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ABSTRACT 

 The proximity of coral reefs to coastal urban areas and shipping lanes predisposes 

corals to petroleum pollution from multiple sources. Previous research has evaluated 

petroleum toxicity to coral using a variety of methodologies, including monitoring effects 

of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and 

larval stage corals. Variability in toxicant, bioassay conditions, species and other 

methodological disparities among studies prevents comprehensive conclusions regarding 

the toxicity of hydrocarbons to corals. This research evaluated the 48-hour toxicity of 1-

methylnaphthalene to Porites divaricata using a continuous-flow passive dosing system. 

The range-finding exposure evaluated the dosing protocol and verified the effectiveness of 

the passive dosing technique at maintaining exposure concentrations. The full-toxicity 

exposures resulted in a precise estimate of toxic threshold concentrations for use in the 

target lipid model. The target lipid model promoted comparisons across different species 

by calculating the critical target lipid body burden of 355.7 µmol/ g lipid for P. divaricata. 

This indicates a greater resilience to petroleum hydrocarbon exposure compared to other 

species for which these data are available.  
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INTRODUCTION   

As one of the few productive ecosystems that thrive within oligotrophic seas, coral 

reefs are regarded as diverse and complex marine communities (Loya and Rinkevich 1980, 

Knap et al. 1983, Ballou et al. 1987b, Haapkylae et al. 2007). Coral reefs are an essential 

aspect of the geology and ecology of tropical and subtropical oceans. Moreover, coral reefs 

are vital to the geochemical mass balance of the oceans in regards to fluxes of magnesium, 

calcium, strontium, and carbonate (Knap et al. 1983). These ecosystems are a major 

fisheries habitat, protect against coastal erosion, and form the basis for most tropical tourist 

industries (Knap et al. 1983, Ballou et al. 1987b, Shigenaka 2001). Coral reefs grow in 

coastal environments that are generally located adjacent to highly populated areas, 

increasing the possibility for anthropogenic impacts on these ecosystems.  

 The complex communities associated with coral reefs depend on the structural role 

provided by hermatypic corals (Ballou et al. 1987b, Shigenaka 2001). Corals provide 

shelter from predators, substrate for colonization of algae and invertebrates, and are a direct 

source of nutrients for multiple species whose primary diet consists of coral tissue (Loya 

and Rinkevich 1980, Shigenaka 2001, Haapkylae et al. 2007). It is widely accepted that 

many of the world’s coral reef ecosystems are in decline, due to an abundance of natural 

and anthropogenic disturbances. 

 The diverse and complex nature of coral reefs is often related to physical features 

such as location, depth, local geography, and topography, and indicates a wide spectrum 

of disturbances to which corals have adapted over geologic time (Nyström et al. 2000). 

Disturbances to reefs are increasingly related to human dominance of coastal areas, which 

has led to increased sediment, nutrients, and other pollutant inputs into the sea. These 

impacts are amplified by poor land management, and combine to cause increased stress to 

corals and coral reefs (Knap et al. 1983, Shigenaka 2001). The increased stress on corals 

may permit diseases caused by infectious or opportunistic microorganisms to spread 

rapidly across populations and when coupled with increased nutrients, may permit 

increased predation (i.e., crown-of-thorns starfish) or overgrowth from algae (Shigenaka 

2001). Further examples of human-induced disturbances that directly or indirectly impact 

coral animals and the reefs they construct include over-fishing, destructive fishing 
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methods, sedimentation due to dredging, drilling activities, physical habitat alteration, and 

invasive species (Knap et al. 1983, Shigenaka 2001).  

 Corals are known to be long-lived and slow-growing animals that may take decades 

to recover from disturbance (Cubit et al. 1987). The more persistent, and often more 

frequent, occurrence of anthropogenic disturbances on coral reefs leaves little time for 

recovery. Toxic substances produced by humans often have no natural counterpart, and 

their release into the marine environment may expose organisms to compounds to which 

they have adapted poorly, or not at all (Nyström et al. 2000). Damage to the coral animal 

will likely disrupt associated communities, and has the potential to negatively impact the 

entire ecosystem (Shigenaka 2001). 

Petroleum Inputs and Exposure Scenarios 

 Crude oil pollution is often considered a primarily anthropogenic contribution to 

the sea; however, natural seeps are the highest contributors of petroleum hydrocarbons to 

the marine environment, accounting for 46% of the total worldwide input (NRC 2003). 

These seeps exist where crude oil migrates directly from oil-bearing rocks through the 

sediment and into the water column via cracks and faults in the sea bed (Al-Dahash and 

Mahmoud 2013). They have limited ecological impact, and the constant, slow rate of 

release over an extended period of time has allowed microbes and benthic organisms to 

acclimate and even evolve to utilize the petroleum hydrocarbons (NRC 2003). Conversely, 

the impacts of large and abrupt anthropogenic inputs of petroleum hydrocarbons into 

relatively pristine waters are of greater concern as potentially affected organisms may lack 

the adaptive features to use or detoxify the hydrocarbons. 

 Anthropogenic input of petroleum hydrocarbons can be divided into three main 

sources. Extraction accounts for 3% of the worldwide total, attributed to offshore 

production releases from platforms and pipelines, or operational discharges such as loading 

and cleaning operations, effluents, ballast water, and leakage (NRC 2003). Transportation 

is the second main source, accounting for 12% of the worldwide input of petroleum 

hydrocarbons (NRC 2003). This includes tanker accidents and operations, marine terminal 

and refinery spills, and spills from land-based storage tanks (Dodge et al. 1984, Burns and 

Knap 1989). The third main source of petroleum hydrocarbon input into the sea is 

consumption. Consumption of crude oil accounts for 37% of the worldwide total, and 92% 
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of the anthropogenic load (El-Sikaily et al. 2003, NRC 2003). Terrestrial runoff, 

recreational vessels, non-tanker accidents, and aircraft dumping are all grouped here, with 

land-based runoff as the largest contributor of consumption-based crude oil (NRC 2003). 

Coastal expansion of urban areas has increased this input, placing a significant threat on 

shallow, fragile coastal ecosystems.   

 Marine organisms may be exposed to petroleum hydrocarbons in two ways, acutely 

or chronically (NRC 2003). Acute exposures are typically the result of large, catastrophic 

spills with immediate short-term effects. The close proximity between tanker routes and 

many of the world’s coral reefs has resulted in significant oil pollution of reefs from tanker 

accidents in the Persian Gulf, Wake Island, the Florida Keys, and Puerto Rico (Knap et al. 

1983). Acute exposure is often related to the proximity to spills originating from refineries, 

production activities, storage facilities, and offshore platforms (Dodge et al. 1984). 

Accidental or deliberate release from tankers and pipelines due to war-related incidents has 

also resulted in acute exposures (Haapkylae et al. 2007, Al-Dahash and Mahmoud 2013). 

Although these spills generally have a short duration, they have the potential to cause long-

term impacts depending on the amount and location of the spill (NRC 2003).  

 Chronic exposure results from continuous exposure to small amounts of oil over 

long periods of time (NRC 2003). This typically occurs in close proximity to natural seeps, 

but anthropogenic sources are also common. Point sources, like leaking pipelines, 

production discharges, or runoff from land-based facilities contain a strong gradient of high 

to low oil concentration. Non-point sources, such as atmospheric fallout and terrestrial 

runoff, also result in chronic exposure, but contain no distinct gradient of concentration. 

Large spills with acute exposure scenarios may not cause complete mortality, but oil can 

become trapped in sediments, producing a chronic exposure scenario. Chronic exposures 

can result in sublethal effects, including altered metabolism, cell structure and function, or 

enhancement of chromosome mutation. This cascade of biological consequences 

associated with chronic pollution from frequent smaller spills is often considered to be a 

larger threat than those associated with acute exposure from tanker accidents (Loya and 

Rinkevich 1980, Capuzzo 1987).  Oil pollution in the sea, whether from anthropogenic or 

natural sources, chronic or acute, is a major environmental concern (NRC 2003).  
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Composition and Toxic Mode of Action of Petroleum Hydrocarbons 

Crude oil is a complex mixture of several thousand compounds, with each oil 

containing widely varying amounts of chemicals (NRC 2003, Haapkylae et al. 2007). 

Hydrocarbons, as saturates, olefins, and aromatics, make up 97% of most petroleum (NRC 

2003). Of these compounds, aromatics are usually the most stable and may persist in the 

environment for long periods of time. Aromatics include at least one benzene ring, with an 

inverted relationship between abundance and molecular weight. Monocyclic aromatic 

hydrocarbons (MAH)—benzene, toluene, ethyl-benzene, and xylene (BTEX)—are more 

volatile and often found in higher proportions than polycyclic aromatics. Polycyclic 

aromatic hydrocarbons (PAH), or polyaromatics, account for nearly 20% of the total 

hydrocarbons in crude oil and include compounds that can cause the most serious 

environmental effects (El-Sikaily et al. 2003, Haapkylae et al. 2007).  

The hydrophobic nature of PAHs causes adherence to particulate material in the 

water column where they can enter the food chain or become deposited in sediments (El-

Sikaily et al. 2003). The hydrophobicity of PAHs also means a low aqueous solubility 

coupled with high lipid solubility, which according to the equilibrium partitioning theory, 

allows the PAHs to partition across permeable membranes into organismal tissue lipids 

until equilibrium is reached (NRC 2003). The partitioning of petroleum hydrocarbons into 

tissues produces a toxic response in the organism that is related to the solubility and 

bioavailability of specific compounds (Neff and Anderson 1981, Capuzzo 1987, NRC 

2003). Bioavailability and solubility of hydrocarbons may be chemically modified through 

photo-oxidation or other weathering processes (NRC 2003). Since the toxicity of petroleum 

products is related to the water-soluble fraction (WSF) or water-accommodated fraction 

(WAF), the relative solubility and persistence of constituent aromatic hydrocarbons results 

in crude oils with different toxic effects due to the toxicity of the hydrocarbons present 

(Capuzzo 1987, NRC 2003, Barata et al. 2005, McGrath et al. 2005, Redman et al. 2012, 

Butler et al. 2013).  

Nonionic aromatic hydrocarbons are type 1 narcotic chemicals with similar toxic 

modes of action (Di Toro et al. 2000, McGrath et al. 2004), and are important contributors 

to aquatic toxicity (McGrath and Di Toro 2009, Redman et al. 2012). Toxicity depends on 

the aqueous concentration of constituent hydrocarbons, which controls partitioning into an 
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organism. Originally it was assumed the chemicals affected the whole organism (McCarty 

et al. 1991), but is now thought to involve interactions with just the hydrophobic portions 

of the cellular membranes (Sikkema et al. 1995, Di Toro et al. 2000). Lipophilic 

hydrocarbons alter membrane structure and function by partitioning into the lipid bilayer, 

modifying membrane fluidity and permeability (Sikkema et al. 1995, McGrath et al. 2004, 

de Hoop et al. 2011). The narcotic lethality of hydrocarbons has been linked to the chemical 

concentration in the target lipid, rather than the whole organism, and is assumed to be 

independent of species (Di Toro et al. 2000).  

The Target Lipid Model 

The target lipid model (TLM) assesses aquatic toxicity of nonpolar organic 

chemicals with a narcotic toxic effect (McGrath et al. 2004), and is based on the assumption 

that mortality occurs when the concentration in the target lipid reaches a threshold 

concentration (Di Toro et al. 2000). The TLM estimates this critical target lipid body 

burden (CTLBB; µmol chemical/ g lipid) using the specific endpoint [i.e., the 

concentration lethal to 50% of the population: LC50 (mmol/L)] and the target lipid–water 

partition coefficient (KLW), which is defined as the ratio of chemical concentration in the 

lipid (CL) to the aqueous concentration (CW) (Di Toro et al. 2000). 

1) 𝐶𝑇𝐿𝐵𝐵 = 𝐿𝐶50 ∗  𝐾𝐿𝑊 

2) 𝐾𝐿𝑊 =  
𝐶𝐿

𝐶𝑊
 

Experimental determination of the LC50 for a specific narcotic chemical allows calculation 

of an organism’s CTLBB using the TLM.  

3) log 𝐿𝐶50  =  log 𝐶𝑇𝐿𝐵𝐵 − log 𝐾𝐿𝑊 

The target lipid model uses KLW, which is calculated using the linear free energy 

relationship between KLW and the octanol–water partition coefficient (KOW), as octanol has 

been determined a good surrogate for organism lipid tissues (Di Toro et al. 2000).  

4) log 𝐾𝐿𝑊  =  −0.945 ∗  log 𝐾𝑂𝑊 

It is assumed that the target lipid has the same chemical partitioning property in all 

organisms, therefore the universal narcosis slope (-0.945) is representative of this 

ubiquitous mode of action (Di Toro et al. 2000). Combining Equations 3 and 4 results in 

the TLM. 



  6 

 

5) log 𝐿𝐶50  = log 𝐶𝑇𝐿𝐵𝐵 − 0.945 ∗  log 𝐾𝑂𝑊 

McGrath and Di Toro (2009) refined the TLM to include a chemical class correction (Δc: 

MAHs= -0.109, PAHs= -0.352) for hydrocarbons with increased toxicity, and more precise 

universal narcosis slope (-0.936) determined with updated KOW. 

6) log 𝐿𝐶50  = log 𝐶𝑇𝐿𝐵𝐵 − 0.936 ∗  log 𝐾𝑂𝑊 +  ∆𝑐   

The species-specific CTLBB must be determined in a controlled laboratory experiment by 

measuring the LC50 for a single hydrocarbon with known KOW. The CTLBB is expressed 

in µmol chemical/g octanol, but because of the relationship between KOW and KLW, the 

units are assumed to be µmol chemical/g lipid (McGrath et al. 2004). If TLM assumptions 

are true and partitioning is the same for all species, the CTLBB can be used to estimate the 

LC50 for other type 1 narcotic chemicals with similar toxic modes of action using their 

respective KOW.  

Toxicity of Mixtures 

The toxic unit (TU) approach to evaluating mixture toxicity is a means of 

normalizing the toxicity of different chemicals in a mixture (Di Toro and McGrath 2000). 

The TU is the ratio of the aqueous concentration (Cw) to the effect concentration (LC50). 

7) 𝑇𝑈 =  
𝐶𝑊

𝐿𝐶50
 

Type 1 narcotic chemicals are known to have an additive effect (Capuzzo 1987, Di Toro 

and McGrath 2000, Barata et al. 2005, Redman et al. 2012, Butler et al. 2013), and 

combining the toxic effect of all constituents’ results in the mixture toxicity. 

8) 𝑇𝑈𝑚𝑖𝑥𝑡𝑢𝑟𝑒 = ∑ 𝑇𝑈𝑖𝑖  

If the combined TU for a chemical mixture is greater than 1, the mixture is toxic at that 

concentration (Di Toro and McGrath 2000, McGrath and Di Toro 2009). The TLM and the 

additivity of TUs can be used to predict the toxicity of chemical mixtures. 

The TLM assumes the target is lipid, and that concentration is limited by aqueous 

solubility of the chemical (Di Toro and McGrath 2000, Di Toro et al. 2000, McGrath et al. 

2004, McGrath and Di Toro 2009). This cutoff exists because kinetics related to molecular 

size and solubility prevent accumulation in the organismal lipid at a sufficient level to cause 

an effect; LC50s are greater than solubility (McGrath et al. 2004). Negri et al. (2016) 

determined the WAF of natural gas condensate was dominated by BTEX and alkyl 
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substituted benzenes and naphthalenes, while the parent condensate was composed mainly 

of n-alkanes and branched alkanes. Similarly, crude oil WAF was also found to contain 

82% naphthalene and alkylated derivatives (Mercurio et al. 2004). Endicott crude oil WAF 

(600 mg/L loading) shows the same dominance of lower molecular weight aromatics 

compared to the source oil, which had measurable amounts of higher molecular weight 

polyaromatics (Fig. 1) (Redman and Parkerton 2015).  

Multiple other studies have characterized the soluble portion of petrogenic 

hydrocarbons as being dominated by alkylated PAHs (Neff and Anderson 1981, 

Hawthorne et al. 2006, Achten and Andersson 2015), which are usually more abundant 

than parent PAHs (NRC 2003). Alkylation of aromatic hydrocarbons implies increasing 

lipophilicity, thereby increasing partitioning into the cell and altering toxicity (Achten and 

Andersson 2015). Hawthorne et al. (2006) found parent and alkylated hydrocarbons to 

contribute 1% and 99% of the toxicity of crude oil WAF respectively. Therefore, to avoid 

underestimating toxic effects, estimates of species-specific CTLBBs should be made using 

alkylated, low molecular weight aromatic hydrocarbons with log Kow <5.5 (McGrath and 

Di Toro 2009). 

 
 

Figure 1. Concentration of aromatic hydrocarbons (C6–C16) present in Endicott Crude Oil 

(A) and Endicott Crude Oil WAF (B). Adapted from Redman and Parkerton (2015). 
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Passive Dosing 

Determining the LC50 for use in the TLM must be completed using a constant 

concentration throughout the exposure to provide reliable data to generate dose-response 

curves (McGrath and Di Toro 2009, Butler et al. 2013, Redman and Parkerton 2015). Most 

petroleum PAHs are sparingly soluble, and obtaining constant exposure concentrations can 

be challenging due to loss mechanisms (sorption, volatilization, and degradation) (Smith 

et al. 2010, Butler et al. 2013). Exposure vessels with 10% headspace resulted in a 35–55% 

evaporation of total PAH over 24 h (Negri et al. 2016), while others saw 64% decline in 

total PAH over 84 h (Kegler et al. 2015). The passive dosing technique was developed to 

combat the issue of degradation whereby the chemical is partitioned from a solvent solution 

into a biocompatible polymer such as polydimethylsiloxane (PDMS) (Butler et al. 2013). 

A key criterion for successful use of the passive dosing system is to ensure excess mass of 

hydrocarbon in both the loading solution and PDMS O-ring reservoirs to prevent small 

amounts of depletion from affecting the target concentrations (Butler 2013). The excessive 

amount of hydrocarbon loaded into the PDMS O-rings has been proven to produce an 

accurate and precise constant aqueous concentration for the exposure duration despite 

potential losses that occur in the test system (Smith et al. 2010, Butler et al. 2013).  
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HYRDROCARBON TOXICITY TO CORALS 

Every oil spill in the marine environment is a unique ecological problem, as 

potential effects depend on the local physical, chemical, and biological factors that 

influence the oil (Haapkylae et al. 2007). Weather conditions, seasonal factors, dosage, 

type of oil, previous exposure to oil, and type of remedial action are a few of the many 

influential factors determining the toxicity of spilled oil (NRC 2003, Haapkylae et al. 

2007). During the past 50 years, multiple studies have attempted to measure the lethal and 

sublethal effects of oil on corals. Some studies have evaluated community-level effects of 

an actual oil spill, while others focused on subcellular changes in response to controlled 

laboratory experiments. The following sections provide a brief summary of the previous 

research conducted and a more detailed explanation of each study completed is found in 

Appendix 1. 

Incidents resulting in Acute and Chronic Exposure of Petroleum to Corals 

Oil spills in the marine environment are a significant ecological problem, but have 

the potential to provide an invaluable opportunity to assess impacts of oil exposure on the 

associated organisms. Over the last 50 years, many accidents have exposed benthic 

organisms to petroleum hydrocarbons. Ecosystem evaluations often overlooked possible 

damage to corals and other subtidal communities, presumably due to dangerous conditions 

associated with floating oil and logistical issues during the spill. Understanding the impacts 

of acute and chronic exposure on corals requires baseline data of the coral community, 

which is lacking in a majority of areas where spills have occurred. Appendix 1 Table 1 

summarizes studies which evaluated the effects of both acute and chronic release of 

petroleum hydrocarbons on coral individuals, populations, and communities. 

Analysis of acute and chronic exposures of coral reefs revealed a variety of effects 

on coral. No detectable impacts on coral were found after the Gulf War oil spill (Vogt 

1995), whereas other spills resulted in major deterioration of the reef community. 

Community-level changes in response to petroleum pollution include decreases in species’ 

abundance, diversity, and coral cover (Fishelson 1973, Bak 1987, Cubit et al. 1987, Jackson 

et al. 1989, Guzmán et al. 1991, Guzman et al. 1994). Branching coral species were found 

to be more sensitive when compared to encrusting or massive species, leading to a decrease 

in rugosity of the reef (Fishelson 1973, Bak 1987). Multiple acute and chronic exposures 
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have led to tissue loss and increased coral mortality (Rinkevich and Loya 1977, Cubit et 

al. 1987, Green et al. 1997, White et al. 2012, Fragoso ados Santos et al. 2015), which have 

been correlated with hydrocarbon uptake (Burns and Knap 1989). Bioaccumulation of 

petroleum hydrocarbons from the water column has been reported by multiple studies 

(Sabourin et al. 2013, Ko et al. 2014), altering cellular physiologic conditions. Increases in 

protein to lipid ratios have been found (Burns and Knap 1989), as well as altered protein 

metabolic condition, increased mitochondrial chaperoning, and increased xenobiotic and 

detoxification responses following both chronic and acute exposures (Downs et al. 2006, 

Downs et al. 2012). Increases in number of oil-degrading bacteria in the mucus bacterial 

community were also measured following chronic pollution (Al-Dahash and Mahmoud 

2013). 

Sublethal effects of corals exposed to petroleum products include increases in 

bleaching, tissue swelling, mucus production, coral injury, and bacterial infections 

(Jackson et al. 1989, Guzmán et al. 1991, Guzman et al. 1994, Green et al. 1997, White et 

al. 2012). Colony size and growth rate were found to decrease following exposure to 

petroleum pollution (Guzmán et al. 1991, Guzman et al. 1994). Exposure also resulted in 

immediate polyp retraction and sclerite enlargement in deep sea corals (White et al. 2012). 

Declines in number of breeding colonies, ova per polyp, and planula larvae released per 

coral head were established following chronic exposure to Iranian crude oil (Rinkevich and 

Loya 1977). Along with decreased gonad size, these alterations in reproductive features 

reduced settlement rates and decreased fecundity (Guzmán and Holst 1993).  

Overall, oil spills in close proximity to coral reefs provide a unique opportunity to 

assess the effects of hydrocarbons on corals in situ. Although injurious, it is important to 

understand how corals react to acute and chronically spilled oil in their natural 

environment. However, in the absence of pre-spill baseline data, it can be difficult to 

discern between negative impacts of the oil spill and a decline in coral health linked to 

some other pre-existing stressor. Most coastal ecosystems are already affected by other 

anthropogenic stressors, and oil spills in two locations may have drastically different 

effects due to the compounding stressors present. Differences in type of pollutant spilled, 

as well as physical conditions at the time of the release also limit comparisons between oil 

spills.  
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In-situ Studies Examining Effects of Petroleum Hydrocarbons on Coral 

 Field experiments exposing coral to oil are a means of limiting differences in type 

of oil or physical condition, as well as accounting for lack of baseline data in certain areas. 

Researchers are able to collect data prior to exposure, and choose the precise way in which 

exposure will take place. Experiments conducted in situ are limited, and this review 

consists of three complete experiments, all conducted before 1990. Appendix 1 Table 2 

summarizes the in situ experiments examining the effects of oil exposure on corals.  

Experiments conducted in situ provide a controlled situation to monitor the effects 

of oil on reef corals, while managing other variables that usually prevent comparability 

between studies. Researchers have identified a greater affinity for oil in branching species 

when compared to massive or encrusting forms, with tissue damage occurring if oil adheres 

to the surface of the coral (Johannes et al. 1972). Exposure to oil resulted in only slight, 

but not significant reductions in coral cover, with no reduction in growth of individual 

corals (Ballou et al. 1987a, Ballou et al. 1987b, LeGore et al. 1989, Dodge et al. 1995). On 

the contrary, exposure to dispersed oil resulted in significant reductions in coral cover and 

growth, lasting two years, with little evidence of recovery (Ballou et al. 1987a, Ballou et 

al. 1987b, Dodge et al. 1995). Although initially significant damage occurred, full recovery 

of all corals in the TROPICS experiment with regard to growth, sclerochronology, and 

coral cover resulted after 10 years (Dodge et al. 1995, Ward et al. 2003). 

Ex situ Laboratory Experiments Examining Effects of Petroleum on Adult Corals 

 Although the effects of acute and chronic releases of oil and in situ field 

experiments are important for understanding coral’s reaction in their natural environment, 

they are accompanied by certain disadvantages; limited control of physical variables, high 

costs, and lack of baseline preparedness for evaluation of effects associated with acute 

exposures. Thus, researchers have employed laboratory experiments to examine effects of 

petroleum hydrocarbons and dispersant mixtures on corals and their multiple life stages. 

Using this type of experiment provides the means to control physical variables, 

concentrations, exposure scenarios, and which toxicant or organism to use, while limiting 

environmental exposure. Laboratory experiments also provide the opportunity to calculate 
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precise endpoints, such as the concentration lethal to 50% of the population (LC50), which 

is often used as a measure of toxicity for chemical compounds.   

 Of the research conducted on the effects of petroleum hydrocarbons on corals, 

laboratory experiments are the most numerous. For this reason, controlled laboratory 

experiments were divided into two groups based on the life stage of the coral tested. The 

first group consists of research using adult corals, while the second group contains those 

using any stage of the reproductive cycle.  Laboratory experiments evaluating the effects 

of exposure of petroleum hydrocarbons on adult stage corals are summarized in 

chronologic order in Appendix 1 Table 3.  

Overall, the wide variety of bioassay conditions and exposure durations described 

in the foregoing experiments have resulted in high variability in the effect petroleum has 

on adult corals. Following exposure to oil or WAF, levels of mortality were variable, from 

extreme situations resulting in tissue flaking or rupture, to no significant mortality (Reimer 

1975, Elgershuizen and De Kruijf 1976, Cohen et al. 1977, Peters et al. 1981, Wyers et al. 

1986, Shafir et al. 2007, DeLeo et al. 2015). Sublethal changes were more common, and 

were typically related to alterations in polyp behavior. Researchers found abnormal feeding 

and stimulus reactions, mouth opening with exposed actinopharynx and mesenterial 

filament extrusion, breakdown of polypal pulsation synchrony, and polyp retraction or 

extreme elongation (Reimer 1975, Cohen et al. 1977, Ducklow and Mitchell 1979a, Neff 

and Anderson 1981). There were also increases in mucus bacterial populations, increased 

symbiont extrusion leading to slight or extensive bleaching, and decreased photosynthetic 

yield (Reimer 1975, Ducklow and Mitchell 1979a, Neff and Anderson 1981, Mercurio et 

al. 2004). Bioaccumulation was common in these exposures, which led to changes in 

normal cellular architecture and shifts in metabolic homeostasis (Peters et al. 1981, Rougee 

et al. 2006). Most effects of hydrocarbon exposure were temporary, with a return to normal 

behavior following recovery in clean seawater.  

 If dispersants or dispersed oil were used in the exposure, the resulting effects were 

more pronounced when compared to oil alone. Similar sublethal alterations in behavior 

were examined, including tentacle retraction, inhibition of feeding and tactile response, and 

nematocyst discharge; in most cases damage was more permanent with poor recovery 

(Lewis 1971, Elgershuizen and De Kruijf 1976). Tissue rupture followed by increased 
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mortality was common, with dispersed oil leading to the highest mortality in studies which 

considered both oil and dispersed oil (Eisler 1975, Shafir et al. 2007, DeLeo et al. 2015). 

An initial reduction in carbon fixation and incorporation of photosynthetic products was 

also found following exposure to dispersed oil, when oil alone failed to solicit the same 

response (Cook and Knap 1983).  

 The effects of petroleum PAHs or other petroleum products on corals were also 

evaluated. Phenanthrene was found to significantly reduce calcium deposition following 

rapid accumulation and slow depuration (Neff and Anderson 1981). Naphthalene was also 

rapidly accumulated, and the relatively rapid depuration period was consistent with 

observations in other marine organisms (Solbakken et al. 1983). Benzo(a)pyrene and a 13- 

PAH mixture led to cellular changes consistent with detoxification of a xenobiotic (Ramos 

and Garcia 2007, Woo et al. 2014). Gasoline was found to result in significant loss of 

sclerites and tissue in a gorgonian (White and Strychar 2011). 

Ex situ Laboratory Experiments Testing the Effects of Petroleum on Coral Reproduction 

It has been previously established that coral gametes and larvae are more sensitive 

compared to their adult form. This early life-stage sensitivity coupled with the buoyant 

nature of gametes and larvae increases the potential for oil exposure if a spill occurs during 

spawning season. Laboratory experiments evaluating the effects of petroleum hydrocarbon 

exposure on any stage of coral reproduction are summarized in chronological order in 

Appendix 1 Table 4.  

Overall, exposing corals to petroleum pollution during any stage of reproduction 

significantly alters reproductive output. When oil or oil WAF was used, larvae were 

prematurely released, the number of female gonads per polyp was reduced, and significant 

reductions in settlement and metamorphosis occurred (Loya and Rinkevich 1979, 

Rinkevich and Loya 1979, Te 1991, Kushmaro et al. 1997, Epstein et al. 2000, Goodbody-

Gringley et al. 2013, Hartmann et al. 2015, Negri et al. 2016). Multiple studies found 

delayed settlement, free floating metamorphosis, post-metamorphic deformation and 

increased mortality of larvae (Te 1991, Kushmaro et al. 1997, Epstein et al. 2000, 

Goodbody-Gringley et al. 2013). Hydrocarbon exposure also led to significant inhibition 

of fertilization with unusual embryonic development and disruption of cell membranes 

(Mercurio et al. 2004).  
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 When dispersants were utilized, researchers found increased mortality, coupled 

with fertilization, metamorphosis and settlement inhibition (Epstein et al. 2000, Lane and 

Harrison 2000, Negri and Heyward 2000, Goodbody-Gringley et al. 2013). Major 

behavioral anomalies and structural deformations of planulae also occurred following 

dispersed oil exposure (Epstein et al. 2000). Studies that examined effects of both oil and 

dispersed oil found a greater toxic effect associated with dispersed oil compared to oil 

alone. 

Limitations of Previous Research Examining Hydrocarbon Toxicity to Corals 

  Coral reefs thrive in coastal waters that are often adjacent to urban centers and 

major shipping lanes, which predisposes the potential for exposure to petroleum. A 

necessity to understanding the impacts of oil pollution on coral reefs is to increase our 

knowledge on the effects to the basic element of a coral reef: the coral animal (Shigenaka 

2001). Acute and chronic exposures in history have either lacked quantitative baseline coral 

community data that are required to assess changes, or neglected to measure hydrocarbon 

concentrations during the spill. This lack of data prevents the comparison of results 

between spills, and helps to explain some of the variation in observed effects.  

  As a way of addressing this data gap, field and laboratory studies aimed at 

quantifying the effects of petroleum pollution on corals have been designed to allow 

researchers the ability to control exposures and compounding stressors. To date, field 

studies are limited in number, but include research that quantifies actual exposure 

concentrations and baseline coral community data. Observed effects range from no effect 

in oiled sites to an initial reduction in coral cover in dispersed oil sites with full recovery 

in under 10 years (Ballou et al. 1987b, Dodge et al. 1995). Results of the TROPICS 

experiment indicated that dispersed oil initially led to more severe effects on coral when 

compared to oil alone, with the difference still present after two years. Other field 

experiments resulted in no significant difference between oil and dispersed oil. These 

differences were likely related to differences in oil type, dispersant used, species tested, or 

the physical conditions during the spills.  

Laboratory experiments are designed to limit differences between exposure 

scenarios as a means of comparing toxicity between different corals and oils. Though lab 

studies may use environmentally unrealistic concentrations or exposure durations, they are 
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necessary in order to assess relative species sensitivity and to provide essential information 

for use in toxicological models. To date, previous laboratory research has examined 34 

different species of coral from 23 genera. Members of subclasses Hexacorallia and 

Octocorallia were used, encompassing shallow, intermediate, and deep-water species. Use 

of multiple species is beneficial to understanding species sensitivity differences, but makes 

comparisons of different toxicants challenging.  

A key issue in evaluating published toxicity data is whether or not the study has 

reported measured concentrations in exposure media, as the real utility of toxicity tests is 

the comparison of threshold concentrations of oil with values measured in the field 

(Bejarano et al. 2014). This is not limited to lab studies, as there is often a lack of detailed 

exposure-response data for field and mesocosm studies. Use of nominal concentrations is 

cautioned because they may either over or underestimate the lethality of a toxicant; all 

components of oil do not dissolve into water, and an LC50 reported as 10 ppm may actually 

be caused by concentrations closer to 1 ppm (Shigenaka 2001). There are large 

discrepancies in toxicity estimates between studies reporting measured versus nominal 

values, and this is particularly important when comparing the toxicity of chemically 

dispersed to physically dispersed oil. Thus, analytical chemistry is necessary to evaluate 

the concentration of the exposure medium when conducting laboratory experiments with 

petroleum products. Nominal concentrations were used in 27 of the 45 laboratory 

experiments reviewed here. Concentrations were not specified for 4 studies, and 14 

experiments used measured concentrations. Of the 14 experiments with measured 

concentrations, 6 used measured stock solutions serially diluted to treatment concentrations 

that were not measured. The remaining eight exposure studies using measured 

concentrations were from four experiments (Peters et al. 1981, Cook and Knap 1983, 

Dodge et al. 1984, Wyers et al. 1986, Knap 1987, Goodbody-Gringley et al. 2013),  

providing the most accurate estimate of toxic threshold concentrations, and the best 

opportunity to compare toxicity among studies.  

It is important to not only analyze the actual concentration of the toxicant, but also 

the composition of toxicant that the organism is exposed to (McGrath and Di Toro 2009, 

Bejarano et al. 2014). Petroleum is composed of thousands of chemicals, some of which 

are extremely volatile and may not remain in solution after preparation.  One issue with the 
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use of WAF or WSF is the compositional difference created by the variety of preparation 

techniques utilized (mixing energy, headspace volume, ratio of oil to dispersant), which 

have since been standardized (Singer et al. 2000, Aurand and Coelho 2005). Of the 48 

laboratory experiments described here, 30 different toxicants were used, comprised of 15 

crude oils, 8 refined products, 6 PAHs or PAH mixtures, and an unspecified petroleum 

toxicant. Although the broad range of toxicants provides a wide view of petroleum toxicity 

to corals, comparison of effects between studies are cautioned due to the compositional 

differences between toxicants. No two petroleum products are compositionally the same, 

and most studies lack quantitative chemical composition analyses, preventing extrapolation 

of results. Of the studies included in this review, Knap (1987) is the only laboratory study 

to quantify the composition of the toxicant. 

Aside from compositional differences between studies, the route of exposure also 

influences the toxicity of petroleum products. Petroleum was floated on the surface of the 

water in 7 experiments, mixed into water in 17 experiments, WAF or WSF created and 

used in 20 experiments, corals immersed in toxicant or poured over coral in 3 experiments, 

and one experiment used oil-coated dosing vessels. Corals are benthic organisms as adults 

and will only be exposed to floating whole oil as gametes or larvae floating on the surface, 

or if exposed to air during extreme low tides. Exposure routes should focus on the portion 

of toxicant that is bioavailable to the coral animal, the water-soluble portion. 

Bioassay conditions are another factor that may influence toxicity of petroleum 

hydrocarbons to corals. Static exposure assays were utilized in 35 of the laboratory 

experiments, while flow-through exposures were conducted for 9 experiments. Eisler 

(1975) showed an increase in toxicity in static conditions compared to flow-though, 

indicated by lower LC50 values. Similar results were found during another experiment, 

where static conditions produced mortality, and flow-through conditions produced no 

mortality (Cohen et al. 1977). These results indicated that corals have increased sensitivity 

to static conditions when compared to flow-through. These differences in toxicity were 

likely related to the compounding effects associated with static exposure, which could 

include decreased oxygen and increased waste products. Aeration was used in seven of the 

static exposures to prevent depletion of oxygen, but likely resulted in significant increases 

in evaporation of certain compounds. The type of vessel utilized also has an impact on 



  17 

 

toxicity, as open vessels have the potential to allow volatile fractions to escape, whereas 

closed vessels prevent volatility once equilibrium is reached between the aqueous and gas 

phases. Te (1991) found a significant increase in mortality associated with a closed vessel, 

but the open vessel resulted in no mortality.  

To increase the potential for comparisons across studies, it is important to follow 

standardized toxicity testing protocols that have been developed. Future coral toxicological 

studies should limit the differences in exposure media preparation, exposure scenarios and 

bioassay conditions. Coupling standardized protocols, such as those established by the 

Chemical Response to Oil Spills: Ecological Effects Research Forum (CROSERF) 

(Aurand and Coelho 2005), or Redman and Parkerton (2015), with more descriptive 

compositional analyses and quantifiable chemistry will increase the comparability of 

studies and potential to extrapolate results to real world situations. 

Although there are a number of studies assessing petroleum toxicity to corals, 

methodological disparities between studies have prevented comprehensive conclusions 

regarding the toxicity of hydrocarbons to corals. Every spill event is unique due to the large 

variation in toxicant, physical, chemical, and biological factors; results from one spill 

cannot be extrapolated to others with confidence. The same holds true for laboratory 

studies; differences in study design, toxicant used, and species tested prevent direct 

comparison of results.  
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STATEMENT OF RESEARCH 

This study evaluated the toxicity of a petroleum hydrocarbon to a representative 

coral species in a controlled laboratory exposure. Hypotheses tested can be found in Table 

1. Determination of the toxicity of a low molecular weight PAH, 1-methylnaphthalene, to 

Porites divaricata was used to calculate the 48-h toxic threshold for use in the TLM. A 

passive dosing method was employed, utilizing PDMS o-rings loaded with 1-

methylnaphthalene (1-MN) in a methanol solvent to maintain constant concentrations 

throughout the exposure duration (Butler et al. 2013). An initial range-finding test was 

carried out to determine the appropriate range of concentrations to use in the full-toxicity 

test and to verify the effectiveness of the passive dosing method. Following the range-

finding test, a full-toxicity test was conducted to obtain refined estimates of threshold 

concentrations as inputs to the TLM. Sublethal effects and lethality were used to determine 

the concentrations causing a 50% effect on the population (EC50), and the concentration 

causing 50% mortality (LC50). These values were used in the TLM to calculate the CTLBB 

in order to compare species sensitivity. Estimates of the toxicity of other narcotic 

hydrocarbons were predicted based on the CTLBB determined for 1-MN. 

 

Table 1. Hypotheses tested and analytical methods used during this research. 

Null Hypotheses Analytical Method 

1-MN has no effect on the gross visual 

condition of P. divaricata. 

Semi-quantitative scoring system 

developed to measure gross physical coral 

condition. 

1-MN has no effect on the photosynthetic 

efficiency of P. divaricata symbionts. 

Pulse amplitude modulation (PAM) 

fluorometry 

1-MN has no effect on calcification of P. 

divaricata. 

Buoyant wet weight determination 

1-MN has no effect on the histological 

characteristics or cellular architecture of 

P. divaricata. 

Semi-quantitative scoring system 

developed to measure tissue and cellular 

characteristics 

1-MN has no effect on survival of P. 

divaricata 

Percent recent mortality measurements 
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METHODOLOGY  

Porites divaricata was collected from a nearshore Florida reef (SAL-15-1685-

SRP), returned to the lab, cut into 2-cm fragments (branch tips) and attached to small 

aragonite tiles using cyanoacrylate gel adhesive. Corals were acclimated in the laboratory 

in a 1100-liter (L) indoor recirculating seawater system for 6‒9 weeks (wk); system 

temperature was maintained at 25ºC, and water motion was supplied by powerheads and a 

wave maker. Natural seawater taken from Port Everglades, FL at high tide was used and 

lighting was provided by LED lights (Photon 32), programmed to mimic sunrise and sunset 

(photoperiod 12:12). These lights produced a spectrum suited for coral growth without the 

addition of ultraviolet radiation to avoid phototransformation of toxicant during the 

exposure. Corals were not fed during the experiments as P. divaricata is predominantly 

autotrophic (Kanwisher and Wainwright 1967).  

PDMS O-ring Loading 

Stock solutions were prepared by dissolving known amounts of 1-MN (Acros 

Organics, 97%) in methanol (Fisher Scientific, HPLC Grade) in 500-mL volumetric flasks. 

Stock solutions of 1-MN in methanol (MeOH) were prepared using the equation:   

𝐶𝑀𝑒𝑂𝐻 =  [𝐾𝑀𝑒𝑂𝐻−𝑃𝐷𝑀𝑆 +  [
𝑉𝑃𝐷𝑀𝑆

𝑉𝑀𝑒𝑂𝐻
]] ∗  [𝐾𝑃𝐷𝑀𝑆−𝑊𝑎𝑡𝑒𝑟 + [

𝑉𝑊𝑎𝑡𝑒𝑟

𝑉𝑃𝐷𝑀𝑆
]] ∗  𝐶𝑇𝑎𝑟𝑔𝑒𝑡 

where CMeOH is the concentration of 1-methylnapthalene added to methanol (mg/L);  Ctarget 

is the target concentration in seawater (mg/L); VMeOH is the volume of the methanol dosing 

solution (mL); VPDMS is the volume of PDMS O-rings (O-Rings West) in the mixing vessel 

(mL); Vwater is the volume of seawater in the recirculating flow-through system (mL); 

KMeOH-PDMS is the partition coefficient of 1-methylnapthalene between methanol and 

PDMS (5.012); and KPDMS-Water is the partition coefficient of 1-methylnapthalene between 

PDMS and water (954.99) (Butler 2013).  

Range-Finding Exposure 

The range-finding exposure to 1-MN consisted of five treatments, with three 

replicate dosing systems per treatment, and five corals per replicate. A seawater control 

(with O-rings), a methanol control (with O-rings), and three concentrations of 1-MN were 

tested (nominally 500 µg/L, 5,000 µg/L, and 25,000 µg/L). The seawater control was used 
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to rule out any effect of the O-rings, and possible effects of the chamber system. The 

methanol control was used to determine if a solvent effect resulted from loading of the O-

rings.  

The calculated amount of 1-MN required for each experimental concentration was 

dissolved in methanol and mixed for 24 h (Table 2). Dosing solutions were transferred to 

1000-mL Erlenmeyer flasks containing 114 PDMS O-rings each (38 for each replicate). 

The mass of each O-ring averaged 1.06 g, giving a total mass of 120.70 g for each loading 

solution, and 40.23 g in each exposure system. Calculated depletion of 1-MN in both 

reservoirs was 4.42% in the MeOH loading solution, and 7.41% in the PDMS O-rings. 

Loading vessels were placed on a shaker table for 72 h for partitioning of 1-MN into the 

PDMS O-rings for all experiments conducted (Smith et al. 2010, Butler et al. 2013). 

 

Table 2. Calculated and measured amounts of 1-MN dissolved into the 500-mL MeOH O-

ring loading solutions to obtain respective treatment concentrations during the range-finding 

exposure. 

Target Concentration Calculated CMeOH  Range-finding Exp. 

500 µg/L 1,282.5 mg 1,286.6 mg 

5,000 µg/L 12,825.3 mg 12,829.5 mg 

25,000 µg/L 64,126.6 mg 64,125.9 mg 

 

Full-Toxicity Exposures 

Six treatments (nominally 1,000 µg/L, 2,000 µg/L, 4,000 µg/L, 8,000 µg/L, 16,000 

µg/L) and a seawater control with O-rings were tested in each of the full-toxicity exposures, 

with five coral fragments in each of the four replicate systems. Calculated amounts of 1-

MN for each concentration were added to each volumetric flask of MeOH (Table 3) and 

mixed for 24 h. Dosing solutions were then transferred to 1000-mL Erlenmeyer flasks 

containing 152 PDMS O-rings each (38 for each replicate). The mass of each O-ring 

averaged 1.06 g, giving a total mass of 160.93 g for each loading solution, and 40.23 g in 

each exposure system. Calculated depletion of 1-MN in both reservoirs was 5.89% in the 

MeOH loading solution, and 7.36% in the PDMS O-rings. Loading vessels were placed on 

a shaker table for 72 h for partitioning of 1-MN into the PDMS O-rings for all experiments 

conducted (Smith et al. 2010, Butler et al. 2013).  
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Table 3. Calculated and measured amounts of 1-MN dissolved into the 500 mL MeOH O-ring 

loading solutions to obtain respective treatment concentrations in the dosing system. 

Treatment CMeOH Experiment #1 Experiment #2 

1,000 µg/L 2,584.5 mg 2,584.7 mg 2,587.9 mg 

2,000 µg/L 5,168.9 mg 5,170.4 mg 5,176.6 mg 

4,000 µg/L 10,337.9 mg 10,345.8 mg 10,343.8 mg 

8,000 µg/L 20,675.8 mg 20,679.1 mg 20,679.7 mg 

16,000 µg/L 41,351.6 mg 41,352.7 mg 41,353.4 mg 

 

Dosing system 

The three exposures completed in this study used the same toxicant preparation and 

dosing methodology. All exposures were conducted using a continuous-flow recirculating 

passive dosing system (Fig. 2) in a 48-h constant exposure using chambers similar to those 

described and employed by the Chemical Response to Oil Spills Ecological Effect 

Research Forum (CROSERF) (Singer et al. 1993, Aurand and Coelho 2005). 

 

 

 

Figure 2. Recirculating-flow exposure system. Porites divaricata fragments (5) in a 500-mL 

glass chamber with 3 O-rings was connected to a multi-channel peristaltic pump by Viton 

tubing (arrows) with a flow rate of 5 mL/min. Each chamber was supplied by a separate 2-L 

dosing vessel with 35 O-rings which was stirred vigorously throughout the exposure. Adapted 

from Renegar et al. (2016). 
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Seawater for use in the exposures was sourced from the acclimation system, filtered 

to 1 µm, aerated, and kept at 25°C until use. Treatments were randomly assigned to 

chambers, which were filled with 500 mL filtered seawater and three loaded O-rings. 

Corresponding dosing vessels were filled with 2300 mL filtered seawater and 35 loaded 

O-rings and had <10% headspace to limit volatile loss. Peristaltic pumps were started with 

dosing vessels stirred vigorously throughout the 16-h equilibration period to ensure 

targeted concentrations were reached. Following the equilibration period, randomly 

assigned corals were added to each chamber, and the test was initiated.   

Coral fragments, solutions, and equipment were monitored for continuous 

operation within designated limits throughout the duration of exposure. Following the 48-

h exposures, surviving coral fragments were transferred back to the laboratory system and 

immediately analyzed for photosynthetic efficiency and buoyant wet weight before 

removing two corals from each chamber for histological analysis. During the 4-wk post-

exposure recovery period, coral fragments were maintained under the same conditions as 

described for pre-exposure with condition of each coral assessed daily for 1 wk, and weekly 

thereafter, using PAM fluorometry, buoyant wet weight, and visual health metrics as 

described below. 

Water Quality and Chemical Analysis 

Water samples for basic water quality [temperature, pH, dissolved oxygen (DO), 

phosphate (PO4), ammonia (NH3), nitrite (NO2), and nitrate (NO3)] were collected during 

laboratory acclimation, and at the start and end of the exposure and analyzed with a HACH 

DR850 colorimeter and YSI 556 Multiprobe System. Alkalinity was determined by 

potentiometric titration with a Mettler-Toledo DL22 autotitrator. Samples for 1-MN 

analysis were collected with no headspace in volatile organic analyte vials (Thermo 

Scientific) with Teflon-lined caps from the effluent line of each chamber at the beginning 

(0 h, immediately prior to addition of coral fragments), middle (24 h, range finding only), 

and end (48 h) of the exposure to verify the stability of the concentration throughout the 

exposure. Samples were preserved at 4°C and the concentration of 1-MN was quantified 

using a Horiba Aqualog spectrophotometer after extraction with dichloromethane by The 

Geochemical and Environmental Research Group at Texas A&M University. Duplicate 

samples were also collected at each time, and verified for accuracy. 
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Coral Condition and Mortality 

Coral condition was visually assessed by semi-quantitative scores based on the 

criteria found in Table 4. Individual criteria scores for each coral were averaged to obtain 

a single coral score at each time. If a criterion was un-scoreable (i.e., tissue swelling after 

tissue had receded); it was left blank as opposed to a zero to avoid artificially lowering the 

score at that time point. Coral condition was assessed weekly during the pre-exposure and 

post-exposure periods. During the exposure, coral condition was assessed hourly for the 

first 8 hours (h) after exposure initiation, and every 12 h thereafter for the remainder of the 

48-h exposure.  

 

Table 4. Criteria for scoring coral condition characteristics. Scores for color, polyps, mucus, 

and tissue were assigned to each coral. 

Range Diagnostic criteria 

0-normal 

Color: appears normal 

Polyps: fully extended or loosely retracted 

Mucus: normal mucus production 

Tissue: no tissue swelling, no mesenterial filaments 

1-mild 

Color: slight lightening of coloration 

Polyps: retracted and slightly closed 

Mucus: normal to slightly elevated 

Tissue: slight coenenchyme swelling and/or polyp distension 

2-moderate 

Color: moderate lightening of color 

Polyps: evident polyp retraction with full polyp closure 

Mucus: moderately elevated mucus production 

Tissue: moderate coenenchyme swelling and/or polyp distension  

3-severe 

Color: significant lightening of coloration, bleaching 

Polyps: polyps tightly retracted and skeletal ridges exposed 

Mucus: mucus sheets evident 

Tissue: severe coenenchyme swelling and/or polyp distension  
 

Percent mortality was also visually assessed consistent with established methods of 

tissue mortality determination in corals (Lirman et al. 2013). As partial coral mortality is 

possible (Fig. 3), the percent mortality reported is the mean mortality of all corals in each 

treatment (n=20). 
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Figure 3. Examples of partial coral mortality following exposure to 1-MN. 

 

Photosynthetic Efficiency 

A pulse-amplitude-modulation (PAM) fluorometer (Diving-PAM, Walz, 

Germany) was utilized to gauge photosynthetic efficiency of symbiotic zooxanthellae 

weekly during the pre-exposure period, immediately before the exposure period, 

immediately after the exposure period, daily for 1 wk post-exposure, and weekly thereafter 

for the remainder of the post-exposure period. PAM fluorometry measured the light 

adapted effective quantum yield [(Fm–F)/Fm or ΔF/Fm] of the autotrophic endosymbiotic 

zooxanthellae by applying a saturation pulse of light, and determining yield from the ratio 

of initial fluorescence (F) to maximum fluorescence (Fm). The following parameters were 

chosen to determine yield for P. divaricata: measuring light intensity = 3, damping = 2, 

gain = 3, saturation intensity = 7, and saturation width = 0.8. These were determined by a 

combination of published literature values (Martinez et al. 2007), and parameter adjustment 

until the saturation curve had the characteristic plateau required for accurate depiction of 

effective quantum yield (Fig. 4). Lights were kept at an intensity equivalent to 30 minutes 

post sunrise for the duration of each set of measurements to ensure differences in 

photosynthetic efficiency were not due to changes in light intensity. Between 

measurements, the fiber optic light sensor was adjusted between 2 mm and 10 mm to 

maintain initial fluorescence readings between 350 and 400 units without adjustment of 
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measurement parameters. Measurements were taken from each side of the branch tip (4 

total) to represent the whole coral fragment.  

 

Figure 4. Saturation curves used to adjust settings on the Diving PAM Fluorometer. A) 

Representative curve with incorrect settings. B) Representative curve with correct settings.  

The fluorescence signal starts at initial fluorescence (F), and rises with the initiation of the 

saturation pulse, until it plateaus at the maximum fluorescence (Fm) and returns to the 

initial value post saturation pulse.  

Calcification 

Calcification of the coral fragments was evaluated using buoyant wet weight 

(Davies 1989). Buoyant weight is a non-destructive method of measuring growth rates for 

corals over short time intervals, which removes variability between fragments resulting 

from tissue thickness and provides weights explicitly related to the mass of the skeleton. 

Measurements were taken immediately prior to the exposure, immediately following the 

exposure, after 1 wk of recovery (Full-toxicity Exp. 2 only), and at the end of 4 wk of 

recovery, to determine if there were long-term effects of the exposure to 1-MN on P. 

divaricata calcification. Growth rates are expressed as percent change per day, and 

normalized to initial fragment size (Ferrier-Pages et al. 2000).  

Histology 

Samples for histological analysis were collected at initiation of exposure (10 

randomly selected coral fragments), end of exposure (two of the surviving coral fragments 

per chamber), after 1 wk of post-exposure recovery (one surviving coral fragment per 

chamber) and at the end of the post-exposure recovery period (the remaining coral 

fragments). Coral samples were fixed in glutaraldehyde fixative solution [2 mL of 70% 

glutaraldehyde in 68 mL of cacodylic buffer (2.16 g cacodylic acid in 200 mL of 0.22 µm 

filtered seawater)]. Samples were maintained at 4°C in the fixative solution for 4‒6 days, 

A B 

F 

FM FM 

F 
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and divided into subsets for histological analysis. Histological samples were decalcified 

after primary fixation in 5% hydrochloric acid (HCl)/ethylenediaminetetraacetic acid 

(EDTA) in seawater solution, dehydrated in a graded series of ethanol and xylene, and 

embedded in Paraplast Plus®. Longitudinal and transverse sections (4 µm) were made and 

mounted on slides. Sections were cleared in xylene and stained with Harris’s hematoxylin 

and eosin (H&E). Stained slides were viewed in an Olympus BX43 light microscope at 

magnifications ranging from 4‒60x and photographed with an Olympus DP21 digital 

camera for image analysis of cellular structures.  

Overall cellular changes were assessed histologically using a semi-quantitative 

scale, which evaluates general condition of coral and algal cells, epidermal and 

gastrodermal integrity, and presence of tissue ruptures. Two slides per coral fragment were 

made, with two longitudinal and two cross sections on each. Analysis of each slide 

followed a scoring rubric (Appendix 2) which assessed the severity and extent of multiple 

categories (general cellular condition, zooxanthellae, gastrodermal and epidermal integrity 

of the surface and basal body walls).  

Statistical analysis 

All data were tested for normality (Shapiro-Wilk) and homoscedasticity 

(Bartlett/Levene) and transformed to meet these assumptions where applicable, or 

nonparametric methods were used. Kruskal-Wallis analysis of variance (ANOVA) 

(α=0.05) on ranks of untransformed data was used to compare mean coral condition during 

pre-exposure, exposure, and post-exposure periods, histological changes (full exposure 2) 

and water quality data between treatments. Post-hoc analysis of non-parametric data 

(Multiple Comparisons) was used where applicable. One-way ANOVA (α=0.05) was used 

to compare mean effective quantum yield, histological changes (range-finding exposure), 

and growth rate among treatments over the pre-exposure and post-exposure periods. Post-

hoc analysis (Tukey’s Test) was used to determine which treatments were significantly 

different from others. Threshold concentrations were determined using GraphPad Prism 6 

(EC50) and methods established by the EPA (LC50) (USEPA 2002). Statistical tests were 

performed using the statistical software R (V 3.1.2) and Statistica 13. 
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RANGE-FINIDING EXPOSURE RESULTS 

Hydrocarbon chemistry and water quality 

Measured concentrations of 1-MN throughout the exposure period for each 

treatment are shown in Table 5. Samples were obtained at the start, middle, and end of the 

exposure to verify consistency of target concentration, resulting in stability over time with 

minimal loss. Eliminating the controls from analysis of loss/gain resulted in a spread of -

7.6% to +11% across all 1-MN treatments. 

Significant increases (p<0.05) in nutrient levels [PO4 (0.1 ± 0.04 mg/L), NH3 (0.11 

± 0.08 mg/L), and NO2 (0.03 ± 0.003 mg/L)] and a significant decrease in pH (7.59 ± 0.05) 

were found in the 25,966.7 µg/L treatment chambers due to coral tissue necrosis.  No 

significant differences (p>0.05) in pH (7.98 ± 0.02), alkalinity (122.7 ± 7.5 mg/L), PO4 

(0.04 ± 0.02 mg/L), NH3 (0.03 ± 0.02 mg/L), NO2 (0.01 ± 0.002 mg/L), NO3 (0.08 ± 0.02 

mg/L) or DO (48.5 ± 3.4%) were found among the seawater control, MeOH control, 

 

Table 5. Measured concentrations (mean ± SD) of 1-methylnaphthalene (µg/L) for each 

treatment replicate at each time point of the Range-finding exposure.  

Treatment  T0 T24 T48 Mean 

(n=3) 
Loss/ 

Gain (%) 

Treatment 

Mean (n=3) 
MeOH 

Control 

10.4 8.9 5.0 8.08±2.80 -52 

6.59 ± 1.1 
MeOH 

Control 

4.5 9.9 4.4 6.3±3.2 +0.50 

MeOH 

Control 

6.8 6.0 3.5 5.4±1.7 -47 

SW 

Control 

4.0 4.6 2.5 3.7±1.1 -39 

6.07 ± 1.7 
SW 

Control 

6.8 5.8 9.3 7.3±1.8 +37 

SW 

Control 

8.9 9.7 3.0 7.2±3.6 -66 

500 645.8 584.8 596.3 608.9±32.4 -7.6 

643.6 ± 24.6 500 674.8 641.0 674.8 663.5±19.5 0 
500 644.2 671.5 659.5 658.4±13.7 +2.3 

5,000 4,120.6 4,376.1 4,590.7 4,362.5 ± 235.3 +11 
5,437.1 ± 

779.9 
5,000 5,810.2 5,821.1 5,646.7 5,759.3±97.7 -2.8 
5,000 6,142.4 6,109.7 6,316.8 6,189.6±111.3 +2.8 
25,000 25,539.2 25,092.3 24,056.8 24,896.1±760.4 -5.8 

25,966.7 ± 

757.05 
25,000 26,607.4 26,302.2 26,585.6 26,498.4±170.3 -0.08 
25,000 27,577.5 25,811.7 26,127.8 26,505.6±941.6 -5.2 
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643.6 µg/L or 5,437.1 µg/L treatments, and no difference in temperature (26.4°C±0.2) was 

found among all treatments. Dissolved oxygen levels decreased in all exposure systems 

because chambers were sealed to prevent volatile loss of 1-MN.  

Coral Condition 

Progressive coral physical response is shown is Figure 5. Overall, corals in both the 

seawater and methanol control treatments exhibited normal polyp extension, with limited 

mucus production and no tissue swelling during the 48-h exposure period (Fig. 5A).  Corals 

exposed to the lowest concentration, 643.6 µg/L, displayed mild polyp distension and a 

qualitative delay in tactile response after 48 h (Fig. 5B). The 5,437.1 µg/L exposed corals 

had progressive polyp retraction, moderate tissue swelling and mucus production after 24 

h (Fig. 5C). The corals exposed to 25,966.7 µg/L exhibited full polyp retraction and 

abundant mucus production within 6 h of exposure, with 100% mortality occurring after 

24 h (Fig. 5D). As no partial mortality was observed, the graphical method was used to 

calculate an LC50 of 12,123 µg/L (USEPA 2002). Utilization of this method prevented 

calculation of a 95% confidence interval.  

 

 

 

Figure 5. Porites divaricata. Coral physical response to 1-methylnaphthalene exposure at 12 

and 48 h. A) Control treatment, B) 643.6 µg/L treatment, C) 5,437.1 µg/L treatment, D) 

25,966.7 µg/L treatment. Adapted from Renegar et al. (2016) 
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Comparison of mean coral condition score for each treatment at each interval over 

the pre-exposure, exposure, and post-exposure periods (Fig. 6) revealed significant 

treatment effects at all times from 1 h after initiation of exposure to 9 d post-exposure 

(p<0.05). Post-hoc analysis indicated that the 5,437.1 µg/L and 25,966.7 µg/L corals scored 

significantly higher than 643.6 µg/L and control treatments at the end of the exposure 

period (p<0.05). After one day of recovery, the 643.6 µg/L corals scored similarly to 

controls (p>0.05) while the 5,437.1 µg/L coral scores remained significantly higher than 

controls (p<0.05) until after 1 wk of recovery when scores were no longer different 

(p>0.05). After 9 d of recovery, no treatment effects on coral condition were observed 

(p>0.05). Coral condition scores were used to calculate an EC50 of 7,442 µg/L (95% CI: 

4,905–11,290 µg/L).  

 

 

Figure 6. Mean coral condition score for each treatment during pre-exposure, exposure, and 

post-exposure time periods. Each point represents the treatment mean score of all surviving 

corals. 
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Photosynthetic Efficiency 

Mean quantum yield was not significantly different among treatments at the end of 

the pre-exposure and exposure periods, or after 1 wk of recovery (p>0.05). However, mean 

quantum yield of the 5,437.1 µg/L corals was significantly higher than the controls from 1 

d to 3 d post-exposure, and higher than the 643.6 µg/L corals from 1 d to 4 d post-exposure 

(p<0.05) (data not shown).  After 1 wk of recovery, no significant differences among 

treatments were found (p>0.05).  

Cellular and Tissue Changes 

 Cellular and tissue characteristics were adversely affected by exposure to 1-MN. 

Significant treatment effects were found in corals fixed immediately following the 

exposure (F(3,8)= 21.39, p=0.0003). Post-hoc analysis indicated a significant increase in 

histological scores of 5,437.1 µg/L corals compared to SW controls, MeOH controls, and 

643.6 µg/L corals (p= 0.00033, 0.0016, 0.0022 respectively). As concentrations increased, 

polypal architecture became severely compromised or completely lost, with degeneration 

of tentacles, hypertrophy of mucocytes, and increases in pigmented granular amoebocyte 

density at higher concentrations (Fig. 7A, C, E, & G). The coenenchyme also lost normal 

cellular architecture at higher concentrations; columnar epidermal cells became more 

squamous and cells fragmented, mucocytes atrophied and lysed, and zooxanthellae density 

in the gastrodermis decreased (Fig 7B, D, F & H). No significant differences were detected 

among the SW controls, MeOH controls, or 643.6 µg/L corals at any sampled time 

(p>0.05). After 1 wk of post-exposure recovery, no significant treatment effects were 

indicated in the surviving corals (F(3,8)= 2.503, p= 0.133). 
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Figure 7. Histological sections of Porites divaricata. SW Control polyp (A) and coenenchyme 

(B); MeOH Control polyp (C) and coenenchyme (D); 643.6 µg/L polyp (E) and coenenchyme 

(F); and 5,437.1 µg/L polyp (G) and coenenchyme (H). Scale bars are 200 µm for polyp and 

50 µm for coenenchyme. me= mesenteries, mu= mucocytes, te= tentacle, zx= zooxanthellae, 

ep= epidermis, gd= gastrodermis, am= pigmented granular amoebocyte. 
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 Mesenteries were also adversely affected by exposure to 1-MN. Mesenterial 

architecture was severely compromised and degraded at higher concentrations of 1-MN. 

The gastrodermal wall and cnidoglandular band of the mesenteries contained 

hypertrophied mucocytes and pycnotic nuclei in the 5,437.1 µg/L exposed corals, 

indicating the presence of necrotic cells (Fig. 8).  

 

 

Figure 8. Mesenteries of Porites divaricata following the range-finding exposure to 1-MN. SW 

Control (A), MeOH Control (B), 643.6 µg/L (C), 5,437.1 µg/L (D). Scale bars= 50 µm. gd= 

gastrodermis, am= granular amoebocyte, mu= mucocytes. 
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RESULTS FROM EXPERIMENT 1 

Hydrocarbon chemistry and water quality 

Water quality results from the range-finding study indicated a depletion of 

dissolved oxygen levels during the exposure. To alleviate this, all dosing vessels were 

topped off with nitrox gas (34% oxygen), as opposed to normal air.  

No significant differences in any tested parameter were found at the beginning of 

the experiment (p>0.05). Treatment effects were present at the end of the exposure 

(p<0.05); post-hoc analysis indicated significant increases in NO2 and NO3 in the 16,000 

µg/L treatment compared to the 1,000 µg/L treatment (p=0.044 and p=0.043, respectively). 

A significant decrease in pH was found in the 16,000 µg/L treatment compared to the 

seawater control (p=0.037) and the 2,000 µg/L treatment (p=0.032). A significant decrease 

in DO was found in the 16,000 µg/L treatment compared to the 2,000 µg/L treatment 

(p=0.006). No significant differences in pH, alkalinity, PO4, NH3, NO2, NO3 or DO were 

found among the seawater control, 1,000 µg/L, 2,000 µg/L, 4,000 µg/L, and 8,000 µg/L 

treatments (p>0.05), and no difference in temperature was found among all treatments 

(p>0.05).  

Concentration of 1-MN in each treatment was analyzed at the start and end of the 

exposure (Table 6). The measured concentrations of 1-MN were found to be inconsistent 

with predicted concentrations, particularly in the higher concentrations tested. Based on 

coral response observed in the range-finding experiment (i.e., 100% mortality of corals in 

the “16,000 µg/L” treatment, and partial mortality of corals in the “8,000 µg/L” treatment), 

it is unlikely that the measured concentrations were accurate. For this reason, the nominal 

concentrations were used.  
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Table 6. Measured concentrations (mean ± SD) of 1-MN (µg/L) for each treatment replicate 

of Exp. 1.  

Treatment 0 h 48 h Mean %Loss/Gain    Mean 

SW Control 0.0 0.0 0.0 - 

1.8 ± 1.8 
SW Control 0.0 0.0 0.0 - 

SW Control 0.8 6.4 3.6 +661.5 

SW Control 1.0 6.5 1.1 +553.6 

1,000 1,053.2 1,046.4 1,049.8±3.4 -0.6 

1,002.4 ± 67.1 
1,000 975.4 818.8 897.1±78.3 -16.1 

1,000 1,024.8 1,115.2 1,070.0±45.2 +8.8 

1,000 1,036.8 948.6 992.7± 44.1 -8.5 

2,000 1,925.0 1,882.7 1,903.9±21.1 -2.2 

1,853.8 ± 59.6 
2,000 1,706.1 1,830.3 1,768.2±62.1 +7.3 

2,000 1,698.6 1,957.8 1,828.2±129.6 +15.3 

2,000 1,881.4 1,948.2 1,914.8±33.4 +3.6 

4,000 3,461.8 3,806.3 3,634.1±172.3 +9.9 

3,389.2 ± 595.7 
4,000 3,651.3 1,074.3 2,362.8±1,288.5 -70.6 

4,000 3,721.1 3,871.4 3,796.2±75.2 +4.0 

4,000 3,734.7 3,792.7 3,763.7±29.0 +1.6 

8,000 1,766.7 1,952.6 1,859.7±92.9 +10.5 

2,723.7 ± 1,612.1 
8,000 1,807.5 NA 1,807.5  NA 

8,000 1,747.1 1,679.2 1,713.2±34.0 -3.9 

8,000 5,958.9 5,070.0 5,514.4±444.4 -14.9 

16,000 2,511.7 3,013.8 2,762.8±251.0 +19.9 

3,671.3 ± 1,729.9 
16,000 2,321.3 2,232.1 2,276.7±44.6 -3.8 

16,000 3,274.4 2,752.5 3,013.5±260.9 -15.9 

16,000 9,779.2 3,485.7 6,632.4±3,146.7 -64.4 

Coral Condition 

Coral condition was scored during pre-exposure, exposure, and post-exposure 

periods using criteria outlined in Table 4. Mean scores for each time interval are shown in 

Figure 9. Significant treatment effects were found at all intervals from 1 h after initiation 

of exposure to 19 d post-exposure (p<0.05). Multiple comparisons post-hoc analysis found 

scores from 16,000 µg/L corals to be significantly higher than the control (p=0.044) and 

1,000 µg/L corals (p=0.013) within 1 h after exposure initiation. At the end of the exposure 

period, the 8,000 µg/L corals scored significantly higher than the control (p=0.025) and 

1,000 µg/L corals (p=0.037); the 16,000 µg/L treatment corals were no longer scored due 

to complete mortality. The 1,000 µg/L and 2,000 µg/L treated corals were not significantly 

different from the controls at any point (p<0.05). The 8,000 µg/L corals did not recover 

(i.e., did not score similarly to the controls) for 19 d, after which no treatment effects on 

coral condition were observed (p>0.05). 
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Figure 9. Porites divaricata. Mean coral condition scores during pre-exposure, exposure, and 

post-exposure periods of Exp. 1. Each point represents the treatment mean score of all 

surviving corals. 

 

Photosynthetic Efficiency 

Mean effective quantum yield (ΔF/Fm) for each treatment over time is shown in 

Figure 10. A post-exposure decline is observed for all treatments, similar to the range-

finding experiment. Mean quantum yield was compared between treatments at each time 

interval (one-way ANOVA), and significant treatment effects were found at the end of the 

exposure period (p=0.0001) and after 24 h of recovery (p=0.001). Post-hoc analysis 

(Tukey’s HSD) of the treated corals indicated that photosynthetic efficiency in the 8,000 

µg/L treated corals was significantly less compared to all other treatments at the end of the 

exposure period and after 24 h of recovery (p<0.05). After 48 h of recovery, 8,000 µg/L 

corals were not significantly different than other treatments (p>0.05). Corals in the 16,000 

µg/L treatment were not measured post exposure due to complete mortality. 
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Figure 10. Porites divaricata. Mean effective quantum yield (ΔF/Fm) during pre-exposure and 

post-exposure periods of Exp. 1. The two solid reference lines represent the 48-h exposure to 

1-methylnaphthalene. 

 

Calcification 

 Change in buoyant wet weight of each coral fragment over each measurement 

period was normalized to the initial size of each coral fragment, as fragments with larger 

surface area have the ability to calcify over larger areas (Ferrier-Pages et al. 2000). Mean 

normalized growth rates expressed as percent per day (% d-1), for each treatment during 

each exposure period are shown in Figure 11. While no significant treatment effects were 

found for each period (Kruskal-Wallis, p>0.05), a greater decrease in growth rate after the 

exposure period was observed in the 4,000 µg/L and 8,000 µg/L relative to the other 

treatments and the control. After the post-exposure period, growth rate in the 8,000 µg/L 

corals remained lower than the other treatments, although not significantly different.  
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Figure 11. Porites divaricata. Mean (±SE) normalized growth rate of each treatment during 

each time period of Exp. 1, expressed as percent change per day (% d-1).  

 

Mortality 

Each coral fragment was visually assessed for the presence of lesions, and a percent 

mortality was assigned. Mean mortality percentages for each treatment at each time interval 

are shown in Figure 12. 100% mortality occurred in the 16,000 µg/L treated corals by the 

end of the exposure period. Exposure to 8,000 µg/L resulted in partial coral mortality 

(mean= 16.5%, n=20), although these corals were able to partially recover during the post-

exposure period. 

 

Pre-Exposure Exposure Week 4 Post-Exposure 
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Figure 12. Porites divaricata. Mean percent mortality (full/partial) during pre-exposure, 

exposure, and post-exposure periods of Exp. 1.  

 

EC50 and LC50 

The 48-h EC50 or LC50 could not be calculated without valid 1-MN concentrations, 

as nominal concentrations are not suitable for this calculation. A best estimate is provided 

in the discussion. Comparison of results from this experiment to the range-finding test 

suggested the measured hydrocarbon concentrations were incorrect, and were likely closer 

to the intended nominal values. For example, 5,437.1 µg/L-exposed corals in the range-

finding test were severely damaged, but lacked mortality after recovery. In contrast, 

exposure to 16,000 µg/L (nominal, measured at less than 5,000 µg/L) in this experiment 

resulted in almost 100% mortality before completion of the 48-h exposure. This, along with 

the inconsistency between replicates of the same concentration, suggests the hydrocarbon 

chemistry was incorrect, and the experiment was therefore repeated.  
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RESULTS FROM EXPERIMENT 2 

Hydrocarbon chemistry and water quality 

Water quality of each chamber was analyzed for treatment effects on the parameters 

tested (temperature, pH, dissolved oxygen, alkalinity, phosphate, ammonia, nitrite, and 

nitrate) at the beginning and end of the experiment. Again, all dosing vessels were topped 

off with nitrox gas (34% oxygen), as opposed to normal air to limit oxygen depletion. 

No significant differences in any tested parameter were found at the beginning of 

the experiment (Kruskal-Wallis ANOVA, p>0.05). Following the exposure, a significant 

decrease in DO in the 8,615.1 µg/L treatment compared to control (p=0.001) and 139.7 

µg/L (p=0.044) treatments occurred. Alkalinity in the 5,412.5 µg/L and 8,615.1 µg/L 

treatments was significantly greater than controls after the exposure (p=0.034 and 0.001) 

No significant differences (p>0.05) in pH, PO4, NH3, NO2, NO3 or DO were found among 

the seawater control, 139.7 µg/L, 1,140.8 µg/L, 2,810.3 µg/L, and 5,412.5 µg/L treatments, 

and no difference in temperature was found among all treatments (p>0.05). 

Concentration of 1-MN in each treatment replicate was analyzed at the beginning 

and end of the exposure. Table 7 summarizes the mean concentration measured for each 

treatment over the 48-h exposure.  
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Table 7. Measured concentrations (mean ±SD) of 1-methylnaphthalene (µg/L) for each 

treatment replicate of Exp. 2.  

Treatment T0 h T48 h Mean  Loss/Gain 

(%) 

Treatment Mean 

SW Control 0 0 0 0 

0 
SW Control 0 0 0 0 

SW Control 0 0 0 0 

SW Control 0 0 0 0 

1,000 116.1 108.8 112.5 ± 3.6 -6.3 

139.7 ± 17.4 
1,000 207.7 87.8 147.7 ± 60 -57.7 

1,000 106.4 171.4 138.9 ± 32.5 +61.0 

1,000 167.2 152.4 159.8 ± 7.4 -8.9 

2,000 1,105.0 1,125 1,115.2 ± 10.2 +1.8 

1,140.8 ± 21.1 
2,000 1,130.5 1,119 1,124.9 ± 5.6 -1.0 

2,000 1,159.2 1,160 1,159.6 ± 0.4 +0.1 

2,000 1,190.8 1,136 1,163.6 ± 27.2 -4.6 

4,000 3,047.3 2,413 2,730.3 ± 316.9 -20.8 

2,810.3 ± 93.5 
4,000 2,821.6 2,672 2,746.7 ± 75.0 -5.3 

4,000 2,902.4 2,693 2,797.9 ± 104.6 -7.2 

4,000 3,039.5 2,893 2,966.5 ± 73.0 -4.8 

8,000 5,233.5 5,227 5,230.3 ± 3.2 -0.1 

5,412.5 ± 169.6 
8,000 5,200.2 5,404 5,302.0 ± 101.8 +3.9 

8,000 5,400.8 5,485 5,443.0 ± 42.3 +1.6 

8,000 5,586.7 5,763 5,674.6 ± 87.9 +3.1 

16,000 8,217.5 8,215 8,216.3 ± 1.2 0.0 

8,615.1 ± 277.3 
16,000 8,488.0 8,513 8,500.7 ± 12.7 +0.3 

16,000 8,850.8 8,805 8,827.7 ± 23.1 -0.5 

16,000 8,878.0 8,953 8,915.7 ± 37.7 +0.8 

 

The low variation among treatment replicates suggests accurate measurement of 

test concentrations, which remained stable throughout the duration of the exposure. All 

treatments returned concentrations less than calculated target concentrations. This is 

presumably due to an incorrect partition coefficient from PDMS to water (KPDMS-Water), as 

the partition coefficient utilized was determined for freshwater (Butler 2013). The means 

for all treatment replicates were used for overall treatment concentrations. 

Coral Condition 

Physical coral response is shown in Figure 13. Overall, control corals exhibited 

normal behavior, with no mucus production and slight polyp retraction and tissue swelling 

toward the end of the 48-h exposure (Fig. 13A). Corals in the 139.7 µg/L and 1,140.8 µg/L 

treatments showed an initial response of mild polyp retraction, ending the exposure with 

moderate tissue swelling, and a qualitative delay in tactile response (Fig. 13B & C 
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respectively). Corals in the 2,810.3 µg/L treatment exhibited moderate polyp retraction and 

mild tissue swelling after 12 h, with mild mucus production and moderate lightening of 

color by the end of the 48-h exposure (Fig. 13D). The 5,412.5 µg/L exposed corals had 

severe polyp retraction, moderate tissue swelling and mucus production after 12 h, with 

severe lightening of coloration after 48 h (Fig. 13E). The corals exposed to 8,615.1 µg/L 

exhibited severe polyp retraction within 2 h of exposure, with severe lightening of 

coloration (bleaching) and tissue recession and sloughing occurring after 48 h (Fig. 13F).  

 

Figure 13. Porites divaricata. Physical coral response at 12 h and 48 h of exposure to 1-MN. 

SW control (A), 139.7 µg/L (B), 1,140.8 µg/L (C), 2,810.3 µg/L (D), 5,412.5 µg/L (E), 8,615.1 

µg/L (F). 
 

A 
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Coral condition was scored during pre-exposure, exposure, and post-exposure 

periods using criteria outlined in Table 4, and mean scores for each time interval are shown 

in Figure 14. Significant treatment effects were found at all intervals from 1 h after 

initiation of exposure to 1 wk post-exposure (Kruskal-Wallis ANOVA, p<0.05). Post-hoc 

analysis (multiple comparisons) found scores from 8,615.1 µg/L corals to be significantly 

higher than control corals from 2 h after initiation of exposure (p=0.0043) through 1 wk of 

recovery (p<0.05). From 2–36 h of the exposure, 8,615.1 µg/L corals also scored 

significantly higher than 139.7 µg/L corals (p<0.05). The 5.412.0 µg/L treated corals 

scored significantly higher than controls from 3 h after exposure initiation (p=0.032) 

through the end of the 48-h exposure (p<0.05). After one wk of recovery, no treatment 

effects were determined (p>0.05).  

 

 

Figure 14. Porites divaricata. Mean coral condition scores during pre-exposure, exposure, and 

post-exposure time periods of Exp. 2. Each point represents the mean treatment score of all 

surviving corals. 
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Cellular and Tissue Changes 

 Exposure to 1-MN negatively affected the cellular and tissue condition of corals. 

Immediately following the exposure, normal cellular architecture was compromised in the 

highest treatment, leading to significant treatment effects (p=0.0006). Post-hoc analysis 

indicated a significant increase in scores for the 8,615.1 µg/L corals compared to both 

controls and 139.7 µg/L treatments (p=0.0043 for both) (Fig. 15A). The coenenchyme of 

8,615.1 µg/L-treated corals incurred abundant fragmentation and lysing immediately 

following the exposure (Fig 16G). The surface body wall of the 8,615.1 µg/L exposed 

corals exhibited full thickness ablation; epidermal and gastrodermal cells were missing, 

and if present, they were lysed and necrotic. Abundance of pigmented granular 

amoebocytes also increased with increasing concentration, with lysing of these cells 

occurring at higher concentrations. 

The 5,412.5 µg/L-treated corals exhibited many of the same responses as the high 

concentration, but were not significantly different than controls immediately following the 

exposure (p= 0.057) (Fig. 15A). The coenenchyme was fragmented and lysed, with 

necrosis present in most areas (Fig. 16E). Gastrodermis of the basal body wall was 

fragmented and necrotic, resulting in the gastrovascular cavity being filled with cell debris 

and mucus. Lower treatments, although not significant, had increased mucous secretion 

with some atrophy and necrosis of cells (Fig 16C).  
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Figure 15. Boxplot of Porites divaricata histologic scores by treatment at 48 h (A), 1 wk post-

exposure (B), and 4 wk post-exposure (C). * denotes statistical difference from control 

treatments.   
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Figure 16. Histological sections of Porites divaricata coenenchyme at 40X magnification. SW 

Control 48 h (A)  and 4 wk (B); 2,810.3 µg/L 48 h (C) and 4 wk (D); 5,412.5 µg/L 48 h (E) and 

4 wk (F); 8,615.1 µg/L 48 h (G) and 4 wk (H). Circle surrounds area of fragmented and 

atrophied cells. Scale bars= 50 µm. mu= mucocyte, ep= epidermis, gd= gastrodermis, am= 

pigmented granular amoebocyte. 
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Similar to the range-finding exposure, polypal architecture was also compromised 

at higher concentrations (Fig. 17E and G). Control corals maintained normal polyp 

structure, with tentacles and the actinopharynx clearly visible (Fig. 17A). As 

concentrations increased, tentacles degraded and mucocytes in the basal portion of the 

polyps hypertrophied and eventually lysed (Fig. 17E and G). The 8,615.1 µg/L-exposed 

corals had no visible signs of polyp structure at the end of the exposure (Ellipse in Fig. 

17G). 

Treatment effects were also determined after 1 wk post-exposure (p= 0.0018) due 

to the significant differences between 8,615.1 µg/L and control treatments (p= 0.0011) and 

between 5,412.5 µg/L and control treatments (p= 0.022) (Fig. 15B). Surface body walls of 

both treatments exhibited abundant atrophy and fragmentation, but most margins of broken 

tissue contained acidophilic staining granules, indicating some form of tissue repair (FIG. 

18). Again, the lower concentrations which remained statistically similar to controls (p> 

0.05) exhibited hypertrophied mucocytes in the basal body wall and mesenteries with 

abundant mucus release.  
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Figure 17. Histological sections of Porites divaricata polyps at 10X magnification. SW Control 

48 h (A)  and 4 wk (B); 2,810.3 µg/L 48 h (C) and 4 wk (D); 5,412.5 µg/L 48 h (E) and 4 wk 

(F); 8,615.1 µg/L 48 h (G) and 4 wk (H). Rectangle surrounds area of diminishing polyp 

structure. Ellipse surrounds area of missing polyp structure. Scale bars= 200 µm. mu= 

mucocytes, me= mesenteries, ep= epidermis, gd= gastrodermis, te= tentacle, ap= 

actinopharynx. 
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Figure 18. Histological sections of Porites divaricata coenenchyme at 40X magnification. 

5,412.5 µg/L at 48 h (A) and 4 wk (B); 8,615.1 µg/L at 48 h (C), and 4 wk (D). Ellipses surround 

acidophilic staining at damaged margin. Rectangle surrounds newly formed epidermis. Scale 

bars= 50 µm. ep= epidermis, gd= gastrodermis.  

 

Similar to the range-finding exposure, mesenteries were atrophied, necrotic, and 

infiltrated by mucocytes at higher concentrations (Fig. 19). Lower concentrations 

contained some mucocytes in mesenteries, but were not as abundant as 5,412.5 µg/L and 

8,615.1 µg/L treatments. The mesenteries of the 5,412.5 µg/L and 8,615.1 µg/L treatments 

contained numerous pycnotic nuclei, with a degenerating and necrotic cnidoglandular band 

(ellipses of Fig. 19E and F). 

A B 

C D 

ep 

gd 
ep 

gd 

gd 

ep 
ep 

gd 



  49 

 

 

Figure 19. Histological sections of Porites divaricata mesenteries at 40X magnification after 

48 h. A) SW Control,  B) 139.7 µg/L, C) 1,140.8 µg/L D) 2,810.3 µg/L E) 5,412.5 µg/L F) 8,615.1 

µg/L. Ellipses surround necrotic cells. Rectangle surrounds necrotic amoebocytes. Scale 

bars= 50 µm. mu= mucocytes, cn= cnidoglandular band, cd= calicodermis, gd= gastrodermis, 

am= pigmented granular amoebocyte. 
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epidermis. Epidermal cells were becoming more organized and columnar and polypal 

architecture was beginning to recover normal structure (Fig 17).  

Photosynthetic Efficiency 

Mean effective quantum yield (ΔF/Fm) for each treatment over time is shown in 

Figure 20, and illustrates a post-exposure decline for all treatments. Mean quantum yield 

was compared between treatments at each time interval, with significant treatment effects 

observable from one to five days post-exposure (p<0.05). Post-hoc analysis of the treated 

corals indicated significantly decreased photosynthetic efficiency in the 8,615.1 µg/L 

treated corals compared to all other treatments at the end of the exposure period (p<0.05), 

lasting for five days when the corals were no longer measurable due to algae overgrowth 

or mortality. Photosynthetic yield of the 5,412.5 µg/L treated corals was reduced following 

the exposure, but only significantly different than the 1,140.8 µg/L treatment immediately 

after exposure (p=0.047).  

 

 
Figure 20. Porites divaricata. Mean effective quantum yield (ΔF/Fm) during pre-exposure and 

post-exposure periods of Exp. 2. The two solid reference lines represent the beginning and 

end of the 48-h exposure to 1-methylnaphthalene. 
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Calcification 

 Mean normalized skeletal growth rates, expressed as percent change per day, for 

each treatment during each exposure period are shown in Figure 21. Significant treatment 

effects (one-way ANOVA) were found for the exposure (p=0.023) and 1 wk recovery 

(p=0.001) time periods. Post-hoc analysis (Tukey’s HSD) revealed a significant decrease 

in growth of the 8,615.1 µg/L-treated corals compared to the 139.7 µg/L-treated corals 

during the exposure (p=0.028). After 1 wk of recovery, skeletal calcification of the 8,615.1 

µg/L-treated corals was significantly less than controls (p=0.001), 139.7 µg/L (p=0.009), 

and 2,810.3 µg/L (p=0.035) treatments, concurrent with a significant decrease in 

calcification of the 5,412.5 µg/L corals compared to controls (p=0.007). By the end of 

recovery (32 d after exposure completion), no significant treatment effects were observable 

(p>0.05). 

 

 

Figure 21. Porites divaricata. Mean normalized growth rate of each treatment during each 

time period of Exp. 2, expressed as percent change per day (% d-1)(±SE). (*) denotes 

significant difference from the control during that time period. 
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Mortality 

Each coral fragment was visually assessed for the presence of lesions, and a percent 

mortality was assigned. Mean mortality percentages for each treatment at each time interval 

are shown in Figure 22. After the 48-h exposure, there was 86.7% mortality in the 8,615.1 

µg/L-treated corals and 14.6% mortality in the 5,412.5 µg/L-treated corals with little to no 

recovery during the post-exposure period for both treatments.  

 

 

Figure 22. Porites divaricata. Mean percent mortality (full/partial) during pre-exposure, 

exposure, and post-exposure time periods of Exp. 2. Mean values are representative of all 

coral fragments in each treatment at that time point. 

 

EC50 and LC50 

Based on the physical changes P. divaricata experienced after exposure to 1-MN, 

the 48-h EC50 was calculated using a variable slope, dose-response model in GraphPad 

Prism 6. A 48-h EC50 of 4,543 µg/L (95% CI: 3,071–6,547 µg/L) was determined by 

plotting mean coral condition scores against the log of the concentration.  
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Exposure to 1-MN also caused mortality in multiple concentrations after 48 h, 

providing the data necessary to calculate the concentration lethal to 50% of the population 

(LC50). According to the United States EPA acute toxicity data analysis guidelines (USEPA 

2002), the Spearman-Karber method for determination of LC50 was the appropriate test; 

this technique is utilized when there are concentrations that cause no mortality, at least one 

concentration that causes partial mortality, and at least one concentration causing 100% 

mortality. According to this technique, the 48-h LC50 for 1-MN to P. divaricata is 6,524 

µg/L (95% CI: 5,659–7,500 µg/L). 
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DISCUSSION 

Hydrocarbon Chemistry 

One purpose of the range-finding exposure was to demonstrate the effectiveness of 

the passive dosing system at maintaining constant concentrations throughout the exposure 

duration. Almost all of the aqueous concentrations were in agreement with predicted 

values, with most concentrations higher than expected. Eliminating background 

concentrations found in the control treatments, the mean variation between expected values 

and achieved concentrations was 18.7% at time 0 h, and 15.5% for both time 24 h and 48 

h. This variation is likely due to not rinsing the loaded O-rings prior to transferring them 

to the exposure system. It is assumed some particulate hydrocarbon adhered to the surface 

of the O-ring and added to the concentration in the seawater dosing system. Analyzing the 

consistency of concentration throughout the exposure revealed an average fluctuation of 

2.2% for all treatments. Although the concentrations were elevated, the ability of the 

passive dosing system to maintain constant exposure concentrations regardless of loss was 

verified during the range-finding exposure.  

Stability of treatment concentrations is a necessity for determining threshold 

concentrations in toxicological studies (McGrath et al. 2004, Bejarano et al. 2014). The 

passive-dosing system was again verified during Experiment (Exp.) 2, with an average 

fluctuation in 1-MN concentration over time of 1.7%. Failure to achieve target 

concentrations and inaccurate analytical chemistry results prevented determination of 

actual exposure concentrations during Exp. 1. Without actual concentrations, calculation 

of EC50 and LC50 was irrelevant; actual exposure concentrations were thus estimated for 

Exp. 1, using measured values from Exp. 2. In order to accomplish this, deviations from 

expected concentrations in Exp. 2 need examination. 

Exp. 2 resulted in concentrations on average 47.4% lower than predicted. The 

experimental protocol was adjusted to include rinsing the O-rings to avoid transferring 

particulate hydrocarbon and subsequent increased concentrations as observed in the range-

finding exposure. The consistency of treatment concentrations between replicates suggests 

the decrease in concentration was not an analytical error, but an error in calculation of the 

amount of 1-MN loaded in the O-rings. The partition coefficient responsible for this error 

is KPDMS-Water, which represents the partitioning between the PDMS reservoir and seawater, 
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as it was determined for freshwater (Butler 2013). The partitioning of hydrophobic organic 

compounds, like 1-MN, depends on environmental factors, especially temperature (T) and 

salinity (S) (Jonker et al. 2015). Partitioning from the PDMS phase to seawater is reduced 

in response to decreased temperature and increased salinity. The decreased partitioning 

from the PDMS reservoir into the seawater is represented by an increase in KPDMS-Water. 

Jonker et al. (2015) developed a method to calculate condition-specific PDMS-water 

partition coefficients [KPDMS-Water(T,S)] by correcting values determined under standard 

conditions: KPDMS-Water (20°C, 0 ppt). Using this method, it was possible to estimate the 

partition coefficient for the environmental conditions used in this set of experiments 

(T=26°C, S=35 ppt).  

The value for logKPDMS-Water (20°C, 0 ppt) developed under standard conditions 

initially utilized in calculations was 2.98. After adjustment for environmental conditions 

using the equation by Jonker et al. (2015), logKPDMS-Water (26°C, 35 ppt) was calculated at 

3.19. The observed difference in logKPDMS-Water is attributed to the increased salinity of 

seawater as temperature effects were very small. Table 8 shows the relationship between 

expected and measured concentrations for Exp. 2. The expected concentrations were 

determined using the amount of 1-MN from Table 2, while accounting for depletion in 

MeOH (5.89%) and PDMS (7.36%) stages. 

 

Table 8. Expected and measured concentrations (µg/L) of 1-MN during Exp. 2.  

Expected concentration using 

KPDMS-Water(20°C, 0 ppt) 

Expected concentration using 

KPDMS-Water (26°C, 35 ppt) 

Measured mean (±SD) 

treatment concentration 

(n=4) 

943 582 139.7 ± 17.4 

1,886 1,164 1,140.8 ± 21.1 

3,768 2,326 2,810.3 ± 93.5 

7,534 4,650 5,412.5 ± 169.6 

15,065 9,298 8,615.1 ± 277.3 

 

The measured concentrations for Exp. 2 better aligned with the values calculated 

with the adjusted KPDMS-Water (26°C, 35 ppt). Using KPDMS-Water (20°C, 0 ppt), 

concentrations obtained varied by 47.4% from those estimated, while the adjusted KPDMS-

Water (26°C, 35 ppt) resulted in a 24.5% average variation from intended concentrations. 

Although a deviation was still present, possibly due to insufficient equilibration in the 
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dosing system or inadequate rinsing prior to transfer into the experimental system, the 

difference was much less than the comparison with concentrations expected with KPDMS-

Water (20°C, 0 ppt). Therefore, the adjusted KPDMS-Water (26°C, 35 ppt) was used in an effort 

to provide a better estimate of concentrations obtained in Exp. 1, using the amount of 1-

MN in Table 2 and accounting for depletion. The estimated exposure concentrations for 

Exp. 1 are listed in Table 9, and are used to facilitate comparisons between experiments. 

  

Table 9. Measured and estimated mean (± SD) treatment concentrations (µg/L) during Exp. 

1 using KPDMS-Water (26°C, 35 ppt).  

Treatment Measured Concentration Estimated Concentration 

1,000 1,002.4 ± 67.1 581 

2,000 1,853.8 ± 59.6 1,163 

4,000 3,389.2 ± 595.7 2,326 

8,000 2,723.7 ± 1,612.1 4,650 

16,000 3,671.3 ± 1,729.9 9,298 

 

Water Quality 

 Water quality was consistent across experiments. Elevated levels of nutrients were 

present in higher 1-MN treatments, likely due to tissue necrosis and mortality. Increases in 

nutrients examined (PO4, NH3, NO2, NO3) could be in response to waste products being 

released from the coral fragments or mortality in bacteria of the holobiont. Mucus from 

multiple species has been determined to contain high levels of lipids (Ducklow and 

Mitchell 1979b), and elevated phosphate levels may be linked to increased mucus 

production or degradation of cell membranes. Phosphate and nitrogenous waste 

compounds will accumulate over time in a closed system regardless of stress, but it is 

apparent that more waste was produced by corals and associated bacteria exposed to higher 

concentrations of 1-MN.  

Effects of 1-Methylnaphthalene on Porites divaricata  

 The range-finding exposure was conducted to verify the utility of the passive dosing 

system and to determine a suitable range of five concentrations to use during full-toxicity 

exposures. This was achieved, and the effects of 1-MN on P. divaricata will be discussed 
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based on the response observed during the two full-toxicity experiments (Exp.1 and Exp. 

2). 

Coral condition. A comparison of coral condition scores between experiments 

provides evidence that the concentrations obtained in each full-toxicity experiment were 

similar. Both experiments resulted in treatment effects after only 1 h of exposure due to 

elevated scores in the high concentrations. Figures 8 and 13 reveal a similar pattern: corals 

exposed to concentrations above 5,000 µg/L showed an immediate response (polyp 

retraction and tissue swelling) with delayed recovery, if recovery occurred at all. The 

seawater controls and the three lowest concentrations in each experiment scored similarly 

throughout the exposure with only a mild observable effect. It is important to note the full 

recovery of coral condition scores for surviving fragments in the highest concentration of 

Exp. 2, which was absent in Exp. 1 due to complete mortality.  

Although the toxic concentrations of 1-MN and oil are not comparable between 

studies, it is possible to compare the sublethal responses displayed by corals. Polyps of 

Diploria strigosa retracted following exposure to higher concentrations of the WAF of 

crude oil, with extreme tissue contraction and localized tissue rupture (Wyers et al. 1986). 

Increases in mucus secretion and swelling of tissues of Manicina areolata was also found 

following exposure to No. 2 fuel oil (Peters et al. 1981). These same effects were noted 

during this study, with higher concentrations above 5,000 µg/L 1-MN resulting in much 

greater effects.  

Photosynthetic efficiency. Significant reduction in mean effective quantum yield 

(ΔF/Fm) were found for the two highest treatments in both experiments. The second 

highest treatment concentration recovered to control levels within two days of recovery 

during Exp. 1 and within one day of recovery in Exp. 2. Corals in the highest concentration 

were not measured due to complete mortality in Exp. 1, and never recovered to normal 

levels in Exp. 2. Similar decreases in photosynthetic yield were found when Acropora 

microphthalma was exposed to 190 µg/L mineral derived lubricant (Mercurio et al. (2004).  

The presence of pigmented amoebocytes within P. divaricata tissue potentially 

inhibits collection of reliable photosynthetic yield data because of their ability to absorb 

the fluorescence signal.  It seems unlikely that differences among treatments were in 

response to zooxanthellae health or density, as histologic evaluation did not show any 
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significant changes to the algal cells. Perhaps photosynthetic efficiency measurements are 

not a reliable assessment metric for corals which contain these pigmented amoebocytes.  

Calcification. Skeletal growth of the corals in each experiment varied slightly. 

Growth decreased in both experiments at higher concentrations, but significant decreases 

were only observable in Exp. 2 (Figures 10 and 15). Coral calcification depends on 

alkalinity, which was significantly higher in the 5,412.5 µg/L and 8,615.1 µg/L treatments 

compared to controls (Exp. 2), indicating a lack of calcification in these treatments. The 

aragonite tiles to which coral fragments were affixed in Exp. 2 were weighed and 

subtracted from the weight of the coral/tile combination at each time point, possibly 

resulting in higher resolution measurements and greater potential to reveal treatment 

effects. There was also a lack of 1 wk recovery measurements in Exp. 1. This time period 

revealed the most significant effects on growth during Exp. 2, which were not observed 

after 4 wk of recovery. Therefore, it is possible that the delayed effect on growth occurred 

in the both experiments, but the data were not collected until Exp. 2.  Reduced calcification 

of Millepora spp. was found following exposure to 100 and 500 µg/L phenanthrene. 

Phenanthrene is considered more toxic than 1-MN, which explains the decreased growth 

rates at concentrations less than 10% of those used in this study. 

Cellular Changes. The exposures resulted in significant treatment effects on the 

cellular and tissue structure of P. divaricata following exposure to 1-MN. Corals in control 

treatments maintained normal cellular architecture, with polyp structure remaining intact 

and mesenteries presumably healthy. Treatments lower than 5,000 µg/L 1-MN were not 

significantly different than controls at any time, however, there was a quantifiable effect 

on mucocytes. At lower concentrations, mucocytes in the polyps were hypertrophied, 

especially those lining the mesenteries and basal portions of the polyps. As concentrations 

increased, atrophy became apparent in epidermal mucocytes, and those found within the 

basal body wall gastrodermis were hypertrophied. Mucus release was abundant on the 

surface of the coral, as well as within the gastrovascular cavity. Corals produce mucus for 

a multitude of reasons, including heterotrophic feeding, sediment cleansing, or a defense 

against desiccation or environmental stressors, and researchers have found that up to 90% 

of ectodermal cells of some corals are mucocytes (Brown and Bythell 2005).  
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Crude oil exposure has been linked to increased mucus secretion (Mitchell and Chet 

1975), and has caused hypertrophy and hyperplasia of mucous secretory cells (now termed 

mucocytes) in Manicina areolata (Peters et al. 1981). Neff and Anderson (1981) have 

suggested mucus may bind or absorb pollutants and act as an avenue for release, protecting 

the underlying coral tissue. This may be particularly true for type 1 narcotic chemicals, 

which act via nonpolar narcosis. The composition of mucus is temporally variable, as well 

as variable between species of coral, but has been shown to contain polysaccharides, 

proteins, and lipids (Brown and Bythell 2005). Exposure to 1-MN during this study may 

have been mitigated by the release of mucus after it had absorbed the pollutant.   

Aside from mucocyte changes, exposure to higher concentrations of 1-MN (>5,000 

µg/L) also resulted in surface body wall fragmentation, atrophy, and lysing of cells. The 

epidermis contained many ruptures over the skeletal ridges of the coenenchyme, 

presumably due to intense tissue retraction into the polyps, which was a very common 

response following exposure.  Density of melanin-containing granular amoebocytes in the 

epidermis and polyps also increased, potentially indicating some form of response to 

cellular damage, as these cells have been previously categorized as part of the wound 

healing process in Porites cylindrica (Palmer et al. 2011).  

The two highest treatments, 5,412 µg/L and 8,615 µg/L 1-MN resulted in 

considerable cellular and tissue damage. Polypal architecture was compromised or 

completely lost due to degradation of tentacles and epidermal tissues, with the mouth and 

actinopharynx rarely visible. Polyps contracted very tightly, causing tissue recession off of 

the skeletal ridges. The margins of tissue loss were dominated by acidophilic-staining cells, 

which have been suggested as part of the healing process of other corals following recent 

injury (Renegar 2015). Although not all of the 8,615 µg/L-exposed corals survived, the 

tissue structure of two fragments, which were severely compromised, showed evidence for 

recovery. Tissue layers initially lost as a result of the exposure began to reform. After 4 wk 

of post-exposure recovery, epithelial cells were intact, with polypal architecture returning.  

Another noteworthy departure from normal cellular architecture was the effect on 

the mesenteries of exposed corals. The mesenteries of control corals maintained normal 

mesentery architecture with well-defined cnidoglandular bands. As concentrations 

increased, the number of mucocytes was greater in the mesenteries and cnidoglandular 



  60 

 

bands, which is consistent with previous research using M. areolata (Peters et al. 1981). 

Accompanying this change was the degeneration of the cnidoglandular band itself. At high 

concentrations, atrophy was prevalent in the cnidoglandular band, with reductions in 

number of acidophilic granular gland cells.  

Mortality. Mortality also showed similarities between experiments. The seawater 

controls and three lowest concentrations in both exposures resulted in no mortality 

throughout the exposure and recovery periods. The two highest concentrations in each 

experiment differed in percent mortality, but only slightly. The 4,650 µg/L treatment in 

Exp. 1, and the 5,412 µg/L treatment in Exp. 2 resulted in mortality in both experiments, 

averaging 16.6% and 14.6%, respectively. The highest concentrations tested, 9,298 µg/L 

(Exp. 1) and 8,615 µg/L (Exp. 2) resulted in 100% and 86.7% mortality, respectively. If 

the estimated concentrations for Exp. 1 are accurate, the difference in mortality can be 

attributed to the difference in concentration corals were exposed to, with the higher 

concentration resulting in higher mortality. Concentrations used in this research were not 

environmentally realistic, and release of petroleum into marine environments would 

typically not result in 1-MN concentrations of this magnitude. However, these elevated 

concentrations were necessary to obtain mortality at sufficient levels to calculate the 

threshold concentrations needed as inputs to the TLM. 

EC50 and LC50. The similarity in results for both experiments is further evidence 

that the concentrations were similar between the two separate exposures, and provides 

support for calculation of EC50 and LC50 for Exp. 1 using the estimated concentrations in 

Table 9. Using the variable slope dose-response model in GraphPad Prism 6, the EC50 for 

Exp. 1 was calculated at 3,446 µg/L (95% CI: 2.961-3.991 µg/L). This differs from the 

EC50 from Exp. 2 [4,543 µg/L (95% CI: 3,071-6,547 µg/L)] by more than 1,000 µg/L. The 

difference in EC50 may be related to the use of the semi-quantitative coral condition scores 

or estimated concentrations.  

Using the estimated concentrations (Table 9), Exp. 1 resulted in a 48-h LC50 of 

5,569 µg/L (95% CI: 4,629–6,667 µg/L) (Spearman-Karber). This is similar to the 48-h 

LC50 for Exp. 2, which was calculated at 6,524 µg/L (95% CI: 5,659-7,500 µg/L) using 

measured concentrations. The difference in LC50s is likely due to the use of estimated 

concentrations for Exp. 1.   
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The EC50 determined in the range-finding experiment was 7,442 µg/L (95% CI: 

4,905-11,290 µg/L). The EC50s calculated from subsequent tests were both lower, with 

narrower 95% confidence intervals [Exp. 1 =3,446 µg/L (95% CI: 2.961-3.991 µg/L); Exp. 

2 =4,543 µg/L (95% CI: 3,071-6,547 µg/L)], suggesting a more accurate estimate. The 48-

h LC50 determined in the range-finding experiment was 12,123 µg/L. This was also higher 

compared to both full-toxicity experiments [Exp. 1 =5,569 µg/L (95% CI: 4,629–6,667 

µg/L); Exp. 2 =6,524 µg/L (95% CI: 5,659-7,500 µg/L)]. Refinement of the test protocols 

and subsequent decrease in variability of concentrations in Exp. 1 and Exp. 2 resulted in 

more precise toxicity estimates for P. divaricata.  

Comparative toxicity 

The LC50 calculated from Exp. 2 was used to compare 1-MN toxicity for P. 

divaricata to other organisms. NOAA’s Office of Response and Restoration has created 

the Chemical Aquatic Fate and Effects (CAFÉ) database to estimate the fate and effects of 

multiple chemicals, oils, and dispersants (NOAA/ERD 2015). This tool allows direct 

comparison of toxicological endpoints across different species. Figure 23 shows the 

distribution of LC50s for 1-MN and other organisms using the CAFÉ database.  

Although this model cannot fit a curve to the data without a minimum of five 

species, it provides the basis to compare toxicities. With the amount of current available 

48-h LC50 data on 1-MN, it is apparent that P. divaricata ranks similarly, but may be more 

sensitive than other organisms tested. Other studies have been completed with other forms 

of naphthalene (parent and other alkylated derivatives), but comparing results and 

evaluating species sensitivity with those findings is cautioned, as differences in alkylation 

alter toxicity (Hawthorne et al. 2006, Achten and Andersson 2015). Due to a lack of directly 

comparable data for the toxicity of 1-MN to coral, estimates of species sensitivity were 

made using the TLM. 
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Figure 23. Distribution of LC50 values for 1-methylnaphthalene created using NOAAs CAFÉ 

model.  

 

Application of the Target Lipid Model  

 Results of this study indicated a 48-h LC50 of 6,524 µg/L (95% CI: 5,659-7,500 

µg/L) 1-methylnapthalene. The LC50 obtained was used to estimate a CTLBB of 355.7 

µmol/ g lipid for P. divaricata following the TLM. Calculation of CTLBB is similar to a 

normalization procedure that corrects Type 1 narcotic chemicals with different Kows (Di 

Toro et al. 2000), allowing comparisons between species even if different chemicals were 

used. Due to a lack of comparable studies on the toxic effects of 1-MN, the calculated 

CTLBB can be used to compare sensitivity of P. divaricata to other species for which 

CTLBBs have been calculated. Table 10 shows a comparison of CTLBBs for saltwater 

species based on work by McGrath and Di Toro (2009).  
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Table 10. Comparisons of CTLBB (µmol/g lipid) from McGrath and Di Toro (2009).  

* = information from this study. 

Species Common Name Habitat  CTLBB  

Oncorhynchus gorbuscha Pink Salmon Water Column 24.5 

Rhepoxyinus abronius Amphipod Infauna 31.2 

Mysidopsis bahia Mysid Epibenthic 34.3 

Eohaustorius estuarius Amphipod Infauna 41.4 

Leptocheirus plumulosus Amphipod Infauna 43.1 

Portunus pelagicus Sand Crab Epibenthic 53.3 

Ampelisca abdita Amphipod Infauna 53.8 

Palaemonetes pugio Grass Shrimp Epibenthic 57.3 

Jordanella floridae American Flagfish Water Column 67.1 

Cyprinodon variegatus Sheepshead Minnow Water Column 114 

Oithona davisae Copepod Epibenthic 142 

Meanthes arenaceodentata Annelid Worm Infauna 182 

Artemia salina nauplii Brine Shrimp Water Column 194 

Menidia beryllina Inland Silverside Water Column 292 

Porites divaricata* Thin Finger Coral Benthic *355.7 

 

From this information, it can be concluded that P. divaricata is less sensitive to 

type 1 narcotic chemical exposure compared to other organisms for which CTLBBs are 

available. This is possibly linked to the elevated levels of mucous secretion when corals 

are exposed to xenobiotics. The mucous secretion exhibited by corals may be protective, 

acting as a physical barrier or avenue of toxicant release (Neff and Anderson 1981). The 

increased resilience compared to other organisms disagrees with the initial comparisons 

made using NOAA’s CAFÉ database. The organisms included in CAFÉ are not present in 

the CTLBB comparisons, thus additional data may result in the same order of resilience 

for the species being compared.  

Calculation of the CTLBB also facilitated the prediction of the LC50 for P. 

divaricata for other narcotic chemicals found in petroleum using the TLM (Table 11). 

According to the TLM and calculation of CTLBBs, toxicity of petroleum mixtures is most 

related to lower molecular weight hydrocarbons, as the predicted LC50s are below the 

solubility of each chemical in seawater.  Fluorene, phenanthrene, and fluoranthene would 

produce a toxic response, but only at concentrations above solubility. Although above 
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solubility, the predicted LC50 for fluoranthene aligns with an experimentally determined 

value of 435.1 µg/L for P. divaricata (Martinez et al. 2007). The TLM and calculation of 

the CTLBB for P. divaricata facilitated the comparison of toxic thresholds between studies 

that tested different chemicals, and provides the basis for evaluating the toxicity of complex 

hydrocarbon mixtures via the toxic unit approach.  

 

Table 11. Predicted LC50s for low molecular weight MAHs and PAHs found in petroleum. 

Solubility in seawater was determined using the Setschenow Equation. LC50*= predicted LC50 

using the TLM. SolubilitySW= solubility at 35 ppt.  

 

Class Chemical 
MW 

(g/mol) 

SolubilitySW 

(µg/L) 

LC50* 

(µg/L) 

LC50* 

<SolubilitySW 

MAH Benzene 78.11 1,515,221 329,374 Yes 

MAH Toluene 92.14 443,172 133,694 Yes 

MAH o-Xylene 106.17 145,082 51,544 Yes 

MAH Ethylbenzene 106.17 125,288 45,291 Yes 

MAH p-Xylene 106.17 160,929 42,091 Yes 

PAH Naphthalene 128.19 26,615 18,233 Yes 

PAH 1-Methylnaphthalene 142.2 21,698 6,524 Yes 

PAH Fluorene 166.2 1,466 5,531 No 

PAH Phenanthrene 178.23 1,025 1,449 No 

PAH Fluoranthene 202.26 183 445 No 
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CONCLUSION 

 These experiments are the first in a series of tests that evaluate the toxicity of 

petrogenic hydrocarbons to corals. Due to the variety of bioassay conditions, and 

differences in species or toxicant utilized in previous research, comparisons across studies 

and extrapolation to actual spill scenarios has been difficult. Providing data as inputs to 

models that can predict toxicity of any petroleum compound is invaluable, and provides 

the necessary information spill responders require to act appropriately following an oil 

spill.  

 The range-finding exposure was used to refine the initial dosing and monitoring 

protocol, as well as verifying the effectiveness of the passive dosing technique. The full-

toxicity exposures resulted in stable concentrations required for precise estimation of the 

EC50 and LC50 of 1-MN to P. divaricata. Effects monitored included physical and cellular 

changes, decreases in growth rate, and altered photosynthetic efficiency. These parameters 

were used to calculate the threshold concentrations required for the TLM to estimate a 

CTLBB of 355.7 µmol/g lipid, which indicates a greater resilience to type 1 narcotic 

chemicals for P. divaricata compared to other organisms. Although this is based on results 

of a single hydrocarbon, future work with other petroleum hydrocarbons will verify the 

precision of the estimated CTLBB and facilitate further comparisons of species sensitivity 

across studies.  
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APPENDIX 1 

The following sections include detailed information of each completed study that 

evaluated the effects of petroleum hydrocarbons on corals.  

Incidents resulting in Acute and Chronic Exposure of Petroleum to Corals 

Fishelson (1973) examined chronic exposure of an unspecified oil and phosphate 

loading following multiple spills from a land-based oil terminal and phosphate loading 

harbor in the Red Sea. There was an obvious decrease in coral cover, with Acropora, 

Seriatopora, and Stylophora among the most affected genera. Brain corals also decreased 

in cover, which was coupled with an increase in algal growth, presumably due to phosphate 

pollution (Fishelson, 1973). Rinkevich and Loya (1977) similarly examined the effects of 

chronic Iranian crude oil release from multiple spills originating at a terminal in the same 

area one year later. Examination of Stylophora pistillata revealed higher adult coral 

mortality rates coupled with reproductive alterations. Declines in number of breeding 

colonies, number of ovaria per polyp, number of planulae per coral head, and lower 

settlement rates were all significant, which can have lasting effects on the population 

(Rinkevich and Loya, 1977).  

 Venezuelan crude oil, refinery waste, and Corexit® dispersant were continuously 

released into the Caribbean from a refinery in San Nicolas Bay, Aruba from 1923–1985, 

causing chronic pollution of a nearby fringing reef (Bak, 1987). This type of point source 

pollution contains a distinct concentration gradient, with decreasing concentration as 

distance from source increases. A positive correlation was found between coral cover, 

rugosity and distance from the refinery, with major deterioration of the reef directly in front 

of- and down-current from the refinery. Acropora palmata was “decimated” along the 

entire study area, while Orbicella annularis, and Agaricia agaricites were only absent 

close to the refinery. Abundance of Diploria strigosa was highest near the refinery, and 

less abundant as distance increased. This type of scenario proves valuable when examining 

community changes in response to chronic oil pollution, and perhaps sheds light on 

whether or not some corals are more capable of coping with chronic oil pollution.  

 Perhaps the most studied of all spills impacting coral reefs, the Bahia las Mińas 

spill released more than 8 million liters of medium weight crude oil from a ruptured storage 

tank at Refineria Panama on Payardi Island, Panama (Burns and Knap, 1989). Oil leaked 
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into the Caribbean with roughly 21,000 liters Corexit® 9527 used in the clean-up process. 

The close proximity of the Smithsonian Tropical Research Institute’s marine laboratory at 

Punta Galeta, provided ample baseline data to which all post-spill changes could be 

compared. Burns and Knap (1989) found extensive mortality of sub-tidal reef corals, with 

a positive correlation between hydrocarbon uptake of Siderastrea siderea and Agaricia 

tenuifolia tissues and mortality. There was also an increase in protein to lipid ratios at 

heavily oiled sites (Burns and Knap, 1989). A decrease in cover of Palythoa caribaeorum 

and Zoanthus sociatus, as well as complete loss of Porites spp. was also observed (Cubit 

et al., 1987; Jackson et al., 1989). Corals exhibited 22–30%, and 17% mortality in heavily 

oiled and moderately oiled sites respectively, compared to no mortality in unoiled reefs 

(Cubit et al., 1987). Abundance of scleractinian corals was reduced by 76%, 56%, and 45% 

at depths of less than 3 m, 3–6 m, and 9–12 m, respectively. Extensive bleaching, tissue 

swelling, mucous production, and increased bacterial infections were associated with 

corals in the oiled sites compared to reference sites and pre-spill data (Guzmán et al., 1991; 

Jackson et al., 1989). Two years after the spill, coral cover decreased from 28% to 13%, 

with reductions in colony size, growth rate, and diversity of corals present. More than half 

of the decrease in cover was due to reductions in Acropora palmata and Orbicella 

annularis. Recently dead areas on corals were commonly observed, with most corals 

showing signs of recent stress, particularly S. siderea (Guzmán et al., 1991). Five years 

after the spill, oil continued to leach from mangrove sediments, prompting evaluation of 

long-term, chronic effects on S. siderea. Gonad size was significantly reduced at the 

heavily oiled sites, and a decrease in fecundity of corals with recent stress was noted 

(Guzmán and Holst, 1993). The percentage of injured corals remained significantly higher 

at oiled sites, coupled with decreased abundance and diversity (Guzman et al., 1994). 

Growth of Porites astreoides and S. siderea were both negatively correlated with sediment 

hydrocarbon concentration, with higher concentration leading to decreased growth in both 

species. Overall, extensive mortality of sub-tidal reef corals occurred following the Bahia 

las Mińas spill, with prolonged chronic effects on vital processes lasting well over five 

years due to continual seepage of oil from mangrove sediments. 

During the Gulf War in 1991, a very large amount of unspecified oil was 

intentionally released into the Persian Gulf. From 1992–1994, corals on the Saudi Arabian 
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coastline were examined for delayed responses associated with the oil spill (Vogt, 1995). 

Corals showed no detectable impact from the Gulf War oil spill, and an increase in coral 

cover was recorded for this time period. The lack of response could possibly be attributed 

to the history of oil spills in this area, and the possible organismal adaptation to petroleum 

hydrocarbon exposure. Al-Dahash and Mahmoud (2013) evaluated the coral bacterial 

community near this same area in southern Kuwait, revealing that the chronic exposure to 

natural oil seeps and multiple oil spills in the Persian Gulf has led to alterations in the 

mucous bacterial community of Acropora clathrata and Porites harrisoni, to favor more 

oil-degrading bacteria. Thus, due to both continuous release and small pollution events, 

corals in this area are colonized by oil-utilizing bacteria, which may confer an advantage 

and may be one of the causes why the Gulf War oil spill had no significant detectable 

effects on corals.  

In 1993, a fishing vessel ran aground at Rose Atoll National Wildlife Refuge, 

American Samoa, releasing diesel fuel, lube oil, and ammonia onto a pristine oceanic reef 

(Green et al., 1997). Aside from physical damage to the reef, injury and morality were 

moderate to high up to 1 km from the wreck site after 6 months. Direct impact of the spilled 

toxicants to coral communities could not be obtained because of logistic constraints, 

although the reef structure was compromised for a variety of other reasons; reduction in 

crustose coralline algae, cyanobacterial blooms, anoxia from organic loading and oxygen 

reduction all had a negative effect on reef corals.   

The M/V Kyowa Violet oil spill in December 2002 in Micronesia released 

55,000—80,000 gallons of intermediate fuel oil onto the reef resulting in a large acute 

exposure situation (Downs et al., 2006). The cellular physiological condition of Porites 

lobata exhibited changes consistent with exposure to a xenobiotic. Differences in protein 

metabolic condition suggested an increase in mitochondrial protein chaperoning, especially 

membrane proteins. Alteration in poryphyrin metabolism indicated a major shift in cellular 

metabolism. Oxidative stress was indicated by elevated levels of catalase and the gene 

mutY DNA glycosylase (MutY). Significantly elevated levels of Cytochrome P450 

(CYTP450) suggested corals were responding to aromatic hydrocarbon exposure. In a 

related study, cellular physiology of Pocillopora damicornis in response to chronic PAH 

exposure in Guam was also examined (Downs et al., 2012). Although protein metabolic 
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condition was not significantly altered, other cellular biomarkers were elevated. 

Mitochondrial chaperoning and protein import increased, concomitant with elevations of 

oxidative damage and response and increased porphyrin production. These changes, along 

with increases in xenobiotic and detoxification response biomarkers were consistent with 

exposure to PAHs.  

Corals near Port Aransas on the South Texas coast are also subject to chronic 

petroleum exposure (Sabourin et al., 2013). The tissues of Leptogorgia setacea were 

determined to contain an average of 811 ppm of unspecified oil. The skeletons of these 

corals had much greater potential for biodeposition of PAHs compared to coral body 

tissues. Coral tissue PAH concentrations were consistently higher than surrounding 

sediment samples, indicating contaminants were accumulated from the water column, as 

opposed to the sediments. Similarly, PAH concentrations in coral tissues at Kenting Coral 

Reef, Taiwan were two orders of magnitude higher than in sediments, providing evidence 

for bioaccumulation from the water column, not surrounding sediments (Ko et al., 2014). 

Sorption, or feeding on contaminated prey were two methods suggested as pathways of 

accumulation from the water column. A preferential accumulation of low molecular weight 

compounds and methylated PAHs was also found (Ko et al. 2014).  

Deep water corals were assessed in the northern Gulf of Mexico in response to the 

Deepwater Horizon (DWH) oil spill in 2010 (White et al., 2012). Of the colonies examined 

at the study sites, 86% showed signs of negative impact, including excessive mucus 

production, retracted polyps, tissue loss, and sclerite enlargement. There was also an oily 

residue, termed “floc”, which covered a majority of the coral colonies and contained dead 

polyp fragments and detached sclerites (White et al., 2012). Silva et al. (2015) examined 

octocorals and antipatharians on mesophotic reefs from six sites near the DWH platform 

(four sites within 100 km). Hypnogorgia pendula, Bebryce spp., Thesea nivea, Swiftia 

exserta, Antipathes atlantica, Tichopathes sp., and Ellisella barbadensis were observed for 

injuries and samples were taken for hydrocarbon analysis. Following the spill, injuries 

increased; colonies were covered in mucus, a biofilm material and hydrozoans. Taller 

growth forms sustained the most severe injuries; loss of branches, necrotic tissue, and 

complete mortality. Detectable levels of hydrocarbons were also found in coral tissues and 

surrounding sediments.     
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Table A 5. Summary of acute and chronic releases of petroleum hydrocarbons with focus on 

impacts to corals. 

Name/ Date of Spill 
Oil Type and 

Amount 
Scenario Coral(s) Examined Reference 

Gulf of Aqaba (Gulf 

of Eilat), 1973 

Red Sea 

Unspecified oil 

and phosphate 

loading 

Multiple oil spills 

from oil terminal 

and phosphate 

loading harbor 

Coral cover of all species. 

Acropora, Seriatopora, and 

Stylophora most reduced. 

Fishelson 

1973 

Gulf of Eilat 

1974–1975 

Red Sea 

Iranian crude oil 

Chronic pollution 

by oil terminal 

with multiple large 

spills 

Stylophora pistillata adult and 

reproduction effects. 

Rinkevich 

and Loya 

1977 

Aruba 1923–1985 

Caribbean Sea 

Venezuelan 

crude oil, 

refinery waste, 

and dispersant 

Chronic pollution 

of fringing reef by 

large refinery 

Decline in coral cover of all 

species, specifically Orbicella 

annularis, Agaricia agaricites, 

Diploria strigosa, and 

Acropora palmata. 

Bak 1987 

Bahia las Minas 

April 27th, 1986 

Refineria Panama 

on Payardi Island. 

Caribbean coast. 

>50,000 barrels 

(8 million liters) 

med-weight 

crude oil (70% 

Venezuelan 

crude, 30% 

Mexican 

Isthmus crude) 

with <21,000 L 

Corexit® 9527 

Acute exposure to 

oil spilled from 

ruptured storage 

tank, covering 

mangroves and 

seagrasses. Floated 

over corals. 

Mortality and hydrocarbon 

uptake in S. siderea and A. 

tenuifolia. 

Burns and 

Knap 1989 

Palythoa caribaeorum and 

Zoanthus sociatus. Porites spp. 

Cubit et al. 

1987 

Porites, zoanthids, and 

hydrocorals 

Jackson et al. 

1989 

Two years post-

spill 

Sublethal changes, coral cover, 

and growth rate of P. 

asteroides, A. Agaricites, S. 

siderea, A. cervicornis, O. 

annularis 

Guzmán, 

Jackson, and 

Weil 1991 

Five years post-

spill 

Siderastrea siderea 

reproduction and fecundity of 

corals. 

Guzmán and 

Holst 1993 

P.asteroides, S.siderea, 

Diploria clivosa, and D. 

strigosa. 

Guzman, 

Burns, and 

Jackson 1994 

Saudi Arabian 

Coastline 

Persian Gulf 

1992–1994 

Unspecified oil 

Delayed response 

to Gulf War oil 

spill of 1991. 

Corals showed no detectable 

impact. 
Vogt 1995 

Rose Atoll National 

Wildlife Refuge 

Jin Shiang Fa 

fishing vessel 

10/1/1993 

100,000 gallons 

diesel fuel, 500 

gallons lube oil, 

2500 pounds 

ammonia 

Physical damage 

and 6 week release 

of chemicals. 

Reef injury and mortality 

moderate to high. 

Green et al. 

1997 
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Table A1 Continued    

Name/ Date of Spill 
Oil Type and 

Amount 
Scenario Coral(s) Examined Reference 

MV Kyowa Violet 

December 26th, 

2002 

55,000–80,000 

gallons 

intermediate 

fuel oil 

Intertidal areas 

coated, fuel floated 

over reefs. 

Porites lobata cellular 

physiological condition 

consistent with exposure to a 

xenobiotic of PAH origin. 

Downs et al. 

2006 

Deepwater 

Horizon,Northern 

Gulf of 

Mexico.April - July, 

2010 

Macondo crude 

oil 

Deep water coral 

sites examined 3 

months after 

Deepwater 

Horizon well was 

capped. 

Paramuricea biscaya, Swiftia 

pallida, paragorgia regalis, 

Acanthogorgia aspera, and 

Clavularia rudis analyzed for 

impacts associated with DWH 

spill. 

White et al. 

2012 

Guam, Mariana 

Islands 
Not applicable 

Chronic PAH 

contamination at 

the port and 

marina sites 

Pocillopora damicornis. 

Cellular biomarkers consistent 

with xenobiotic response were 

analyzed. 

Downs et al. 

2012 

Port Aransas, South 

Texas Coast 

Unspecified oil 

measured at 811 

ppm in coral 

tissue (mean) 

Chronic petroleum 

contamination in 

the port 

Leptogorgia setacea tissues 

examined for PAH 

concentration 

Sabourin et 

al. 2013 

Qaro and Umm Al-

Maradim Islands, 

South Kuwait 

Unspecified oil 
Chronic exposure 

to natural oil seeps. 

Mucous associated oil 

degrading bacteria  of Porites 

compressa and Acropora 

clathrata 

Al-Dahash 

and 

Mahmoud 

2013 

Kenting Coral Reef, 

Taiwan 
Not applicable 

Chronic PAH 

contamination 

PAH concentrations in coral 

tissue higher than sediments. 

Bioaccumulation of PAHs from 

water column. 

Ko et al. 2014 

Deepwater Horizon, 

Northern Gulf of 

Mexico. 

September 2010 and 

2011 

Macondo crude 

oil 

Mesophotic reefs 

(4 sites) examined 

after DWH oil spill 

and compared to 

pre-spill data. 

Hypnogorgia pendula. Bebryce 

spp. Thesea nivea. Swiftia 

exserta. Antipathes atlantica. 

Tichopathes sp. Ellisella 

barbadensis 

Increase in number of injured 

colonies. Mucous and biofilm 

material covered colonies. 

Taller growth forms had most 

severe injuries (necrotic tissue 

and denuded skeleton) 

Silva et al. 

2015 
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In-situ Studies Examining Effects of Hydrocarbons on Coral 

The first field experiment exposing coral to oil was completed in 1971 at Eniwetok 

Atoll, Marshall Islands (Johannes et al., 1972). As coral reefs can be exposed to air during 

low tide, the authors hypothesized that floating oil may have deleterious effects on the 

corals during this time. Santa Maria crude oil (SMCO) was poured over corals attached to 

floating trays to simulate contact while exposed to air at low tide. When oil coated the 

corals, temperature was elevated by 3 °C. Branching species, such as Acropora spp. and 

Pocillopora spp., showed the highest affinity for oil, remaining covered after four weeks. 

Large-polyped massive corals had the least affinity, presumably due to abundant mucous 

production and large polyps providing the means to remove the oil droplets. Numerous 

other corals showed intermediate affinities for the oil droplets. In all cases, tissue damage 

occurred if oil adhered in patches greater than a few millimeters, while tissues remaining 

free of oil showed no effect of exposure.  

 LeGore et al. (1989) utilized containment booms to expose corals in the Arabian 

Gulf to oil, dispersed oil, and dispersant only for both 24, and 120 hours. The dispersed oil 

treatment was the only plot to register an increase in hydrocarbon concentration in the 

water column 15 cm above the coral. Following exposure, there was no significant effect 

on Acropora spp., and growth and colonization appeared unaffected in all exposure plots. 

However, seasonal bleaching was widespread and occurred in all exposure plots, with the 

slowest recovery in the dispersed oil plots.  

 The Tropical Oil Pollution Investigations in Coastal Systems (TROPICS) 

experiment conducted in 1984 on the Caribbean coast of Panama (Ballou et al., 1987b) is 

perhaps the most comprehensive field experiment examining effects of oil exposure to 

tropical marine communities.  The TROPICS experiment is one-of-a-kind with respect to 

the research conducted in the area prior to, and 20+ years following exposure to evaluate 

long term effects. The researchers intended to simulate a severe but realistic spill scenario, 

and to establish whether the use of dispersants will reduce or exacerbate the effects of an 

oil spill on tropical environments (Ballou et al., 1987a). Although this study simulated an 

oil spill on mangroves, seagrasses, and corals, only the effects on corals will be discussed 

here. 
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Immediately following exposure, percent coral cover in the dispersed oil site 

declined abruptly, and continued to do so for an entire year (Ballou et al., 1987b). Growth 

of Porites porites and Agaricia tenuifolia (which dominate the reef community) was 

significantly reduced by dispersed oil. Contrary to the initial effects observed for dispersed 

oil, untreated oil caused only a slight but non-significant reduction in cover, with no 

significant reduction in growth of all species examined (Ballou et al., 1987a; Ballou et al., 

1987b). Short term effects of dispersed oil on corals were clear, with coral cover remaining 

significantly lower for at least two years following exposure, showing little indication of 

recovery (Dodge et al., 1995). Exposure to oil only treatments did not result in decreased 

growth and coral cover. By 1994, after ten years of recovery, parameters at all sites were 

indistinguishable and no significant changes to coral cover, growth, or sclerochronology 

were found when comparing oil or dispersed oil sites to reference sites. In 2001 and 2002, 

Ward et al. (2003) revisited the site to compare skeletal density and porosity of corals at 

each site as a means of addressing long-term recovery. Although no significant differences 

were determined for any of the treatment sites, analysis of Porites spp. revealed increased 

skeletal porosity and decreased density at the oil only site, which is consistent with elevated 

growth rates (Ward et al., 2003).  These elevated growth rates were likely not related to 

oil, as the spill was conducted 20 years prior.  
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Table A 6. Summary of in situ experiments assessing the impact of hydrocarbons on corals. 

Name/ 

Location 

Oil Type/  

Concentration 
Scenario 

Coral 

Species 
Effects Measured Reference 

Eniwetok 

Atoll 

Marshall 

Islands, 1971 

200 mL 

SMCO  (0.6 

mm slick) 

Oil poured 

around corals 

mounted to 

floating trays 

partially 

exposed to air 

for 1.5 hours 

22 species of 

Indo-Pacific 

corals 

3 °C temperature elevation.  

Oil adhered most to 

branching species, least to 

large-polyped massive 

species. 

Johannes, 

Maragos, 

and Coles 

1972 

TROPICS 

Experiment, 

Caribbean 

coast of 

Panama  

 November 

1984 

Prudhoe Bay 

crude oil (1-4 

ppm) 

 Dispersed oil 

(commercial 

nonionic 

glycol ether-

based 

concentrate) 

averaged 50 

ppm. 

Both declined 

over time. 

Measured by 

UV 

Fluorometry 

Simulated oil 

spill in 

mangrove, 

seagrass, and 

reef area. Sites 

were oil only, 

dispersed oil, 

and untreated 

control. 

Porites 

porites, and 

Agaricia 

tenuifolia 

dominated. 

Orbicella 

annularis, and 

Acropora 

cervicornis 

also present. 

Dispersed Site: % cover 

declined abruptly. 

Significant reduction in 

growth of P.porites and 

A.tenuifolia. 

Untreated Oil Site: Slight 

decrease in coral cover but 

not significant. No effect on 

growth rates. 

Ballou et 

al. 1987 & 

Ballou et 

al. 1989 

No significant dose response 

on coverage, growth, or 

sclerochronology 10 years 

after dosing. 

Dodge et 

al. 1995 

No significant differences of 

skeletal porosity and micro-

density between sites. 

Ward et al. 

2003 

Arabian Gulf 

1989 

Arabian light 

crude oil and 

Corexit 9527 

0.25mm (24 

hour) and 

0.1mm (120 

hour) slicks.  

Concentration 

only detectable 

in dispersed oil 

site (2.5 ppm) 

Oil, dispersed 

oil (20:1 

oil:disp.), and 

dispersant 

exposures in 

floating 

containment 

booms 

Acropora spp. 
No significant effect on 

growth between plots. 

LeGore et 

al. 1989 
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Ex situ Laboratory Experiments Examining Effects of Hydrocarbons on Adult Corals 

 Lewis (1971) exposed four Caribbean corals to Barbados crude oil and ‘Corexit’ 

dispersant for 24 hours in finger bowls. All species tested were more sensitive to dispersant 

compared to oil and exhibited tissue rupture, nematocyst discharge, tentacle retraction, and 

inhibition of feeding/tactile response at all concentrations. These changes were exacerbated 

in branching species, while encrusting corals showed less effect with a greater ability to 

recover. Concentrations of both compounds above 100 ppm had harmful effects with 

incomplete recovery after 24 hours.  

 Eisler (1975) conducted two experiments with the octocoral Heteroxenia 

fuscescens using two crude oils and ST-5 dispersant, in static and flow-through exposures. 

Results of the static exposure include LC50 values for each of the toxicants, indicating a 

greater toxicity for the dispersant when compared to either oil alone. The 168-hour flow 

through exposures solicited a similar response; dispersant only treatments were the most 

toxic. The highest dispersed oil concentrations in either experiment failed to solicit a 

mortality response.  It should be noted that LC50 values from the static exposure were lower 

(higher toxicity) than those from the flow-through experiment, indicating possible 

compounding effects associated with static exposures (i.e., oxygen depletion, waste 

accumulation). Researchers also found bioaccumulation in corals exposed to higher 

treatments of crude oil, but the bioaccumulated amount was less than 1% natural 

hydrocarbon content.  

 Reimer (1975) completed a suite of experiments using four scleractinian corals and 

marine diesel fuel and bunker oil. Concentrations that corals were exposed to were not 

specified, as most of the experiments included immersing corals in oil or pouring oil 

directly onto the corals and monitoring recovery in clean seawater.  After 114 days of 

recovery from a one minute immersion in oil, corals showed varying degrees of mortality, 

from 0% to 100%. When oil was poured onto corals for 30 minutes, behavioral changes 

included immediate polyp retraction with no tactile response to stimulus, mouths open with 

exposed actinopharynx and mesenterial filament extrusion. Additionally, massive 

expulsion of symbionts occurred with tissue rupture and flaking, causing 70% mortality 

after 17 days. A 30 second immersion in oil resulted in tissue rupture and flaking, with 
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extensive bleaching occurring within 5-13 days. Lastly, when 1–4 ml oil was added to 

finger bowls containing coral, mouths opened and abnormal feeding reactions occurred.  

 Bak and Elgershuizen (1976) exposed 19 species of coral to five sand-oil 

combinations to measure rejection efficiency. Researchers found no evidence of adsorption 

or ingestion of oil, as oiled sediments was removed by ciliary currents and tentacular/ 

polypal movements, similar to normal sediment removal. Tissue death resulted if sediments 

remained for two or more days, for both oiled and un-oiled sediments.  Oiled sediment 

failed to induce an obvious increase in mucus secretion compared to that secreted in 

response to un-oiled sediments.  

 Elgershuizen and De Kruijf (1976) exposed Madracis mirabilis to four types of oil 

and Shell LTX dispersant in 500-mL beakers by either floating the oil on the surface or 

creating toxicant-seawater mixtures.  No mortality was observed for floating oil treatments, 

thus LC50 values were greater than the highest concentration tested.  Oil and seawater 

mixtures were more toxic when compared to floating oil, but effects were temporary and 

LC50 could not be calculated.  Exposure to dispersant only solicited more permanent effects 

with poor recovery.   Dispersed oil was the most toxic of the compounds examined, with 

LC50 values 10–50 times lower than oil-water mixtures. Authors suggest the increased 

water soluble fraction of oil and the dispersants effect on membrane permeability as the 

culprit for increased toxicity. 

 Cohen et al. (1977) used Iranian crude oil and H. fuscescens in both static and flow-

through exposures. Corals were more sensitive to static conditions, showing breakdown of 

pulsation synchrony and decreased ability to respond to mechanical stimulus with 

increased oil concentration. Static test concentrations were below LC50 values for 24 and 

48 hours (LC50 > 30 mL/L), while 72 hour LC50 was calculated at 17 mL/L. The flow-

through exposure lead to a decrease in pulsation synchrony in corals closer to the surface 

of the depth divided tank, but no mortality was observed in any of the colonies. The authors 

concluded that corals are more sensitive to oil pollution under static conditions, which are 

less representative of observed environmental characteristics, and that acute exposure to 

comparatively high concentrations of crude oil is relatively non-toxic to H. fuscescens, but 

adverse effects will emerge over extended exposure durations.  
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 Ducklow and Mitchell (1979) also used H. fuscescens and Iranian crude oil, but 

monitored coral health and changes to the mucous bacterial population following a five-

day exposure to floating oil. Polyp pulsation was initially impaired, with polyps closing, 

and remaining so until the exposure was completed. Polyps elongated and lost their ability 

to stand upright, collapsing and extending towards the bottom of the tank. Mucous bacteria 

populations significantly increased following exposure to oil.  All effects measured were 

temporary, and returned to normal following the exposure. 

 Neff and Anderson (1981) exposed five species of corals to South Louisiana crude 

oil, no. 2 fuel oil, and phenanthrene for 72 hours then incubated them with radio labeled 

calcium chloride to measure calcification. Following exposure to crude oil WSF, Millepora 

spp. showed no significant differences in calcification, while calcification in Madracis 

decactis significantly increased in response to the same exposure. In response to the 

exposure to no. 2 fuel oil WSF, calcium deposition in all corals was variable.  Calcification 

was significantly reduced in Oculina diffusa, while Millepora spp. and Favia fragum both 

showed no effect from exposure to no. 2 fuel oil.  Calcification in M. decactis and Orbicella 

annularis increased with increasing no. 2 fuel oil concentration.  Polyp extension in all 

corals exposed to no. 2 fuel oil was reduced during the exposure, with some corals showing 

slight bleaching. Millepora spp. was also exposed to phenanthrene, a PAH found in crude 

oil and other refined products, resulting in high variability in calcification rate following 

exposure, with only high concentrations causing a significant reduction.  Based on the 

results of this study, authors concluded that coral calcification after oil exposure is variable, 

with some species more susceptible than others.  

 Peters et al. (1981) examined histopathological effects of hydrocarbon uptake 

during a three-month exposure to the WAF of no. 2 fuel oil on Manicina areolata. 

Hydrocarbon uptake was detected after 2 and 6 weeks exposure in high and low 

concentrations respectively, causing extensive cellular changes, although no mortality 

occurred throughout the exposure.  Effects included increases in mucous secretory cell 

activity, with proliferation and hypertrophy of epidermal cells and mesenteries, and 

mesogleal swelling.  Mucocytes also appeared in tips of mesenterial filaments, where they 

are not normally found. After 12 weeks of exposure, mucocytes atrophied, and 

degeneration and loss of symbionts in the gastrodermis and mesenteries was noted. 
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Swelling, nematocyst fragmentation, and loss of granular gland cells in mesenterial 

filaments was also apparent by the end of the exposure. Authors concluded that long term 

chronic exposure to petroleum hydrocarbons has the ability to initiate cellular degeneration 

and atrophy of coral tissue even at low concentrations, because these hydrocarbons 

partition into the cells, disrupting vital biosynthetic processes of both coral and symbiont 

cells.  

 Cook and Knap (1983) measured carbon fixation and incorporation of 

photosynthetic products in Diploria strigosa following exposure to the WAF of Arabian 

light crude oil and Corexit® 9527. Exposure to oil or dispersant alone resulted in no effect 

on carbon fixation or incorporation of photosynthetic products at any time. Exposure to 

dispersed oil led to an initial 85% reduction in carbon fixation after 1–3 hours, which 

recovered after 3–5 hours. The same pattern occurred for incorporation of photosynthetic 

products; an initial reduction, followed by recovery within 3–24 hours. Authors concluded 

that dispersed oil has a much greater effect on photosynthesis in D. strigosa, although the 

ability to rapidly recover suggests the effects are temporary.  

 Solbakken et al. (1983a) measured accumulation and depuration of petroleum 

PAHs naphthalene and phenanthrene in 19 coral species following a 24-hour incubation. 

Corals rapidly accumulated the lipid-soluble xenobiotics used, with uptake being a function 

of specific compound and coral species. Naphthalene was most efficiently depurated by 

day 10 of recovery, while significant levels of phenanthrene were still detectable within 

21–37 days post exposure. This pattern of naphthalene being removed much faster relative 

to phenanthrene has been reported for other marine organisms (Solbakken et al., 1983b) 

with the depuration periods for both compounds being comparatively slower for other 

subtropical marine organisms.  

 Multiple experiments exposing Diploria strigosa to Arabian light crude oil and 

chemically dispersed oil for 6–24 hours, with a one year recovery period, were completed 

in the 1980’s (Dodge et al., 1984; Knap, 1987; Wyers et al., 1986).  Dodge et al. (1984) 

examined skeletal growth characteristics of Diploria strigosa following the exposure and 

found no significant differences between any of the treatments in regard to upward growth 

or new endotheca length. When comparing the ratio of new fossa: old fossa, only 2 ppm 

chemically enhanced water accommodated fraction (CEWAF) and 12–19 ppm oil WAF 
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treatments showed a significant decrease compared to controls. Although the trend hinted 

that dispersed oil has a negative effect on skeletal growth, the lack of significant differences 

between treatments was attributed to the high variability within and between coral colonies. 

Wyers et al. (1986) observed the external appearance of coral colonies for changes in 

survival, behavior characteristics, and morphological changes during the same experiment. 

No mortality occurred at any of the concentrations utilized, and no significant differences 

in characteristics between any treatments were determined. However, CEWAF and WAF 

of oil alone did lead to adverse effects at concentrations near 20 ppm. Mesenterial filament 

extrusion, extreme tissue contraction, tentacle retraction, and localized tissue rupture were 

common in these corals following the onset of exposure, but returned to pre-exposure 

conditions within four days during the winter, and 24 hours during the summer. Authors 

concluded that there were no significant differences in coral behavior when comparing 

WAF and CEWAF, and the observed effects seemed unlikely to impair coral viability in 

the long term. Knap (1987) measured the hydrocarbon uptake in D. strigosa during this 

experiment, and found evidence for accumulation of the entire molecular weight range of 

Arabian light crude oil regardless of concentration or whether the oil was physically or 

chemically dispersed. Physically dispersed oil droplets were also found to adhere to coral 

mucus with much more affinity than chemically dispersed oil droplets.  

 Thorhaug et al. (1989) completed a 10-hour experiment using three scleractinian 

corals, fresh and weathered Venezuelan crude oil, and 11 different chemical dispersants in 

order to rank them according to their toxicity. Some of the dispersed oil treatments led to 

100% mortality, while others resulted in less the 50% mortality, allowing dispersants to be 

ranked as high, medium, and low toxicity. Conco K, OFC D609, Corexit 9527, Kemarine, 

ADP 7, and Janosolv were among the most toxic, while the less toxic dispersants included 

Elastosol, Cold Clean, and Finasol.  

 Mercurio et al. (2004) used Acropora formosa in 48-hour exposures to WAF of 

mineral derived lubricant (MDL) to assess hydrocarbon exposure impacts on 

photosynthesis, disruption of symbiosis, and mortality in adult corals. Significant 

differences were found for mortality, symbiont density, and photosynthetic yield at 48 

hours when exposed to 190 µg/L MDL. The corals first exhibited lightening and bleaching 

of the tips of branches, followed by mortality. Decreases in photosynthetic yield and 
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symbiont density were more sensitive indicators of pollution stress when compared to 

mortality.  

 Rougee et al. (2006) exposed Pocillopora damicornis to WAF of Intermediate Fuel 

Oil (IFO) 180 to assess the potential for a shift in cellular homeostasis from petroleum 

pollution. Significant changes in cellular biomarkers involved in cellular response and 

protection, manipulation, and excretion of toxicants were observed. A significant 

xenobiotic response, specifically CYTP450, was generated above 1 g/L, which indicated a 

reaction to PAH exposure. Significant elevation of glutathione-S-transferase (GST-pi) also 

indicated a detoxification response. Shifts in porphyrin metabolism were also apparent, 

which was likely the result of PAH interactions in the cell. Oxidative damage response was 

significantly elevated in 1 g/L treatments, and when coupled with elevated levels of MutY, 

suggested DNA repair was occurring. Elevated levels of heat shock protein 70 (Hsp-70) 

also indicated a shift in protein metabolic condition. Based on the changes to these cellular 

biomarkers, the authors concluded that exposure to IFO180 WAF leads to stress and a shift 

from metabolic homeostasis in the organism.  

 Martinez et al. (2007) examined the ultraviolet radiation (UVR) enhanced toxicity 

of fluoranthene to Porites divaricata. When combined, fluoranthene and ecologically 

relevant levels of UVR led to decreased photosynthetic efficiency and bleaching, with 

mortality occurring within 3–6 days. Corals exposed to fluoranthene in the absence of UVR 

showed initial decreases in measured parameters, but returned to normal levels within 4 

days. The effects of PAH exposure on P. divaricata were significantly increased in the 

presence of UVR.  

 Ramos and Garcia (2007) examined changes in the mixed function oxygenase 

system (MFO) in Orbicella faveolata exposed to the PAH benzo(a)pyrene. The main 

component of MFO is CYTP450, which is responsible for biotransformation of a variety 

of compounds like PAHs. An increase in CYTP450 occurred in colonies exposed to 

benzo(a)pyrene, as well as increased in enzymatic activity of antioxidant complexes, 

demonstrating antioxidant defense to a xenobiotic. The MFO activity of O. faveolata 

indicated a short term activation of detoxifying response, at levels consistent with 

mollusks, echinoderms, and annelids.  
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 Shafir et al. (2007) exposed Stylophora pistillata and Pocillopora damicornis to the 

WSF of Egyptian crude oil, CEWAF, and six common dispersants in a 24-hour exposure. 

Corals exposed to all concentrations of oil WSF had 100% survivorship, with no impact 

on lateral growth throughout the exposure or recovery phase. Corals exposed to dispersant 

only had 100% mortality in all concentrations above 10% stock, with most corals surviving 

below 10% stock dispersant levels. Dispersed oil treatments led to 100% mortality above 

10% stock, with significant mortality in 4 of the 6 dispersants at 10%. Sublethal levels of 

dispersed oil (<10%) led to delayed tissue development and growth in both corals 

examined. The authors concluded that corals are more susceptible to dispersants and 

dispersed oil when compared to oil only.  

 White and Strychar (2011) exposed the gorgonian Leptogorgia virgulata to 

gasoline for 168-hours. After 48 hours, corals showed no visible signs of impact. After 120 

hours of exposure, significant loss of tissue and sclerites occurred. Authors also noted that 

the bases of the coral seemed more resilient compared to the tips.  

 Woo et al. (2014) subjected the soft coral Scleronephthya gracillimum to a mixture 

of 13 petroleum PAHs in equal proportion for 24 hours to assess gene expression. Genes 

involved with oxidative stress were upregulated. Many signaling pathways associated with 

protein kinase activation were altered, as well as downregulation of certain growth 

inhibitors which may result in carcinogenesis or tumorigenesis. Induction of cellular redox 

stress conditions resulted from exposure, suggesting a defense mechanism was initiated. 

Polymerases involved in DNA repair were repressed, suggesting the cells had little ability 

to repair damaged DNA. Fertilization and other developmental processes, as well as 

intracellular protein processing were also altered.  

 DeLeo et al. (2015) assessed the effects of Macondo crude oil and Corexit® 9500 

on three deep sea coral species in a suite of experiments using both mixtures and WAFs.  

Mixtures utilized the entire prepared solution without separation, while WAFs only used 

the aqueous phase of the toxicant following separation. Oil-only treatments (oil-seawater 

mixtures and WAF) had either no or very low mortality, with very few significant 

differences in health rating compared to controls. Health ratings of dispersant treatments 

(dispersant-seawater mixtures and dispersant-only WAF) were all significantly lower than 

controls and oil treatments.  Dispersant-only treatments also showed increased mortality, 
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with dispersant-only WAF producing higher mortality in all corals compared to dispersant-

seawater mixtures. The treatments causing the highest mortality, as well as the most 

significant changes to health ratings contained CEWAF or dispersant only.  It is also 

apparent that CEWAF solutions were more toxic compared to treatments containing 

oil/dispersant mixtures. The authors concluded that dispersants, in mixtures or WAFs, were 

more toxic compared to untreated oil, and dispersant use during the Macondo spill may 

have caused more damage to cold water corals than the initial release of oil.  

 Kegler et al. (2015) examined Pocillopora verrucosa following an 84 hour 

exposure to diesel. Concentrations declined by almost 64% over the exposure duration 

(0.69 – 0.25 mg/L TPAH). There were no significant effects on dark respiration rates or 

net photosynthesis. Photosynthetic yield was also unaffected by exposure to diesel.  

 Renegar et al. (2016) assessed the effects of the petroleum PAH 1-

methylnaphthalene on Porites divaricata in a 48-hour continuous flow recirculating 

passive dosing system. Hydrocarbon was partitioned into polydimethylsiloxane (PDMS) 

O-rings to maintain constant concentrations throughout the exposure. Concentrations were 

measured at the beginning, middle, and end of the 48-hour exposure and showed little loss 

due to volatilization or degradation. Physical coral response, photosynthetic efficiency, 

mortality, and histologic cellular changes were used to quantify the coral response. Corals 

exposed to 5,427 µg/L exhibited progressive polyp retraction and moderate tissue swelling 

and mucus production, with no mortality occurring throughout the exposure. The 25,832 

µg/L 1-methylnaphthalene exposed corals exhibited full polyp retraction with substantial 

mucus production within 6 h, and 100% mortality within 24 h. These two treatments scored 

significantly higher than controls and lower concentrations following the exposure. 

Histologically, corals exposed to 640 µg/L showed increased mucus production, while 

5,427 µg/L corals had significantly less mucus area, presumably due to exhaustion of 

mucous production capacity. The sublethal changes were used to calculate an EC50 of 6,695 

µg/L, while mortality data was used to calculate an LC50 of 12,123 µg/L.  
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Laboratory Experiments Testing the Effects of Hydrocarbons on Coral Reproduction 

 Loya and Rinkevich (1979) examined acute effects of Iranian crude oil on 

Stylophora pistillata during reproduction. Following exposure to the WSF of crude oil, 

corals immediately opened mouths and prematurely shed larvae at quantities significantly 

higher than controls. Although spawning events usually take place at night, this induced 

larval shedding had no connection to time of day. This forced spawning can increase 

predation pressure and lead to an extended period of development in the water column 

before settlement can occur. The authors concluded that the release of buoyant larvae in 

combination with floating oil is the most severe problem associated with hydrocarbon 

pollution.  

 Rinkevich and Loya (1979) assessed chronic effects of a weekly addition of floating 

Iranian crude oil on Stylophora pistillata for 2–6 months during gametogenesis. 

Researchers found a significant decrease in average number of female gonads per polyp 

following exposure.   

 Te (1991) monitored metamorphosis, settlement, and calcification of Pocillopora 

damicornis planula following exposure to a mixture of gasoline and motor oil for 15 days 

in both open and closed vessels. No mortality was observed during the open vessel 

exposure, with normal metamorphosis, settlement, and calcification at concentrations less 

than 50 ppm; higher concentrations significantly inhibited settlement. The closed vessel 

exposure led to 100% mortality in the 100 ppm treatment, with settlement significantly 

reduced in treatments greater than or equal to 20 ppm.  The effects of benzene, with or 

without settlement plates, was also examined. No significant effects were found when 

settlement plates were absent, although settlement was inhibited at 1 ppm. When settlement 

plates were present, variability was high, but there was a significant treatment effect on 

settlement.  Differences in the water soluble fractions of the test compounds in seawater 

prevented clear correlations between treatment and settlement rates, and authors do not list 

post hoc test results to distinguish where treatment effects were present.  

 Kushmaro et al. (1997) examined the effects of Israel crude oil on Heteroxenia 

fuscescens planula following a three-day exposure to floating oil or vessels coated in oil. 

Significant decreases in metamorphosis and variable mortality occurred in response to 

increasing concentrations of surface applied oil.  Metamorphosis was inhibited by 50% in 
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vessels coated with oil at 0.1 ppm. Free floating metamorphosis and post metamorphosis 

deformation occurred at the higher oil loadings. The authors concluded that inhibition of 

metamorphosis and mortality were significantly dependent upon crude oil concentration, 

and settlement was less frequent on oil covered surfaces.  

 Epstein et al. (2000) evaluated effects of the WSF of Egyptian crude oil and five 

dispersants on survivorship and settlement of Stylophora pistillata and Heteroxenia 

fuscescens planula in 2–96 hour bioassays. No mortality was observed in S. pistillata after 

exposure to oil WSF; although settlement was delayed, swimming behavior and settled 

polyp morphology remained unaltered. Dispersant WSF was only toxic to S. pistillata at 

higher concentrations, with settlement less than controls but similar to oil WSF. Planula 

morphology was deformed at all concentrations except the lowest tested. All dispersant 

only treatments at all concentrations exhibited detrimental effects to planula, exceeding oil 

WSF impact. Following exposure to dispersed oil WSF, S. pistillata planula showed 

complete mortality in all treatments greater than 10%, except those using Petrotech 

dispersant. Settlement was inhibited in all treatments, and major behavioral anomalies and 

structural deformations resulted. In H. fuscescens, all dispersed oil WSF concentrations led 

to high toxicity with no settlement, and caused major behavioral anomalies and increased 

structural deformations. It was apparent that dispersed oil had a marked increase in toxicity 

when compared to oil or dispersant alone, with higher mortality rates, no settlement, and 

significant alterations in behavior and morphology of both species.  

 Negri and Heyward (2000) assessed fertilization and metamorphosis of Acropora 

millepora following a four-hour exposure to Wandoo platform heavy crude oil and 

Corexit® EC9527A dispersant mixtures. Crude oil WAF failed to inhibit fertilization up 

to 0.165 ppm total hydrocarbon content (THC), while metamorphosis was significantly 

inhibited at 0.0824 ppm THC, and completely inhibited at 0.165 ppm THC.  Fertilization 

and metamorphosis were both significantly inhibited at 0.225 ppm THC when exposed to 

1% v/v dispersed oil, with full inhibition occurring at 0.325 ppm and 1.13 ppm THC for 

fertilization and metamorphosis respectively.  Following exposure to dispersed oil at 10% 

v/v dispersant/ oil, fertilization and metamorphosis were both significantly inhibited at 

0.0325 ppm THC. When using dispersant only, fertilization and metamorphosis were 

inhibited between 5 and 10 ppm THC. The authors concluded that both crude oil and 
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dispersant contribute to observed toxicity, and the dispersed oil concentration that 

significantly inhibited metamorphosis was equal to that which significantly inhibited 

fertilization. It was also apparent that fertilization success was more sensitive to CEWAF 

when compared to oil WAF. This could be attributed to the elevated levels of hydrocarbons 

in the water column following dispersant application.  

 Lane and Harrison (2000) exposed planula of three scleractinian corals to WAF of 

Fuel oil 467 and dispersed oil mixtures, using Ardrox 6120, for up to 96 hours. Oil WAF 

exposure increased mortality in Acropora tenuis, but variability in results limited 

significance. Goniastrea aspera mortality was significantly increased by oil WAF 

exposure, while Platygyra sinensis was least sensitive to oil WAF, with no significant toxic 

effects at any concentration. Exposure to dispersant only yielded LC50 values greater than 

oil WAF for all three coral species. Although toxic, dispersant only was less toxic to the 

three corals tested when compared to oil. Dispersed oil WAF however, led to a significant 

increase in mortality compared to controls, with an increasing toxic effect over time. All 

species tested were most sensitive to dispersed oil, indicated by a drastic decrease in LC50 

values. The mortality response to dispersed oil WAF was rapid, with high levels of 

mortality at less than 5 ppm after only 6–12 hours of onset of exposure. The authors 

concluded that mortality increased as chemical dispersion raised the concentration and 

spatial extent of hydrocarbons in the water.  

 Mercurio et al. (2004) exposed gametes of Acropora microphthalma to mineral 

derived oil WAF in culture plates for four hours to monitor effects of exposure on 

fertilization. Mineral derived oil was significantly more toxic when compared to vegetable 

derived oil, with fertilization significantly inhibited at 200 µg/L. When fertilization was 

successful, embryonic development was unusual, and outer cell membranes were 

disrupted; these changes reduce chance of survival and settlement.  

 Villanueva et al. (2008) exposed planula of five coral species to WAF of 

Malampaya natural gas condensate for 96 hours to monitor survivorship, metamorphosis, 

and post-settlement growth. Mortality was increased for two of the five coral species in 

response to exposure, but LC50 values were higher than any concentration tested, with the 

other three species incurring no mortality. Metamorphosis was delayed or impeded in four 

of the species tested, with the concentration leading to inhibition of metamorphosis in 50% 
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of the population (MIC50) calculated between 25 and >100% WAF. Post-settlement growth 

was reduced in three species, with two of the species experiencing no significant reduction 

in growth. Both Seriatopora and Stylophora spp. were more effected by increasing WAF 

concentrations than the Pocillopora species tested.  

 Villanueva et al. (2011) examined the effects of Malampaya natural gas condensate 

on gametogenesis and embryogenesis of Pocillopora damicornis following a 24 hour 

exposure. Coral fragments exposed to higher WAF concentrations incurred heavy 

mortality but gametogenesis was unaffected, as all corals planulated in high numbers when 

polyps were alive. The increase in mortality caused a reduction in number of reproducing 

polyps, which impairs reproductive output directly. Following exposure during late 

embryogenesis, concentrations of 50% and greater WAF led to dose dependent larval 

abortion immediately after onset of exposure. If the exposure occurred early in 

embryogenesis, larvae released were significantly smaller and metamorphic competency 

was reduced, while exposure later in embryogenesis led to fully developed planula with 

100% metamorphosis. It is apparent that time of exposure during the reproductive cycle 

plays a major role in the effects corals will incur.  

  Goodbody-Gringley et al. (2013) completed a suite of experiments measuring the 

effects of weathered and fresh Macondo crude oil on Porites astreoides and Orbicella 

faveolata planula. The effects of weathered oil on swimming behavior, settlement, and 

mortality of P. astreoides were examined for up to 120 hours. Weathered oil (267 mg/L) 

resulted in no significant changes to behavior or mortality when compared to controls; 

however, larvae which contacted oil failed to settle or metamorphose. Weathered oil (567 

mg/L) led to a significant increase in mortality after 24 and 72 hours. For the first 48 hours, 

no differences in settlement were observed, but after 72 hours, no new settlement in the oil 

treatments occurred while controls continued to settle. Post-settlement survivorship also 

decreased following exposure to 3,500 mg/L weathered oil. The effects of WAF, CEWAF, 

and dispersant only on P. astreoides were also examined using fresh Macondo crude oil 

and Corexit® 9500. Exposure to WAF solicited no effect on settlement after 48 hours for 

all concentrations, but a significant response occurred after 72 hours, where increased 

WAF concentration led to decreased settlement. After 48 hours, survival was significantly 

reduced, leading to a 48-hour LC50 of 0.51 ppm. Exposure to increased concentrations of 
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CEWAF reduced settlement after 48 hours and reduced survival after 72 hours in the 4.28 

mg/L and 30.99 mg/L treatments. The 72-hour LC50 of CEWAF for P. astreoides was 

calculated at 1.84 ppm. The same pattern occurred for dispersant only treatments, whereas 

increased concentrations led to decreased settlement and survival after 72 hours, leading to 

a 72-hour LC50 of 33.4 ppm.  

 Orbicella faveolata larvae were exposed to WAF, CEWAF, and dispersant only in 

two experiments; a 48-hour constant exposure, and a 96-hour spiked exposure. The 48-

hour constant exposure to WAF revealed a negative relationship between WAF and 

settlement; increased WAF led to decreased settlement. Larval settlement and survival 

were both significantly reduced at all concentrations, producing a 48-hour LC50 of 0.50 

ppm. Similarly, exposure to increasing CEWAF concentrations led to decreased settlement 

and survival, and the 48-hour LC50 for CEWAF was calculated at 0.28 ppm. Exposure to 

dispersant only also resulted in reduced settlement and survival as concentration of 

dispersant increased, producing a 48-hour LC50 of 19.7 ppm. Survival was monitored 

during the 96-hour spiked exposure, and was significantly reduced in all treatments. The 

96-hour LC50 for WAF, CEWAF, and dispersant only were calculated at 0.45 ppm, 0.12 

ppm, and 343.8 ppm respectively.  

 This study allowed direct comparison of effects associated with weathered and 

fresh crude oil on P. astreoides. Mortality occurred within the first 24 hours of exposure to 

fresh WAF, compared to 48 hours of exposure to weathered oil. This suggests fresh oil is 

more toxic than weathered oil, which could be linked to the presence of the more toxic, 

volatile components in fresh oil. It was also apparent that increased WAF resulted in 

decreased settlement and survival for both corals examined, although P. astreoides was 

more tolerant. Increased concentrations of CEWAF also resulted in decreased settlement 

and survival for both coral species, and higher concentrations of dispersed oil resulted in 

settlement failure and complete mortality. The authors concluded that the application of 

dispersants potentially increases the toxicity of oil exposure.  

 Hartmann et al. (2015) exposed Agaricia humilis and Orbicella faveolata larvae to 

seawater from a site that was polluted by Venezuelan light crude oil from a land-based 

facility on the southern coast of the Caribbean island Curacao. Survival of O. faveolata 

decreased by 10% after 6 days exposure, with an 85% reduction in settlement. After 10 
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days of recovery, survival was reduced to 75% of control values. Survival of A. humilis 

was unaffected by exposure, but a 40% reduction in settlement occurred. Corals were also 

exposed to the WAF of the same crude oil in six-day static assays. Survival was initially 

unaffected, but declined after 10 days in clean seawater for both O. faveolata and A. 

humilis. Settlement was also reduced in both corals following the exposure to WAF.   

 Negri et al. (2016) assessed the effects of the WAF of natural gas condensate, and 

four single aromatic petroleum hydrocarbons on settlement of Acropora tenuis larva. 

Larvae were exposed to dilutions of WAF for 24 hours and settlement was assessed 

following an 18 hour period in culture plates with addition of crustose coralline algae 

extract to initiate settlement and metamorphosis. Composition and concentration of 100% 

WAF solutions were analytically verified in order to analyze the contribution of each 

constituent hydrocarbon by applying the toxic unit approach. Larvae exposed to <100 µg/L 

TPAH exhibited normal settlement and metamorphosis with development becoming 

increasingly inhibited at higher concentrations, producing an IC50 of 339 µg/L TPAH. 

Abnormal development and partial metamorphosis without attachment occurred in 54% of 

the larvae exposed to 5,600 µg/L TPAH. Larvae experiencing concentrations >3,900 µg/L 

TPAH exhibited abnormal development of polyps with no recovery following isolation in 

clean seawater for 48 hours. The single hydrocarbons tested were ranked based on toxicity 

to A. tenuis larvae (naphthalene> xylene> toluene> benzene). The IC50s generated for each 

aromatic hydrocarbon were used to predict the toxicity of 100% WAF, resulting in 0.85 

toxic units. This value proved to be 39 fold less toxic than the measured toxicity of the 

natural gas WAF, suggesting early developmental stages of corals are impeded by an 

additional non-additive effect of petroleum hydrocarbons.  
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APPENDIX 2 

This appendix includes the semi-quantitative scale for scoring histology tissue 

sections to evaluate general condition of coral and algal cells, epidermal and gastrodermal 

integrity, and presence of tissue ruptures. This scoring system assessed the severity and 

extent of multiple categories (general cellular condition, zooxanthellae, gastrodermal and 

epidermal integrity of the surface and basal body walls).  
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