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Résumé 

 

Ce travail met en évidence le potentiel que la technologie des plasmas présente dans 

l’élaboration, en une seule étape, des catalyseurs de la synthèse Fischer-Tropsch (SFT), 

alors que les méthodes habituelles ou conventionnelles comme l’imprégnation et la 

précipitation sont des voies de production multi-étapes du matériau catalytique. Les 

nouveaux catalyseurs ont été mis en œuvre à partir d’espèces monométalliques ayant 

comme support le carbone (Fe/C, Co/C) pour développer des bimétalliques (Co-Fe), des 

ternaires (Mo-Co-Fe, Ni-Co-Fe) qui ont été ensuite formulés avec la présence de 

promoteurs (Au/Ni-Co-Fe). Du fait que la préparation par plasma thermique de ces 

catalyseurs nanométriques supportés par le carbone soit relativement récente, cela permet 

d’envisager des perspectives d’applications avec des retombées industrielles, car les hautes 

températures caractéristiques des plasmas permettent de générer des carbures de fer (Fe3C, 

Fe5C2) très importants dans le processus catalytique de SFT. Des efforts de quantification 

de toutes les phases de carbures ont été effectués à l’aide de la diffraction des rayons X 

(DRX), tandis que l’analyse quantitative à l’aide du Rietveld (AQR) n’a été que 

partiellement concluante à cause de la taille nanométrique des matériaux étudiés qui est en 

dessous des limites de détection instrumental. 

 

Avec des aires spécifiques de BET comprises entre 35 et 93 m2.g-1, les catalyseurs sont 

typiques de matériaux poreux et présentent ainsi un avantage pour la SFT car les 

transformations réactionnelles ne sont pas limitées par les phénomènes de transfert de 

masse. La microscopie électronique à transmission (MET) et la microscopie électronique à 

balayage (MEB) couplées avec la Spectroscopie à rayons X à dispersion d'énergie (EDX) 

et la cartographie des rayons X (cartographie X) ont montré une grande dispersion des 

particules métalliques dans la matrice de carbone, indiquant ainsi l’absence 

d’agglomération sur les échantillons frais et post réactionnels. Les caractérisations par la 

spectroscopie Raman et la Spectroscopie photoélectronique par rayon X (XPS) ont mis en 

évidence un support de catalyseur essentiellement graphitique. Les analyses par la 

spectroscopie d’absorption des rayons X (SAX), par la spectroscopie de structure près du 

front d’absorption des rayons X (XANES) ont confirmé que le catalyseur Co/C obtenu par 

plasma contenait des carbures (Co3C) qui n’ont pu être révélés par XPS. 
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Le test catalytique initial a été effectué en réacteur à lit fixe à 503 K (230°C), sous une 

pression de 3 MPa avec une vitesse volumique spatiale (VVH) de 6 000 . ℎ . , 

pour une durée de 24 heures. Par la suite, les tests ont été performés dans un réacteur 

triphasique agité continu (3-φ-CSTSR) opérant de façon isotherme pendant 24 heures à 

des températures de 493–533 K (220–260°C), sous 2 MPa et à VVH = 3 600 

 . ℎ . . Tous les catalyseurs étudiés ont été actifs pour la SFT, produisant des 

fractions de gasoline (essence) et de diesel mais avec des sélectivités qui dépendaient de la 

proportion de métal présent dans le catalyseur et des conditions réactionnelles.  

 

À 493 K, le catalyseur le plus actif a été Co/C, obtenu par plasma, avec 40% de 

conversion qui contraste avec les 32% du meilleur catalyseur commercial Fe/C. Ces 

performances ont été comparées avec celles d’autres catalyseurs synthétisés par plasma 

Fe/C (25% de conversion) et 80%Co-20%Fe/C (10%), tandis que 50%Co-50%Fe/C, 

30%Co-70%Fe/C n’ont montré aucune activité. Le catalyseur Co/C a été aussi le plus 

sélectif pour la formation de gasoline; mais à 533 K il a généré des quantités excessives de 

CH4 (46%) et CO2 (19%); ce qui a conduit à l’idée de synthétiser des bimétalliques Co-

Fe/C qui ont permis d’abaisser la sélectivité en CH4 ou CO2 en dessous de 10%, pour une 

conversion de CO dépassant 40%. De même, les catalyseurs contenant  du  Ni (Ni-Co-

Fe/C) ont été  plus actifs avec des conversions de CO dépassant 50% avec des sélectivités 

en gasoline (38%) plus élevées qu’en diesel (20%). Ce catalyseur bimétallique a aussi 

favorisé la formation importante de CH4 (23%) et de CO2 (14%) beaucoup plus que dans 

le cas du solide Co-Fe/C. 

 

Globalement, le catalyseur bimétallique Co-Fe et sa variante acidifiée (exemple Mo-Co-

Fe) ont été plus sélectifs en diesel (~ 55%). L’influence du prétraitement a été examinée 

et, selon la composition des catalyseurs, ceux qui ont été initialement réduits par CO 

avaient montré une amélioration de la sélectivité en diesel (50–67%); ces performances se 

sont avérées meilleures par rapport à celles des solides initialement réduits par H2 (45–

55%). En outre, les catalyseurs aux concentrations élevées en cobalt, ainsi que ceux 

prétraités sous hydrogène ont généré plus d’eau que ceux prétraités ou réduits par CO.   
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La présence d’atomes d’or comme promoteur dans le catalyseur Ni-Co-Fe/C (Au/Ni-Co-

Fe/C) a non seulement ralenti l’activité de Ni-Co-Fe/C, mais aussi a diminué sa capacité à 

former l’eau, bien que n’ayant eu aucun impact significatif sur la sélectivité en composés 

hydrocarbonés.  

 

Mots clés:  

Technologie de synthèse de nanomatériaux par plasma inductif, synthèse de Fischer-

Tropsch, catalyseurs supportés par le carbone 
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Abstract 

 

This work reveals the potential plasma technology presents in producing highly active 

catalysts for Fischer-Tropsch synthesis (FTS), while simultaneously contracting catalyst 

production into a single step, which is a certain departure from the traditional multi-step 

methods such as impregnation or precipitation. Novel catalysts proposed were carbon-

based, developed from single metal (Fe/C, Co/C) to bimetallic (Co-Fe), ternary (Mo-Co-

Fe, Ni-Co-Fe) and then the promoted Au/Ni-Co-Fe formulations. Since the preparation of 

nanometric carbon-supported catalysts by plasma is a relatively new phenomenon, it offers 

the Fischer-Tropsch catalysis prospects of future commercial applications, because of the 

high temperatures that are achieved in plasma create Fe carbides (Fe3C, Fe5C2), which are 

assumed to account for Fe-based FTS catalysis. An attempt to fully quantify the carbide 

phases in the samples by X-ray diffraction (XRD) and Rietveld Quantitative Analysis 

(RQA) was only partially successful due to the nanometric nature of the materials existing 

below the instrument’s detection limits.  

 

With BET specific surface areas of 35–93 m2.g-1, the catalysts were found to be non-

porous, a characteristic that is advantageous because Fischer-Tropsch reaction would 

operate away from mass transfer limitations. Transmission Electron Microscopy (TEM) 

and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray 

Spectroscopy (EDX) and X-ray mapping indicated high dispersion of the metal moieties in 

the carbon matrix, with no signs of nanoparticle agglomeration both in the fresh and used 

samples. Raman and X-ray Photoelectron Spectroscopy (XPS) characterized the support as 

highly graphitic, mixed with amorphous carbon arising from substantial defects in the 

graphite. Evidence from X-ray Absorption Spectroscopy (XAS) using X-ray Absorption 

Near Edge Structure (XANES) analysis confirmed that plasma synthesized Co/C catalyst 

contained some carbides (Co3C), which went undetected by XPS. 

 

Initial catalyst testing was performed in the fixed-bed reactor at 503 K (230C), 3 MPa 

pressure, and gas hourly space velocity (GHSV) of 6 000 . ℎ .  of catalyst for 24 

h. Elaborate tests were further executed in a 3-phase continuously stirred-tank slurry 

reactor (3-φ-CSTSR) isothermally operated between 493–533 K (220–260°C) at 2 MPa 
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pressure, and GHSV = 3 600 . ℎ .  of catalyst, for 24 h. It was observed that all 

catalysts were active for FTS, producing both gasoline and diesel fractions, but selectivity 

depended on the amount of metal in the catalyst or the reaction conditions.  

 

The most active catalyst at 493 K was the plasma-synthesized Co/C that showed 40% CO 

conversion, which was benchmarked against the commercial Fe/C at 32%. This 

performance was compared to the plasma-synthesized Fe/C (25% CO conversion) and 

80%Co-20%Fe/C (10% CO conversion), while both the 50%Co-50%Fe/C and 30%Co-

70%Fe/C were inactive. The plasma-synthesized Co/C was also more selective towards 

the gasoline fraction, but at 533 K it generated excessive CH4 (46%) and CO2 (19%) 

prompting the development of the Co-Fe/C bimetallics, which exhibited less than 10% 

selectivity towards CH4 or CO2 at over 40% CO conversion. Similarly, Ni-containing 

catalysts (Ni-Co-Fe/C) were relatively more active than the bimetallics, exhibiting over 

50% CO conversion with higher selectivity towards the gasoline fraction (38%) than 

towards diesel (20%). The Ni-Co-Fe/C catalysts also produced excessive CH4 (23%) and 

CO2 (14%), than the Co-Fe/C bimetallics.  

 

Overall, the Co-Fe bimetallics and the acidified Co-Fe catalyst (i.e. Mo-Co-Fe/C) were 

more selective towards diesel formation (~55%). When the effect of pre-treatment 

medium was investigated, depending on catalyst composition, the CO-reduced catalysts 

showed enhanced selectivity for diesel fraction (50–67%) than catalysts reduced in H2 

(45–55%). In addition, it was observed that catalysts containing high concentration of Co 

as well as those reduced in H2 generated more H2O than those reduced in CO, and the 

presence of Au (that is, in Ni-Co-Fe/C) not only depressed the Ni-Co-Fe/C catalyst 

activity, but it also lowered its capacity to form H2O, although it had no significant impact 

on the catalyst’s hydrocarbon selectivity.  

 

Keywords:  

Induction Plasma Synthesis Technology of Nanomaterials, Fischer-Tropsch Synthesis, 

Carbon-Supported Catalysts 
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1. INTRODUCTION 

 

1.1. Background  

 

Fischer-Tropsch catalysis was discovered by Franz Fischer and Hans Tropsch in the 

1920’s, and today the process has been commercially exploited to generate synthetic 

automobile fuels such as gasoline and diesel among other valuable hydrocarbon products 

(Khodakov et al., 2007). Since then, the Fischer-Tropsch synthesis (FTS) has been studied 

extensively (Dry, 2002), but not exhaustively; with four metals, namely cobalt, iron, 

nickel and ruthenium exhibiting great potential for industrial application (Dry, 1990).  

 

In the entire scheme, the industrial FTS process converts a mixture of syngas (H2 and CO) 

in a specified ratio to form polymeric chains of liquid hydrocarbons with a widespread 

distribution of products as represented by Equations (1.1) to (1.7) given in Table 1.1. 

 

Table 1.1 Equations showing the complexity of FTS reaction 

Target Reaction Designation 

Alkanes (2n+1) H2    +   n CO     →   CnH2n+2  +   n H2O Eqn. (1.1) 

Alkenes       2n H2    +   n CO     →   CnH2n     +   n H2O Eqn. (1.2) 

Water-gas shift         H2O    +      CO     →   CO2       +   H2 Eqn. (1.3) 

Methane         3 H2    +      CO     →   CH4       +   H2O Eqn. (1.4) 

         4 H2    +      CO2    →   CH4       +   2 H2O Eqn. (1.5) 

Alcohols    2n H2    +    n CO   →   CnH(2n+1)OH   +   (n-1) H2O Eqn. (1.6) 

 (n+1) H2  + (2n-1) CO  →   CnH(2n+1)OH   +  (n-1) CO2 Eqn. (1.7) 

 

 

Equation (1.1) indicates that hydrogen-rich feed-streams favour the production of alkanes, 

while hydrogen-poor feed-streams favour alkene production as given by Equation (1.2), 

and the water-gas shift (WGS) reaction given in Equation (1.3) can be a valuable source of 

CO or H2 in the system depending on the prevailing reaction conditions (Khodakov, 

2009).  
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Currently, FTS operates in two modes: the high-temperature process between 573–623 K 

(300–350C) using Fe-based catalysts to produce gasoline and linear low molecular mass 

olefins, while the low-temperature process operates between 473–513 K (200–240C), 

with either Fe or Co catalysts that produce high molecular mass linear waxes (Dry, 2002).  

 

Since FTS is a versatile process, it has capacity to consume different feedstocks such as 

natural gas, coal or biomass, from which their respective names are attributed as gas-to-

liquid (GTL), coal-to-liquid (CTL) and biomass-to-liquid (BTL) processes (de Klerk and 

Furimsky, 2011). The hydrocarbons thus produced are comparable to the conventional 

liquid fuels derived from crude oil when refined. 

 

1.2. Problems associated with Fischer-Tropsch synthesis 

 

1.2.1. Today’s challenges in FTS 

From the considerable amount of information currently in literature (Jacobs et al., 2013), 

the FTS chemical process may be considered a success story in the commercial production 

of synthetic fuels, although major challenges still exist.  Areas that still have potential for 

further examination include issues related to reactor-choice, catalyst type and process 

chemistry, as summarised in Table 1.2.  

 

Overarching concerns include the high costs in capital investment involved in 

commissioning the FTS plant and the need to improve heat and mass transfer efficiencies 

during operation. Critical to lowering the overall effectiveness of the FTS process, less 

complex, but effective catalyst synthesis approaches must be applied. This is in addition to 

addressing issues of catalyst longevity, regeneration and deactivation due to fouling, metal 

agglomeration, oxidation or poisoning and change of support properties such as loss of 

surface area due to pores collapsing. Moreover, during operation, depressing H2O 

production as well as minimizing the selectivity towards CO2 and CH4 is vital.   



 
 

 
3 

 

Table 1.2 Summary of potential research areas in FTS catalysis 

Property Challenge Ref. 

 

 

Reactor-choice 

1. Lowering the high capital costs for the FTS process  
 

(Vosloo, 2001) 
2. Increasing thermal efficiency due to:  

(i) Energy losses from the plant, which escalates operational costs 

(ii) Inordinate temperature profiles in tube reactors 

 

 

 

 

 

Catalyst issues 

3. Catalyst synthesis methods: create less complex, but effective approaches (Zhang et al., 2009) 

4. Carburization: promotes Fe-based catalyst, but poisons Co catalyst  (Ding et al., 2009) 

5. Catalyst deactivation: due to 

(i) Coking 

(Tsakoumis et al., 2010) 

(Pour et al., 2008) 

(ii) Sintering (Dry, 2002) 

(iii) Metal re-oxidation in Fe-based catalysts  

(iv)  Metal re-oxidation in Co-based catalysts 

(Li et al., 2001) 

(van Berge et al., 2000),  
(van de Loosdrecht et al., 2007) 

(iv) Sulphur intolerance  

- sulphur poisoning as an irreversible process 

(Chew and Bhatia, 2008) 

(Dry, 1990), (Vosloo, 2001) 

6. Catalyst regeneration (Tavasoli et al., 2008) 

 

Process chemistry 

7. Methane selectivity: minimizing CH4 formation  (Schulz, 1999) 

8. Production of CO2 (as an inert component in FTS) (Riedel and Schaub, 2003) 

9. Presence of H2O and its management: 

(i) WGS activity  

(ii) Effect of H2O in FTS 

(iii) Removal of H2O in FTS 

(Li et al., 2002), (Hilmen et al., 1999) 

(Dry, 2002) 

(Dalai and Davis, 2008) 

(Rohde et al., 2008) 
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1.2.2. Research areas of interest  

Current research interests centered on FTS catalysis can be divided into three general 

areas namely: catalyst synthesis, testing and characterization as summarized in Figure 1.1 

for the convenience of our discussion in this work.  

 

 

 

Figure 1.1 Summary chart of research design indicating key areas of FTS catalysis 

 

Under catalyst synthesis, three aspects that impact FTS were considered, that is, the 

choice of catalyst synthesis method, the type of support used and the active metallic 

phase. Highlights in catalyst testing included how the test conditions influence the FTS 

product spectrum. In catalyst characterization, a number of analytical techniques were 

used to probe the physico-chemical properties of the catalytic materials in order to 

elucidate and relate the probable nature of the active species in FTS, and the operating 

conditions under which these species were generated. 

 

Due to the numerous convoluted constraints (involving time, personnel, instrumentation, 

financial support, etc.), this project focussed only on a few aspects of advancing research 

on catalyst synthesis and FTS process chemistry. Figure 1.2 presents the complete 

dissection, with attention directed at the areas highlighted in green. 
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Figure 1.2 Global view of FTS catalysis 

 

 

Support

Elemental

Compounds

Carbon

Metal oxides

Zeolites

Amorphous carbon; Cabon Nanotubes; 
Graphitic carbon; Carbon nano-filaments, etc.

Alumina; Niobia;
Silica; Titania, etc.

Single metal oxides

Mixed metal oxides

Active Phase

Synthesis Method;
Functionalization

H-ZSM-5, MCM-41Acidic

Basic Aluminosilicates:
NaY

Single metal

Promoters

Bimetallics

Cobalt; Iron; Nickel; Ruthenium

Au; Ni; Mo; etc.

Impregnation

Plasma

Precipitation

Incipient wetness

Using ammonia, etc.

Reaction
Chemistry

Catalyst 
Durability

Reaction 
Process

Using metal powder + oil

Chemical
Properties

Physical
Properties

Testing

Synthesis

Characterization

Co-Fe by plasma

Deactivation; coking; wax; sintering; etc.

Recycling; Life cycle assessment

Catalyst regeneration

Crystal
Structure;
Bonding;

Interaction; etc.

Morphology; 
Particle size; 
Porosity; etc.

Technical

Management

Reaction
Conditions

Materials

Theoretical
studies

Applied
Chemistry

Concentration; Gas mole ratio; etc.

Catalyst composition 

Chemical

Physical

Catalyst

Reactor

Flow, Pressure; Stirring; Temperature; etc. 

Fixed bed; CSTR; etc.

Syngas Source Biomass; Natural gas; Reforming; etc.

Modeling

Reaction Kinetics; Mechanisms; 
Optimization; etc.

BET; SEM; 
TEM; etc.

Raman; XAS;
XPS; XRD; etc.

New research area in FTS 
unique to this work

Well researched 
areas in FTS

Key to this study:



 
 

 
6 

 

Under catalyst synthesis, plasma spray was the method of choice, generating the carbon 

support in situ. The catalysts’ active phase was studied iteratively from single-metal 

formulations (Co/C or Fe/C) to Co-Fe bimetallics, which were then promoted using 

various other metals such as Au, Mo, and Ni. For commercial applications, attractive FTS 

catalysts must effectively suppress production of H2O, CH4 and CO2 in addition to 

inhibiting metal re-oxidation. In catalyst testing, our reactor of choice was the 3-phase 

continuously-stirred tank slurry reactor (3-φ-CSTSR), although initial tests and validation 

of the results was conducted in the fixed-bed reactor.  

 

One of the highlights on the reaction process chemistry was the influence of test 

conditions on the FTS product spectrum. Some reaction conditions were simulated to 

mimic a syngas composition with a biomass origin, construed to be richer in CO with a 

H2:CO ratio < 2. A selection of analytical techniques was employed to characterize the 

catalysts for their physical and chemical properties with an intention of elucidating on how 

these properties could possibly influence the FTS reaction. 

 

1.3. Objectives of this work 

 

1.3.1. Previous research 

For Co-based catalysts, it has been agreed almost unanimously that the FTS reaction 

occurs on the metallic species, and formation of the oxide is a source of catalyst 

deactivation (Jacobs et al., 2013). However, for the Fe-based catalysts, controversy still 

persists with some authors asserting that both magnetite and metallic Fe are active for FTS 

while the carbides are inactive. Yet another school of thought advances that WGS reaction 

occurs on magnetite sites, while FTS takes place on the carbide sites (Huyser et al., 2010; 

p.185). The authors state that the non-polar Fe-carbide surface could be responsible for the 

production of paraffins and olefins while the polar Fe-oxide surface could be responsible 

for light hydrocarbon production, olefins and oxygenates. For this reason, other authors 

claim that the non-stoichiometric Fe-oxide-carbide complex is the active phase (Herranz et 

al., 2006). Original findings published by this research group has demonstrated the benefit 

of plasma method in creating the Fe carbides, which are thought to be indispensable in 

FTS (Blanchard et al., 2010), although the reaction mechanism is not yet clear. 
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1.3.2. Current research 

The principal objective of this work therefore, was to develop novel, yet highly active 

catalysts that might find commercial application in FTS. A choice catalyst should:  

(a) Be nanometric and non-porous, exhibiting high external surface area, but with low 

porosity in order to eliminate diffusion and mass transfer limitations during FTS;   

(b) Be supported by an inert material such as graphite (Bezemer et al., 2006), with a 

support that is yet to be commercialized giving it scope for industrial application;  

(c) Contain active metallic Co nanoparticles or Fe carbides species (Li et al., 2001). 

 

This study aimed to include a comparative assessment of different aspects of the FTS 

process, such as sample preparation methods, determining the properties and performance 

of the catalysts (Co-only, Fe-only, Co-Fe bimetallics and those promoted with Au, Ni and 

Mo) as measured by their catalytic activity and selectivity, especially with regard to the 

variant presence of metallic, carbidic and possibly oxidic species in the materials. 

 

1.4. Originality of this work: gaps in Fischer-Tropsch research 

 

Synthesis of carbon-supported catalysts for the FTS process using induction suspension 

plasma-spray (SPS) technology is a relatively new phenomenon (Blanchard et al., 2010). 

Plasma application shows potential for higher efficiency in contrast to conventional 

catalyst preparation methods, because it achieves shortened preparation time, attains 

uniform and highly distributed active species (Liu et al., 2002), and the materials exhibit 

superior performance (Rutkovskii et al., 2000).  

 

The use of SPS application is unique to this research project, but so far only the Fe/C 

catalyst had successfully been synthesised. In this work, the focus was on three areas 

where little attention has been given:  

(i) Synthesis of bimetallic (Co-Fe) catalysts using induction SPS technology,  

(ii) The use of in situ produced carbon support in FTS catalysts, and  

(iii) Catalyst characterization by Synchrotron light (XAS).  
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The successful production of the following FTS catalysts is therefore reported for the first 

time: the single metal Co/C formulation, the Co-Fe/C bimetallics, and the Ni-Co-Fe/C and 

Mo-Co-Fe/C ternary systems by plasma method, where one (Ni-Co-Fe/C) was promoted 

with Au, and this was in addition to the testing and characterization of such novel 

materials.  

 

1.5. Hypotheses tested and the expected outcomes 

 

Six hypotheses were tested in this study, ranging from synthesis method to catalyst 

composition and performance, thus: 

(i) Plasma method of catalyst synthesis: Three methods of catalyst synthesis were 

used to test the efficiency of the catalysts in FTS, and it was postulated that 

materials synthesized by plasma technology were comparatively superior in 

performance (Rutkovskii et al., 2000) to other catalysts, with evenly distributed 

metal components in the support matrix (Liu et al., 2002), devoid of the metal 

nanoparticle agglomeration in the samples. 

 

(ii) Catalyst selectivity for diesel fraction production: Since the alpha value (α) for 

Co lies in the range of 0.70–0.80 and Fe operates between 0.50–0.70 (Dry, 

1982), plasma-synthesized catalysts targeting for a mean metal nanoparticle 

size of about 10 nm were expected to produce more of the diesel than the 

gasoline fraction because the smaller the particle, the higher the α-value 

(Khassin et al., 1998). Usually, high -values at low temperature favour 

production of diesel and high molecular-mass hydrocarbons (e.g. waxes), with 

less of gasoline and low molecular-weight compounds. 

 

(iii) Choice of Co-Fe bimetallics: In selecting the 3 bimetallic compositions, it was 

expected that the 50%Co-50%Fe and 30%Co-70%Fe formulations would 

comprise identical intermetallic phases, while the 80%Co-20%Fe sample 

would exhibit unique properties since its Co-Fe intermetallic phases are 

different, according to the Co-Fe binary-phase diagrams (Okamoto, 2008). 
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(iv) Presence of nickel in Co-Fe bimetallics: Since it has been reported that Ni 

could replace Re as a reduction and activity promoter in Co-based FTS catalyst 

(Rytter et al., 2010), in this study it was postulated that Ni addition to the Co-

Fe/C bimetallic catalysts could boost production of the shorter hydrocarbon-

chain molecules, because Ni promotes early molecular desorption by lowering 

its activation energy (Enger and Holmen, 2012).  

 

(v) Presence of gold: It was proposed that incorporation of Au in the Ni-Co-Fe/C 

sample could keep Co in metallic form by decreasing its propensity for 

oxidation (Ahmad et al., 2013); while the synergistic effect of Au-Ni-Fe could 

enhance LT-WGS reaction that enriches the feed-gas with H2, thereby 

improving FTS (Venugopal et al., 2003b).  

 

(vi) Presence of molybdenum: It was advanced that catalyst synthesis of Mo-Co-

Fe/C by plasma would create Mo-carbides, which are selective for olefin 

production (Vo and Adesina, 2011). Increased surface acidity by Mo-addition 

to Co-Fe/C bimetallic would augment the electron-withdrawing character in 

the catalyst and enhance production of the diesel fraction (Cooper et al., 2008). 
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2. LITERATURE REVIEW 
 

2.1. FTS process chemistry 

 

2.1.1. The FTS catalyst 

Four metals (Co, Fe, Ni and Ru) display high activity for FTS, but only Co and Fe have 

commercially been exploited since they exhibit a considerable variation in the products 

depending on the reaction conditions. The Ru catalyst is the most active FTS catalyst, 

working at the lowest reaction temperature of only 423 K (150C), and yielding products 

of high molecular weight, but it is expensive (Fechete et al., 2012). On the other hand, Ni 

forms nickel carbonyls at high pressure, and it produces mainly CH4 at higher 

temperatures, a tendency that is less pronounced with Co or Ru (Schulz, 1999).  

 

In tandem, much attention in literature has been given to cobalt (Eschemann et al., 2014), 

(Ma et al., 2011), and iron catalysts (Dry, 1990),  (Lohitharn and Goodwin Jr., 2008). 

Additional studies of bimetallics to improve their catalytic performance have emerged and 

they include Fe-Cu (Pour et al., 2010b), Co-Mn (Morales et al., 2007), Fe-Mn (Tao et al., 

2006), and Co-Fe (Lögdberg, 2007). For example, synthesis based on Fe2+ 

disproportionation in a highly basic medium leads to well crystallized metal-spinel 

composite material, Coα
0.Fe 1-α

0

γ
.[CoxFe3-xO4] having a direct effect on the catalyst 

reactivity, with 0.5 being the best ratio (Wang et al., 2003).  

 

Furthermore, the promotional effect on Co and Fe catalysts has been reported using a 

myriad of elements that include among others, Au (Ahmad et al., 2013), Ba, Be, and Ca 

(Luo and Davis, 2003), Mg (Yang et al., 2006), and Pt (Chu et al., 2007). For example, 

increasing the basicity of a catalyst surface by addition of Ca, Mg or La influences the rate 

constant of the FTS reaction (Pour et al., 2010a), while K promotes selectivity for olefin 

production (Zhao et al., 2008), but restrains the formation of CH4 and light hydrocarbons 

in Fe-Mn catalysts (Yang et al., 2004).  
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Since an effective Co catalyst must be in the metallic state, Au improves Co reducibility 

because it has been observed that the strong metal-support interaction in for example, 

Co/Al2O3 catalyst hinders Co reduction (Ahmad et al., 2013).  

 

It is noted that the seamless transition in the application of single-metal catalysts to 

bimetallics and then to complex catalytic materials is an indication of the rapid 

technological advances that have been achieved in FTS research. 

 

2.1.2. FTS catalyst performance 

Three critical factors that determine the viability of commercializing a new FTS catalyst 

are the life, activity and product selectivity of the catalyst (Dry, 2002). Since Shell’s fixed-

bed reactor catalyst can last over 5 years, it implies that in today’s commercial plant, the 

immediate issue may not be the catalyst’s lifespan per se (Davis, 2007). Rather, selectivity 

remains the principle concern of any new catalyst employment in industry. It has been 

established that at low temperature, Co exhibits higher hydrogenation activity, while Fe is 

more versatile and may be manipulated to increasingly produce branched hydrocarbons, 

alkenes and oxygenates depending on reaction conditions and promoter effect. Selectivity 

towards the production of wax as a heavy FTS product has also been treated with 

sufficient interest (Pinna et al., 2003).  

 

Ordinarily, promoters in Fe catalysts can vary its selectivity properties in a wide window, 

while selectivity-linked promoters in the Co catalyst have been limited to date, because 

they have an unfavourable effect on the catalytic activity (Davis, 2007). Since H2O greatly 

impacts on the selectivity of CO to CH4 in Co catalysts, promoter choice and process 

conditions are key to lowering CH4 production (Yang et al., 2014). In some cases, raising 

the basicity of the catalyst surface can worsen the FTS reaction rate due to increased 

activation energy. For example, the activation energy of promoted Fe-catalysts using La, 

Mg and Ca was determined to be 70, 78 and 92 kJ.mol-1, respectively (Pour et al., 2010a).  
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2.1.3. Characterization of the active catalyst phase 

The nature and operation of the active species in the FTS catalysts has been of substantial 

interest to the researcher, and has been studied using many characterization techniques, 

including BET surface area, Microscopy (SEM/TEM coupled with EDX), XRD, TPR, 

XAS (XANES/EXAFS), and XPS, among others (Ernst et al., 1999). It has been observed 

that Co, Ni, and Ru remain in the metallic state under FTS conditions, but often the 

catalyst composition changes with time on stream (TOS).  

 

To probe these changes, some in situ characterization techniques such as laser Raman 

spectroscopy, magnetic measurements and Mössbauer spectroscopy have provided 

significant real-time evidence of the active Fe species (Herranz et al., 2006). When 

subjected to FTS conditions, several phases were identified, including metallic Fe, oxides 

(Fe2O3, Fe3O4 and FexO), and various different forms of carbides, FexC (Bahgat, 2006).  

 

Some studies on carbon-supported Fe catalysts for FTS have shown that partially reduced 

Fe oxide influences both catalyst activity and selectivity. Reduction of fresh Fe3O4 

catalysts has led to the formation of a non-stoichiometric iron-oxide-carbide species, 

which is less stable, but more active and more selective towards olefin formation than the 

known χ-Fe5C2 carbide. This implies that total reduction of the catalyst to metallic state or 

pure Fe carbides is not beneficial to the FTS reaction (Bengoa et al., 2007).  

 

The formation and composition of these Fe phases depend on the process conditions, 

catalyst deactivation and catalyst composition (Davis, 2009). Where the Fe carbide species 

were responsible for Fischer-Tropsch activity, oxidation of the Fe carbide to Fe oxide led 

to catalyst deactivation (Li et al., 2001). In order to improve on catalysts durability, some 

bimetallic Fe-Co/C alloys were prepared by mechanical alloying. Their nanostructure 

properties and the local ordering around Fe and Co atoms were examined using XRD and 

EXAFS (Yoo et al., 2006). Since catalyst-synthesis by plasma in this work was expected 

to generate various species of Co-Fe nano-alloys supported in a carbon matrix, such 

characterization techniques (SEM, EDX, TEM, XRD, XAS, XPS) at our disposal, which 

have been successfully used in other studies could be employed to determine the 

composition of the catalysts so-synthesized.  
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2.1.4. FTS reaction mechanism 

Although there are many views on the possible mechanism of interactions between CO 

and H2 leading to the formation of alkanes, alkenes or the production of oxygenates such 

as aldehydes and alcohols, today there appears to exist some convergence of opinion from 

old literature and recent findings in support of an oxygenate species as a more probable 

chain propagator (James et al., 2012).  

 

Nevertheless, there is a rival mechanism to the “oxygenated monomer” one, with 

considerable evidence that validates its proposition. The “carbene-mechanism” has three 

possible routes: the alkyl, alkenyl and the alkylidene mechanisms. It has been advanced 

that the CO molecule dissociates upon adsorption on active FTS catalysts, a phenomenon 

that occurs even at low temperatures. The CO is first reduced to its elemental state and 

later converted to metal-CH2 via metal-CH bonds (Thomas and Thomas, 1997; p.528).  

 

This theory has been confirmed by the assertion that H2 surface concentration is the key 

parameter in determining the reactivity of adsorbed CO, with various carbon pathways 

being suggested for either hydrocarbon-chain growth, or chain termination that leads to 

massive CH4 formation. Indeed, it has recently been shown that the dominating CO 

activation pathway is via hydrogen-assisted CO dissociation (Yang et al., 2013). 

 

2.2. FTS process engineering 

 

2.2.1. Choice of FTS test reactor 

Most FTS laboratory tests are either conducted in the continuous-flow fixed-bed reactor 

(Ali et al., 2011), or 3-φ-CSTSR (Hayakawa et al., 2006), but sometimes also in the Berty 

reactor, which intrinsically behaves like a CSTR (Botes and Böhringer, 2004). In industry 

reactors have high capital costs generally, and each type has its pros and cons. For 

example, the cost of a slurry reactor is 20–40% lower than the cost of a fixed-bed reactor 

with the same capacity (Khadzhiev and Krylova, 2011).  
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Lower catalyst loading in the slurry reactor decreases catalyst consumption per tonne of 

product. In addition, there is a greater possibility of on-line addition or removal of catalyst 

in the slurry reactor, allowing for longer reactor operations (Dry, 2002). Nevertheless, 

catalyst attrition is more rampant in the slurry reactor than in the fixed-bed reactor due to 

the vigorous stirring involved (Hou et al., 2008), and should any catalyst poison such as 

H2S enter the reactor, all of the catalyst will be deactivated, whereas in a fixed-bed reactor 

all the H2S would be adsorbed by the top layers of catalyst, leaving the balance of the 

catalyst bed unscathed (Dry, 2002).  

 

FTS being highly exothermic, heat transfer considerations limit the maximum conversion 

per pass in fixed-bed processes, whereas the slurry bed is more isothermal and so can 

operate at higher average temperatures resulting in greater conversions (Fox, 1993). The 

main areas of energy loss in large plants include syngas generation and syngas conversion 

sections, condensation of H2O produced during FTS and the inefficient recovery of energy 

from low-pressure steam (Vosloo, 2001).  

 

The differential pressure across the slurry reactor is normally lower than in the fixed-bed 

reactor, which reduces gas compression costs. Other incidental costs are governed by plant 

capacity, quality of feedstock and nature of the FTS products, type of process technology 

applied, in addition to storage, handling facilities such as buildings, utilities and service 

facilities (Brennan, 1998). 

  

2.2.2. FTS reaction conditions 

Key factors that influence the FTS product spectrum include reaction temperature, 

pressure, choice of catalyst, and composition of feed-stream gases (Farias et al., 2008). 

Higher temperatures have been perceived to lower the average chain length of the product 

molecules and favour both the selective formation of CH4 and the deposition of carbon, 

which leads to catalyst deactivation, especially with the Fe catalyst (Schulz, 1999).  

 

Generally, higher pressure is desirable in terms of reactor sizing, but it also increases the 

CO conversion to FTS products since the reaction is accompanied by a reduction in 

volume (van Steen and Schulz, 1999), and for Fe catalysts, the rate of reaction increases 

with higher partial pressure of H2 and lower partial pressure of H2O (Pour et al., 2010a). 
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On the other hand, it has been observed that the Co catalyst gives higher conversions in 

comparison to the Fe catalyst with syngas mixtures originating from natural gas, which is 

richer in H2 (ratio H2:CO ≈ 2:1), besides giving higher selectivity towards the paraffins 

(Calderone et al., 2013). 

 

Over a Co catalyst, approximately two H2 molecules react with one molecule of CO to 

form one hydrocarbon unit [-CH2-] and one H2O molecule, see Equation (1.2). This (molar 

H2:CO usage ratio) is normally taken as 2.1 and for the Co catalyst the required ratio is 

2.15 or may be as low as 1.7 for the Fe catalyst in the low-temperature (LT-FTS). At 

higher temperatures, WGS given in Equation (1.3) rapidly goes into equilibrium to allow 

the CO2 to convert to FTS products via the reverse-WGS reaction.  

 

Theoretically, all of the H2, CO and CO2 can be converted to FT products if the syngas has 

a ratio of [H2:(2CO+3CO2)]≈1.05 (Dry, 2002). Since the Fe catalyst inherently performs 

the WGS reaction, it enriches the feedstock by generating additional H2 gas back into the 

FTS reaction (Spath and Dayton, 2003). It has been observed that Au supported on Fe2O3 

is an effective low-temperature (LT-WGS) reaction catalyst particularly when associated 

with FTS-active metals such as Ru (Venugopal et al., 2003a), or Ni although the Au-Co 

combination is relatively poorer at the LT-WGS reaction (Venugopal et al., 2003b). 

 

2.3. Current developments in FTS catalysis  

 

2.3.1. Application of biomass feedstock 

In principle, syngas may be produced from any hydrocarbon feedstock (e.g. fossil fuel, 

natural gas, coal or biomass). However, the Co catalyst is usually preferred for syngas 

obtained from natural gas with the H2:CO ratio ≥ 2 (Davis, 2007) because it is richer in H2, 

but the Fe catalyst is preferred with syngas derived from coal (with H2:CO = 0.5–1.0). 

Syngas feedstock of biomass origin (bio-syngas) has the H2:CO ratio in the range between 

0.6–1.1 (Hu et al., 2012). Today, due to the impact of greenhouse gases experienced from 

fossil fuels there is mounting interest in the application of bio-syngas in FTS because bio-

syngas is a renewable source (Jahangiri et al., 2014).  
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Biomass is apparently one of the most abundant and cheapest renewable resources of 

hydrocarbons in nature, and for commercial production of gasoline or diesel, the lowest 

cost path would be the most favourable. Since Co catalysts are more sensitive to sulphur-

poisoning than Fe catalysts, and given the relative higher cost of Co to Fe, more efficient 

removal of sulphur is expected for the FTS reaction than with the Fe catalysts, which are 

more sulphur tolerant (Chew and Bhatia, 2008). A bio-syngas feedstock will therefore 

involve minor costs in syngas clean-up, particularly from sulphur, whose presence only 

appears in minute quantities (Hu et al., 2012).  

 

2.3.2. Carbon supported catalyst materials  

The active catalyst phase, usually in metallic form may come unsupported (Gaube and 

Klein, 2008), or supported on pristine metal oxides like alumina (Visconti et al., 2009), 

silica (Escalona et al., 2009), titania (Zennaro et al., 2000), or zeolites (Kang et al., 2010). 

High activity and selectivity towards aromatic products in the FTS has been attributed to 

the strong acidity and the unique porosity found in the HZSM-5 zeolite (Jong and Cheng, 

1995). The use of mixed metal-oxide supports such as SiO2-TiO2 (Jongsomjit et al., 2006), 

ZrO2-Al2O3 or ZrO2-SiO2 (Jacobs et al., 2002) has also been reported.  

 

On one hand, it has been observed that strong interaction between the metallic phase and 

the support may improve catalytic activity (Jacobs et al., 2002), but it may also be 

detrimental on the other hand due to the formation of irreducible metal-support 

compounds such as CoAl2O4 because CoO becomes chemically incorporated in the Al2O3 

support (Jacobs et al., 2013). Moreover, pore size and acid properties can influence the 

metal-support interactions that may form well-defined phases such as cobalt silicate 

(Co2SiO4), aluminate (CoAl2O4), lanthanate (LaCoO3) (Ernst et al., 1999), or titanate 

(CoTiO3) (Voss et al., 2002).  

 

Today, carbon supports are receiving substantial attention because of their inertness and 

capacity to be modified to produce diverse porous microstructures (Fu and Li, 2015). 

Since the active metal phase of the catalyst does not interact strongly with the carbon 

support, many authors have observed higher activity in carbon-supported catalysts than in 

those supported on metal oxides (Xiong et al., 2015).  
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Limited interaction of the metal with the support makes carbon attractive, and with 

growing significance because carbon exists in a variety of forms and morphologies, such 

as activated carbon (Ma et al., 2007), carbon nano-tubes (Chen et al., 2006), graphitic 

nano-fibres (Bezemer et al., 2006), carbon nano-filaments (Jankhah et al., 2008), carbon 

spheres with mean size 600 nm (Dlamini et al., 2015), carbon black, glassy carbon, 

ordered mesoporous carbon, and diamond (Xiong et al., 2015), graphene nano-sheets 

(Moussa et al., 2014), or reduced graphene oxide (Cheng et al., 2016). Graphene is a two-

dimensional, one-atom thick layer of graphite, while graphite has multiple irregular layers 

of naturally formed graphene. Graphene oxidation results into an O-rich surface, whose 

reduction leads to reduced graphene oxide that can be used as a catalyst support.  

 

Various preparation techniques have been employed to produce different types of carbon 

supports. For example, in industry carbon black is produced by the incomplete combustion 

of heavy petroleum products such as tar (Xiong et al., 2015). Carbon spheres can be 

synthesized by the hydrothermal treatment of sucrose solution (Dlamini et al., 2015), or by 

a chemical vapor deposition method (Xiong et al., 2011), while carbon nano-filaments 

have been produced by the dry-reforming of ethanol using CO2 gas (Blanchard et al., 

2008). Some authors have prepared carbon nanotubes using organogels (Chen et al., 

2006), and others catalytically generated carbon nanofibers of the fishbone-type from 

syngas using a 5-wt% Ni/SiO2 growth catalyst (Bezemer et al., 2006). Activated carbon 

may be produced by treating biomass (e.g. coconut shell) with phosphoric acid (H3PO4) at 

optimized conditions of activation temperature, time and reactant mass ratio (Gratuito et 

al., 2008). With enhanced mechanical support for metal particle anchorage, nano-carbon 

materials are now finding many applications in industry.  

 

While activated carbon offers highly porous supports with enhanced BET specific surface 

area (often exceeding 103 m2.g-1), graphitic carbon in particular, provides good electrical 

and thermal conductivity properties through electron tunneling, and it exhibits high 

reactivity because of the unsaturated valences at the edges of its graphitic layers. Its 

surface area can be considerably enhanced by mechanical stretching or expansion along its 

crystallographic c-axis (Serp and Machado, 2015; p.6).  
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Different authors have effectively deposited the active metallic phase of the catalyst on the 

preformed carbon supports through various methods such as impregnation (Trépanier et 

al., 2009a), incipient-wetness impregnation (Ma et al., 2007), or deposition/precipitation 

using K2CO3 or urea (van Steen and Prinsloo, 2002). At other times the metallic phase and 

the carbon support could be simultaneously generated in situ by for example, the plasma-

spray technology (Blanchard et al., 2010).  

 

Since catalyst activity has been found to be directly related to both the stability of the 

metal nanoparticles in the active phase and the degree of reducibility of the metal species 

(Xiong et al., 2015), other factors perceived to enhance the performance of carbon-

supported catalysts include higher metal loading and use of promoters (Trépanier et al., 

2009a). Increasing the metal loading has been seen to improve both CO conversion and 

C5+ selectivity. However, where application of bimetallic formulations has been attempted, 

it was observed that the alloy with intermetallic ratio of Co:Fe = 1 was not a critical 

component in enhancing both the activity and selectivity of the carbon-supported catalyst, 

but rather a Co-rich combination being most significant, with a metal ratio close to Co2Fe 

(Dlamini et al., 2015).  

 

A Co-based catalyst promoted with Ru through impregnation method was perceived to 

enhance metal reducibility and dispersion, while simultaneously decreasing the average 

metal cluster sizes. It was observed that both Ru and K promote selectivity for higher 

molecular-weight hydrocarbons (Trépanier et al., 2009a). In addition, chemical activation 

of the carbon support in order to improve catalyst performance has been found to be very 

beneficial. For example, carbon nanotubes (CNTs) can be functionalized by acid treatment 

in order to increase the number of defect sites in the support’s crystal structure. These 

defects are considered to be the anchoring positions for metal nanoparticles (Abbaslou et 

al., 2009), with the results indicating increased BET surface area, higher metal dispersion 

and lower mean particle size, in addition to better catalyst reducibility and FTS activity 

(Trépanier et al., 2009b). 
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2.3.3. Catalyst synthesis through plasma technology 

Various techniques have been employed to prepare FTS catalysts, which include among 

others, impregnation (Voss et al., 2002), precipitation (Riedel and Schaub, 2003), co-

precipitation (Cai et al., 2010), micro-emulsion method (Zamani, 2015), ion-exchange 

(Tang et al., 2003), carbon-vapour deposition (CVD) (Xiong et al., 2011), spray-drying 

technology (Zhao et al., 2008), and the rapid quenching of skeletal Fe of nano-crystalline 

dimensions to produce expanded lattice with low coordination number (Xu et al., 2014). 

Currently, interest in plasma technologies for application in FTS is on the rise (Blanchard 

et al., 2010), because of its proposed advantages that include superior catalyst 

performance (Rutkovskii et al., 2000), shortened preparation time, production of highly 

distributed active species, enhanced catalyst lifetime, and overall lower energy 

requirements, especially with cold plasma applications (Liu et al., 2002).  

 

2.3.4. Nanotechnology: application of nano-catalytic materials 

Since plasma technologies inherently produce nano-catalysts that may ultimately find use 

in FTS, such materials present numerous benefits and current trends in research indicate 

movement toward the widespread application of nanometric catalysts. For example, it has 

been noted that increasing the catalyst pellet size of a catalyst in FTS results in the 

reaction becoming more diffusion controlled than kinetically controlled and consequently, 

the amount of CH4 produced increases (Davis, 2007).  

 

Besides, it has also been shown that the rate of carbide formation depends on the average 

metal particle size. Additionally, Fe catalysts with smaller particles have been observed to 

be more resistant to oxidation by the CO2 and H2O produced during FTS (Raupp and 

Delgass, 1979). In Co-based FTS catalysts, selectivity has been seen to be considerably 

dependent on the metal particle size; and the smaller the particle, the higher the probability 

of producing longer-chain hydrocarbons (Khassin et al., 1998).  
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However, there is also low turnover frequency in smaller Co particles (< 7 nm) due to 

stronger CO adsorption (den Breejen et al., 2009). Other authors concur that metal 

nanoparticles smaller than 6 nm lead to both poor activity and inferior selectivity towards 

the C5+ fractions (Bezemer et al., 2006). These studies bring to the fore the significant role 

nanometric materials will play in the future of FTS catalysis. 

 

Moreover, catalyst reactivity has been linked to H2 exposure because CO molecules 

dissociate more efficiently on the larger Co nanoparticles (15 nm) than on the smaller ones 

(4 nm), and higher exposure of Co nanoparticles to H2 has been found to enhance CO 

dissociation rates (Tuxen et al., 2013). Therefore, higher H2 concentrations favour chain 

termination and lead to production of shorter-chain hydrocarbons (Madon and Iglesia, 

1993). It is then recommended that a choice FTS catalyst should have metal nanoparticles 

within a narrow range of about 6–8 nm (Bezemer et al., 2006). This assertion has been 

supported by kinetic studies indicating that the FCC structure of Co metal tends to favour 

the H-assisted CO dissociation mechanism (Liu et al., 2013). 
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3. EXPERIMENTAL DESIGN 
 

3.1. Catalyst synthesis 

 

3.1.1. Materials and reagents 

Raw materials used in this research included: 99.8% Co metal (particle size: 1–10 μm), 

99.95% Mo, 99.99% CoO and 99.5% CoO.Co2O3 from Aldrich (Milwaukee, WI, U.S.A ); 

99.9+% Fe metal (1–10 μm), 99.5% FeO, Fe2O3, 99.99% FeO.Fe2O3, Fe(NO3)3.9H2O, and 

Co(NO3)2.6H2O from Alfa Aesar (Tewksbury, MA USA); pure Ni powder from CuLox 

Technologies Inc. (Naugatuck, CT, USA); Commercial Fe-NanoCat® from Mach I (King 

of Prussia, PA, USA), 99.9+% Chloroauric acid [AuCl3.4H2O] from Sigma-Aldrich 

(Oakville, ON, Canada); high purity gases from PRAXAIR (Sherbrooke, QC, Canada): H2 

(N5.0), CO (N2.5), Ar (N5.0); 68% nitric acid and 29% ammonia solution from ACE 

Chemicals Co (Camden Park, SA, Australia); mineral oil (Fisher Scientific, Ottawa, ON, 

Canada) with catalog name “O122-4, Mineral Oil, Heavy; USP/FCC (Paraffin Oil, 

Heavy)”, and 99% n-hexadecane solvent (Fisher Scientific, Whitby, ON, Canada). 

 

3.1.2. Summary of catalyst synthesis procedures 

In order to correlate the effect of synthesis method to catalyst performance, all the single-

metal catalysts (Co/C and Fe/C) supported on carbon were prepared as follows: 

(a) Metal deposition on freshly synthesized carbon nanofilaments (CNFs) by  

(i) Impregnation, or  

(ii) Precipitation; and  

(b) By in situ generation of carbon-supported metal nanoparticles through plasma.   

 

3.1.3. Production of carbon nanofilaments (CNFs) 

The CNFs were synthesized through dry-reforming of ethanol (C2H5OH) in a CO2 stream 

at 838 K (565oC) according to a patented process developed by this research group 

(Abatzoglou et al., 2010). The expression in Equation (3.1) summarizes the reaction.  
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 C2H5OH (l)  +  CO2 (g)  →  CO  +  2 H2 (g)  +  2 H2O (l)  +  2C (s)   Eqn. (3.1) 

 

A stream of C2H5OH and CO2 mixture was left to flow over a 17-g steel strip with 

dimensions of 413 mm x 25 mm x 0.5 mm, at a constant rate of 1 O atom for every C 

atom (C2H5OH + CO2 = 3C + 3O), where some 0.3 g.min-1 of liquid C2H5OH reacted with 

CO2 at a flow rate of 160 SCCM at room temperature and barometric pressure (298 K, 

101.325 kPa), and the reaction left to proceed for about 4–6 h (Blanchard et al., 2008).  

 

The resulting CNFs were then functionalized by acid-activation (using 4 M HNO3 acid) 

where 250 cm3 of 68% concentrated acid (15.8 M) was dissolved in a liter of solution of 

distilled H2O. About 50 g of the CNFs were refluxed with 4 M HNO3 at 368 K for 3 h 

(Abatzoglou and Plascencia, 2014). Activation by acid treatment was to create metal 

anchorage sites on the CNFs. 

 

3.1.4. Catalyst synthesis by impregnation 

Catalyst samples were synthesized while aiming for a 40% metal-mass loading: 33.7 g of 

Co(NO3)2.6H2O and 10.2 g of acid-activated CNF support were mixed with just enough 

water to produce a thick homogenous paste, which was left to evaporate slowly to dryness 

in an oven set at 373 K (100oC) for 15 h. An analogous Fe-based catalyst was made using 

45.4 g of Fe(NO3)3.9H2O and 9.4 g of acid-activated CNF support. The resulting catalyst 

precursor was then calcined at 563 K (290oC) in a current of Ar flowing at 400 SCCM for 

10 h, after which the material was cooled to room temperature in the same gas stream.  

 

3.1.5. Catalyst synthesis by precipitation 

Comparable Co/C and Fe/C catalysts aiming at 40% metal-mass loading in the final 

catalysts were prepared from 0.11 M metal salts solutions using a mass of 31.6 g of 

Co(NO3)2.6H2O or 45.1 g of Fe(NO3)3.9H2O respectively. For metal precipitation, 25 cm3 

of 29% (or 15 M) NH4OH solution was dissolved to make 250 cm3 of solution (0.15 M) 

using distilled H2O, from which 100 cm3 was drawn and added instantaneously to 10.0 g 

of acid-activated CNF support. The ensuing thick homogenous paste was warmed gently 

for 30 min on a water bath set at 343 K (70oC) to evaporate excess ammonia.  
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The sample was then vacuum-filtered and flashed several times with a liter of distilled 

H2O. The residue was left to oven-dry at 373 K for 10 h, and later calcined at 563 K in a 

current of pure inert gas (Ar) flowing at 400 SCCM for 10 h, and then cooled to room 

temperature in the same gas stream.  

 

3.1.6. Catalyst synthesis by plasma 

Figure 3.1 shows a diagram of the radio frequency (RF) plasma-spray equipment, which 

also appears in the article provided in Appendix A (Aluha et al., 2016a).  

 

 

Figure 3.1 Graphic showing equipment for the plasma spray technique 
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The HF-60 kW SPS system operates on the PL-50 coil and the subsonic nozzle. In the 

sheath of the flame, the gas flow rates were set at 75 SLPM for Ar and 10 SLPM for H2 

while the other Ar gas flow rates were 23 SLPM (Central) and 10.4 SLPM (Powder). The 

voltage was set at about 6.6 kV, current at 4.4 A and 0.5 A (grounding) to provide a 29-

kW power output. 

 

In catalyst preparation, a mass of 60 g of the metal (Co-only, Fe-only or both in a 

predetermined ratio) were mixed with 300 cm3 of mineral oil for at least two hours in 

order to form a homogeneous suspension, which was then injected directly into the plasma 

spray at a flow rate of 8.2 cm3.min-1. Table 3.1 provides the various targeted catalyst 

formulations that were produced.  

 

Table 3.1 Mass of metal required to create the plasma-spray suspensions 

Catalyst sample  
(expected wt% loading) 

Mass of metals (g) 

Co Fe Ni Mo 

100%Fe/C - 60 - - 

30%Co-70%Fe/C 18 42 - - 

50%Co-50%Fe/C 30 30 - - 

70%Co-20%Fe-10%Mo/C 42 12 - 6 

70%Co-20%Fe-10%Ni/C 42 12 6 - 

70%Co-25%Fe-5%Ni/C 42 15 3 - 

80%Co-20%Fe/C 48 12 - - 

100%Co/C 60 -   

 

The conditions for the SPS system were monitored constantly to ensure consistency, 

where voltage was set at 6.6 kV, current at 4.4 A, and 0.5 A (for grounding), fixed 

pressure set at 250 Torr (33 kPa), initial pressure below 30 Torr (4 kPa) and final pressure 

at 300 Torr (40 kPa). After catalyst synthesis, which gives about 70 g of the material per 

batch, the feather-light material was harvested and tested for the Fischer-Tropsch activity. 
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3.2. Catalyst testing 

 

3.2.1. Reactor designs and set-up 

In this study, initial tests were performed in a fixed-bed reactor, whose design is presented 

in Appendix B (Aluha et al., 2015) and further, in a 3-φ-CSTSR whose design is shown in 

Figure 3.2, also appearing in the article provided in Appendix C (Aluha et al., 2016b). 

 

When compared, reactors applicable to Fe-based catalysts, but operating at lower 

temperatures have received less attention than their Co-based counterparts since Fe-based 

catalysts usually exhibit lower yields of diesel and wax (Ebert, 2013). In our case, the 3-φ-

CSTSR was employed in order to obtain mainly the diesel fraction and waxes and was 

commissioned with capability to function in either batch mode or continuous flow. 

 

In the 3-φ-CSTSR, the feed syngas (CO + H2) was bubbled through inert oil (hexadecane), 

in which catalyst particles were suspended. High conversion of the feed gas to liquid 

products can be achieved by vigorous mixing, which provides an intimate gas-catalyst 

contact with a uniform temperature distribution in a relatively small reactor volume 

(Kreutz et al., 2008). Vigorous mixing with the stirrer set at 2 000 rpm provided effective 

heat transfer mechanisms besides depressing the accumulation of H2O during reaction. In 

addition, a special sampling column was set up in such a way that the slurry (solid catalyst 

in hexadecane solvent) could be isolated from the reactor occasionally for α-value 

determination with TOS without interrupting the process.  
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Figure 3.2 Schematic showing the entire reactor-system design of the 3-φ-CSTSR 
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3.2.2. FTS reaction conditions 

Using a high-pressure, stainless-steel vessel supplied by Autoclave Engineers (Erie, PA, 

U.S.A) operated isothermally between 493–533 K (220–260°C) at 2 MPa pressure, about 

5 g of the catalysts was loaded into the reactor and the gas feed adjusted to a space 

velocity (GHSV) of about 3 600 . ℎ .  of catalyst. Since these nanometric 

materials have been observed to be pyrophoric, great care was taken when handling and 

the catalyst was pre-treated in situ (before the FTS reaction ensued) at 673 K (400°C) for 

24 h under reducing conditions of pure H2 or CO flowing at 250 . .  

 

Pre-treatment normally activates the catalyst by gasifying most of the carbon matrix 

surrounding the metal moieties to essentially form CH4 and other light hydrocarbons, 

leaving behind nanometric Fe or Co catalysts predominantly in the metallic form. Product 

analysis was carried out offline in two Varian CP-3800 Gas Chromatographs; one 

dedicated for gas injections, while the other was dedicated for liquid samples only.  

 

3.2.3. Determination of catalyst activity 

About 10% Ar was included in the FTS gas feed stream for mass balance determination 

(Bahome et al., 2005), where the catalyst activity was calculated from gas-phase analysis 

using Equation (3.2) by the amount of CO converted, thus: 

 

 (%) =  ×  × 100      Eqn. (3.2) 

 

3.2.4. Determination of catalyst selectivity 

In the liquid-phase, the selectivity of each product ( ) was calculated from the area under 

its corresponding peak (Ai) on the GC chart, and then divided by the total sum area of all 

the peaks from C5 and above as shown in Equations (3.3) and (3.4), thus: 

 

=  
 ⋯ 

               Eqn. (3.3) 
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The selectivity (S) of any product (Ci) in liquid-phase was determined by the equation: 

 

=    (100 − )                    Eqn. (3.4) 

 

where Ci  = hydrocarbon product with i carbon atoms 

i    = number of carbon atoms, i = 5, 6, 7, ….n, and 

    = selectivity calculated from the area under each peak (Ai). 

P    = the total CO conversion to the gas-phase products (as %) 

 

3.2.5. Determination of α-values from ASF distribution 

Generally, the catalyst’s alpha value (α), which denotes the probability for hydrocarbon-

chain growth (Wang et al., 2003), is predicted from the Anderson-Schulz-Flory (ASF) 

distribution (van der Laan and Beenackers, 1999) by several mathematical expressions 

shown below.  

 

= ( − ) . ( )     Eqn. (3.5) 

 

= +
( )

      Eqn. (3.6) 

 

=  =  
( )

      Eqn. (3.7) 

 

where: Mn = mole fraction of a hydrocarbon with chain length n 

 n = number of total carbon atoms 

  = probability of chain growth (  1) 

 (1 - ) = probability of chain termination  

rp = the rate of chain propagation 

 rt = the rate of chain termination  
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Thus, the -values were obtained by the least-squares linear regression of Equation (3.5) 

in the logarithmic form expressed as Equation (3.6), where log(Mn/n) is plotted against n, 

the hydrocarbon-chain length (Bartholomew and Farrauto, 2006; p.403). A catalyst’s -

value, whose meaning is interpreted to be the relationship between the rate of chain 

propagation and the rate of chain termination as shown in Equation (3.7) is usually given 

as a range, and depends on the nature of the material and the reaction conditions such as 

the FTS temperature (low or high). 

 

3.3. Catalyst characterization  

 

Various analytical techniques were utilized in characterizing both the fresh and spent 

catalysts. The following methods were attempted: Thermogravimetric analysis (TGA) for 

metal-mass loading in the catalysts using the TGA-DTA Setsys 2400 instrument (Setarum, 

Hillsborough, NJ, U.S.A), Brunauer-Emmett-Teller (BET) surface area analysis by means 

of an Accelerated Surface Area Porosimeter (ASAP) 2020 (Micromeritics, Norcross, GA, 

U.S.A), Raman Spectroscopy using a Micro-Raman LabRam-800 Spectrometer  (Horiba 

Ltd., Kyoto, Japan), Scanning Electron Microscopy (SEM) coupled with Energy 

Dispersive X-ray (EDX) Spectroscopy and X-ray mapping performed on a Hitachi S-4700 

instrument (Hitachi, Tokyo, Japan), while the Transmission Electron Microscopic (TEM) 

imaging for particle size analysis was conducted on a Hitachi H-7500 Microscope 

(Hitachi, Tokyo, Japan). Phase analysis by X-ray Diffraction (XRD) was performed on a 

Philips X’pert PRO X-ray Diffractometer (PANalytical, EA Almelo, The Netherlands), X-

ray Photoelectron Spectroscopy (XPS) was done using a Kratos Axis Ultra DLD 

spectrometer (Shimadzu, Manchester, England), and X-ray Absorption Spectroscopy 

(XAS) particularly by the X-ray Absorption Near Edge Structure (XANES) analysis was 

conducted at the Synchrotron (Canadian Light Source (CLS), Saskatoon, SK, Canada). 

 

3.3.1. BET surface area analysis 

The BET physisorption analysis was carried out using liquid nitrogen at 77 K (–196°C), 

and pressure ~1 kPa (below 10 μmHg) in a Micromeritics ASAP 2020 instrument, shown 

in Figure 3.3. Prior to the analysis, the samples were degassed at 423 K (150°C) for about 
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50 hours and evacuated until a pressure of less than 1 kPa was obtained in the sample 

holder. Porosity information on specific surface area, average pore size and pore 

distribution was extracted from the plotted isotherms. 

 

 

Figure 3.3 The Micromeritics ASAP 2020 instrument 

 

3.3.2. Microscopy: SEM and TEM 

Morphological properties of the catalysts were examined on a Hitachi S-4700 SEM 

instrument shown in Figure 3.4. The microscope captured both secondary and 

backscattered images, and with an X-Max Oxford EDX spectrometer for elemental 

analysis, X-ray mapping was used to visually indicate the degree of dispersion of the 

metals in the carbon matrix. On the other hand, metal-particle size distribution was 

analyzed on a Hitachi H-7500 TEM, fitted with W filament and operated at an accelerating 

electron beam of 120 kV. Images were captured in bright field mode on a bottom-mounted 

AMT 4k x 4k CCD Camera System Model X41 and the Nano-measurer 1.2 “Scion 

Imager” software aided particle size analysis. 
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Figure 3.4 The Hitachi S-4700 Scanning Electron Microscope 

 

3.3.3. Thermogravimetric analysis  

A number of difficulties were associated with samples analysis, one of them being the 

indigestible nature of graphite. This rendered the conventional elemental analysis by 

inductively-coupled plasma mass spectrometry (ICP-MS) method unreliable. Therefore, 

only the metal mass loading of the single-metal catalysts (Co/C and Fe/C) was determined 

using thermogravimetric analysis, and it was conducted on a Setaram Setsys 2400 

calorimetric system, equipped with a 1 873 K TG-DTA sensor. Less than 25 mg of the 

sample in an alumina crucible was heated from ambient temperature (~293 K) to 1 273 K 

at a heating rate of 10 K.min-1, first in an inert atmosphere using Ar and then in 20% O2 

balanced in Ar. From the results, it was interpreted that the mass loss recorded was related 

to the amount of carbon burned (to form CO2), leaving behind the bare metal, from which 

the atomic mass and hence the metal loading in the catalyst was calculated.  

 

3.3.4. Raman spectroscopy  

Since graphite is Raman active, the degree of graphitization in the catalyst support was 

determined on a LabRam-800 spectrometer equipped with a microscope, a He-Ne 632.8 
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nm laser and a N2-cooled charge-coupled device detector. To avoid sample overheating 

during measurements, laser beam power was kept below 2 mW through 50x objective 

lens, focusing the excitation light on a spot size of 3 μm in diameter.  Weak Raman signals 

were accumulated for a period of 30 min to 1 h to obtain a good signal/noise ratio. The 

MicroRaman module was favored for this analysis because FT-Raman spectra 

reproducibility of the samples was poor. 

 

3.3.5. X-ray diffraction (XRD) studies 

Figure 3.5 is an image of the Philips X’pert PRO Diffractometer from PANalytical used 

for the powder-XRD analysis in this study. Having been fitted with Ni-filters for the Cu 

Kα radiation produced at 40 kV and 50 mA with wavelength alpha1 as (λ = 1.540598Å), 

the instrument was set in the Bragg-Brentano configuration with PIXcel-1D detector and 

operated on the factory-installed Analytical Data Collector software.  

 

 

Figure 3.5 The Philips X’pert PRO Diffractometer used for XRD analysis 

 

The XRD patterns were recorded in the range of 5° and 110° [2θ] angle at a scanning 

speed of about 3° [2θ].min-1, step size of 0.040° [2θ] angle and time of 0.0395 sec per 

step; corresponding to a scan time of 24 min. The anti-scatter and divergent slits were 
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fixed at 1°. Data collection and analysis was conducted using the Materials Data Inc. 

software: the MDI JADE 2010 (version 2.6.6 @ 2014 Feb 21). The collected data was 

compared with the Powder Diffraction Files in the Database (version 4.13.0.2), using the 

PDF-4+ software 2013 (version 4.13.0.6), published by the International Centre for 

Diffraction Data (ICDD). Phase quantification by Rietveld Quantitative Analysis (RQA) 

using Equation (3.8) was attempted in order to determine the various amounts of each 

species in the fresh and used catalysts (Rietveld, 1969). 

 

=
( )

∑ ( )
  Eqn. (3.8) 

 

where Wp = relative weight fraction of phase p in a mixture of n phases,  

Sp   = Rietveld scale factor,  

Z  = number of formula units per cell,  

M = mass of the formula unit (in atomic mass units), and 

V = the unit cell volume (in Å3).  

 

In RQA, curve fitting was done using the High Score Plus software, with the modelling 

fully describing the shape, width and systematic errors in the positions of the Bragg peaks. 

The procedure ensured that all reflections in the XRD pattern were explicitly included for 

calculation, while reducing the effects of preferred orientation, considering factors such as 

the structural parameters of the crystal, peak profile parameters, micro-absorption and 

particle statistics, all being refined as part of the same analysis (Kniess et al., 2012). 

  

3.3.6. X-ray Photoelectron Spectroscopy (XPS) analysis 

In XPS analysis, the sample is irradiated with mono-energetic x-rays that emit 

photoelectrons from the surface of the sample. An electron energy analyzer determines the 

binding energy of the photoelectrons. From the binding energy and the intensity of a 

photoelectron peak, the identity of the element, its chemical state and quantity are 

determined.1 XPS is generally a surface technique used to analyze the surface composition 

                                                             
1 Web site source: https://www.phi.com/surface-analysis-techniques/xps.html, Accessed on 2014-08-05. 
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of materials, and in this work, the analysis was performed on a Kratos Axis Ultra DLD 

spectrometer, see Figure 3.6.  

 

 

 
 

Figure 3.6 The Kratos Axis Ultra DLD spectrometer for XPS analysis 

 

The AlKα monochromatized line (1 486.6 eV) was used for excitation with 225-W of 

applied power. The analyzer was operated in a constant pass energy mode (Epass = 160 

eV for survey scans; Epass = 20 eV for high resolution scans). The instrument’s work 

function was calibrated to give a binding energy (BE) of 83.96 eV for the Au 4f7/2 line for 

metallic gold. The spectrometer dispersion was adjusted to give a BE of 93.62 eV for the 

Cu 2p3/2 line of metallic copper. 

 

A charge neutraliser was used on all samples to compensate for the charging effect and 

when needed (mostly for non-conductive samples) the binding energies were referenced to 

the adventitious carbon, C 1s core level (284.8 eV).2 No charge corrections were done on 

the charged samples, e.g. the CNFs. The powdered catalysts were pressed into a thin pellet 

                                                             
2 Web site source: http://www.xpsfitting.com, Accessed on 2014-08-02. 
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in a powder sample holder, and an oval area of 300 x 700 micron was examined (Chu et 

al., 2007), while Casa XPS software (version 2.3.16) was used for data analysis. 

 

3.3.7. X-ray Absorption Spectroscopy (XAS) by the Synchrotron 

The X-ray absorption spectra at both the Co and Fe K-edges were measured using 

Synchrotron light, at the Canadian Light Source (CLS, in Saskatoon, Canada). Figure 3.7 

shows the images of the XAS reaction cell (at the top) and the Soft X-ray 

Microcharacterization Beamline (SXRMB) hutch at the bottom. 

 

 

Figure 3.7 The CLS Synchrotron Facility in Saskatoon 
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Table 3.2 gives the K-edge energies for the elements in our single metal Co/C and Fe/C 

catalysts and XAS measurements, which were conducted both in the transmission mode 

and by fluorescence, with two ionization chambers used for X-ray detection.  

 

Table 3.2 The K-edge and XAS limits for the various elements 

Metal foil K-edge (eV) XAS spectrum (eV) 
Fe 7 110 7 000 – 7 300 
Co 7 709 7 600 – 8 400 

 

 

The Si(111) double-crystal monochromator was calibrated by setting the first inflection 

point of the K-edge spectrum of the elements in question. Data collection ensued within 

the determined range for about 20–30 min per element. Using Athena software, the 

conventional procedure of background correction followed by data normalization were 

performed before further treatment of the XANES analysis (Ravel and Newville, 2005). 

Various reference compounds were used in the study, including Co foil, CoO, crystalline 

Co(NO3)2 and Co3O4 for the Co-based catalysts. Similarly, for Fe-based catalysts, Fe foil, 

FeO, Fe2O3, crystalline Fe(NO3)3 and Fe3O4 were used.  
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4. RESULTS 
 

4.1. Reactor set-up for catalyst testing 

 

Images of the commissioned catalyst testing rig are presented in Figure 4.1. From the left are 

cylinders containing feedstock gases whose flow rate was adjusted by the mass flow 

controllers, while the solenoids entailed a shut-off safety mechanism. The feedstock gases 

streamed to the right into the reactor whose internal pressure was regulated by the Brooks® 

controller and read-out unit by means of a back-pressure regulator. The peristaltic pump 

delivered hexadecane solvent into the reactor before the FTS reaction ensued, while at the 

terminal was a flow meter to determine the exit gas flow rate. Preliminary catalyst testing and 

results validation was performed in fixed-bed reactor.3 

 

Figure 4.1 The final 3-φ-CSTSR set-up for the FTS with an offline GC system 

 

                                                             
3 Fixed-bed reactor tests: Courtesy of Prof. Ajay Dalai (Department of Chemical Engineering, University of 

Saskatchewan), with whom we share a platform on the Canadian BiofuelNet (BFN). 
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4.2. Overview: evolution of catalyst selection criteria 

 

Initial work sought to establish the most effective synthesis method for the carbon-supported 

nanometric catalysts (Aluha et al., 2015a), attached in Appendix B. This was followed by the 

synthesis of more complex binary and ternary metallic systems, and a full account of the 

synthesis method is attached in Appendix A (Aluha et al., 2016a). A comparative study was 

undertaken to evaluate plasma-synthesized samples alongside those prepared by other 

traditional methods such as impregnation or precipitation. Since the plasma-synthesized 

samples were found to be relatively more active, samples prepared by impregnation or 

precipitation methods were abandoned.  

 

It was observed that at the higher space velocity (6 000 cm3.h-1.g-1 of catalyst) where tests 

were performed in fixed-bed reactor, the Fe catalyst was more active (with ~30% CO 

conversion) than the Co catalyst (20%). However, at higher conversions achieved at the 

lower space velocities (of 3 600 cm3.h-1.g-1 of catalyst), the Co catalyst became more active 

with over 40% CO conversion against 25% for Fe catalyst tested in the 3-φ-CSTSR. This 

observation concurs with literature data (Davis, 2007).  

 

The principal target in testing these catalysts was selectivity towards the diesel fraction. 

Preliminary tests in the 3-φ-CSTSR were performed at 493 K using the plasma-synthesized 

single metal Co/C and Fe/C catalysts. Their respective CO conversions were 45 and 25%, 

with massive wax production observed with the Co/C sample. Details of the experimental 

procedures, results and discussions are available in the attachment of Appendix C (Aluha et 

al., 2016b).  

 

In order to lower wax formation by the Co/C catalyst and enrich the diesel fraction, the 

temperature was raised to 533 K because it has been established that higher temperatures tend 

to produce shorter-chain hydrocarbons. It was observed that the higher temperature 

significantly improved catalyst activity to complete CO conversion. This was however 

accompanied by poor selectivity towards the FTS fuels (Sfuels = 27%), where Sfuels was the 

combined selectivity for gasoline and diesel fractions; and in this discussion, it comprises C5–
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C20. The overall Co/C selectivity towards the diesel fraction (C13–C20) as our targeted product 

was a paltry 19%. Figure 4.2 provides this information as a summary spatial chart offering 

the rationale and complete process of examining the materials for their performance at 533 K, 

2 MPa pressure; and GHSV = 3 600 cm3.h-1.g-1 of catalyst in the 3-φ-CSTSR.  

 

 

Figure 4.2 A mind map showing the process of catalyst development from the single-
metal Co/C, Fe/C to bimetallic Co-Fe/C, ternary (Ni-Co-Fe/C and Mo-Co-Fe/C) 

and quaternary (Au-Ni-Co-Fe/C) systems tested at 533 K, 2 MPa 

 

Comparatively, at 533 K, the Fe/C catalyst showed lower activity (60% CO conversion), but 

with better overall selectivity towards the fuels (Sfuels = 74%), moving from Co/C catalyst 

(step 1). Selectivity towards the diesel fraction was 55% compared to 19% in Co/C. The Fe/C 

catalyst also formed less CO2 (10%) than in the Co/C catalyst (20%), and Fe/C generated 

significantly less CH4 (5%) in comparison to the 46% produced by the Co/C (Aluha et al., 

2016b).  
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Further catalyst evaluation in order to improve on selectivity towards the diesel fraction was 

attempted using the Co-Fe/C bimetallics (step 2), and the 80%Co-20%Fe/C catalyst acted as 

the bimetallic representative. This is because it had metal nanoparticle size comparable to 

those of the single metal catalysts having a mean size in the range of 9–11 nm. Besides, it 

also had identical metal proportions with the other materials under examination, that is, Co 

(~70%) and Fe (~20%) (Aluha and Abatzoglou, 2016).  

 

Therefore, the application of bimetallics only led to a marginal difference when compared to 

the Fe/C catalyst operated at 533 K, since Sfuels (selectivity for diesel + gasoline) remained 

unchanged (at 55%), prompting the exploration of the ternary systems (step 3 and 4). In 

addition, the Co-Fe/C bimetallic was relatively worse off in suppressing H2O production 

because it generated more of it when compared to the Co/C and Fe/C catalysts. 

 

On the other hand, the addition of 10%Ni to the Co-Fe/C bimetallic (step 4) increased CO 

conversion by 10% (from 40% to 50%), and yet the addition of only 5%Ni (step 5) improved 

the activity by an additional 50% to 90% CO conversion. This means that promotional effect 

of Ni only required small amounts to function effectively. Whereas the Co-Fe/C bimetallic 

catalyst gave Sfuels selectivity of 74%, with only 3% CO2, 10% CH4 and 50 cm3 H2O, the 

presence of 5%Ni produced excessive quantities of CO2 (14%), CH4 (23%), and 55 cm3 of 

H2O. This means that Ni leads to early molecular desorption. 

 

Since the selectivity of 5%Ni-Co-Fe/C catalyst towards Sfuels was 58% with only 20% 

apportioned towards the diesel fraction, the Ni-Co-Fe ternary was further modified by the 

addition of Au (step 6) leading to improve the selectivity towards Sfuels to 73% from 58%, and 

towards the diesel fraction (from 20% to 32%), but at the expense of catalytic activity 

(dropping from 90% to 55% CO conversion). Further discussion on catalyst promotion with 

Au can be found in the article currently under publication review process (Aluha and 

Abatzoglou, 2017a). On the other hand, both the Co-Fe/C and Mo-Co-Fe/C catalysts had 

almost identical catalytic activity (~40% CO conversions), but the presence of Mo 

demonstrated overall improved selectivity towards Sfuels from 74% in the Co-Fe bimetallic to 

86% (step 3), and it also minimized H2O production of (35 cm3). An article on the catalyst 

promotion by Ni and Mo has been accepted for publication (Aluha and Abatzoglou, 2017b). 
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4.3. Evaluation of single-metal Co/C and Fe/C catalysts 

 

4.3.1. The effect of synthesis method on catalyst activity 

It has been advanced that catalysts prepared by SPS technology display superior 

performance, and in this work, preliminary results of the plasma-synthesized Fe/C catalyst 

tested in the fixed-bed reactor showed about 30% CO conversion per pass while the Co/C 

catalyst yielded about 20% CO conversion (503 K, 3 MPa pressure, and GHSV = 6 000 

. ℎ .  of catalyst). Analogous Co/C and Fe/C catalysts prepared by impregnation or 

by precipitation method exhibited CO conversions of about 7% under similar reaction 

conditions, confirming the assertion that plasma-synthesized catalysts had superior attributes 

(Aluha et al., 2015a).  

 

Catalyst selectivity tended more towards the diesel range, which was the target hydrocarbon 

fraction in this work, shown as follows: 71% (Fe/C by plasma), 56% (Co/CNF by 

impregnation), and 51% (Fe/CNF by precipitation), except for the plasma-synthesized Co/C 

catalyst that was richer in the gasoline range with 60% selectivity.  

 

From these findings, a rational basis of choosing an effective FTS catalyst was developed and 

used to rapidly establish SPS technology as one of the most promising approaches for future 

application in the synthesis of high quality catalysts. Figure 4.3 articulates the proposition 

that the plasma-spray method shrinks catalyst production into a single step, having intrinsic 

potential for seamless scale-up. Initial pictorial appears online as a graphical abstract in a 

journal article attached in Appendix B (Aluha et al., 2015a), where further details on this 

aspect are availed. 
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Figure 4.3 Comparing SPS with other multi-stage catalyst synthesis methods 4 

 

4.3.2. Error analysis and reproducibility  

Activity tests were repeated about 5 times at the onset of the project for the Co/C catalyst 

only and the CO conversion consistently found to be ~40% (±5%) depending on the time on 

stream (when tested at 220oC, 2 MPa), with the activity sometimes steadily increasing over 

time. Analysis of the Fe/C catalyst was repeated twice and found to be very sensitive to the 

pre-treatment conditions with maximum of 25% (±5%) when pretreated at 400oC and 

minimum of ~10% (±5%) when pretreated at 320oC. Since these were considered to be 

random errors, all the other catalytic systems tested were expected to lie within the same error 

margins. 

                                                             
4 Web source: http://pubs.acs.org/doi/abs/10.1021/acs.iecr.5b03003, Accessed on 2016-11-01. 
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4.3.3. Possible mechanism for catalyst synthesis in plasma  

It was postulated that during catalyst synthesis in plasma, the metal particles vaporize, while 

the suspension oil is thermally cracked. As the carbonaceous gases in the plasma interact with 

the metal species (e.g. Fe) to produce Fe carbides (FexCy), the same gases react with the H2 of 

the sheath gas to generate mainly CH4, allowing for its convenient exit from the reactor. The 

remaining carbon then begins to accumulate on the metal nanoparticle moieties and on the 

cooler walls of the plasma reactor. XRD analysis has indicated the presence of Fe3C phase in 

our samples, and from known phase diagrams, Fe3C forms at temperatures above 1 373 K, 

below which Fe3C decomposes into graphitic carbon and austenite (FCC structure), or into 

the α-Fe (BCC structure) below 973 K (Digges et al., 1966). See full discussion in the article 

provided in Appendix A. 

4.3.4. Catalyst characterization 

Below is a synopsis of the characterization results of the single-metal Co/C and Fe/C 

catalysts. Details of this work can be found in Appendix B (Aluha et al., 2015a). Elemental 

analysis by TGA-DTA indicated that the atomic mass loading of the metals onto the carbon 

support in the freshly plasma-synthesized Co/C and Fe/C catalysts was approximately 

0.25g/g (or 25-wt%) of Fe/C or Co/C mass-by-mass (Aluha et al., 2016b).  

 

 

Figure 4.4 BET adsorption-desorption isotherm of plasma-synthesized Co/C catalyst 
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The BET specific surface areas of the plasma-derived Co/C and Fe/C catalysts were 

approximately 93 and 55 m2.g-1 respectively, while those of the catalysts supported on CNFs 

varied between 106 and 176 m2.g-1. In all cases, the catalysts’ adsorption-desorption 

isotherms were near superimposable, represented by Figure 4.4. Both low surface area and 

limited hysteresis defined the catalysts to be non-porous.  

 

SEM images showed poor metal dispersion and particle agglomeration in samples prepared 

by impregnation or precipitation. However, the plasma-synthesized catalysts indicated 

uniform distribution of the metal nanoparticles in the carbon support. Evidence through TEM 

imaging of the plasma-synthesized Fe/C catalyst provided in Figure 4.5 showed high 

dispersion and homogenous distribution of the metal nanoparticles in the carbon matrix, and 

this alludes to the consistency in the quality of the materials. Further, image analysis of the 

fresh catalysts before and after use in FTS reaction indicated no sintering of metal particles 

during reaction. The mean metal nanoparticle size remained at approximately 11 nm, and this 

confirmed the reliability of plasma technology as a method of choice in catalyst synthesis. 

 

 

Figure 4.5 TEM image of the plasma-synthesized Fe/C catalyst 
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Analysis by Raman spectroscopy showed that during functionalization, the acid-treated 

nanofilaments (CNFs) had diminished G-bands due to loss of graphitization, leading to 

structural defects that increase amorphicity (D-band). On the other hand, the plasma-

synthesized samples had dominant G-bands as a sign of ensuing graphitization in the support 

and therefore had more of the ordered graphitic structure (Osswald et al., 2012).  

 

Normally, the ordered graphitic carbon is assigned the G-line at around 1580–1600 cm-1, 

while the disordered carbon form (D-line) around 1350 cm-1 contains defective graphitic sites 

and may portray varying intensities, position, and width in different nano-crystalline and 

amorphous carbons, even in samples without widespread graphitic ordering (Ferrari and 

Robertson, 2000). 

 

XRD analysis coupled with RQA modelling indicated the concurrent presence of metallic and 

carbidic species in the fresh plasma-synthesized catalysts. The Co/C catalyst comprised 

~39% Co0 and ~7% Co3C, while the Fe/C catalyst showed ~26% Fe3C alongside two 

different phases of metallic Fe0 amounting to ~34% (cubic FCC = 20.9%; taenite = 13.1%). 

Appendix C provides details of this discussion (Aluha et al., 2016b). 

 

XPS analysis confirmed results from XRD that samples prepared through impregnation or 

precipitation method had significant amount of metal oxides. The π → π* electron transitions 

observed in XPS as the broad peak at about 290 eV, above the carbon peak (at 284 eV) 

indicated presence of graphitic carbon in the samples. Raman spectroscopy and XRD analysis 

also confirmed presence of graphite. However, the main aim of performing XPS analysis was 

to identify metal carbides, and despite the substantial and concomitant presence of both the 

metal and carbon in the materials, there was no significant sign of chemical bonding between 

them. The metal-carbide peak was expected to appear just below the carbon satellite peak, but 

it was absent (Aluha et al., 2015a).  

 

Generally, analysis by XANES indicated that samples synthesized by plasma were more 

likely to trace the spectrum of the metal standards than those prepared by impregnation or 

precipitation. For example, the freshly-precipitated catalysts showed that they contained 



 
 

 
46 

 

oxidic species (possibly Co3+) since their K-edge was seen at higher energies than those of 

the CoO (or Co2+) standards. This observation confirmed findings by both XPS and XRD 

analysis, which indicated that the precipitated Co/CNF catalyst indeed composed Co3O4. 

Nevertheless, a peak shift was detected in the used plasma-synthesized Fe/C sample, drifting 

towards the oxidized state as shown in Figure 4.6, yet it was still catalytically active. Since it 

has been shown that intrinsic catalyst deactivation originates from metal oxidation, this 

observation could be pointing either towards catalyst deactivation, which is most unlikely, or 

indicating a synergy arising from the co-existence of both Fe carbides and oxides that might 

be crucial for FTS catalysis.  

 

Figure 4.6 XANES spectra for fresh and used plasma-synthesized Fe/C samples 
compared with Feo and Fe3O4 standards 

 

The latter opinion concurs with the assertion that formation of the non-stoichiometric iron-

oxide-carbide species, which is less stable, but more active than the known χ-Fe5C2 carbide 

might be at play in our plasma-synthesized Fe/C catalyst (Bengoa et al., 2007). Further 

details to this discussion involving both the Co/C and Fe/C catalysts is found in Appendix B 

(Aluha et al., 2015a). 

 

4.4. Benchmarking Co/C and Fe/C catalysts  

 

4.4.1. Summary: reaction conditions 

Granting that the plasma-derived catalysts were the most active in FTS, a study was 

conducted benchmarking them against the commercial nano-hematite (Fe-NanoCat®) catalyst 
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currently available in the market. Since the two single-metal catalysts (Co/C and Fe/C) that 

were synthesized through plasma were being projected for commercial application, they were 

tested in realistic LT-FTS conditions in a 3-φ-CSTSR operating at 493 K, 2 MPa pressure, 

and GHSV = 3 600 . ℎ .  of catalyst. A rundown of the findings is given below, with 

full account of the discussion provided in Appendix C (Aluha et al., 2016b).  

 

4.4.2. Catalyst activity 

The plasma-synthesized Co/C catalyst was observed to be comparatively more active and 

more stable online than the plasma-synthesized Fe/C catalyst. Catalyst activity decreased in 

the order of Co/C >> Fe-NanoCat® > Fe/C with their respective CO conversions being 42%, 

32% and 25% as shown in Figure 4.7.  

 

 

Figure 4.7 Catalyst activity of the plasma-synthesized Co/C and Fe/C tested for FTS at 
493 K, 2 MPa, benchmarked against the commercial Fe-NanoCat® 

 

4.4.3. Catalyst selectivity 

For the targeted diesel fraction (C13-C20), catalyst selectivity decreased in the order of Fe/C 

>> Co/C > Fe-NanoCat® (with 51%, 31% and 22% respectively). Figure 4.8(a) shows the 
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product spectrum of the catalyst at 493 K, with ~95% selectivity towards hydrocarbon 

production (at >40% CO conversion). This differed sharply with the product spectrum 

obtained at 533 K as shown in Figure 4.8(b), which was obtained at almost total CO 

conversion, with combined selectivity of over 65% towards CH4 and CO2 alone. It was 

observed that the Fe/C catalyst at 55% CO conversion had a selectivity of 5% towards CH4 

and 15% towards CO2 presumably due to WGS reaction. Compare it with the Co/C catalyst 

(at ~45% CO conversion), with selectivity of only 1% toward CO2 at 493 K. 

 

 

Figure 4.8 FTS product spectrum of Co/C catalyst at (a) 493 K, and (b) 533 K 
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4.4.4. ASF distribution 

Figure 4.9 provides section extracts of a GC trace that demonstrates the progressive 

polymerization with TOS using the plasma synthesized Co/C catalyst in the liquid-phase. 

Two Co/C samples from the same batch were tested under similar reaction conditions (493 K, 

2 MPa), indicated as run 1 shown in Figure 4.9 and run 2, whose  data involving another 

sample test was graphically transmuted into Figure 4.10 that displays a shift in the FTS 

product distribution from the short-chain to longer chain hydrocarbons with TOS. Full details 

of this work can be found in the article presented in Appendix D (Aluha et al., 2017). 

 

 

Figure 4.9 GC chart with overlaid spectra for the first Co/C sample (run 1) portraying 
gradual increase of FTS products with TOS 
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Figure 4.10 Liquid-phase analysis for the second Co/C sample (run 2) showing catalyst 
selectivity (at 493 K, 2 MPa pressure) at various TOS 

 

 

Figure 4.11 provides the plots for log(Mn/n) vs. n in order to determine the α-value of the 

plasma-synthesized Fe/C and Co/C catalysts, which were found to match the commercial Fe-

NanoCat® at high n values. Their α-values for n ≥ 10 were identical, in the range of 0.83–

0.86. Similarly, for hydrocarbon chains of carbon numbers between 8 and 16, the plasma-

synthesized Co/C maintained its α-value of 0.83. However, the Fe-based catalysts gave a 

different impression, with the commercial Fe-NanoCat® exhibiting α-value of 0.71 as 

predicted in literature for the Fe-based catalysts, where α = 0.5–0.7 (Dry, 1982), while the 

plasma-synthesized Fe/C, α = 1.00. 
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Figure 4.11 Plots of log (Mn/n) vs. n for (a) plasma-synthesized catalysts (Co/C and 
Fe/C) compared to commercial Fe/C, tested at 493 K, 2 MPa; and (b) with linear 

regression at high molecular weights 

 

4.4.5. Effect of feed composition (H2:CO ratio) 

When various syngas compositions were applied, higher α-values were obtained from CO-

rich feed streams, see Appendix D (Aluha et al., 2017). Plots of log(Mn/n) against n 

generated for various H2:CO ratios as shown in Figure 4.12 indicated that using CO-rich 

gases of H2:CO ratio 1.0 or 1.5 results in high α-values (~0.93), although it came at the cost 

of low CO conversions of ~10% and ~20% CO conversion. This contrasted with the findings 

of using a H2–rich feed stream (H2:CO ratio = 2.0), which displayed lower α-value (~0.83), 

but at higher catalytic activity of ~40% CO conversion. 
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Figure 4.12 ASF distribution plots of the Co/C catalyst tested at 493 K, 2 MPa, 
displaying high α-values in CO-rich feed gases, but low α-values in H2-rich feed 

gases after 24 h  

 

4.5. The bimetallic effect: Co-Fe/C catalysts 

 

Three bimetallic formulations, 30%Co-70%Fe, 50%Co-50%Fe and 80%Co-20%Fe were 

selected in order to test the hypothesis that the plasma-generated the 80%Co-20%Fe/C 

formulation was to exhibit unique properties while the other two 50%Co-50%Fe/C and 

30%Co-70%Fe/C catalysts would contain identical intermetallic phases according to the Co-

Fe binary phase diagrams (Okamoto, 2008). Results and a detailed discussion of the work on 

bimetallics is provided in Appendix E (Aluha and Abatzoglou, 2016), and Appendix F 

(Aluha et al., 2015b), but here only highlights are provided.  

 

4.5.1. Catalyst characterization 

SEM imaging indicated uniform distribution of the metal moieties in all the samples. The 

gradual increase of the metal concentration in the materials is conspicuously evident in 

Figure 4.13; see the increasing red coloration for Co metal in the samples.  
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Figure 4.13 SEM imaging of Co-Fe/C bimetallics with EDX mapping  

 

X-ray mapping by SEM analysis confirmed that the plasma-synthesized bimetallic catalysts 

were consistent in quality with the single metal Co/C and Fe/C catalysts as they equally 

showed high dispersion and uniform distribution of the metals in the carbon matrix. This 

observation was confirmed by EDX analyses, whose spectra are provided on the right with 

proportionate peak intensities appearing between 6 and 8 keV.  
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TEM imaging revealed some variation in the morphology of the three bimetallic catalysts. 

Figure 4.14 gives a sample micrograph of the plasma-synthesized 50%Co-50%Fe/C catalyst, 

while Figure 4.15 provides a summary of the particle size analysis in which 250 nanoparticles 

for each bimetallic sample were measured. The results indicated that both the 30%Co-

70%Fe/C and 80%Co-70%Fe/C catalysts had similar nanoparticle distribution with a mean 

particle size of approximately 9 nm, with their respective standard deviation (δ) values being 

3.2 and 3.4, while the 50%Co-50%Fe/C sample indicated a higher mean particle size of 14.4 

nm, and it had a standard deviation of 5.0. 

 

 

Figure 4.14 Sample TEM image for the 50%Co-50%Fe/C bimetallic catalyst 
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Figure 4.15 Particle size analysis by TEM imaging for the Co-Fe/C bimetallics 

 

Analysis by XRD showed that all the Fe-containing catalysts had significant amounts of 

carbides (Fe3C) as indicated by the major peak at 45o (2θ) angle, although the peak also 

overlapped with the cobalt’s face centered cubic (FCC) and hexagonal close packing (HCP) 

peaks. Crystal planes of the CoFe (FCC) solid solution phase with reflections from their 

characteristic (111), (200) and (220) were observed at approximately [2θ] angles of 44°, 51° 

and 75°, respectively.  

 

In addition, the (110), (200), (211) peaks of α-Co7Fe3 (BCC) phase were observed at about 

45°, 66° and 84°, respectively (Lu et al., 2013). The Co3Fe7 seemed to share the same XRD 

peak positions with Co7Fe3 (Terakado et al., 2014). Figure 4.16 condenses phase analysis of 

the bimetallic samples by XRD, which shows overlaid XRD patterns of the bimetallics in 

comparison to the single Co/C and Fe/C catalysts as well as the corresponding pure metals 

that were injected into the plasma. 
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Figure 4.16 XRD patterns of the Co-Fe/C bimetallics compared to the single metal Co/C 
and Fe/C catalysts 

 

Table 4.1 summarizes the RQA data of the species identified in bimetallic samples, which 

were benchmarked against the single-metal catalysts. The analysis indicated that each of 

those samples composed numerous phases, some of which could not be quantified fully. The 

residuals and pictorial results of the single metal Co/C, Fe/C catalysts and the Co-Fe/C 

bimetallics by RQA are attached in Appendix G.  
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Table 4.1 Summary Rietveld Quantitative Analysis (RQA) results by XRD 

Properties Catalyst composition 

Expected composition 0% Fe 20%Fe 50%Fe 70%Fe 100%Fe 

Co3C     6.7 (1)* - - - - 
Fe3C -   5.3 (4)   6.6 (1)  8.9 (1) 26.0 (1) 
Graphite-2H 54.1 (1) 27.0 (1) 29.0 (1) 32.0 (1) 40.0 (3) 
Co (metal) 39.2 (2) 57.0 (1) 12.2 (1)   8.5 (2) - 
Fe (metal) U∞   3.5 (2) 27.0 (1) 25.0 (1) 34.0 (3) 
FeCo intermetallic - 11.0 (1) 25.0 (2) 25.0 (1) - 
Rexp (expected)  8.31   9.26  9.12  9.2  8.31 
Rp  (profile)  7.97 10.85  8.99   8.49  7.97 
Rwp (weighted-profile) 10.50 14.39 12.48 11.69 10.50 
GOF    1.60   2.41#  1.87   1.61  1.59 

*6.7(1)  = means phase composition = 6.7%; estimated standard deviation = 1; 

U∞ = unquantifiable; beyond instrument’s detection limits; 

GOF# = goodness of fit (χ2) = (Rwp/Rexp)
2 ≈1; a value higher than 2 is unacceptable. 

 

 

4.5.2. Catalyst performance in FTS 

At 533 K, both the single metal and bimetallic catalysts showed good activity including total 

CO conversion for the Co/C catalyst, see Figure 4.17. However, poor selectivity disqualified 

the use of single metal Co/C catalyst at higher temperatures, while the Co-Fe/C bimetallics 

were almost inert at 493 K. Figure 4.18 summarizes the results comparing these materials at 

both 493 and 533 K. 

 

When compared to the most active single-metal Co/C catalyst, it was observed that not only 

did the presence of Fe suppress the production of both CO2 and CH4 in the Fe-containing 

catalysts, but it also constrained H2O formation. This revealed the beneficial impact Fe had in 

the catalysts, such that the more Fe there was, the less H2O it generated. However, the lower 

temperature was most conducive for the selectivity of Co/C catalyst towards the gasoline 

(C4–C12) and diesel (C13–C20) fractions, since production of undesired products such as CO2 

and CH4 was only prevalent at higher temperatures. Further discussion on bimetallics may be 

found in the published articles provided in Appendix E (Aluha and Abatzoglou, 2016), and in 

Appendix F (Aluha et al., 2015b). 
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Figure 4.17 Activity plots for plasma-synthesised Co/C and Fe/C catalysts compared to 
the bimetallic Co-Fe/C catalysts tested at 533 K for 24 h 

 

 

Figure 4.18 Activity plots for the plasma-synthesised catalysts with various metal 
compositions tested at 493 and 533 K (220o and 260oC) 
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4.6. Catalyst pre-treatment: H2 versus CO 

 

Catalyst activity of the Co-Fe/C bimetallics was compared with the in situ pre-treatment of 

the materials in two different reducing gases, H2 or CO at 673 K for 24 h and details of the 

findings are discussed in Appendix E (Aluha and Abatzoglou, 2016), and a summarized 

version of the findings is provided in sections that follow. 

 

4.6.1. Catalyst characterization 

TEM images showed that the morphology of catalysts reduced in H2 remained the same 

before and after FTS reaction (at 533 K for 24 h), while significant but identical changes 

were observed in the morphology of all the catalysts that were reduced in CO as indicated in 

the TEM image of Figure 4.19, with CNFs perceived to be growing away from the metal 

centres. Such growth in carbon nanotube (CNT) production is normally induced by metal 

oxide centres (Gore and Sane, 2011), which may be likened to the catalytic chemical vapour 

deposition of Ni-activated growth of CNFs. Similar structures have been described more 

effectively as the multi-wall carbon nanotubes (MWCNTs) (Tehrani et al., 2014).  

 

 

Figure 4.19 A TEM image of the CO pre-treated catalyst 
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XRD analysis alluded to the total absence of metal oxides and Co carbides in all the used 

samples, even after 24-h carburization with CO and a further 24 h in the presence of the CO-

rich FTS feedstock (ca. 30% CO). This implies that plasma-synthesized catalysts may be 

resistant to deactivation notwithstanding the fact that thermodynamically, oxidation of the 

metal nanoparticles to form Co3O4 or Fe3O4 is highly favoured, and would lead to irreversible 

catalyst deactivation. The full discussion to this work is found in the article provided in 

Appendix E (Aluha and Abatzoglou, 2016). 

 

4.6.2. Catalyst performance in FTS 

All catalysts pre-treated in CO had identical activity of approximately 40% CO conversion at 

533 K, and Figure 4.20 shows that their selectivity shifted towards the production of the 

diesel-range fractions.  

 

 

Figure 4.20 Product spectrum of Co-Fe/C bimetallic catalysts pre-treated in CO and 
tested at 533 K, 2 MPa 
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Increasing the Fe content in Co-rich catalysts diminished H2O production by almost half in 

some case, when compared to H2-reduced catalysts. However, H2O production capacity was 

almost comparable in all CO-reduced catalysts. See details in Appendix E. 

 

4.7. Promotional effect of Au, Ni and Mo in Co-Fe/C catalysts 

 

A comparative study was carried out collating the catalytic performance and properties of the 

80%Co-20%Fe/C catalyst with its corresponding promoted catalysts using either 10%Mo or 

10%Ni and in this work, they are designated as Mo-Co-Fe/C and Ni-Co-Fe/C respectively. 

Details of this investigation have just been accepted for publication and the submitted 

manuscript before proofreading can be found in Appendix H (Aluha and Abatzoglou, 2017b). 

On the other hand, the Ni-Co-Fe/C was further modified by lowering the metal mass loading 

from 10%Ni to 5%Ni and then doping it with 5%Au. This formulation was designated as Au-

Ni-Co-Fe/C, and a complete description of this work is currently under review. The original 

(unedited) manuscript is provided in Appendix I (Aluha and Abatzoglou, 2017a). 

 

4.7.1. Catalyst characterization 

Table 4.2 is a summary of the porosity measurements of all the materials under this 

investigation. Plotting the BET specific surface areas against increasing metal content, 

generally takes the shape of a crescent, with the single metal catalysts having lower surface 

areas than their bimetallic or ternary counterparts. Small pore volumes (ca. 0.4 cm3.g-1) 

alluded to the non-porous nature of all the plasma-synthesized materials.  

 

In FTS, non-porous catalysts are recommended for eliminating diffusion limitations because 

porous materials inhibit mass transfer of high molecular-weight products, which clog the 

pores, eventually resulting in catalyst deactivation (Aluha et al., 2016b). Figure 4.21 shows 

the identical nature of the plasma-synthesized catalysts (comparing bimetallic Co-Fe/C with 

ternary Mo-Co-Fe and Ni-Co-Fe) using the overlaid adsorption-desorption isotherms 

originating from N2 physisorption tests. 
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Table 4.2 Porosity analysis of the catalyst materials by the BET method 

Catalyst  
(expected composition) 

 BET Surface 
area (m2.g-1) 

Average pore 
diameter (nm)* 

Average pore 
volume (cm3.g-1)# 

Auxiliary 

reactor 

Main 
reactor 

Auxiliary 

reactor 

Main 
reactor 

Auxiliary 

reactor 

Main 
reactor 

100%Co/C 55.5 54.4 27.4 28.3 0.38 0.39 

80%Co-20%Fe/C 67.2 72.8 24.4 22.0 0.41 0.42 

70%Co-20%Fe-10%Mo/C 85.0 77.0 25.5 22.5 0.54 0.43 

70%Co-20%Fe-10%Ni/C 69.2 76.3 25.8 19.3 0.45 0.37 

70%Co-25%Fe-5%Ni/C 92.6 88.7 20.6 19.1 0.48 0.42 

50%Co-50%Fe/C 92.2 73.3 22.3 20.8 0.51 0.38 

30%Co-70%Fe/C 91.1 73.1 22.6 18.9 0.51 0.34 

100%Fe/C 72.2 35.4 21.6 32.6 0.40 0.28 

* Single point adsorption total pore volume of pores less than 120 nm in diameter at P/Po = 0.98 
# Average pore diameter (4V/A by BET) 

 

 

Figure 4.21 Overlaid isotherms of bimetallic and ternary catalysts collected from the 
main plasma reactor 
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Figure 4.22 indicates SEM imaging coupled with elemental X-ray mapping of the Ni-

promoted catalysts. Notice the evidence of increasing blue coloration from 5-wt% Ni to 10-

wt% Ni by mass-loading, proving the uniform metal dispersion in the carbon matrix. This 

was confirmed by TEM imaging because Figure 4.23 shows that no major variation existed 

between the metal dispersion in the two Ni-containing samples. Similarly, the used catalysts 

indicated very little transformation in the morphology of the metal nanoparticles even after 

over 50 h of thermal exposure as depicted by the TEM images in Figure 4.24. Normally, the 

mean metal nanoparticle size is in the range of 9–11 nm for the freshly synthesized samples. 

It was observed that by counting 250 nanoparticles per sample, the mean size for the used 

10%Mo-70%Co-20%Fe/C catalyst was 9.7 nm, while for the used Au-promoted Ni-based 

catalyst, that is, 5%Au-[5%Ni-70%Co-20%Fe/C], the mean particle size was 11.0 nm. 

 

 

Figure 4.22 X-ray imaging of the fresh Co-Fe-Ni ternary catalysts by SEM indicating 
uniform metal dispersion 
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Figure 4.23 TEM images of fresh Ni-Co-Fe ternary catalysts  

 

 

Figure 4.24 TEM images of used (a) Mo-Co-Fe/C, and (b) Au-promoted Ni-Co-Fe/C 

 

4.7.2. Catalyst performance in FTS 

Figure 4.25 portrays the activity of H2–reduced ternary metal catalysts, benchmarked against 

the bimetallic 80%Co-20%Fe/C catalyst, while Figure 4.26 displays the corresponding 

selectivity of the given catalysts. It was observed that the Ni-Co-Fe/C formulation had the 

highest activity of ~90% CO conversion at 533 K, which dropped to ~60% upon addition of 

5%Au on the 5%Ni-70%Co-20%Fe/C sample. The least active catalyst was the Mo-Co-Fe/C 

formulation with ~38% CO conversion.  
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Figure 4.25 Activity plots (a) 80%Co-20%Fe/C; (b) 10%Mo-Co-Fe/C; (c) 10%Ni-Co-
Fe/C; (d) 5%Ni-Co-Fe/C; and 5%Au-5%Ni-Co-Fe/C, tested at 533 K, 2 MPa 

 

 

Figure 4.26 Plots comparing FTS fraction distribution for (a) 80%Co-20%Fe/C; (b) 
10%Mo-Co-Fe/C; (c) 5%Ni-Co-Fe/C; and 5%Au-5%Ni-Co-Fe/C catalysts after 

24 h of reaction at 533 K, 2 MPa 
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Although the Ni-promoted catalyst was very active, it was highly selective for CH4 (23%). 

The addition of Au to the catalytic system significantly impacted the selectivity of the 

catalyst in the Sfuel range because it resulted in higher diesel production (from 20% to 32%). 

However, both catalysts produced gasoline-rich fractions (with 38% for Ni-Co-Fe, and 41% 

for Au-Ni-Co-Fe). 

 

On the other hand, the addition of Mo to the Co-Fe bimetallic led to the production of a 

diesel-rich fraction, but at a lower CO conversion. Our findings are in agreement with other 

authors who observed that addition of Mo decreased the FTS activity of the Fe catalyst, but 

markedly enhanced the C12+ hydrocarbon selectivity (diesel fraction), while suppressing the 

C2–C8 hydrocarbon selectivity (Qin et al., 2009).  

 

In 24 h, the Ni-Co-Fe/C sample produced the most H2O (55 cm3), at 90% CO conversion, 

while Au-Ni-Co-Fe/C formed only 30 cm3 at 60% CO conversion, and 35 cm3 for Mo-Co-Fe 

at 38% CO conversion. It was anticipated that promoting a catalyst with both of them could 

produce synergies where close proximity of Au-Ni to Fe2O3 in the sample would enhance 

LT-WGS reaction (Venugopal et al., 2003b).  

 

In addition, Au was expected to prevent catalyst oxidation by enhancing the reducibility of 

the metals in the catalysts, because in commercial applications FTS catalysts that effectively 

suppress excessive H2O production and remain in metallic state would be very attractive. 

Moreover, the acidic properties of Mo were understood to improve catalyst selectivity for the 

diesel fraction (Jong and Cheng, 1995).  

 

Although a plasma-synthesized Co-Fe/C bimetallic catalyst promoted with Au, Mo or Ni has 

not been reported in literature, our preliminary analysis still found such materials promising 

for FTS. We therefore concluded that catalytic activity can still be improved by careful 

optimization of the pre-treatment procedure. Nonetheless, we observed that the presence of 

Ni enhanced lower molecular weight hydrocarbons with considerable CH4 production, while 

surface acidity (from Mo) improved selectivity towards the gasoline fraction, and the 

presence of Au in the Ni-Co-Fe/C catalyst lowered H2O generation.  
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4.7.3. ASF distribution 

Figure 4.27 shows the determination of the catalysts’ α-values, which were found to be above 

0.81 at high C-numbers (C10+), although the Co-Fe/C bimetallic had a higher value of 0.84. 

Addition of Ni to the Co-Fe/C catalyst, had no apparent impact, but addition of either Mo or 

Au lowered the α-value to 0.81. This means that higher production of the light hydrocarbons 

would be expected from the Mo- and Au-containing catalysts. The hump at around C16 is due 

to hexadecane solvent interference. 

 

 

Figure 4.27 Graphical determination of α-values for Co-Fe/C catalyst promoted with 
Au, Mo and Ni tested at 533 K, 2 MPa  

 

However, at lower C-numbers (C5-12), all the promoted catalysts, that is, those containing Au, 

Mo or Ni far and above the Co-Fe/C bimetallic catalyst showed enhanced production of 

lower molecular weight hydrocarbons in the gasoline range with substantial amounts of CH4 

when compared to the Co-Fe/C bimetallic catalyst.  
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4.8. Mass balance determination 

 

4.8.1. Determination of H2 efficiency by water measurement 

Since our analytical instruments do not discriminate between the various hydrocarbon groups, 

it was assumed that the principal product of this analysis was the alkene, (CnH2n) with the co-

production H2O, which is measurable. In applying this simple approach to estimate the 

catalytic behaviour of each catalyst with respect to H2 consumption, without going into the 

complexities of FTS reaction such as the consequences of WGS reaction, the amount of H2O 

formed was split in the same proportions as they appear in the selectivity data between CH4 

on one hand and overall FTS products (C5+) on the other. Therefore, Figure 4.28 exemplifies 

a sample calculation performed using the bimetallic Co-Fe/C catalyst data (Aluha and 

Abatzoglou, 2017b).  

 

 

Figure 4.28: Sample calculation to determine the H2 efficiency of the 80%Co-20%Fe/C 
catalyst after 24 h of reaction 
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Table 4.3 provides summary calculated results of all the nine plasma-synthesized catalysts. 

The total amount of H2 gas that was delivered in the 24-h experiment was equivalent to 10.8 

moles = (300 cm3.min-1) x (60% H2) x (60 min.) x (24 h)/(24 000 cm3 at RTP). From these 

findings, it was observed that at 260oC, the ternary Mo-Co-Fe/C was the most H2 efficient 

catalyst competing favourably with the Fe/C although the Mo-containing sample had a lower 

CO conversion. This implies that for every CH4 molecule produced, there were ten -[CH2]- 

monomers added to the hydrocarbon-growth chain in the Mo-Co-Fe/C formulation. The least 

H2 efficient catalyst was the single-metal Co/C formulation, which produced two CH4 

molecules, for every one -[CH2]- monomer. This performance was followed by the Ni-

containing samples and amongst the bimetallic samples, the best performance was displayed 

by the 30%Co-70%Fe/C formulation. 

 

4.8.2. Calculation of mass balance 

Table 4.4 indicates the mass balance of the samples from the calculated and raw data of the 

H2 and CO2 gases exiting the FTS reactor. Fe-rich catalyst samples (comprising 100%Fe/C, 

30%Co-70%Fe/C and 50%Co-50%Fe/C) had higher XCO : XH2 ratios given as 3.0, 2.7 and 

1.6 respectively. The same catalysts produced the minimum amount of H2O possibly due to 

enhanced WGS reaction that generates surplus H2 in the system. This makes it may seem like 

less of the H2 feedstock is consumed. When the amount of H2 exiting the reactor was added 

to that used in the FTS reaction, the mass balance was approximately 90+% in all cases. By 

subtracting the conversion of H2 from that of CO one could estimate the effect of WGS 

reaction due to H2 formation while concurrently generating equimolar amounts of CO2. In 

this regard, some catalysts such as the 80%Co-20%Fe/C, 5%Ni-Co-Fe/C, 5%Au-Ni-Co-Fe/C 

and the Co/C indicated a close relationship while all the other formulations did not. 

Incidentally, the former had XCO : XH2 ratios below 1.2. 
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Table 4.3 Determination of the H2 efficiency per catalyst at 260oC, 2 MPa 

Catalyst CO conversion, 

XCO (%) 

H2O produced Selectivity (%) H2 efficiency (%) 

(cm3) moles C5+ CH4 C5+ CH4 [C5+]:CH4 

Co/C 100 40 2.22 32 46 17 36 0.5 

Fe/C 60 30 1.67 83 5 29 3 9.7 

30%Co-70%Fe/C 50 25 1.39 84 7 24 3 8.0 

50%Co-50%Fe/C 40 30 1.67 81 10 28 5 5.6 

80%Co-20%Fe/C  42 50 2.78 87 10 46 8 5.8 

10%Mo-Co-Fe/C 38 35 1.94 91   6 33 3 10.0 

10%Ni-Co-Fe/C 50 40 2.22 78 14 35 9  3.9 

5%Ni-Co-Fe/C 89 55 3.06 62 23 41 23 1.8 

5%Au-Ni-Co-Fe/C 60 30 1.67 78 14 26 7 3.7 
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Table 4.4 Mass balance determination from the H2 efficiency per catalyst at 260oC, 2 MPa 

Catalyst Conversion, X (%) Mass balance, H2 (%) Mass balance, CO2 (%) 

XCO XH2 XCO : XH2 ratio Fexit (GC)* Total (XH2 + Fexit) Fexit (GC) (XCO – XH2) 

Co/C 100 86 1.16 12 98 20 14 

Fe/C 60 20 3.00 67 87 11 40 

30%Co-70%Fe/C 50 22 2.72 65 87 7 28 

50%Co-50%Fe/C 40 25 1.60 62 87 10 15 

80%Co-20%Fe/C  42 38 1.18 52 90 3 4 

10%Mo-Co-Fe/C 38 27 1.41 62 89 2 11 

10%Ni-Co-Fe/C 50 33 1.52 56 89 9 17 

5%Ni-Co-Fe/C 89 78 1.14 20 98 12 11 

5%Au-Ni-Co-Fe/C 60 51 1.18 49 100 7 9 

                  * Fexit (GC)* = the measured residual gas concentration at the GC effluent 
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5. DISCUSSION 
 

5.1. Evaluation of project objectives and hypotheses 

 

5.1.1. Project objectives 

Since the key objective of this work was to discover novel, yet highly active FTS catalysts 

that could find future commercial application, we accomplished this task by relying on the 

idea that was already established in synthesizing the single-metal Fe/C catalyst by SPS 

technology (Blanchard et al., 2010). Below are eight new catalysts that were successfully 

synthesized through plasma and are considered to be highly effective for FTS:  

(i) 1 single-metal Co/C catalyst; 

(ii) 3 Co-Fe/C bimetallics (containing 30%Co, 50%Co and 80%Co); 

(iii) 3 ternary systems with Ni (5% or 10%), or Mo (10%) in 70%Co-20%Fe/C; 

(iv) 1 Au-promoted quaternary system 5%Au on (5%Ni-70%Co-20%Fe/C). 

 

5.1.2. Research hypotheses  

The following were the outcomes of the six hypotheses that were tested in this study, thus: 

(i) Plasma technology is the most effective method of catalyst synthesis: Three 

catalyst synthesis methods were used (precipitation, impregnation and plasma-

spray), and the plasma approach produced the best performing materials, being 

4 times more active. The plasma synthesized samples comprised evenly 

distributed metal components in the carbon support matrix, and no 

agglomeration of metal nanoparticles was witnessed in their samples. 

Therefore, our initial assumption was accurate. 

 

(ii) Plasma-synthesized catalysts are more selective towards diesel fraction: Since 

the SPS method targeted catalysts with metal nanoparticles with a mean size of 

about 10 nm, catalyst selectivity aimed more towards production of diesel than 

the gasoline fraction. This was evident from the high -values (0.7–0.9) 

exhibited by the catalysts. As expected, the hypothesis advanced was factual. 



 
 

 
73 

 

(iii) Choice of Co-Fe bimetallics: We selected 3 bimetallic compositions according 

to the known Co-Fe binary-phase diagram, hoping that, the plasma-generated 

50%Co-50%Fe and 30%Co-70%Fe formulations would contain identical 

intermetallic phases while the 80%Co-20%Fe formulation would exhibit 

unique properties. Due to the nanometric nature of the samples, we were 

unable to conclusively resolve phase composition and quantification in the 

binary Co-Fe nano-alloys using XRD analysis or RQA. However, the 50%Co-

50%Fe/C catalyst was the exceptional sample since it was more selective 

towards gasoline production and it had a mean particle size of 14.4 nm, while 

the other catalysts had a mean particle size in the range of 9–11 nm. Some of 

these results therefore deviated from our original hypothesis. 

 

(iv) Presence of nickel in Co-Fe bimetallics is beneficial in gasoline production: 

We postulated that Ni addition to the Co-Fe/C bimetallic catalysts could boost 

production of the shorter hydrocarbon-chain molecules, because Ni promotes 

early molecular desorption by lowering its activation energy. Our prediction 

was correct and empirically verified. 

 

(v) Presence of Au coupled with Ni and Fe enhances both WGS and FTS 

reactions: It was proposed that incorporation of Au in the Ni-Co-Fe/C sample 

could keep Co in the metallic form by decreasing its propensity for oxidation, 

while the synergistic effect of Au-Ni-Fe would enhance LT-WGS reaction that 

enriches the feed-gas composition with H2 and improves FTS. These two 

assertions could not be proved experimentally from the results obtained. 

Nevertheless, the presence of Au in the sample seemed valuable in lowering 

H2O production although it was not accompanied by a corresponding amount 

of CO2 befitting WGS activity. Therefore, more advanced tests are required. 

 

(vi) Presence of Mo leads to diesel production: It was posited that increased surface 

acidity by Mo addition to the Co-Fe/C bimetallic would augment the electron-

withdrawing character in the catalyst to make it more selective toward the 

diesel fraction. Our prediction fell short of expectation because when compared 

to the Co-Fe/C formulation, the presence of Mo rather selectively increased the 
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gasoline fraction. On the other hand, the quantity of diesel produced by both 

the Co-Fe and Mo-Co-Fe catalysts remained relatively the same. Therefore, 

Mo is more selective towards the shorter-chain molecules. 

 

5.2. The significance of these results 

 

5.2.1. SPS as a targeted technology in catalyst synthesis 

Sufficient evidence has indicated that the FT reaction mechanism by Fe-based catalysts 

depends on the presence of Fe carbides (Bengoa et al., 2007). The current approach 

applied in industry to generate these Fe carbides in the catalyst is to carburize Fe oxides 

with CO to enhance the FTS activity (Ding et al., 2009). However, the carburization 

process can act as a catalyst poison for the Co-based catalysts (Tsakoumis et al., 2010). 

Today, SPS technology stands as an alternative method to carburization in catalyst 

synthesis. It is perceived as an attractive method because it can easily generate these 

carbides at temperatures just above 727oC (Okamoto, 1992).  

 

In this work, it has been shown that all catalysts produced through SPS technology were 

both nanometric and non-porous, with a myriad of phases ranging from metallic to 

carbidic species. Since nanometric catalysts are imperative in overcoming mass transfer 

limitations in FTS, we aimed at producing both the active phase (containing the metallic 

moieties) and the carbon support in the nanometric range. The use of plasma is therefore 

an attempt to produce high quality catalysts by means of a less complex method, and it is 

hoped that plasma-synthesized catalysts will find a marketable application in the FTS 

process, particularly when supported on carbon. Although catalyst deactivation by carbon 

deposition is a major challenge when using non-carbon supported FTS catalysts, not all 

forms of carbon lead to deactivation (Moodley et al., 2010). In our case, since the catalysts 

were supported on nanometric carbon, no adverse effects have been observed in the 

catalyst performance so far. 
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5.2.2. Benefits of using non-porous catalysts   

In polymerization reactions where a porous catalyst is bound to be blocked by larger 

molecules, it is imperative to operate away from diffusion limiting regimes. Having a non-

porous catalyst with high surface area improves the rate of reaction, and this has been a 

major benefit derived from plasma-synthesized catalysts. For porous materials, reaction 

rate can be improved by increasing the gas-flow velocity in the reactor, or by decreasing 

the pellet size or diameter. Operating at sufficiently high velocities ensures that the 

reaction is not mass-transfer limited. It is noted that even for a given velocity, one can still 

operate within kinetically-limiting conditions. Therefore, small catalyst particles are 

recommended in order to operate out of the diffusion-controlled regimes.  

 

Alternatively, on a non-porous particle, the rate of a reaction can be improved by 

enhancing the surface area of the catalyst, increasing the reactant concentration, or 

increasing the mass-transfer coefficient, since low resistance to diffusion enhances the 

reaction rate. Some studies have shown that in FTS, diffusivity is a function of molecular 

size or carbon number, catalyst properties and reaction conditions (James et al., 2012). 

Therefore, increasing residence time or decreasing diffusivity escalates hydrocarbon re-

adsorption, resulting in higher chain-growth probability with increasing carbon number. 

High pressure, low temperature and low space velocity would increase reactant residence 

time, which favours hydrocarbon re-adsorption, and in turn promotes selectivity to heavier 

hydrocarbons. Consequently, highly porous catalysts restrict diffusion, when filled with 

liquid hydrocarbons produced during FTS.  

 

Since our catalysts can be viewed as solid balls, the reaction takes place outside the 

catalyst and there are no mass-transfer limitations involved, particularly where turbulence 

is created in the system with high speed agitation (>2 000 rpm). The non-porous nature of 

our materials enables them to operate in the kinetically controlled regimes only, a valuable 

feature in FTS catalysis. 
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5.2.3. Effect of metal nanoparticle size on catalyst selectivity  

Catalyst synthesis by SPS technique has been optimized to produce samples with mean 

metal particle size of about 9–11 nm. Plasma conditions can be varied to alter the final 

particle size of the catalyst through changes in gas or powder flow rate, as well as the 

resident time of the metal/oil suspension in the plasma. It was observed that catalysts with 

larger nanoparticles (e.g. Fe/C from Fe-NanoCat® with mean size of 21.1 nm; and the 

binary 50%Co-50%Fe/C formulation with mean size of 14.4 nm) were more selective 

towards gasoline production, while all the other catalysts with smaller metal nanoparticles 

with mean size of 9–11 nm were more selective towards the diesel fraction. This outcome 

was concurrent with other literature findings (den Breejen et al., 2009); making the plasma 

method an accurate and reliable approach in catalyst design, whose production has great 

potential for seamless scale-up. 

 

5.2.4. ASF distribution and α-value determination 

Overall, the effect of time on the probability of hydrocarbon-chain growth indicated that 

the true α-values of the catalyst could only be ascertained after 15 h on stream, when the 

catalyst was expected to be operating at steady state. The α-value for the plasma-

synthesized catalysts were found to be in the range of 0.71–0.94, with the Fe-rich samples 

being inclined toward the lower end of the range. It has been observed that during FTS, a 

catalyst’s α-value can be enhanced by applying higher pressure, lowering reaction 

temperature or decreasing the H2:CO ratio (Bartholomew and Farrauto, 2006; p.403). This 

was real to our scenario as those catalysts operating at low H2:CO ratios (of 1.0 or 1.5) 

gave α-values of 0.93 meaning that production of higher molecular-weight hydrocarbons 

would be favoured by either using blended Co-rich catalysts or by operating with CO-rich 

syngas feedstocks, typical of biomass origin. 

 

5.2.5. Green chemistry: potential bio-syngas application  

Since a number of studies have shown that CO adsorption on the catalyst precedes that of 

H2, it is presumed that CO-rich gas feeds would be beneficial for FTS. Through the 

carbene reaction mechanism, FTS reaction begins with CO adsorption and its subsequent 

dissociation, followed by the dissociative adsorption of H2 and finally the irreversible 
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hydrogenation of the adsorbed carbon species to form for example, an alkane 

(Bartholomew and Farrauto, 2006; p.405).  

 

Although H2 enhances dissociative CO adsorption, FTS feedstocks with elevated H2 

concentrations normally favour rapid chain termination, leading to the formation of shorter 

hydrocarbon chains (Madon and Iglesia, 1993). In this work, analysis performed at lower 

H2:CO ratios < 2 produced high α-values (≈0.93) indicating the potential production of 

hydrocarbons with higher molecular-weight than when H2:CO ratios ≈ 2 was applied. This 

finding points toward the potential application of these catalysts in CO-rich bio-syngas 

feedstocks that may become the standard FTS feedstock in future (Jahangiri et al., 2014).  

 

Today, there is an increasing demand for efficient carbon utilization and the FTS bio-

syngas conversion is a targeted alternative technology in reducing greenhouse emissions. 

Since sulphur selectively and irreversibly adsorbs on many metal catalysts to form 

sulphides, low sulphur content bio-syngas is appealing because of the lower pre-treatment 

costs it would attract in scrubbing sulphur-related impurities (Hu et al., 2012). Should 

dedicated plantations be developed as a major source of renewable biomass, targeted 

“clean wood” may produce bio-syngas with low levels of contaminants. In addition, since 

the bio-syngas is a CO-rich feedstock, should need arise for H2-rich feedstocks, the H2:CO 

ratio can be adjusted through WGS reaction by converting some of the CO to CO2 and H2 

using steam. Removing the CO2 would increase H2 concentration and lower the amount of 

inert gases in the FTS process (Tijmensen et al., 2002). 

  

5.2.6. Effect of catalyst reducing agent: H2 vs. CO 

In order to investigate the effect of reduction on catalyst performance, two gases were 

used: H2 and CO. Reduction by CO generated carbon nanofilaments in all their catalyst 

supports, unlike with H2 where reduction did not impact on the morphology of the 

catalysts at all. Nonetheless, in the past, it was advanced that carburizing Co may be 

detrimental to the catalyst (Ding et al., 2009), and that the use of CO pre-treatment should 

be avoided. In this work, catalyst synthesis by plasma has been shown to create a 

significant amount of carbides in the catalysts that seem to be beneficial to FTS reaction.  
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Further, catalyst reduction in CO was perceived to be more advantageous than reduction in 

H2 in a number of ways, such that: 

(i) CO-reduced catalysts did not suffer deactivation due to carburization; 

(ii) CO-reduced catalysts were as active as those reduced in H2 (with all the 

catalysts displaying 40–45% CO conversion) under identical test conditions; 

(iii) CO-reduced catalysts cut H2O production during FTS (in some cases by almost 

half) when compared to those reduced in H2; 

(iv) CO-reduced catalysts produced more diesel (C13–C20) than those reduced in H2; 

diesel selectivity increased directly with the catalysts’ Co content, in the order 

of 30%Co < 50%Co << 80%Co (respective selectivity = 51%, 60%, 67%). 

 

Moreover, we think that in as much as the carbides may seem to be spectators in the FTS 

catalyst, they constitute a crucial phase that could be necessary during catalyst 

regeneration. In case of catalyst deactivation as a result of metal oxidation, the carbides 

present great potential for in situ catalyst regeneration, achieved through carburization, 

followed by reduction in H2 (Kwak et al., 2016), see Equation (5.1).  

 

                     . (5.1) 

 

5.2.7. Promotional effect of Au, Mo and Ni in Co-Fe/C  

In this work, all the elements that were selected to promote Co and Fe had a positive effect 

on both the catalyst activity and selectivity. The influence of surface acidity as enhanced 

by Mo addition in the Co-Fe/C catalysts was perceived to produce more gasoline (C5–C12). 

This is despite lowering the catalyst activity of Co-Fe/C catalyst marginally by 2–5%, but 

it was suspected that the catalyst was still in induction period. Other promoters, namely, 

Ni and the Au-Ni nexus were also seemingly more selective towards the gasoline fraction. 

With the presence of Au in Ni-Co-Fe/C catalyst, H2O production dropped substantially.  
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However, enhancement of the WGS reaction by Au-Ni-Fe system could not be supported 

empirically because the process was not accompanied by a matching amount of CO2 in the 

system. Since it has been observed that the acid sites of zeolites aid in cracking, 

isomerization and aromatization of FTS reactions, it was hoped that Mo addition in the 

samples could also achieve this, besides its ability to produce alcohols. Cracking longer-

chain hydrocarbons and oligomerization of short-chain hydrocarbons would enrich 

gasoline and diesel range fractions (Hu et al., 2012). The prolonged catalyst induction 

period witnessed in the Mo-promoted catalyst as shown in Figure 4.25, which was 

followed by a sudden increase in the catalytic activity after 20 h on stream might be due to 

the presence of MoO3, which take much longer to be reduced as explained with the help of 

XPS data in the article presented in Appendix H, (Aluha and Abatzoglou, 2017b). The 

promotional effect of Au, Ni and Mo in the binary Co-Fe/C catalysts still needs further 

investigation. 
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6. CONCLUSION 
 

In this work, comparative studies were conducted on a family of nine nanometric carbon-

supported catalysts. The materials were developed iteratively from the less complex single 

metal (Fe/C, Co/C) catalysts to the composite bimetallic (Co-Fe), ternary (Mo-Co-Fe, Ni-

Co-Fe) and the promoted Au/Ni-Co-Fe formulations. Initial tests conducted in a fixed bed 

reactor (at 503 K, 3 MPa pressure, with GHSV = 6 000 . ℎ .  of catalyst for 24 h) 

showed that plasma-synthesized catalysts were superior in performance to those catalysts 

prepared through the traditional multi-step precipitation or impregnation methods. Further 

tests conducted in the 3-φ-CSTSR at 2 MPa pressure, between 493–533 K using GHSV = 

3 600 . ℎ .  of catalyst, for 24 h) indicated that all catalysts had capacity to 

produce both gasoline and diesel fractions, but selectivity depended on metal composition 

in the catalyst or the reaction conditions.  

 

This work has demonstrated that the single-step induction SPS technology, which 

simplifies catalyst preparation, is an effective approach in the synthesis of highly active 

nanometric FTS catalysts and the following observations have been made in this study:  

(i) All samples produced through the plasma technique had consistent physical 

properties as presented by microscopic (SEM/EDX, and TEM) analysis, 

besides showing unique porosity as given by BET surface area analysis, which 

alludes to the method’s potential in making reproducible FTS catalysts and 

ultimate future scale-up. 

(ii) The catalysts were monitored for early deactivation due to metal particle 

agglomeration. The plasma-synthesized samples did not show significant 

sintering, but those samples prepared by traditional methods of either 

impregnation or precipitation indicated metal particle agglomeration after 24 h 

of FTS reaction.  

(iii) A large amount of wax, was generated by the Co/C catalyst (α = 0.83) at 

220oC. Although the FTS conditions have not been optimized, the catalyst had 

poor performance at higher temperatures (260oC) since it produced vast 

quantities of CO2 and CH4 (with combined selectivity of ~65%). This 
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suggested that Co/C can only be useful at low-temperature operations, while 

the bimetallic and ternary formulations perform better at higher temperatures. 

(iv) Catalyst pre-treatment at 400oC by reduction in either H2 or CO was an 

effective way of activating the catalysts. The morphology of H2-reduced 

samples remained the same after FTS, while that of the CO-reduced samples 

produced carbon nanofilaments. Both pre-treatment methods did not lead to 

catalyst deactivation with TOS, particularly due to carburization from the CO. 

(v) Since diesel fraction (C13–C20) was the target product in this work, it was 

observed that under identical test conditions, the CO-reduced catalysts 

produced more of diesel than those reduced in H2 and catalyst reduction in CO 

considerably cut H2O production during FTS (in some cases by almost half). 

(vi) Promotion of the Co-Fe bimetallic using Mo almost doubled the catalyst’s H2-

efficiency (C5+ : CH4 ratio) from  5.8 to 10. At comparable CO conversion of 

~40% (260oC, 2 MPa), their C5+ selectivity values were 91% (α = 0.81) for 

Mo-Co-Fe and 87% (α = 0.84) for the Co-Fe/C catalyst. The most active 

catalyst, Co/C had a H2-efficiency of 0.5 while that of the Fe/C catalyst stood 

at 9.7 under similar reaction conditions. 

(vii) The addition of Au to the Ni-promoted formulation was found to be beneficial 

because it lowered the production of undesirable products such as CH4 (from 

23% to 14%), CO2 (from 14% to 7%) and H2O (from 55% to 30 cm3) when 

compared to the Ni-Co-Fe/C. Besides, the Au-Ni-Co-Fe/C was more selective 

towards the diesel fraction (32%) when compared to Ni-Co-Fe/C (20%). 

 

Since this research contemplated exploring a number of unique aspects to FTS that have 

not been attempted before, there is still wide latitude for future work, which may involve:  

 Optimization of the reduction process (in CO, H2 or the syngas); 

 Catalyst durability and deactivation tests: Long runs (for over 1 000 h); 

 Catalyst life cycle assessment: regeneration and retesting the used catalysts; 

 Further catalyst characterization, which is still problematic. For example, 

attempting in situ analysis by the Synchrotron’s XRD or EXAFS. 
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7. CONCLUSION (FRENCH) 
 

Dans ce travail, des études comparatives ont été menées sur neuf catalyseurs 

nanométriques supportés par le carbone. Les matériaux ont été développés s de façon 

itérative à partir de catalyseurs monométalliques simples (Fe/C, Co/C) aux bimétalliques 

(Co-Fe), ternaires (Mo-Co-Fe, Ni-Co-Fe), et aux dopés Au/Ni-Co-Fe. Les tests 

catalytiques initiaux ont été effectués en réacteur à lit fixe (à 503 K, sous une pression de 3 

MPa et une vitesse volumique spatiale (GHSV) de 6 000 3. ℎ−1. −1, en 24 heures. Puis 

les tests ont été performés dans un réacteur triphasique agité continu (3-φ-CSTSR) opérant 

de façon isotherme pendant 24 heures à des températures de 493–533 K, sous 2 MPa et à 

GHSV = 3 600 . ℎ . , indiquant que tous les catalyseurs étudiés étaient capables 

de produire des fractions de gazoline (essence) et de diesel mais avec des sélectivités qui 

dépendaient de la quantité de métal présent dans le catalyseur ou des conditions 

réactionnelles. 

 

Ce travail a démontré que la technologie de projection par plasma inductif, en une seule 

étape, est une meilleure approche dans la synthèse de catalyseurs nanométriques 

hautement actifs dans SFT et cette étude permet de faire les observations suivantes: 

(i) Tous les échantillons produits par la technique des plasmas inductifs avaient 

des propriétés physiques mises en évidence par les analyses de microscopie 

(SEM/EDX et TEM) et montraient en outre, une porosité unique révélée par les 

mesures d’aire spécifique BET; ceci laisse présager de la capacité à reproduire 

les catalyseurs de SFT en production à plus grande échelle. 

(ii) Les catalyseurs ont été suivi pour la désactivation précoce due l’agglomération 

des particules métalliques. Les échantillons synthétisés par plasma n’ont pas 

montré de frittage significatif alors que ceux obtenus par les méthodes 

traditionnelles par imprégnation ou par précipitation ont montré une 

agglomération des particules métalliques après 24 heures de réaction de SFT. 

(iii) Une grande partie de cire provenait de l’activité du catalyseur Co/C (α = 0.83) 

à 493 K. Les conditions de réaction n’ayant pas été optimisées, le catalyseur a 

montré de faibles performances à plus haute température (533 K) avec une 
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production de CO2 and CH4 (avec des sélectivités totalisant ~65%). Cela 

pouvait suggérer que le catalyseur Co/C peut être opérationnel qu’à basse 

température, alors que les formulations bimétalliques et ternaires ont de 

meilleures performances à des températures plus élevées. 

(iv) Le prétraitement des catalyseurs à 673 K par la réduction sous H2 or CO a été 

bénéfique pour l’activation des catalyseurs. La morphologie des échantillons 

prétraités sous H2 a été conservée après la SFT, tandis que ceux qui étaient 

réduits sous CO avaient conduit aux nanofilaments de carbone. Les deux 

méthodes de prétraitement n’ont pas donné des catalyseurs qui se désactivaient 

avec le temps d’activation, du fait de la carburisation par le CO en particulier. 

(v) Comme les fractions de diesel (C13–C20) font l’objet d’intérêt dans ce travail, il 

avait été observé que sous des conditions de tests identiques, les catalyseurs 

prétraités avec CO produisaient plus de diesel que ceux prétraités avec H2; 

autrement dit la réduction du catalyseur par le CO diminue considérablement la 

production d’eau (de moitié, dans certains cas), durant la réaction SFT.  

(vi) Le dopage des catalyseurs bimétalliques Co-Fe par Mo a doublé l’efficacité de 

H2 (rapport C5+ : CH4) passante de 5.8 à 10. Pour une même conversion de CO 

à ~40% (533 K, 2 MPa), les sélectivités ont été de 91% (α = 0.81) pour Mo-

Co-Fe et de 87% (α = 0.84) pour le catalyseur Co-Fe/C. Le catalyseur le plus 

actif, Co/C avaient une efficacité de H2 de 0.5 tandis que celui de Fe/C était de 

9.7 sous des conditions réactionnelles similaires.  

(vii) L’ajout d’atomes d’or au catalyseur dopé au Ni (Ni-Co-Fe/C) a été bénéfique 

car la production de produits indésirables a été réduite, comme pour CH4 (de 

23% à 14%), pour CO2 (de 14% à 7%) et pour H2O (de 55% to 30%) compara-

tivement au Ni-Co-Fe/C. En outre, le catalyseur Au-Ni-Co-Fe/C a été plus 

sélectif pour la production de diesel (32%) comparé à 20% pour Ni-Co-Fe/C. 

 

Étant donné que cette recherche envisageait d'explorer un certain nombre d'aspects 

particuliers au SFT qui n'ont pas été tentés auparavant, il reste encore beaucoup de latitude 

pour les travaux futurs, qui peuvent comprendre: 

• Optimisation du processus de réduction (CO, H2 ou gaz de synthèse); 

• Essais de durabilité et de désactivation: Longue durée (pour plus de 1 000 h); 
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• Évaluation du cycle de vie du catalyseur: régénération et réétalonnage des 

catalyseurs utilisés; 

• Une autre caractérisation du catalyseur, qui reste problématique. Par exemple, 

la tentative d'analyse in situ par le synchrotron ou l’EXAFS. 
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9.1. Appendix A: Article 1 - Catalyst synthesis by SPS technology 



requirements that produce high activity and selectivity towards the desired fractions. Using

syngas as the raw material, the Fischer–Tropsch synthesis (FTS) process polymerizes two

simple molecules, namely, carbon monoxide and hydrogen (CO ? H2) to produce mole-

cules with varying hydrocarbon chains and molecular weights. In this publication, we

report on the application of induction plasma using the suspension plasma-spray (SPS)

technology for the production of high quality FTS catalysts by means of a high throughput,

single-step continuous method.

We suppose that plasma-synthesized catalysts will find a marketable application in the

FTS process, particularly when supported on carbon since one of the greatest advantages

derived from such catalysts lies in the concomitant production of both the metallic and

carbidic species in the samples. It is presumed that the active species in FTS are metallic

cobalt nanoparticles on one hand, and the Fe carbides on the other. In some instances it has

been observed that carburization, which produces carbides enhances FTS activity with the

Fe-based catalyst [1], but acting as a catalyst poison for the Co-based catalyst [2].

Although catalyst deactivation by carbon deposition is a major challenge when using non-

carbon supported FTS catalysts, not all types of carbon (listed as coke, metal carbides,

graphitic or hydrogen-containing carbon) lead to deactivation [3].

Several phases have been observed in Fe-based catalysts during FTS, which include

metallic iron (Fe�), iron oxides (FeO, Fe2O3 and Fe3O4), and various forms of iron car-

bides, FexCy [4]. Some studies have shown that partially reduced carbon-supported Fe3O4

influences both catalyst activity and selectivity by forming the less stable non-stoichio-

metric iron-oxide-carbide species, which is perceived to be more active and more selective

towards the formation of olefins than the known v-Fe5C2 [5]. The formation and com-

position of these Fe-phases depend on the FTS process conditions, rate of catalyst deac-

tivation and catalyst composition [6]. In order to improve on catalyst durability, some

authors have produced carbon supported Fe–Co bimetallic alloys (Fe–Co/C) by mechanical

alloying [7], but in this work, such materials were synthesized much faster, through an easy

method with potential for scale-up and great reproducibility using the SPS technology.

Catalyst preparation by SPS technology improves synthesis efficiency and brings a lot

of flexibility in the materials selection for Fischer–Tropsch synthesis (FTS) [8]. Multi-

stage catalyst preparation techniques are tedious, time consuming and escalate both labor

and material costs, besides being prone to cumulative errors that lead to variations in

catalyst quality. Therefore, the SPS method provides better catalyst reproducibility in

shortened preparation time, because it is a single-step approach, producing robust catalysts

whose metal components do not sinter [9], have superior catalyst performance [10], with

evenly distributed active species characterized by longer catalyst lifetime [11].

Since metal particles injected into the plasma follow various trajectories, the charac-

teristics of any SPS product are determined by gas total flow rate, velocity and residence

time [12]. An optimum flow rate of the material must therefore be established because

sometimes a substantial fraction of the injected material goes unaffected either by failing to

atomize or to ionize after melting [13]. Due to the probability of atomization being

dependent on both the gas velocity and the particle’s specific mass [14], small, spherically-

shaped powder particles are most preferable in producing uniformity in the suspension,

leading to a smoother flow.

The objective of this work was to produce in a single reaction step both the carbon

matrix, which acts as the catalyst support and the metallic particles in the nanometric range

alongside the FTS catalytically active Fe carbides. Nanometric catalysts were preferred

because they would easily overcome diffusion limitations during FTS since highly porous

catalysts get clogged due to unfavorable mass transfer of the large polymeric molecules,
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and this leads to catalyst deactivation. At temperatures above 1000 K (727 �C), plasma

generates Fe carbides [15], on which the Fe-catalyzed FTS reaction mechanism depends

[16]. While the metal particles melt and vaporize in the plasma, the oil in which the metal

particles are suspended is thermally cracked. Carbonaceous gases in the plasma react with

hydrogen supplied to generate mainly methane and also interact with the metal cluster

species (e.g. Fe) to produce carbides (e.g. Fe2C, Fe3C or Fe5C2). The remaining carbon

then accumulates on the metal nanoparticles or the metal-carbide nanoparticles as well as

on the cooler walls of the SPS reactor. The Fe3C phase that was evident in our samples

forms at temperatures above 1 373 K (1100 �C), below which it decomposes into graphitic

carbon and austenite (FCC structure), and further into the a-Fe (BCC structure) below

973 K (700 �C) [17].

In this study, we synthesized carbon-supported catalysts under identical plasma con-

ditions, sequentially developed from single metal formulations (Co/C, Fe/C), to Co–Fe/C

bimetallics in various metal proportions, and then Co–Fe–Mo and Co–Fe–Ni ternary

formulations. Our objective was to rationally design catalysts that would operate in a wide

range of low-temperature FTS, particularly between 493 and 533 K (220 and 260 �C),

without excessive formation of CO2 and CH4 at the upper end of the given temperature

range. Preliminary catalyst activity tests were conducted in both fixed-bed [9] and slurry

reactors [18] and the materials were found to be highly active for FTS, with the single-

metal catalysts being more active at the lower temperature of 493 K, while the bimetallic

formulations were more selective towards the diesel range at the higher temperature of

533 K [19] and with fine tuning of the catalyst pre-treatment procedure, excessive water

production during FTS was cut by half [20]. This paper therefore discusses the catalyst

synthesis procedure, and the materials’ physicochemical properties as determined through

the following characterization techniques: Brunauer–Emmett–Teller (BET) surface area

analysis, Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray

Spectroscopy (EDX) mapping, Transmission Electron Microscopy (TEM), and X-ray

Diffraction (XRD) analysis in conjunction with Rietveld Quantitative Analysis (RQA).

Experimental Methods

Catalyst Synthesis by Plasma

The SPS plasma system using the PL-50 plasma torch supplied by Tekna Inc., operates at

3.2 MHz alongside other system parameters summarized in Table 1. A schematic for

catalyst production is provided in Fig. 1, using the method already described [8]. While

maintaining the triode plate power at 29 kW, a homogeneous mixture of 60 g of the metal

(particle size range 1–10 lm) in 300 ml of mineral oil was introduced directly into the

plasma using an atomization probe at a flow rate of 8.2 ml min-1 [9]. For the sample

preparation in oxidizing medium, the H2 in the sheath gas was replaced with O2 gas

flowing at 10 SLPM, while all the other conditions were held constant.

During the initials tests with Fe-only samples, a number of parameters were varied in

order to assess their influence on the nature of the plasma products as follows:

(a) Plasma catalyst composition: introduction of pure metal (Fe), pure oxide such as

nano-hematite, or mixed metal and oxide in mass ratio of Fe to nano-hematite = 2.

(b) Changing the residence time of the suspension in the plasma by altering the initial

reactor pressure from 27 to 33 and then 67 kPa (equivalent of 200, 250 and 500 Torr
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Table 1 Operating SPS process parameters

Process parameter Values

Plasma system Power system 60 kW

Plasma torch Tekna PL-50 (3.2 MHz)

SPS characteristics Nozzle (fitting the torch) Subsonic type

Injection probe Liquid injection type

Suspension Metal particle size 1–10 lm

Concentration 0.2 g of metal/ml of oil

Feed rate 8.2 ml min-1

Plasma gas flow rates in standard
liters per minute (SLPM)

Central gas Ar: 23

Atomization gas Ar: 9.5

Sheath gas Ar: 72
H2: 9.4

Plate power Wattage 29 kW

Efficiency &40 %

Reactor pressure Initial pressure 27–67 Torr

Final pressure 250–300 Torr

Fig. 1 Schematic of the plasma-reactor system used in catalyst synthesis with a pictorial inset of the setup
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respectively). High vacuum (or lower pressure) exerts greater drag on the sample

and leads to faster movement (or lower residence times in the plasma), while higher

pressures confine the plasma and increases particle residence times in the plasma.

(c) The effect of applying either a reducing (H2) or an oxidizing (O2) atmosphere on the

plasma product, for which only TEM analysis was used to characterize the samples

and is discussed in Sect. 3.2.3.

Analogous Co-only samples were synthesized likewise–in reducing (H2-rich) atmo-

sphere, followed by Co–Fe bimetallic formulations and ternary systems (Co–Fe–Mo and

Co–Fe–Ni), with various metal proportions being used as summarized in Table 2. The

resulting powder materials were harvested manually from the walls of the reactors as well

as from the filters mounted in the auxiliary reactor, and the catalysts stored away for future

usage.

Catalyst Characterization

The synthesized catalysts were analyzed by various characterization techniques involving

porosity analysis by the BET method, XRD modeled with the Rietveld Quantitative

Analysis (RQA) technique, and Microscopic imaging by both SEM and TEM.

Porosity and the BET Surface Area Analysis

Porosity measurements of the synthesized catalysts were conducted on a Micromeritics

Accelerated Surface Area Porosimetry (ASAP 2020) analyzer by determining their BET

specific surface areas. Sample mass of about 0.5 g was initially degassed at 363 K (90 �C)

for 30 min and then at 523 K (250 �C) for 50 h under evacuation until a pressure of less

than 1 Pa (10 lm.Hg) was achieved. After cooling, the sample was re-weighed and then

analyzed using N2 gas physisorption under liquid nitrogen at 77 K (-196 �C) from an

initial pressure of about 0.2 Pa (2 lm Hg) to ambient pressure. Adsorption–desorption

isotherm plots were extracted to determine the materials’ porosity.

Scanning Electron Microscopy (SEM)

A Hitachi S-4700 Scanning Electron Microscope, equipped with an EDX X-Max Oxford

spectrometer was utilized for SEM analysis to capture both secondary and backscattered

Table 2 Metal mass injected
into plasma to produce the single-
metal (Co/C, Fe/C) catalysts, Co–
Fe bimetallics or the Ni–Co–Fe
and Mo–Co–Fe ternary
formulations

Catalyst sample (total mass 60 g) Mass (g)

Co Fe Ni Mo

100 %Fe/C – 60 – –

30 %Co–70 %Fe/C 18 42 – –

50 %Co–50 %Fe/C 30 30 – –

70 %Co–20 %Fe–10 %Mo/C 42 12 – 6

70 %Co–20 %Fe–10 %Ni/C 42 12 6 –

70 %Co–25 %Fe–5 %Ni/C 42 15 3 –

80 %Co–20 %Fe/C 48 12 – –

100 %Co/C 60 –
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images. EDX mapping of the samples was performed to determine the metal distribution in

the carbon matrix.

Transmission Electron Microscopy (TEM)

TEM analysis using an accelerating electron beam of 120 kV from a tungsten filament was

conducted on a Hitachi H-7500 instrument and images captured in the bright field mode by

means of a bottom-mounted AMT 4 k 9 4 k CCD Camera System Model X41. Particle-

size distribution analysis was done by means of the Nano-measurer version 1.2 ‘‘Scion

Imager’’ software.

XRD Analysis

A Philips X’pert PRO Diffractometer from PANalytical was used for XRD analysis, set in

the Bragg–Brentano configuration with PIXcel-1D detector and operated on the factory

installed Analytical Data Collector software. The diffractometer was fitted with Ni-filters

for the Cu Ka radiation (1.5406 Å) produced at 40 kV and 50 mA. The XRD patterns were

recorded in the range of 20� to 110� [2h] angle at a scanning speed of about 3� [2h] min-1,

with a step size of 0.040� [2h] angle. The anti-scatter and divergent slits were fixed at 1�.
Data analysis was done using the MDI JADE 2010 (version 2.6.6) software and compared

with the Powder Diffraction Files in the Database (version 4.13.0.2) using the PDF-4 ?

software 2013 (version 4.13.0.6). Since these samples comprise a maximum number of

four elements, the number of phases present after synthesis is numerous and the relative

mass fraction of each phase was determined using the RQA method [21], in conjunction

with the High Score Plus modeling software [22].

Results and Discussion

The Rationale for Catalyst Synthesis

In this work, the use of nanometric carbon matrix as a catalyst support has not been found

to adversely affect catalyst activity during FTS through effects such as carburization or

coking. This concurs with other authors who have observed that the amorphous car-

bonaceous species deposited on the catalyst were mere spectators, and did not impair the

catalyst activity in the measuring time period of about 500 h [1]. In our case, the plasma-

synthesized samples were observed to be highly graphitic, although characterized by some

disorder arising from widespread structural defects [9].

Generally, the single metal catalysts (Co/C, Fe/C) were quite active at the low FTS

temperature of 493 K. However, at 533 K where formation of the shorter molecular chains

was expected, catalyst selectivity shifted disproportionately towards the production of CO2

and CH4 gas. For this reason, the Co–Fe bimetallics were formulated in order to improve

catalytic selectivity by moderating the formation of CO2 and CH4 gas, but their capacity to

lower H2O production was still poor. Therefore, application of metal ternary (Co–Fe–Mo

and Co–Fe–Ni) systems was instructive with Ni being introduced into the Co–Fe/C cat-

alytic structure as a first step to suppress water production in FTS by augmenting the

water–gas shift reaction rate [23].
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On the other hand, Mo was expected to increase the surface acidity of the catalyst in

order to improve its selectivity toward the diesel fraction [24]. Additionally, in choosing

the three bimetallic compositions, we were testing a hypothesis that, according to the Co–

Fe binary phase diagram by Okamoto [25], the plasma-generated 50 %Co–50 %Fe and

30 %Co–70 %Fe formulations would contain identical intermetallic phases while the

80 %Co–20 %Fe formulation would exhibit unique properties since its Co–Fe inter-

metallic phases would be different. Instead, it was observed that the 50 %Co–50 %Fe

formulation was more distinctive with the highest mean particle size (14.4 nm) compared

to the other two formulations with a lower mean particle size (9 nm).

Catalyst Characterization

BET Surface Area Analysis

In general, porosity analysis indicated similarities in the adsorption–desorption isotherms,

with Fig. 2 representing a typical plot, independent of catalyst composition. For every

tested catalyst, the lack of a notable hysteresis loop signifies that the samples were non-

porous. The overlaid pore distribution plots shown in Fig. 3 imply that there exists some

micro-porosity with pore size of less than 10 nm. However, since microporous materials

usually display greater hysteresis, this means that the packing of the nanometric catalyst

particles creates some artificial nano-porosity due to gas adsorption between packed

nanoparticles [18]. Nevertheless, some disparities were observed particularly from iden-

tical samples collected from different reactors. For example, when samples from the main

plasma reactor were compared to those that originated from the auxiliary reactor, Co/C

catalysts had comparable BET specific surface areas, while the 80 %Co–20 %Fe/C and

70 %Co–20 %Fe–10 %Ni showed a higher surface area in the samples from the main

reactor. The rest of the samples (70 %Co–25 %Fe–5 %Ni, 50 %Co–50 %Fe/C, 30 %Co–

70 %Fe/C and Fe/C) from the auxiliary reactor indicated higher surface areas, see Table 3.

Overall, the properties of the materials collected from the filters as well as the walls of the

Fig. 2 Representative
adsorption–desorption isotherms
of the Fe/C catalyst from filters
showing limited hysteresis as a
sign of non-porosity in the
samples
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auxiliary and main reactor were similar, with BET specific surface areas that did not

exceed 100 m2 g-1.

Scanning Electron Microscopy (SEM)

Synthesized catalysts were characterized by SEM in conjunction with EDX, where both

spot and area analysis indicated uniform distribution of the metal nanoparticles in the

carbon matrix of all the samples. Secondary and backscattered SEM images of the

30 %Co–70 %Fe/C catalyst are shown in Fig. 4 as a representative. In addition, EDX

Fig. 3 Pore distribution plots by pore area for the catalysts drawn from the auxiliary reactor

Table 3 Comparative porosity analysis of the catalyst materials by the BET method

Catalyst (expected
composition)

BET Surface area
(m2 g-1)

Average pore diameter
(nm)a

Total pore volume
(cm3 g-1)b

Auxiliary
reactor

Main
reactor

Auxiliary
reactor

Main
reactor

Auxiliary
reactor

Main
reactor

100 %Co/C 55.5 54.4 27.4 28.3 0.38 0.39

80 %Co–20 %Fe/C 67.2 72.8 24.4 22.0 0.41 0.42

70 %Co–20 %Fe–
10 %Ni/C

69.2 76.3 25.8 19.3 0.45 0.37

70 %Co–25 %Fe–
5 %Ni/C

92.6 88.7 20.6 19.1 0.48 0.42

50 %Co–50 %Fe/C 92.2 73.3 22.3 20.8 0.51 0.38

30 %Co–70 %Fe/C 91.1 73.1 22.6 18.9 0.51 0.34

100 %Fe/C 72.2 35.4 21.6 32.6 0.40 0.28

a Single point adsorption total pore volume of pores less than 120 nm in diameter at P/Po = 0.98
b Average pore diameter (4 V/A by BET)
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mapping conducted on the bimetallic catalysts confirmed that the mass loading and dis-

persion of the metal nanoparticles in the carbon matrix was indeed uniform and without

particle agglomeration as expected. This is clear from the line scans shown in the same

figure. Notice the gradual increase of the red shade in the sample images with higher Co

loading as portrayed in Fig. 5 and the blue one for Ni in Fig. 6.

TEM Analysis

The as-synthesized catalysts were analyzed by TEM imaging from which metal particle

dispersion and particle-size distribution were determined.

The Effect of Fe Precursor: Pure Metal Versus Oxide feedstock Either pure metal or pure

hematite mixed in mineral oil was introduced into the plasma. Since the commercial nano-

hematite is fluffy, the intended 60 g could not be accommodated into the 300 g of mineral

oil. Therefore, only 20 g have been used instead. It was observed that by using H2 as the

plasma sheath gas, the hematite was reduced to metallic iron during the plasma synthesis

step. In both cases (use of pure metal or pure hematite), the spherical metal particles were

(a) Secondary image 

(b) Backsca�ered image

50%Co-50%Fe/C

(c) Line scans

80%Co-20%Fe/C

30%Co-70%Fe/C
Fe
Co

Fig. 4 SEM analysis of the as-synthesized catalyst from the main reactor showing a secondary and
b backscattered images of the 30 %Co–70 %Fe/C sample; c EDX line scans of the three bimetallic samples
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similar in morphology and completely surrounded by the carbon matrix generated in situ,

while some metal nanoparticles were clearly enclosed in a carbon capsule, see Fig. 7. The

only difference between samples originating from the different feedstocks was that, where

the nano-hematite was used, there was less metal in the carbon matrix since only a third of

the original mass was used.

Particle Residence Time in Plasma as an Effect of Pressure on Fe Catalysts Changing

the initial pressure in the reactor chamber was intended to determine the residence time of

the particles in the plasma. Higher pressure leads to longer residence times while high

vacuum shortens the particle residence time in the plasma. It was observed that the resi-

dence time of the particles in the plasma did not considerably affect the nature of the

catalysts, and morphologically they were similar as depicted in Fig. 8. In this unique test,

20 g of nano-hematite were used instead of 60 g, and as mentioned above, many areas of

the carbon matrix in the catalyst were observed to be devoid of metal.

The Effect of Gas on Fe Catalysts: H2 Versus O2 When the commercial nano-hematite

(with mean particle size of 4 nm) as seen in Fig. 9a was introduced into the plasma, it was

EDX spectra

keV

= Co        = Fe

1000 nm

30%Co-70%Fe/C

80%Co-20%Fe/C

50%Co-50%Fe/C

(a) Auxiliary reactor (b) Main reactor

Fig. 5 EDX imaging of the as-synthesized bimetallic catalysts indicating characteristic uniform metal
dispersion, with their respective EDX spectra
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observed that a reducing atmosphere produced metal moieties embedded in a carbon

matrix as shown in Fig. 9b, while an oxidizing atmosphere led to substantial particle

growth, see Fig. 9c. In a reducing environment, the mineral oil provided the carbon that

Fig. 6 EDX imaging of the as-
synthesized Co–Fe–Ni ternary
catalysts from the main reactor
indicating uniform metal
dispersion

20 nm

Encapsulated
metal nanoparticle

Fig. 7 A sample TEM image of
the Fe/C catalyst from the main
reactor synthesized from pure
metal and oil in H2 plasma sheath
gas
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encaged the metal particles, thereby preventing agglomeration by ring fencing each par-

ticle from possible contact with its neighbors. On the other hand, the oxidizing atmosphere

consumed the oil meant to produce the carbon matrix in the catalyst resulting in extra

enthalpy in the plasma plume. Therefore, a lack of ring fencing and particle lability,

coupled with excessive heat led to the fusion and crystal growth of the feedstock nano-

hematite particles. Larger particles were thought to have had protracted residence times in

the plasma due to local eddies at the reactor top as determined experimentally by Jia [26,

p. 75], with typical particle velocity of up to 40 m s-1, as demonstrated by Goortani [27,

p. 114]. The observations on particle growth related to the oxidizing-reducing plasma

conditions confirmed that a reducing atmosphere was imperative for the plasma-synthesis

of active FTS catalysts using this approach.

Comparison of Co/C and Fe/C Catalysts One remarkable feature in the Co-based cata-

lysts was the stacking faults as marked in Fig. 10. Nonetheless, the materials were identical

to the Fe-based catalysts, having the metal moieties evenly spread and implanted in the

carbon matrix. Overlaid particle size distribution plots for over 750 particles measured per

sample indicated no substantial differences in their mean nanoparticles size (Co/

C = 11.0 nm; Fe/C = 11.3 nm), as shown in Fig. 11.

20 nm

20 nm

(a) 250 Torr

(b) 500 Torr

Fig. 8 TEM images of main
reactor Fe/C as-synthesized
catalysts originated from nano-
hematite prepared using different
residence times
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100 nm

20 nm

(a) Fe-NanoCat®

20 nm

(b) Reducing atmosphere

(c) Oxidizing atmosphere

Fig. 9 TEM images of a the nano-hematite feedstock; and b Fe/C catalyst as derived from oil in H2 and
c the plasma product as derived in O2 (polygons are oxides), collected from the main reactor

Fig. 10 A characteristic TEM
image of the Co/C catalyst
sample from the auxiliary reactor
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Comparison of the 3 Bimetallic Co–Fe Catalysts Figure 12 illustrates that the SPS

method produces bimetallic catalysts with comparable metal nanoparticle dispersion and

physical properties. There was no significant variation in the morphology of the materials,

whether single metal (Co/C, Fe/C) or Co–Fe/C bimetallics in their various metallic pro-

portions after SPS. This makes the SPS approach unique in producing catalysts with

uniform qualities, and provides strong evidence for its capacity to easily reproduce catalyst

synthesis.

Notice the carbon nanotube in the micrograph. It has been advanced [28] that plasma

temperature, velocity, gas-phase composition fields and precursor injection conditions are

the major driving factors that determine the optimum region for carbon nanoparticle

growth. A key characteristic of the graphite growth mechanism in the plasma involves

carbon nucleation on the surface of the catalyst material (Fe or Co) by the decomposition

of gaseous hydrocarbon molecules followed by diffusion of the hydrogen away from the

surface. Once the nanoparticle is supersaturated with the carbon atoms, they form

hexagonal sheets that conform to the curvature of the particle and this mechanism is

energetically favored [28]. Graphite forms when the carbon feedstock is injected into the

plasma zone (T & 10,000 K for argon plasma). However, in low-temperature regions of

the reactor, typically below the melting point of the Fe catalyst in the plasma (1800 K),

particle growth leads to deposition of amorphous carbon products. At temperatures in

excess of 1800 K, only graphitic carbon can grow, thereby producing thin sheets. Carbon

nanotubes (CNTs) can be considered as tiny rolled up sheets that form single walled,

double-walled or multi-walled nanotubes (SWCNTs, DWCNTs, or MWCNTs respec-

tively) and CNTs have also been found to be favorable supports in FTS [29, 30].

In the plasma synthesis of our catalysts, the metal clusters act as the catalytic growth

centers for the nanometric carbon matrix, where nano-graphitic sheets and CNTs are

formed in the presence of mineral oil as a carbon source [31]. In chemical vapor deposition

(CVD), for example, it has been observed that in the presence of a catalyst (Ni, Fe or Co),

the hydrocarbon molecules are broken into reactive species at the temperature range of

823–1273 K (550–1000 �C) to produce CNTs [32]. Although some authors claim that

metal oxides are necessary for the growth of CNTs and carbon nanofilaments (CNFs) [28],

the lack of oxygen in the plasma reactor system precludes the formation of iron oxides,

which are precursors of CNFs. Thus, the presence of CNFs are rather scarce, but we

Fig. 11 Overlaid plots showing
particle size distribution of Co/C
and Fe/C catalysts from the
auxiliary reactor
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extensively observe graphitic sheets where H2 is used [33]. In this work, the addition of O2

in the plasma gas stream was intended to ensure that the metal oxides were not completely

reduced to the metal during synthesis. Nevertheless, TEM images indicated no morpho-

logical variations in the catalysts, whether synthesized in the presence of O2 or H2 in the

plasma gas, because CNF growth is partly time-depended. The residence time of the

precursor catalyst material in the plasma was inevitably too short to allow for CNF growth.

50%Co-50%Fe/C

20 nm

Metal nanoparticle

Graphitic sheet

Amorphous
carbon matrix

80%Co-20%Fe/C

20 nm

Carbon nanotube

30%Co-70%Fe/C

20 nm

Fig. 12 TEM images of the Co–
Fe/C bimetallic catalysts drawn
from the auxiliary reactor
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In producing a-Fe and Fe carbide nanoparticles by the use of nano-hematite, it was

shown that the process is both temperature and time-dependent, exceeding 503 K and

about 15 min [34]. However, due to high temperatures experienced during the production

of a-Fe and Fe carbide nanoparticles by plasma synthesis, those reactions are instantaneous

[35]. It has been noted that higher carbon feedstock concentration in addition to higher

temperature usually offers more carbon species available for nano-sheet growth [36]. In

our case the hydrocarbon feedstock to the plasma catalyst (or metal powder) was in the

ratio of 5:1 mass by mass, in the plasma gases (Ar and H2).

Between the three bimetallic compositions, the only difference observed was the

average diameter of the particles. A sample of over 250 nanoparticles was measured for

each catalyst, and it was observed that the particle-size distribution for both the 80 %Co–

20 %Fe/C and 30 %Co–70 %Fe/C bimetallic catalysts was identical (ca. 9 nm), and a

similar trend was also recognized for the single metal Co/C and Fe/C catalysts (ca. 11 nm).

However, only the 50 %Co–50 %Fe/C bimetallic catalyst displayed a wider particle size

distribution with a mean particle size of 14.4 nm, see Fig. 13. Since none of the charac-

terization techniques could provide conclusive information on the nature and quantity of

the Co and Fe nanoparticles in the materials, intuitively we suspect that the 50 %Co–

50 %Fe sample had comparatively bigger particles due to elaborate CoFe intermetallic

formation, thereby enhancing metal–metal cluster agglomeration. Therefore, by inductive

argument we think that the 50 %Co–50 %Fe/C sample had more CoFe nano-alloys than

the other two bimetallic samples because all the Co could have alloyed with all the Fe and

vice versa. However, in the 80 %Co–20 %Fe/C sample, only a maximum of 20 % Co

mean = 8.9

80%Co-20%Fe/C
mean = 9.1

30%Co-70%Fe/C

mean = 14.4

50%Co-50%Fe/C

Fig. 13 Plots of the average particle size of catalysts drawn from the auxiliary reactor as analysed by TEM
imaging

1340 Plasma Chem Plasma Process (2016) 36:1325–1348

123



metal could form the CoFe intermetallic nano-alloy, while in the 30 %Co–70 %Fe/C

sample only a maximum of 30 % Fe metal could form the CoFe intermetallic nano-alloy.

Since SPS technology produces metal nanoparticles within a narrow size range, this

property becomes increasingly critical in processes such as FTS that are particle-size

sensitive. For example, it has been shown that for Co-based FTS catalysis, no intrinsic

particle size effect exists for metal particle size between 3.5 and 10.5 nm, but for the

smaller particles below 2.5 nm, the metallic Co is easily oxidized by the water vapor,

leading to lower turnover frequency (TOF) and higher CH4 selectivity [37]. This means

that a process that generates a higher percentage of catalyst nanoparticles below 2.5 nm

will experience faster catalyst deactivation due to the formation of CoO. Other authors

using cobalt particles in the size range of 2.6–27 nm found the optimum at 6–8 nm where,

larger particles displayed lower catalytic activity while smaller particles recorded both

lower activity and lower selectivity towards FTS products [38].

Similar observations on particle-size effect have been made in Fe-based catalysts from a

study with particles in the size range of 2–12 nm. The best CO conversion was obtained at

6.1 nm. An increase in the particle size was seen to enhance the reduction capacity of the

catalyst, which tends to increase its selectivity towards FTS products, and lowers CH4

formation. In addition, increasing the particle size from 2.4 to 6.2 nm improved TOF,

which remained almost constant up to a particle size of 11.5 nm [39]. Therefore, in view of

its perceived potential for easy scale up, we find the plasma method most appropriate for

the production of FTS catalysts having the right metal nanoparticle size-range.

Comparison of the Co–Fe–Mo and Co–Fe–Ni Ternary Catalytic Systems Figure 14

shows that the Co–Fe–Mo and Co–Fe–Ni ternary systems have similar metal particle

dispersion. The consistency in the quality of the catalysts demonstrates that the SPS

process is robust and reliable in reproducing the materials irrespective of the kind of metal

used in the range of our operating conditions.

XRD Analysis

XRD analysis as displayed in Fig. 15 shows that all the Fe-containing catalysts comprise

considerable amounts of carbides (Fe3C), which display the major peak at 45� (2h) angle,

although this peak overlaps with those of cobalt’s FCC and HCP peaks. With increasing

Co-loading in the samples, the peak intensities of Fe gradually diminishes as expected. The

50 %Co–50 %Fe sample shows both metallic Co and Fe phases. In these results, it is clear

that none of Co/C catalysts contains significant amount of HCP metallic Co.

XRD phase quantification in the as-synthesized bimetallic catalysts was modeled using

the RQA curve fitting, and the 30 %Co–70 %Fe/C catalyst is shown in Fig. 16 as a

representative. Although the RQA of the single metal catalysts (Co/C and Fe/C) has

already been discussed [18], it is worthwhile comparing their phases with those of the 3

bimetallics here. The analysis showed crystalline phases of both metallic and metal-carbide

species in the materials, besides the presence of graphitic carbon. Only the Co/C sample

contained Co carbides (Co3C), which were absent in the bimetallics, while all the Fe-

containing samples had Fe carbides particularly in the form of Fe3C.

The RQA results obtained are summarized in Table 4. The estimated standard deviation

(e.s.d) values, which reflects the precision of the refined parameters are indicated in

brackets and should tend to zero. Ideally, the curves’ goodness of fit (GOF) with the High

Score Plus software, should be close to 1 [40], but a value of 2, which is the case with most

Plasma Chem Plasma Process (2016) 36:1325–1348 1341

123



of our analyses should still be acceptable owing to the compounding difficulties encoun-

tered that included peak overlaps, peak broadening, peak extinction, and amorphicity

arising from disordered carbon characterized by the high noise to signal ratio. In the Mo- or

Ni-containing samples, neither Mo nor Ni could be quantified due to a comparatively

higher concentration of Co in the samples, as exemplified in Fig. 17 for the Ni-based

ternary-system catalyst.

20 nm

70%Co-20%Fe-10%Mo/C

20 nm

70%Co-25%Fe-5%Ni/C

20 nm

70%Co-20%Fe-10%Ni/C

Fig. 14 TEM images of the Co–
Fe–Mo and Co–Fe–Ni ternary
catalysts from the main reactor
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Fig. 15 XRD patterns of the Co–Fe/C bimetallics compared to the single metal Co/C and Fe/C catalysts
drawn from the auxiliary reactor

Fig. 16 Curve fitting by Rietveld analysis using XRD spectra of the as-synthesized 30 %Co–70 %Fe/C
catalyst from the main reactor
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Phase quantification by the Rietveld application of XRD analysis showed that the Fe/C

catalyst contained *40 % graphitic carbon, 34 % Fe� and 26 % Fe3C. The Co/C sample

comprised *54 % graphitic carbon, 39 % Co�, and 7 % Co3C. Unique to the Co-con-

taining samples were stacking faults recognized in TEM images. The original Co metal

feedstock used in the plasma contained mixed phases of both hexagonal closed packing

(HCP) structure (ca. 38 %), and the face-centered cubic (FCC) structure (ca. 62 %). Both

structures were evident from the XRD analysis of the original metal. Only nanoparticles

with the FCC structure exited the plasma reactor, because Co takes the HCP structure, but

Table 4 Rietveld quantitative analysis of the as-synthesized catalysts (auxiliary reactor)

Phase Catalyst composition

100 %Co 80 %Co–20 %Fe 50 %Co–50 %Fe 30 %Co–70 %Fe 100 %Fe

Co3C 6.7 (1) UQ – – –

Fe3C – – 4.6 (2) 8.9 (1) 26.0 (1)

Graphite-2H 54.1 (1) 27.0 (1) 35.0 (1) 28.0 (1) 40.0 (3)

Co (metal) 39.2 (2) 46.3 (3) 10.6 (1) 8.8 (2) –

Fe (metal) – 3.5 (2) 25.0 (1) 28.0 (1) 34.0 (3)*

FeCo intermetallic – 23.0 (1) 24.0 (1) 26.0 (1) –

Fe2C – UQ UQ

Other Co–Fe alloys – LC –

Fe5C2 PO UQ

Quality of refinement

GOF 1.60 2.66 1.57 1.56 1.59

UQ, unquantifiable, but presence likelihood high; PO, present in all samples, but impossible to quantify due
to peak overlaps with Co; Fe�, *mixed phases: metallic iron 20.9 % (3), Taenite = 13.1 % (3); e.s.d,
estimated standard deviation (bracketed values); LC, impossible to quantify for lack of reference patterns
with position of atoms; GOF, goodness of fit (v2) = (Rwp/Rexp)2 and should approach unity; Rexp, expected R
or the ‘‘best possible Rwp’’ factor; Rwp, weighted profile (R-factor)—weighted to emphasize peak intensity
over background

Fig. 17 XRD patterns of Ni–Co–Fe/C ternary system compared to single metal Co/C and Fe/C catalysts
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above 693 K (420 �C) the FCC structure prevails, although nano-sized particles in the

range of 10–20 nm adopt the FCC phase at room temperature [41].

A good proportion of the metallic phase (Fe� or Co�) was identified in all samples, while

the bimetallics consisted of some measure of the CoFe intermetallic phase. Although other

alloys were present in the samples, it was impossible to precisely and conclusively identify

them, either for lack of reference patterns with the right atom positions such as Fe2Co, or

their determined values were within the error margin, thereby making any such conclusion

unreliable. Nonetheless, reflections from the characteristic (111), (200) and (220) crystal

planes of CoFe (FCC) solid solution phase were observed at approximately 2h = 44�, 51�
and 75�, respectively. In addition, the (110), (200), (211) peaks of a-Co7Fe3 (BCC) phase

were observed at about 45�, 66� and 84�, respectively [42]. The Co3Fe7 seemed to share the

same XRD peak positions with Co7Fe3 [43].

Besides, some of the phases were below the instrument’s detection limits, particularly

for the Co–Fe/C bimetallics and ternary systems (Co–Fe–Mo and Co–Fe–Ni/C) due to

some of their phases existing in minute quantities. Furthermore, peak overlaps in the

samples made it problematic to quantify the other intermetallic phases or metal carbides

such as Fe5C2 and Fe2C, which were possibly present. Likewise, additional hitches arose in

the analysis since substantial amount of disordered carbon existed in the samples. Com-

plete phase quantification was therefore constrained by various factors such as high noise

to signal ratio arising from considerable amorphicity, peak overlaps, highly nanometric

samples leading to peak broadening and consequently peak extinction, compounded by

software limitations where some reference patterns were lacking.

Benefits of SPS Technology in Catalyst Synthesis

In this work, we opine that catalysts synthesized by the single-step plasma technology are

highly reproducible because it is a less complex method. Since it has been established that

carbide species enhance FTS activity in Fe-based catalysts, the simultaneous formation of

metallic and carbidic species entrenched in a nanometric carbon support provides sub-

stantial benefits for such catalysts. This would be in addition to other favorable advantages

derived from time, labor and material cost-reduction measures in the process.

Characterization of the plasma-synthesized materials confirmed the catalysts’ nano-

metric properties. From their BET adsorption–desorption isotherms, the samples were

found to be identical in nature, having plots that were characteristic of type II isotherms.

Such materials are distinctively non-porous. Their pore structure and pore distribution plots

were equally comparable. However, it was observed that the single metal catalysts had

higher pore diameter measurements than the bimetallics. Conversely, the single metal

catalysts had lower BET specific surface areas than their bimetallic counterparts. The small

pore volumes (ca. 0.4 cm3 g-1) alluded to the non-porous nature of the materials. In FTS,

non-porous catalysts would be advantageous since mass-transfer limitations are eliminated.

Catalyst deactivation as a result of poor mass transfer of the high molecular weight FTS

products clog catalyst pores, and for that reason we have argued that porous materials must

be avoided [18].

All the samples took the form of spherical metal nanostructures, entrenched in a carbon

matrix that is partially hydrogasified by reduction in a H2 stream at *673 K (400 �C) in

order to expose the metal moieties for FTS catalysis. Both SEM and TEM analysis showed

uniform dispersion of the metal nanoparticles in the samples, generally with particle size

range between 1 and 30 nm, and a mean size of *9 nm for the 80 %Co–20 %Fe/C and

30 %Co–70 %Fe/C bimetallics, *11 nm for the single metal (Co/C, Fe/C) catalysts and
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over 14 nm for the 50 %Co–50 %Fe/C bimetallic catalyst. The carbon support in which

the metal nanoparticles were lodged was highly graphitic, but with considerable structural

defects, which contributed to its partial amorphicity. Carbon supports have been found to

be desirable for FTS [44], with graphitic support being more appealing for FTS because it

has various advantages that include: its chemical inertness that prevents reaction with the

active metal phase, while at the same time inhibiting undesirable reactions with the syngas;

its thermal stability at high temperatures; it does not sinter or shrink during reaction, thus

exhibiting limited thermally-induced loss of surface area; it has favorable thermal and

electrical conductivity properties; and it has good mechanical strength [45].

Conclusion

Novel and high quality nanometric catalysts with potential for application in Fischer–

Tropsch synthesis were produced through induction plasma material synthesis using SPS.

The catalysts encompassed single metal (Co/C and Fe/C) formulations, Co–Fe/C bime-

tallics, as well as the Co–Fe–Mo/C and Co–Fe–Ni/C ternary systems, and they were found

to be primarily non-porous as determined by BET surface area analysis. Microscopy

(SEM) through EDX mapping revealed uniform dispersion of the metal moieties in the

carbon matrix, while TEM analysis indicated metal nanoparticle size with mean in the

range of 9–15 nm. Although quantitative analysis through XRD coupled with RQA was

attempted in order to determine the exact distribution of the phases in the materials,

difficulties existed particularly due to the presence of a significant amount of the support

being amorphous. Furthermore, peak broadening, peak overlaps, peak extinction and a lack

of database reference patterns added to the analysis difficulties. Nevertheless, qualitatively

we got cues of the possible phases that were present in the samples, which included pure

metal phases (Co� and Fe�), Co–Fe intermetallic alloys (CoFe, Co3Fe7 and Co7Fe3) and the

carbides (Co3C, Fe2C, Fe3C, and Fe5C2). The Fe carbides are understood to be the active

phase in the Fe-based FTS catalysts, which makes the plasma synthesis a valuable

approach in catalyst preparation.
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34. Schneeweiss O, Zbořil R, David B, Heřmánek M, Mashlan M (2009) Solid-state synthesis of a-Fe and
iron carbide nanoparticles by thermal treatment of amorphous Fe2O3. Hyperfine Interact
189(1):167–173

35. Bell MS, Teo KBK, Lacerda RG, Milne WI, Hash DB, Meyyappan M (2006) Carbon nanotubes by
plasma-enhanced chemical vapor deposition. Pure Appl Chem 78(6):1117–1125

36. Wang J, Zhu M, Outlaw RA, Zhao X, Manos DM, Holloway BC (2004) Synthesis of carbon nanosheets
by inductively coupled radio-frequency plasma enhanced chemical vapor deposition. Carbon
42:2867–2872

37. Z-j Wang, Skiles S, Yang F, Yan Z, Goodman DW (2012) Particle size effects in Fischer–Tropsch
synthesis by cobalt. Catal Today 181:75–81

38. Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu X, Kapteijn F, van Dillen AJ,
de Jong KP (2006) Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon
nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964

39. Park J-Y, Lee Y-J, Khanna PK, Jun K-W, Bae JW, Kim YH (2010) Alumina-supported iron oxide
nanoparticles as Fischer–Tropsch catalysts: effect of particle size of iron oxide. J Mol Catal A Chem
323(1–2):84–90
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production through the FTS process, are presented here. This
is an account outlining procedures followed in catalyst
synthesis, testing, and characterization. In this work, an attempt
has been made to establish catalyst morphology and that of
various species in freshly prepared materials through a number
of characterization techniques, which include Brunauer−
Emmett−Teller (BET) surface area analysis, Raman spectros-
copy, scanning electron microscopy (SEM) coupled with
energy dispersive X-ray spectroscopy (EDX), transmission
electron microscopy (TEM), as well as X-ray methods, such as
X-ray absorption near-edge structure (XANES), X-ray photo-
electron spectroscopy (XPS), and X-ray diffraction (XRD)
analysis.

2. EXPERIMENTAL METHODS

2.1. Catalyst Synthesis. Three methods were employed to
prepare Co- and Fe-based catalysts, namely, plasma spraying,
impregnation and precipitation, targeting 40% metal-loading
onto C supports. The resulting materials were tested for
Fischer−Tropsch activity. Since nanometric metallic particles
are pyrophoric, particularly when deposited on nanometric C,
and can easily degenerate into fire when exposed to air, all
precautions were taken during preparation, general manage-
ment and treatment of the catalysts to avoid such exposure.
2.1.1. Chemicals and Materials. The raw materials for

preparing the catalytic formulations were: Co metal (particle
size: 1−10 μm), Co (II) oxide and Co (II).(III) oxide from
Aldrich; Fe metal (1−10 μm), Fe (II) oxide, Fe (II).(III) oxide,
Fe (III) nitrate nona-hydrate and Co (II) nitrate hexa-hydrate
from Alfa Aesar; high purity gases from PRAXAIR: H2 (N5.0),
CO (N2.5), Ar (N5.0); 68% nitric acid and 29% ammonia
solution from ACE Chemicals Co; and mineral oil from Fisher
Scientific with catalog name “O122-4, Mineral Oil, Heavy;
USP/FCC (Paraffin Oil, Heavy)”; 68% nitric acid and 29%
ammonia solution from ACE Chemicals Co.
2.1.2. Preparation of C Supports. Carbon nanofilaments

(CNFs) were prepared via a patented process,26 by dry-
reforming of ethanol (C2H5OH) in a CO2 stream at 565 °C
(see Figure 1 for the reactor setup). The reactor temperature
was raised to 550 °C under pure Ar flowing at the rate of 200
SCCM (standard cubic cm per min, or 3.33 × 10−6 Nm3.s−1;
where 1 SCCM = 1.67 × 10−8 Nm3.s−1). The stream of
C2H5OH and CO2 mixture was then opened at a constant flow
rate of 1 O atom for every C atom: (C2H5OH + CO2 = 3C +
3O). On a 17-g steel strip with dimensions of 413 mm × 25
mm × 0.5 mm, some 0.3 g/min of liquid C2H5OH was reacted
with CO2 at a flow rate of 160 SCCM (or 2.67 × 10−6 Nm3.s−1)
at room temperature and barometric pressure (25 °C, 1 atm),
and the reaction was left to proceed for about 4−6 h.27 The

resulting CNFs, deposited as C according to eq 8, were
harvested and then functionalized by acid-activation using
dilute 4 M HNO3 where 250 mL of 68% (15.8 M)
concentrated acid was dissolved in a liter of solution using
distilled H2O. About 50 g of the CNFs were refluxed with 4 M
HNO3 at 95 °C for 3 h.28

+

→ + + +

C H OH(l) CO (g)

CO 2H (g) 2H O(l) 2C(s)
2 5 2

2 2 (eq 8)

2.1.3. Catalyst Preparation by Impregnation. While aiming
for 40% metal-loading in the final catalyst sample, 33.7 g of
Co(NO3)2.6H2O and 10.2 g of acid-activated CNF support
were mixed with H2O to produce a thick homogeneous paste
and left to evaporate slowly to dryness in an oven set at 100 °C
for 15 h. A similar homogeneous paste was made from 45.4 g of
Fe(NO3)3·9H2O and 9.4 g of acid-activated CNF support for
Fe-based catalysts. The resulting catalyst precursors were then
calcined at 290 °C in Ar current flowing at 400 SCCM (6.67 ×
10−6 Nm3.s−1) for 10 h, after which they were cooled to room
temperature in the same gas stream.

2.1.4. Catalyst Preparation by Ammonia Precipitation.
Similarly, while aiming at 40% metal-loading in the final
catalysts, 0.11 M solutions of Co or Fe metal salts were
prepared with a mass of 31.6 g of Co(NO3)2.6H2O and 45.1 g
of Fe(NO3)3.9H2O, respectively. To prepare about 0.15 M
NH4OH solution, 25 mL of 29% (or 15 M) NH4OH solution
was dissolved in 250 mL of solution with distilled H2O. About
100 mL of this solution was drawn out and used to precipitate

Table 1

Target Reaction Designation

Alkanes + + → ++n n n(2 1)H CO C H H On n2 2 2 2 eq (1)

Alkenes + → +nH n n2 CO C H H On n2 2 2 eq (2)

Water-gas shift + → +H O CO CO H2 2 2 eq (3)

Methane + → +3H CO CH H O2 4 2 eq (4)

+ → +4H CO CH 2H O2 2 4 2 eq (5)

Alcohols + → + −+n n n2 H CO C H OH ( 1)H On n2 (2 1) 2 eq (6)

+ + − → + −+n n n( 1)H (2 1)CO C H OH ( 1)COn n2 (2 1) 2 eq (7)

Figure 1. Reactor setup for CNF synthesis.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b03003
Ind. Eng. Chem. Res. 2015, 54, 10661−10674

10662

http://dx.doi.org/10.1021/acs.iecr.5b03003


the metals out of their respective solutions, then added
instantaneously to 10.0 g of acid-activated CNF support. The
ensuing thick homogeneous paste was warmed gently for 30
min on a water bath set at 70 °C to evaporate excess ammonia.
The sample was vacuum-filtered and washed with a liter of
distilled H2O, and the residue was left to oven-dry at 100 °C for
10 h. The resulting catalyst precursor was calcined at 290 °C in
Ar current flowing at 400 SCCM (6.67 × 10−6 Nm3.s−1) for 10
h, then cooled to room temperature in Ar.
2.1.5. Catalyst Preparation by Plasma. Catalyst synthesis

was carried out in a radio frequency (RF) plasma system, which
powered the inductively heated torch (PL-50, 3.2 MHz,
supplied by Tekna Inc.) equipped with a subsonic nozzle. A
60.0-g mass of Co or Fe was mixed with 300 mL of mineral oil
for 2 h to form a homogeneous suspension, which was then
introduced directly into the plasma spray at a flow rate of 8.2
mL.min−1 by peristaltic pump. As illustrated in Figure 2, the

reaction gases were: sheath gas composing Ar at 50 psi, and
flowing at 75 SLPM or 1.25 × 10−3 Nm3.s−1 (SLPM = standard
liters per minute), H2 (50 psi, 10 SLPM or 1.67 × 10−4

Nm3.s−1), swirling plasmagenic Ar (23 SLPM or 3.83 × 10−4

Nm3.s−1), and the suspension was atomized with Ar (10.5
SLPM or 1.75 × 10−4 Nm3.s−1). RF plasma power was kept
constant at 29 kW, while initial fixed pressure was set at 250
Torr (1 Torr =133.3 Pa). After catalyst synthesis, the reactor
was quenched, opened and the materials harvested manually,
where the catalyst powder deposited at its walls as well as on
the filters (in the auxiliary reactor) were skimmed off, collected
and then tested for Fischer−Tropsch activity.
2.2. Catalyst Testing. 2.2.1. Reactor Setup and Reaction

Conditions. Figure 3 depicts a simplified version of the reactor
design for catalyst testing. A 1.0-g catalyst mass diluted with 6
mL of silicon carbide (SiC) was loaded systematically with
various mesh-size SiC beads into a 50 cm stainless steel fixed-
bed reactor. Variations in mesh size served to eliminate both
heat and mass transfer problems, an approach typical of the one
already prescribed.29 The catalyst was reduced in situ at 350 °C
for 10 h in pure H2 flowing at 55 SCCM (9.17 × 10−7 Nm3.s−1)
and then tested for FTS activity at 30-bar pressure and 230 °C,
with a gas flow rate of 100 SCCM (1.67 × 10−6 Nm3.s−1) for

24 h. The composition of the syngas mixture was in the ratio of
H2:CO1.88 as follows: 58.4% H2, 31.1% CO and 10.5% Ar.
Gas-phase data were collected from a Shimadzu GC-2014

Gas Chromatograph (GC) operated by factory-installed GC
Real Time Analysis software. The instrument was fitted with a
Porapak N 80/100 GC column of 1.0-m length (L), 3.17 mm
inner diameter (ID), and 1.00-μm film thickness (df), operating
to a maximum temperature of 250 °C and leading to a thermal
conductivity detector. On the other hand, a flame ionization
detector (FID) analyzed hydrocarbons present in gas exit
samples running through a GC Restek Rtx-1 PONA column
with dimensions L = 100.0 m, ID = 0.25 mm, and df =0.50 μm,
operating to a maximum temperature of 250 °C. Liquid-phase
analysis was conducted on a Varian CP-3800 Gas Chromato-
graph, also fitted with a FID for hydrocarbon analysis, using a
Zebron ZB-1XT SimDist GC column: L = 5 m, ID = 0.53 mm,
and df =0.15 μm, suited for operating within a temperature
range of −60° to 450 °C.

2.2.2. Mass Balance: Conversion and Selectivity Calcu-
lations. About 10% Ar was included in the gas stream for mass
balance determination,30 where catalyst activity was calculated
by the amount of CO converted. Thus:

=
−

× ×
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥CO (%)

CO CO
CO

Ar
Ar

100in out

in

in

out (eq 9)

Since we had 2 separate GCs, one dedicated for gas-phase
analysis (online) and the other for liquid-phase analysis
(offline), selectivity toward the various products was
determined by assuming that the CO feedstock would form
either of the 2 classes of compounds: gas or liquid. To ascertain
catalyst selectivity, first of all, raw figures of gas concentration
(%) for products in the gas phase were applied as collected (P0,
P1, P2, ...). This procedure is depicted in Figure 4. Let total CO
conversion to gas-phase products be P. If P = p0 + p1 + p2 + p3
+ p4, then total CO conversion to liquid-phase products = (100
− P). In the liquid phase, the selectivity of each product (Si′)
was calculated from the area under its corresponding peak (Ai),
and then divided by the total sum area of all peaks from C5 and
above. Thus:

′ =
+ + + ···

⎛
⎝⎜

⎞
⎠⎟S

A
A A A Ai

i

n5 6 7 (eq 10)

Overall, the selectivity (S) of any product (Ci) in the liquid
phase was then given by the equation:

=
′

−S
S

P
100

(100 )C
i

i (eq 11)

where Ci = the hydrocarbon product with i C atoms, i = the
number of C atoms, i = 5, 6, 7, ···, n, and Si′ = selectivity
calculated from the area under each peak (Ai).

2.3. Catalyst Characterization. 2.3.1. BET Surface aArea.
Fresh catalysts were characterized on a Micromeritics ASAP
2020 instrument by the BET method. The samples were
degassed at 250 °C for 50 h and evacuated until a pressure of
less than 10 μmHg was obtained in the sample holder. Analysis
by BET physisorption was then carried out with N2 at −196 °C,
starting with initial pressure below 10 μmHg.

2.3.2. SEM and TEM. Catalyst morphology was examined by
SEM, and the elements present in each catalyst were confirmed
by EDX spectroscopy. A Hitachi S-4700 SEM, equipped with
an X-Max Oxford EDX spectrometer, captured both secondary

Figure 2. Introduction of metal−oil suspension into plasma to
produce Co/C or Fe/C catalysts.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b03003
Ind. Eng. Chem. Res. 2015, 54, 10661−10674

10663

http://dx.doi.org/10.1021/acs.iecr.5b03003


and backscattered images. On the other hand, a Hitachi H-7500
TEM, fitted with W filament and operated at an accelerating
electron beam of 120 kV, analyzed metal particle size
distribution. A bottom-mounted AMT 4k x 4k CCD Camera
System Model X41 captured images in bright field mode.
2.3.3. Raman Spectroscopy. The nature of the C supports

was analyzed by Raman spectroscopy with a LabRam-800
spectrometer equipped with microscope, a He−Ne 632.8 nm
laser and a N2-cooled charge-coupled device detector. To avoid
sample overheating during measurements, laser beam power
was kept below 2 mW through 50x objective lens, focusing the
excitation light on a spot size of 3 μm in diameter. Weak Raman
signals were accumulated for a period of 30 min to 1 h to
obtain a good signal/noise ratio. Since FT-Raman spectra
reproducibility of these materials was poor, the MicroRaman
module was favored for material characterization.
2.3.4. XRD Analysis. To identify elemental composition as

well as crystalline phases in the catalysts, XRD analysis was
conducted with a Philips X’pert PRO Diffractometer from
PANalytical, fitted with Ni-filters for Cu Kα radiation of
wavelength alpha1 = 1.5406 Å, produced at 40 kV and 50 mA.
The instrument was set to Bragg−Brentano configuration with
a PIXcel-1D detector, and operated by factory-installed
Analytical Data Collector software. XRD patterns were
recorded in the range of 20° to 90° [2θ] angle at a scanning

speed of about 3° [2θ] min−1, step size of 0.040° [2θ] angle
and time of 0.0395 s per step, corresponding to a scan time of
24 min. Antiscatter and divergent slits were fixed at 1°. The
collected data were compared with Powder Diffraction Files in
the Database (version 4.13.0.2), using 2013 PDF-4+ software
(version 4.13.0.6), published by the International Center for
Diffraction Data. Data were analyzed by Materials Data Inc.
software: MDI JADE 2010 (version 2.6.6).

2.3.5. XPS Analysis. Elemental composition and the
oxidation state of elements in the catalysts were ascertained
by XPS Kratos Axis Ultra DLD spectrometer. Samples were
excited by the AlKα monochromatized line (1486.6 eV) with
225 W of applied power. The analyzer was operated in constant
pass energy mode (Epass =160 eV for survey scans and Epass
=20 eV for high resolution scans). Work function of the
instrument was calibrated to give binding energy (BE) of 83.96
eV for the Au 4f7/2 line of metallic gold. Spectrometer
dispersion was adjusted to give BE of 93.62 eV for the Cu 2p3/2
line of metallic Cu. A charge neutralizer was used on all samples
to compensate for the charging effect and, when needed
(particularly for nonconductive samples), no charge corrections
were made, and binding energies were referenced to the
adventitious carbon C 1s core level (284.8 eV). The powdered
catalyst was pressed into a thin pellet in a powder sample
holder. The analyzed area was oval with 300 × 700 μm
dimensions.31 Data were analyzed by Casa XPS software
(version 2.3.16).

2.3.6. XANES Analysis. Synchrotron light in XANES analysis
measured oxidation states of the elements and deciphered the
local chemical environment. X-ray absorption spectra of the
elements of interest in the catalysts were measured at their
respective K-edge energies: at 7,709 (between 7,700 and 7,750
eV) for Co and at 7,112 (between 7,100 and 7,150 eV) for Fe.
Measurements were recorded both in transmission mode and

Figure 3. Simplified setup of fixed-bed reactor system.

Figure 4. Diagrammatic scheme of selectivity determination.
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by fluorescence, with 2 ionization chambers for X-ray detection.
A Si(111) double-crystal monochromator was calibrated by
setting the first inflection point of the K-edge spectrum of the
element in question. Data collection in the determined range
lasted about 20−30 min. X-ray absorption data were analyzed
by the conventional procedure: after background correction,
XANES spectra were normalized by edge height. Various
reference compounds served to standardize the analysis. For
example, crystalline Co(NO3)2, Co3O4, CoO, and Co foil were
used for Co-based catalysts,31 while crystalline Fe(NO3)3,
Fe3O4, FeO, and Fe foil were used for Fe-based catalysts.
During analysis, samples (∼10 mg each) were reduced in situ in
a H2 gas-stream at 350 °C for 3 h to simulate the reduction
process that the FTS catalyst undergoes before reaction.
Hephaestus software analyzed theoretical K-edge energies for
Co and Fe standards (metal foils), while data manipulation and
interpretation was by Athena software.32

3. RESULTS
3.1. Catalyst Activity Tests. 3.1.1. CO Conversion. Seeing

that the reactor was 50 cm long, first of all, its heating profile
was ascertained by temperature calibration. From the measure-
ments, the hottest position in the catalyst bed was determined
to be at 23 cm from the reactor top, which is where the tip of
the thermocouple was directed, and the catalyst was packed in
such a way that this was also the center of the catalyst bed. A
calibration plot is provided in the Supporting Information
(Figure A1). Since it was presumed that the catalyst would be
operating at steady state after 18 h on stream, it was observed
that the impregnated Co/CNF sample as well as the plasma-
synthesized Co/C and Fe/C catalysts yielded more products
after 24 h than the rest of the catalysts. Further, it was noted
(Figure 5) that at gas hourly space velocity of 6,000 mL·gcat

−1·h−1,

plasma-synthesized samples displayed relatively higher CO
conversions per pass (28% for Fe/C and 20% for Co/C) than
those prepared on CNFs, either by impregnation (imp) or
precipitation (ppt). The raw data is given in the Supporting
Information (Table S1).
Although the plasma-synthesized Co/C sample yielded more

products by weight, it was less active in terms of CO conversion
because it generated a significant amount of H2O, which is
undesirable in the process. The sample GC trace in Figure 6
indicates that the anticipated catalyst’s product spectrum was
attained, mainly in the diesel range (C10−C20). Further

enrichment of petro-diesel fractions could be achieved by
thermally hydrocracking FTS products of higher molecular
weight (e.g., waxes) to form molecules with shorter C chains.

3.1.2. Catalyst Selectivity. Catalyst selectivity toward each
product was calculated using eq 10 and eq 11. The data indicate
that catalyst selectivity tended more toward the diesel range,
particularly for the plasma-synthesized Fe/C catalyst, which led
with 71%, followed by the impregnated Co/CNF catalyst with
56%, and then by the precipitated Fe/CNF catalyst with 51%.
Only the plasma-synthesized Co/C catalyst formed products
that were richer in the gasoline range, with selectivity of 60%.
This information is presented graphically in Figure 7, while the

raw data is given in the Supporting Information (Table S2).
Since hydrocarbon constituents normally overlap in gasoline
(C4−C12) and diesel (C8−C21) fractions, in this work we prefer
to define gasoline as C4−C12 fractions and diesel as C13−C20 for
simplicity and mass balance purposes.
Producing minute quantities of undesirable products, such as

methane, CO2, and other gaseous short-chain hydrocarbons
(totaling less than 5%), was a positive attribute of all six
catalysts. This was compelling, particularly for the best-
performing catalysts synthesized by the plasma-spray method
(Figure 8).

3.2. Catalyst Characterization. 3.2.1. BET Surface Area.
The BET-specific surface area of fresh CNFs was 179 m2·g−1,
but after activation with HNO3, it increased considerably by
∼33% to 237 m2·g−1. Nevertheless, upon Co or Fe metal
deposition and subsequent calcination at 290 °C for 10 h,
surface area decreased significantly and lay between 106 and

Figure 5. Fischer−Tropsch activity of catalysts prepared by various
methods.

Figure 6. Sample GC trace showing FTS product spectra of plasma-
synthesized Fe/C catalyst.

Figure 7. Comparison of catalyst selectivity by product fraction.
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176 m2·g−1. This was attributed to partial blockage of the
internal surface of CNFs by metal particle deposition. Plasma-
synthesized catalysts, on the other hand, had relatively lower
surface areas (Co/C = 93 m2·g−1; Fe/C = 55 m2·g−1) than
those synthesized by precipitation or impregnation. The BET-
specific surface area of the samples is summarized in Table 2.

Their gas adsorption plots were characteristic of type II
isotherms, which indicated that the nature of their porosity was
similar, tending toward nonporosity with limited hysteresis.
Figure 9 is representative of overlaid adsorption−desorption
isotherms of impregnated Co/CNF samples, while the rest of
the plots are provided for in the Supporting Information
(Figure A2).
Nevertheless, since active sites in the catalysts are associated

with metal species and not the support, this BET-specific
surface area represents the latter. Thus, for turnover frequency
considerations, it would be more reasonable to assume an
average specific surface area based on a nanometric metal
particle size distribution and make the plausible assumption
that these particles have no internal surface (existing as
compact spheres). The validity of this assumption was reported
in a previous publication.33 The restricted hysteresis observed
from isotherms revealed that the samples either had low
porosity or generally tended toward nonporosity. Pore
distribution plots of the catalysts displayed in Figure 10
showed that the average pore diameter was below 5 nm.
Although some microporosity was observed, it was entirely

artificial. Being in the nanometric range, the catalyst particles
packed in such a way that they formed artificial voids and
channels. Consequently, the sample behaved like microporous
material. Constricted deviation between adsorption and
desorption isotherms indicated narrow or uniform distribution
of pores. Generally, excessive microporosity is not desirable in
FTS, since products of large molecular size are expected to
diffuse rapidly out of the pores.

3.2.2. SEM. Both area and spot analysis of fresh catalysts
characterized by SEM imaging in conjunction with EDX
(semiquantitatively) indicated that catalysts, prepared by either
the plasma spray or impregnation method, contained metal-
loading between 20 and 30 wt %, while the precipitation
technique led to metal-loading of about 16−18 wt %. This
translates to a metal-loading efficiency of approximately 70%
for the impregnation method and less than 50% for the
precipitation method. The missing metal was attributed to
deposition on the walls of preparation vessels. Representative
SEM images in Figure 11 show that (i) plasma-synthesized

Figure 8. Selectivity plots of plasma-synthesized catalysts.

Table 2. BET-Specific Surface Areas of Fresh Catalysts

Sample BET surface area (m2·g−1)

Synthesis method Co-based Fe-based
Precipitation 144.5 176.3
Impregnation 105.9 140.2
Plasma spray 92.6 54.5

Figure 9. Adsorption−desorption isotherm of fresh Co/CNF catalyst.
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Figure 10. Overlaid pore distribution plots by pore area of fresh catalysts.

Figure 11. (a) Top: Secondary SEM images of fresh CNFs and plasma-synthesized Fe/C; (b) Bottom: Backscattered SEM images of fresh Co/CNF
and Fe/CNF catalysts (same scale).
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samples comprising fine nanometric C support had a different
morphology from CNFs that had larger strand-like features; (ii)
precipitated and impregnated samples displayed greater particle
sintering and poor distribution of metal nanoparticles; and (iii)
in precipitated and impregnated samples, further heat treatment
during oven-drying (100 °C, 15 h), functionalization by acid-
treatment (95 °C, 3 h), and calcination (at 290 °C, 10 h) led to
the deformation of CNFs.
3.2.3. TEM. Samples prepared by impregnation or precip-

itation and calcined at 290 °C for 10 h showed signs of particle
growth, while plasma-synthesized samples did not. Figure 12

displays characteristic TEM images of the precipitated catalysts,
while Figure 13 shows images of impregnated samples. Notice
the slack contact with the C support, which led to particle
mobility and sintering as a result. This was exemplified by Fe/
CNF catalysts prepared by impregnation, which agglomerated
away from the support. It contrasts with plasma-synthesized
samples, which on the other hand indicated more complex

association and metal particles being fully embedded in the C
matrix (Figure 14).

Particle size analysis and distribution were evaluated based
on at least 150 particles per sample (see plots in Figure 15).
Plasma-synthesized samples displayed average particle size of
about 12−13 nm, revealing narrow particle size distribution.
They were followed closely by precipitated samples, which had
a mean size of 18 nm for Fe/CNF and 22 nm for Co/CNF.
The impregnation method exhibited particle agglomeration,
with some particles being as large as 80 nm in diameter. The
mean particle size of the Fe/CNF catalysts was 31 nm, while
that of Co/CNF was 37 nm, which had a wide particle size
distribution range, comprising both small (ca. 10 nm) and large
nanoparticles (up to ca. 80 nm) (Figure 13).

3.2.4. Raman Spectroscopy. Analysis of fresh supports by
Raman spectroscopy showed that CNFs contained the ordered
graphitic C (G-line), some of which contained defective
graphitic sites giving rise to the disordered form (D-line), as
indicated by Figure 16. The Raman spectra of disordered
graphite show two distinct sharp modes, the G-peak around
1580−1600 cm−1 and the D-peak around 1350 cm−1, whereby
the G and D peaks appear to portray varying intensities,
position, and width in different nanocrystalline and amorphous
carbons, even in samples without widespread graphitic
ordering.34 The diminished G-band in the CNFs after acid
treatment showed loss of graphitization during CNF function-
alization, leading to the formation of defects, while the
augmented G-band in the plasma-synthesized sample was a
sign of ensuing graphitization in the carbon support and
therefore had a more graphitic structure.35 It was therefore
concluded that the samples, particularly the CNFs, were highly
graphitic in nature, but with considerable defects.

3.2.5. XRD Analysis. From XRD analysis (summarized in
Figure 17), we observed that amorphous C and a significant
amount of carbides, such as cementite (θ-Fe3C) and Hag̈g (χ-
Fe5C2) type, were predominant in fresh CNFs. Fe-based
catalysts produced by precipitation or impregnation showed the

Figure 12. Representative TEM images of freshly precipitated
catalysts.

Figure 13. TEM images of freshly impregnated catalysts.

Figure 14. TEM images of fresh plasma-synthesized samples.
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hematite phase, as seen in Figure 17(a), while plasma-
synthesized Fe/C displayed 1 broadened peak, indicating the
possibility of carbides (χ-Fe5C2 and/or θ-Fe3C). The XRD
pattern of metallic Fe was absent, despite significant quantities
of Fe in plasma-synthesized catalysts, probably because of the
peak broadening that accompanies decreasing crystallite or
metal particle size. Since the Fe/C catalyst was in the
nanometric range, peak extinction would be expected.
In Figure 17(b), the plasma-synthesized Co/C catalyst

revealed only the metallic phase (Coo), while impregnated
Co/CNF contained both metallic (Coo) and monoxide (CoO)
phases, but the precipitated Co/CNF catalyst showed
predominant presence of the Co3O4 phase. It is believed that

Co carbides were also present in the plasma-derived samples,
but existed below the detection limits of our XRD analysis,
probably due to peak broadening arising from small
crystallites.36 It was further observed that the original Co

Figure 15. TEM analysis of particle size distribution of fresh catalysts indicating average particle size per catalyst (m = mean; n = 150 particles).

Figure 16. Raman spectra of fresh and acid-treated CNFs compared to
plasma-synthesized Co/C and Fe/C catalysts.

Figure 17. XRD spectra of fresh catalysts: (a) Fe-based; (b) Co-based.
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powder used to prepare the plasma-synthesized catalysts
consisted of 2 metallic phases, exhibited as face-centerd cubic
(fcc) and hexagonal close packing (hcc) structures, giving
distinct XRD patterns. In the catalyst, the hexagonal phase (ca.
38.1%) was transformed fully into the cubic phase.
3.2.6. XPS Analysis. Analysis of plasma-synthesized samples

by XPS indicated metallic species on the surface of the catalysts.
Table S3 in the Supporting Information summarizes the
semiquantitative results. Mass composition amounting to
approximately 20% mass-loading of the metal onto the C
support was in close agreement with the EDX results
accompanying SEM analysis. Since high-resolution analysis at
each peak provides the chemical environment of each element,
significant amounts of both metallic and oxidic species (CoO
and Co3O4) were observed, for example, in the precipitated
Co/CNF sample, in addition to trace amounts of hydroxide,
Co(OH)2 species, with a peak appearing just above 7,800 eV
(Figure 18(a)).
The plasma-synthesized samples were not expected to

contain any O. However, surface contamination was suspected
to have contributed to this result, as shown by XPS analysis of
the metal samples, which contained a significant amount of O

and C, probably due to the oxidation and subsequent
absorption of atmospheric CO2 by the oxide layer, forming
surface carbonates during storage. Similarly, at about 290 eV, π
→ π* electron transitions occurred above the C peak (284 eV),
as depicted in Figure 18(b). The π-bonds were indicative of
graphitic C in the samples. Nonetheless, despite the substantial
and concomitant presence of the metals and C in the materials,
there was no significant sign of chemical bonding between
them. From the shape of the XPS satellite peaks (see inset),
metal carbide peaks expected to appear just below the C peak
were not observed.

3.2.7. XANES Analysis. XANES analysis confirmed that the
fresh plasma-synthesized catalysts were predominated by
metallic species, as shown in Figure 19 for Co-based materials,
and in Figure 20 for Fe-based materials. Figure 19(a) indicates
that catalysts synthesized by either impregnation or plasma
contained metallic species (Coo), which was comparable in
nature to Co foil. On the other hand, freshly precipitated
catalysts were perceived to contain ionic species (possibly
Co3+) since their K-edge was found at higher energies than
those of the CoO (or Co2+) standard. This observation seemed
to confirm the XRD results, which indicated that the
precipitated Co/CNF catalyst was indeed composed of
Co3O4. Figure 19(b) presents the spectra of reduced catalysts
(during in situ XANES analysis at 350 °C for 3 h): it shows that
all the catalysts contained Coo, since their K-edges were close to
that of Co foil (at ∼7,709 eV). This implies that Co-based
catalysts were easily reduced.
The first derivatives, with the maxima corresponding to

inflection points, established oxidation states at the point of
maximum energy absorption. These values are shown in Figure
19(c) for fresh catalysts, while those of reduced catalysts are
reported in Figure 19(d). Since most of the catalysts,
particularly the plasma-synthesized sample, indicated the
presence of metallic Co, their first derivatives disclosed a high
peak at 7,709 eV and a relatively smaller peak around 7,723 eV,
which corresponded to the presence of Co0 and Co2+,
respectively. The precipitated Co/CNF catalyst showed a
higher peak around 7,723 eV, which implied that the sample
contained a high concentration of oxidized species.
As shown in Figure 20(a) only the plasma-synthesized Fe/C

catalyst contained metallic species, whose nature was identical
to the Fe foil, with typical K-edge energy at 7112 eV.
Nonetheless, there was a gradual shift in the K-edge to higher
energies, as observed in standard samples of higher oxidation
states (e.g., FeO, Fe2O3, or Fe3O4). Precipitated or impregnated
Fe/CNF samples contained significant reducible oxide species.
XRD analysis also indicated that both samples contained
hematite. Upon reduction in H2, their spectra were found to
shift to lower energies, toward the Fe0 K-edge, as depicted in
Figure 20(b). The Fe/CNF sample synthesized by impregna-
tion demonstrated a clear case of partial oxidation during online
reduction (at 350 °C, 3 h). However, the used samples after
FTS testing indicated complete reduction. Since the samples
are pyrophoric, we found that XANES was a convenient
method of analyzing used samples while still in the reaction
mixture, without having to expose the metallic particles to air.
Similarly, the first derivatives of Fe0, Fe2+, and Fe3+ oxidation

states appeared at 7,112, 7,118, and 7,128 eV respectively, as
shown in Figure 20(c) for fresh catalysts and in Figure 20(d)
for reduced catalysts. Due to protracted reduction during FTS,
only the used Fe/CNF sample and the freshly prepared plasma-
synthesized sample appeared to trace the Fe foil (Fe0)

Figure 18. Sample XPS satellite peaks of (a) Co and (b) C in
precipitated Co/CNF catalyst showing the π → π* electron transition
but no trace of carbides on the catalyst surface.
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spectrum. There is no doubt that the samples in Figure 20(d)
had only undergone partial reduction, owing to the presence of
oxidized species still present in them. Therefore, it seems
probable that Fe-based catalysts require optimization through a
meticulously designed reduction procedure in comparison to
Co-based catalysts.

4. DISCUSSION
4.1. Catalyst Preparation. Since traditional methods of

catalyst synthesis are multivariable and involve several stages,
with each stage having to control numerous parameters, such
approaches are tedious and labor-intensive. In this work, we
favored catalyst synthesis by the plasma-spray method.
Comparison of catalyst preparation by plasma technology vis-
a-̀vis other techniques, such as impregnation or precipitation, is
summarized schematically in Figure A3 of the Supporting
Information. For example, the plasma method only takes a
single step with 8 parameters to control, while the other
procedures require 6 stages, with overall control of about 40
different parameters. Other observed advantages of plasma
technology include shortened preparation time, uniformity in
quality of materials, achieving highly distributed and,
consequently, smaller nanometric size metal particles and
active species, superior catalytic performance,37 and enhanced
catalyst lifetime, with overall lower energy requirements.38

One remarkable advantage of our catalyst preparation
approach by plasma is that it produces core−shell type

formulations. Graphitic C acts as an egg-shell that protects
the nanometric metallic core (Co or Fe) from coming into
contact with air. Since metal nanoparticles in combination with
nanometric C are known to be pyrophoric in nature, in this
way, our catalysts are safeguarded from oxidation during
storage. Moreover, before FTS reaction, the C shell is partially
removed (by catalyst activation pretreatment) to expose the
encapsulated metal core embedded in the C matrix. Pretreat-
ment is performed in situ, in a reducing environment with pure
H2 or CO. Since reduction is done at high temperatures (400
°C), it creates volatile gases presumably rich in methane and
other hydrocarbons, which flow out of the reactor, rendering
their separation less problematic.

4.2. Catalyst Characterization. Possible species found in
the catalysts are summarized in the Supporting Information
shown in Table S4. Porosity measurements by the BET method
showed that the samples tended toward nonporosity, which is a
positive attribute of the catalysts, as it would facilitate easy
diffusion of the polymeric FTS products. Evidence from the
various characterization techniques (Raman, XPS, and XRD)
indicated that catalyst support contained both amorphous and
graphitic forms of C. The predominantly ordered graphitic
structures found in the CNFs were impaired by acid treatment
during functionalization. Functionalization of the support is an
important step in catalyst synthesis by precipitation or
impregnation because it creates sites for anchoring the metal
onto the CNFs. However, the procedure seems to introduce

Figure 19. XANES analysis of (a) fresh Co-catalysts; (b) reduced in situ by H2 for 3 h, with their respective first derivative of (c) raw data and (d)
reduced samples.
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massive defects in the CNFs, as was evident from the SEM
images of the calcined samples. Nevertheless, graphitic C is
deemed to be a better catalyst support than amorphous C
because of its enhanced mechanical, electrical, and thermal
conductivity properties. Graphitic C provides rigid mechanical
support for metal particle anchorage, and the parallel sheets
prevent mobility of the particles from dislocation. It exhibits
high reactivity, specifically because of unsaturated valences at
the edges of the graphitic layers, and has been tested as catalyst
support for various reactions, including the hydrogenation of
CO.39

In addition, it was observed from XRD analysis that fresh Fe/
CNF catalysts, prepared by impregnation or precipitation,
contained substantial amounts of Fe oxides, while XANES
analysis revealed that the plasma-synthesized Fe/C catalyst was
comprised mainly metallic Fe, a conclusion that could not be
drawn from its XRD pattern. Nevertheless, evidence for the
presence of Fe carbides (possibly Fe3C and Fe5C2) in fresh
CNFs and plasma-synthesized Fe/C catalyst was obtained by
XRD analysis, which is a bulk technique. Fe carbides were not
evident in XPS analysis, but we suppose that since it is a surface
technique, encapsulation of the metal and carbides in the
extensive C matrix did not lend the carbides a strong signal for
detection. Since various studies show that the active species in
Fe-catalyzed FTS are in the form of Fe carbides,40 we are of the
opinion that our acid-treatment to functionalize CNFs
vanquished the carbides. As a consequence, catalysts produced
by impregnation or precipitation were less active.

On the other hand, it is believed that, for Co-catalyzed FTS,
activity is dependent on the reducibility of Co oxides,20 and
partial reduction of Co depresses catalyst activity. It was
observed that although all prepared Co/C catalysts contained
predominantly Coo, the one prepared by precipitation had a
significant amount of Co3O4, which led to the lowest CO
conversion (6.2%), while Co/CNF by impregnation contained
some CoO (6.4% CO conversion). Even after in situ reduction,
catalysts that originally contained oxidic species were perceived
to be less active than plasma-synthesized samples that had none
(19.4% CO conversion). Generally, we suspect that 10-h online
reduction of the catalysts was not enough to totally reduce Co
catalysts to the metallic form. This phenomenon was
exemplified by our 3-h in situ reduction of Fe-based catalysts
during XANES analysis, where a clear but gradual shift of the K-
edge was evident due to the catalyst’s partial reduction as a
function of time, as depicted in Figure 20(b). It was also
observed that, in the first-derivative plots, the used Co/C
sample synthesized by plasma indicated a peak shift to the
lower energies due to the presence of Co carbides. This
conclusion was prompted by evidence from EXAFS and
XANES in a study where the simultaneous presence of Co2C
and a form of Co exhibiting greater metallic character seemed
to appear under FTS conditions.36 Although not observed
through the XRD analysis, it is believed that the Co carbides
were present but could not be detected due to their existence as
very small crystallites. This may explain the apparent shift of the
XANES first-derivative peak in the used catalyst from that of
the standard Coo.

Figure 20. XANES analysis of (a) fresh Fe-catalysts; (b) reduced in situ by H2 for 3 h with their respective first derivative of (c) raw data and (d)
reduced samples.
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XRD analysis showed that the initial Co powder used in
sample preparation contained 2 phases: hexagonal (hcp) and
cubic (fcc), but given the high quench rates typical of plasma
synthesis, the fcc was stabilized. Apparently, as the active phase
in the Co catalyst, evidence has shown that the hcp exhibits
greater intrinsic activity than fcc Co.41 It is postulated that,
besides metallic species, a good Co-based FTS catalyst is a
function of crystallite size as well. Average Co-cluster size
greater than 10 nm is supposed to stabilize the catalyst from
deactivation. Our Co/CNF catalysts by impregnation and
precipitation had average particle size of 37 and 22 nm, and
gave CO conversions of 6.4 and 6.2%, respectively, while
plasma-synthesized Co/C, which was more active (with 19.4%
CO conversions) had average particle size of 12 nm. This
means that loss of activity and, consequently, deactivation may
be a combined outcome of the reoxidation of active Co
particles,41 as well as a particle-size effect.20

4.3. Catalyst Performance. After this investigation, we are
inclined to believe that, if well optimized, the most effective
method of preparing C-supported nanometric FTS catalysts
would be through plasma-spray technology. Plasma-synthesized
samples showed better activity with Fe/C giving 28% CO
conversion, while Co/C delivered 20% CO conversion, but all
catalysts prepared by impregnation or precipitation on CNFs
showed CO conversion of less than 10%. Catalyst selectivity
was observed to lean more toward the diesel range, with
plasma-synthesized Fe/C leading with 71%, followed by the
impregnated Co/CNF catalyst with 56%, and then the
precipitated Fe/CNF with 51%. Only plasma-synthesized Co/
C was more selective toward the gasoline fraction with 60%.

5. CONCLUSION

Six C-supported catalysts with their formulations based on Co
or Fe were tested for Fischer−Tropsch activity. They were
prepared by impregnation, precipitation, or the plasma-spray
method. Overall, CO conversions were ∼28% (Fe/C by
plasma), ∼ 20% (Co/C by plasma), and ∼7% (for Co/CNF
and Fe/CNF by impregnation or precipitation). The selectivity
of the catalysts tended more toward the diesel range, with 71%
(Fe/C by plasma), 56% (Co/CNF by impregnation), and 51%
(Fe/CNF by precipitation), except for the plasma-synthesized
Co/C catalyst, which was richer in the gasoline range with 60%
selectivity. These results show that plasma-synthesized catalysts
were superior in performance compared to catalysts prepared
on CNFs by other methods. From this study, a unique rationale
to choose an effective FTS catalyst was developed, and used to
rapidly narrow down to plasma technology as the most
promising approach for future synthesis of FTS catalysts.
The plasma method produces active nanometallic catalysts in

one step, thereby shrinking the preparation protocol. The metal
phase is uniformly distributed in the carbon matrix, as indicated
by SEM analysis, with an average particle size of about 12−13
nm, as given by TEM analysis. The graphitic nature of the C
support was determined from XPS and Raman spectroscopy.
Since FTS produces large polymeric products, one advantage of
these materials lies in their nonporous nature, as shown by BET
surface area analysis, making it possible to operate the reaction
away from the diffusion-limited regimes. The presence of
plasma-derived carbides, which are useful in the Fe-catalyzed
FTS reaction, was evidenced from the X-ray techniques (XRD
and XANES).
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packed-bed reactors introduces design flexibility by separating
issues that involve the characteristic diffusion distance in catalyst
pellets from pressure drop and other reactor constraints.[11]

This paper is a supplementary article from the recently
published work where we compared several catalysts prepared
by various methods, and the plasma-synthesized samples were
found to be the most promising materials for LT-FTS when tested
in the fixed-bed reactor.[2] In this work, we present results from a
study comparing two analogous catalysts synthesized through
plasma. The materials were based on Co and Fe, supported on
carbon (Co/C and Fe/C), prepared under identical plasma
conditions, and tested similarly for FTS activity. Since the
materials are being projected for industrial application, they
were benchmarked against a commercially available FTS catalyst
(the Fe-NanoCat

1

). We describe the catalyst synthesis procedure
by plasma and discuss details of the catalyst activity testing with
respect to selectivity, specifically toward the diesel range
hydrocarbon fraction. Attention is also given to the characteriza-
tion of these novel materials.

EXPERIMENTAL

Catalyst Synthesis by Plasma

Using a radio frequency (RF) plasma system (PL-50, 3.2 MHz,
Tekna Inc.), two analogous catalysts (Co/C and Fe/C) were
synthesized by introducing 60 g of metal (mixed in 300 mL of
mineral oil) directly into the plasma at a flow rate of
8.2 mL � min�1.[2] The resulting powder material was harvested
and tested for FTS.

Catalyst Testing Reaction Conditions

The reactor of choicewas a 1.5 L stainless-steel Parr reactor vessel,
acting as a 3w-BG-CSTSR operated isothermally at 493 K (220 8C),
under 2000 or 3000 kPa pressure. Figure 1 is a scheme of our
catalyst testing reactor system. With a syngas feed volume
composition of 0.3 L/L (30 %) CO and 0.6 L/L (60 %) H2 flowing
at 300mL � min�1 (H2:CO volume ratio of 2) for the FTS provided a
gas hourly space velocity (GHSV) of 3600mL � g�1

cat � h�1, using
5.0 g of catalyst; 0.1 L/L (10 %) Ar was included in the gas stream

for the overall mass balance determination and CO conversion
calculations.[12]

Before the FTS reaction ensued, the catalyst was pre-treated in
situ for 24 h in high-purity hydrogen gas (N4.5) flowing at
250 mL � min�1 at 673 K (400 8C), at which most of the carbon
matrix was presumably gasified to CH4 and other hydrocarbons,
leaving behind nanometric Fe or Co catalysts that were
predominantly in a metallic form. The activity of these new
materials was benchmarked against the commercial Fischer-
Tropsch catalyst (Fe-NanoCat

1

), which was activated by pure CO
(N2.5) instead of hydrogen.

Two offline Varian CP-3800 GC units were used to analyze the
FTS product spectra: one for gas-phase products and the other one
for the liquid-phase. The gas-phase analysis GC unit was equipped
with one flame-ionization detector (FID) and two thermal con-
ductivity detectors (TCDs). One TCD was dedicated to analyzing
H2 only while the other was for analyzing the other gases. The
column sequence for the general TCD was Hayesep T (CP81072),
followed by Hayesep Q (CP81073) and then Molsieve 13X
(CP81071), with He as the carrier gas, while the setup for the H2

TCD was a Hayesep Q (CP81069) with a Molsieve 5A (CP81025),
and N2 as the carrier gas. The FID detector was in series with the
general TCD detector. On the other hand, the liquid-phase GC unit
with a FID and He as the carrier gas was fitted with a low-polarity
GC column 100–2000 DB-1HT (Agilent Technologies Inc.), having
L ¼ 30 m, ID ¼ 0.32 mm, and DF ¼ 100 nm (0.10 mm); suited for
operatingwithin a temperature range of 213–673 K (–60 to 400 8C).

Catalyst Characterization

Since the samples are pyrophoric, only the fresh catalysts, and
whenever possible the used samples, were analyzed by various
characterization techniques, which involved porosity analysis by
the Brunauer-Emmett-Teller (BET) method, powder X-ray diffrac-
tion (p-XRD) including the Rietveld quantitative analysis (RQA),
and both scanning electron microscopy (SEM) and transmission
electron microscopy (TEM).

Thermogravimetric analysis (TGA)

The metal mass loading of the catalysts was determined by
thermogravimetricanalysisusingaSetaramSetsys2400 calorimetric

Figure 1. Schematic illustrating the design of our CSTSR catalyst testing system.
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system, equipped with a 1873 K TG-DTA sensor. < 25 mg of the
sample inanaluminacruciblewasheated fromambient temperature
(�293 K) to 1273 K at a heating rate of 10 K � min�1, first in an inert
atmosphere using Ar and then in 0.2 L/L (20 vol %) O2 balanced in
Ar. Mass loss recorded relates to the amount of carbon burned (to
CO2), leaving behind the bare metal, from which the atomic mass
loading of the metal in the catalyst is calculated.

Porosity and the BET surface area analysis

The specific surface area of the fresh catalystswasmeasured by the
BET method, using a Micromeritics ASAP 2020 unit. �0.5 g was
degassed at 363 K (90 8C) for 30 min and then at 523 K (250 8C)
for 50 h under evacuation until a pressure of < 1 Pa (10 mmHg)
was obtained in the sample holder. After degassing, the sample
was re-weighed and then analyzed under liquid nitrogen at 77 K
from an initial pressure of �0.2 Pa (2 mmHg) to ambient pressure.

Scanning electron microscopy (SEM)

SEM analysis and imaging, which captured both secondary and
backscattered images, were conducted on a Hitachi S-4700
Scanning Electron Microscope, equipped with an energy disper-
sive X-ray (EDX) X-Max Oxford spectrometer.

Transmission electron microscopy (TEM)

TEM analysis was conducted on a Hitachi H-7500 instrument,
operated at an accelerating electron beam of 120 kV from a
tungsten filament. Images were captured in the bright field mode
using a bottom-mounted AMT 4k � 4k CCD Camera System
Model X41. Analysis for particle size distribution was done by
means of the Nano-measurer version 1.2 “Scion Imager” software.

Powder X-ray diffraction analysis

Powder X-ray diffraction analysis was carried out using a Philips
X’pert PRO Diffractometer from PANalytical. The instrument was
set in the Bragg-Brentano configuration with PIXcel-1D detector
and operated with factory-installed Analytical Data Collector
software. It was fitted with Ni filters for the Cu Ka radiation
(0.154 nm) produced at 40 kV and 50 mA. XRD patterns were
recorded in the range of 208 and 1108 [2u] angles at a scanning
speed of �38 [2u] min�1, with a step size of 0.0408 [2u] angle and
time of 0.0395 s per step corresponding to a scan time of 24 min.
The anti-scatter and divergent slits were fixed at 18. Materials Data
Inc. software, MDI JADE 2010 (version 2.6.6), was used in data
analysis and the collected data compared with the Powder
Diffraction Files in the database (version 4.13.0.2) using the
PDF-4þ software 2013 (version 4.13.0.6).

Analysis of the dry powder was conducted for the fresh Co/C and
Fe/C samples. After reaction, and due to the pyrophoric nature of the
materials, a sample of the slurry containing the solvent and the FTS
products was drawn directly from the reactor and analyzed without
any further treatment. Modelling with Rietveld refinement[13]

to determine the phase fractions in the fresh and used catalysts was
done using High Score Plus software for the Rietveld quantitative
analysis (RQA), which takes into consideration the relative mass
fraction of each phase in a mixture of several phases.[14]

RESULTS

Catalyst Testing

Catalyst activity

The plasma-synthesized Co/C and Fe/C catalysts were pre-treated
in a stream of pure H2 gas at 673 K for 24 h and then tested for

Fischer-Tropsch activity at 493 K and 2000 kPa. It was observed
that the Co/C was more active than the Fe/C (Figure 2). On
average the Co/C catalyst showed a � 40 % CO conversion, and
12 % for the Fe/C catalyst, while the commercial Fe-NanoCat

1

catalyst (pre-treated in CO) gave a � 30 % CO conversion. The
activity of all catalysts was observed to be unstable over time-on-
stream (TOS). However, when the catalysts were pre-treated at
lower temperatures and shorter periods (623 K, 16 h) and then
tested for FTS at 493 K and 3000 kPa, therewas an improvement in
the Fe/C catalyst, which gave �25 % CO conversion; the plasma-
synthesized Co/C catalyst was still more active with > 40 % CO
conversion and more stable over TOS than the Fe/C catalyst, but
deteriorating with TOS toward 20 % after 24 h on stream
(Figure 3).
The Co/C catalyst shows a higher propensity to create a full

spectrum of products than the Fe/C catalyst, running from low to
high molecular mass products including waxes (Figure 3). A
typical effluent gas analysis is summarized in Table 1, which
clearly shows that under 2000 kPa pressure, at T ¼ 493 K the
average CO conversion lies between 10–45 % with low formation
of CO2 and CH4 from all the catalysts. However, at T ¼ 543 K, the
CO conversion approached 100 %, but with increased CO2 and
CH4 formation. In addition, the Fe-based catalysts had a lower
tendency to produce CH4 in comparison to the Co/C catalyst. All
the catalysts has a limited capacity to form C2–C5 products.

Figure 2. Activity plots for plasma-synthesized Co/C and Fe/C catalysts
compared to Fe-NanoCat1 pretreated at 673 K (400 8C) for 24 h; tested at
2000 kPa pressure, 493 K (220 8C) for 24 h.

Figure 3. Activity plots for the plasma-synthesizedCo/C and Fe/C catalysts
reduced at 623 K (350 8C) for 16 h and tested at 493 K (220 8C) under
3000 kPa pressure with insets of images of the reactor at the end of
reaction.
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Liquid-phase analysis indicated a product spectrum of C6–C40

(Figure S1a of Supporting Information; see overlaid sample GC
traces of Co/C and Fe/C catalysts). Since the hexadecane (C16)
solvent camouflages the FTS products at C16, the peak was deleted
from the GC trace and replaced with that of C18 to determine its
appropriate value. This conclusion was arrived at because from
the previous work using the fixed-bed reactor where the same
catalysts were tested,[2] it was observed that analysis of only the
liquid-phase components produced a maximum at the C17 peak
(Figure S1b). Integration of the area under each peak provided for
the means of determining the selectivity of each catalyst.

Effect of pre-treatment

The Co/C catalyst was found to be relatively less sensitive to the
pre-treatment procedure than the Fe/C catalyst, whether reduced
for 10 h or for longer (24 h), as seen in Figure 4. The same was
observed with temperature: for both 523 and 673 K, the catalyst
performance was comparable, with CO conversions remaining at
�40 % in all cases. In contrast, Fe/C was more sensitive to pre-
treatment. For example, catalyst reduction at 593 K for 10 h led to
10 % CO conversion, but gave 25 % CO conversion at 24 h. This
implies that prolonged reduction at lower temperatures may be
more desirable since a longer reduction period (24 h) only
managed 10 % CO conversion when performed at elevated
temperatures (673 K). In fact, reduction of the catalyst for a shorter
time (10 h) at a high temperature (673 K) was equally effective,
leading to 25 % CO conversion. These observations agreed with

earlier work performed on identical Fe-based catalysts, where
under mild low-T pretreatment conditions for a short time, not
enough carbon was removed from the metal catalyst, leading to
low CO conversion. In contrast, under severe high-T pretreatment
conditions for prolonged periods, the catalyst suffered from
sintering and/or decarburization, which by the same token
lowered catalytic activity.[1]

Catalyst selectivity

Values derived from the GC analysis of the liquid phase were
adapted by integrating the area under each peak and dividing by
the total area of all the peaks (Equation (4)). The selectivity (S)
towards any FTS product with i number of carbon atoms was
therefore calculated to be directly proportional to the area under its
peak (Ai), thus the following is true:

Si ¼ Aið Þ x 100
Xn

i¼5

Ai

ð4Þ

where the hydrocarbonmolecules have at least five carbon atoms.
After determining the selectivity of each product, peak areas of

isomers and hydrocarbons with a similar number of carbon atoms
were lumped together (Figure 5), after which they were further
summed up to determine the different fuel fractions. In reality,
the gasoline fraction is a mixture that ranges between C4–C12,
while the diesel range is C8–C21, but in this work, we shall take
the gasoline fraction tomeanC4–C12 and diesel as C13–C20 formass
balance and in order to lessen the confusion that may arise from
peak overlaps. Figure 4 depicts the commercial Fe-NanoCat

1

sample as having a relatively narrower product distribution than
the plasma-synthesized catalysts (Co/C and Fe/C), both of which
displayed a much broader product spectrum, progressively
distributed across most of the carbon molecular chains. Note
that most of the fraction in the wax range produced by the Co/C
sample may not be reflected in this plot, since it had solidified and
may not be fully represented in the liquid analysis. Nevertheless,
the current objective was to assess, among several catalysts,[2] the
ones that are more selective towards the diesel range.

Table 1. GC analysis showing typical gas composition from the reactor
exit at 2000 kPa for 493 K and 543 K (220 8C, 270 8C)

Concentration (%)

Catalyst % CO conversion CO2 CH4 C2H6 C2H4 C3–C5

(a) 493 K

Fe/Cplasma 25 2.8 2.0 0.4 0.1 –

Fe-NanoCat
1

32 2.8 1.3 0.4 0.3 –

Co/Cplasma 45 2.0 8.8 0.3 0.0 –

(b) 543 K

Fe/Cplasma 80 12.5 5.6 1.4 0.6 –

Fe-NanoCat
1

89 15.1 5.4 1.1 0.5 –

Co/Cplasma 100 18.0 42.0 1.1 0.0 –

Figure 4. Activity plots for plasma-derived Co/C and Fe/C catalysts
reduced under various conditions of time and temperature.

Figure 5. Full spectrum selectivity plots (combining gas and liquid
fractions) for catalysts reduced at 673 K (400 8C) for 24 h, and tested at
493 K (220 8C), under a pressure of 2000 kPa, for 24 h at various CO
conversions (x): Fe/C (x ¼ 12 %); Fe-NanoCat

1

(x ¼ 32 %); and Co/C
(x ¼ 45 %).
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Integrating data from both gas-phase and liquid-phase analyses,
the combined selectivity results for the three catalysts are
presented in Table A1 of the supporting information. In graphical
format in Figure 6, it separates the gases, and lumps together the
gasoline and diesel fractions independently, for catalysts reduced
at 673 K (400 8C) for 24 h, and then tested at 493 K (220 8C),
2000 kPa, for 24 h at various CO conversions (x): Fe/C
(x ¼ 12 %); Fe-NanoCat

1

(x ¼ 32 %); and Co/C (x ¼ 45 %).
Itwas observed that overall, theplasma-synthesizedFe/C sample

was more selective toward the formation of the diesel fraction
(51 %), followed by Co/C (31 %), and then Fe-NanoCat

1

catalyst
(23 %) (Figure 6a). In contrast, Figure 6b shows that the
commercial Fe-NanoCat

1

catalyst produced the richest gasoline
fraction (62 %), followed by Co/C (50 %), and then Fe/C (26 %).
In fact, all three catalysts showed that they had equal capacity to
form the normal diesel fraction (C8-C21), with a constant selectivity
approaching 75 %. Nevertheless, as per our definition, diesel
fractionwas taken asC13-C20 for easymass balance,where overlaps
of hydrocarbon fractions were avoided. It is important to note that
the full mass balance of the waxes is not shown in these plots; only
the soluble waxes were analyzed by the liquid GC, while the
insoluble waxes (Figure 3) still remain unaccounted for.

Production of the diesel fraction decreases in the order of Fe/C
�Co/C>Fe-NanoCat

1

(Figure 6b). The Co/C catalyst had a higher
selectivity toward methane formation than the Fe-based catalysts.

However, the Fe-based catalysts producedmore CO2 than the Co/C
catalyst, probably because of their capability to catalyze thewater-
gas shift reaction given by Equation (3), which may be beneficial
in restoring H2 back into the FTS system.

Catalyst Characterization

Thermogravimetric analysis (TGA)

Samples were heated to 1273 K in Ar to drive off volatile organic
compounds, cooled to ambient temperature, and then reheated in
air using the same program. The atomicmass loading of themetals
onto the C support in the fresh plasma-synthesized catalysts was
found to be �0.25 g/g (25 wt%) in Fe/C or Co/C. The TGA plots
and tabulated calculations are displayed in Figure S2 and
Table A2, respectively (provided in the supporting information).

BET surface area analysis

The plasma-synthesized Co/C and Fe/C catalysts tested in this
work originated from the auxiliary reactor and their BET specific
surface areaswere 56 and 75 m2 � g�1 respectively. Normally, high
surface areas are desirable in catalysts in order to enhance metal
nanoparticle dispersion. According to the behaviour of the
isotherms given in Figure 7a, these materials are typical of type
II isotherms and may be classified as largely tending towards non-
porosity. This is because their adsorption and desorption
isotherms were almost superimposable and presented no signifi-
cant hysteresis loop.
Although the pore distribution plots portrayed in Figure 7b

indicated pore sizes of < 10 nm, which revealed some degree of
microporosity, it would be expected that microporous materials
should display both greater hysteresis and a sharp rise in the plot at
the lower pressures, thereby exhibiting type I isotherms. Neverthe-
less, earlier studies of our catalysts have pointed to the fact that the
perceived micro-porosity is an artificial phenomenon arising from

Figure 6. Accumulated selectivity (a) per catalyst and (b) by hydrocarbon
fractions, at various CO conversions (x): Fe/C (x ¼ 12 %); Fe-NanoCat

1

(x ¼ 32 %); and Co/C (x ¼ 45 %); for catalysts reduced at 673 K (400 8C)
for 24 h and tested at 493 K (220 8C).

Figure 7. Sample plots for: (a) BET isotherm showing limited hysteresis as a
sign of non-porosity, and (b) pore size distribution by pore area.
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the physical packing of the nanoparticles.[2] Figure S3 in the
supporting information clarifies this impression.

Given that FTS is a multi-dimensional reaction involving
multifaceted kinetics, with the movement of reactants and
products of the reaction prevailing in various phases (solid,
liquid, and gas) through a complex network of pores in the
catalyst, highly micro-porous catalysts are undesirable in FTS,
considering that the hydrocarbons so formed must diffuse out of
the catalyst before a buildup of molecules with higher molecular
masses such as waxes clog the pores. It is noted that in light of
mass transport requirements, catalyst porosity influences diffu-
sion, and is characterized by what is regarded as the effective
diffusivity, De (in m2 � s�1), given by Equation (5):[15]

De ¼
D:fp:sc

t
ð5Þ

where D ¼ diffusion coefficient in gas or liquid filling the pores
(m2 � s�1),

fp ¼ pellet porosity ¼ void space volume
total volumeðsolidþ voidsÞ

sc ¼ constriction factor for variation in cross-sectional area

t ¼ tortuosity ¼ Distance amolecule travels between two points
Shortest distance between the two points

The existence of constrictions in porous materials, the
‘hindrance factor,’ determines how fast the molecules navigate
through the pores, and porosity will in turn influence the
tortuosity, or the rate at which the reactants as well as
the products enter or leave the catalyst pellet. Tortuosity then is
a function of pellet particle size, whereby large or highly porous
pellets result in the molecules taking extended periods of time to
diffuse out. In addition, since our reaction products are polymeric
in nature, high residence times in a porous catalystmaterial would
lead to the formation of largermolecules such aswaxes, and this in
turn results in the entrapment and subsequent blockage of the
pores, thereby causing catalyst deactivation. On the contrary,
since our catalysts have no internal porosity, they are ideal
materials for such a polymerization reaction as LT-FTS.

Scanning electron microscopy (SEM)

In this work, fresh plasma-synthesized catalysts characterized by
SEM in conjunction with EDX indicated no obvious signs of bulk
metal segregation. Both spot and area analysis showed uniform
dispersion of the nanoparticles in the carbon matrix, as shown in
Figure 8 for Co/C and Figure 9 for Fe/C catalysts, with semi-
quantitative EDX analysis indicating that both the catalysts had
metalmass loadings ranging from0.2–0.3 g/g (20–30 %) on the C
support.

Transmission electron microscopy (TEM)

Fresh and used catalysts were analyzed by TEM imaging for
particle size distribution and Figure 10 depicts images of the
commercial Fe-NanoCat

1

materials, with an obvious transforma-
tion in catalyst morphology, indicated by particle growth after
reaction, from an average of 4 nm in the fresh hematite, seen in
Figure 10a, to a wide particle size distribution ranging from
4–60 nm in the used catalyst. The solid boulder-like features in the
used Fe-NanoCat

1

catalysts presented in Figure 10b have the

typical morphology of magnetite,[16] most of which were not
encapsulated by the carbon. At least 420 particles were measured
in the used catalyst, and their size distribution is plotted in
Figure 10c. In the used Fe-NanoCat

1

sample, the nanoparticle
labelled (1b) may be an encapsulated metal or encapsulated
oxide or even metal core-oxide shell encapsulated with carbon
since we can actually observe a double shell on that nanoparticle.

For the plasma-synthesized samples (Fe/C and Co/C, Figures 11
and 12 respectively), at least 750 particles were measured for each
fresh and used catalyst. There was a noticeable display of the
catalysts’ morphological stability in the samples before and after
reaction since very limited variations in their particle size were
observed (see particle size distribution plots).

X-ray diffraction analysis

In the XRD studies, Rietveld quantitative analysis (RQA)was used
in an attempt to quantify the species in the fresh catalyst materials.
Figures 13 and 14, respectively, represent the XRD patterns of the
fresh plasma-synthesized Co/C and Fe/C catalysts with the RQA
curve fitting. A database search showed that the two catalysts
contained both amorphous and graphitic carbon as well as both
metallic and metal-carbide species. The results are summarized in
Table 2. Comparatively, the Fe catalyst had significant amounts of
carbides (Fe3C) indicated by the major peak at the 458 (2u) angle.
The curves’ goodness of fit (GOF) with the High Score Plus
software was �1.6, rendering our analysis objectively acceptable.
Ideally GOF should be 1, but a value of 2 is still tolerable.[17] We
take this view because there was a considerable amount of
unquantifiable amorphous material, which we believe made
quantification difficult. In addition, since nanometric metallic
particles lead to peak broadening and subsequent peak extinction,
it complicates the analytical problem.

The estimated standard deviation (ESD), which reflects the
precision of the refined parameters, is bracketed in Table 2 and

Figure 8. SEM images of the fresh plasma-synthesized Co/C catalyst from
the auxiliary reactor by: (a) secondary imaging, and (b) backscattered
imaging.

Figure 9. SEM images of the fresh plasma-synthesized Fe/C catalyst from
the auxiliary reactor by: (a) secondary imaging, and (b) backscattered
imaging.
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should tend to 0. In our case it was mostly 1, but the highest ESD
was 3. RQA was used despite the low signal-to-noise ratio
associated with the small crystallites in our samples. Even if
statistical parameters such as x2, GOF, or Rwp are deemed
acceptable, ESD may overestimate the precision of the results.
In fact, it has been shown that while smaller error index values
designate a more suitable model fit to the data, improper models
with poor quality datamay exhibit smaller error index values than
some superb models with very high quality data.[18] Nevertheless,

the presence of carbides andmetals is certainly consistent with the
synthesis pathway of these materials.
The XRD patterns of the fresh and used catalysts are shown in

Figure 15, Co/C in (a) and Fe/C in (b). The diffractogram of the
used commercial Fe-NanoCat

1

also appears in Figure 15b for
comparison. Evidence from RQA showed that the fresh Co/C
catalyst comprised metallic cobalt (�39 % Coo) in a face-centred
cubic (FCC) structure, while the sample collected following FTS
reaction exhibited a large fraction of amorphous carbon observed

Figure 10. TEM images of the commercial Fe-NanoCat
1

catalyst before and after FTS.

Figure 11. TEM images of the plasma-synthesized Fe/C catalyst before and after FTS.
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Figure 12. TEM images of the plasma-synthesized Co/C catalyst before and after FTS.

Figure 13. XRD spectra of fresh Co/C catalyst by Rietveld quantitative analysis.

Figure 14. XRD spectra of fresh Fe/C catalyst by Rietveld quantitative analysis.
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from the broad peaks at 2u angles below 30o, rendering
quantification difficult. Due to their pyrophoric nature, the used
samples were analyzed in their slurry form directly from the FTS
reactor, hence the source of this amorphicity arising from the
presence of the hexadecane solvent.

Nonetheless, the original Coo, Co3C, and Cgraphite species could
still be identified in the used sample. Before reaction, the fresh
commercial Fe-NanoCat1 was composed of pure hematite (Fe2O3)
only, but after use, Fe3O4 (hexagonal structure) was the predomi-
nant phase. Other species observed in the used Fe-NanoCat1

sample were: amorphous and graphitic carbon, Feo, FeO, Fe5C2,
and minute quantities of Fe7C3. No Fe2O3 was detected. The fresh
plasma-synthesized Fe/C catalyst consisted initially of metallic Feo

(cubic, FCC structure) and Fe3C (cohenite), supported in a mixed
carbon matrix (graphitic and amorphous), while in the used
sample, possible phases recognized were Feo (FCC), Fe2C, and
e-Fe3C. Figure S4 in the supporting information compares these
spectra and the XRD patterns of standard materials as found in
the database. Although expected, there was almost no evidence for
the presence of Fe3O4 or Fe2O3, probably due to their low
concentrations in the used samples, or that they were camouflaged
in the diffractogram by the higher signal-to-noise ratio associated
with the liquid matrix of the hexadecane solvent in the slurry.

DISCUSSION

Mass Transfer with Plasma-Synthesized Catalysts

In FTS, low temperatures of�473 K favour the formation of longer
carbon chains, while mid-range temperatures such as 573 K
produce shorter carbon chains, but above 673 K, selectivity
toward mainly CO2 and CH4 is promoted. Firstly, increasing
temperature lowers (exothermic) gas adsorption rates, in addition
to higher temperatures increasing the thermal cracking rate of the
longer carbon chains into shorter ones. Therefore, operating
optimally at lower temperatures (�473 K) provides just enough
activation energy to support the reaction. In our 3f-BG-CSTSR,
mixing takes into consideration factors such as the fluid density,
viscosity, and critical stirrer rotational speed, beyond which one
cannot economically justify the corresponding energy consump-
tion.[19] In our system, proper mixing in the turbulent regime was
observed with high gas flow rates (300 mL � min�1), the
introduction of the feed gas being set at the bottom of the reactor,
high stirring rates set at�2000 rpm to enhance both heat andmass
transfer, high catalyst particle dispersion, and uniform catalyst
distribution in the reactor, ensuring that the reaction rate was not
diffusion-limited. Furthermore, viscosity and fluid density were
kept low by using more solvent (150 mL) and less solid catalyst
(5.0 g), because too much solid catalyst causes particle attrition
and high energy demand during mixing. In commercial versions
of the technology, stirring would ideally be replaced by an
optimized bubble-column operation.
Clogging of the pores due to product entrapment fundamentally

deactivates the catalyst as the micro-pores limit the movement of
large molecules from the interior of the catalyst. Therefore, an
effective FTS catalyst should comprise small metal particles,
preferably in the nanometric range, and be non-porous in nature
in order to enhance both heat andmass transfer, a description that
fits our plasma-synthesized catalysts. An added advantage of
using our nanometric and non-porous catalysts is that it circum-
vents susceptibility to temperature and gas concentration
gradients, which normally occur in large-sized pellet catalysts.
Although small catalyst particles could produce characteristically
smaller carbon-content fractions, this provides us with the
flexibility to alter the residence time in the reactor and enhance
the production of the heavier carbon fractions.
Quick adsorption of reactants onto the metal nanoparticles,

followed by fast desorption of the products from the catalyst

Table 2. Quantitative analysis of the fresh catalysts

Carbon

Quantities by
RQA, % (ESD)

Metal
(Coo,
Feo)

Carbides
(Co3C,
Fe3C) Graphite Amorphous

Co/C 39.2 (2)# 6.7 (1) 54.1 (1) unquantifiable
Fe/C 34.0 (3)	 26.0 (1) 40.0 (3) unquantifiable

Quality of
refinement Rexp Rprofile Rwp GOF

Co/C 8.31 7.97 10.50 1.60
Fe/C 8.31 7.97 10.50 1.59

Coo ¼ #Metallic cobalt: face-centered cubic (FCC) structure
Feo ¼ 	Mixture: taenite ¼ 13.1 % (3); metallic iron 20.9 % (3): cubic (FCC)
ESD ¼ estimated standard deviation (bracketed values)
Rprofile ¼ quantity being minimized during fitting procedures (by least-
squares)
Rexp ¼ expected R or the “best possible Rwp” factor
Rwp ¼ weighted profile (R-factor)�weighted to emphasize peak intensity
over background
GOF ¼ Goodness of fit (x2) ¼ (Rwp/Rexp)

2 should approach unity

Figure 15. XRD spectra of the fresh and used: (a) cobalt and (b) iron
catalysts.
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surface, is desired if FTS targets the relatively lowMWarea defined
by C5-C20 carbon chains. In some studies involving large metal
particles or catalysts that are highlymicro-porous, it was observed
that only the smaller molecules are detected in the product stream
due to the entrapment of the high carbon fractions (C30þ) in the
pores.[20] The authors did not witness significant amounts of n-
paraffins with more than 35 carbon atoms, probably due to space
limitations inside the catalyst pores. Moreover, in the slurry FTS
reactor, the chief cause of retardation in the reaction rates is the
restricted mobility of the reactant molecules (CO and H2) into the
liquid-filled catalyst pores, arising from the liquid phase or the
heavier hydrocarbons produced during FTS.[21] Syngas conver-
sion decreases considerably when the average particle size is
increased,[22] pointing to the importance of mass transport effects
within the pellet. Since FTS produces polymeric products, highly
porous catalytic materials impede the reaction due to diffusion
limitations. Our catalysts, being both nanometric and non-porous,
operate away from the diffusion-limited regimes, while the low-T
operation also diminishes the possibility of metal-phase sintering.

Catalyst Composition Analysis

During catalyst synthesis, Fe carbides, particularly cementite
(Fe3C), are formed at temperatures> 1373 K, being stable at room
temperature, but may decompose into graphitic carbon and
austenite (FCC structure) below 1373 K, or into body-centred
cubic (BCC) a-Fe below 973 K.[23] Our freshly prepared Co/C and
Fe/C catalysts by plasma were spherical core-shell metal nano-
structures with a mean particle size of �11 nm, apparently
encapsulated by several layers of graphitic and amorphous
carbon. The RQA application of XRD analysis showed that the
plasma-synthesized Co/C sample comprised 0.54 g/g (54mass%)
graphitic carbon, 0.39 g/g (39 mass%) metallic Co, 0.07 g/g
(7 mass%) Co carbides (Co3C), and some unquantifiable
amorphous carbon, but no Co oxides were identified. In the
TEM images, stacking faults were recognized in Co-containing
samples, probably existing as residuals from the initial Co metal
that had a mixture of both hexagonal closed packing (HCP)
structure (�38 %), and FCC structure (�62 %), both of which
were evident from the XRD analysis of the original metal.[2] After
catalyst synthesis by plasma, all the HCP crystallite forms were
transformed into the FCC structure.

Particle size distribution by TEM analysis showed restrained
particle growth in the plasma-synthesized Co/C and Fe/C samples
even after 48 h on stream; that is, with 24 h reduction at 673 K, and
24 h FTS reaction at 493 K; this implies that plasma-synthesized
catalysts inhibit sintering, since the metal nanoparticles do not
seem to interact. Although it is well-known that the melting point
of a substance decreases with decreasing particle size, under our
high-pressure and LT-FTS conditions, the temperatures are not
high enough to promotemelting, vaporization, or local diffusion of
the nanoparticles. Therefore, using graphite and amorphous
carbon capsules as a support creates a rigid frame where the
nanoparticles are immobilized. This steric barrier prevents close
metal particle interaction, thereby forestalling both surface
diffusion and lattice diffusion. In addition, the fast movement
(�2000 rpm) of the catalyst nanoparticles in the reactor minimizes
particle interaction, which is critical in sintering.

Catalyst Performance in FTS Reaction

In this study, we investigated catalysts that can find application
effectively at �493 K (220 8C) in the LT-FTS operation, targeting
the production of gasoline or diesel fuel. In the pretreatment, the
carbon shell around the core metal nanoparticles in the plasma-

synthesized Co/C or Fe/C catalysts was removed through
reduction in a H2 gas stream to activate the catalysts for FTS
reaction. Reduction releases gaseous products such as CO2, CH4,
and other hydrocarbons, which facilitate easy separation from the
FTS system. There are two benefits of using the plasma technique
in our catalyst preparation:

(i) Since the metal nanoparticles deposited on nanometric
carbon have the potential to be pyrophoric, the graphitic
encapsulation of themetals in the carbonmatrix protects the
catalysts from catching fire and therefore makes them safe
for storage.

(ii) Plasma leads to direct production of the carbide phases,
which are deemed to be active in Fe-catalyzed FTS, and
losing them during the reduction phase means losing that
advantage.

While benchmarking with the fresh commercial Fe-NanoCat
1

(Fe2O3), the catalyst was activated by carburization according to
Equation (6), using CO to generate themuch-needed Fe carbides in
the FTS process.[24]

Fe2O3 ! Fe3O4 ! FexCy ð6Þ

Some studies on C-supported Fe catalysts have shown that
partially-reduced Fe oxide influences both catalyst activity and
selectivity. Reduction of fresh Fe3O4 leads to the formation of
non-stoichiometric Fe-oxide-carbide species in the catalyst, which
is less stable, but more active and more selective toward the
formation of olefins than the known x-Fe5C2 carbide.[25] This
implies that total reduction of the catalyst to metallic state, or
formation of pure Fe carbides, may not be beneficial to the
reaction. It has been observed that the development and
composition of these Fe phases depends on the process conditions,
catalyst deactivation, and catalyst composition.[26] A correlation
between FTS reaction rates and Fe carbide concentration has been
observed. The unexpected re-oxidation of the catalysts as CO
conversion decreased has suggested that deactivation of Fe
catalysts in FTS reactions is due, at least partially, to the
conversion of Fe carbides to Fe3O4. It appears that the CO
activation steps, which are responsible for replenishing carbidic
surface species and for removing chemisorbed oxygen, are
selectively inhibited by deactivation of surface sites, leading to
the oxidation of Fe carbide even in the presence of a remarkably
reducing reactant mixture. Where some Fe carbide species were
responsible for Fischer-Tropsch activity, oxidation of the Fe
carbide to Fe oxide led to catalyst deactivation.[27]

Authors have agreed almost unanimously that the active species
in the Co catalysts are in metallic form, with the HCP crystal
structure demonstrating greater intrinsic activity than the FCC
structure.[28] In addition, particle size effects arising fromcrystallite
size influence FTS activity,[29] and our plasma-synthesized Co/C,
whichwas substantiallymore active than the Fe/C, had an average
particle size of 12 nm. Since loss of activity is always attributed to
the re-oxidation of Co to its oxides,[28] or sintering,[29] the
deactivation observed in our Co/C system was due to excessive
water formation. This was confirmed by the short-lived improve-
ment observed in catalyst performance at the removal of water at
various intervals before activity dropped again.

In the Fe-catalyzed FTS, controversy still exists over the real
active species due to the high number of phases formed in the
system and isolation of the active species being practically
difficult. Nevertheless, total reduction of the catalyst to metallic
state as in Co catalysts, or to pure iron carbides, is certainly not
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beneficial.[25] This work confirms this phenomenon of under-
treatment (at low temperature, for a limited time) and over-
reduction (high temperature, for a long time), particularly with
the Fe-based catalysts during activation. The Co/C catalyst, on the
other hand, is less sensitive to the pretreatment procedure.

In our used plasma-synthesized Fe/C sample, we observed only
two phases: the metallic structure, and Fe carbides. Similarly, in
thecommercialFe-NanoCat

1

sample,weobservedonly twophases:
Fe oxides and Fe carbides. It was therefore concluded that the
metallic Feo in the plasma-synthesized Fe/C sample were spectator
species, andmayneed activation through carburization (to form Fe
carbides) during the optimization process. It is also known that Fe
oxides on their own cannot catalyze FTS, an observation that
strongly indicates that the perceived carbides in the samples were
necessary for the reaction. XRD analysis showed the presence of
oxidic species in the used catalysts, while TEM showed that even
after reduction the used catalysts were still encapsulated in a much
thinner carbonmatrix, andwith little change in their metal particle
sizes. The thermodynamics of the two FTS systems show that, at
equilibrium, the most stable forms of the catalysts will lead to
deactivation of the catalysts as they form spinel oxides (Fe3O4 or
Co3O4). The advantage of the plasma-synthesized samples is that
they constrain deactivation arising from the re-oxidation of the
metals to form Fe3O4 or Co3O4 since such species were not
detectable in the used samples.Whereas Co3Cmay not be useful to
FTS, the disappearance of the Fe carbides would be detrimental to
the reaction because Fe carbides are essential to the propagation of
the FTS carbon-chain. Nevertheless, the gas feedstock can be
established such that the ratio of H2, CO, and CO2 ensures that the
metal oxides are converted back to themetal (Coo) or Fe carbides in
a way that regenerates the catalysts, because theoretically, if the
syngas has a ratio of [H2:(2CO þ 3CO2)] 
 1.05, all of the H2, CO,
and CO2 can be converted to FTS products.[30]

Both the Fe-only and Co-only catalysts show promise for this
application, comparing favourably to the existing commercial Fe-

NanoCat
1

material when tested under similar reaction conditions.
A summary of the catalysts’ properties is provided in Table 3. The
plasma-synthesized catalysts have demonstrated an acceptable
combined selectivity towards the formation of gasoline and diesel
fractions (80 % for Co/C and 76 % for Fe/C), which compares
well with the Fe-NanoCat

1

(85 %). The plasma-synthesized Co/C
with a CO conversion of 45 % presented a much better
performance than the commercial Fe-NanoCat

1

(with 32 %).
These two were in fact more stable and less sensitive online than
the plasma-synthesized Fe/C, which showed CO conversion of
between 10–25 %, depending on the pre-treatment conditions
such as temperature and duration.

CONCLUSIONS

Two nanometric catalysts supported on carbon (Co/C and Fe/C)
were synthesized through plasma and tested for LT-FTS in a
CSTSR. At steady state (presumably after 18 h on stream, at
T ¼ 493 K (220 8C), p ¼ 2000 kPa, GHSV=3600mL � g�1

cat � h�1),
the Co/C catalyst was observed to be comparatively more active
and more stable online than the Fe/C catalyst. The Co/C catalyst
also showed higher propensity to produce a full spectrum of
products, including those with heavier molecular mass such as
wax. Without any promoters, the catalysts were benchmarked
against the commercially available Fe-NanoCat

1

catalyst, and the
activity decreased in the order of Co/C � Fe-NanoCat

1

> Fe/C
with their respective CO conversions being 45 %, 32 %, and 25 %.
This study confirmed that both the plasma-synthesized catalysts
have potential for industrial applications since they were
remarkably selective (�80 %) towards the formation of both
gasoline and diesel combined, competing favourably with the
current commercial catalyst (with selectivity �85 %). Selectivity
towards the production of the diesel fraction alone (C13–C20)
decreased in the order of Fe/C � Co/C > Fe-NanoCat

1

(with
51 %, 31 %, and 22 % respectively).
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NOMENCLATURE

Ai relative area under peak for hydrocarbon with i
carbon atoms (%)

ASAP accelerated surface area porosimeter (Micro-
meritics unit)

bcc body-centred cubic structure
BET Brunauer-Emmett-Teller
C4–C12 gasoline fraction
C13–C20 diesel fraction
C16 n-hexadecane
C21þ high molecular hydrocarbons, such as waxes
[—CH2—]n alkene polymers
CnH2nþ2 alkanes
Co/C cobalt catalyst supported on carbon
CSTR continuously-stirred tank reactor

Table 3. Summary of the catalyst characteristics used in FTS

Catalyst

Properties Co/C Fe/C Fe-NanoCat
1

Elemental analysis: Metal
loading

25 % 25 % –

BET surface area
(m2 � g�1)

55.8 74.8 –

Pore size/distribution (nm) < 10 < 10 –

Particle size:
fresh catalyst (nm) 11.0 11.3 4.0
used catalyst (nm) 11.2 10.3 21.1

Activity: CO conversion
(%)	

45 % 25 % 32 %

Selectivity:
(i) gasoline (C4–C12) 49.5 25.6 62.2
(ii) diesel (C13 � C20) 30.8 50.9 22.5
(iii) waxes, etc. (C21þ) 12.0 18.1 9.1

Phases present in used
catalysts:
(i) metallic species Coo (fcc) Feo (fcc) –

(ii) oxides – – FeO Fe3O4

(iii) carbides Co3C Fe2C
e-Fe3C

Fe3C Fe5C2

Fe7C3

(iv) carbon - ordered
- disordered

Cgraphite

Camorphous

Cgraphite

Camorphous

Cgraphite

Camorphous

	Maximum CO conversion observed under our reaction conditions
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D diffusion coefficient in pores (m2 � s�1)
De effective diffusivity (m2 � s�1)
df film thickness of GC column (mm)
EDX energy dispersive X-ray spectroscopy
ESD estimated standard deviation
EXAFS extended X-ray absorption fine structure
FCC face-centred cubic structure
Fe/C iron catalyst supported on carbon
Fe-NanoCat

1

commercial Fischer-Tropsch nano-hematite cat-
alyst

FID flame-ionization detector
FTS Fischer-Tropsch synthesis
GC gas chromatography
GHSV gas hourly space velocity (mL � g�1

cat � h�1)
GOF goodness of fit: (x2) ¼ (Rwp/Rexp)

2

HCP hexagonal closed packing
id inner diameter of GC column (mm)
l length (m)
LT-FTS low-temperature Fischer-Tropsch synthesis
N2.5 gas purity for CO; two nines ¼ 99.5 %
N4.5 gas purity for H2 and Ar; four nines ¼ 99.995 %
p pressure (Pa)
Rexp expected R or the “best possible Rwp” factor
RF radio frequency (Hz)
Rprofile quantity being minimized during fitting proce-

dures (by least-squares)
RQA Rietveld quantitative analysis
Rwp weighted profile (R-factor) ratio of peak inten-

sity to background
p-XRD powder X-ray diffraction
S selectivity (%)
SEM scanning electron microscopy
T temperature (K)
TCD thermal conductivity detector
TG-DTA thermogravimetric-differential thermal analysis
TEM transmission electron microscopy
TOS time-on-stream
TPR/TPO temperature-programmed reduction/oxidation
XPS X-ray photoelectron spectroscopy
3w-BG-CSTSR three-phase bubbled-gas continuously-stirred

tank slurry reactor
Vol. volume (L)

Greek Letters

w phase (3-w ¼ 3 phase: gas, liquid, solid)
sc constriction factor for variation in cross-sectional area
t tortuosity
x2 measure of a curve’s goodness of fit
fp pellet porosity
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in carbon deposition on metal-oxide supports such as Al2O3, SiO2 or TiO2, which is detrimental to
the catalyst’s structural integrity [2]. However, there is a view that a carbon-supported catalyst may
not be impacted in a similar way because of its resistance to both carbon fouling and carburization
effects [3]. For this reason, we are advocating for the application of plasma-generated graphitic carbon
as an effective FTS catalyst support in this study. Indeed some authors have observed the value
carburization process can offer in catalyst regeneration. For example, Equation (2) shows a proposed
mechanism of regenerating a Co-based FTS catalyst through carburization by initially forming the less
active Co2C phase, followed by reduction in H2 [4].

CoO CO→ Co2C
H2→ Co (2)

Moreover, the graphitic carbon-support structure has been noted to enhance catalyst selectivity
towards high molecular weight fractions with more than five carbon atoms in the hydrocarbon chain
(C5+) by facilitating electron transfer between the Co metal and CO molecules during FTS [5]. It has
been observed that certain desirable properties of the C support can easily be activated, enhanced or
varied by functionalization using either basic or acidic media [6]. In fact, the very presence of carbon as
a support does not seem to negatively influence the performance of the nanometric carbon-supported
catalysts that were synthesized through plasma [7]. In the recent past, great interest has been stimulated
in catalyst preparation by various plasma technologies because plasma produces materials that have
improved LT-FTS activity, enhanced stability, and have better anti-carbon deposition performance [8].
In LT-FTS, a comparative study of identical single-metal Co/C catalysts produced by various methods
showed that induction suspension plasma-spray (SPS) technology produces superior FTS catalysts [9].

Another approach that has been applied in FTS to improve selectivity towards the C5+ products
is through CO-enriched syngas feeds, which lowers CH4 formation [10]. Nevertheless, where gas
composition has been used to determine the product spectrum, low CO conversions have prevailed,
with an increased reaction rate being observed at higher H2:CO ratios above 1.6, and this has an
added advantage of using less catalyst quantities for the same feed conversion [2]. Since natural
resources such as coal are finite, pursuit for alternative carbon sources and the use of CO-rich syngas
of biomass origin is contemplated [11], and may present benefits that comprise sustainability through
production of biomass-derived fuels. Interest in a Biomass to Liquid process via Fischer–Tropsch
(BTL-FT) synthesis is growing steadily from both academia and industry because of its ability to
produce carbon neutral and environmentally friendly clean fuels [12]. Commercial production of
such fuels while simultaneously satisfying the increasing energy demand and meeting stringent
environmental regulations is inevitable in the foreseeable future, particularly with the push towards
sulphur-free diesel [13]. The world today is therefore bracing itself for compliance in automobile fuel
production; to shift away from fossil fuels towards renewable sources of energy such as biomass.

A number of theories have been developed to elucidate the polymerization mechanisms that
influence FTS product selectivity. In order to determine α, the probability of a catalyst being selective
towards the formation of C5+ products, the Anderson-Schulz-Flory (ASF) distribution model shown in
Equation (3) is normally applied [14]. The α-value is calculated from the gradient of the linearized
expression in the plot of log(Mn/n) versus n, given as Equation (4) [15] (p. 403).

Mn

n
= (1−α)2 ·α(n−1) (3)

lnα = nlnα+ ln

[
(1−α)2

α

]
(4)

where:

Mn = mole fraction of a hydrocarbon with chain length n
n = number of total carbon atoms
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α = probability of chain growth (α < 1)
(1 − α) = probability of chain termination

Although being more expensive than the Fe-based catalyst, the Co catalyst is preferred for the
production of long-chain paraffins because of its high activity and low water-gas shift activity [16].
On one hand, strong interaction between the metallic phase and the support has been observed to
improve catalytic activity [17], but on the other hand, it may be detrimental due to the formation
of irreducible metal-support compounds such as cobalt aluminate or cobalt silicate by way of
incorporating CoO into the Al2O3 or SiO2 support respectively [18], thereby leading to catalyst
deactivation. In addition, carburization of the Co catalyst may lead to deactivation since the cobalt
carbide (Co2C) formed is not a catalytically active material for FTS [4], though it has been observed to
enhance the activity of the Fe-based catalyst [19]. Other causes of catalyst deactivation include coking,
surface restructuring of the Co metal phase in syngas, and sintering of the Co nanoparticles [20]. Some
authors have equally suggested that Co-metal re-oxidation may also lead to catalyst deactivation [21],
although there are some disagreements based on particle size effects as shown by empirical data [22].

Nevertheless, one method that has been adopted in solving catalyst deactivation issues is by
addition of promoters. For example, precious metals like Au [23], and Pt [24], or in some cases, Ru
have been employed to create multi-component catalysts such as (Ru + Co + Mn/Zr/SiO2) to enhance
Co reducibility [25]. This alters catalyst activity and selectivity or the catalyst’s preference for a specific
reaction mechanism [26], although some elements acting as promoters have been observed to aggravate
metal particle sintering of the metal nanoparticles [27]. Other complex catalyst formulations such as
carbon-supported cobalt manganese oxide (CoMnOx) catalysts [28], are currently being developed.

In this article, we limit our discussion to an approach that does not involve promoters because
the single-metal Co/C catalyst is under scrutiny. Since one of the major causes of deactivation in
Co-based catalysts is carbon deposition [29], in this project, a carbon support was envisaged for a
permanent solution. Table 1 indicates a selected number of Co-based catalysts used in FTS reaction
that were supported on various materials ranging from metal oxides to elemental carbon that has
received considerable attention in the recent past. The Co metal may be added to the support using
different approaches such as impregnation or precipitation, but currently the plasma technology is
advancing, both in catalyst synthesis and activation. Although most researchers test the catalysts in
the fixed-bed reactor with the H2:CO ratio of ~2 at 220 ◦C and 2 MPa pressure, in this study the slurry
reactor operating under similar reaction conditions has been chosen.

In our earlier work, catalyst activity was determined by real-time analysis of the unreacted
CO in the reactor effluent-gas stream, from which CO conversion was calculated. However, one of
the constraints of our earlier reactor set-up was that similar real-time liquid-phase analysis was not
possible, since it required total cooling of the reactor preferably overnight in order to sample the
slurry. In doing so, a lot of valuable information from the liquid-phase was inaccessible until after
over 36 h from the commencement of the reaction. This necessitated for a modification of our reactor
system, where we have devised a method of analyzing the liquid-phase in order to determine the
composition of the heavier hydrocarbons (C5+) in real time as the reaction progresses. Having a family
of eight plasma-synthesized catalysts based on Co and Fe [30], the most active material at the lower
temperatures of 160–220 ◦C was the single Co/C catalyst, which we have selected to use in this study.

Since the previous publication on the single-metal Co/C was centred on catalyst synthesis,
characterization and benchmarking with the commercially available Fe-NanoCat® catalyst [7], one
of the limitation in determining the true α-value of the catalyst was due to the reactor set-up.
The plasma-synthesized Co/C was tested in a closed 3-φ-CSTSR for FTS. In the current reactor set up,
the true α-value of the catalyst may be calculated because there is minimum time required to generate
a reasonable amount of polymerization, which if not observed can lead to a wrong determination.
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Table 1. Some Co catalysts that have been tested in typical FTS reaction conditions.

Catalyst FTS Reaction
Catalyst Synthesis

Method * Support # Metal Particle
Size (nm) θ Reactor GHSV

(cm3·g−1·h−1) H2:CO Pressure
(MPa) Temp (◦C) % CO

Conversion $
Reference

Co/Al2O3 IWI Al2O3 11–28 Fixed-bed 6100–9500 2.1 2 210 50 [31]
Co/C IWI CNTs 9–24 Fixed-bed 2000 2 2 270 90 [32]
Co/C IWI CNTs 4–20 Fixed-bed 3600 2 2 220 50 [33]
Co/C DBD-plasma CNTs 5–26 Fixed-bed 1800 2 2 230 95 [34]
Co/C IWI, DP, IA CNFBs 2.6–27 Plug-flow - 2 3.5 210–250 60–80 [35]
Co/C Induction SPS Carbon 9–11 CSTR 3600 2 2 220 42 [7]

Co/SiC IM SiC 15–35 Fixed-bed 6000 2 2
220 25

[36]250 92
Co/SiO2 - SiO2 - Fixed-bed 6000 1.9 1.5–2.5 230 42 [37,38]
Co/SiO2 IWI, GD-plasma SiO2 5.8–10.2 Fixed-bed 1800 2 0.1 220 22 [39]
Co/TiO2 DP, IWI TiO2 2–13 Fixed-bed 3450–5850 2 2 220 35 [40]

FTS = Fischer-Tropsch synthesis; GHSV = gas hourly space velocity; CSTR = continuously-stirred tank reactor. * CP = Co-precipitation; DP = Deposition-precipitation; IA = Ion adsorption;
IM = Impregnation method; IWI = Incipient wetness impregnation; DBD = dielectric-barrier discharge plasma (treatment); GD = Glow discharge (treatment); SPS = suspension-plasma spray
(synthesis); θ Mean metal particle size varies in the data depending on analytical technique applied (e.g., Transmission Electron Microscopic (TEM) imaging, X-ray Diffraction (XRD),
Chemisorption); $ The highest CO conversion achieved is reported here; # CNT = Carbon nanotubes; CNFBs = Carbon nanofibres.
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Therefore, the objectives of this work was: (i) to develop a safe sampling method of the slurry from
the reactor, which was both hot and at high-pressure, without significantly interrupting the FTS reaction
process or being exposed to the highly toxic CO; (ii) to illustrate hydrocarbon–chain propagation with
TOS by providing empirical evidence for the gradual development of the longer-chain hydrocarbons
using this novel sampling method; (iii) to determine the true α-value of the Co/C catalyst, while
observing for the least time required for maximum possible polymerization to occur; and (iv) to
investigate the effect of using CO-rich syngas feed stream on the LT-FTS product distribution, with
a view that the current H2-rich syngas derived from natural gas will eventually be replaced by the
CO-rich biomass-derived syngas. In characterizing the materials’ properties, we have motivated for
the catalysts’ potential suitability in FTS application since the materials have been found to be both
nanometric and non-porous [30]. Therefore, in this paper, we report for the first time the effect of feed
gas composition on the catalyst’s α-value with TOS as projected from the FTS product distribution
using the plasma-synthesized catalyst supported on carbon (Co/C).

2. Results

2.1. Catalyst Characterization

The catalyst under review has already been fully characterized by Brunauer-Emmett-Teller (BET)
specific surface area analysis and porosity, Raman spectroscopy, Thermogravimetric analysis (TGA),
X-ray diffraction (XRD) coupled with Rietveld quantitative analysis (RQA), and X-ray absorption
near-edge structure (XANES) studies. In addition, the microscopic properties of the catalyst were
revealed by Transmission electron microscopy (TEM) as well as with Scanning electron microscopy
(SEM) coupled with the Energy dispersive X-ray spectroscopy (EDX). Since the details of this catalyst’s
properties are available in earlier work [7], the results are summarized here for the benefit of the reader.

2.1.1. BET Surface Area Analysis

The fresh Co-only (Co/C) catalyst was determined to be both nanometric and non-porous in
nature, but with a high BET specific surface area of about 56 m2·g−1, pore diameter of about 28 nm
and total pore volume of 0.39 cm3·g−1 as given in Table 2.

Table 2. Catalyst porosity analysis results by the BET method.

Property Auxiliary Plasma Reactor * Main Plasma Reactor *

BET surface area (m2·g−1) 55.5 54.4
Average pore diameter (nm) $ 27.4 28.3
Total pore volume (cm3·g−1) # 0.38 0.39

BET = Brunauer-Emmett-Teller specific surface area analysis. * The plasma reactor design in catalyst synthesis
comprises the auxiliary and main reactors, see Section 4.3.1. $ Single point adsorption total pore volume of pores
less than 120 nm in diameter at P/Po = 0.98. # Average pore diameter (4V/A by BET).

Figure 1a depicts the non-porous nature of the material from its adsorption-desorption isotherms
and Figure 1b provides the basis of interpretation. A steep isotherm in the low pressure region below
P/Po = 0.30 means that the sample is micro-porous (type I isotherm), but since our plot was almost flat
in that portion (type II isotherm), it implied that the catalyst was not microporous. In addition, the
lack of hysteresis in the desorption arm of the isotherm indicated that the sample was non-porous.
Figure 1c shows the BET transform plot with a perfect linear fit on the adsorption isotherm, indicating
the high reliability of the method. Normally, solid powder samples with particle diameter in the
micrometer range have BET specific surface area of ~1 m2·g−1. However, when the powder particles
are transformed into the nanometer range through plasma, their surface area significantly increases.
For example, compact Co spheres of average diameter of 11 nm have a geometrically calculated
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external specific surface of about 70 m2·g−1. Therefore, the measured BET surface area of 56 m2·g−1 is
representative of the tested catalyst.
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Figure 1. Porosity analysis of the fresh Co/C catalyst showing (a) overlaid adsorption-desorption
isotherms; (b) cartoons with various impressions of isotherm interpretations; and (c) the BET
transform plot.

2.1.2. Elemental Analysis

Due to the difficulties experienced in digesting the graphitic C-support for analysis by
inductively-coupled plasma mass spectrometry (ICP-MS), TGA by carbon ignition was utilized, which
revealed that the Co atomic-mass loading in the C matrix was approximately 0.25 g/g (25-wt. %) in
the freshly synthesized catalysts through plasma.

2.1.3. Microscopy: Elemental and Particle Size Analysis

Semi-quantitative SEM analysis coupled with EDX facility showed a Co metal-loading between
20%–30% in the carbon support, as confirmed by TGA (25-wt. %). Metal nanoparticle-size analysis
by TEM imaging manifested a mean size of about 11.0 nm (counting 750 particles) before and after
the reaction [7], as portrayed in Figure 2. This observation alluded to the absence of nanoparticle
agglomeration in the spent catalyst sample after a 24-h reduction at 400 ◦C followed by another 24 h of
FTS reaction. Figure 3 provides the metal nanoparticle size distribution of 695 particles of the fresh
catalyst by TEM analysis, which exhibits a near Gaussian-type distribution, with a standard deviation
of 4.4.

2.1.4. XRD and RQA Analysis

XRD analysis revealed the presence of metallic and carbidic species in the catalyst. In order to
maximize the catalytic activity measured by CO conversion during FTS, prior catalyst reduction is
paramount because the active species in Co-containing samples are construed to be metallic (Co◦) in
nature. Some authors have asserted that the highest CO conversions in FTS are attributed to higher
Co reducibility [33], while the oxidation of the Co metal leads to catalyst deactivation [21]. Figure 4
presents the XRD patterns of the fresh Co metal injected into the plasma, which comprised two phases
as analysed by RQA: 62% having face centred cubic (FCC) structure, and 38% hexagonal closed packing
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(HCP) structure [7]. After plasma synthesis, the Co moieties were perceived to be encapsulated in
the carbon matrix and the metal contained only the FCC crystal structure, a phase that prevailed
even after the FTS reaction. Since the Co/C catalyst is entirely nanometric, we are convinced that
the material probably contains other phases that could be beyond the detection limits of the XRD
instrument. However, in the absence of such evidence, we think that the FCC phase is the active form
of this catalyst.
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Figure 2. Transmission Electron Microscopic (TEM) images for the fresh and used plasma-synthesized
Co/C samples.
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2.1.5. XANES Analysis

Spectral analysis of the fresh and used catalysts by X-ray absorption near-edge structure (XANES)
did not indicate any form of oxidation in the samples. However, when compared to the metal-Co
standard, a shift of the edge peak in both the fresh and used Co/C catalysts was observed, particularly
when the derivative plots were examined, as seen in Figure 5. The Co species in the catalysts seemed to
have become ‘more metallic’ in the sense of its electron-donating capability and hence the edge shift to
the lower energies of the spectrum [41]. This was perhaps due to the simultaneous presence of metallic
and carbidic species in the Co/C catalyst samples, as discussed in an earlier article [9]. The carbidic
species in the samples were only evidenced by the XRD data analysis through RQA modeling using the
High Score Plus software [7]. XANES peak-edge shift to the right implies occurrence of Co oxidation
and more often than not leads to catalyst deactivation, whereas peak-edge shift to the left as was
observed here, in both the fresh and used samples has a connotation of preventing deactivation, which
may prove to be advantageous to the longevity of the catalyst material.Catalysts 2017, 7, 69  9 of 21 
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Figure 5. XANES spectra (a) normalized and (b) first derivative of the fresh and used Co/C samples
compared with the Co0 and CoO standards.

2.2. Catalyst Activity Testing

Figure 6 represents the catalytic activity at gas hourly space velocity (GHSV) of 3600 cm3·g−1·h−1

of catalyst, which presented between 38% and 43% CO conversion for the molar feed-gas ratio of
H2:CO = 2. This finding was consistent with our earlier work [7]. For the CO-rich feed gas of molar
ratio of H2:CO = 1.5 and 1.0, catalytic activity dropped to 20% and 10% CO conversion respectively.

2.3. Catalyst Selectivity

Since the modification on the FTS reactor system offered capacity to simultaneously perform
both gas-phase and liquid-phase analysis, combining the results provided a full portrait of the FTS
product-spectrum in real time. Figure 7 demonstrates the progressive polymerization occurring in the
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liquid-phase with TOS. The slurry was sampled 5 times (after 2 h, 5 h, 8 h, 17 h and 19 h of FTS reaction).
This procedure was repeated for another experiment, which produced similar results displaying the
incremental change perceived in the liquid-phase of the FTS product distribution.
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Figure 6. Plots showing the positive influence of H2 on FTS reaction with TOS using the Co/C catalyst
tested at 220 ◦C, 2 MPa and GHSV of 3600 cm3·g−1·h−1.
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Figure 7. Catalyst selectivity from liquid-sample analysis at various TOS for reaction performed at
220 ◦C, 2 MPa and GHSV of 3600 cm3·g−1·h−1 with H2:CO ratio = 2.

The emerging trend indicated that with passage of time from 2 h to 19 h, there was a substantial
transformation from the shorter hydrocarbon chains to the higher molecular-weight fractions.
For example, about 5% of C5 existed at 2 h, diminishing to almost zero at 19 h. At the same time,
the waxes that were present in very minute quantities at 2 h had increased considerably at 19 h.
From the gas-phase analysis, a high production of CH4 was recorded initially, making up to 11%, but
dropped to approximately 8% after 6 h, and below 4% at 24 h. The combined C2’s (C2H6 and C2H4)
gave a total of about 0.6%, while the composition of CO2 was only 0.5% in the effluent stream. No C3

or C4 compounds were detectable. Figure 8 provides the full spectrum of the FTS product distribution
at various H2:CO ratios of 2.0, 1.5 and 1.0 that indicated a shift to the lower molecular weights as the
H2:CO ratio increased from 1 to 2.
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Figure 8. Effect of gas composition on the product spectrum of Fischer-Tropsch synthesis (FTS) after
24 h on stream at 220 ◦C, 2 MPa and gas hourly space velocity (GHSV) of 3600 cm3·g−1·h−1.

2.4. Determination of α-Values

Since our GC column was incapable of distinguishing the hydrocarbon compounds entirely by
their various functional groups, in combining together all molecules with equal number of carbon
atoms (alkanes, alkenes oxygenates, etc.), it was assumed that the formation of FTS products conformed
to the conventional (ASF) polymerization kinetics, quantitatively described as requiring the presence
of only one type of chain-growth site. Given that the catalyst was both nanometric and non-porous,
heat and mass transport effects were essentially eliminated, so we suppose since earlier optimization
tests indicated the same [42]. As presented in Figure 9, results of log(Mn/n) versus n demonstrated the
typical deviation from the normal ASF distribution [43], due to the formation of significant amounts
of CH4 followed immediately by almost a non-existent (C2–C5) portion. This created a dip in the
plot as seen in Figure 9a: with very little of C2H6 and C2H4 observed (amounting to less than 1%,
when combined).

From C4 there was a sharp rise towards C6 that gently increased to C10. Beyond C10 one may
observe two definite gradients: a gentle one between C10–C16 and a steeper one above C16 that is
detectable from Figure 9b. Solving for log(α) in Equation (4) revealed that the α-value for the Co/C
catalyst was approximately 0.87, which was attained very quickly at low GHSV of 1800 cm3·h−1·g−1

of catalyst using H2:CO = 2. Analyses for samples tested at GHSV of 3600 cm3·h−1·g−1 using various
H2:CO ratios of 2.0, 1.5 and 1.0 are provided in Figure 10 showing that the CO-rich gas streams
(of H2:CO ratios of 1.5 and 1.0) displayed the higher α-value of 0.93, and attained the maximum value
within ~6 h, while the H2-rich gas stream (H2:CO = 2) showed a lower α-value of 0.85, which was only
attained after over 15 h on stream.
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α-values of Co/C catalyst after 1–2 h on stream, tested at 220 ◦C, 2 MPa and GHSV = 1800 cm3·h−1·g−1.

Table 3 summarizes the aggregate product fractions as obtained at the end of the reaction
(TOS = 24 h) using the various gas feeds, which when the liquid-phase products were transmuted into
the graphical format as shown in Figure 11 indicated that application of low H2:CO ratios suppresses
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H2O production, but enhances wax formation. High H2:CO ratio of 2 only influences additional
formation of gasoline, because diesel production remains more or less constant at all H2:CO ratios.
Prolonged reaction times were observed to shift the product spectrum from the gasoline fraction to the
wax fraction, with little net impact on the quantity of diesel formed. Nonetheless, overall the catalyst
was perceived to be more selective towards the production of the diesel-fraction (~45%), which was in
fact, our target product. A convergence of gradients towards the highest possible α-value (~0.85) was
observed to form a common product spectrum at higher residence times (above 15 h).

Table 3. Product fractions with various feed gas compositions at 24 h of FTS reaction tested at 220 ◦C,
2 MPa and GHSV of 3600 cm3·g−1·h−1.

Feed Gas
(H2:CO Ratio)

Product Fraction (%)
α-Value

CO2 CH4 C2 C5–C12 C13–C20 C21+ H2O (cm3)

1.0 0.8 1.8 0.1 16.4 46.4 31.1 21 0.93
1.5 1.0 4.0 0.3 21.6 45.6 28.5 33 0.93
2.0 0.2 3.6 0.3 29.8 45.1 20.6 52 0.85
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Figure 11. Impact of gas composition on FTS product fractions after 24 h on stream with catalyst
samples tested at 220 ◦C, 2 MPa and GHSV of 3600 cm3·g−1·h−1.
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3. Discussion

3.1. Evaluation of Research Objectives

The application of nanometric catalysts in this work was targeted for two main reasons: that
the FTS product selectivity is strongly influenced by the size of Co nanoparticles [30], and that it is
desirable to operate the reactor away from diffusion-limiting regimes. Due to the nature of the reaction,
the large polymeric molecules especially the waxes generated in due course may easily clog catalyst
pores and lead to catalyst deactivation. Therefore, the application of both nanometric and non-porous
catalysts with high BET specific surface area of ~56 m2·g−1 of catalyst have been posited to be ideal for
LT-FTS [7]. From our initial research objectives, it is hereby concluded that the plans were successfully
executed and our product targets achieved since we were able to:

(i) Use a specially designed liquid sampling column to provide empirical evidence for the gradual
development of the longer-chain hydrocarbons from real-time liquid-phase analysis, illustrating
hydrocarbon-chain propagation with TOS;

(ii) Determine the true α-value of the plasma-synthesized Co/C catalyst as being above 0.85, which
could only be ascertained after over 15 h on stream, since any α-values determined below this
time period may be misleading;

(iii) Establish that the application of CO-rich syngas, which may in future be derived from biomass,
is a viable alternative that can replace the current use of H2-rich syngas in generating high
molecular FTS products.

Microscopy through SEM coupled with EDX indicated uniform distribution of metal moieties in
the carbon matrix, while TEM analysis showed highly dispersed Co nanoparticles of mean particle
size of ~11 nm. Both XANES and XRD hinted to the fact that the used catalyst samples did not
undergo metal oxidation, a characteristic that may prove to be beneficial to the longevity of the
catalyst. In addition, XRD analysis revealed that the FCC crystal structure of the Co catalyst was
the predominant and possibly the active phase in the FTS reaction [7], although some scholars
have provided evidence for potentially greater intrinsic activity displayed by the HCP phase of
the Co catalyst [44]. The catalytic activity for CO conversion was shown to greatly increase for
catalysts with a majority of HCP stacking compared to those containing mostly the FCC phase
particles [45]. In our plasma-synthesized Co/C sample, the existing HCP phase in the initial Co metal
was completely transformed into the FCC phase and the catalyst was still very active. This contrasts
with literature data where catalysts that contain mainly the HCP crystal structure show more active
catalysis for CO hydrogenation than the FCC crystal structure of the Co metal obtained from Co3O4

reduction [4]. Besides, the HCP structure favours a different reaction mechanism, which involves
direct CO dissociation, while the FCC structure kinetically favours the H-assisted CO dissociation
mechanism on the Co metal [44]. We are of the opinion that there is full dependence on the presence
of H2 to dissociate CO on the FCC phase, because the metal nanoparticle-size range in our samples
can only produce the stable FCC structure, while the HCP would automatically undergo a phase
transformation. A summary of the catalyst’s properties are provided in Table 4.

3.2. Application of Biomass and Bio-Syngas as Game Changer in Fuel Industry

This study intended to investigate the possible outcomes of exposing our recently formulated
plasma-synthesized Co/C catalyst [9], to a CO-rich FTS feedstock because the composition of syngas
feedstock was observed to impact on the FTS product distribution [46]. In this work, application
of CO-rich gas feed simulating bio-syngas has established the practicality of producing higher
molecular-weight hydrocarbons in FTS, although with lower CO conversions when compared to
the H2-rich feeds. The high α-value of 0.93 obtained (at 220 ◦C and 2 MPa) for CO-rich inlet stream
would be a beneficial characteristic to the plasma-synthesized Co/C catalyst, particularly when
considering the use of biomass-derived syngas feeds.
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Table 4. Summary details of the properties of the plasma synthesized Co/C catalyst.

Measurement Method Catalyst Property Values

Metal loading in carbon support Carbon ignition, SEM Co atomic-mass (g/g) 0.25

Catalyst composition XRD, XANES
Phases present Co0, Co3C

Dominant structure FCC

Porosity N2 physisorption by BET
BET surface area (m2·g−1) 56
Mean pore diameter (nm) 28

Total pore volume (cm3·g−1) 0.39

Metal nanoparticles Microscopy, TEM Mean particle size (nm) 11

Alpha-values ASF product distribution
H2:CO ratio 1.0 0.93
H2:CO ratio 1.5 0.93
H2:CO ratio 2.0 0.85

Catalyst activity GC analysis

CO conversion (220 ◦C, 2 MPa)
H2:CO ratio 1.0 10%

H2:CO ratio 1.5 20%
H2:CO ratio 2.0 40%

Selectivity Liquid-GC analysis FTS at
220 ◦C, 2 MPa, H2:CO = 2.0

Sample product distribution: CO2 0.2
CH4 3.6

C2–C4 0.3
C5–C12 (Gasoline) 29.8
C13–C20 (Diesel) 45.1

C21+ (Wax) 20.6

Since low CO conversions could be expected in the FTS using CO-rich feed stocks, a slight increase
in temperature above 220 ◦C may enhance catalytic activity and enrich the diesel fraction. Alternatively,
the waxes so produced can be converted to diesel fuel by way of thermal or hydrocracking of the waxes
so produced. In industry, Co catalysts are designed for maximum selectivity in wax production that in
turn acts as a feedstock for hydrocracking, and it is projected that an 80% selectivity towards diesel fuel
can be achieved by blending both the FTS and hydrocracking processes [47]. One of the advantages
observed from these results is the rapid chain growth experienced by use of the plasma-derived catalyst,
particularly with the application of low H2:CO ratios. In addition, since the hydrocarbon-chain growth
begins at C5, very limited quantities of CO2, C2’s (ethane and ethene), C3’s and C4’s were detected,
and in fact the CH4 production diminishes with TOS.

3.3. Catalyst Selectivity and α-Values

In this investigation, there was the typical deviation from the ASF distribution observed at
the lower carbon values of (n ≤ 10) due to reaction thermodynamics favouring CH4 formation in
appreciable quantities (up to 12%). However, the conspicuous absence of the C2–C4 portion cannot
be explained from their thermodynamics point of view. For example, in the Fe-catalyzed LT-FTS,
a two-α-model has been advanced to describe product selectivity, which is correlated to the catalyst’s
surface properties. The non-polar Fe-carbide surface seems to be responsible for the production of
paraffins and olefins, while the polar Fe-oxide surface could be responsible for the production of light
hydrocarbons, olefins and oxygenates [48]. The deviation from the ASF distribution has been noted
particularly for its poor suitability for nanometric catalytic systems, and this could be an indicator of
critical variations in the dominant growth mechanisms of FTS catalyzed by nanoparticles [49]. Since the
predicted α-values for the Co catalyst by the ASF model is in the range of 0.70–0.80, our Co/C catalyst
depending on reaction conditions was found to be greater, in the range of 0.78–0.87 (for H2:CO = 2),
and 0.93 (for H2:CO ≤ 1.5). The higher α-values were validated by the substantial conspicuous solid
wax, visible to the naked eye [7]. This creates the impression that liquid GC analysis may only be
partially effective since the wax may not dissolve fully in the solvent during analysis.

When heavier components of the product stream are unable to dissolve or accumulate in the
solvent, it lowers its amount in the sample drawn for analysis (α = Mn+1/Mn). A noted classic example
is the slow accumulation of the heavier products in the solvent that can lead to negative deviation from
the α-values predicted by ASF [50]. However, in our case, the values were higher than those predicted.
A possible explanation is that with the use of nanometric and non-porous materials, no diffusion
limitations existed and hence the apparent instantaneously availability of the FTS products in the
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solvent for analysis. Besides, it is also thought that since the heavier hydrocarbons take longer to move
away from the catalyst surface, by virtue of their size, they have greater re-adsorption probability after
formation [51]. Other authors indeed agree with the supposition that the olefin-chain length influences
re-adsorption rate because the strength of molecular physisorption on catalyst surface increases its
solubility in FTS wax with growing chain length and this olefin re-adsorption model was used to
accurately predict product selectivity over the entire range of their experimental conditions [14]. It is
for this reason that we think our nanometric catalysts are efficient in the process of hydrocarbon
chain-growth propagation because no diffusion limitations seem to exist.

4. Experimental Section

4.1. Catalyst Synthesis: Reagents

The raw materials used for catalyst synthesis and testing were: cobalt metal powder with particle
size range of 1–10 µm and cobalt (II) oxide (Aldrich, Milwaukee, WI, USA); high purity FTS feed stock
gases (PRAXAIR, Sherbrooke, QC, Canada) composing H2 (N5.0), CO (N2.5), and Ar (N5.0); mineral
oil (Fisher Scientific, Ottawa, ON, Canada), with catalog name “O122-4, Mineral Oil, Heavy; USP/FCC
(Paraffin Oil, Heavy)”, and 99% pure n-hexadecane solvent (Fisher Scientific, Whitby, ON, Canada).

4.2. Catalyst Characterization

The Co/C catalyst under review has already been fully characterized: initially by XANES
(Canadian Light Source (CLS) Synchrotron, Saskatoon, SK, Canada), and for porosity and BET specific
surface area using the Accelerated Surface Area Porosimeter (ASAP) 2020 instrument (Micromeritics,
Norcross, GA, USA) [9], and later the quantitative elemental analysis for the Co metal in the C
support was performed by the carbon ignition method using a TG-DTA Setsys 2400 instrument
(Setarum, Hillsborough, NJ, USA), while phase analysis was conducted on a Philips X’pert PRO X-ray
Diffractometer (PANalytical, EA Almelo, The Netherlands), which is fitted with Ni-filters for the Cu
Kα radiation of wavelength alpha1 = 1.5406 Å, produced at 40 kV and 50 mA (PANalytical, EA Almelo,
The Netherlands). Curve-fitting modeling to determine the various amounts of each species in
the catalyst was done using the PANalytical’s High Score Plus software by Rietveld Quantitative
Analysis (RQA).

In addition, the microscopic properties of the material were revealed by a Hitachi S-4700 Scanning
Electron Microscope (SEM), equipped with an X-Max Oxford EDX spectrometer for elemental analysis
(Hitachi, Tokyo, Japan). On the other hand, analysis by Transmission Electron Microscopy (TEM) was
conducted on a Hitachi H-7500 Microscope, fitted with tungsten filament operated at an accelerating
electron beam of 120 kV. A bottom-mounted AMT 4k x 4k CCD Camera System Model X41 captured
images in bright field mode. (Hitachi, Tokyo, Japan) [7]. Comprehensive test procedures and analysis
conditions are therefore provided in the cited articles.

4.3. Reactor Designs

4.3.1. Plasma Synthesis Reactor

The reactor set-up and detailed production of the catalyst synthesis method through plasma has
been provided in an earlier article [30], where two reactor vessels were used to trap the synthesized
materials. The first vessel, which confines the plasma plume is regarded as the main plasma reactor,
while the auxiliary reactor lies adjacent to the main plasma reactor and both of them are connected
through a junction where the fine-powder catalyst particles are captured on filters during the high
vacuum evacuation.
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4.3.2. Fischer-Tropsch Synthesis Reactor (3-φ-CSTSR)

The catalyst was tested in a 3-phase continuously-stirred tank slurry reactor vessel with a holding
capacity of 0.5 L (Autoclave Engineers, Erie, PA, USA). In the current work, the original reactor
design [7] was modified, in that, a liquid-phase sampling line was introduced into the reactor as shown
in Figure 11. The sampling pipe for the slurry originated from the bottom of the vessel, while the
gas-phase sampling pipe originated from the top of the reactor. The scheme incorporated a method
intended to draw the slurry safely at high temperature and pressure without interrupting the reaction
by use of a 15-cm long liquid-sampling column having a 1.5-cm internal diameter.

4.4. Liquid Sampling

Before sampling the slurry, all valves were shut, then valve-1 in Figure 12 was opened to allow
the reactor pressure (2 MPa) to push the piston and hence the liquid, up the sampling column. After
shutting valve-1, valve-2 was opened slowly to release the pressure in the column. While valve-2 was
still open and valve-3 shut, valve-4 was opened carefully to draw out about 1–2 cm3 sample of the
slurry into a vial. Having all valves shut, the pressure in the air cylinder was raised slightly above the
reactor pressure (e.g., 2.2 MPa). Valve-3 was then opened progressively in order to push the piston
back to the bottom of the sampling column thereby pushing the untapped slurry back into the reactor
for further reaction. The valve was shut again and by keeping all valves closed, valve-2 was opened
to release the pressure that originated from the air bottle and then the valve was shut again. At the
appointed time, the cycle was repeated at various time intervals without interrupting the reaction
considerably. The drawn slurry sample was then filtered before injecting about 0.1 µm of the liquid
sample into the liquid-based GC for analysis.
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4.5. Catalyst Testing

All catalyst samples were pre-treated at 400 ◦C for 24 h in a pure H2 (N5.0) gas stream flowing
at RTP, at the rate of 250 SCCM, (standard cubic cm per min or 4.17 × 10−6 Nm3·s−1; where
1 SCCM = 1.67 × 10−8 Nm3·s−1), while the FTS reaction was carried out in 3-φ-CSTSR operated
isothermally at 220 ◦C and 2 MPa pressure with a stirring rate of over 2000 rpm. The purpose of
pre-treatment by reduction is to gasify some of the excess carbon matrix in order to increase exposure
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of the metal nanoparticles to the FTS gas reactants. The initial gas composition was set in the H2:CO
ratio of 2:1 flowing at 300 SCCM (or 5.01 × 10−6 Nm3·s−1), containing 0.6 L/L (60 vol %) H2 and
0.3 L/L (30 vol %) CO, balanced in 0.1 L/L (10 vol %) Ar, for mass-balance calculation. At higher
temperature (e.g., 260 ◦C), the catalyst became less useful for evaluating the α-value due to excessive
CH4 production (up to ~46%) [52]. Hexadecane (C16) solvent was used to make up a reactor volume of
210 cm3, and a mass of 5.0 g of catalyst utilized to create a gas flow rate with GHSV of 3600 cm3·g−1·h−1

of catalyst. The catalyst was doubled to 10.0 g to deliver a GHSV of 1800 cm3·g−1·h−1 of catalyst, while
holding all the other reaction parameters constant. In other experiments, the feed gas composition was
altered from H2:CO ratio of 2.0 to 1.5 or to 1.0.

During the reaction, the gas-phase was sampled and tested for CO conversion using an at-line
GC, while small quantities (1–2 cm3) of the slurry were drawn about five times at various intervals
within the 24-h reaction for real-time liquid-phase analysis. The solid-liquid sample was filtered before
injecting into the liquid-based GC. From the GC charts, peak areas were computed to determine the
selectivity of the product spectrum for both the gas-phase and liquid-phase analyses by a method
already described in an earlier article [7]. The α-values were obtained by the least-squares linear
regression of Equation (3), but in the logarithmic form expressed as Equation (4), where log(Mn/n)
is plotted against n (the hydrocarbon-chain length) [15]. The following typical characteristic ranges
of α-values for various catalysts: for Ru = 0.85–0.95; Co = 0.70–0.80; and Fe = 0.50–0.70, which are
designated in this article as the “predicted” α-values [53].

5. Conclusions

From the objectives of this work, we developed a safe sampling method of drawing small portions
of the hot slurry from a pressured 3-φ-CSTSR vessel without significantly interrupting the FTS reaction
process. This approach enabled us to provide tangible evidence for the gradual formation and shift of
the FTS fractions towards the heavier hydrocarbons with TOS. When tested at 220 ◦C (493 K), 2 MPa
pressure, and GHSV = 3600 cm3·g−1·h−1 of catalyst, results showed that there was lower catalyst
activity of ~10% and ~20% CO conversion at H2:CO ratio of 1.0 and 1.5 respectively, with a predominant
production of the heavier molecular weight fractions (diesel = C13–C20 and waxes = C21+), giving an
α-value of 0.93. A higher catalyst activity (~40% CO conversion) was witnessed for H2:CO ratio of 2.0
with prevalent tendency to produce more light-weight hydrocarbons (gasoline = C4–C12) and this led
to relatively lower α-value of 0.85. Although our target fraction in this reaction was to produce diesel
fuel as the principal fraction, the α-values higher than the predicted figure of 0.8 imply that the catalyst
has great propensity to produce C20+ fractions too, particularly under CO-rich gas-feed streams.
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The following abbreviations have been used in this manuscript:

ASF Anderson-Schulz-Flory distribution
ASAP Accelerated surface area porosimeter (Micromeritics ASAP-2020) instrument
BET Brunauer-Emmett-Teller method for specific surface area analysis
EDX Energy dispersive X-ray spectroscopy
FCC Face centred cubic structure
FTS Fischer-Tropsch synthesis
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GC Gas chromatography
GHSV Gas hourly space velocity
HCP Hexagonal closed packing structure
ICP-MS Inductively-coupled plasma mass spectrometry
LT-FTS Low-temperature Fischer-Tropsch synthesis
RQA Rietveld quantitative analysis
RTP Room temperature and pressure
SASOL South African Synthetic Oil Ltd.
SCCM Standard cubic centimetre per minute
SEM Scanning electron microscopy
SPS Suspension plasma-spray technology
TEM Transmission electron microscopy
TGA Thermogravimetric analysis
TOS Time-on-stream
XANES X-ray absorption near-edge structure analysis by Synchrotron light
XRD X-ray diffraction analysis
3-φ-CSTSR Three-phase continuously-stirred-tank slurry reactor
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average CO conversion was relatively high (ca. 40%) in the first 8 h,
dropping quickly to an average of approximately 25%, with CH4
selectivity of below 5% [4].

The objective of this work was to develop by rational design, a
potential FTS catalyst for industrial application. Using a step-wise
approach, catalysts were synthesised and tested with increasing
process complexity: improving from single-metal to bimetallics,
from low-temperature to high temperature tests, and from
observing the hydrocarbon product spectrum to water manage-
ment issues. The plasma-synthesis method was chosen because it
forms nano-metallic moieties simultaneously with the nanometric
carbon support in situ. It has been shown that the Co-based FTS
catalysis thrives on the metallic species (Co�), while the Fe-
catalysed reaction is dependent on its Fe carbides [5], which may
appear in various forms as FexCy [6]. Both the metallic and carbide
species are generated by plasma [7], an approach that we found to
be relatively more efficient in sample preparation since it is a
single-step method [8], and would potentially save time and lower
both labour and material costs when commercialised. Although it
has been advanced that non-stoichiometric iron-oxide-carbide
species are the active phase in FTS [5], our used samples did not
seem to contain any metal-oxide species, which have been estab-
lished to be the origin of catalyst deactivation [2]. This is a positive
attribute of our samples that do not show deactivation either on
stream or by morphological changes.

In this study, we compare the performance of carbon-supported
catalysts based on Co and Fe, synthesised through plasma under
identical conditions. The materials were either single metal for-
mulations (Co/C, Fe/C) or CoeFe/C bimetallic formulations prepared
in various metal proportions. Preliminary tests for FTS activity was
conducted for H2-reduced Co/C and Fe/C formulations in a fixed-
bed reactor [8], and then in a three-phase slurry continuously-
stirred tank reactor (3-f-SCSTR) [9], while the CoeFe/C bimetallic
formulations were tested in the 3-f-SCSTR only [10]. In this article,
the influence of the pre-treatment gas on the FTS product spectrum
in the 3-f-SCSTR is discussed, comparing the use of H2 versus CO as
reduction media.

2. Experimental methods

2.1. Catalyst synthesis by plasma

The Radio-Frequency (RF) plasma system (PL-50, 3.2 MHz) was
used for catalyst production by the method already described for
the single-metal (Co/C, Fe/C) catalysts [8], and the bimetallic
(CoeFe/C) formulations [10]. The resulting powder materials were
then tested for FTS activity.

2.2. Catalyst characterisation

The catalysts were analysed by various characterisation tech-
niques, whose details can be found in an earlier article [9]. Never-
theless, a summarised view includes BET specific surface area
analysis, Scanning Electron Microscopy (SEM), Transmission Elec-
tron Microscopy (TEM) and X-ray Diffraction. Porosity and surface
area measurements were conducted on a Micromeritics ASAP 2020
analyser using N2 gas physisorption where the adsorption-
desorption isotherm plots were extracted to determine the mate-
rials’ porosity. SEM analysis captured both secondary and back-
scattered images using the Hitachi S-4700 Scanning Electron
Microscope, coupled with an X-Max Oxford EDX (Energy Dispersive
X-ray) spectrometer and X-ray mapping to display the metal dis-
tribution in the carbon matrix. Imaging by TEM analysis in bright-
field mode was captured by a bottom-mounted AMT 4 k � 4 k CCD
Camera System Model X41 using an accelerating electron beam of
120 kV from a tungsten filament on a Hitachi H-7500 instrument.
Particle-size distribution was analysed using the Nano-measurer
version 1.2 “Scion Imager” software. A Philips X’pert PRO Diffrac-
tometer from PANalytical was used in powder-XRD analysis, fitted
with Ni-filters for the Cu Ka radiation (1.5406 Å) produced at 40 kV
and 50 mA. The XRD patterns were recorded in the range of 5� and
110� [2q] angle, and data analysis done using the MDI JADE 2010
(version 2.6.6) software, compared with Powder Diffraction Files in
the Database (version 4.13.0.2) using the PDF-4þ software 2013
(version 4.13.0.6).

2.3. Catalyst testing: reaction conditions

Before FTS tests, catalysts were preferably activated by in situ
reduction because the materials are pyrophoric. The pre-treatment
was conducted at 673 K (400 �C) for 24 h using either high purity H2
gas (99.998%) or CO (99.5%) flowing at 250 cm3 min�1. Reduction
exposes the nanometric Fe or Co moieties for reaction by partly
gasifying the surrounding carbon matrix into CH4 and other hy-
drocarbon gases. A typical FTS feed gas stream comprising 60mol.%
fraction H2 and 30mol.% fraction CO (H2:CO ratio¼ 2:1) balanced in
Ar, flowing at 300 cm3 min�1 was then introduced into the 1.5-L
Parr reactor vessel, acting as a 3-f-SCSTR. The reactor was operated
isothermally at temperatures within the range of 493e533 K
(220e260 �C), at 2 MPa pressure, GHSV of 1.0 cm3s�1g�1 of catalyst
using 5.0 g of catalyst with the gas volume measured at reaction
conditions. Ar was included for CO conversion calculations where
composition of effluent gases and FTS products in the liquid phase
were analysed by gas chromatography as described before [9].

3. Results

3.1. Catalyst characterisation

3.1.1. BET surface area analysis
There was an increase in BET specific surface areas of the

bimetallic CoeFe/C catalysts followed by a drop at both edges of the
single metal catalysts (Co/C and Fe/C), as graphically represented in
Fig. 1 part (a). A similar trend is depicted in Fig. 1 part (b) for their
respective pore volumes, determined by “single point adsorption
for total pore volume less than 120 nm in diameter (at P/
Po ¼ 0.98)”. However, the converse was observed for their average
pore diameters using the relationship (4 V/A by BET), where the
single metal catalysts had higher pore diameters than the bime-
tallic catalysts, see Fig. 1 part (c).

3.1.2. Scanning Electron Microscopy (SEM)
The freshly synthesised catalysts comprised finely dividedmetal

moieties evenly distributed across the carbon matrix. Fig. 2 is a
representative secondary image of the fresh 30%Coe70%Fe/C
catalyst showing the nanometric nature of the carbon support,
while the EDX spectrum provides evidence for the expected higher
mass Fe:Co ratio in this catalyst. Increasing Co loading becomes
even more evident in the X-ray mapping as provided in Fig. 3 for
the other two fresh bimetallic catalysts (50%Coe50%Fe/C and 80%
Coe20%Fe/C).

3.1.3. Transmission Electron Microscopy (TEM)
Analysis by TEM imaging for catalyst morphology and particle

size distribution showed that in the single metal catalysts, the fresh
and used samples did not exhibit any morphological changes dur-
ing FTS. An illustration is provided in Fig. 4 comparing the image of
a fresh Co/C catalyst, which did not change after use, benchmarked
with the commercial nano-hematite (Fe-NanoCat®) FTS catalyst,
where nanoparticle sintering was rampant, leading to the



Fig. 1. Plots of (a) BET specific surface area; (b) pore volume; and (c) pore diameter
against increasing Fe-loading in the catalysts.

Fig. 2. Secondary SEM image of the fresh 30%e70%Fe/C catalyst.
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conclusion that plasma-synthesised catalysts were apparently not
prone to particle agglomeration and hints to their long-term
durability [9]. Summary plots in Fig. 5 graphically display the
particle-size distribution of each catalyst for a sample size of 250
nanoparticles. The 80%Coe20%Fe/C and 30%Coe70%Fe/C bi-
metallics had the lowest mean of ~9 nm followed by the single
metal Co/C and Fe/C catalysts with a mean of ~11 nm, while the
bimetallic 50%Coe50%Fe/C catalyst demonstrated a wider particle
size distribution with a mean of over 14 nm.

Thermal treatment (~50 h) did not seem to adversely affect the
morphology of the plasma-derived catalysts since no significant
changes were evident before and after reaction (reduced at 673 K
for 24 h; then FTS at 493e533 K for a further 24 h). However, when
the same catalyst samples were reduced in CO under identical
conditions, carbon nanofilaments (CNFs) were created in all
catalysts, perceived to be growing away from the metal centres (in
the direction of the arrows) as portrayed in Fig. 6. It has been
advanced that metal oxides are necessary for CNT growth [11], and
similar images to ours have been identified from the catalytic
chemical vapour deposition of Ni-activated growth of CNFs, whose
structures were described more effectively as multi-wall carbon
nanotubes (MWCNTs) [12]. The images in the first row of Fig. 6 (a1,
b1 and c1) represent the fresh bimetallic catalysts, while those in
the second row (a2, b2 and c2) display images of their corresponding
catalysts after use in FTS reaction. Fig. 7 is a supplementary TEM
image of the CNFs at higher magnification.

3.1.4. XRD analysis
Fig. 8 shows the XRD patterns of the fresh singlemetal (Co/C and

Fe/C) and CoeFe/C bimetallic catalysts, overlaid with the used
CoeFe/C bimetallics after pre-treatment in H2, while Fig. 9 com-
pares the used bimetallic CoeFe/C catalysts pre-treated in either H2
or CO. Greater amorphicity was observed in catalysts pre-treated in
CO than those pre-treated in H2 due to the CNF productionwith CO
reduction, which amplified the presence of graphitic carbon shown
by the large broadened peak below the 30� [2q]-angle. Possible
phases identified in the used bimetallic samples are summarised in
Table 1. Since analysis of used samples provides evidence of the
phases that were present in the material during reaction, it was
observed that all used bimetallic samples comprised a mutual
presence of metallic Co and Fe as expected. Nonetheless, the 80%
Coe20%Fe/C catalyst had the highest amount of Co, but its metallic
phase was apparently missing in both the H2- and CO-reduced
samples probably due to peak extinction arising from their nano-
metric nature or the FCC phase overlapping with the CoFe peaks. In
addition, all the catalysts showed the presence of CoFe intermetallic
except the H2-reduced 30%Coe70%Fe/C sample. Instead it displayed
the presence of Co3Fe7 that was missing in all the other catalysts. It
was also observed that both the 30%Coe70%Fe/C and 80%Coe20%



Fig. 3. X-ray mapping of (a) 50%e50%Fe/C and (b) 80%e20%Fe/C catalyst by SEM
imaging. Fig. 4. TEM images contrasting metal nanoparticles in the fresh Co/C catalyst with the

agglomerated nanoparticles in the used commercial Fe-NanoCat® catalyst.

Fig. 5. Particle size distribution of fresh plasma-synthesised catalysts by TEM imaging.
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Fe/C contained Fe3Co and Co7Fe3 phases mutually except in the CO-
reduced 80%Coe20%Fe/C sample that did not have the Co7Fe3
phase. The 50%Coe50%Fe/C sample lacked all these phases (Fe3Co,
Co3Fe7 and Co7Fe3).

Evidence for metal carbides prevailed in the CO-reduced 30%
Coe70%Fe/C and 80%Coe20%Fe/C samples, which indicated having
cohenite (Fe2C) and cementite (Fe3C), while the 50%Coe50%Fe/C
sample displayed none of these carbides, whether reduced in H2 or
CO. Nevertheless, only the H2-reduced 30%Coe70%Fe/C sample
showed some evidence for both cementite (Fe3C) and H€agg car-
bides (Fe5C2). Further, all catalysts (both H2 and CO-reduced sam-
ples) had the unique martensite (FeC0.016) phase, except in the CO-
reduced 30%Coe70%Fe/C and 50%Coe50%Fe/C samples.

A striking observation was that Co carbides were apparently
missing in all the used samples, even after 24 h of carburisation
with CO and a further 24 h in the presence of the CO-rich FTS
feedstock (ca. 30% CO). In addition, there is no evidence of the
presence of any metal oxide in the samples. It is therefore assumed
that both Co carbides and metal oxides existed (if at all), in minute
quantities below the equipment’s detection limit. This finding is
remarkably important for our samples because it points towards
their robustness and resistance to deactivation, since oxidation of
metal nanoparticles to form Co3O4 or Fe3O4 is thermodynamically
favoured and would lead to irreversible catalyst deactivation.
Therefore, by leveraging on this aspect of synthesising catalysts by
plasma, the FTS process efficiency can be improved by prolonged
catalysts’ lifespan.
3.2. Catalyst testing

3.2.1. Catalyst pre-treatment in H2

Activity plots in Fig. 10 show a decreasing CO conversion in the
order of Co/C [ Fe/C > CoeFe/C bimetallics for the FTS reaction at



Fig. 6. TEM imaging showing similarities in the fresh bimetallic Co-Fe/C catalysts (row 1) and used catalysts after a CO pre-treatment (row 2) with the nanofilaments seen growing
away from the metal centres.

Fig. 7. TEM image of the multi-wall carbon nanofilaments in the CO-reduced 30%
Coe70%Fe/C catalyst.

Fig. 8. XRD patterns of fresh and used Co-Fe/C bimetallics after H2 pre-treatment,
benchmarked against the fresh plasma-synthesised Fe/C and Co/C catalysts.
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533 K (260�C), while Fig. 11 indicates the final CO conversions at
24 h for the tests done at 493 K or 533 K. Among the bimetallics,
only the 80%Coe20%Fe/C catalyst showed some activity at 533 K
with a 10% CO conversion, while the single metal Co/C catalyst
displayed complete CO conversion. Analysis of the catalysts’
selectivity is summarised in Table 2, which gives the catalysts’
product spectrum in both gas phase and liquid phase. The product



Fig. 9. XRD patterns of the used Co-Fe/C bimetallics, with CO pre-treated catalysts
showing higher amorphicity than those pre-treated in H2.

Table 1
Possible phases present in the CoeFe/C bimetallic catalysts as identified through XRD analysis.

Pre-treatment Metals Intermetallic alloys Carbides

CO-reduced Co� Fe� Fe3Co Co3Fe7 CoFe Co7Fe3 Cohenite (Fe2C) H€agg (Fe5C2) Cementite (Fe3C) Martensite FeC0.016
30%Coe70%Fe/C x x x e x x x e x e

50%Coe50%Fe/C x x e e xx e e e e e

80%Coe20%Fe/C e xx x e x e x e xx x
H2-reduced
30%Coe70%Fe/C x xx x x e x e x x xx
50%Coe50%Fe/C x x e e x e e e e x
80%Coe20%Fe/C e xx x e x x e e e x

(�) ¼ no phase identified.
(X) ¼ presence of one phase identified.
(XX) ¼ different phases identified, but with similar composition; for example, Fe with space group ¼ cFm3m (225).
Kamacite ¼ with space group cIm-3m (229) were the most prevalent metallic iron phases.
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distribution was plotted according to the number of carbon atoms
present in each hydrocarbon chain. Catalyst selectivity was further
aggregated in terms of gasoline fraction (C4-C12), diesel fraction
(C13-C20) and waxes (C21þ), but analytical limitations existed since
thewaxes, which are partly solid could not be fully accounted for by
our GC systems.

Apparently, the catalysts were quite selective towards diesel
production, which was our target fraction. In addition, the Co/C
catalyst seemed to generate hydrocarbons of higher molecular
mass including wax at the lower temperatures (~493 K), as seen in
Fig. 12(a). In principle, this is desirable because one can enrich the
diesel fraction by raising the FTS reaction temperature, which alters
selectivity towards the shorter-chain hydrocarbons by thermal
cracking or by increased chain termination mechanisms such as
faster molecule desorption. At 533 K, complete CO conversion by
the Co/C catalyst was witnessed, with disproportionate production
of CH4 (~46%) and CO2 (~20%), resulting in a dismal aggregate
selectivity of only 19% towards the diesel fraction, see Fig. 12(b). For
this reason bimetallic catalysts were formulated to operate in a
wider range of conditions without excessive production of CH4 or
CO2 at the upper end of the temperature range.

Representative selectivity using the 80%Coe20%Fe/C catalyst is
shown in Fig. 12(c) and (d) for 493 K and 533 K respectively.
Generally, for the bimetallic catalysts operating at comparable CO
conversions of approximately 45% (Figs 10 and 11), selectivity to-
wards the formation of gasoline and diesel was more than 80%
collectively, since the production of both CH4 and CO2 combined
was less than 15%, making bimetallic catalysts more attractive for
higher-temperature applications. In summary, the following ob-
servations were made:

(i) The cobalt-based (Co/C) catalyst was more active and more
selective towards the diesel fraction in comparison to the Fe-



Table 2
Summary of catalyst activity and selectivity as determined by GC analysis.

Catalyst Temperature (K) Activity Selectivity

% CO conversiona CO2 CH4 C2-C3 Gasoline C4-C12 Diesel C13-C20 Wax C21þ H2O (cm3)

493
100%Fe/C 12 3.0 2.0 0.5 25.6 50.9 18.1 e

30%Coe70%Fe/C 0 e e e e e e e

50%Coe50%Fe/C 0 e e e e e e e

80%Coe20%Fe/C 10 0.4 4.8 0.4 26.9 56.4 11.2 e

100%Co/C 42 0.3 4.9 0.4 49.5 30.8 12.0 55

533
100%Fe/C 60 10.2 5.1 1.3 19.4 55.2 8.7 30
30%Coe70%Fe/C 50 7.8 6.8 1.4 29.0 44.5 10.5 25
50%Coe50%Fe/C 40 8.4 9.6 1.4 48.9 24.6 7.5 30
80%Coe20%Fe/C 45 3.2 9.8 0.8 19.1 54.7 12.5 50
100%Co/C 100 19.8 45.6 2.3 8.6 18.7 5.1 40

a Conversion at time t ¼ 24 h.
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Fig. 12. (a) FTS product spectrum of Co/C catalyst at 493 K (220 �C) and (b) 533 K (260 �C); (c) similar selectivity plots for 80%Coe20%Fe/C at 493 K and (d) 533 K.
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based one, which was dependent on other factors such as
temperature and reduction conditions.

(ii) Only the Fe/C and 80%Coe20%Fe/C catalysts gave a 50þ %
selectivity towards the diesel fraction at both 493 K and
533 K.

(iii) At the higher temperature of 533 K, the Co/C catalyst pro-
duced more methane (~46%), but incorporation of Fe in the
catalyst significantly lowered the CH4 selectivity to less than
10% in all the cases.
(iv) At 533 K, all the bimetallics were less selective towards CO2
formation in comparison to their single-metal counterparts.

(v) All the catalysts displayed limited capacity to form C2eC3
products.

(vi) Catalysts with more than 50%Fe in composition produced
less water.
3.2.2. Catalyst pre-treatment in CO
It was observed that all the catalysts had comparable activity,
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with CO conversions of 40þ %, as presented graphically in Fig. 13.
Selectivity plots in Fig. 14 demonstrated that all the catalysts had a
greater capacity to produce the diesel fraction (C13-C20) than gas-
oline (C4-C12).

The Co-only catalyst generated the most water when compared
to the other Fe-containing catalysts. The Co/C catalyst produced
55 cm3 of H2O at 493 K (40% CO conversion) and 40 cm3 at 533 K
(95% CO conversion), while the Fe/C catalyst produced only 20 cm3

of H2O at 493 K (25% CO conversion) and 30 cm3 at 533 K (55% CO
conversion). This was a clear indication of the inability of the Co-
based catalyst to lower water formation, while the presence of Fe
in the bimetallics can be used to improve the catalysts’ capacity to
manage water production, as shown in Fig. 15.

In consideration of bimetallic catalysts only, a comparison of
their aggregated selectivity obtained at 533 K within a range of
40e50% CO conversion is summarised in Fig. 16. The FTS product
fractions for 30%Coe70%Fe/C, 50%Coe50%Fe/C and 80%Coe20%Fe/C
catalysts are shown in columns 1, 2 and 3 respectively, where the
upper row displays images of H2-reduced catalysts while the lower
row is for CO-reduced samples. From the plots, the following in-
ferences were established:

(i) All the catalysts gave a 50þ % selectivity towards the diesel
fraction except the H2-reduced 30%Coe70%Fe/C and 50%
Coe50%Fe/C catalysts, with respective selectivity of 45% and
25%.

(ii) Only the H2-reduced 50%Coe50%Fe/C catalyst was more se-
lective towards gasoline production (49%), while the other
catalysts followed a similar pattern of producing hydrocar-
bon fractions in decreasing order of diesel[ gasoline >wax.

(iii) CO-reduced catalysts produced more diesel than the H2-
reduced catalysts, increasing directly with the Co content in
the catalysts.
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4. Discussion

4.1. The evolution of an effective FTS catalyst

For catalysts pre-treated in H2 and tested at 493 K, Co/C was the
most active, and it also produced substantial amount of the heavier
FTS products such as waxes. Since higher temperatures favour the
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Fig. 13. Activity plots for Co-Fe/C bimetallic catalysts reduced in CO at 673 K for 24 h
and tested at 533 K for 24 h.

Fig. 15. Plots indicating the amount of water produced after 24 h of FTS by the
bimetallic catalysts pre-treated either in H2 or CO and tested at 533 K.
production of lower molecular fractions, the temperature was
raised to 533 K in order to enrich the diesel fraction from thewaxes,
but the Co/C catalyst generated more of the undesired products
such as methane (46%) and CO2 (20%). Upgrading to the use of
bimetallic formulations significantly lowered CH4 production
(<10%) and led to lower selectivity towards CO2 in comparison to
their single-metal counterparts at 533 K.

Besides, catalysts with more than 50%Fe in composition pro-
duced less water, probably due to the capacity of the Fe component
to perform the reversible WGS reaction. Ordinarily in the WGS
reaction given in Eq. (3), the presence of H2O induces production of
H2 by CO consumption, while the presence of CO2 produces CO by
the consumption of H2; and both scenarios enrich the syngas
composition, thereby improving the FTS reaction. With catalysts
pre-treated in CO, the quantity of H2O produced contracted
significantly in all bimetallic formulations, seemingly converging to
almost an equivalent amount (ca. 20 cm3) in 24 h.

Generally, it was observed that at equal CO conversions
(40e50%), the bimetallic catalysts were more selective towards the
production of the diesel fraction after CO-reduction than after
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reduction in H2, particularly the 50%Coe50%Fe/C formulation that
showed incomparable gasoline production. The plasma-generated
FeeCo/C bimetallic nano-alloys were designed in order to
improve on catalyst durability, and in choosing their CoeFe binary
compositions in reference to Okamoto’s phase diagram [13], it was
expected that 50%Coe50%Fe and 30%Coe70%Fe formulations
would contain identical intermetallic CoeFe phases, characteristi-
cally different from the 80%Coe20%Fe formulation. However, it was
observed that the 50%Coe50%Fe formulation had a higher average
particle size of 14.4 nm, while the other two formulations had a
mean particle size of 9 nm.

Evidence from porosity and surface area analysis, microscopy
(SEM and TEM) as well as XRD analysis attested to the suitability of
the materials as FTS catalysts. Attributes of a choice FTS catalyst
include a non-porous nature and preferably nanometric, with
highly dispersed metal nanoparticles entrenched in a graphitic
matrix. The inertness of the support inhibits undesirable side re-
actions. The concomitant existence of metallic Co species with Fe
carbides contribute to the catalyst’s activity, whereas the manifest
absence of metal oxides in the used samples is a noteworthy in-
dicator that these catalysts may not be susceptible to deactivation.

4.2. Potential industrial application

In this study, two reducing media were employed: H2 or CO gas
stream at 673 K for 24 h. Since metallic Co is the active phase in Co-
based FTS, carburising Co to carbides is perceived to be detrimental
to the process and the use of CO pre-treatment should be avoided.
Therefore, the use of hydrogen for the Co-based catalyst would be
more desirable, leading to a two-step reduction process:
Co3O4 / CoO / Co� [14]. However, deactivation of FTS catalysts
results from the converse reactions, oxidising the metallic species
back to its oxides [15].

On the other hand, the reduction of the Fe-based catalyst is
more complex. For example, in the commercial Fe-NanoCat® cata-
lyst that was used in benchmarking the new catalysts: the nano-
hematite (Fe2O3) is initially reduced to magnetite. Two possible
scenarios arise, where H2 is used to reduce themagnetite to iron (II)
oxide and then further to metallic Fe following the trend a-Fe2O3
/ Fe3O4 / FeO / a-Fe; or the magnetite is carburised by CO to
form Fe carbides as follows: a-Fe2O3 / Fe3O4 / FexC [16].

In our case, the Fe-NanoCat® was activated by carburisation
using a CO-reduction step. This information is illustrated in the
reaction scheme shown in Fig. 17, with the dotted arrows showing
that carburisation of FeO and metallic Fe is so rapid that the two
phases are basically not observed in the presence of CO. In addition,
it has been established that the carburisation ability of reduced Fe
species is in the order of a-Fe > FeO > Fe3O4 and the conversion of
FeO and a-Fe to Fe carbides provides active sites for FTS. This may
provide an answer as to why no Fe oxide was observed in our
samples by XRD analysis. In principle, it means that alternating the
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pressure in cycles between high pressure (during FTS) and ambient
pressure (during catalyst pre-treatment) can lead to catalyst
regeneration without catalyst removal from the reactor.

Since these FTS system is highly reducing comprising a feed-
stock of 60% H2 and 30% CO, thermodynamically, the final products
of the catalysts are expected to be Co3O4 in the Co-catalysed FTS
reaction and Fe2O3.H2O or Fe3O4 in the Fe-catalysed reaction.
Thermodynamic data was obtained using the FactSage™ software
(version 6.4) and the summary plots are provided in the supporting
information as Figs. S1 and S2.

Under the given FTS reaction conditions, catalyst trans-
formations are most likely to be irreversible in the long term.
Nevertheless, in this work we have shown that plasma-synthesised
catalysts only have Fe carbides that are active for FTS. This is due to
(a) the lack of oxygen during catalyst synthesis and (b) the fact that
the plasma process operates far from equilibrium. Should the ox-
ides be formed during FTS, the systems may be regenerated back to
the metallic Co or the active FexC species at ambient pressure
without sintering, making the FTS attractive for future production
of synthetic fuels. A major expectation is the use of biomass-
derived syngas in its application, and we recommend the use of
plasma-synthesised catalysts for improving the process efficiency.

5. Conclusion

A comparative study was conducted using carbon-supported Co
and Fe catalysts synthesised through plasma. The materials were
tested for FTS in a 3-f-SCSTR operated isothermally at 493 or 533 K,
2 MPa pressure, and GHSV of 1.0 cm3s�1g�1 of catalyst. The Co/C
catalyst was relatively the most active, showing greater propensity
to produce a full spectrum of products, including waxes. At 533 K
where it had total CO conversion, high selectivity towards pro-
duction of CO2 (~20%) and CH4 (~46%) also advanced. However,
both partial and total substitution of Co with Fe in the catalyst
significantly lowered the CH4 selectivity to less than 10% in all the
cases. Catalysts with more than 50% Fe in composition produced
less H2O.

It was observed that all the catalysts displayed limited capacity
to form C2eC3 products, but the Fe/C and 80%Coe20%Fe/C catalysts
gave 50þ % selectivity towards the diesel fraction at both 493 K and
533 K. However, only the 50%Coe50%Fe/C catalyst was more se-
lective (49%) towards gasoline fraction at 533 K. All bimetallics
were less selective towards CO2 formation in comparison to their
single-metal counterparts at 533 K. Pre-treatment of the bi-
metallics in CO was observed to create carbon nanofilaments,
which led to decreased water production by more than half when
compared to the Co-rich catalysts reduced H2.
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9.6. Appendix F: Conference paper – Bimetallic catalysts tested in CSTR 
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9.7. Appendix G: Residuals from the XRD analysis by RQA 
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9.8. Appendix H: Article 6 – Promotional effect of Mo and Ni 
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1. INTRODUCTION 

 

Carbon is an attractive support for the production of Fischer-Tropsch catalysts. A number of 

authors have observed higher activity in carbon-supported catalysts than in those 

supported on metal oxides [1], and some of the authors attribute this behaviour to the lower 

interaction between carbon and the active metal phase [2]. When compared to its 

analogous unsupported Co-based catalyst [3], the carbon-supported catalyst demonstrated 

increased activity and selectivity towards C5+ hydrocarbons with concurrent decrease in the 

selectivity towards CH4 and CO2 production, and it attained steady state performance far 

more rapidly than the unsupported catalyst. In addition, carbon exists in a variety of forms 

and morphologies that have been applied in Fischer-Tropsch  synthesis (FTS), displaying 

enormous capacity for modification to produce diverse porous microstructures [4], which 

include among others, charcoal [5], activated carbon [6], carbon nanotubes [7], graphitic 

nano-fibres [8], carbon nanofilaments [9], carbon spheres with mean size 600 nm [10], 

graphene nano-sheets [11], reduced graphene oxide [12], carbon nanotube carpets [13], 

carbon black, glassy carbon, ordered mesoporous carbon, and diamond [1]. 

 

The most critical factors normally used to evaluate the viability of potential catalysts for 

application in industry are catalyst activity, selectivity and durability [14]. Product selectivity 

towards gasoline and diesel fractions is the hallmark of an effective FTS catalyst, which can 

be exploited commercially by converting syngas, a mixture of H2 and CO to synthetic fuels. 

Equally, and of great interest is the selectivity for wax production [15], since the heavier 

molecular-weight hydrocarbons can be isomerized [16], used in personal care lotions and 

creams [17], or thermally cracked to enrich the gasoline and diesel fuel fractions [18]. 

Ordinarily, the Co catalyst has higher activity for CO-hydrogenation than the Fe catalyst, 

but the Fe catalyst is relatively more versatile, and may be manipulated depending on the 

reaction conditions and promoter effects to produce more branched hydrocarbons, alkenes 

and oxygenates [14].  

 

One of the approaches employed in improving FTS catalyst selectivity is by the promotional 

effect of adding other elements in Co- or Fe-based catalysts. For Fe-based catalysts, there 

exists a wide window in which one could vary its selectivity properties, while selectivity-
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linked promoters in the Co catalyst have been limited to date, because of the unfavourable 

effect the promoters have on catalytic activity [19]. Furthermore, since H2O greatly impacts 

on the selectivity of CO to CH4 in Co catalysts, promoter choice and process conditions are 

critical in lowering CH4 production [20]. Beyond the classic single-metal (Co and Fe) 

catalysts, the Co-Fe bimetallics [21], in addition to many others including Co-Mn [22], Co-Ni 

[23], Fe-Cu [24], Fe-Mn [25], and Fe-Ni [26] have been examined in order to improve the 

performance of the Co-only or Fe-only catalysts.  

 

Moreover, the influence of many elements on catalyst selectivity have been studied, and 

among them are Ba, Be, Ca, and Mg [27], Cu, Re, Ru and Zn [28], Mn [29], and Pt [30]. For 

example, it has been observed that K-promoted catalysts enhance olefin selectivity while 

restraining CH4 and light-hydrocarbons formation [31], and high activity and selectivity 

towards the aromatic products in FTS has been attributed to the strong acidity and the 

unique shape or porosity found in the HZSM-5 zeolite [32]. Nevertheless, not all elements 

produce a positive promotional effect as was the case in using La, Mg or Ca to raise the 

basicity of the Fe-catalyst surface, which increased the activation energy to 70, 78 and 92 

kJ.mol-1 respectively, thus worsening the FTS reaction rate [33]. 

 

However, many multi-metallic systems create synergistic effects that produce highly active, 

selective and stable catalysts due to changes in both their electronic and geometric 

structures, with the catalytic performance being determined by the atomic composition of 

the crystallite surface and not merely by the overall bulk composition [34]. Some of the 

ternary systems that have been considered include the addition of Ni [35], or Mn [36] to the 

Fe-Co bimetallic system. On one hand, the addition of Mo to Fe catalyst remarkably 

improves selectivity towards the diesel range hydrocarbons (C12+) and suppresses 

production of the C2 – C8 hydrocarbons [37]. On the other hand,, the acid-enhancing effect 

of Mo has a negative influence on its FTS activity, an impact that is also experienced by 

increasing the basicity of a catalyst surface by adding Ca, Mg or La, which lowers the 

reaction rate [33]. This implies that extreme surface acidity or basicity on FTS catalysts may 

not be beneficial to the reaction and the optimal conditions must be determined on a case-

by-case study as they are a function of the catalyst’s specificity. 
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In some Co-based catalysts, Ni promotion has been noted to produce stability with time-on-

stream (TOS) [38]. Presence of Ni in Fe catalysts has been shown to improve Fe-oxide 

particle dispersion, shrinking the crystallite size, while increasing the rate of Fe-oxide 

reduction in H2 and boosting the rate of Fe-oxide carburization by CO, but it subdues Fe-

carbide formation by syngas reduction [39]. Besides, high Ni-content catalysts suppress 

selectivity towards heavier hydrocarbons (C5+) and result in greater CH4 selectivity. 

 

Since various studies show that the active species in Fe-catalyzed FTS are in the form of 

Fe-carbides [40], the earliest work by this research group using the induction suspension 

plasma-spray (SPS) technology showed production of such species at temperatures above 

1 000 K, and the catalysts were found to be highly active for FTS [41]. Comparing single-

metal Co/C and Fe/C catalysts in subsequent studies, it was advanced that since catalyst 

synthesis by the plasma method involves only a single step with 8 parameters to control, it 

simplifies the catalyst synthesis significantly when compared to the other traditional 

synthesis techniques such as impregnation or precipitation that require 6 stages, with 

overall control of about 40 different parameters [42]. Samples prepared by impregnation or 

precipitation contained residual metal oxides and indicated early metal nanoparticle 

agglomeration after 24 h of FTS reaction. Both phenomena (presence of oxidic species and 

sintering) contribute to catalyst deactivation considerably.  

 

In contrast, the plasma-synthesized samples were devoid of metal oxides and did not 

exhibit signs of sintering under comparable reaction conditions [43]. Preliminary studies of 

the Co-Fe/C bimetallics indicated that catalysts produced through plasma displayed 

identical physical characteristics [44], and the samples did not need elaborate activation 

procedures; unlike other FTS catalysts that demand optimization and further development 

of activation methods [23]. Other authors have observed various benefits in using plasma 

technology because of the shortened preparation time, uniformity in the quality of materials 

produced, creation of smaller metal particles in the nanometric range as the active species 

with superior in catalytic performance [45], and enhanced catalyst lifetime, with the plasma 

method presenting potential for lowering overall process energy requirements [46].  

 

In this investigation, the influence of Mo and Ni addition on the performance of carbon-

supported Co-Fe bimetallic catalyst synthesized using induction SPS technology was 
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evaluated. Since Ni has been shown to increase Co-based catalyst stability and yet there 

are no studies on combining bimetallic (Co-Fe)-based catalyst with Ni, we decided to 

conduct this study using our SPS technology to produce the formulations. The main 

obstacle towards commercial application of Ni-based FTS catalysts lies in its excessive 

production of CH4 as well as its tendency to form volatile carbonyls that lead to catalyst 

deactivation and loss of the active phase [47]. Regarding the use of Mo though its acidity 

might be detrimental to the FTS activity, its proven ability to result in higher selectivity for 

longer-chain hydrocarbons [48], with Mo-carbides being the active phase [49], is the main 

reason of studying its addition to our bimetallic (Co-Fe/C) catalytic formulation. 

 

Although some researchers have tested ternary metallic systems such as the Ni-Co-Fe for 

FTS, their samples were not supported on carbon and neither were they produced through 

SPS technology [35]. The encompassing objective of this work was to design and evaluate 

the properties of potential carbon-supported FTS catalysts among a family of plasma-

synthesized materials, which demonstrate selective production of synthetic fuels richer in 

diesel fraction (C13 – C20). Therefore, 10% of either Mo or Ni was introduced into the Co-

Fe/C sample, and two hypotheses were examined using the proposed catalysts, thus: 

(i) Presence of Ni: Since it has been reported that Ni could replace Re as a 

reduction and activity promoter in the Co-based FTS catalyst [38], we postulated 

that Ni addition to the Co-Fe/C bimetallic catalysts could – (a) give higher stability 

to the catalyst, and (b) boost the production of shorter hydrocarbon-chain 

molecules because Ni promotes early molecular desorption by lowering its 

activation energy [47];  

(ii) Presence of Mo: It was advanced that catalyst synthesis of Mo-Co-Fe/C through 

SPS technology would create Mo-carbides, which are selective for olefin 

production [49], and that increased surface acidity by Mo-addition to the Co-Fe/C 

bimetallic would augment the electron-withdrawing character in the catalyst 

sample and intensify FTS-product selectivity, especially towards the diesel 

fraction production [50]. 

 

This study focuses for the first time on the catalytic performance of the ternary metallic 

catalysts of 10%Mo-70%Co-20%Fe/C and 10%Ni-70%Co-20%Fe/C, synthesized through 

SPS technology. In the text, their formulations are abbreviated as Mo-Co-Fe/C and Ni-Co-

Fe/C respectively. These catalysts were benchmarked against other plasma-synthesized 
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Co/C, Fe/C and Co-Fe/C catalysts, with the results showing potential for future application 

in FTS industry. Results on catalyst comparisons in earlier considerations are available on 

single-metal Co/C and Fe/C catalysts [42], the bimetallic Co-Fe/C materials [51], and a 

comprehensive treatment of  the rationale administered towards catalyst choice, the theory 

behind catalyst formulation, the catalyst synthesis procedure and production, as well as the 

materials’ characterization aspects being sufficiently expounded [52]. In this paper, we limit 

the discussion to our primary findings on catalyst activity and selectivity when Mo or Ni was 

incorporated in the carbon-supported Co-Fe bimetallic catalyst through the plasma-spray 

method. Nevertheless, we have provided a succinct, but sufficient coverage of catalyst 

characterization to support the results presented in this article. 

 

2. EXPERIMENTAL METHODS 

2.1 Catalyst Synthesis 

The single metal Co/C and Fe/C catalysts [42], in addition to the bimetallic Co-Fe/C 

catalysts [51], were prepared by the induction suspension plasma-spray (SPS) process, 

which uses high temperatures to atomize and ionize the solid/liquid sample flowing in a 

stream of hot gas at particle velocities below 100 m.s−1 [53]. A mass of 60 g of the metals in 

various proportions were mixed in 300 cm3 mineral oil and the suspension injected into the 

plasma at a flow rate of 8.2 cm3.min-1. This produced carbon-supported catalysts with metal 

nanoparticle moieties appearing to be encapsulated in the carbon matrix. Details of this 

technique have already been prescribed in earlier works and the overall catalyst 

composition (expressed at ~25-wt% metal loading) is based on “mass” of the metal relative 

to that of the carbon support in the catalyst formulations. The carbon-supported Ni-Co-Fe 

and Mo-Co-Fe catalysts were synthesized similarly through the plasma process [52].  

 

2.2 Catalyst Testing 

A fresh catalyst (5.0 g each) was first reduced in situ at 400oC for 24 h in the FTS reactor 

using pure H2 gas (N5.0) flowing at 250 cm3.min-1. The intention of the reduction procedure 

was to gasify a part of the carbon matrix surrounding the metal so as to amplify contact 

between the metal and the reactants during FTS. The reactor was then cooled, followed by 

introduction of 150 cm3 of hexadecane solvent (C16) to create a three-phase continuously 

stirred-tank slurry reactor (3-φ-CSTSR). 
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The pre-treated catalyst was then tested for FTS activity at 260C and 2 MPa pressure for 

24 h on stream. An artificial syngas mixture was used, with composition set at 0.6 L/L (60-

vol%) H2 and 0.3 L/L (30-vol%) CO, balanced in Ar. The gas flow rate streaming in from the 

bottom of the reactor was 300 cm3.min-1, which translated into a gas hourly specific velocity 

(GHSV) of 3 600 cm3.g-1.h-1 of catalyst, with the gas volume being considered at the 

reaction conditions. The FTS product spectrum was analyzed by gas chromatography (GC) 

at standard conditions according to the protocol reported in earlier works for the single 

metal Co/C and Fe/C catalysts [43] and the Co-Fe/C bimetallic catalysts [51].  

 

Since the typical FTS product spectrum of a catalyst is predicted by the Anderson-Schulz-

Flory (ASF) distribution [54], the probability for the hydrocarbon-chain growth was 

determined by α-values derived from the expressions given below [34], thus: 

 

= ( − ) . ( )     Eqn. (1) 

 

= +
( )

      Eqn. (2) 

 

=  =  
( )

       Eqn. (3) 

 

where: Mn = mole fraction of a hydrocarbon with chain length n 

 n = number of total carbon atoms 

 α = probability of chain growth (α  1) 

 (1 - α) = probability of chain termination  

rp = the rate of chain propagation 

 rt = the rate of chain termination  
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The α-values are obtained by the least-squares linear regression of Equation (1) in the 

logarithmic form expressed as Equation (2), where log(Mn/n) is plotted against n, the 

hydrocarbon-chain length as indicated by Bartholomew and Farrauto (p.403) [55].  

 

2.3 Catalyst Characterization 

The catalysts were characterized by various analytical techniques comprising (a) Brunauer-

Emmett-Teller (BET) method for porosity and specific surface area determination; (b) 

morphological and particle size analysis using both Scanning and Transmission Electron 

Microscopy (SEM and TEM) coupled with Energy Dispersive X-ray Spectroscopy (EDX); (c) 

crystalline phases nature and composition analysis by X-ray diffraction (XRD) and Rietveld 

Quantitative Analysis (RQA); as well as (d) X-ray photoelectron spectroscopy (XPS). The 

characterization test conditions and analyses results are available in an earlier article for 

BET, SEM, TEM and XRD [52], and for XPS [42]. In this paper, only the results that support 

the current discussion are presented. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Catalyst Synthesis 

Catalyst synthesis using SPS technology has been found to create nanometric materials 

with remarkably uniform characteristics. In this study, it was observed that even after 

introduction of 10% Mo or Ni in the Co-Fe bimetallics, the physical properties of the 

catalysts by and large remained identical [52]. The high reproducibility of catalyst properties 

imply that plasma application in catalyst synthesis presents stately potential for the large-

scale catalyst production. 

 

3.2 Catalyst Testing 

3.2.1 Catalyst activity 

In this work, we tested two ternary formulations of Mo-Co-Fe/C and Ni-Co-Fe/C catalysts at 

260oC and 2 MPa pressure, and referenced their catalytic performance with a sample 

bimetallic catalyst (80%Co-20%Fe/C, in here referred to as Co-Fe/C). Figure 1 presents 
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catalyst activity plots by % CO conversion. In comparison to the Co-Fe/C bimetallic catalyst 

with ~42% CO conversion at time = 24 h, the Mo-containing catalyst was slightly less active 

(38%) probably due to a prolonged induction period, while the Ni-containing catalyst was 

more active showing increasing CO conversion toward 50%.  

 

 

Figure 1: Activity plots for the Co-Fe/C, Mo-Co-Fe/C, and Ni-Co-Fe/C catalysts 

 

3.2.2 Catalyst selectivity 

Figure 2 provides summary plots of the corresponding catalyst selectivity for the materials 

presented in Figure 1. On the x-axis, zero represents CO2 and one represents CH4, while 

all other integer numbers represent the number of C atoms in the hydrocarbon molecules. 

Since no C3’s and C4’s were detected by our GC columns in addition to very little of C2H6 

and C2H4 being observed (amounting to less than 0.5% when combined), it was therefore 

prudent to round off the numbers to the nearest whole numbers for ease of reading the 

manuscript. For example, in the Mo-based catalyst the reactor-exit concentration of ethane 

was about 0.4% while that of ethene was 0.08%. Figure 3 indicates the combined fractions 

in terms of gasoline (C5 – C12), diesel (C13 – C20), and waxes (C21+). It should be noted that 

the normal diesel fraction contains a mixture of hydrocarbons in the range of C8 – C21 tailing 

off at both ends, but in this study, the definition of the diesel fraction was taken strictly as 
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between C13 – C20 to simplify catalyst performance evaluation and for easy mass balance, 

where overlaps of hydrocarbon fractions for gasoline and diesel were avoided. 

 

The product spectrum shows that the bimetallic Co-Fe/C was comparatively more selective 

towards production of the longer-chain hydrocarbon components such as diesel (55%) and 

waxes (13%) than the promoted catalysts where there was a perceived enhancement of 

catalyst selectivity towards gasoline fraction after Mo, or Ni addition (19%→33%→50% 

respectively). However, the Ni-Co-Fe/C catalyst produced substantial quantities of CO2 and 

CH4 totalling to 22%, which lowered selectivity for the diesel fraction from ~55% to 22%. On 

the contrary, Mo addition to the Co-Fe/C catalyst depressed the production of CO2 and CH4 

to a combined value of less than 10% in total. A more detailed analysis follows below. 

 

 

Figure 2: Catalyst selectivity as portrayed by hydrocarbon distribution plots for the Co-Fe/C, 
Mo-Co-Fe/C, and Ni-Co-Fe/C catalysts 
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Figure 3: Plots of aggregated FTS fraction distribution after 24 h of reaction for the Co-Fe/C, 
Mo-Co-Fe/C, and Ni-Co-Fe/C catalysts 

 

3.2.3 Hydrogen efficiency 

The amount of H2O produced in the experiments was utilised in hydrogen mass balance to 

determine a rough estimate of the H2 efficiency for each catalyst. Equations (4) and (5) 

show that for every H2O molecule released, there is production of either one -CH2- group 

that is formed in the hydrocarbon chain, or one CH4 molecule with each reaction taking up 2 

or 3 molecules of H2 respectively. In addition to these reactions, there are other various 

chemical reactions that impact differently on H2 in FTS. For example, there is a variation in 

the amounts of H2 used up towards the selectivity of alkanes, alkenes, alcohols, and 

aldehydes in addition to water gas shift (WGS) reaction, which consumes H2O and 

generates H2 in FTS shown in Equation (6).  

 

 +      →   − −  +      Eqn. (4) 

 

 +      →    +       Eqn. (5) 

 

 +      →    +        Eqn. (6) 
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Since FTS chemistry is highly convoluted and our analytical equipment has a limitation of 

being unable to discriminate between the various hydrocarbon groups, we assumed that 

the principal product of this analysis was the alkene, (CnH2n) and H2O, which is measurable. 

The purpose of this estimation was to apply a simple method to articulate the catalytic 

behaviour of each catalyst with respect to H2 consumption, without going into complex 

details. On the basis of this assumption, while ignoring the consequences of WGS reaction, 

the amount of H2O formed was split in the same proportions as they appear in the 

selectivity data between CH4 on one hand and overall FTS products (C5+) on the other.  

 

Therefore, Figure 4 exemplifies how the calculation was performed using the Co-Fe/C 

catalyst data, while Table 1 provides a summary of the results for all the three catalysts. 

The total amount of H2 gas that was delivered in the 24-h experiment was equivalent to 

10.8 moles = (300 cm3.min-1) x (60% H2) x (60 min.) x (24 h)/(24,000 cm3 at RTP).  

 

 

Figure 4: Sample calculation for H2 efficiency determination after 24 h of reaction 
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Table 1: Determination of the H2 efficiency per catalyst 

Catalyst 
 

H2O produced Selectivity (%) H2 efficiency (%) 
(cm3) moles C5+ CH4 C5+ CH4 [C5+]:CH4 

Co-Fe/C  50 2.78 87 10 46.1 8.0   5.7 
Mo-Co-Fe/C 35 1.94 91   6 33.3 3.3 10.0 
Ni-Co-Fe/C 40 2.22 78 14 34.9 9.4   3.7 

 

From these results, it was observed that the ratio of H2 consumed between C5+ and CH4 

production decreased in the order of Mo-Co-Fe/C >> Co-Fe/C > Ni-Co-Fe/C. This implies 

that for every CH4 molecule produced, there were ten -[CH2]- monomers added to the 

hydrocarbon-growth chain in the Mo-Co-Fe/C formulation, making it the most hydrogen-

efficient catalyst, while the least efficient catalyst was in the Ni-Co-Fe/C formulation.  

 

3.2.4 Benchmarking: Rationale for catalyst selection 

These catalysts were benchmarked under similar FTS reaction conditions (260oC; 2 MPa 

pressure; and GHSV = 3 600 cm3.h-1.g-1 of catalyst) against the original plasma-synthesized 

Co/C and Fe/C single-metal catalysts [43], and further evaluated against the previously 

considered Co-Fe/C bimetallics [51]. In this discussion, the 80%Co-20%Fe/C catalyst acts 

as the bimetallic representative, since it had comparable average nanoparticle size of the 

metal (within the 9–11 nm range), besides having almost equal metal proportions with the 

other materials under examination: Co (~70%) and Fe (~20%).  

 

Selectivity towards the diesel fraction was our target, with the preliminary tests performed at 

220oC using the single metal Co/C and Fe/C catalysts, and their respective CO conversions 

were 45 and 25% [43]. Kinetically, increasing temperature should enhance the reaction, in 

addition to promoting the formation of lower-molecular weight hydrocarbons. Therefore, at 

260oC, the Co/C catalyst was expected to produce more gasoline fraction at a faster rate. 

Indeed, it displayed improved activity to complete CO conversion, but with very poor 

selectivity (27%) towards the fuels (Sfuels = C5 – C20). In this section of the discussion, Sfuels 

is designated as the combined selectivity of gasoline and diesel fractions only.  
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Figure 5 provides a summary spatial chart offering information on the evolution of the FTS 

catalyst in this study: from the single-metal formulations (step 1) to the bimetallic systems 

(step 2), through to the ternary-metal formulations (steps 3 and 4) and the rationale of 

scrutinizing the materials for their performance at 260oC is provided. Since selectivity 

towards diesel fraction (C13 – C20) was our targeted product overall, raising the temperature 

to 260oC for Co/C produced dismal performance, with a paltry 19%. The Fe/C catalyst on 

the other hand showed lower catalyst activity of 60% CO conversion, but with better overall 

selectivity towards the FTS fuels (Sfuels = 74%) at 260oC (step 1). It was more selective 

towards the diesel fraction (55%) than the Co/C (19%), forming less CO2 (10%) than the 

Co/C catalyst (20%), and it generated significantly lower amounts of CH4 (5%) compared to 

46% in Co/C [43].  

 

 

Figure 5: A chart summarizing the process of assessing catalyst performance at 260oC for 
Co/C, Fe/C, Co-Fe/C, Mo-Co-Fe/C, and Ni-Co-Fe/C, indicating catalyst activity as Xconv. 

=  CO conversion (%); selectivity, Sfuel (%) = gasoline (C5–C12) + diesel (C13–C20); 
selectivity for diesel = Sdiesel (%); and water (H2O)  
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These findings then necessitated the development of the Co-Fe/C bimetallics in order to 

further improve on the catalyst selectivity towards production of the diesel fraction (step 2). 

A family of three bimetallics (30%Co-70%Fe/C, 50%Co-50%Fe/C and 80%Co-20%Fe/C) 

were synthesized and when tested were found to be rather inactive at 220oC except for the 

80%Co-20%Fe/C catalyst, which gave a 10% CO conversion only. FTS operation at higher 

temperature (260oC) manifested almost equivalent catalytic activity in all the three 

bimetallics, with overall CO conversion occurring in the range of 40 – 50% [51]. Being 

represented in the chart of Figure 5 by the 80%Co-20%Fe/C catalyst, the application of 

bimetallics did not seem to make a big difference when compared to the Fe/C catalyst 

operated at 260oC, since the selectivity towards the diesel and gasoline fractions (Sfuels) 

seemed to remain unchanged (55%), prompting us to explore the ternary systems. 

Nevertheless, it has been shown that larger metal nanoparticles are more selective towards 

the formation of light-weight hydrocarbons [56], and since the mean particle size of the 

50%Co-50%Fe/C sample was larger (14.4 nm), it led to a higher selectivity towards the 

gasoline fraction [51]. 

 

It was observed that under similar FTS reaction conditions, the addition of 10%Ni to the Co-

Fe/C bimetallic led to a 10% increase in CO conversion from 40 to 50% (step 3). Whereas 

the Co-Fe/C bimetallic catalyst gave Sfuels = 74% (with 3% CO2, 10% CH4 and 50 cm3 H2O), 

the Sfuels = 72% for Ni-Co-Fe/C catalyst with only 22% apportioned towards the diesel 

fraction. The presence of Ni prompted excessive production of CO2 (8%) and CH4 (14%), 

but with less H2O generation (40 cm3).  

 

The Mo-Co-Fe/C catalyst on the other hand presented a slightly lower catalytic activity 

(~38% CO conversions) in comparison to Co-Fe/C (~42%) at 260oC, and, as seen in Figure 

1, it had a sluggish start (step 4). It is hypothesized that the catalyst experienced a 

protracted induction period, possibly with considerable surface reconstruction. In parallel, it 

was observed that, relative to the Co-Fe/C catalyst, the presence of Mo improved the 

overall selectivity towards the fuels (Sfuels = 86% up from 73%). However, diesel fraction 

selectivity remained constant (55%), implying that probably the enhanced surface acidity 

enriched the gasoline fraction more, in addition to suppressing production of CO2 (2%) and 

CH4 (6%). In comparison to the Fe/C catalyst, the Mo-Co-Fe/C catalyst had better 
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selectivity towards fuel production, (Sfuels = 86% : 74%), although it was less active (38% : 

60%). 

 

3.2.4 Determination of the catalysts’ α-values 

The α-values of both the Mo-Co-Fe/C and Ni-Co-Fe/C catalysts were found to be 0.78 at 

high C-numbers (C10+), although the Co-Fe/C bimetallic had a higher value of 0.81, see 

Figure 6. This means that the addition of Mo or Ni to the Co-Fe/C catalyst apparently had 

the similar impact of lowering the α-value to 0.78 and leading to the production of the 

shorter-chain hydrocarbons. 

 

 

Figure 6: Plots for determining catalysts’ α-values using log(Mn/n) versus n 

 

3.3 Catalyst Characterization 

3.3.1 BET surface area analysis 

Porosity analysis by the BET method showed that the catalysts had characteristics that 
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porosity as exemplified by the absence of hysteresis in their overlaid adsorption-desorption 
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the range between 67 – 93 m2.g-1. Moreover, they exhibited higher surface areas than the 

single metal Co/C and Fe/C catalysts, typically producing a crescent-looking plot as shown 

in Figure 8. These results were comparable to other conventional nanometric metal-oxide 

supported FTS catalysts, with an example of the Co/MnO2 catalyst that was found to have 

BET specific surface areas of 74 m2.g-1 [57].   

 

 

Figure 7: Overlaid adsorption-desorption isotherms derived from N2 physisorption indicating 
similarities in the 80%Co-20%Fe/C, 10%Mo-70%Co-20%Fe/C and 10%Ni-70%Co-

20%Fe/C samples collected from the main plasma reactor 
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Figure 8: Plots of BET specific surface area against increasing Co-metal concentration in the 
samples for the single metal Co/C and Fe/C samples; bimetallic 30%Co-70%Fe/C, 

50%Co-50%Fe/C, 80%Co-20%Fe/C catalysts; and the ternary 10%Mo-70%Co-20%Fe/C, 
and 10%Ni-70%Co-20%Fe/C systems. 

 

 

From the plasma reactor set-up discussed in an earlier article [52], the catalyst samples 

were collected from both the main reactor (where the metal-oil suspension is injected into 

the plasma plume), and the adjacent auxiliary reactor (into which some of the nanoparticles 
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Since SEM analysis data for the Ni-Co-Fe/C was provided in the synthesis and 

characterization article [52], in this work we present data on the Mo-Co-Fe/C catalyst. The 

striking dispersion and uniform distribution of the metal nanoparticles in the samples was 

evident from the backscattered SEM imaging and EDX mapping shown in Figure 9. The 

light areas in Figure 9(a) represent the presence of the heavier elements (the metals), while 

the dark areas represent the lighter element, which is the carbon support. Elemental 

distribution captured by X-ray mapping in Figure 9(b) confirmed the uniform metal 

dispersion in the carbon matrix. Elemental line scan analysis on the secondary image 

provided in Figure 10 demonstrated that the metal concentration of the 10%Mo-70%Co-

20%Fe/C catalyst in the support matrix existed in the expected proportions of Mo:Fe:Co ≈ 

1:2:7 (resulting from the arbitrary scale of ≈ 7:15:50 units), with the EDX spectrum 

confirming presence of all the three elements.  
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Figure 9: (a) A backscattered SEM image of the fresh 10%Mo-70%Co-20%Fe/C catalyst, and 
(b) image of elemental X-ray mapping. 
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Figure 10: SEM analysis for the fresh 10%Mo-70%Co-20%Fe/C catalyst showing (a) a sample 
secondary image with (b) line scan analysis, and (c) the EDX spectrum. 

 

3.3.3 TEM analysis 

TEM analysis revealed a catalyst support consisting of a blend between amorphous carbon 

and graphitic-carbon sheets that were saturated with metal nanoparticle moieties, uniformly 

distributed and displaying widespread dispersion in the carbon matrix. Earlier studies 

indicated the average metal nanoparticle size in the freshly-synthesized samples were in 

close range with Co/C having a mean particle size of 11.0 nm, that of Fe/C was 11.3 nm 

[43], while both the 80%Co-20%Fe/C and 30%Co-70%Fe/C bimetallics had a mean size of 

8.9 and 9.1 nm respectively, except for the 50%Co-50%Fe/C bimetallic, which had a mean 

of 14.4 nm [51]. In this work, 450 nanoparticles were measured and the mean particle size 

for the fresh Mo-Co-Fe/C and Ni-Co-Fe/C catalysts was found to be 8.4 nm and 13.3 nm 

respectively as depicted in Figure 11. The representative bimetallic catalyst is the 80%Co-

20%Fe/C with mean 8.9 nm.  
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Figure 11: TEM analysis indicating metal nanoparticle-size distribution for the fresh 
catalysts: Mo-Co-Fe/C (8.4 nm); and Ni-Co-Fe/C (13.3 nm) 

 

There was no apparent particle agglomeration observed, even after high-temperature 

exposure during pre-treatment at 400oC for 24 h, followed by FTS reaction at 260oC for 

another 24 h. Sample TEM images shown in Figure 12 indicated that in the used plasma-

synthesized samples, there was no conceivable sintering or metal segregation away from 

the support particularly when compared to the magnitude of metal agglomeration 

experienced with the commercial Fe-NanoCat® tested under similar reaction conditions as 

already discussed in an earlier article [43].  
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Figure 12: Sample TEM images showing a lack of sintering for plasma-synthesized (a) fresh 
Mo-Co-Fe/C, (b) used Mo-Co-Fe/C, (c) fresh Ni-Co-Fe/C, and (d) used Ni-Co-Fe/C 
catalysts compared to (e) the commercial Fe-based catalyst after FTS reaction 
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3.3.4 XRD analysis 

Powder XRD analysis of the Ni-Co-Fe/C was not successful due to major peak overlaps 

with the cobalt’s overarching face-centred cubic (FCC) crystal structure as well as the 

metallic (Fe0) XRD pattern. Besides, the presence of Ni did not seem to make any 

difference to the XRD pattern of its sample as seen in Figure 13, probably because either 

Ni was below the instrument’s detection limits or, the nanometric nature of the crystallites 

was the overriding factor, since it leads to peak broadening and ultimately peak extinction. 

Decreasing the scanning step size of the XRD instrument from 0.040° [2θ] angle to 0.020° 

did not show any improvement for Ni detection in the XRD spectrum.  

 

 

Figure 13: XRD patterns for the fresh Ni-Co-Fe/C catalyst compared to Fe and Co metals as 
well as the Co-Fe/C bimetallic obtained from the main reactor  
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the samples such as those rich in Fe-carbides (Fe2C, Fe3C, Fe5C2) being evident at 

approximately 45o [2θ] angle. In addition to the CoFe intermetallic with noticeable peaks at 

44o, 52o and 75o [2θ] angle, the Co3Fe7 and Co7Fe3 nano-alloys were possibly present. The 

FCC phase of metallic Coo was more apparent than the HCP (hexagonal close packing) 

phase in both the fresh and used samples. 

 

 

Figure 14: XRD patterns for the fresh Mo-Co-Fe/C catalysts showing similarity in those 
obtained from the main reactor (MR) and the auxiliary reactor (AR) with some 

differences in the spent catalyst (MR) arising from the reduction effect 

 

Ostensibly, the Mo-based samples contained both forms of MoC and Mo2C before and after 

use in FTS reaction. Greater prevalence of metallic forms was manifested in the used 

samples than in the fresh samples, with the Moo and Feo displaying characteristic peaks at 

41o and 45o [2θ] angles respectively, as seen in Figure 15. There was no substantial 

evidence for the presence of metal-oxides (i.e. for Co, Fe or Mo), even after exposure to the 

2 0 4 0 6 0 8 0

 S p e n t _ m a i n  r e a c t o r
 F r e s h _ f i l t e r s
 F r e s h _ m a i n  r e a c t o r

[ 2  ]  a n g l e

CoFe alloy

Co3Fe7; Co7Fe3

Co metal: HCP

Co metal: FCC

Fe metal

MoC

Spent_MR

Fresh_AR

Fresh_MR

[2θ] angleFe3C, Fe5C2

MoxC

80604020



27 

 

CO and H2O during FTS reaction. However, their presence is still conceivable, albeit in 

minute quantities beyond the instrument’s detection limits, since they are 

thermodynamically more stable than the metallic species. 

 

 

Figure 15: Comparison of XRD patterns of the fresh and used Mo-Co-Fe/C catalysts revealing 
more metallic Fe and Mo in the used materials as a result of catalyst reduction 
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using the SEM imaging technique [52]. Table 2 indicates a summary of the calculated 
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Figure 16: Evidence of Ni in the fresh plasma-synthesized Ni-Co-Fe/C catalyst by XPS 

 

Table 2: XPS analysis data for plasma-synthesized Ni-Co-Fe/C catalyst 

Element  
 

Main reactor Auxiliary reactor 
Peak 

position (eV) 
FWHM* % atomic 

concentration 
Peak 

position (eV) 
FWHM % atomic 

concentration 
C (1s) 284.5 2.76 93.14 284.5 2.72 93.21 
O (1s) 532.5 3.77 2.58 532.5 4.21 1.87 
Co (2p) 778.5 3.66 2.02 778.5 3.74 2.31 
Fe (2p) 713.5 9.87 1.76 712.5 9.81 2.12 
Ni (2p) 852.5 2.68 0.50 853.5 3.90 0.50 

  * FWHM = Full width at half maximum of peaks 

 

For the Mo-Co-Fe/C formulation, the overlaid XPS spectra of samples drawn from the main 

plasma reactor and auxiliary plasma reactor (fresh catalysts) as well as the spent catalyst 

obtained from the main plasma reactor are displayed in Figure 17. A summary of their peak 

positions and elemental atomic concentrations are provided in Table 3. It was observed that 

the chemical composition of the sample collected from the main plasma reactor was 

significantly different from that obtained from the auxiliary plasma reactor, which contained 

mainly metallic (Mo0) and oxidized (Mo4+) species with peak positions at approximately 

228.1 and 231.3 eV respectively, which concurred with data interpretation in literature [58]. 

However, both the fresh and used catalysts from the main plasma reactor had some 
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similarities since they contained mixed Mo0, Mo4+ and Mo6+ species, which had their 

respective peak positions at about 228.1, 231.3 and 232.6 eV in the fresh sample and 

228.2, 231.3 eV and 232.2 eV in the used catalyst. The peak at ~236 eV is a doublet due to 

the Mo-3d spin-orbital splitting in Mo (VI) atoms, which concurrently appears with the peak 

at ~232 eV and is usually indicative of the presence of MoO3 species [59]. 

 

 

Figure 17: XPS envelopes of the fresh Mo-Co-Fe/C catalyst from the auxiliary plasma reactor 
(APR), alongside the fresh and used catalysts from the main plasma reactor (MPR) 

 

Table 3: XPS analysis data for plasma-synthesized Mo-Co-Fe/C catalyst 

Element  
 

Auxiliary reactor: fresh 
catalyst 

Main reactor: fresh 
catalyst 

Main reactor: used 
catalyst 

Peak 
(eV) 

FWHM % At. 
Conc. 

Peak (eV) FWHM % At. 
Conc. 

Peak 
(eV) 

FWHM % At. 
Conc. 

O 1s 529.9 3.71 3.13 529.9 3.69 5.13 529.8 3.41 7.93 
C 1s 284.8 2.84 91.54 284.8 2.89 90.00 284.5 2.78 86.71 
Co 2p 778.2 3.45 3.14 777.9 4.63 2.83 778.2 5.83 3.53 

Fe 2p 711.9 9.97 2.08 711.9 9.67 1.80 712.9 8.90 1.78 
Mo 3d 228.1 3.27 0.11 228.1 5.90 0.23 228.2 2.48 0.05 
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4. DISCUSSION 

 

4.1 Catalyst Synthesis and Characterization 

In this paper we report findings that are unique to the production of synthetic fuels, where 

new catalyst formulations have been produced, composing ternary Mo-Co-Fe and Ni-Co-Fe 

metallic systems, supported on nanometric carbon that has been generated by an induction 

plasma-spray technique. The nature of this plasma-synthesized carbon support meets the 

properties of carbon black as was shown by Raman spectroscopy in earlier work [42]. The 

carbon is characteristically a mixture of graphitic carbon with a considerable portion of it 

having varying degrees of structural defects that it tends towards amorphous carbon. This 

carbon support is unique and, during FTS reaction, (a) remains unaffected when reduced in 

pure H2 at 400oC for 24 h whilst (b) its graphitic sheets fold into carbon nanofilaments when 

the reduction is done in CO; and the carbon-nanofilament growth is seen to progress away 

from the metal centres [51].  

 

Since the use of carbon support in FTS is receiving considerable attention today, plasma 

application provides numerous benefits in catalyst preparation, particularly where 

reproducibility of highly active catalytic materials is critical to the success of process 

execution. In this study, we show that both the promoted catalysts (Mo-Co-Fe/C and Ni-Co-

Fe/C), were essentially nanometric and non-porous, having comparable properties to all the 

other plasma-synthesized materials reported earlier. The promoted as well as the bimetallic 

catalysts generally had BET specific surface area in the range of 67 – 93 m2.g-1. In this 

work we underscore the importance of applying non-porous catalysts with high surface area 

because this is fundamental to the FTS reaction as it targets production of large molecular-

weight hydrocarbons, and one must avoid operating in diffusion-limited regimes.  

 

Our plasma-synthesized samples have presented uniform metal distribution as observed 

from SEM imaging and EDX elemental mapping, while metal nanoparticle size 

measurement by TEM analysis has indicated an average in the range of 8.9 – 14.4 nm for 

the single metal Co/C, Fe/C and the bimetallic Co-Fe/C catalysts. It is therefore notable that 

the promoted Mo-Co-Fe/C and Ni-Co-Fe/C catalysts also exhibit similar characteristics with 

mean metal nanoparticle size of 8.4 and 13.3 nm respectively. These distinctive properties 
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underpin the reliability and capacity SPS technology presents in catalyst production, 

reproducibility and its great potential for future scale up.  

 

Some authors have observed that during FTS reaction, stronger CO adsorption exists in the 

smaller Co particles of less than 7 nm, leading to low turnover frequency [60]. Therefore, 

our samples aimed at consistently producing metal nanoparticles above 8 nm makes our 

plasma approach highly successful at lab-scale and extremely promising for a scale-up 

endeavour and eventual industrial applications. In addition, since the smaller Co particles 

exhibit higher selectivity for CH4 formation, mainly due to their heightened capacity for 

hydrogen coverages, this is a phenomenon that our samples have overcome.  

 

Moreover, having the particle-size distribution of the samples remaining unaffected after 

FTS reaction was an early indication of their intrinsic resistance to sintering, catalyst 

deactivation and ultimate long-term durability. Although some authors claim that their 

carbon-supported catalyst attained steady state operation more quickly (after 45 h with 

TOS) when compared to other catalysts (90 h) [3], our plasma-synthesized catalysts 

continued to show an upward trend of improving activity after 24 h as depicted in Figure 1. 

This is clearly an early sign that catalyst deactivation was distant.  

 

XRD analysis of the catalysts showed a myriad of phases present in the catalysts, ranging 

from metallic forms (Coo, Feo, Moo and Nio), to nano-alloys (CoFe, Co3Fe7, Co7Fe3, etc.), 

and their corresponding metal carbides (Fe2C, Fe3C, Fe5C2; MoC, Mo2C, etc.). Incidentally, 

the main purpose of catalyst synthesis by plasma technology was to generate the 

nanometric carbon support concomitantly with this mixture of metallic and carbidic moieties, 

which are known to be the active phases in the FTS reaction, depending on the metal 

involved. Whereas Fe-carbides are perceived to be the fundamental species in the Fe-

based FTS catalysis, metallic Co is instrumental to the Co-based catalyst, while the Mo-

based catalyst seems to require the carbidic phase also.  

 

The negative consequence of having nanometric catalysts with extremely small crystallite 

sizes of the catalyst was that it led to rampant peak broadening as well as peak extinctions 

in the XRD patterns, and this rendered phase identification in our analyses only partly 
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conceivable, but phase quantification by RQA absolutely difficult. Nevertheless, analysis 

exploiting XPS was able to confirm the presence of Ni in the Ni-Co-Fe/C sample since XRD 

failed to detect it. In addition, analysis of the Mo-Co-Fe/C sample by XPS indicated the 

presence of both metallic and oxidized species (Mo0, Mo4+ and Mo6+). Some of the Mo-

species in the oxidized state may be construed to be carbidic in nature as observed from 

the XRD analysis, although the carbide peak in XPS was not conspicuous (expected to 

appear below the carbon peak at 284 eV).  

 

Since the Mo-catalyst that was used in the FTS reaction was collected from the main 

plasma reactor, it indicated a considerable presence of MoO3, which could be difficult to 

reduce at our pre-treatment temperature of 673 K (400oC). Some authors have indicated 

that a reduction temperature of over 873 K (600oC) is required to reduce the nanometric 

MoO3 to metallic Mo because below 883 K, the original morphology of MoO2 was 

conserved [61]. Probably, this could be the reason why we still find the Mo6+ species 

persisting in the used sample as shown in Figure 17. Unlike the Ni-promoted catalyst, the 

Mo-Co-Fe/C sample went through an extended induction period, which was exhibited by 

the step change in the FTS reaction after 20 h on stream. However, it should be noted that 

this explanation is still speculative and validation may require advanced equipment such as 

in situ XRD tests, where the catalyst’s phase transformations could be monitored with TOS.  

 

From this investigation, it has been established that the principal advantage of SPS 

technology in catalyst synthesis is to concurrently create a nanometric carbon-support 

matrix alongside metal nanoparticles in various phases ranging from metallic to carbidic 

moieties, which are highly active for the FTS reaction. Since a reduction process plays a 

vital role in activating the FTS catalyst, it has been shown that increasing the catalyst 

particle size decreases the rate of catalyst reduction [62]. This implies that the size of the 

metal nanoparticles significantly impacts on the FTS reaction. Therefore, plasma 

technology offers an effective method of producing ready-to-use nanometric catalysts, 

which are potentially easy to reduce in situ due to the particle size effect.  
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4.2 Evaluation of Hypotheses Tested 

Two hypotheses were tested on a limited scale using the 80%Co-20%Fe/C bimetallic 

catalyst. The study, which investigated the promotional effects of Mo and Ni on the FTS 

product spectrum showed that addition of 10% Ni to the Co-Fe/C bimetallic catalyst resulted 

in higher production of CH4 and shorter hydrocarbon-chain molecules, while increased 

surface acidity by addition of 10% Mo to the Co-Fe/C bimetallic boosted gasoline 

production by ~74% (from 19% to 33% of the total selectivity).   

 

4.2.1 Promotion of Co-Fe/C catalyst with Ni  

These research findings have confirmed our initial assertion that a Ni-based catalyst would 

be more selective towards gasoline fraction, with a lower wax fraction. Performing the FTS 

reaction at 260oC showed higher catalyst activity in Ni-Co-Fe/C (50% CO conversion) than 

with the initial Co-Fe/C bimetallic (42% CO conversion), although the Ni-Co-Fe/C had 

greater propensity for producing CH4 (23%) and CO2 (14%), both of which were 

undesirable products. However, since it was advanced that promotion of the Co-Fe/C 

bimetallic catalyst with Ni would improve the production of shorter hydrocarbon chains, it 

means that our first hypothesis was accurate: that is, Ni enhances mechanisms that involve 

lower activation energy, early chain-growth termination, fast hydrocarbon desorption and 

poor molecular readsorption. Some of the catalysts tested earlier have shown a remarkable 

stability and the hypothesis that Ni enhances this stability is not yet proven because it 

requires hundreds or even thousands of hours TOS. 

 

4.2.2 Presence of molybdenum 

In our second hypothesis it was proposed that enhanced surface acidity by Mo-promotion in 

Co-Fe/C catalyst would stimulate the production of longer-chain hydrocarbons, targeting to 

enrich the diesel-fraction. In addition, a Mo-based catalyst would be desirable because of 

its resistance to the deactivation that originates from carburization. In fact, the creation of 

Mo-carbide species is central to their operation in FTS catalysis [49]. Therefore, these 

research findings have disapproved our claim that Mo-promotion would amplify product 

selectivity towards diesel fraction. Instead, presence of Mo enhances gasoline fraction, 

while the quantity of diesel generated by both the promoted and un-promoted catalysts 

(Mo-Co-Fe/C and Co-Fe/C) remained constant (at ~55%).  



34 

 

 

4.2.3 Reaction mechanism 

It has been posited that the Mo-catalyzed FTS reaction progresses by the Eley–Rideal 

mechanism, which arises from the strong CO adsorption to the electron-withdrawing Mo-

carbide catalyst surface [49]. The associatively chemisorbed CO is therefore thought to 

react with the H2 in gas phase to form HCOH as the chain-initiator species, which 

propagates to higher olefin and paraffin species. In fact, in the Ni-based catalyst, density 

functional calculations suggest that direct CO dissociation is relatively less viable than the 

dissociation of intermediate FTS species such as the hydroxymethylidyne (COH) or formyl 

(HCO). Consequently, the reactions toward CH3OH and CH4 formation preferentially evolve 

through the HCO intermediate on all the surfaces [63]. This means that since our reaction is 

operated at high H2 concentration (H2:CO = 2), both the proposed “Carbide” and “CO-

insertion” mechanisms could take the same pathway as depicted in Equation (7) leading to 

excessive CH4 production. This assertion was found to be true for our Ni-promoted catalyst 

because it generated 14% CH4, while the Mo-catalyst gave only 6%. 

 

    Eqn. (7) 

 

For other hydrocarbon-chain growths, it has been observed that the molecular structures of 

the transition states may be quite similar, but there is a substantial variation in the energy 

barriers involved between the various C–C coupling reactions among the transition 

elements, resulting into different preferential paths for the chain growth in each metal. For 

example, Co favours the [CH2 + CH2] coupling, while Fe favours [C + CH3] coupling [63].  

 

It was our intention to identify, quantify and correlate the amount of each phase in the 

catalysts to its activity and selectivity, but this investigation was less productive because of 

the nanometric nature of materials, which rendered accurate determination of phase 

composition by XRD analysis to be nearly impossible. Therefore, there is no sufficient 

exploitable information from which we can draw authoritative conclusions on the nature of 

the reaction mechanisms using the available characterization data. However, it is evident 

that both Mo- and Ni-addition produced more gasoline (33% and 50% respectively) than the 

Co-Fe/C bimetallic (19%), and less waxes (5% and 6% respectively) relative to Co-Fe/C 
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(13%). This means that Mo promoted the low molecular-weight FTS products, although with 

the advantage of limiting the generation of CO2 (2%) and CH4 (6%), whereas the Ni-Co-

Fe/C catalyst produced more CO2 (8%) and sizable quantities of CH4 (14%).  

 

In addition, when the ratio between the overall FTS products (C5+) and CH4 is considered in 

the light of H2-efficiency, the Mo-promoted catalyst seems to outperform the other two 

catalysts, with increasing H2-efficiency in the order of Ni-Co-Fe/C followed by Co-Fe/C and 

then Mo-Co-Fe/C with (C5+ : CH4) = 3.7, 5.7 and 10 respectively. Therefore, in terms of 

selectivity and H2 efficiency, the best catalyst is the Mo-Co-Fe/C.  

 

4.3 Evaluation of α-values 

It was observed that both Ni- and Mo-promotion, whose presence was confirmed by XRD, 

XPS, SEM and EDX analyses, only enriched the production of the gasoline fraction, and 

that both the ternary catalytic systems (Mo-Co-Fe/C and Ni-Co-Fe/C) had the lower α-value 

of 0.78 as compared to 0.81 of the Co-Fe/C bimetallic catalyst. Since Co has a typical 

range of α-values between 0.70 – 0.80 and Fe between 0.50 – 0.70 [64], these results show 

that the high amounts of Co (having 70 – 80% of metal loading) in the samples took 

precedence in the reactivity of the materials. However, it also shows that the presence of 

Fe or Ni had a positive impact on the product distribution towards the lighter hydrocarbons. 

This finding is in agreement with literature data where low α-values exhibited by Mo- and 

Ni-promoted catalysts at high temperature (260oC) is perceived to maximize on gasoline 

production, with low yields of high molecular-weight products [65]. On the other hand, low-

temperature operation and catalysts with higher α-values such as the Co-Fe/C bimetallic 

produce more compounds with longer carbon-chains (e.g. waxes), but less of gasoline and 

low molecular-weight olefins. 

 

5. CONCLUSION 

 

Two analogous ternary catalysts (Mo-Co-Fe and Ni-Co-Fe), supported on carbon were 

synthesized through plasma to produce catalysts that were both nanometric and non-

porous with BET specific surface area in the range of 69 – 85 m2.g-1. Various phases were 

evident from XRD analysis ranging from metal carbides to metallic and nano-alloy forms, 
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but they were not fully quantifiable by RQA due to peak broadening and peak extinctions 

arising from the nanometric nature of the materials. XPS confirmed presence of Ni in the 

Ni-Co-Fe/C sample, which went undetected by XRD analysis, besides indicating the 

presence of Mo0, Mo4+ and Mo6+ in the Mo-Co-Fe/C sample. Due to the pyrophoric nature 

of the samples, it is speculated that exposure to air leads to the formation of MoO3 in the 

catalyst, which may require protracted activation times before FTS. Microscopic imaging 

(by SEM, EDX & TEM) indicated uniform metal distribution in the carbon matrix and had 

average particle size of 8.4 nm for Mo-Co-Fe/C and 13.3 nm for Ni-Co-Fe/C catalyst. There 

were no significant signs of early carbon-support degradation or metal nanoparticle 

agglomeration in the catalysts as seen from TEM analysis particularly after the prolonged 

thermal treatment of 24 h by H2-reduction at 400oC, followed by another 24 h of FTS 

reaction at 260oC.  

 

These catalysts were tested under realistic FTS reaction conditions (260oC; 2 MPa 

pressure; H2:CO ratio = 2; GHSV = 3 600 cm3.h-1.g-1 of catalyst). It was observed that the 

presence of Mo favoured higher production of gasoline fraction and not diesel as initially 

thought. Selectivity of Mo-Co-Fe/C towards the diesel fraction (C13 – C20) remained constant 

(at ~55%), while the gasoline (C5 – C12) selectivity stood at 33% compared to 19% in the 

Co-Fe/C bimetallic. Similarly, Ni-promotion improved the reaction rate from 42 to 50% CO 

conversion and enhanced the production of shorter-chain hydrocarbons generating 50% 

gasoline, but with excessive formation of CO2 (14%), CH4 (23%), and H2O (55 cm3). The α-

values determined from the higher molecular-weight hydrocarbons (C10+) were 0.81 for the 

Co-Fe/C catalyst and 0.78 for both the Mo-Co-Fe/C and Ni-Co-Fe/C catalysts. Mass 

balance calculations indicated that the catalysts’ H2-efficiency, that is, the ratio between C5+ 

and CH4 production decreased in the order of Mo-Co-Fe/C >> Co-Fe/C > Co-Fe/C with 

values given as 10, 5.7 and 3.7 respectively. 
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1. INTRODUCTION 

 

Great interest in alternative energy sources has been stimulated as a result of the 

increasing obligation to lower the global impact of greenhouse gases. Some technical 

feasibility studies and analyses of biomass economics are showing promise for production 

of bio-derived fuels in the transport sector [1]. Renewable energy sources such as biomass 

can be incorporated in mature technologies such as Fischer-Tropsch synthesis (FTS) in 

order to make them ‘greener’ [2]. FTS for example, involves the commercial hydrogenation 

of CO to synthetic fuels composing gasoline and diesel with comparable quality as those 

derived from petroleum feedstocks. Since a biomass feedstock is most likely to be low in 

sulphur content [3], we foresee its application in FTS as a possible sustainable process 

towards biofuel production. Depending on the nature of the catalyst and FTS reaction 

conditions, CO can be polymerized to produce hydrocarbons of various chain lengths using 

supported Co- or Fe-based catalyst materials. Unfortunately, fast accumulation of the large 

polymeric molecules so formed has a tendency of clogging the catalyst pores, thereby 

leading to catalyst deactivation [4].  

 

In view of the current challenges in Fischer-Tropsch catalysis research, we have argued 

that a catalyst, which is both nanometric and non-porous, would overcome limitations 

related to all mass transfer steps because the reaction occurs outside the catalyst particle 

[5]. In addition, the use of a carbon support could make the catalyst resistant to deactivation 

that originates from sintering. Besides, since there are no pores inside the catalytically 

active metallic phases, deactivation due to carbon deposition becomes highly depressed. 

Moreover, we have asserted that catalysts characterized by such attractive properties are 

best synthesized through induction suspension plasma-spray (SPS) technology because of 

its ability to simultaneously atomize, vaporize and produce numerous catalytic phases that 

are active for FTS [6]. In these catalysts, the nanometric carbon support is produced in 

plasma concomitantly with the metallic Co0 species that is necessary for FTS in cobalt-

based catalysts, or the carbide species (such as Fe3C, Fe5C2, etc.) in iron-based FTS 

catalysts. This information is summarized in Table 1, having been adopted from our 

previously published findings [7]. Furthermore, we think that catalyst promotion with Au has 

potential to boost water-gas shift (WGS) reaction [8], and by enhancing the reducibility of 

the metallic Co0 species, it could improve on FTS capabilities.  
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Table 1 Industrial concerns our catalysts have attempted to address [7] 

Approach  Influence on overall FTS process Industrial concern Ref. 

1. Biomass 

Feedstock 

Low-sulphur content: 

Biomass feedstock contains less sulphur than fossil fuel 

feedstock. 

Catalyst deactivation:  

- by sulphur poisoning 

[3]  

 

2. Nanometric 

catalysts 

Turnover frequency (TOF):  

Application of high surface area per unit mass of the metal 

exposes more reactant per unit time 

Reaction kinetics;  

Diffusion and mass transfer limitations 

[9] 

3. Non porous 

catalysts 

Mass transfer effect:  

Elimination of porosity increases contact between reactants and 

the active metal phase, and fast product desorption 

Diffusion and mass transfer limitations [10] 

4. Carbon 

support 

(a) Carburization: no impact 

Carbon does not adversely affect catalyst performance 

Catalyst deactivation:  

- by carburization 

 

[11] 

(b) Deactivation: no impact: 

Carbon support does not impact the catalyst negatively 

Catalyst deactivation: 

- by coking 

[12]  

[13] 

5. Plasma 

Technology 

(a) Process efficiency:  

Single-step application uses a simpler, yet highly effective method 

in catalyst synthesis 

Application of complex methods during 

catalyst synthesis  

[14] 

(b) Metal dispersion: 

Highly dispersed, uniformly distributed metal nano-particles 

embedded in a carbon matrix 

Catalyst deactivation:  

- sintering 

[15] 

6. Au-promotion (a) Water management:  

Water removal through enhanced of water-gas shift reaction 

High water vapour pressure lowers 

FTS activity 

[16] 

 

(b) Maintaining the metallic phase:  

Enhancement of Co reduction. 

Catalyst deactivation:  

- metal oxidation 

- reaction of metal phase with support. 

[17] 

[18] 

[19] 
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Since CO adsorption on Fe is stronger than on Co, it creates high activation barriers for 

product desorption as noted by Bartholomew and Farrauto (p.408) [20]. This explains the 

higher tendency for the Fe to form carbides and oxides when compared to Co, which does 

not produce any bulk carbides. In the recent past, special attention has been given to Co-

Fe alloys on a variety of supports [21], and while there is a wide window of choice in Fe-

based catalysts for selectivity-linked promoters, that of Co-based catalysts is limited due to 

the unfavourable effect it imposes on catalytic activity [22]. For example, an attempt to raise 

the Fe’s catalyst-surface basicity using La, Mg or Ca was perceived to worsen the FTS 

reaction rate due to increased activation energy from 70, to 78 and to 92 kJ.mol-1 

respectively [23].  

 

During FTS, CO2 production must be suppressed as it acts as an inert component in the 

system [24]. On the other hand, CH4 formation is equally undesirable because it consumes 

the valuable H2 feedstock in the process [25], and therefore promoter choice and process 

conditions are key to lowering CH4 production [26]. Since generation of H2O as a by-

product in FTS is inevitable, it may lead to catalyst deactivation [27]. Nonetheless, the Fe-

based catalyst inherently participates in the WGS reaction, shown in Equation (1), through 

the in situ generated Fe-oxides, and the WGS reaction is perceived to boost FTS by 

enriching the H2 gas stream [28]. 

 

𝐻2𝑂 +  𝐶𝑂 
𝑊𝐺𝑆
→    𝐶𝑂2  +   𝐻2   𝐸𝑞𝑛. (1) 

 

Although the Au-Co bimetallic is relatively poorer at the WGS reaction [29], it has been 

observed that when Au is associated with Ru or Ni, both of which are FTS-active metals, 

the Fe2O3-supported Au-Ru and Au-Ni bimetallic combinations become effective low-

temperature water-gas shift (LT-WGS) catalysts [30]. Therefore, having an active Au-

promoted bifunctional FTS-WGS catalyst containing Ni that encourages fast desorption of 

FTS products provides the benefit of producing a wide-range of both long and shorter chain 

hydrocarbons [31]. In this study, we investigated the effect of adding Au and Ni to the 

bimetallic Co-Fe/C catalyst because currently, there is very limited research directed 

towards Au-promoted, carbon-supported FTS catalysts that have been synthesized through 

plasma, as indicated in Table 2. 
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Table 2 Comparison of some unique properties of catalysts that have been tested in FTS 

Targeted 
configuration 

Catalyst 
Synthesis method * Ref. 

Active phase Support 

Gold promotion 

Au-Co Al2O3 IM, IE [32] 
Au-Co Al2O3 CP, IM [18] 
Au-Co Al2O3 IM [33] 
Au-Co TiO2 DP [34] 
Au-Ru MgO, SiO2 IM [35] 

Pt/Au-Co TiO2 IM [36] 

Carbon support 

Co CNTs# IWI [37] 
Co CNTs IWI [38] 
Co Carbon nanofibres IWI, DP, IA [39] 

Co, Ru, K CNTs IM [40] 
Fe Activated carbon IM [41]  
Fe CNTs IWI, DP [42] 

Plasma synthesis 

Co CNTs DBD-plasma  [43] 

Pt-Co Al2O3 GD-plasma [44] 

Co, Ru-Co SiO2 GD-plasma [45] 

Fe, K, Cu Carbon Induction SPS [46] 

Co-Fe Carbon Induction SPS [47] 

Fe-Ru oxide Unsupported LPP [48] 
# 
CNT = Carbon nanotubes;  

* CP = Co-precipitation; DP = Deposition-precipitation; IE = Ion exchange; IA = Ion adsorption;  

IM = Impregnation method; IWI = Incipient wetness impregnation; 

DBD = dielectric-barrier discharge plasma (treatment); GD = Glow discharge (treatment);  

LLP = Liquid-phase plasma (synthesis); SPS = suspension-plasma spray (synthesis); 

  

 

The overall objective of this work was to evaluate the properties of potential FTS catalysts 

among a family of plasma-synthesized materials, which demonstrate selective production of 

synthetic fuels that are primarily richer in the diesel range fraction (C13 – C20). We therefore 

present the catalytic performance of the quaternary metallic formulation of the Au-promoted 

Ni-Co-Fe/C catalyst synthesized though plasma. The catalyst was benchmarked against 

the bimetallic Co-Fe/C catalyst [47], which we reported earlier. In this study, Ni or Au with Ni 

was introduced into the Co-Fe/C sample, and the two hypotheses tested were that: 

(i) The presence of Ni in the catalyst could lead to selective enrichment of the 

gasoline fraction in FTS, because Ni promotes early molecular desorption [31];  
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(ii) Creating the Au-Ni-Fe nexus by incorporating Au in the catalyst sample produces 

synergistic effects that enhance LT-WGS reaction, which enriches the feed-gas 

composition with H2 and improves FTS [29].  

 

We therefore present for the first time the FTS test results on the effect of incorporating Au 

in carbon-supported Ni-Co-Fe catalyst synthesized by plasma, limiting the discussion to the 

key outcomes on catalyst activity and selectivity investigations, with the findings showing 

potential for future FTS application. Even so, we only provide a succinct, but sufficient 

treatment of catalyst synthesis and characterization to support results presented in this 

article, because they can be found in an earlier publication [6]. 

 

2. EXPERIMENTAL METHODS 

2.1 Catalyst Synthesis 

The single metal Co/C and Fe/C catalysts [5], in addition to the bimetallic Co-Fe/C catalysts 

[47], were prepared by the induction suspension plasma-spray (SPS) process. A mass of 

60 g of the metals in various proportions were mixed in 300 cm3 mineral oil and the 

suspension injected into the plasma at a flow rate of 8.2 cm3.min-1. Details of this technique 

have already been prescribed in earlier works and the overall catalyst composition 

(expressed at ~25-wt% metal loading) is based on “mass” of the metal relative to that of the 

carbon support in the catalyst formulations. The carbon-supported Ni-Co-Fe catalysts were 

synthesized similarly through the plasma process [6].  

 

The Ni-Co-Fe catalyst was further doped with about 5%Au using impregnation method, in 

order to minimize the loss of the precious metal through the plasma system due to 

vaporization. A mass of 9.8 g from the 5%Ni-70%Co-25%Fe/C catalyst was mixed with 50 

cm3 of Au-solution prepared by adding 250 cm3 of distilled H2O to 1.0 g of chloro-auric acid 

trihydrate, AuCl4.3H2O. Since the catalyst is highly hydrophobic as a result of the residual 

mineral oil from the plasma reactor, 5 cm3 of absolute ethanol was added to the mixture in 

order to dissolve the carbon-supported catalyst in the Au solution. The resulting slurry was 

left to oven-dry at 105oC for 22 h, after which the dried crust was crushed and then tested 

for FTS activity after in situ reduction in H2 gas.  
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2.2 Catalyst Testing 

A fresh catalyst (5.0 g each) in the FTS reactor was first reduced in situ at 400oC for 24 h 

using pure H2 gas (N5.0) flowing at 250 cm3.min-1. After cooling the reactor and flushing it 

with inert gas, 150 cm3 of hexadecane solvent (C16) was introduced in to create a 3-phase 

continuously stirred-tank slurry reactor (3-φ-CSTSR). The pre-treated catalyst was then 

tested for FTS activity for 24 h on stream at 260C and 2 MPa pressure using an artificial 

syngas mixture of composition H2:CO ratio = 2, with flow rate fixed at 300 cm3.min-1 (at 

RTP), having 0.6 L/L (60-vol%) H2 and 0.3 L/L (30-vol%) CO balanced in Ar, which 

translates into a gas hourly specific velocity (GHSV) of 3 600 ml.g-1.h-1 of catalyst. The FTS 

product spectrum was analysed by gas chromatography (GC) at standard conditions 

according to the protocol reported in earlier works for the single metal Co/C and Fe/C 

catalysts [49] and the Co-Fe/C bimetallic catalysts [47].  

 

2.3 Catalyst Characterization 

The catalysts were characterized by a number of analytical techniques that included 

porosity measurements through the Brunauer-Emmett-Teller (BET) method for specific 

surface area determination, morphological and particle size analysis using both Scanning 

and Transmission Electron Microscopy (SEM and TEM) coupled with Energy Dispersive X-

ray Spectroscopy (EDX), in addition to phase identification and composition analysis by 

XRD analysis, and X-ray photoelectron spectroscopy (XPS). The characterization test 

conditions and analysis results are available in earlier articles for BET surface area, SEM, 

TEM and XRD [6], and XPS [5]. In this paper, only the results that support the current 

discussion are presented. 

 

3. RESULTS AND DISCUSSION 

 

3.1 Catalyst Synthesis 

Although Au-addition to the catalyst was achieved by impregnation, the ternary Ni-Co-Fe/C 

catalyst was synthesized through plasma, which has been found to create nanometric 

materials with remarkably uniform characteristics. In principle, SPS technology should be 

used in the synthesis of all catalysts, but since Au is a precious metal we intended to 
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minimize losses during synthesis due to vaporization. Nevertheless, this was treated as an 

initial catalyst selection process and it was observed that even after introduction of Ni in the 

Co-Fe bimetallics, the catalysts’ physical properties remained remarkably identical [6]. The 

high reproducibility of the catalysts indicates that synthesis through plasma presents 

notable prospects for industrial-scale catalyst production. 

 

3.2 Catalyst Testing 

3.2.1 Catalyst activity 

The ternary Ni-Co-Fe/C formulation was tested alongside the Au-promoted Ni-Co-Fe/C 

catalysts at 260oC and 2 MPa pressure, benchmarking their catalytic performance with a 

sample Co-Fe/C bimetallic catalyst. Figure 1 presents catalyst activity plots after 12 h on 

stream. In comparison to the Co-Fe/C bimetallic with over 40% CO conversion, the Ni-

containing catalysts were more active; hence the one with 10%Ni exhibited a higher CO 

conversion of ~50%, while halving the amount of Ni and replacing it with Au-promotion (i.e. 

the 5%Au-5%Ni-Co-Fe/C) increased the activity further to ~60% CO conversion. 

Nevertheless, the un-promoted 5%Ni-Co-Fe/C formulation was relatively the most active 

with ~90% CO conversion, although with very poor selectivity towards FTS products. 

  

 

Fig. 1 Catalyst activity plots for the (a) Co-Fe/C; (b) 10%Ni-Co-Fe/C; (c) 5%Ni-Co-Fe/C; and (d) 
Au-5%Ni-Co-Fe/C formulations 
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3.2.2 Catalyst selectivity 

Figure 2 provides summary plots of the corresponding catalyst selectivity for the materials 

presented in Figure 1. On the x-axis, zero represents CO2 and one represents CH4, while 

the ascending integer numbers indicate the number of C atoms in the hydrocarbon 

molecules. For ease of mass balance evaluation, data analysis and presentation, Figure 3 

indicates the aggregate fractions in terms of gasoline (C5 – C12), diesel (C13 – C20), and 

waxes (C21+). The product spectrum shows that the bimetallic Co-Fe/C was comparatively 

more selective towards production of the longer-chain hydrocarbon components such as 

diesel (55%) and waxes (13%). Basing on the Co-Fe/C bimetallic catalyst, addition of Ni or 

Au-Ni was noted to enhance selectivity towards the gasoline fraction from 19%, to 38 and 

41% respectively. Promotion of the Ni-Co-Fe/C catalyst with Au substantially lowered CO2 

and CH4 production and improved selectivity for the diesel fraction from 20% to 32%. 

Moreover, there was a sizable decline in H2O production for the Au-promoted sample.  

 

 

 

Fig. 2 Catalyst selectivity as portrayed by the FTS product distribution plots for (a) Co-Fe/C; 
(b) 10%Ni-Co-Fe/C; (c) 5%Ni-Co-Fe/C; and (d) 5%Au[5%Ni-Co-Fe/C] 
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Fig. 3 Plots comparing aggregated FTS fraction distribution of (a) Co-Fe/C; (b) 10%Ni-Co-
Fe/C; (c) 5%Ni-Co-Fe/C; and (d) 5%Au[5%Ni-Co-Fe/C] catalysts after 24 h of reaction 

 

3.2.3 Determination of the catalysts’ α-values 

Since Co has a typical range of α-values between 0.70 – 0.80, and Fe between 0.50 – 0.70 

[50], for our catalysts α ≥ 0.78 at high C-numbers (C10+) because of the high Co content 

(>70%). Figure 4 provides plots that were used to define the catalysts’ α-values. It was 

observed that comparatively, the Co-Fe/C bimetallic formulation had the highest α-value of 

0.88, although with poor linear regression analysis of R2 = 0.633. Addition of 10%Ni to the 

Co-Fe/C catalyst produced the lowest α-value of 0.78, and addition of 5%Ni or 5%Au gave 

~0.84, but with better curve fitting of R2 > 0.94. This means that higher production of the 

light-weight hydrocarbons would be expected from the Ni- and Au-containing catalysts 

relative to the bimetallic Co-Fe/C catalyst. This may be deciphered from Table 3, which 

shows that under similar reaction conditions (260oC, 2 MPa, GHSV = 3 600 cm3.h-1.g-1 of 

catalyst), the least attractive catalyst was the 5%Ni-Co-Fe/C formulation because of its 

combined selectivity towards the fuels (gasoline and diesel = 58%) being very low. Although 

the 5%Ni-Co-Fe/C exhibited the highest CO conversion (90%), its overall selectivity was 

poor due to high production of CH4 (23%) and CO2 (14%), besides generating the greatest 

amount of H2O (55 cm3). 
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Fig. 4 Graph summarizing determination of catalysts’ α-values using log(Mn/n) versus n plots 

 

Table 3 Summary catalyst properties for (a) Co-Fe/C; (b) Ni-Co-Fe/C; (c) Ni-Co-Fe/C; and (d) 
Au-Ni-Co-Fe/C after 24 h of FTS reaction at 260oC 

Catalyst Activity (%) Selectivity (%) H2 efficiency, E (%) 

CO conversion (D+G)* (D/G) ratio α-value H2O (cm3) CH4 C5+ 
Co-Fe 42 74 2.89 0.88 50 8 46 
10%Ni-Co-Fe 50 72 0.44 0.78 40 9 35 
5%Au[5%Ni-Co-Fe] 60 73 0.78 0.83 30 7 26 
5%Ni-Co-Fe 90 58 0.53 0.84 55 23 41 

* (D = Diesel; G = Gasoline) 

 

Conversely, the most attractive catalyst would have been the Co-Fe/C, because (i) its 

product spectrum was richer in diesel, having the highest diesel to gasoline ratio (~2.9); (ii) 

it had the highest α-value of 0.88; and (iii) it exhibited lowest selectivity towards CH4 (10%) 

and CO2 (3%). However, it displayed the minimum CO conversion (at 42%) and produced 

much H2O (50 cm3). Therefore, between the Au-Ni-Co-Fe/C and 10%Ni-Co-Fe/C 
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5 10 15 20 25 30 35

-6

-4

-2

0

2

4

 Co-Fe:                = 0.88;   R
2
 = 0.633

 10%Ni-Co-Fe:    = 0.78;   R
2
 = 0.992

 5%Ni-Co-Fe:      = 0.84;   R
2
 = 0.945

 Au-[Ni-Co-Fe]:   = 0.83;   R
2
 = 0.949

No. of carbon atoms (n)

ln
 (

M
n
/n

)



12 

 

catalytic activity of 60% CO conversion compared to 50% in the 10%Ni-Co-Fe/C, it 

produced the least amount of H2O (30 cm3 compared to 40 cm3), it had a higher α-value 

(0.83 compared to 0.78), and it produced relatively more diesel with a high diesel to 

gasoline ratio (~0.78 compared to 0.44). However, both the catalysts exhibited comparable 

selectivity towards CH4 (~14%), CO2 (~7%) and wax (~5%).  

 

3.2.4 Catalysts’ H2 efficiency 

By using the total quantity of H2O generated in the reaction over the 24-h period, a rough 

estimate of the catalysts’ H2 efficiency could be determined since H2O is measurable. 

However, WGS activity presents a technical difficulty in the calculation because it 

consumes some of the H2O generated thereby enriching the H2 stream [51]. Assuming that 

the principal product of the FTS reaction was the alkene, (CnH2n) there is a 1:2 mole ratio 

between the H2O generated and the H2 consumed for every –CH2– formed in the 

hydrocarbon according to Equation (2). If we neglect the WGS effect, then the maximum 

amount of H2O to be generated within the 24 h of FTS reaction would be about 5.04 moles 

(or 90.72 cm3) because the total amount of H2 gas delivered during the 24-h experiment 

was equivalent to 10.8 moles = (300 cm3.min-1) x (60% H2) x (60 min.) x (24 h)/(24,000 cm3 

at RTP). 

 

𝐶𝑂    +      2𝐻2      
𝐹𝑇𝑆
→       −[𝐶𝐻2] −    +   𝐻2𝑂     𝐸𝑞𝑛. (2) 

 

𝐶𝑂    +      3𝐻2       →    𝐶𝐻4     +    𝐻2𝑂     𝐸𝑞𝑛. (3) 

 

Secondly, the total amount of H2O formed was divided in equal ratio in terms of its origin, 

either from –CH2– or CH4 formation according to Equation (3). A summary of the calculated 

values are presented in the last column of Table 3. From this determination, it was 

observed that the Co-Fe/C catalyst was the most efficient in CO hydrogenation by 

converting ~46% of the H2 supplied to C5+ products, while the Au-Ni-Co-Fe/C formulation 

was the least efficient with only 26% conversion towards C5+ products. It was equally 

evident that Ni-containing samples were the most inefficient by converting considerable 

quantities of H2 to CH4; the 5%Ni-Co-Fe/C displayed a 23% efficiency and the 10%Ni-Co-
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Fe/C had a 9% efficiency. The Au-promoted Ni catalyst was the least efficient in converting 

H2 to CH4 (showing a 7% efficiency).  

 

Since the Au-promoted catalyst converted the least amount of H2 from the feed stream to 

both –CH2– and CH4, this can be perceived as a positive attribute because the rest of the 

H2 is in excess and can lead to significant reduction in the H2 flow rates, and subsequently 

the recycle streams of the whole process. On the other hand, the Co-Fe/C catalyst can be 

viewed as one requiring large quantities of H2. Therefore, the perceived lower H2 efficiency 

in the Au-promoted catalyst could present the beneficial scenario of using CO-rich 

feedstocks possibly of a bio-syngas origin. This is because WGS reaction seems to be 

enriching the H2 feed stream in the Au-promoted catalyst, which is evident from the lower 

H2O production accompanied by substantial CO2 formation, unlike with the Co-Fe/C 

catalyst.  

 

In conclusion, we found that overall, the Au-Ni-Co-Fe/C formulation was comparatively a 

more balanced catalyst in the light of great activity, good selectivity for both gasoline and 

diesel fuels, high α-value, limited H2O and CH4 production. It was also characterized by 

elevated WGS activity that enriches the H2 stream in FTS as evidenced from the CO2 

formed. This may pave way for the use of CO-rich feedstocks such as bio-syngas towards 

the application of renewable energy resources in producing biofuels. 

 

3.3 Catalyst Characterization 

3.3.1 Porosity measurement by N2 physisorption 

From the SPS reactor set-up discussed in an earlier article [6], indicating that generally, the 

BET specific surface areas of the plasma-synthesized bimetallic and ternary metallic 

samples were in close range between 65–90 m2.g-1. In this article, we are discussing the 

bimetallic Co-Fe/C, and the ternary 10%Ni-Co-Fe/C and 5%Ni-Co-Fe/C catalysts. For 

example, the BET specific surface areas of the samples that were collected from the main 

plasma reactor were 73, 76 and 89 m2.g-1 respectively. Due to the pyrophoric nature of the 

samples, the Au-promoted 5%Ni-Co-Fe/C catalyst was not analysed for surface area 

because it was assumed that it had similar physical characteristics as the 5%Ni-Co-Fe/C 

catalyst. Pre-treatment was performed in situ to activate the material before FTS catalysis. 
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3.3.2 SEM analysis 

Since SEM analysis data for the Ni-Co-Fe/C was discussed exhaustively in the previous 

article [6], Figure 5 provides a glimpse of the even dispersion and uniform distribution of the 

various metal nanoparticles in the samples. This was evident from the backscattered SEM 

imaging and EDX mapping, which indicated the capability of the SPS technology in reproducing 

high quality FTS catalysts. 

 

 

 

Figure 5: EDX mapping by SEM imaging indicating the presence of Co, Fe and Ni in the 
plasma-synthesized catalysts 

 



15 

 

3.3.3 TEM analysis 

Imaging by TEM analysis revealed metal nanoparticle moieties supported in a carbon 

matrix. Earlier studies indicated that the mean metal-nanoparticle size was around 9–11 nm 

in the freshly plasma-synthesized catalysts [49], except for the 50%Co-50%Fe/C bimetallic, 

which had a mean of 14.4 nm [47]. A similar observation is reflected in this study, where 

Figure 6 provides the micrographs of the fresh and used 5%Ni-Co-Fe/C catalysts as well as 

the Au-promoted 5%Ni-Co-Fe/C sample. Figure 7 portrays the particle size distribution plots 

of the same catalysts where a sample size of 500 metal nanoparticles was analyzed.  

 

  

Fig. 6 Sample TEM images of the (a) fresh 5%Ni-Co-Fe/C; (b) used 5%Ni-Co-Fe/C; (c) fresh 
Au-Ni-Co-Fe/C; and (d) used Au-Ni-Co-Fe/C showing early sintering after FTS reaction 
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Fig. 7 Metal nanoparticle-size distribution (n = 500) for the fresh and used catalysts by TEM 
analysis, indicating (a) 5%Ni-Co-Fe/C catalyst, (b) after promotion with Au 

 

The fresh and used 5%Ni-Co-Fe/C catalysts showed mean particle size of 10.1 and 10.4 

nm respectively, while the Au-promoted 5%Ni-Co-Fe/C catalyst had an average metal 

particle size of 9.9 and 11.0 nm respectively. Except for the used Au-Ni-Co-Fe/C catalyst 

that has some large nanoparticles above 13 nm, there was no other conceivable particle 

agglomeration observed in the used samples, even after high-temperature exposure during 

pre-treatment at 400oC for 24 h, followed by the FTS reaction at 260oC for another 24 h.  

 

3.3.4 XRD analysis 

The nanometric nature of the metallic component in the catalysts was confirmed through 

XRD studies coupled with Rietveld quantitative analysis (RQA) as exemplified by peak 

broadening and peak extinction in the materials’ XRD patterns provided in Figure 8. 

Although this finding has been discussed exhaustively elsewhere [6], it is important to 

highlight it here; that all the Co-rich catalyst samples took the XRD pattern of the face-

centred cubic structure of Co0 because it was the dominant metal in the samples [5]. For 

example, in Figure 8, all the catalysts (100%Co/C, 80%Co-20%Fe/C, 10%Ni-70%Co-

20%Fe/C, and the 5%Ni-70%Co-25%Fe/C formulations) had identical XRD patterns. Proof 
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of the presence of other metals had to be sought through various means alongside XRD, 

including XANES for Fe, and analysis particularly for Ni by XPS, and SEM imaging through 

EDX mapping.  

 

 

Fig. 8 Powder XRD patterns of the freshly plasma-synthesized catalyst for (a) Co/C, (b) Fe/C, 
(c) Co-Fe/C, (d) 5%Ni-Co-Fe/C and, (e) 10%Ni-Co-Fe/C compared with the Fe metal 

 

3.3.5 XPS analysis 

Due to the difficulty experienced in detecting Ni in the samples through XRD analysis, XPS 

succeeded in establishing the presence of metallic Ni in the catalysts as demonstrated by 

the peak with binding energy of around 852.8 eV as given in Figure 9. 

 

20 40 60 80 100

0

5000

10%Ni-Co-Fe/C

Fe/C

Co/C

            Fe metal 

(as injected into plasma)

5%Ni-Co-Fe/C

Co-Fe/CIn
te

n
s
it

y

[2]
o
 angle



18 

 

 

Fig. 9 XPS analysis establishing the presence of Ni in freshly synthesized (a) 5%Ni-Co-Fe/C 
and (b) 10%Ni-Co-Fe/C catalysts collected from the auxiliary plasma reactor  

 

 

4. DISCUSSION 

 

4.1 Catalyst Synthesis and Characterization 

All the plasma-synthesized catalyst samples exhibited uniform metal distribution as 

observed from SEM analysis, while particle size measurement by TEM imaging indicated 

an average of 9–11 nm, which is a distinctive property that underpins the capacity SPS 

technology presents for reproducibility, with great potential for future scale up. Although 

stronger CO adsorption has been observed in the smaller Co particles (< 7 nm), which 

leads to low TOF in FTS reaction [52], our samples aimed at producing metal nanoparticles 

above 8 nm, which was successful. In addition, the smaller Co particles exhibit higher 

selectivity for CH4 formation mainly due to their heightened capacity for hydrogen 

adsorption and coverage, a property that our samples have overcome. Since the particle-

size distribution of our samples by and large remained unaffected after FTS reaction, it was 

an early indication of their intrinsic resistance to sintering, catalyst deactivation and ultimate 

long-term durability. 
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4.2 Promotion of Co-Fe/C catalyst with Ni  

It was advanced that the presence of Ni in the Co-Fe/C bimetallic catalysts could boost 

production of the shorter hydrocarbon chains. This means that our first hypothesis was 

correct: that Ni enhances mechanisms that lead to early chain-growth termination, fast 

hydrocarbon desorption and low molecular-readsorption rates. For this reason, the quantity 

of Ni in the catalyst was lowered from 10 to 5% and the Ni-Co-Fe/C catalyst became even 

more active showing up to 90% CO conversion, although with higher selectivity towards 

production of the low-molecular weight hydrocarbons such as gasoline (38%) than the 

diesel fraction (20%), while the initial Co-Fe/C bimetallic catalyst was more selective 

towards diesel (55%) than gasoline (19%).  

 

It was observed that at 260oC, addition of 10%Ni in the Co-Fe/C catalyst exhibited higher 

catalyst activity (from 42 to 50% CO conversion), although with greater propensity to 

produce CH4 (23%) and CO2 (14%), both of which are undesirable products. The high 

activity witnessed in the 5%Ni catalyst (with up to 90% CO conversion) was probably due to 

the production of hydrogen radicals, which are extremely reactive because Ni has been 

found to catalyze a wide variety of reactions due to its marked ability to activate the H2 

molecule by dissociative chemisorption [53]. We can therefore speculate that perhaps the 

presence of Ni in our materials could benefit the FTS reaction at much lower temperature 

operations. Higher temperature operations in this study were used because the bimetallic 

catalysts were almost inert at the lower temperatures of ~220oC [47], and carrying out a 

comparative study within that temperature regime would not have been fruitful. 

 

4.3 Presence of Au and Ni for Water-Gas Shift  

4.3.1 Testing hypotheses with Au-catalyzed WGS reaction 

In the second hypothesis, it was advanced that the simultaneous presence of Au and Ni in 

the Co-Fe/C bimetallic would improve FTS activity through the synergistic effect of Au-Ni-

Fe performing WGS reaction. In our samples, the presence of Au was perceived to elevate 

both the catalyst activity and selectivity. By replacing half of the Ni with Au in the 10%Ni-

Co-Fe/C sample, the activity rose from 50 to 60% CO conversion, while the selectivity 

towards FTS products improved with C5+ rising from 62 to 78% in the 5%Au-5%Ni-Co-Fe/C 

catalyst sample. Analysis of the total amount of H2O produced within the 24 h of each 
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experiment showed the highest H2 efficiency depicted by the 5%Ni-Co-Fe/C sample at 41% 

leading to FTS products (C5+) and 23% to CH4, which made the catalyst unattractive. The 

sample also displayed the greatest CO and H2 conversions of 89 and 78% respectively, 

with the mass balance indicating an excess of H2 that was in agreement with gas analysis 

of the effluent reactor stream as shown in Table 4.  

 

Table 4 Mass balance in evaluating the catalysts’ H2 efficiency, at t = 24 h 

Property 
Catalyst  

80%Co-20%Fe/C 5%Ni-Co-Fe/C 5%Au-Ni-Co-Fe/C 

Conversion, X (%) 
XCO 42 89 59 

XH2 38 78 51 

Excess H2, Fexit (%)* 52 20 49 

Mass balance: (XH2 + Fexit) (%) 90 98 100 

H2 efficiency, E (%)# 
E(CH4) 8 23 7 

E(C5+) 46 41 26 

Ratio (XCO : XH2) 1.11 1.14 1.16 

Difference, (XCO – XH2) (%) 4 12 13 

Evolution of CO2 (%)** 3 14 7 

* Concentration of H2 in the exit flow (Fexit rate ≤ 250 cm
3
.min

-1
) as determined by GC analysis 

#
 H2 efficiency as calculated from the measured H2O quantities as apparent H2 conversion  

** CO2 concentration measurement as determined by GC analysis 

 

High selectivity towards CH4 in the Ni-based sample proved the Au-promoted catalyst to be 

the best alternative having respective CO and H2 conversions of 59 and 51%, relative to the 

Co-Fe/C bimetallic that showed 42 and 38% CO and H2 conversions respectively. 

Nevertheless, the Au catalyst had the least H2 efficiency towards the FTS products (26%) 

and CH4 (7%), yet when the ratio of the used CO to that of H2 was determined for the three 

catalysts (80%Co-20%Fe/C, 5%Ni-Co-Fe/C, and 5%Au-Ni-Co-Fe/C), it gave a constant 

number of ~ 1.1. This means that no matter how much H2 was added to the feed stream the 

reaction will proceed in a constant CO:H2 gas ratio of ~1.1, indicating that these catalysts 

could operate optimally in a CO-rich feed gas. Therefore, the excess H2 gas in the feed 

must be lowered to typify a bio-syngas feedstock and in so doing, the Au-promoted sample 

would be the best catalyst that can produce biofuels while generating the least amounts of 

CH4 and H2O.  
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Some authors have showed that 1.5-wt%Au loading increases CO conversion to produce 

higher selectivity towards C5+ hydrocarbons alongside decreased CH4 formation [18]. 

Indeed, in our samples CH4 production was lowered from 23 to 14% by Au-addition in the 

5%Ni-Co-Fe/C catalyst, while at the same time CO2 production was halved from 14 to 7%. 

Since it was observed that the presence of Au in the 5%Ni-Co-Fe/C catalyst improved its 

selectivity by suppressing H2O formation from 55 to 30 cm3 (in 24 h), we are convinced that 

the WGS process internally generates H2 that improves FTS product development and 

lowers H2O production. Other authors have observed that the Au in Au-Co/Al2O3 acts as an 

effective WGS catalyst during the early stages of the reaction only, but loses this 

characteristic as the FTS reaction progresses due to metallic-phase redistribution [33]. 

Although the Au-Co bimetallic has been shown to be poor at WGS reaction, the 

performance of Au-Ni or Au-Fe bimetallics seem to be relatively better [29].  

 

Considering the bimetallic Co-Fe/C catalyst that generated only 3% CO2, there was an 

increase in the CO2 production with the addition of 10%Ni (7.5%) or after partial 

replacement of the 10%Ni with 5%Au, in Au-Ni-Co-Fe/C catalyst, which generated 7% CO2. 

Since WGS reaction enhances CO2 production, it was observed that H2O consumption 

according to Equation (1) was accompanied by an increase in the quantity of CO2 formed. 

However, an exact match in the amounts of CO2 generated was only reflected in the 

bimetallic Co-Fe/C catalyst (~4%) and the Ni-Co-Fe/C catalyst (~12%) represented by the 

difference between the two conversions (XCO – XH2), see Table 4. Instead, Au-addition to 

the 5%Ni-Co-Fe/C catalyst remarkably lowered both CO2 and H2O production by almost 

half (from 14 to 7% for CO2 and 55 to 30 cm3 in H2O), while at the same time improving the 

FTS product stream. 

 

4.3.2 Mechanism of Au promoted Ni-Co-Fe catalyst in WGS reaction 

Although Ni is a proven hydrogenation catalyst, its potential for H2 production in WGS 

reaction is already reported; however, high efficiency (94% CO conversion) was 

demonstrated only at elevated temperatures, typically above 450oC [51]. On the other 

hand, Au has been shown to be an active LT-WGS catalyst, since Au-promoted Co 

catalysts exhibit higher TOF, which is attributed to H2-spillover effect. This is a phenomenon 
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that usually involves the diffusion of atomic hydrogen from a noble metal to another surface 

such as the catalyst’s support. The noble metal, for example, facilitates the Co reduction, 

which in turn enables the production of dissociated hydrogen atoms to diffuse over to the 

moieties of the Co-oxide support [54].  

 

One major benefit observed in the spillover effect is that it facilitates the removal of non-

reactive species that block the metal’s active sites because the catalyst promoter 

encourages the desorption of such species, thus increasing the H2:CO ratio on the catalyst 

surface. The consequence of a high H2:CO ratio on the catalyst surface is to enhance FTS 

reaction rates [32]. During the dissociative adsorption of H2O on Au/Fe2O3 the H2O adsorbs 

strategically at the interface between Au nanoparticles and the oxide support, followed by a 

spillover of active OH– groups onto adjacent sites of the ferric oxide. Although this results in 

the cyclic re-oxidation of Fe2+ to Fe3+, this mechanism has been found to be unfavourable 

thermodynamically [55].  

 

Therefore, two other complimentary mechanisms have been advanced; the first relates to a 

regenerative-redox mechanism where the CO reacts with a reducible oxide support, 

partially reducing the support to form CO2, which is then followed by the associate 

mechanism where H2O oxidizes the partially reduced support to release H2 [56]. Since a 

substantial amount of Fe3O4 had already been identified in the active Fe/C catalyst during 

FTS in our early works [57], its presence as the reducible support alongside Ni and Au was 

expected to enhance WGS reaction in the FTS system. Already, the Au-Ni-Fe2O4 has been 

shown to be an effective hydrogenation catalyst in the removal of H2 from CO2 gas streams 

at 350 – 470 K [53].  

 

4.3.3 Benefits of Au-promoted FTS catalysts  

Tests, where Au/Ni(OH)2 was the active WGS catalyst, yielded excessive CH4 after total 

reduction to elemental Ni [55]. Although many authors concur that Au-promoted catalysts 

have high CH4 selectivity, low olefin and poor C5+ selectivity that result in low α-values 

when compared to the un-promoted samples [54], our results were much superior to these 

outcomes. The tested un-promoted Co/C catalyst had shown poor FTS selectivity at 20% 

CO2, 46% CH4, 7% gasoline, and 19% diesel, but the Au-promoted catalyst, operating at 



23 

 

similar reaction conditions (260oC, 2 MPa), exhibited higher chain-growth probability with α-

value > 0.80. The Au-Ni-Fe-Co/C displayed comparatively lower CH4 and high C5+ 

selectivity as follows: 7% CO2, 14% CH4, 41% gasoline, 32% diesel and 5% waxes.  

 

Incidentally, the amount of H2O produced by the Co/C single-metal and Co-Fe/C bimetallic 

catalysts was ~40 and 50 cm3 respectively, while the Au-promoted sample produced only 

30 cm3, which was equivalent to that produced by the single-metal Fe/C [47]. Since we 

know that the Fe catalyst is good at LT-WGS reaction, it is reasonable to impute the Au-Ni-

Fe as an active component in the WGS reaction. However, as CO2 is a by-product of WGS, 

the lower amount of CO2 produced in the process by the Au-promoted sample (7%) when 

compared to Fe/C (10%) strengthens this thesis. Nevertheless, since an equal amount of 

CO2 was expected in case of Au-enhanced WGS, there was a 3% drop, probably because 

the presence of Au introduced a different reaction mechanism which, at least partially, 

bypassed the WGS reaction.   

 

Moreover, Au-addition was perceived to be advantageous since the Au-Ni-Co-Fe/C catalyst 

produced more gasoline (41%) than all the other catalysts tested, including the un-

promoted 5%Ni-Co-Fe/C (38%). The Au-Ni-Co-Fe/C catalyst gave 33% selectivity towards 

diesel fraction, while the 5%Ni-Co-Fe/C made only 20%. The performance of the Au-Ni-Co-

Fe/C catalyst is, thus, considered, superior because it generated less CO2 (7%) and CH4 

(14%) relative to that of 5%Ni-Co-Fe/C, which had produced 14% of CO2 and 23% of CH4 

under similar reaction conditions.  

 

5. CONCLUSION 

 

A nanometric plasma-synthesized 5%Ni-Co-Fe/C catalyst, supported on carbon with BET 

specific surface area of ~90 m2.g-1 was promoted by Au-addition to produce a highly active 

FTS catalyst. Microscopic imaging analysis (by TEM and SEM coupled with EDX and X-ray 

mapping) revealed uniform metal distribution in the carbon matrix with average nanoparticle 

size in the range of 10 – 11 nm. The nanoparticles remained generally unaffected after a 

24-h thermal treatment by H2-reduction at 400oC, followed by another 24-h FTS reaction at 

260oC. Various phases were evident from XRD analysis ranging from metal carbides to 
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metallic and nano-alloy forms, but they were not fully quantifiable by RQA due to peak 

broadening and peak extinctions arising from the nanometric nature of the materials.  

 

Both the un-promoted Ni-Co-Fe/C and the Au-promoted Ni-Co-Fe/C catalysts were tested 

under identical FTS reaction conditions (260oC; 2 MPa pressure; H2:CO ratio = 2; GHSV = 

3 600 cm3.h-1.g-1 of catalyst) and benchmarked against the Co-Fe/C bimetallic. It was 

observed that addition of Ni alone to the Co-Fe/C bimetallic was not beneficial as it 

enhanced the production of shorter-chain hydrocarbons with excessive formation of CO2 

(14%), CH4 (23%), and H2O (55 cm3). These values were almost halved (CO2 = 7%; CH4 = 

14%; and H2O = 30 cm3) by the introduction of Au in the catalyst. The Au-Ni-Co-Fe/C 

catalyst produced more gasoline than all the other catalysts, with selectivity of ~41%, 

perhaps aided by the presence Ni. The α-values of the catalysts were calculated to be 

between 0.78 – 0.88 as determined from the higher molecular-weight hydrocarbons (C10+). 
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