 and dispersed oil mixtures, using Ardrox 6120, for up to 96 hours. Oil WAF
exposure increased mortality in Acropora tenuis, but variability in results limited
significance. Goniastrea aspera mortality was significantly increased by oil WAF
exposure, while Platygyra sinensis was least sensitive to oil WAF, with no significant toxic
effects at any concentration. Exposure to dispersant only yielded LCso values greater than
oil WAF for all three coral species. Although toxic, dispersant only was less toxic to the
three corals tested when compared to oil. Dispersed oil WAF however, led to a significant
increase in mortality compared to controls, with an increasing toxic effect over time. All
species tested were most sensitive to dispersed oil, indicated by a drastic decrease in LCso
values. The mortality response to dispersed oil WAF was rapid, with high levels of
mortality at less than 5 ppm after only 6-12 hours of onset of exposure. The authors
concluded that mortality increased as chemical dispersion raised the concentration and
spatial extent of hydrocarbons in the water.

Mercurio et al. (2004) exposed gametes of Acropora microphthalma to mineral
derived oil WAF in culture plates for four hours to monitor effects of exposure on
fertilization. Mineral derived oil was significantly more toxic when compared to vegetable
derived oil, with fertilization significantly inhibited at 200 pg/L. When fertilization was
successful, embryonic development was unusual, and outer cell membranes were
disrupted; these changes reduce chance of survival and settlement.

Villanueva et al. (2008) exposed planula of five coral species to WAF of
Malampaya natural gas condensate for 96 hours to monitor survivorship, metamorphosis,
and post-settlement growth. Mortality was increased for two of the five coral species in
response to exposure, but LCso values were higher than any concentration tested, with the
other three species incurring no mortality. Metamorphosis was delayed or impeded in four

of the species tested, with the concentration leading to inhibition of metamorphosis in 50%

100



of the population (MICso) calculated between 25 and >100% WAF. Post-settlement growth
was reduced in three species, with two of the species experiencing no significant reduction
in growth. Both Seriatopora and Stylophora spp. were more effected by increasing WAF
concentrations than the Pocillopora species tested.

Villanueva et al. (2011) examined the effects of Malampaya natural gas condensate
on gametogenesis and embryogenesis of Pocillopora damicornis following a 24 hour
exposure. Coral fragments exposed to higher WAF concentrations incurred heavy
mortality but gametogenesis was unaffected, as all corals planulated in high numbers when
polyps were alive. The increase in mortality caused a reduction in number of reproducing
polyps, which impairs reproductive output directly. Following exposure during late
embryogenesis, concentrations of 50% and greater WAF led to dose dependent larval
abortion immediately after onset of exposure. If the exposure occurred early in
embryogenesis, larvae released were significantly smaller and metamorphic competency
was reduced, while exposure later in embryogenesis led to fully developed planula with
100% metamorphosis. It is apparent that time of exposure during the reproductive cycle
plays a major role in the effects corals will incur.

Goodbody-Gringley et al. (2013) completed a suite of experiments measuring the
effects of weathered and fresh Macondo crude oil on Porites astreoides and Orbicella
faveolata planula. The effects of weathered oil on swimming behavior, settlement, and
mortality of P. astreoides were examined for up to 120 hours. Weathered oil (267 mg/L)
resulted in no significant changes to behavior or mortality when compared to controls;
however, larvae which contacted oil failed to settle or metamorphose. Weathered oil (567
mg/L) led to a significant increase in mortality after 24 and 72 hours. For the first 48 hours,
no differences in settlement were observed, but after 72 hours, no new settlement in the oil
treatments occurred while controls continued to settle. Post-settlement survivorship also
decreased following exposure to 3,500 mg/L weathered oil. The effects of WAF, CEWAF,
and dispersant only on P. astreoides were also examined using fresh Macondo crude oil
and Corexit® 9500. Exposure to WAF solicited no effect on settlement after 48 hours for
all concentrations, but a significant response occurred after 72 hours, where increased
WAF concentration led to decreased settlement. After 48 hours, survival was significantly

reduced, leading to a 48-hour LCso of 0.51 ppm. Exposure to increased concentrations of
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CEWAF reduced settlement after 48 hours and reduced survival after 72 hours in the 4.28
mg/L and 30.99 mg/L treatments. The 72-hour LCso of CEWAF for P. astreoides was
calculated at 1.84 ppm. The same pattern occurred for dispersant only treatments, whereas
increased concentrations led to decreased settlement and survival after 72 hours, leading to
a 72-hour LCso of 33.4 ppm.

Orbicella faveolata larvae were exposed to WAF, CEWAF, and dispersant only in
two experiments; a 48-hour constant exposure, and a 96-hour spiked exposure. The 48-
hour constant exposure to WAF revealed a negative relationship between WAF and
settlement; increased WAF led to decreased settlement. Larval settlement and survival
were both significantly reduced at all concentrations, producing a 48-hour LCso of 0.50
ppm. Similarly, exposure to increasing CEWAF concentrations led to decreased settlement
and survival, and the 48-hour LCso for CEWAF was calculated at 0.28 ppm. Exposure to
dispersant only also resulted in reduced settlement and survival as concentration of
dispersant increased, producing a 48-hour LCso of 19.7 ppm. Survival was monitored
during the 96-hour spiked exposure, and was significantly reduced in all treatments. The
96-hour LCsp for WAF, CEWAF, and dispersant only were calculated at 0.45 ppm, 0.12
ppm, and 343.8 ppm respectively.

This study allowed direct comparison of effects associated with weathered and
fresh crude oil on P. astreoides. Mortality occurred within the first 24 hours of exposure to
fresh WAF, compared to 48 hours of exposure to weathered oil. This suggests fresh oil is
more toxic than weathered oil, which could be linked to the presence of the more toxic,
volatile components in fresh oil. It was also apparent that increased WAF resulted in
decreased settlement and survival for both corals examined, although P. astreoides was
more tolerant. Increased concentrations of CEWAF also resulted in decreased settlement
and survival for both coral species, and higher concentrations of dispersed oil resulted in
settlement failure and complete mortality. The authors concluded that the application of
dispersants potentially increases the toxicity of oil exposure.

Hartmann et al. (2015) exposed Agaricia humilis and Orbicella faveolata larvae to
seawater from a site that was polluted by Venezuelan light crude oil from a land-based
facility on the southern coast of the Caribbean island Curacao. Survival of O. faveolata

decreased by 10% after 6 days exposure, with an 85% reduction in settlement. After 10
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days of recovery, survival was reduced to 75% of control values. Survival of A. humilis
was unaffected by exposure, but a 40% reduction in settlement occurred. Corals were also
exposed to the WAF of the same crude oil in six-day static assays. Survival was initially
unaffected, but declined after 10 days in clean seawater for both O. faveolata and A.
humilis. Settlement was also reduced in both corals following the exposure to WAF.
Negri et al. (2016) assessed the effects of the WAF of natural gas condensate, and
four single aromatic petroleum hydrocarbons on settlement of Acropora tenuis larva.
Larvae were exposed to dilutions of WAF for 24 hours and settlement was assessed
following an 18 hour period in culture plates with addition of crustose coralline algae
extract to initiate settlement and metamorphosis. Composition and concentration of 100%
WAF solutions were analytically verified in order to analyze the contribution of each
constituent hydrocarbon by applying the toxic unit approach. Larvae exposed to <100 pg/L
TPAH exhibited normal settlement and metamorphosis with development becoming
increasingly inhibited at higher concentrations, producing an 1Csg of 339 ug/L TPAH.
Abnormal development and partial metamorphosis without attachment occurred in 54% of
the larvae exposed to 5,600 pug/L TPAH. Larvae experiencing concentrations >3,900 pg/L
TPAH exhibited abnormal development of polyps with no recovery following isolation in
clean seawater for 48 hours. The single hydrocarbons tested were ranked based on toxicity
to A. tenuis larvae (naphthalene> xylene> toluene> benzene). The ICsos generated for each
aromatic hydrocarbon were used to predict the toxicity of 100% WAF, resulting in 0.85
toxic units. This value proved to be 39 fold less toxic than the measured toxicity of the
natural gas WAF, suggesting early developmental stages of corals are impeded by an

additional non-additive effect of petroleum hydrocarbons.
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APPENDIX 2

This appendix includes the semi-quantitative scale for scoring histology tissue
sections to evaluate general condition of coral and algal cells, epidermal and gastrodermal
integrity, and presence of tissue ruptures. This scoring system assessed the severity and
extent of multiple categories (general cellular condition, zooxanthellae, gastrodermal and

epidermal integrity of the surface and basal body walls).

116



JEpLAD
WOTE[E S5aT0{oTi) “3BIET[osTp somm "B IET[DSTp STLOTITR -sEEqosTp snonm
[nq “=sEaar “sdes remjongs “sdeS emjonngs “sdes emyongs erffayyda JORJII ES[3053W s smdny
STIONH BATSUR]XR ey Bare [erpetpds ey 2rE [erepds sEf eME erepide | sqEaq Ma] 10 3UQ pue eraydy :
PRIBTIOSETR T[BAL Jo suenb-zang ] Jo JE-2T) I0 1=ypenb-aug
Apoq 20TLms amuyg
FmeA] 21EIRpOTy sTane 3fed
.Eqﬁwun“.w_n”mw_.m:_ T “Brmzd] ‘snomEnbs a1o0m “saBpu eydas m__MMmMFMm Emumu.d ﬂ_mw“ﬁ_mﬂu_u ﬁﬂﬁﬂﬁ MEs
15291 12 03 pergdoe PuE WOnEEHSEy EMW__J OTEISTERY 1200 a_wﬁmammﬁm PR —. S ————— "EE,.__EEPM#.
Aarsaes smuuRprdg WEPTAY PUE SWIATSIERPORY | @J3Aas pamoone ‘pamdene AySy TLICITUM: “S][32 e
o FliEa A . | TeUmno? HogS
SrmmEgs o = ;
- SunereuREep amos EA[JEIUR] PUE .
(payoea(g) Amofed Mhﬂ_w_nﬂn._uum ? M mmm._w g “ApRgzudoidde “S[0QUaT TETR e Apoq 20eLms W_.wﬂ.nmhuﬂn.m
Jo sTRponses f._m..”mH mMuumH P TTEYE T[N 15074 JEPTMAE 533] NG JO STMURPORSES W H_._Mn....._ﬂﬁ.u.nwm I WONEIJIUSEW X (f
m uasad [[Ex Apoq 2353105 pamdone Aypyoo st SUOTQIAS PaTELS SOTqULLE PRIANEDS A ﬁ m B m. FE[[AIIUEX00T
EJHOTEILAS Op] 40 STHUEponIEs [oTp STHLRPOnseS % o AR PUE Iwa] APETs = T P
) et i w suotquLs Baa "S[0IUD 0] TE]IWT FlI=9 [FREEPOREE)
Raeg URAT . AL Ll I Te[Imry
FJURTIE[L] — “pasmoadmos [EULICT
[ELIR 252 ﬁtuﬂhwmﬂ BITIIYRIE M3 21E JUSTIEL] gapiooonm A2 IE
I0 uoneRuREep ﬁ%w. ' Ediog masaad PR AIUasafy Empids AMLAYTRTA0D
PUE SIZ0I22N] mm h:hwwﬂ%uw_._m erperuds o1 afemE(] ‘pergdone 10 Agdone pue dijod padopaaap S
sjeaqd eajSosem .ww._“_mmnmmﬂ M.Hw ‘EA[S0saW puE 100 E2(E0sam JET[S THIM. “{oTp [[RM L TR | 5 o Euwn__ﬁ
JO jponejonsea . “ I 10 ﬁ_.”_ do erparda Jo Aydone PuE erpapda SE 10T BA[E0saT AmEny e2(Eosam ORI B3]
B[S0s2T qﬂﬂﬂmﬁmﬂ n_y.._m EHE [ETHIWINT ‘52 A000NMW | JOEJUT “5a)A000mm puE By pue erp=pids jommy
puE erpEpda 12 ed Ao, Tenaprds renuapids S[OQU0D 0 T[S | S[OOU0d Of TE[IS
Jo AgdonE areaag 2 1°d 1o Andoniadipg Jo Agdomy
13137 PAHIETY NEIIPOFY PN eIy [ETION IajauIEIE ]
g ¥ E T I 0

JLIqy BULI035 AZO0ISTH SV 2IEL

117



pasEs[al

pasEs[al

pasER[al

paseafal
paseafal SE[UER00Z E[[RUEX00Z SE[[RPUEX00Z SE[[SIPUEX00Z
SE|[RIPUEX00Z puE ssioojEman puE sedooreman P EﬂwEnEun P SISA00]EmRT
_Pue sisioajeman S[[22 PUE(S ENUELY) | S][3d PUE(S F[OUELs) | 'S[[32 PUE(S BRI | conas e propesny i nag
..m._.._“m.n._. PUE[Z IE[NIELID ..._m.._.._...._..mu [STEUED .._._“.._.._r._..mu JE[EMRD ..__L...ra_..mu ...m._..m.Hmm ....m.._.._...._..mu /STEWED e .m.m_.n_.n_. Teseq AN
AJIAED B[EUED Emosescnses EmoseAchses TE[MISEACTSES EMosEACnSES JO STIpOLSED) [BHLIZPORSED
TE[aseAORSES Sty snonm ‘pasi] Sy =Ty Bury snonm ‘pasd]
=T ([0 [PUponsed | smomwd ‘pesd[sfa | smommpaeArsE | o P e
STonT “pasi] s[[ea 10 BAIE 31 [FIEpONsEE Jo | [EMUSPONSES JO BalE 3O SERIE Maj 1o uQ)
[EULBpOnIES [y josmuEnb-zam] | esmampjojEy-eug | et o mumnb-aug
pasea(al pasearal PasEsal pasEa[al
paseafal SE[UER00Z PE[[RUEX00Z SE[[SPUEX00Z SE[[RIPUEX00Z
SE[[FpUEX00Z PE s1sdocreman pue sslooemau. | pue ssdoojemEn puE sjsioojEman
P SO | o pugE g | “STe0 pUE e | R0 puels sy 22 pue(S eI ey Mas
.,m._.._“m.n._. .m_._..._..m._“m .—.m._.._.._.._u..m.._”.m_ ....m.._.._...._..mU ...m._..m-Hmn. ...._“.._.._”.._..mu ...m._..m-Hmn. .._.P._...F.._..mu ...m._..m-.Hmm ....m.._.._...._..mu ...m._..m.Hmn. ._._..m..r._. ._..“.mrn_.n_. m”_.m.ﬁH_.._.m "EEHMH—_H_H.H#....
AR [S[EUE2 Emosescnses IEMmoseAChseS TE[MOSBACHSES EmoseAcnsES JO STIpOLSED) [BHLIZPORSED
TMIERACTEES Sy snonm ‘pesi] Suy =Y Sy snonm ‘pesd]
=TS ([0 [PUU=ponses | smomcd pasd[sfEa | smommpReArSE | o P e
ETIMU “pasA] 7120 0 BRI 1) [FUURpONsEE Jo | [BULEPONSES JO BAlE JO SERIE MaJ 10 JU()
[EULEPONSES [y jo srepenb-sam] | eam Sp Jo JEY-euQ) | e Jo repenb-aug
BAIE STILEDIGS E2IE “Bare sTRptda - stzoydode SN
JUIPLAR TIOQE]E sraEnb-aang stouapida Jrey-2uo 3yrenb-auo RIEL I[N JROMA] 10 SIS0ID2U OF]  [[EAL ApOg 20EpIng
SESTETR [MA NOGE WIss0aN | WNOGR WISISOIRN | JMOQE WI STSOIRN
- . - = T ] .mu.mw._u_ hf.ﬂ.mm
PESP 30U 5([=2 -m.nwwhu.m_nm._._”mﬂ.wmw_.‘mmﬂ PESR JIET 10 ziEnb azng 10 "FESP [[E JE0U[E ‘Juasaad auop] u1 53).420q0Y
JE A DB E[[=7 2EITQ WIEIIOD aa I0 W3] B O] 23U
sy STSPORTES | WEMIODBSEIR | oo sy | ST W ? B
' pue stpidy 70 s19)1Enb ~33my ] — : E2IE J0 I3IEND 3ug)
‘snanm I9YIEp “WONAIAS SN asEalal . -
ASmns pue FummEs PUE 3215 W P3ONP3I | JO 36231 JUEPUNQY | aWOS LY} ‘SIONW | “Smonm Surure)s afed AES :sardd0ampy
52 Ao0anm Jo 5507 TRYIEp “ATRIUR amos ‘parqdone ‘saplooonm AHONT S0 | sponquon o g | -
.mmtn_ouﬂnm b B | smos “saploonmm 30 10 Agdony Jo igdoge marg
tooy emuepida swog | e mRARH ,
213A3G PAIETY HEBEPON PEN _nﬂ_ﬁq_.E _-E__“.__E? b
: L n f

panunuo ) §% AqeL

118



AI0ME monIpuo ) agraadsg £, [E300 21 19F 0 52I00F IewETed S[EIOD [OES WNE 2I005 Jajewerd = Jueng, Aeasg

BEIHI L
[EaCgnn T
TEx0g 1

:zaBuenD Jo MRy

{1masaxd) 1 30 (suow) [ —aouasaid pEROD)

SRNUEIS a Palege - uzsand surzyond
“SusAT 10 2m0men arrdopioe on SEale QWIS W1 Sur=A] SESIE Q10U piE o i HIOEW S Jo
"muﬁumﬁwmmﬁ Fuore mﬂﬂm Eﬁw_ 1231 ‘senuei omdoptoe | “seuieis oqmdopro | ardopioe 2y sanuess armd ; el STULIAPOOIE )
: 53TTES T8 550 ".Wﬂ_.ﬂwm. n_wn_ N I2MaT STILRAPOIEDY | I2ma] “STILRpOITED TR STIIRROOTED o m g muu.m_“_ aﬂa_u_ : '
AT ! .w_.ﬁﬂmmn%.m snomenbg 3o Surmry 3o Amdome yEMs _“._m"_ _um,m_u_naﬁm;.&H
S W B[qELIEA 2107 ae s
o BRI STULRpONsEs “BaIE SR PONSED “BAIE STILAPONSES
STINSPOREES JO 2I31ENb-33my I[EY-3100 )renb-aun AIEI I2[INH J00T2T yussaid stsoydode | SISOIRN
s1soI0an aydmony ) ) ) . . 10 5150433 ON] MEM Apogq [eseq
Mmoge T SIS00SN moge U SIS00SN MOGE W STS0LSN
"PEap 20N ‘S[[20 ‘pERp 12pEnh T —— “pRAp nmag
2521 4q PR -3T0 10 S[[20 230 £[[30 3531 WTEIIO ziayenh aamp 10 “PERP [[E }s0mwmE “pRap PUE SALIUASIJY
Aquaean sTouRponses TIEJIOD BRIE 217} SarE ST 10 E[[32 JE WIEIWOD I MAJ E 0 310 [Te 10 masand smop] u1 s3)A20q2000y
pue stuRprdy I0 s1rEnb -asmy T, 30 IFH BRI JO 1=)menh amgy JE[UEIS)
“SMON AFER[RI
- ‘papeISep puE "SUTITEYS OU [RLY | Fo 2sEa(el UEPUNGY | SUHOS IPLW snonm | CSnonm Swures aed s
FEIOINIL0 BT pasA] sapiooongy yuasard sapisoonpy ‘zapiooonim Ampor] smdooonma | CsToOuoD o) JE[ITHIS AFE 530
Jo Aydogy 30 Agdogz mSng
13137 PAHIETY NEIIPOFY PN eIy [ETION IajauIEIE ]
g F E T I 0

panunue) $V AqEL

119



	Nova Southeastern University
	NSUWorks
	9-2-2016

	Quantifying the Toxicity of 1-Methylnaphthalene to the Shallow-Water Coral, Porites divaricata, for Use in the Target Lipid Model
	Nicholas Turner
	Share Feedback About This Item
	NSUWorks Citation


	tmp.1474901087.pdf.m1hka

