
MÉTHODES D’APPRENTISSAGE AUTOMATIQUE POUR LA

SEGMENTATION DE TUMEURS AU CERVEAU

MACHINE LEARNING METHODS FOR BRAIN TUMOR

SEGMENTATION

par

Seyed Mohammad Havaei

Thèse présentée au Département d’informatique

en vue de l’obtention du grade de philosophiæ doctor (Ph.D.)

FACULTÉ DES SCIENCES

UNIVERSITÉ DE SHERBROOKE

Sherbrooke, Québec, Canada, 10 January 2017

Le 10 January 2017

Le jury a accepté le mémoire de Monsieur Seyed Mohammad Havaei

dans sa version finale.

Membres du jury

Professeur Hugo Larochelle

Directeur de recherche

Département d’informatique, Université de Sherbrooke

Professeur Pierre-Marc Jodoin

Directeur de recherche

Département d’informatique, Université de Sherbrooke

Professeur Langis Gagnon

Évaluateur externe

Centre de Recherche Informatique de Montréal, Université de Montréal

Professeur Shengrui Wang

Prśident rapporteur

Département d’informatique, Université de Sherbrooke

Sommaire

Malignant brain tumors are the second leading cause of cancer related deaths in chil-

dren under 20 1. There are nearly 700,000 people in the U.S. living with a brain tumor

and 17,000 people are likely to loose their lives due to primary malignant and cen-

tral nervous system brain tumor every year. To identify whether a patient is diagnosed

with brain tumor in a non-invasive way, an MRI scan of the brain is acquired followed

by a manual examination of the scan by an expert who looks for lesions (i.e. cluster

of cells which deviate from healthy tissue). For treatment purposes, the tumor and its

sub-regions are outlined in a procedure known as brain tumor segmentation . Although

brain tumor segmentation is primarily done manually, it is very time consuming and the

segmentation is subject to variations both between observers and within the same obser-

ver [138]. To address these issues, a number of automatic and semi-automatic methods

have been proposed over the years to help physicians in the decision making process.

Methods based on machine learning have been subjects of great interest in brain tumor

segmentation. With the advent of deep learning methods and their success in many com-

puter vision applications such as image classification, these methods have also started

to gain popularity in medical image analysis.

In this thesis, we explore different machine learning and deep learning methods applied

to brain tumor segmentation.

Les tumeurs malignes au cerveau sont la deuxième cause principale de décès chez les

enfants de moins de 20 ans 2. Il y a près de 700 000 personnes aux États-Unis vivant avec

une tumeur au cerveau, et 17 000 personnes sont chaque année à risque de perdre leur

1. www.abta.org
2. www.abta.org

iii

SOMMAIRE

vie suite à une tumeur maligne primaire dans le système nerveu central. Pour identifier

de façon non-invasive si un patient est atteint d’une tumeur au cerveau, une image IRM

du cerveau est acquise et analysée à la main par un expert pour trouver des lésions

(c.-à-d. un groupement de cellules qui diffère du tissu sain).

Une tumeur et ses régions doivent être détectées à l’aide d’une segmentation pour ai-

der son traitement. La segmentation de tumeur cérébrale et principalement faite à la

main, c’est une procédure qui demande beaucoup de temps et les variations intra et in-

ter expert pour un même cas varient beaucoup [138]. Pour répondre à ces problèmes, il

existe beaucoup de méthodes automatique et semi-automatique qui ont été proposés ces

dernières années pour aider les praticiens à prendre des décisions.

Les méthodes basées sur l’apprentissage automatique ont suscité un fort intérêt dans le

domaine de la segmentation des tumeurs cérébrales. L’avènement des méthodes de Deep

Learning et leurs succès dans maintes applications tels que la classification d’images a

contribué à mettre de l’avant le Deep Learning dans l’analyse d’images médicales. Dans

cette thèse, nous explorons diverses méthodes d’apprentissage automatique et de Deep

Learning appliquées à la segmentation des tumeurs cérébrales.

Mots-clés: brain tumor segmentation, machine learning, deep learning, convolutional

neural networks, medical image segmentation, computer aided diagnosis.

iv

Remerciements

Foremost, I would like to express my sincere gratitude to my advisors Dr. Pierre-Marc

Jodoin and Dr. Hugo Larochelle for their continuous support of my Ph.D study and

research, for their patience, motivation, enthusiasm and immense knowledge. Their gui-

dance helped me through out my research. I could not have imagined having better

advisors for my Ph.D study.

Besides my advisors, I would like to thank Dr. Maxime Descoteaux and Jean-Christophe

Houde for their insightful discussions and help with medical imaging tools.

My sincere thanks also goes to Dr. Christopher Pal, Dr. Alexandre Le Bouthillier and

Dr. Nicolas Chapados for offering me internship opportunities and allowing me to work

on diverse exciting projects.

I thank my fellow lab mates and friends in Université de Sherbrooke for the stimulating

discussions, for the sleepless nights we were working together, and for all the fun we

have had in the last four years.

Last but not least, I would like to thank my family for supporting me throughout my

life. Without their love and encouragement, I would not have finished this thesis.

v

REMERCIEMENTS

vi

Table des matières

Sommaire iii

Remerciements v

Table des matières vii

Table des figures xi

Liste des tableaux xvii

Introduction 1

1 Machine Learning 3

1.1 kNN . 8

1.2 SVM . 8

1.3 Artificial Neural Networks . 12

1.3.1 Perceptron . 13

1.4 Convolutional neural networks . 20

1.5 Regularization . 24

1.5.1 L2 and L1 regularization . 24

1.5.2 Dropout . 25

2 Magnetic Resonance Imaging 27

3 Brain Tumor Segmentation 35

3.1 Anatomy of brain tumors . 35

vii

TABLE DES MATIÈRES

3.1.1 Classification by place of origin 35

3.1.2 Classification by terms of aggressiveness 37

3.1.3 Classification by grade . 38

3.1.4 Classification by location in brain 38

3.2 Brain Tumor Segmentation . 39

3.2.1 Challenges in brain tumor segmentation 41

3.3 Previous work . 41

3.3.1 Semi-automatic methods . 42

3.3.2 Automatic methods . 43

3.4 BRATS datasets . 46

4 Deep learning in brain pathology segmentation 49

4.1 Introduction . 52

4.2 Glossary . 55

4.3 Datasets . 57

4.4 State-of-the-art . 60

4.4.1 Pre deep learning era . 60

4.4.2 Deep learning based methods 61

4.5 Open Problems . 67

4.5.1 Preparing the dataset . 67

4.5.2 Global information . 70

4.5.3 Structured prediction . 71

4.5.4 Training on small or incomplete datasets 71

4.6 Future Outlook . 75

5 Within-Brain Segmentation 77

5.1 Introduction . 81

5.2 Related Work . 83

5.3 Investigating Within-Brain Generalization 85

5.3.1 Feature representation and manual selection 86

5.3.2 Voxel classifiers . 86

5.3.3 Distance Metric/Kernel . 89

5.3.4 Importance of Within-Brain Hyper-Parameter Selection 90

viii

TABLE DES MATIÈRES

5.4 Experiments . 91

5.4.1 Experimental Setup . 91

5.4.2 Results and Discussion . 93

5.5 Conclusion . 98

5.5.1 Putting it all together . 98

5.5.2 Processing time and memory usage 100

5.6 Conflict of Interest . 102

5.7 Ethical approval . 102

6 Brain Tumor Segmentation with Deep Neural Networks 103

6.1 Introduction . 107

6.2 Related work . 110

6.3 Our Convolutional Neural Network Approach 112

6.3.1 The Architectures . 116

6.3.2 Training . 119

6.4 Implementation details . 123

6.5 Experiments and Results . 124

6.5.1 The TWOPATHCNN architecture 127

6.5.2 Cascaded architectures . 129

6.6 Conclusion . 135

7 HeMIS:

Hetero-Modal Image Segmentation 139

7.1 Introduction . 142

7.2 Method . 143

7.2.1 Hetero-Modal Image Segmentation 143

7.3 Data and Implementation details . 146

7.4 Experiments and Results . 148

7.5 Conclusion . 151

Conclusion 153

ix

TABLE DES MATIÈRES

x

Table des figures

1.1 A saddle point over a 2 dimensional error surface. We would like to in-

crease velocity on C � D direction and decrease it on A � B direction.

Figure from [18]. 6

1.2 Contour graph visualization of gradient descent on two dimensions of a

parameter vector. Figure from [108]. 6

1.3 Effects of the learning rate value on gradient descent optimization. Left:

very small learning rate results in very slow convergence. Right: very

large learning rate results in divergence. Figure from [108]. 7

1.4 Linear SVM visualization (Figure from [77]). 9

1.5 One versus all SVM. For every class c, a classifier is trained to separate

class c from other classes. Figure from [77]. 13

1.6 An artificial neuron. The dot product of a d dimensional input vector

and a parameter vector of the same dimensions is added with the bias

and passed trough a non-linearity g to obtain h(x). 16

1.7 Architecture for multi-layer Perceptron. Every layer is a function of the

previous layer, making deep architectures feasible. 16

1.8 A single convolution layer block showing computations for a single fea-

ture map. The input patch (here 7 × 7), is convolved with a series of

kernels (here 3 × 3) followed by ReLU and max-pooling. 24

1.9 Dropout. Each neuron is masked with a probability of p. Figure from [148]. 25

2.1 Net magnetization. a) At equilibrium. b) When rf pulse is applied. c)

At 90 rf pulse. d) At 180 rf pulse. Figure from [124]. 28

xi

TABLE DES FIGURES

2.2 Left, T1 relaxation time. Right, T2 and T2∗ relaxation time. Figure

from [124]. 29

2.3 Fourier transform property. The faster the decay in time domain, the

noisier the signal in Fourier domain [106]. Figure from [124]. 30

2.4 Generating an echo by applying a 90◦ pulse followed by a 180◦ pulse.

Figure from [124]. 30

2.5 Effect of TE and TR on NMR signal. Figure from [124]. 32

3.1 Various types of brain tumors. From left to right images show samples

of brain stem glioma, multi-form glioblastomas and meningioma. . . . 36

3.2 Image intensity overlap of tumor and edema with healthy tissue. The

left figure shows scatter plot of voxels on T2 (y axis) and T1C (x axis),

while the figure to the right shows the histogram of healthy, edema and

tumor on T1C. In both figures, the healthy class is shown in blue, edema

in green and tumor in red. 39

3.3 MRI modalities and tumor sub-regions. 40

4.1 The proposed architecture by Havaei et al. [66]. First row: TWOPATHCNN.

The input patch goes through two convolutional networks each compris-

ing of a local and a global path. The feature maps in the local and global

paths are shown in yellow and orange respectively. Second row: INPUT-

CASCADECNN. The class probabilities generated by TWOPATHCNN

are concatenated to the input of a second CNN model. Third row: Full

image prediction using INPUTCASCADECNN. 63

4.2 U-Net: The proposed architecture by Ronneberger et al. [127]. 64

4.3 CEN-s: The proposed architecture by Brosch et al. [17]. 64

4.4 Effect of second phase training proposed by [66]. The figure shows how

the second phase regularizes the predictions and removes false positives. 67

5.1 Left: T1C and T2 modality. Right: groundtruth tumor segmentation. 81

5.2 Our method in a nutshell. The segmentation is performed on the entire

brain based on data provided by user interaction. 85

5.3 Sensitivity of the model with respect to the gamma hyper parameter. . . 97

xii

TABLE DES FIGURES

5.4 Sensitivity of the model with respect to the number of training points.

(a) shows variation in average Dice measure while (b) shows variation

in the average processing time and memory usage. 98

5.5 Illustration of brain tumor segmentation maps predicted by different

variations of SVM. Top row from left to right : T1C modality, KSVM,

KSVM*, PKSVM*. Bottom row from left to right: ground truth, KSVM-

CRF, KSVM*-CRF, PKSVM*-CRF. 99

6.1 A single convolution layer block showing computations for a single fea-

ture map. The input patch (here 7 × 7), is convolved with series of

kernels (here 3 × 3) followed by Maxout and max-pooling. 113

6.2 Two-pathway CNN architecture (TWOPATHCNN). The figure shows

the input patch going through two paths of convolutional operations.

The feature-maps in the local and global paths are shown in yellow and

orange respectively. The convolutional layers used to produce these

feature-maps are indicated by dashed lines in the figure. The green box

embodies the whole model which in later architectures will be used to

indicate the TWOPATHCNN. 117

6.3 Cascaded architectures. 120

6.4 The first four images from left to right show the MRI modalities used

as input channels to various CNN models and the fifth image shows the

ground truth labels where � edema, � enhanced tumor, � necrosis, �

non-enhanced tumor. 126

6.5 Randomly selected filters from the first layer of the model. From left

to right the figure shows visualization of features from the first layer

of the global and local path respectively. Features in the local path in-

clude more edge detectors while the global path contains more localized

features. 128

xiii

TABLE DES FIGURES

6.6 Progression of learning in INPUTCASCADECNN*. The stream of fig-

ures on the first row from left to right show the learning process during

the first phase. As the model learns better features, it can better distin-

guish boundaries between tumor sub-classes. This is made possible due

to uniform label distribution of patches during the first phase training

which makes the model believe all classes are equiprobable and causes

some false positives. This drawback is alleviated by training a second

phase (shown in second row from left to right) on a distribution closer to

the true distribution of labels. The color codes are as follows: � edema,

� enhanced tumor, � necrosis, � non-enhanced tumor. 129

6.7 Visual results from our CNN architectures from the Axial view. For

each sub-figure, the top row from left to right shows T1C modality, the

conventional one path CNN, the Conventional CNN with two training

phases, and the TWOPATHCNN model. The second row from left to

right shows the ground truth, LOCALCASCADECNN model, the MF-

CASCADECNN model and the INPUTCASCADECNN. The color codes

are as follows: � edema, � enhanced tumor, � necrosis, � non-enhanced

tumor. 130

6.8 Visual results from our top performing model, INPUTCASCADECNN*

on Coronal and Sagittal views. The subjects are the same as in Fig-

ure 6.7. In every sub-figure, the top row represents the Sagital view

and the bottom row represents the Coronal view. The color codes are

as follows: � edema, � enhanced tumor, � necrosis, � non-enhanced

tumor. 131

6.9 Visual segmentation results from our top performing model, INPUT-

CASCADECNN*, on examples of the BRATS2013 test dataset in Sag-

gital (top) and Axial (bottom) views. The color codes are as follows: �

edema, � enhanced tumor, � necrosis, � non-enhanced tumor. 132

xiv

TABLE DES FIGURES

6.10 Our BRATS’15 challenge results using INPUTCASCADECNN*. Dice

scores and negative log Hausdorff distances are presented for the three

tumor categories. Since the results of the challenge are not yet publicly

available, we are unable to disclose the name of the participants. The

semi-automatic methods are highlighted in gray. In each sub-figure, the

methods are ranked based on the mean value. The mean is presented in

green, the median in red and outliers in blue. 136

7.1 Illustration of the Hetero-Modal Image Segmentation architecture. Modal-

ities available at inference time, Mk, are provided to independent modality-

specific convolutional layers in the back end. Feature maps statistics

(first & second moments) are computed in the abstraction layer, which

after concatenation are processed by further convolutional layers in the

front end, yielding pixelwise classifications outputs. 144

7.2 MLP-imputed FLAIR for an MS patient. The figure shows from left to

right the original modality and the predicted FLAIR given other modal-

ities. 149

7.3 Example of HeMIS segmentation results on BRATS and MS subjects

for different combinations of input modalities. For both cohorts, an

axial FLAIR slice of a subject is overlaid with the results where for

BRATS (first row) the segmentation colors describe necrosis (blue),

non-enhancing (yellow), active core (orange) and edema (green). For

the MS case, the lesions are highlighted in red. The columns present the

results for different combinations of input modalities, with ground truth

in the last column. 152

xv

TABLE DES FIGURES

xvi

Liste des tableaux

2.1 Effect of TE and TR on NMR signal 32

3.1 Summary of some methods on brain tumor segmentation. Columns

from left to right represent name of the author, description of the method,

training if applicable and the type of features used. Methods using deep

learning are not discussed in this table. 47

5.1 Dice, Specificity and Sensitivity measures for kNN methods on BRATS-

2013 test set. “∗" shows the use of spatial features. 94

5.2 Dice, Specificity and Sensitivity measures for various SVM methods on

the BRATS-2013 test set. “∗" shows the use of spatial features. 94

5.3 Dice, Specificity and Sensitivity measures for ensemble of decision

trees with AdaBoost (ADT) and random forests (RDT) on BRATS-2013

test dataset. “∗" shows the use of spatial features. 95

5.4 The effect of having a fixed selection of hyper-parameters for kernel

SVM and product kernel SVM. “∗" shows the use of spatial features. . . 97

5.5 Comparison of our top implemented architectures with the state-of-the-

art methods on the BRATS-2013 test set. 100

5.6 Comparison of our top implemented architectures with the state-of-the-

art methods on the BRATS-2013 leaderboard set. 101

5.7 Best performing methods for each machine learning category with av-

erage processing time and memory usage. 102

xvii

LISTE DES TABLEAUX

6.1 Performance of the TWOPATHCNN model and variations. The second

phase training is noted by appending ‘*’ to the architecture name. The

‘Rank’ column represents the ranking of each method in the online score

board at the time of submission. 133

6.2 Performance of the cascaded architectures. The reported results are

from the second phase training. The ‘Rank’ column shows the rank-

ing of each method in the online score board at the time of submission. . 133

6.3 Comparison of our implemented architectures with the state-of-the-art

methods on the BRATS-2013 test set. 137

6.4 Comparison of our top implemented architectures with the state-of-the-

art methods on the BRATS-2013 leaderboard set. 137

6.5 Comparison of our top implemented architectures with the state-of-the-

art methods on the BRATS-2012 "4 label" test set as discussed in [104]. 137

7.1 Comparison of HeMIS when trained on all modalities against BRATS-

2013 Leaderboard and Challenge winners, in terms of Dice Similarity

(scores from [104]). 149

7.2 Results of the full dataset training on the MSGC. For each rater (CHB

and UNC), we provide the volume difference (VD), surface distance

(SD), true positive rate (TPR), false positive rate (FPR) and the method’s

score as in [150]. 149

7.3 Dice similarity coefficient (DSC) results on the RRMS and BRATS test

sets (%) when modalities are dropped. The table shows the DSC for

all possible configurations of MRI modalities being either absent (◦) or

present (•), in order of FLAIR (F), T1W (T1), T1C (T1c), T2W (T2).

Results are reported for HeMIS, Mean (mean-filling) and the imputation

MLP (MLP). 150

xviii

Introduction

In terms of artificial intelligence, brain tumor segmentation is an interesting challenge

that humans can learn to do efficiently, however, designing models with similar pre-

cision appears to be very challenging. This is due to the fact that humans use high-

level features to localize and identify tumors [119]. This suggests that machine learning

methods, in particular deep learning, can have a major impact in this application. In

this work, we aim to provide beneficial tools using machine learning for brain tumor

segmentation. A short introduction to machine learning methods used in this thesis is

presented in Chapter 1. Magnetic resonance imaging (MRI) is briefly presented in Chap-

ter 2 and some prior work on brain tumor segmentation is discussed in Chapter 3. More

detailed discussions on challenges facing machine learning methods for brain tumor

segmentation are discussed in Chapter 4.

In an effort to alleviate the need for excessive pre-processing steps, we present a semi-

automatic method which is both fast and accurate while requiring little user interaction.

This method is discussed in Chapter 5. While having a semi-automatic tool reduces the

segmentation time compared to manual segmentation, the segmentation is still vulne-

rable to Inter-observer and intra-observer variability (i.e. mistakes made by the expert).

Taking advantage of high-level features learned by deep learning, we present a fully au-

tomatic method for brain tumor segmentation which greatly reduces segmentation time

and achieves high accuracy. This model is discussed in Chapter 6.

While having an accurate automated model solves a lot of issues, as in all machine

learning methods, it requires a fixed number of input modalities. In an effort to relax

that constraint, in Chapter 7, we present a hetero modality image segmentation model

which is flexible to the input modalities it receives.

1

INTRODUCTION

i

2

Chapter 1

Machine Learning

Machine learning is a domain in computer science which deals with the development

of models that can learn from data. This is achieved by introducing examples of the

data to the model through a training procedure. For the purpose of this thesis, we only

consider a specific branch of machine learning, namely supervised learning. In this

context, a training example is a pair of input observation xi ∈ ℜd and its corresponding

target yi. The set containing the training examples is known as the training set. The

training examples are introduced to the model and the objective is for the model to

extract patterns which describe the relationship between the training examples and their

corresponding targets. With this training procedure, we expect the model to make a

reasonable prediction (ŷt) given a previously unseen test example xt. A collection of

test examples comprise a test set. The model’s ability to make correct predictions on

the test set is known as generalization. In practice (especially for small training sets),

the variability of input data (e.g. variation in scale, rotation, illumination, etc.) is very

large and examples in the training set do not represent the entire data distribution, which

in turn makes the generalization suffer. Thus, it is common to map the input data to a

representation space in the hope that pattern recognition would be easier. This practice

is called feature extraction and can be done as a pre-processing step prior to learning

(if we already know which features to extract) or using deep learning technology where

the model learns the features it needs for the task at hand.

3

CHAPTER 1. MACHINE LEARNING

In this thesis we only focus on classification applications of machine learning. In clas-

sification problems, there exists a finite number (C) of individual classes and the goal

is to learn a classification function which assigns input examples to different individual

categories. In this setting yi is the class label l ∈ {0, ..C −1} to which the input example

xi is assigned to.

In machine learning, the classification function is estimated based on the training data.

The bias of the estimated classification function is defined as the difference between

the average prediction of the model and the true solution.The variance of a classifier

is defined as the variability of a model prediction for a given data point. For good

generalization, we expect the model to have small variance and small bias. If the model

has a high bias then the classifier even fails to classify the training data. This is known as

underfitting. If the model has high variance that means it is not robust to new examples

and it has overfitted to the training examples. Generally high variance is the result of

having too much capacity. The capacity of the model is a measure of complexity and

flexibility and is in direct correlation with the number of free parameters in the model.

Model formulation can be divided into two groups based on model parametrization,

namely; non-parametric models and parametric models. Non-parametric methods cover

techniques that do not rely on data belonging to any particular distribution and thus, the

number of parameters (i.e. capacity) is not a priori fixed as in parametric models. The

computations required to obtain the model function f depend on the size of the training

set and usually increase as the size of the training set increases. In parametric methods

however, the classifier is a function of a fixed size parameter vector w ∈ ℜd. A typical

example is a binary linear classifier which takes the following form :

a(x; w, b) = w
T
x + b, (1.1)

f(x; w, b) = g(a(x; w, b)) (1.2)

where b is a bias term and g is a non-linearity which either assigns a class label (such

as the sign function) or assigns a class probability (such as the sigmoid function). In

the remaining of this thesis for notation simplicity, f(x; w, b) is referred to as f(x).

To optimize such models, a loss function (error function) over the parameter vector is

defined which determines the amount of error the model makes when being presented

4

with training examples. The model updates its parameters in a way to reduce the loss.

Thus, the training objective is to minimize the loss function:

arg min
w,b

1

N

∑

i

J(f(x; w, bi), yi), (1.3)

where w is the set of all parameters.

The optimization problem in Equation 1.3 can be solved by gradient descent, where

the model follows the negative direction of gradients in parameter space to find local

minima. This is done by first computing the gradient of the loss function with respect

to every parameter

∆ = −∇wJ(f(xi), yi) (1.4)

and updating the parameters as

w � w + α∆, (1.5)

where α is known as the learning rate and determines the step size between two updates

(see Figure 1.2). The bias is updated in similar fashion. One issue with gradient descent

is choosing the learning rate. If we use a fixed learning rate but set it too low, the

optimization will be very slow (see Figure 1.3 (a)), but if we set it too high, the model

might never converge (see Figure 1.3 (b)). A common practice would be to start from

an initial learning rate and reduce the learning rate by some factor every few iterations

of the model.

To reduce the zig-zags in Figure 1.2, a momentum term can be added to Equation 1.5.

This can be written as

v � µv + α∆ (1.6)

w � w + v. (1.7)

By introducing a velocity vector v the model has a memory of the previous update

direction. The negative direction of the gradient is added to this velocity vector. If

the gradient is in the opposite direction of the previous update, the velocity vector will

prevent the parameters to wonder off severely which reduces the zig-zag effect. On the

other hand, if the model starts to plateau, the velocity vector improves the optimization

5

CHAPTER 1. MACHINE LEARNING

Figure 1.1 – A saddle point over a 2 dimensional error surface. We would like to increase
velocity on C � D direction and decrease it on A � B direction. Figure from [18].

Figure 1.2 – Contour graph visualization of gradient descent on two dimensions of a
parameter vector. Figure from [108].

by pushing the model to make larger update steps allowing the learning to proceed.

Using momentum, every dimension in the parameter space will have its own velocity

value. This can be advantageous in saddle points where a local maximum meets a local

minimum and we want the learning rate to increase in some directions and decrease in

others (See Figure 1.1).

One way to use the gradient descent algorithm is to update parameters at every training

example. This is referred to as stochastic gradient descent. Since the gradients are

estimated by only one training example, stochastic gradient descent often leads to noisy

gradients. A common practice is to use the average gradients of a batch of training

examples. This is referred to as mini-batch gradient descent. The number of training

6

Figure 1.3 – Effects of the learning rate value on gradient descent optimization. Left:
very small learning rate results in very slow convergence. Right: very large learning
rate results in divergence. Figure from [108].

examples in one mini-batch can be different depending on the type of data. The number

of iterations that takes for the model to go through the entire dataset is called an epoch.

If the model is not complex enough (e.g too few parameters) with respect to the size

of the training set, it will not have enough capacity to extract discriminative patterns

from the training set and the model would underfit. On the other hand, if the model is

too complex with respect to the size of the training set, the model would have enough

capacity to memorize every training example. This can cause the model to overfit to the

training data resulting in very small training loss but very bad generalization. Finding

the correct number of free parameters depends on the size of the training set and the

complexity of the problem, making it necessary to be tuned case by case. Variables

such as α or the number of free parameters which can change depending on the dataset,

are referred to as hyper-parameters and often need to be tuned. This process is known

as model selection and is performed as follows. First, a small set of training examples is

selected to form the validation set. Then, a grid of all possible combinations of hyper-

parameter values is formed and the model goes through them sequentially or randomly.

The hyper-parameter combination which achieves the best accuracy on the validation

set, is selected.

As discussed above, minimizing the training loss does not necessarily lead to good

7

CHAPTER 1. MACHINE LEARNING

generalization of the test set. The model can overfit only by training too much, thus it

is important to stop the training at the correct time. For that purpose, the performance

of the model on the validation set is measured after every epoch. We stop training when

the accuracy of the model on the validation set starts to drop. This practice is referred to

as early stopping. It is important to note that no training is performed on the validation

set (i.e. the parameters of the model are not updated when the validation set is used.)

In what follows, some of the more relevant machine learning algorithms are described.

1.1 kNN

The k-Nearest Neighbor (kNN) algorithm is a non-parametric method often used for

classification. There is no training phase associated to kNN and the training data is

simply stored in memory to be used directly at test time. Given a test example, we

calculate its distance to every training example and the k closest ones are chosen. To

determine the class label of the test example xt, a vote is taken among the labels of the

closest neighbors.

ŷt = arg max
c

1

k

∑

(xi,yi)∈N

δ(yi, c), (1.8)

where N is the set containing the k nearest neighbors of xt, δ(a, b) is equal to 1 if a = b

and 0 otherwise. k (i.e. the number of closest neighbors) is a hyper-parameter and

needs to be tuned. If k is too small, the model may have high variance and is prone to

overfitting. On the other hand if k is too large the model might underfit. Because the

amount of computations increases with the size of the training set, kNN is a poor choice

for very large datasets.

1.2 SVM

The support vector machine (SVM) [35] is a linear max-margin binary classifier. It tries

to find a linear hyperplane to maximize the margin between the two classes 1. The SVM

1. SVM can be generalized to more than two classes. The N-class case will be discussed later in this
chapter

8

1.2. SVM

Figure 1.4 – Linear SVM visualization (Figure from [77]).

classifier is a linear classifier where :

f(x) = w
T
x + b, (1.9)

and we would like f(x) to be such that :

f(xi) =





≥ 0 if yi = +1

< 0 if yi = −1 ,

i.e. yif(xi) > 0 for a correct classification. The SVM tries to satisfy a max-margin

property giving the model an advantage of being robust (i.e. low variance). The SVM

maximizes the margin ρ by trying to minimize the distance between training points xi

and the hyperplane of w (see Figure 1.4). This is formulated by the following equation.

ρ = min
i=1,..N

|
f(xi)

‖w‖
|, (1.10)

where |f(xi)
‖w‖

| can be shown to be the distance between the hyperplane and point xi. The

objective is thus to find the parameter vector bfw that maximizes the margin ρ.

max
w∈ℜd

ρ

9

CHAPTER 1. MACHINE LEARNING

subject to

ρ = min
i=1,..N

|
f(xi)

‖w‖
| and yif(xi) ≥ 1 ∀i . (1.11)

One can prove that this optimization criteria can be rewritten as [88] :

min
w∈ℜd

‖w‖2 (1.12)

subject to

yif(xi) ≥ 1 ∀i. (1.13)

Equation 1.13 assumes that the data is linearly separable, which means that it does not

allow for outliers. To make the model flexible with respect to outliers, the notion of soft-

margin is introduced which allows examples to be wrongly classified at the expense of

a penalty cost. The soft-margin criteria leads to the following formula :

min
w∈ℜd, ξi∈ℜ+

‖w‖2 +
C

N

∑
ξi (1.14)

subject to

yi(f(xi)) ≥ 1 − ξi ∀i. (1.15)

In Equation 1.14, the model allows xi to violate the original constrains in Equation 1.12

by ξi. If 0 < ξi < 1, xi violates the margin but is still classified correctly. If however,

ξi > 1, xi would be classified incorrectly. This flexibility comes at a cost of adding

ξi to the loss function. C is a hyper-parameter which controls the trade off between

correctness and robustness. Small C allows constraints to be easily ignored while large

C makes the constraints hard to ignore.

One can prove that Equation 1.14 is equivalent to [88]:

min
w∈ℜd

1

N

∑
max(0, 1 − yi(f(xi))) + ‖w‖2, (1.16)

where max(0, 1−yi(f(xi))) is known as the hinge loss [128]. Equation 1.16 is referred

to as the primal problem and can be solved by quadratic programming. Since hinge

loss is piece wise linear, a variant of gradient descent algorithm known as sub-gradient

10

1.2. SVM

descent can also be used for optimization [88]. In the primal problem the classifier is

a function of parameter vector w and b, as in Equation 1.1. Alternatively, based on the

representer theorem [139], the SVM can be formulated to learn a linear classifier of the

form

f(x) =
N∑

i

αi yi(xi
T
x), (1.17)

by solving an optimization problem over αi. This is known as the dual problem

max
αi≥0

∑

i

αi

1

2

∑

ij

αjαkyjyk(xT
i xj) (1.18)

subject to

0 ≤ αi ≤ C ∀i, and
∑

i

αiyi = 0

where αis are known as Lagrange multipliers and C is a regularization term which

bounds the possible size of the Lagrange multipliers. At a first glance, the dual problem

seems similar to kNN, where at test time we need to have access to the entire training

set. However, a lot of the Lagrange multipliers will be very close to zero in the final

(learnt) solution. The xi with non-zero αi will be the support vectors. In other words,

the support vectors of an SVM are training examples for which the coefficient α is not

zero.

A linear SVM refers to a linear classifier and is very effective when the data is lin-

early separable. For the cases where the data is not linearly separable, there are two

solutions. The first approach is to project the data in a feature space φ(·) (typically of

higher dimension) where it can be linearly separated. In this case, Equation 1.18 can be

formulated as:

max
αi≥0

∑

i

αi

1

2

∑

ij

αjαkyiyj(φ(xi)
T φ(xj)) (1.19)

subject to

0 ≤ αi ≤ C ∀i, and
∑

i

αiyi = 0.

Since φ(x) appears in pairs, we can replace the dot product between the two feature

11

CHAPTER 1. MACHINE LEARNING

vectors by a kernel function where:

K(xi, xj) = φ(xi)
T φ(xj). (1.20)

This is known as the kernel trick. Kernel trick is used in the SVM dual problem formu-

lation. An advantage of the kernel trick is that the optimization problem is independent

of the dimensionality of the parameter vector w, which can be very beneficial in very

high dimensional spaces. A choice for the kernel that often proves successful is the

radial basis function (RBF) kernel:

K(xi, xj) = exp(-γ ‖ xi − xj ‖2
2). (1.21)

where γ is a hyper-parameter [88] that can be seen as the inverse of the radius of in-

fluence of samples selected by the model as support vectors. The resulting classifier

effectively takes the form of a template matcher, that compares a given input with all

training examples, each voting for their class with a weight related to their similarity

with the input (as modeled by the kernel). In this sense, it is similar to the kNN classi-

fier, though the former often outperforms the later in practice. In the SVM formulation,

the primal problem where the optimization is done with respect to the parameter vector

w is regarded as a parametric model, while the dual problem where the optimization is

independent of w but rather depends on the training data, is regarded as a non-parametric

model.

It is possible to generalize the 2-class SVM to support multiple classes using the one

versus all approach [125]. In this approach, C different SVMs are trained (one for every

class). As shown in Figure 1.5, fc(x) for c ∈ {1, · · · , C} separates class c from other

classes. At test time, the classifier which achieves the maximum score, defines the class

label for the query example.

1.3 Artificial Neural Networks

An artificial neural network is a parametric model which is inspired from the human

nervous system. In the following, a progression time line of neural networks is pre-

12

1.3. ARTIFICIAL NEURAL NETWORKS

Figure 1.5 – One versus all SVM. For every class c, a classifier is trained to separate
class c from other classes. Figure from [77].

sented.

1.3.1 Perceptron

The Perceptron [129] is a linear binary classifier. The first implementation on cus-

tomized hardware is known to be the first artificial neural network. The Perceptron

model is defined as follows :

f(x) = g(wT
x + b) (1.22)

where the activation function g is defined as

g(n) =





+1 if n is ≥ 0

−1 other wise .

The loss is defined as a sum over wrongly classified training examples and is referred to

13

CHAPTER 1. MACHINE LEARNING

as the Perceptron criterion.

EP (w) = −
∑

i∈M

yi(w
T
xi + b), (1.23)

where yi ∈ {+1, −1} and M is the set of all wrongly classified examples. EP is a linear

function of w in regions of w where examples are wrongly classified and EP is zero if

all examples are correctly classified. Therefore, EP is piecewise linear with respect to

w. This allows us to optimize EP using sub-gradient descent.

Being piecewise linear, ∇wEP (w) =
∑

i yixi. This means provided that we use sub-

gradient descent, at every iteration of the model and for all training examples, if xi

is correctly classified the parameter vector w remains unchanged. If however, xi is

wrongly classified, ηyixi will be added to the parameter vector. Having this in mind,

if the training data is not linearly separable, the algorithm will not converge. However,

if the training data is linearly separable, the algorithm is guaranteed to find a solution.

Since the loss function is piece wise linear it might have more than one solution and

which one is found will depend on the initialization of parameters and the order which

the training data is presented to the model.

The Perceptron does not provide a probabilistic output due to its use of the sign function.

If we use an activation function such as the sigmoid, the output of the model would be

a value between 0 and 1 which can be interpreted as the probability of x belonging to

class 1. If we show class 0 and 1 as c0 and c1, then :

p(y = c1|x) = sigm(wT
x + b) = f(x) (1.24)

and since the conditional distribution y|x is a Bernoulli distribution, then :

p(y = c0|x) = 1 − sigm(wT
x + b) = 1 − f(x), (1.25)

where the sigmoid function is defined as:

sigm(x) =
1

1 + e−x
.

14

1.3. ARTIFICIAL NEURAL NETWORKS

Equations 1.24 and 1.25 can be written more compactly as :

p(y|x) = f(x)y(1 − f(x))1−y, (1.26)

where it is desirable to maximize this likelihood. An equivalent minimization problem

would be to minimize the cross entropy which is defined as the negative log of the

likelihood:

l(f(x), y) = −y log f(x) − (1 − y) log(1 − f(x)). (1.27)

The sigmoid function can also be interpreted as computing the class posterior probabil-

ities p(c|x) through the Bayes theorem :

p(y = c1|x) =
p(x|c1)p(c1)

p(x|c1)p(c1) + p(x|c0)p(c0)
=

1

1 + e−α
= sigm(α), (1.28)

where α =
∑

i log p(xi|c1)p(c1)
p(xi|c0)p(c0)

=
∑

i wixi + b is a weighted sum of the input. Therefore,

the posterior probabilities is equivalent to Equation 1.24.

Figure 1.6 shows the architecture of a single neuron which is considered a building

block of any neural network 2. Variables in this figure are computed as follows:

a(x) = b +
∑

i

wixi = b + w
T
x (1.29)

h(x) = g(a(x)) = g(b +
∑

i

wi xi), (1.30)

where w is the weight vector containing connection weights wi, b is the bias and g(·)

is the activation function, a(x) is known as the pre-activation and h(x) is the output of

the neuron. The following are the most common activation functions :

Sigmoid: sigm(x) =
1

1 + e−x

2. Note that if g(·) = sign(·), the architecture Figure1.6 would present a Perceptron.

15

CHAPTER 1. MACHINE LEARNING

Figure 1.6 – An artificial neuron. The dot product of a d dimensional input vector and
a parameter vector of the same dimensions is added with the bias and passed trough a
non-linearity g to obtain h(x).

Figure 1.7 – Architecture for multi-layer Perceptron. Every layer is a function of the
previous layer, making deep architectures feasible.

16

1.3. ARTIFICIAL NEURAL NETWORKS

Hyperbolic tangent: tanh(x) =
ex − e−x

ex + e−x

Rectified linear unit: ReLU(x) =





x if x > 0

0 if x < 0

A single neuron with a sigmoid activation function can be interpreted as a binary clas-

sifier which estimates p(y = c1|x) (i.e. the probability of x belonging to class 1).

However, the capacity of a single neuron is limited to linear decision boundaries thus,

making it a a linear classifier. One way to get around this difficulty is to use a net-

work (or collection) of neurons to make an intermediate (hidden) representation of the

input which can be linearly separated. This idea gives rise to multi-layered neural net-

works (see Figure 1.7). In the following, the equations for 2 layer neural networks with

sigmoid hidden layer is laid out.

a
(1)(x) = b

(1) + W
(1)

x,

where

a(x)
(1)
i = b

(1)
i +

∑

j

w
(1)
i,j xj

h
(1)(x) = ě(a(1)(x)) (1.31)

f(x) = sigm(b(2) + w
(2)T

h
(1)(x)). (1.32)

In a neural network the first layer is referred to as the input layer, the last layer is

referred to as the output layer and all other intermediate layers are known as hidden

layers. Neurons in a hidden layer are referred to as hidden units.

Features extracted from a single layer neural network, are low level features [177]. To

obtain higher level representations of the input vector, more layers can be added. At

every layer, representations (i.e. features) from the previous layer are combined with a

set of weights to encode a more abstract representation. Provided that the network is

deep enough, the representations from the final hidden layer are regarded as high level

features extracted from the input. With n hidden layers, the forward pass through the

17

CHAPTER 1. MACHINE LEARNING

network comprises of the following equations:

f(x) = sigm(a(n+1)(x)), (1.33)

a
(n+1)(x) = b(n+1) + w

(n+1)T

h
(n)(x) (1.34)

h
(n)(x) = ě(a(n)(x)) (1.35)

a
(n)(x) = b

(n) + W
(n)

h
(n−1)(x) (1.36)

where f(x) is the output of the model. In case of mutli-class, its a vector of the size of

the number of classes and its noted by f(x).

Using Equation 1.33, classifier f(x) is a binary classifier. In the case of multiple classes,

the output layer contains as many neurons as there are classes and for its activation

function, softmax is used. The softmax function is defined as follows:

p(y = c|x) = f(x)c =
e(b

(n+1)
c +w

(n+1)
c h(n)(x))

∑C
j=1 e(b

(n+1)
j

+w
(n+1)
j

h(n)(x)
, for c = 1, · · · , C (1.37)

If C is the number of classes, the output of the softmax is a vector of size C and can be

interpreted as the probability of input vector x belonging to each class. The operation

in Equation 1.37 is applied on all elements of the pre-activation output which results in

f(x). Using softmax, the output of the model is :

f(x) = softmax(a(n+1)(x)). (1.38)

To account for multiple classes, the loss function in Equation 1.27 can be expanded to

C classes as follows:

l(f(x), y) = −
∑

c

1(y=c) log f(x)c = − log f(x)y. (1.39)

In Equation 1.39, c ∈ {1, · · · , C} and the sum is over all possible labels that y can take.

18

1.3. ARTIFICIAL NEURAL NETWORKS

The parameters of a neural network can be updated with a gradient descent algorithm.

The gradients for model parameters are computed through the backpropagation algo-

rithm [134]. At the heart of the backpropagation algorithm, lies the chain rule. Accord-

ing to the chain rule:

if y = f(u), and u = g(x) then
dy

dx
=

dy

du

du

dx
. (1.40)

As seen from Equation 1.35, every layer in a neural network is a function of its previous

layer. For backpropagation, first the gradient of the loss with respect to the output

layer is computed (i.e. ∇f(x)l, where l is the loss function defined in Equation 1.39).

This gradient is propagated through the rest of the network through the chain rule. The

backpropagation equations are described in what follows:

As a first step, the partial derivative of the loss with respect to the output is computed as

∂

∂f(x)c

l(y, f(x)) =
−1(y=c)

f(x)y

the gradient which contains the partial derivatives is written as: as

∇f(x)l(y, f(x)) =
−e(y)

f(x)y

,

where e(y) is a onehot vector containing zero elements at every location other than the

yth element which is set to 1.

Using the chain rule we can then compute the partial derivatives of the output before the

activation as

∂

∂a(n+1)(x)c

l(y, f(x)) = −(1(y=c) − f(x)c)

and it’s gradient as :

∇a(n+1)(x)l(y, f(x)) = −(e(y) − f(x)).

19

CHAPTER 1. MACHINE LEARNING

In a similar way, using the chain rule, the partial derivatives for the variables in the kth

layer of the neural network can be derived as :

∂

∂h(k)(x)j

l(y, f(x)) =
∑

i

∂l(y, f(x))

∂a(k+1)(x)i

∂a(k+1)(x)i

∂h(k)(x)j

=
∑

i

∂l(y, f(x))

∂a(k+1)(x)i

W
(k+1)
ij

∂

∂a(k)(x)j

l(y, f(x)) =
∂l(y, f(x))

∂h(k)(x)j

∂h(k)(x)j

∂a(k)(x)j

=
∂l(y, f(x))

∂h(k)(x)j

g′(a(k)(x)j)

∂

∂W
(k)
ij (x)j

l(y, f(x)) =
∂l(y, f(x))

∂a(k)(x)i

∂a(k)(x)i

∂W
(k)
ij

=
∂l(y, f(x))

∂a(k)(x)i

hk−1
j (x)

∂

∂b
(k)
i

l(y, f(x)) =
∂l(y, f(x))

∂a(k)(x)i

∂a(k)(x)i

∂b
(k)
i

=
∂l(y, f(x))

∂a(k)(x)i

.

The partial derivatives can be generalized to vectors of gradients. From here we can

propagate the gradients layer by layer until we reach the first hidden layer, by computing

for k from n + 1 to 1 :

∇W(k)l(y, f(x)) = ∇a(k)(x)l(y, f(x))h(k−1)(x)T

∇b(k)l(y, f(x)) = ∇a(k)(x)l(y, f(x))

∇h(k−1)(x)l(y, f(x)) = W
(k)T

∇a(k)(x)l(y, f(x))

∇a(k−1)(x)l(y, f(x)) = (∇h(k−1)(x)l(y, f(x))) ⊙ [..., g′(a(k−1)(x)j), ...],

where ⊙ denotes element wise multipication.

1.4 Convolutional neural networks

Convolutional neural networks (CNN) are a type of NN adopted for spatially or tempo-

rally ordered input. The main building block used to construct a CNN architecture is the

convolutional layer. As in a regular NN, several convolutional layers can be stacked on

20

1.4. CONVOLUTIONAL NEURAL NETWORKS

top of each other forming a hierarchy of features. Each layer can be understood as ex-

tracting features from its preceding layer in the hierarchy. A single convolutional layer

takes as input a stack of input planes and produces as output some number of output

planes or feature maps. Each feature map can be thought of as a topologically arranged

map of responses of a particular spatially local non-linear feature extractor (the parame-

ters of which are learned), applied identically to each spatial neighborhood of the input

planes in a sliding window fashion. In the case of a first convolutional layer, the indi-

vidual input planes correspond to different input channels. In the case of MRI, it can

be different image modalities and in the case of color images it can be different color

channels. In subsequent layers, the input planes typically consist of the feature maps of

the previous layer. Computing a feature map in a convolutional layer (see Figure 1.8)

consists of the following three steps:

1. Convolution of kernels (filters): Each feature map Os is associated with one kernel

(or several, in the case of Maxout 3). The feature map Os is computed as follows:

Os = bs +
∑

r

Wsr ∗ Xr (1.41)

where Xr is the rth input channel, Wsr is the sub-kernel for that channel, ∗ is the

convolution operation and bs is a bias term 4. In other words, the affine operation

being performed for each feature map is the sum of the application of R different

2-dimensional N × N convolution filters (one per input channel/modality), plus

a bias term which is added pixel-wise to each resulting spatial position. The

convolutional operation of image X and kernel W is computed as:

Cij = (W ∗ X)ij =
∑

m

∑

n

Xi+m,j+nW−m,−n. (1.42)

In the above equation, the region in matrix X which is used in computation of Cij

is referred to as the local receptive field for Cij and so Cij is only connected to

its receptive field, rather than the whole image as it was the case with MLPs. This

3. Maxout will be discussed later in this chapter.
4. Since the convolutional layer is associated to R input channels, X contains M ×M ×R gray-scale

values and thus each kernel Ws contains N × N × R weights. Accordingly, the number of parameters
in a convolutional block, consisting of S feature maps is equal to R × M × M × S.

21

CHAPTER 1. MACHINE LEARNING

greatly reduces the number of parameters of the model. This receptive field is

slided across the entire image. For each receptive field, there is a different hidden

neuron (i.e. Os,ij). However, the weights to compute every hidden neuron is

shared. This further reduces the parameters of the model by a factor of the number

of neurons in that feature map. Intuitively, the reason for sharing parameters is

that each kernel can be thought of as a feature detector that tries to identify that

particular feature at different spatial positions in the image. Also, by sharing

parameters, we can greatly reduce the parameters of the model and reduce risk of

overfitting.

Whereas traditional image feature extraction methods rely on a fixed recipe (some-

times taking the form of convolutions with a linear filter bank), the key to the

success of convolutional neural networks is their ability to learn the weights and

biases of individual feature maps, giving rise to data-driven, customized, task-

specific dense feature extractors. These parameters are learned via stochastic gra-

dient descent on a surrogate loss function, with gradients computed efficiently via

the backpropagation algorithm.

Special attention must be paid to the treatment of border pixels by the convolution

operation. One option is to employ the so-called valid mode convolution, meaning

that the filter response is not computed for pixel positions that are less than ⌊N/2⌋

pixels away from the image border. An M × M input convolved with an N × N

filter patch, will result in a Q × Q output, where Q = M − N + 1. In Figure 1.8,

M = 7, N = 3 and thus Q = 5. Note that the size (spatial width and height)

of the kernels are hyper-parameters that must be specified by the user. One can

apply the convolutions in same mode to preserve the input size. In this mode, zero

padding is applied around the input prior to the convolution operation.

2. Non-linear activation function: To obtain features that are non-linear transfor-

mations of the input, an element-wise non-linearity is applied to the result of the

kernel convolution. There are multiple choices for this non-linearity, such as the

sigmoid, hyperbolic tangent and rectified linear functions [74], [52] or maxout

[53].

Maxout features are associated with multiple kernels Ws. This implies each Max-

out map Zs is associated with K feature maps : {OKs, OKs+1, ..., OKs+K−1}.

22

1.4. CONVOLUTIONAL NEURAL NETWORKS

Maxout features correspond to taking the max over the feature maps O, individu-

ally for each spatial position:

Zs,i,j = max {OKs,i,j, OKs+1,i,j, ..., OKs+K−1,i,j} (1.43)

where i, j are spatial positions. Maxout features are thus equivalent to using a

convex activation function, but whose shape is adaptive and depends on the values

taken by the kernels. ReLU function can be considered a special form of Maxout

where the max operation is taken over every feature map and a zero matrix of the

same size for each spatial position (i.e. max(Os, 0)).

Zs,i,j = max {Os,i,j, 0i,j} . (1.44)

Note that in Figure 1.8, the ReLU activation function is used.

3. Max pooling: This operation consists of taking the maximum feature (neuron)

value over sub-windows within each feature map. This can be formalized as fol-

lows:

Hs,i,j = max
p

Zs,Si+p,Sj+p, (1.45)

where p determines the max pooling window size and S is the stride value which

corresponds to the horizontal and vertical increments at which pooling sub-windows

are positioned. Depending on the stride value, the sub-windows can be overlap-

ping or not (Figure 1.8 shows an overlapping configuration). The max-pooling

operation shrinks the size of the feature map. This is controlled by the pooling

size p and the stride hyper-parameter. Let Q × Q be the shape of the feature map

before max-pooling. The output of the max-pooling operation would be of size

D×D, where D = (Q−p)/S +1 5. In Figure 1.8, since Q = 5, p = 2, S = 1, the

max-pooling operation results into a D = 4 output feature map. The motivation

for this operation is to introduce invariance to local translations. This subsampling

procedure has been found beneficial in other applications [86].

5. Note that values p and S should be chosen in a way that the pooling window fits the feature map
(i.e. D should be an integer). Alternatively, we can zero pad the feature map Q accordingly.

23

CHAPTER 1. MACHINE LEARNING

max(Os,0)

ReLU, convolution,
N = 3

max pooling,
p = 2

5x5 4x45x5
7x7

HsZsOsX

Figure 1.8 – A single convolution layer block showing computations for a single feature
map. The input patch (here 7 × 7), is convolved with a series of kernels (here 3 × 3)
followed by ReLU and max-pooling.

1.5 Regularization

Regularization refers to a technique used in an attempt to alleviate the overfitting prob-

lem in statistical models. As mentioned previously, when the model is too complex (i.e.

has too much capacity) with respect to the size of the training data, it becomes prone to

overfitting. In this section we describe common techniques to deal with overfitting.

1.5.1 L2 and L1 regularization

In L2 and L1 regularization, the weights are penalized by adding a regularization func-

tion R(w) to the loss, as seen in Equation 1.46.

arg min
w

1

N

∑

t

J(f(xi; w), yi) + R(w) (1.46)

The general intuition is to prevent the model to have large weights in the hope of achiev-

ing smooth classification boundaries. For the regularization function R(w) we can use

the L2 loss which can be thought of as having a Gaussian prior over the weights as

shown in Equation 1.47.

R(w) =‖ w ‖2, (1.47)

L2 loss encourages the weights to have small values.

The L1 regularization, which can be interpreted as a Laplacian prior over the weights

24

1.5. REGULARIZATION

Figure 1.9 – Dropout. Each neuron is masked with a probability of p. Figure from [148].

as shown in Equation 1.48, encourages sparsity in the weights. The Laplacian density

function puts more mass at 0 and in the tails compared to the Normal distribution. This

shows the greater tendency of L1 regularization to produce weights that are large or

exactly 0 [157].

R(w) =
∑

i

|w|i. (1.48)

1.5.2 Dropout

Dropout has proven to be an effective regularization technique [147]. During training,

the activation of every neuron is kept with a probability p or set to zero otherwise and

only the parameters of the kept neurons are updated (see Figure 1.9). This can be in-

terpreted as sampling from the full model different sub-models. At test time, all the

weights are used and so the neurons see all their inputs. It is desirable that the outputs

of neurons at test time be identical to their expected outputs at training time. To achieve

this goal, the weights are scaled by p. This can be interpreted as averaging the sampled

sub-models. Dropout can be thought of ensembling many thinned sub-models which

can lead to avoiding overfitting and better generalization

25

CHAPTER 1. MACHINE LEARNING

26

Chapter 2

Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI), is an imaging technique used to investigate the

anatomy of the body. MRI is based on the principles of Nuclear Magnetic Resonance

(NMR). NMR is the study of the behaviour of atomic nuclei once in a magnetic field,

and the frequencies they come into resonance with an electromagnetic field. Hydrogen

nuclei also known as protons, have magnetic properties due to their spin motion. Each

proton acts like a rotating magnet, which produces a magnetic field represented as a

vector. In a normal environment, the protons spin in random directions, thus the direc-

tion of the magnetic vectors are randomly distributed. This results into the sum of all

spins being zero which is also known as a null net magnetization.

When an external magnetic field (B0) is applied, nuclear spins would either align in

parallel or anti-parallel with the field. Since there are more spins aligned parallel to B0,

the net magnetization vector is in the direction of B0. The spins wobble about B0 with

an angular frequency ω0 defined as :

ω0 = γB0, (2.1)

where γ is called the gyromagnetic ratio and it is a particle-specific constant incorpo-

rating size, mass, and spin. This wobbling effect is called precession. The magnetic

vector of each spinning proton can be broken down into two parts: a longitude Z com-

27

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.1 – Net magnetization. a) At equilibrium. b) When rf pulse is applied. c) At
90 rf pulse. d) At 180 rf pulse. Figure from [124].

ponent (Mz) and a transverse component (Mxy) as shown in Figure 2.1. Precession

corresponds to the rotation of the transverse component about the longitudinal axis.

The sum of the longitudinal component of all spins is in the B0 direction. This is the

equilibrium (low energy) state for longitudinal components. The sum of all transverse

components is null which means they are out of phase. This is the equilibrium state for

transverse components.

By applying an electromagnetic field with a frequency equal to the frequency of the

precession, it is possible to change the net magnetization from equilibrium state. This

is called excitation. Magnetic resonance corresponds to the energy interaction between

spins and electromagnetic radio frequency(RF). This would cause the net magnetization

to rotate about B0. As shown in Equation 2.2, the rotation angle α depends on the

duration of the applied electromagnetic field (τ), and also its magnitude (B1).

α = 2πτγB1. (2.2)

A 90◦ pulse rotates the magnetization vector 90◦ down on the xy plane. 180◦ pulse,

rotates the magnetization vector 180◦ down along the −z axis (see Figure 2.1). This

electromagnetic RF pulse can be generated by running a current in a coil in the direc-

tion of the x axis. When the pulse is stopped, the system returns to equilibrium. This

process is known as relaxation. During relaxation, the proton releases the electromag-

28

netic energy which induces an electromagnetic signal in the coil. Relaxation combines

two different mechanisms:

— Longitudinal relaxation which corresponds to the recovery of Mz from 0 to its

original value at the equilibrium.

— Transverse relaxation which corresponds to the decay of transverse magnetiza-

tion.

The longitudinal relaxation is characterized by time T1 and transverse relaxation time

is characterized by time T2, where T2 ≤ T1. Both T1 and T2 follow an exponential

curve (see Figure 2.2).

Figure 2.2 – Left, T1 relaxation time. Right, T2 and T2∗ relaxation time. Figure from
[124].

In an inhomogeneous magnetic field where the distribution of the magnetic field is not

uniform (i.e. the magnetic field is stronger in some locations and weaker elsewhere),

protons spin with different frequencies. This will cause much faster transverse mag-

netization decay (dephasing). In this case, the 90◦ relaxation time is indicated as Free

Induction Decay (FID) and characterized by T2∗. The T2∗ relaxation time is very short

and therefore results in a very noisy Fourier transform. This is due to a Fourier trans-

form property that a thinner signal in time domain would have a wider spectrum in

Fourier domain and since the area under spectrum is constant, it would result in a lower

magnitude of the spectrum and thus a noisy effect (see Figure 2.3). The area under the

spectrum corresponds to the magnitude of the transverse magnetization at time zero of

the decay which is same for T2 and T2∗.

29

CHAPTER 2. MAGNETIC RESONANCE IMAGING

Figure 2.3 – Fourier transform property. The faster the decay in time domain, the noisier
the signal in Fourier domain [106]. Figure from [124].

Figure 2.4 – Generating an echo by applying a 90◦ pulse followed by a 180◦ pulse.
Figure from [124].

It is possible to use the disadvantage of inhomogeneous magnetic fields (i.e. that protons

spin with different frequencies) in the transverse magnetic vectors to our advantage by

creating an echo. This is done by applying a 90◦ pulse followed by a 180◦ pulse (see

Figure 2.4). When the system is excited by a 90◦ pulse, the net magnetization deviates

from the equilibrium state. Because the magnetic field is inhomogeneous, transverse

magnetization vectors would spin with different speeds, where the vectors with high

speed spin in front of vectors with lower speed. By applying a 180◦ pulse the fast

spinning vectors go in the back and slow spinning vectors would come in front. At

this point, the transverse magnetizing vectors would start to rephase and reach their

maximum rephase at Echo Time (TE).

30

However, at TE, the signal is not as high as the initial transverse magnetization inten-

sity. This process can be repeated many but limited number of times as the transverse

magnetization intensity decreases each time. The signal envelope joining maximums of

echos is known as the T2 decay curve (T). The MR signal sampling is after the echo

time TE. The time between the 90◦ pulse and 180◦ pulse is TE/2. The time between

two 90◦ excitation pulses is called repetition time (TR).

Each tissue has a specific proton density, T1 and T2 times. By varying TE and TR, it

is possible to affect Nuclear Magnetic Resonance (NMR) signals (see Figure 2.2 and

Table 2.1). Let A and B be two tissue types with different T1 and T2. If TR is too long,

the net magnetization of both tissue types would have reached their equilibrium state

by the time of the next excitation and thus both tissue would have the same transverse

magnetization intensity after the next excitation. On the other hand, if TR is short and

T1 relaxation time of tissue A is greater than that of tissue B, then MZ of A would have

recovered less than MZ of B after the next excitation and therefore tissue A and B would

have different contrasts. This is an effect related to T1. If TR is long, there would be no

difference for A and B from T1 relaxation. Now lets consider the difference in T2 time

for A and B. T2 is related to the transverse magnetization decay. If we apply a short

TE time, that is if we apply the 180◦ pulse just after the 90◦ pulse, almost no decay has

appeared and the transverse magnetization vector for both tissues would be almost the

same size. In this case, no difference in T2 relaxation can be observed for both tissues. If

TE is long enough, tissue A and tissue B would have different magnitudes of transverse

magnetization vector (i.e. a phase difference) before the 180◦ pulse is applied. Thus the

T2 curve would be different for these tissues. T1-weighted, T2-weighted and proton

density-weighted (PD) signals are achieved by varying TR and TE signals.

The proton density-weighted signal depends primarily on the density of protons (see

Table 2.1). Proton density contrast is a quantitative summary of the number of protons

per unit of volume. The higher the number of protons in a unit of tissue, the greater

the transverse magnetization, and the brighter the signal on the proton density contrast

image.

The brightness of tissue is known as signal intensity (SI) and can be computed as:

SI = Kρ(1 − e− (T R−T E)
T 1 e

−T E
T 2), (2.3)

31

CHAPTER 2. MAGNETIC RESONANCE IMAGING

PD T1-weighted T2-weighted
Long TR (2000 ms) Short TR (200-500 ms) Long TR (2500 ms)
Short TE(15-30 ms) Short TE (15-30 ms) Long TE (100-200 ms)

Table 2.1 – Effect of TE and TR on NMR signal

where K is a proportionality constant which depends on the sensitivity of the signal

detection circuitry on the scanner, ρ is the proton density contrast, TR the repetition

time, TE the echo time, T1 and T2 are the relaxation times. The values of T1, T2, and

ρ are specific to a tissue or pathology.

(a) T1-weighted signal (b) T2-weighted signal (c) PD signal (d) No signal

Figure 2.5 – Effect of TE and TR on NMR signal. Figure from [124].

Spatial encoding

For a 3D MR image, we need to incorporate spatial information in the NMR signals.

The first step is to determine the slice plane. This is done by applying a magnetic field

gradient perpendicular to the desired slice plane, which is added to B0. In this case,

protons on each slice will spin with a unique frequency and so the resonance frequency

varies along the z axis.

Now by applying an RF wave with a frequency equal to the resonance frequency of the

desired slice, only protons on that slice would be excited. The thickness of the slice can

be controlled by the bandwidth of the RF wave. The wider the bandwidth, the higher

the number of excited protons and therefore, the thicker the slice.

For the second step of spatial encoding, a phase encoding gradient is applied in the

vertical direction. The phase encoding does not affect the frequency of the spins, but

rather the phase. As a result, the protons on each row would have the same phase and the

phase varies slightly along the columns. The greater the phase difference, the thinner

32

and clearer the rows would be. On that account, many different acquisitions are made

with different phase encodings and then multiplied to have better effect.

The third and final step in spatial encoding is to apply a frequency encoding gradient

on the horizontal axis. By doing this, protons on each column spin with the same fre-

quency, while the resonance frequency along the horizontal axis would vary slightly.

This gradient is applied at the same time when the signal is being measured.

In summary, to incorporate spatial relations in the MR signal, three different magnetic

field gradients are applied in three steps. Using the Fourier transform, it is possible to

analyze the MR signal. To do this, the signal is quantized (digitized) and is written into

a data matrix called K-space which is in Fourier domain. The inverse Fourier transform

of the K-space would comprise one slice of the MR image. By changing the magnetic

field gradients we can fill in the K-space data matrix elements one by one. This process

is done for all slices along the z axis.

Fluid-attenuated inversion recovery (FLAIR)

FLAIR is a sequence that produces a strong T2-weighted image but with a suppressed

cerebrospinal fluid (CSF) signal. This is done by choosing a very long TE and TR

signals. FLAIR helps to distinguish between CSF and lesions that appear similar in T2.

T1-weighted contrast enhanced (T1C)

To improve the contrast of MR images, MRI contrast agents are used. Gadolinium is

the most common compound used for this purpose. Once injected in the blood, the

molecule of the compound gather in the tumor area and reduce the T1, T2 relaxation

times of the protons in their vicinity.

33

CHAPTER 2. MAGNETIC RESONANCE IMAGING

34

Chapter 3

Brain Tumor Segmentation

3.1 Anatomy of brain tumors

Tumors are mass of cells that have grown and multiplied uncontrollably. Brain tumors

are serious and life threatening. One can classify brain tumors in many different ways

either based on the place of origin, the infiltration degree or their location in the brain

and many other ways. In this chapter, we address some of these classifications.

3.1.1 Classification by place of origin

Brain tumors either start in the brain which are referred to as primary brain tumors, or

are spread into the brain via tumorous cells from a cancer else where in the body, which

are referred to as secondary or metastasis.

Primary

Primary brain tumors originate in the brain and do not spread outside of the central

nervous system. Depending on the type of the affected cells, primary tumors can be

divided into two major subsections: glioma and non-glioma.

35

CHAPTER 3. BRAIN TUMOR SEGMENTATION

Figure 3.1 – Various types of brain tumors. From left to right images show samples of
brain stem glioma, multi-form glioblastomas and meningioma.

Glioma

Glioma is a type of tumor that arises from glial cells. Glial cells are non-neuronal cells

that provide supportive role within the brain by nourishing, protecting and supporting

neurons. Glioma can be catogarized as:

— Multiform glioblastoma (GBM) –Most invasive of gliomas tumors. Grows rapidly.

May be composed of several types of cells. It can evolve from other types

of brain tumors. It is common in men and women between 50 to 70 years of

age [28]. It can spread to other parts of the brain. Multiform glioblastoma often

has a ring enhancement around the necrosis, visible in T1C. See Figure 3.1.

— Brainstem glioma –Located in the basin of the brain, they typically spread through-

out the nervous system. They range from low to high grade and mostly appear

in children 3 to 10 years of age [97]. See Figure 3.1.

— Ependymal –A type of glioma that the tumor originates in the cells that line the

central canal of the spinal cord. They can be supratentorial (cerebral hemisphers)

or infratentorial (back of the brain). Their peak occurrence is at age 5 and 35.

— Oligodendro gliomas –A type of glioma which most frequently appears in the

frontal or temporal lobes. This type of glioma comprises 12% of the infiltrating

(invasive) gliomas. While it can accour in children, it is more common in men

and women of age 20 to 40 years [97]. The cause of oligodendro is genetics.

— Astrocytomas –A type of glioma which originates in star-shaped glial cells in the

cerebrum. They can have any of the 4 tumor grades. Tumor grades are explained

later in this chapter.

36

3.1. ANATOMY OF BRAIN TUMORS

Non-glioma

These are tumors which arise from cells in the brain that are not glial. They include:

— Medulloblastoma (MDL) –It originates in the cerebellum and spreads. Most

common in men (62% of the reported cases were male) and children before age

of 5 [144]. They make up about 2% of all brain tumors.

— Meningioma –It is the most common primary brain tumor. Meningioma origi-

nates in meninge (skull area). They are benign in nature and have a slow growth

rate. See Figure 3.1.

— Pituitary adenomas –Located in the pituitary gland, they are generally non-

cancerous. 65% of these types of tumors are benign, 35% invasive and only

0.1% cancerous. They comprise about 14% of all brain tumors [85].

— Cerebellopontine angle syndrome (CPA)-It is located in the cerebellopontine an-

gle which is the anatomic space between the cerebellum and the pons. They

account for 5-10% of intracranial tumors and are mostly benign [146].

Secondary (metastatic)

A metastatic brain tumor is a cancer that started in another part of the body and spread

to the brain. Many tumor or cancer types can spread to the brain. Most common are

breast cancer, kidney cancer, lung cancer and bladder cancer.

3.1.2 Classification by terms of aggressiveness

Depending on whether or not they can spread by metastasis, tumors are classified as

being either benign or malignant [97].

Benign tumors

Benign tumors are the type of tumors which lack the ability to metastasize. There-

fore, benign tumors are non-cancerous. Benign tumors have slower growing rate than

malignant tumors. They have distinct borders. Although most benign tumors are not

life-threatening, many types of benign tumors can become malignant.

37

CHAPTER 3. BRAIN TUMOR SEGMENTATION

Malignant tumors

Malignant tumors are capable of spreading by metastasis. Generally the term cancerous

tumors refers to malignant tumors [97]. The characteristics of malignant tumors include:

— They possess rapid growth.

— They are invasive to neighboring tissues inside the nervous system.

— They lack distinct borders.

— They are life-threatening and have deep roots in the brain.

In Figure 3.1, the image to the right shows a patient with a bening meningioma tumor

while the image in the middle shows a patient with a malignant glioblastoma multiform

tumor.

3.1.3 Classification by grade

Physicians usually classify brain tumors by group, which is based on the shape and the

behaviour of tumor cells. Over time, a low grade tumor can evolve into a high grade

tumor.

— Grade I –Tumor cells are benign, look like a normal brain tissue and grow slow.

— Grade II –Tumor cells are malignant. They are more differentiable from normal

tissue than grade I tumors.

— Grade III –Tumor cells are malignant and look very different from normal cells

and they actively grow.

— Grade IV –Malignant and tend to grow quickly.

3.1.4 Classification by location in brain

Brain tumors can be classified into two groups based on their position in relation to the

tentorium.

— infra tentorium –Tumors which arise below the tentorium are called infra ten-

torium. These tumors exist in the cerebellum part of the brain. The cerebellum

controls functions such as balance, heart function, breathing, consciousness and

involuntary muscle movements.

38

3.2. BRAIN TUMOR SEGMENTATION

Figure 3.2 – Image intensity overlap of tumor and edema with healthy tissue. The left
figure shows scatter plot of voxels on T2 (y axis) and T1C (x axis), while the figure to
the right shows the histogram of healthy, edema and tumor on T1C. In both figures, the
healthy class is shown in blue, edema in green and tumor in red.

— supratentorium –Tumors arising above the tentorium are called supratentorium.

These tumors exist in the part of the brain called cerebrum. The cerebrum is re-

sponsible for functions such as movement, learning, problem solving, reasoning,

personality.

An example of various type of tumors are shown in Figure 3.1. In this work we focus

on segmentation of glioblastomas since they are the most challenging form of tumors

in terms of segmentation. For example while meningioma are primary located in the

skull area and are visible as a white blob and with will defined borders, glioblastomas

can appear any where in the brain and their image intensity overlaps with that of healthy

tissue (see Figure 3.2).

3.2 Brain Tumor Segmentation

A standard way to diagnose a brain tumor is by using MRI. Brain tumor segmentation is

necessary for monitoring the tumor growth or shrinkage, tumor volume measurement,

surgical and radiotherapy planning as well as estimating the extent of resection. For

these applications, not only the tumor needs to be outlined but also the surrounding

tissue. Currently, segmentation is done manually which is time consuming and tedious.

The second problem with manual segmentation is that the segmentation is subject to

39

CHAPTER 3. BRAIN TUMOR SEGMENTATION

T1 T2 T1C Flair GT

Non-enhanced

Edema

Enhanced

Necrosis

Figure 3.3 – MRI modalities and tumor sub-regions.

variation, between observers and also within the same observer. The objective of this

work is to develop semi-automatic and automatic methods for brain tumor segmentation

which can be used in a clinical facility.

The MRI modalities used for brain tumor segmentation are T1-weighted (also referred

to as T1), T2-weighted (also referred to as T2), T1-weighted contrast-enhanced (gadolinium-

DTPA) which we refer to as T1C and T2-weighted FLAIR (referred to as FLAIR). T1

is the most commonly used modality for structural analysis and distinguishing healthy

tissues. In T1C the borders of the tumor are enhanced. This modality is most use-

ful for distinguishing the active part of the tumor from the necrotic parts. In T2, the

edema region appears bright. Using FLAIR we can distinguish between the edema (i.e.

the swelling caused by the tumor) and the cerebral spinal fluid (CSF). This is possible

because CSF appears dark in FLAIR.

Using the above mentioned inputs, the objective is to segment the tumor and its sub-

regions. As shown in Figure 3.3, the sub-regions of a tumor are as follows:

— Necrosis–The dead part of the tumor.

— Edema–Swelling caused by the tumor. As the tumor grows, it can block the

cerebrospinal fluid from going out of the brain. New blood vessels growing in

and near the tumor can also lead to swelling.

— Active-enhanced–Refers to the part of the tumor which is enhanced in T1C

modality.

— Non-enhanced–Refers to the part of the tumor which is not enhanced in T1C

modality.

40

3.3. PREVIOUS WORK

3.2.1 Challenges in brain tumor segmentation

This section highlights some challenges associated with a brain tumor segmentation via

MRI modalities. These problems are associated to the data acquisition procedure and

the nature of brain tumors:

— Local noise–It is a white noise introduced while measuring the signal for every

pixel. It can be modeled to some extent for each pixel, by a Rician distribution

independent from tissue type.

— Intensity variation–It is associated to intensity inhomogenity of homogeneous

tissues as well as spatial intensity variations along each dimension.

— Intensity non-standardization–As mentioned before, the intensity of MR images

depend on parameters which are in turn affected by the hardware specifications

of the MRI machine.

— Inconsistency in brain tumor shape or intensity–Brain tumors can appear any-

where in the brain and have any shape and intensity. That makes it hard to apply

a shape prior or a statistical model of the tumor with a small variance. Also, tu-

mor (and or edema) can have intensity overlap with healthy tissue in other parts

of the brain (See Figure 3.2).

— Lack of labeled data–Lack of labeled data makes methods based on machine

learning prone to over fitting. A more thorough discussion on this matter will be

presented in Chapter 4.

3.3 Previous work

Brain tumor segmentation methods can be divided in two great families : interactive

(or semi-automatic) methods and automatic methods. Table 3.1 provides an overall

summary of the methods described in this chapter. A more thorough overview of the

related work is presented in Chapter 4.

41

CHAPTER 3. BRAIN TUMOR SEGMENTATION

3.3.1 Semi-automatic methods

Interactive methods or semi-automatic methods are those relying on user intervention.

Many of these methods rely on active deformable models (e.g. snakes) or classification

methods [12].

Deformable models

For these methods, the user initializes a contour around the region of interest, i.e. the

tumor. The active contour then converges slowly to its closest optimal configuration.

It is assumed that the global minimum energy is achieved when the contour reaches

the borders of the tumor. Jiang et al. [76] uses a level set method to perform tumor

segmentation. Wang et al. [172] proposed the fluid vector flow active contour model

that improves its capture range in MR images. Efforts have been made to initialize the

contour automatically and therefore eliminate the need for human interaction.

One problem with deformable models is that they are highly dependent on the image

gradients and if the tumor region does not have well-defined borders, they are likely

to fail. Also, strong gradients from surrounding objects may attract the active contour

in the wrong direction. Moreover, it is not trivial to integrate multiple MRI modalities

into these algorithms. Also, since snakes and level set are fundamentally 2-class seg-

mentation methods, it is non trivial to make segmentation of N > 2 classes as is often

required for tumor segmentation.

Classification

For these methods, the user labels some pixels as to which class (i.e. healthy, edema,

active tumor, necrosis, etc) they belong to. These labeled voxels act as training data to

train a classifier to predict the class for other voxels.

Vinitski et al. [170] proposed a semi-automatic method using T1,T2 and PD features,

where the user labels some voxels. These labeled voxels are used as training data for

the kNN to perform tissue segmentation.Vaidyanathan et al. [164] compared this method

42

3.3. PREVIOUS WORK

with semi-supervised fuzzy c-means (SFCM). Kaus et al. [79] incorporated spatial in-

formation by registering the modalities to the segmented atlas and adding extra features

(one for every class in the atlas) to the feature space. Zhang et al. [179] proposed a

semi-automatic method where the user selects voxels only from the tumor and based

on that, a one-class support vector machine is trained to segment abnormalities in the

brain. Morphological operations are then used to remove false positives. Havaei et al.

[63] proposed to use spatial features (i.e. positions of voxels in the xyz coordinate space)

as additional features to the image intensity values. In their method they used SVM for

classification and conditional random fields (CRF) was used as post processing.

3.3.2 Automatic methods

Deformable models

Automatic deformable models are those for which the algorithm tries to initialize the

contour automatically and therefore eliminate the need for human interaction. Ho et al.

[67] used the difference between pre and post contrast T1 as features to a Gaussian

mixture model (GMM) in order to compute a probability map for the tumor, which was

used to initialize the active contour. Rexilius et al. [122] initialized the segmentation

by a tumor probability map based on global cross subject intensity variability, which

is achieved by histogram matching. Prastawa et al. [118] used voxel registration to an

atlas as a way to get a probability map for abnormalities. The snake method is initialized

using this probability map. Khotanlou et al. [82] initialized their deformable model by

taking advantage of the symmetrical property of the brain. They used histogram analysis

of the difference image from the left and right hemispheres of the brain, to locate the

tumor.

The energy minimization in deformable models is based on two main terms. The data

term and the smoothness term. Much research has been done in exploring different

data terms. The most common data term uses a Gaussian probability density func-

tion [175][133]. Ho et al. [67] used the class conditional density achieved by fitting a

Gaussian on the histogram of the T1 − T1C image. Cobzas et al. [29] showed that the

probability density function (PDF) estimated discriminatively using logistic regression,

43

CHAPTER 3. BRAIN TUMOR SEGMENTATION

is better than the Gaussian distribution. They used intensity, texture and atlas based

features to train logistic regression model in a high dimensional feature space. On a

follow-up study, Popuri et al. [116] proposed a method based on Parzen windows to es-

timate the PDF. Automatic deformable models share most drawbacks of their interactive

version.

Machine Learning methods

Automatic methods are often based on machine learning classification and clustering

techniques [12]. This is mostly due to the fact that different MRI modalities can be

handled in a multidimensional feature space. The choice of features can play a crucial

role in the ability of the method to generalize well. Textures are sometimes extracted

to provide extra dimensions to the feature space [160, 46]. After constructing a feature

space by integrating different intensity and texture features, a machine learning classifier

is trained so it can decide to which class a voxel belongs to. Classification in general,

calls for supervised learning for which training data is needed to train a classifier based

on which new observations of data can be labeled. Clustering on the other hand, works

in an unsupervised way where observations are grouped based on similarity, or certain

knowledge that we have from the data.

Classification methods

Jensen and Schmainda [75] combined morphological, diffusion weighted and perfu-

sion weighted features to train a two hidden layer neural network across patient brains.

Other methods have used random forests for classification. Reza [123] used T1, T2 and

FLAIR along with other intensity and texture features to trained a random forest classi-

fier. Festa [46] used series of intensity, texture and neighborhood information features.

A total of 300 features were computed. A decision forest comprising of 50 trees was

trained in this feature space. Tustison [159] constructed a large feature space using first

order neighborhood statistical images, probability maps achieved from Gaussian Mix-

ture Models (GMM) and template differences to train a random forest. Subbanna and

Arbel [152] registered MRI modalities to a segmented brain atlas. By superimposing

tumor ground truths, they created a multi-class train set. From each MR image, Gabor

44

3.3. PREVIOUS WORK

filter features are extracted. They train a Bayesian classifier on the train set where each

class is modeled as a GMM. MRF is applied as post processing.

Clark et al. [27] take advantage of the prior knowledge we have from properties of

tumors and MRI modalities. In his knowledge-based technique, MRI modalities are

processed in 2D where MRI slices in the axial view are grouped into healthy and un-

healthy. This is done via fuzzy c-means algorithm and using symmetrical properties and

expected intensity values of different regions in the brain. Based on the knowledge of

tissue intensities in different modalities, thresholding is applied on the abnormal slides.

This process is refined using density screening.

Constantin et al. [30] used spectroscopy data to coarsely detect the tumor location in the

brain. Having found the rough location of the tumor, the FLAIR modality is thresholded

to finely detect the tumor area. Having separated the healthy voxels from tumor affected

voxles, the healthy part is further segmented into white matter, gray matter and CSF by

fitting a GMM to the healthy voxels. Expectation maximization (EM) was used to find

the parameters of the GMM. The PDFs were then used in an MRF model to perform

segmentation.

As mentioned previously, features play an important role when it comes to methods

based on classification and clustering. Schmidt et al. [137] compared the combination

of different feature sets such as binary mask, left to right symmetry and probability after

alignment. With the use of Gaussian filtering, multi-scale features were extracted. Lin-

ear SVM was then used for classification on high dimensional feature space, followed

by median filtering for post processing. Simonetti et al. [141] explored ways to reduce

the dimensionality of the feature space. They compared PCA, ICA, quantification and

LC model. Nearest neighbor with respect to Mahalanobis distance was used to per-

form classification. Luts et al. [98] compared different feature selection methods such

as Fisher discriminant, Kruskal wallis, relief-f and ARD for LS-SVM . The results were

compared with LDA on a high-dimensional feature space.

The advantage of using machine learning classification methods is that it is possible to

integrate many features, even if they are redundant. The drawback is that these methods

can be vulnerable to overfitting, which is likely when having small datasets, especially

when the distribution of the data is very variable due to the images being acquired by dif-

45

CHAPTER 3. BRAIN TUMOR SEGMENTATION

ferent MRI machines. Also, many machine learning methods require high-dimensional

feature maps.

Clustering methods

Prastawa et al. [119] presented an unsupervised method where the query brain is reg-

istered to the segmented atlas and so the probability density function for each class is

calculated. By computing T1C − T1, an initial estimation for the PDF of the tumor is

made. This PDF is used as initialization for EM to calculate the parameters of GMM.

Capelle et al. [20] used EM to compute the class conditional density function as the

data term for MRF to perform multi-class label segmentation. Saha et al. [135] local-

ized the tumor with a bounding box. First, a bounding box potential is calculated for

every slice using a change detection method which uses the symmetrical property of the

brain as the reference. The bounding boxes are clustered into healthy and non healthy

using mean-shift. Archip et al. [5] used normalized cuts on T1 to perform clustering.

To reduce the memory cost, they divide the image into supervoxels, where all voxels in

each supervoxel are supposed to belong to the same class. However, after the method is

launched, the user has to choose the class containing the tumor.

Deep learning methods

Recently, much research has been focused on applying deeplearning methods to brain

tumor segmentation. Most of these methods are based on convolutional neural networks

and provide promising results over publicly available datasets. A thorough description

of these methods are provided in Chapter 4.

3.4 BRATS datasets

BRATS is a brain tumor segmentation challenge which is held annually in conjunc-

tion with the International Conference on Medical Image Computing and Computer

Assisted Intervention (MICCAI). Each challenge is associated with a dataset which are

considered benchmarks for brain tumor segmentation methods. While until 2013, the

top performing methods were based on decision trees, since 2014 the winning methods

46

3.4. BRATS DATASETS

Authors Description Training Features FA/SA
Havaei et al. [63] kNN,SVM Yes T1C,T2,Flair,x,y,z SA
Tustison et al. [159] RF Yes T1,T1C,T2,Flair,atlas,geometry,T1C-t1 based FA
Meier et al. [103] RF+CRF Yes T1,T1C,T2,Flair FA
Reza and Iftekharuddin [123] RF Yes T1,T1C,T2,Flair,intensity difference, texture FA
Zhao et al. [180] Hsit. matching Yes T1C,T2,Flair FA
Cordier[171] Patch similarity Yes T1,T1C,T2,Flair FA
Festa et al. [46] RF Yes T1,T1C,T2,Flair,intensity difference,texture, FA
Schmidt et al. [137] LSVM Yes T1C,T2,B,atlas,A,symmetry FA
Mangin et al. [100] Hist.analysis+morph No T1 FA
Constantin et al. [30] Thresh+Morph. op. No Flair,T1,T1C,T2,MRS FA
Vinitski et al. [170] kNN Yes PD,T2,T1,T1C SA
Vaidyanathan et al. [164] kNN,SFCM Yes PD,T2,T1,T1C SA
Prastawa et al. [119] GMM No (T1C-T1),T1,T2,atlas FA
Archip et al. [5] NCuts No T1 SA
Clark et al. [27] fuzzy cmeans,Hist.thresh. Yes T1,T2,PD FA
Goyal et al. [57] Hist.analysis No T2,T1,T1C,symmetry FA
Subbanna and Arbel [152] Baissian classif.+MRF Yes T1,T2,Flair,T1C,GaborFeatures FA
Khotanlou et al. [82] Hist.analysis +deformable models No T1 FA
Corso et al. [33] GMM+graph hierarchy Yes T1,T1C,T2,Flair FA
Kaus et al. [80] KNN No T1,T1C,T2,atlas SA
Su et al. [151] fuzzy clustering+svm activ.learning Yes T1,T1C,T2,Flair FA
Ho et al. [67] Hist.analysis+levelsets No (T1C-T1),T2 FA
Capelle et al. [20] GMM+MRF No T1,T1C,T2 FA
Zhang et al. [179] oneclass-SVM+morph.op. Yes T1,T1C SA
Prastawa et al. [118] parzen window+levelsets No T1,T2,atlas FA
Jiang et al. [76] levelsets No TIC SA
Cobzas et al. [29] Logistic.regress.+levelsets Yes T1,T1c,T2,atlas SA
Luts et al. [98] LS-KSVM,LDA Yes MRSI,T1,T2,PD,T1C FA
Nie [109] GMM+MRF No T1,Flair,T2 FA
Simonetti et al. [141] PCA,ICA Yes H-MRSI,T1,T2,PD,T1C FA
Saha [135] Change detection+meanshift No T1C,T2,symmetry FA
Lee et al. [92] SVM+CRF Yes T1,T2,T1C FA
Popuri et al. [116] levelsets Yes T1,T2,T1C,atlas,texture,symmetry FA

Table 3.1 – Summary of some methods on brain tumor segmentation. Columns from left
to right represent name of the author, description of the method, training if applicable
and the type of features used. Methods using deep learning are not discussed in this
table.

47

CHAPTER 3. BRAIN TUMOR SEGMENTATION

in BRATS challenges have consistently used convolutional neural networks. Detailed

discussions on BRATS datasets, the evaluation metrics and the top performing methods

are presented in Chapter 4.

48

Chapter 4

Deep learning in brain pathology
segmentation

Résumé

In this chapter we review in more detail, the challenges facing machine learn-

ing methods when applied to medical image segmentation and specifically to

brain focal pathology segmentation. We describe the solutions that different

methods in this field take to address these challenges. We provide a detailed

overview of deep learning methods applied to brain tumor and lesion segmen-

tation while addressing their pros and cons.

Commentaires

This article is to appear as a book chapter in Springer LNCS volume on

Machine Learning For Health Informatics [63]. The article was mostly written

and organized by the Ph.D. candidate.

49

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

Deep learning trends for focal brain pathology
segmentation in MRI

Mohammad Havaei
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
seyed.mohammad.havaei@usherbrooke.ca

Nicolas Guizard
Imagia Inc., Canada

nicolas.guizard@imagia.com

Hugo Larochelle
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
hugo.larochelle@usherbrooke.ca

Pierre-Marc Jodoin
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
pierre-marc.jodoin@usherbrooke.ca

Keywords: Brain tumor segmentation, Brain lesion segmentation, Deep

learning, Convolutional neural network

Abstract

Segmentation of focal (localized) brain pathologies such as brain tumors and

brain lesions caused by multiple sclerosis and ischemic strokes are necessary

for medical diagnosis, surgical planning and disease development as well as

other applications such as tractography. Over the years, attempts have been

made to automate this process for both clinical and research reasons. In this

regard, machine learning methods have long been a focus of attention. Over

the past two years, the medical imaging field has seen a rise in the use of a

particular branch of machine learning commonly known as deep learning. In

the non-medical computer vision world, deep learning based methods have

obtained state-of-the-art results on many datasets. Recent studies in computer

aided diagnostics have shown deep learning methods (and especially convolu-

tional neural networks - CNN) to yield promising results. In this chapter, we

50

provide a survey of CNN methods applied to medical imaging with a focus

on brain pathology segmentation. In particular, we discuss their characteris-

tic peculiarities and their specific configuration and adjustments that are best

suited to segment medical images. We also underline the intrinsic differences

deep learning methods have with other machine learning methods.

51

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

4.1 Introduction

Focal pathology detection of the central nerveous system (CNS), such as lesion, tumor

and hemorrhage is primordial for accurate diagnosis, treatment and for future prognosis.

The location of this focal pathology in the CNS, determines the related symptoms but

clinical examination might not be sufficient to clearly identify the underlying pathol-

ogy. Ultrasound, computer tomography and conventional MRI acquisition protocols are

standard image modalities used clinically. The qualitative MRI modalities T1 weighted

(T1), T2 weighted (T2), Proton density weighted (PDW), T2-weighted FLAIR (FLAIR)

and contrast-enhanced T1 (T1C), diffusion weighted MRI and functional MRI are sen-

sitive to the inflammatory and demyelinating changes directly associated with the un-

derlying pathology. As such, MRI is often used to detect, monitor, identify and quantify

the progression of the diseases.

For instance, in multiple sclerosis (MS), T2 lesions are mainly visible in white mat-

ter (WM), but can be found also in gray matter (GM). MS lesions are more frequently

located in the peri-ventricular or sub-cortical region of the brain. They vary in size,

location and volume, but are usually elongated along small vessels. These lesions

are highly heterogeneous and include different underlying processes: focal breakdown

of the blood-brain barrier, inflammation, destruction of the myelin sheath (demyelina-

tion), astrocytic gliosis, partial preservation of axons and remyelination. Similarly, in

Alzheimer’s disease (AD), white matter hyperintensity (WMH), which are presumed

to be from vascular origin, are also visible in FLAIR images and are believed to be a

biomarker of the disease. Similar to vascular hemorrhages, ischemic arterial or venous

strokes can be detected with MRI. MRI is also used for brain tumor segmentation which

is necessary for monitoring the tumor growth or shrinkage, for tumor volume measure-

ment and also for surgical and radiotherapy planning. For glioblastoma segmentation,

different MRI modalities highlight different tumor sub-regions . For example, T1 is the

most commonly used modality for structural analysis and distinguishing healthy tissues.

In T1C, the borders of the glioblastoma are enhanced. This modality is most useful for

distinguishing the active part of the glioblastoma from the necrotic parts. In T2, the

edema region appears bright and using FLAIR, we can distinguish between the edema

and CSF. This is possible because CSF appears dark in FLAIR.

52

4.1. INTRODUCTION

The sub-regions of a glioblastoma are as follows:

— Necrosis–The dead part of the tumor.

— Edema–The swelling caused by the tumor. As the tumor grows, it can block the

cerebrospinal fluid from going out of the brain. New blood vessels growing in

and near the tumor can also lead to swelling.

— Active-enhanced–Refers to the part of the tumor which is enhanced in T1C

modality.

— Non-enhanced–Refers to the part of the tumor which is not enhanced in T1C

modality.

There are many challenges associated with the segmentation of a brain pathology. The

main challenges come from the data acquisition procedure (MRI in our case) as well as

from the nature of the pathology. Those challenges can be summarized as follows:

— Certainly, the most glaring issue with MR images comes from the non-standard

intensity range obtained from different scanners. Either because of the various

magnet strengths (typically 1.5, 3 or 7 Tesla) or because of different acquisition

protocols, the intensity values of a brain MRI, is often very different from one

hospital to another, even for the same patient.

— There are no reliable shape or intensity priors for brain tumors/lesions. Brain

pathology can appear anywhere in the brain, they can have any shape (often

with fuzzy borders) and come with a wide range of intensities. Furthermore, the

intensity range of such pathology may overlap with that of healthy tissue making

computer aided diagnosis (CAD) complicated.

— MR images come with a non negligible amount of white Rician noise introduced

during the acquisition procedure.

— Homogeneous tissues (typically the gray and the white matter) often suffer from

spatial intensity variations along each dimension. This is caused by a so-called

bias field effect. The MRI bias is a smooth low-frequency signal that affects the

image intensities. This problem calls for a bias field correction pre-processing

step which typically increases intensity values at the periphery of the brain.

— MR images may have non-isotopic resolution, leading to low resolution images,

typically along the coronal and the saggital views.

— The presence of a large tumor or lesion in the brain, may warp the overall struc-

53

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

ture of the brain, thus making some procedures impossible to perform. For ex-

ample, large tumors may affect the overall symmetry of the brain, making left-

right symmetry features impossible to compute. Also, brains with large tumors

can hardly be registered onto a healthy brain template.

Methods relying on machine learning also have their own challenges when processing

brain images. To count a few:

— Supervised methods require a lot of labeled data in order to generalize well to

unseen examples. As opposed to non-medical computer vision applications,

acquiring medical data is time consuming, often expensive and requires the

non-trivial approval of an ethical committee as well as the collaboration of non-

research affiliated staff. Furthermore, the accurate ground truth labeling of 3D

MR images is time consuming and expensive, as it has to be done by highly

trained personnel (typically neurologists). As such, publicly-available medical

datasets are rare and often made of a limited number of subjects. One conse-

quence of not having enough labeled data is that the models trained on such

datasets are prone to overfitting and perform poorly on new subjects.

— In supervised learning, we typically estimate by maximum likelihood and thus

assume that the examples are identically distributed. Unfortunately, the inten-

sity variation from one MRI machine to another, often violates that assumption.

Large variations in the data distribution can be leveraged by having a sufficiently

large training dataset, which is almost never the case with medical images.

— Classic machine learning methods rely on computing high dimensional feature

vectors, which can make them computationally inefficient both memory-wise

and processing-wise.

— Generally in brain tumor/lesion segmentation, ground truth is heavily imbal-

anced since regions of interest are very small compared to the whole brain. This

is very unfortunate for many machine learning methods such as neural networks

which work best when classes have similar size.

— Because of the variability of the data, there is no standard pre-processing proce-

dure.

Most brain lesion segmentation methods use hand-designed features [44, 104]. These

methods implement a classical machine learning pipeline according to which features

54

4.2. GLOSSARY

are first extracted and then given to a classifier whose training procedure does not affect

the nature of those features.

An alternative would be to learn such a hierarchy of increasingly complicated features

(i.e. low, mid and high level features). Deep neural networks (DNNs) have been shown

to be successful in learning task-specific feature hierarchies [15]. Importantly, a key

advantage of DNNs is that they allow to learn MRI brain-pathology-specific features

that combine information from across different MRI modalities. Also, convolutions

are very efficient and can make predictions very fast. We investigate several choices

for training Convolutional Neural Networks (CNNs) for this problem and report on

their advantages, disadvantages and performance. Although CNNs first appeared over

two decades ago [90], they have recently become a mainstay for the computer vision

community due to their record-shattering performance in the ImageNet Large-Scale

Visual Recognition Challenge [86]. While CNNs have also been successfully applied

to segmentation problems [3, 96, 61], most of the previous work have focused on non-

medical tasks and many involve architectures that are not well suited to medical imagery

or brain tumor segmentation in particular.

Over the past two years, we have seen an increasing use of deep learning in health care

and more specifically in medical imaging segmentation. This increase can be seen in re-

cent Brain Tumor Segmentation challenges (BRATS) which is held in conjunction with

Medical Image Computing and Computer Assisted Intervention (MICCAI). While in

2012 and 2013 none of the competing methods used DNNs, in 2014, 2 of the 15 meth-

ods and in 2015, 7 of the 13 methods taking part in the challenge were using DNNs. In

this work, we explore a number of approaches based on deep neural network architec-

tures applied to brain pathology segmentation.

4.2 Glossary

Cerebral spinal fluid (CSF) : a clear, colorless liquid located in the middle of the

brain.

55

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

Central nervous system (CNS) : part of the nervous system consisting of the brain

and the spinal cord.

Diffusion weighted image (DWI) : MR imaging technique, measuring the diffusion

of water molecules within tissue voxels. DWI is often used to visualize hyperintensities.

Deep Neural Network (DNN) : an artificial intelligence system inspired from human

nervous system, where through a hierarchy of layers, the model learns a hierarchy of

low to high end features.

Convolutional Neural Network (CNN) : a type of DNN adopted for imagery input.

The number of parameters in a CNN is significantly less than that of a DNN due to a

parameter sharing architecture made feasible by convolutional operations.

FLAIR image : an MRI pulse sequence that suppresses fluid (mainly cerebrospinal

fluid (CSF)) while enhancing edema.

Gray matter (GM) : a large region located on the surface of the brain consisting

mainly of nerve cell bodies and branching dendrites.

High-grade glioma : malignant brain tumors of types 3 and 4.

Low-grade glioma : slow growing brain tumors of types 1 and 2.

Multiple sclerosis (MS) : a disease of the central nervous system attacking the myelin,

the insulating sheath surrounding the nerves.

Overfitting : in machine learning the overfitting phenomenon occurs when the model

is too complex relative to the number of observations. Overfitting reduces the ability of

the model to generalize to unseen examples.

56

4.3. DATASETS

Proton density weighted (PDW) image : an MR image sequence used to measure

the density of protons; an intermediate sequence sharing some features of both T1 and

T2. In current practices, PDW is mostly replaced by FLAIR.

T1-weighted image : one of the basic MRI pulse sequences showing the difference

in the T1 relaxation times of tissues [47].

T1 Contrast-enhanced image : a T1 sequence, acquired after a gadolinium injection.

Gadolinium changes the signal intensities by shortening the T1 time in its surroundings.

Blood vessels and pathologies with high vascularity appear bright in T1 weighted post

gadolinium images.

T2-weighted image : one of the basic MRI pulse sequences. The sequence highlights

differences in the T2 relaxation time of various tissue[48].

White matter hyperintensity : changes in the cerebral white matter in aged individ-

uals or patients suffering from a brain pathology [120].

4.3 Datasets

In this section, we describe some of the most widely-used public datasets for brain

tumor/lesion segmentation.

BRATS benchmark The Multimodal BRain Tumor image Segmentation (BRATS), is

a challenge held annually in conjunction with the MICCAI conference since 2012. The

BRATS 2012 training data consist of 10 low- and 20 high-grade glioma MR images

whose voxels have been manually segmented with three labels (healthy, edema and

core). The challenge data consist of 11 high- and 5 low-grade glioma subjects and

no ground truth is provided for this dataset. Having only two basic tumor classes is

insufficient due to the fact that the core label contains structures which vary in different

57

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

modalities. For this reason, the BRATS 2013 dataset contains the same training data

but was manually labeled into 5 classes; healthy, necrosis, edema non-enhanced and

enhanced tumor. There are also two test sets available for BRATS 2013 which do

not come with ground truth; the leaderboard dataset which contains the BRATS 2012

challenge dataset with additional 10 high-grade glioma patients and the BRATS 2013

challenge dataset which contains 10 high-grade glioma patients. The above mentioned

datasets are available for download through the challenge website [171].

For BRATS 2015, the size of the dataset was increased extensively 1. BRATS 2015 con-

tains 220 subjects with high-grade and 54 subjects with low grade gliomas for training

and 53 subjects with mixed high and low grade gliomas for testing. Similar to BRATS

2013, each brain from the training data, comes with a 5 class segmentation ground truth.

BRATS 2015 also contains the training data of BRATS 2013. The ground truth for the

rest of the training subjects are generated automatically with the integration of the top

performing methods in BRATS 2013 and BRATS 2012. Although some of the automat-

ically generated ground truths have been refined manually by a user, some challenge

participants have decided to remove subjects with heavily corrupted ground truths from

their training data [64, 161, 83]. This dataset can be downloaded through the challenge

website [171].

All BRATS datasets, share four MRI modalities namely; T1, T1C, T2, FLAIR. Image

modalities for each subject are co-registered to T1C. Also, all images are skull stripped.

Quantitative evaluation of the model’s performance on the test set is achieved by upload-

ing the segmentation results to the online BRATS evaluation system [171]. The online

system provides the quantitative results as follows: The tumor structures are grouped

in 3 different tumor regions. This is mainly due to practical clinical applications. As

described by Menze et al. (2014) [104], tumor regions are defined as:

1. The complete tumor region (including all four tumor structures).

2. The core tumor region (including all tumor structures exept “edema").

3. The enhancing tumor region (including the “enhanced tumor" structure).

1. Note that the BRATS organizers released a dataset in 2014 which was later removed from the web.
This version of the dataset is no longer available.

58

4.3. DATASETS

For each tumor region, Dice, Sensitivity, Specificity, Kappa as well as the Hausdorff dis-

tance are reported. The online evaluation system provides a ranking for every method

submitted for evaluation. This includes methods from the 2013 BRATS challenge pub-

lished in [104] as well as anonymized unpublished methods for which no reference is

available.

ISLES benchmark Ischemic Stroke Lesion Segmentation (ISLES) challenge started

in 2015 and is held in conjunction with the Brain Lesion workshop as part of MICCAI.

ISLES has two categories with individual datasets; sub-acute ischemic stroke lesion seg-

mentation (SISS) and acute stroke outcome/penumbra estimation (SPES) datasets [40].

Similar to BRATS, an online evaluation system is available to evaluate the segmentation

outputs of the test subjects.

SISS contains 28 subjects with four modalities, namely: FLAIR, DWI, T2 TSE (Turbo

Spin Echo), and T1 TFE (Turbo Field Echo). The challenge dataset consists of 36 sub-

jects. The evaluation measures used for the ranking are the Dice coefficients, the average

symmetric surface distance, and the Hausdorff distance.

SPES dataset contains 30 subjects with 7 modalities namely: CBF (Cerebral blood

flow), CBV (cerebral blood volume), DWI, T1C, T2, Tmax and TTP (time to peak). The

challenge dataset contains 20 subjects. Both datasets provide pixel level ground truth of

the abnormal areas (2 class segmentation). The metrics used to gauge performances are

the Dice score, the Hausdorff distance, the recall and precision as well as the average

symmetric surface distance (ASSD).

MSGC benchmark The MSGC dataset which was introduced at MICCAI 2008 [150],

provides 20 training MR cases with manual ground truth MS lesion segmentation and

23 testing cases from the Boston Children’s Hospital (CHB) and the University of

North Carolina (UNC). For each subject, T1, T2 and FLAIR are provided which are

co-registered. While lesions masks for the 23 testing cases are not available for down-

load, an automated system is available to evaluate the output of a given segmentation

59

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

algorithm. The MSGC benchmark provides different metric results normalized between

0 and 100, where 100 is a perfect score and 90 is the typical score of an independent rater

[150]. The different metrics (volume difference "VolD", surface distance "SurfD", true

positive rate "TPR" and false positive rate "FPR") are measured by comparing the model

output segmentation to the manual segmentation of two experts at CHB and UNC.

4.4 State-of-the-art

In this section, we present a brief overview of some methods used to segment brain

lesions and brain tumors from MR images.

4.4.1 Pre deep learning era

These methods can be grouped in two major categories: semi-automatic and automatic

methods. Semi-automatic (or interactive) methods are those relying on user interven-

tion. Many of these methods rely on active deformable models (e.g. snakes) where the

user initializes the tumor contour [76, 172]. Other semi-automatic methods use classifi-

cation which the input to the model is given through regions of interest drawn from in-

side and outside of the tumor [79, 179, 63, 65, 12]. Semi-automatic methods are appeal-

ing in medical imaging applications since the datasets are generally very small [69, 51].

Automatic methods on the other hand are those for which no user interaction is made.

These methods can be divided into two groups; The first group of methods are based on

anomaly detection, where the model estimates intensity similarities between the query

subject and an atlas. By doing so, brain regions which deviate from healthy tissue are

detected. These techniques have shown good results in structural segmentation when

using non-linear registration [58, 122, 118, 82].

The second group of methods are machine learning methods, where a discriminative

model is trained using pre-defined features of the input modalities. After integrating

different intensity and texture features, a classifier is trained to decide to which class

each voxel belongs to. Random forests have been particularly popular. Reza et al. [123]

used a mixture of intensity and texture features to train a random forest for voxelwise

60

4.4. STATE-OF-THE-ART

classification. One problem with this approach is that the model should be trained in

a high-dimensional feature space. For example, Festa et al. [46] used a feature space

of 300 dimensions and the trained random forest comprised of 50 trees. To train more

descriptive classifiers, some methods have taken the approach of adding classes to the

ground truth [11, 181]. Tustison et al. [160] does this by using Gaussian Mixture Models

(GMMs) to get voxelwise tissue probabilities for WM, GM, CSF, edema, non-enhancing

tumor, enhancing tumor, necrosis. The GMM is initialized with prior cluster centers

learnt from the training data. The voxelwise probabilities are used as input features

to a random forest. The intuition behind increasing the number of classes is that the

distribution of the healthy class is likely to have different modes for WM, GM and the

CSF and so the classifier would be more confidant if it tries to classify them as separate

classes. Markov random fields (MRF) as well as conditional random fields (CRF) are

sometime used to regularize the predictions [103, 66, 94, 160]. Usually, the pairwise

weights in these models are either fixed [66] or determined by the input data. They

work best in the case of weak classifiers such as k-nearest neighbor (kNN) or decision

trees and become less beneficial when using stronger classifiers such as convolutional

neural networks [132].

Deformable models can also be used as post-processing, where an automatic method is

used to initialize the counter as opposed to user interaction in semi-automatic methods

[67, 122, 118, 82].

4.4.2 Deep learning based methods

As mentioned before, classical machine learning methods in both automatic and semi-

automatic approaches use pre-defined (or hand-crafted) features which might or might

not be useful in the training objective. Oppose to that, deep learning methods learn

features specific to the task at hand. Moreover, these features are learnt in a hierarchy

of increasing feature complexity, which results in more robust features.

Recently, deep neural networks have proven to be very promising for medical image

segmentation. In the past two years, we have seen an increase in use of neural networks

applied to brain tumor and lesion segmentations. Notable mentions are the MICCAI

61

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

brain tumor segmentation challenges (BRATS) in 2014 and 2015 and the ISLES chal-

lenge in 2015 where the top performing methods were taking use of convolutional neural

networks [44, 45].

In spite of the fact that CNNs were originally developed for image classification, it is

possible to use them in a segmentation framework. A simple approach is to train the

model in a patch wise fashion as in [25], where for every training (or testing) pixel i, a

patch xi of size n × n around i is extracted, and the goal is to identify class label of the

center pixel.

Although MRI segmentation is a 3D problem, most methods take a 2D approach by

processing the MRI slice by slice. For these methods, training is mostly done patch

wise on the axial slices. Zikic et al. [183] use a 3 layer model with 2 convolutional

layers and one dense layer. The input size of the model is 19 × 19, however, since

the inputs have been downsampled by a factor of 2, the effective receptive field size is

38 × 38. Max pooling with a stride of 3 is used at the first convolutional layer. During

test time, downsampled patches of 19×19 are presented to the model in sliding window

fashion to cover the entire MRI volume. The resulting segmentation map is upsampled

by a factor of two in order to have the same size as the input.

The TwoPathCNN by Havaei et al. [66] consists of two pathways: a local pathway

which concentrates on the pixel neighborhood information and a global pathway which

captures more the global context of the slice. Their local path consists on 2 convolu-

tional layers with kernel sizes of 7 × 7 and 5 × 5 respectively, while the global path

consists of one convolutional layer with 11 × 11 kernel size. In their architecture, they

use Maxout [53] as activation function for intermediate layers. Training patch size is

set to 33 × 33, however during test time, the model is able to process a complete slice

making the overall prediction time drop to a couple of seconds. This is achieved by

implementing a convolutional equivalent of the dense layers. To preserve pixel density

in the segmentation map, they use a stride of 1 in all max pooling and convolutional

layers. 2 This architecture is shown in Figure. 4.1.

2. Using stride of n means that every n pixels will be mapped to 1 pixel in the label map (assuming
the model has one layer). This causes the model to loose pixel level accuracy if full image prediction is
to be used at test time. One way to deal with this issue is presented by Pinheiro et al. [113]. Alternatively,
we can use a stride of 1 every where in the model.

62

4.4. STATE-OF-THE-ART

Input
4x33x33

Output
5x1x1

64x21x2169x24x24

160x21x21

Input
4x65x65

224x21x21
Conv 7x7 +
Maxout +
Pooling 4x4

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout

5x33x33

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 7x7 +
Maxout +
Pooling 4x4

Conv 13x13 +
Maxout

Input
4x33x33

Concatenation

Conv 21x21 +
Softmax

Output
5x1x1

64x21x2164x24x24

160x21x21

224x21x21

Figure 4.1 – The proposed architecture by Havaei et al. [66]. First row: TWOPATHCNN.
The input patch goes through two convolutional networks each comprising of a local
and a global path. The feature maps in the local and global paths are shown in yellow
and orange respectively. Second row: INPUTCASCADECNN. The class probabilities
generated by TWOPATHCNN are concatenated to the input of a second CNN model.
Third row: Full image prediction using INPUTCASCADECNN.

Havaei et al. [66] also introduce a cascaded method where the class probabilities from a

base model are concatenated with the input image modalities to train a secondary model

similar in architecture to that of the base model. In their experiments, this approach

refined the probability maps produced by the base model and brought them among the

top 4 teams in BRATS 2015 [64].

Pereira et al. [112] also use a CNN with patch wise training and small kernel sizes (i.e.

3 × 3) as suggested by [142]. This allowed them to have a deeper architecture while

maintaining the same receptive field as shallow networks with larger kernels. They train

separate models for HG and LG tumors. For the HG model, their architecture consists

of 8 convolutional layers and 3 dense layers, while the LG model is a bit shallower,

63

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

Figure 4.2 – U-Net: The proposed architecture by Ronneberger et al. [127].

Figure 4.3 – CEN-s: The proposed architecture by Brosch et al. [17].

64

4.4. STATE-OF-THE-ART

containing 4 convolutional layers and 3 dense layers. They use max pooling with a

stride of 2 and dropout is used only on the dense layers. Leaky rectified linear units

(LRLU) [99] are used for the activation function of all intermediate layers. This method

achieved good results in the BRATS 2015 challenge, ranking them among the top 4

winners. The authors also find data augmentation by rotation to be useful. That said,

the method comes with a major inconvenience, which is for the user to manually decide

the type of the tumor (LG or HG) to process.

Dvorak et al. [39] applied the idea of local structure prediction [37] for brain tumor

segmentation, where a dictionary of label patches is constructed by clustering the label

patches into n groups. The model is trained to assign an input patch to one of the n

groups. The goal is to force the model to take into account labels of the neighboring

pixels in addition to the center pixel.

The methods discussed above treat every MRI modality as a channel in the CNN. Rao

et al. [121] proposed instead to treat these modalities as inputs to separate convolutional

streams. In this way, they train 4 separate CNN models each on a different modality.

After training, these models are used as feature extractors where features from the last

pooling layer of all 4 models are concatenated to train a random forest classifier. The

CNNs share the same architecture of 2 convolutional layers of kernel size 5×5 followed

by 2 dense layers. Every CNN takes as input 3 patches of size 32 × 32, extracted from

3 dimensions (i.e. axial, sagittal, coronal) around the center pixel.

Segmentation problems in MRI are often 3D problems. However, employing CNNs on

3D data remains an open problem. This is due to the fact that MRI volumes are often

anisotropic (especially for the FLAIR modality) and the volume resolution is not consis-

tent across subjects. A solution is to pre-process the subjects to be isotropic [104, 58].

However, these methods only interpolate the data and the result ends up being severely

blurry when the data is highly anisotropic. One way to incorporate information from 3D

surroundings is to train on orthogonal patches extracted from axial, sagittal and coronal

views. The objective would then be to predict the class label for the intersecting pixel.

This is referred to as 2.5D in the literature [121, 140]. Havaei et al. [66] experimented

with training on 2.5D patches. However, they argued that since BRATS 2013 train and

test data have different voxel resolutions, the model did not generalize better than when

65

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

only training on patches from the axial view. Vaidya et al. [163] and Urban et al. [161]

used 3D convolutions for brain lesion and tumor segmentation. Using 3D convolution

implies that the input to the model has an additional depth dimension. Although this

has the advantage of using the 3D context in the MRI, if the gap between slices across

subjects varies a lot, the learnt features would not be robust. In a similar line of thought,

Klein et al. [84] also used 3D kernels for their convolutional layers, but with a different

architecture. Their architecture consists of 4 convolutional layers with large kernel sizes

on the first few layers (i.e. 12 × 12 × 12, 7 × 7 × 7, 5 × 5 × 5, 3 × 3 × 3) with input

patch size of 41 × 41 × 41. The convolutional layers are followed by 2 dense layers.

Kamnitsas et al. [78] used a combination of the methods above [161, 66, 112], applied

to lesion segmentation. In their 11 layer fully convolutional network which consisted of

2 pathways similar to [66], they used 3D convolutions with small kernel sizes of 3×3×3.

Using this model, they ranked among the winners of the ISLES 2015 challenge.

Stollenga et al. [149] used a long short-term memories (LSTM) network applied to 2.5D

patches for brain segmentation.

As opposed to methods which use deep learning in a CNN framework, Vaidhya et

al. [162] used a multi-layer perceptron consisting of 4 dense layers. All feature lay-

ers (i.e. the first 3) were pre-trained using denoising auto-encoder as in [169]. The input

consists of 3D patches of size 9 × 9 × 9. Training is performed on a resampled version

of the BRATS dataset, which balances the number of class patches. However, similar

to [66], fine-tuning is done on the original dataset with imbalanced classes to reflect the

real distribution of label classes.

Inspired by [102], Brosch et al. [16] presented the convolutional encoder networks

(CEN) for MS lesion segmentation. The model consists of 2 parts; the encoder part

which decreases the resolution of the feature maps and the up sampling part (also known

as the decoder part) which increases the resolution of the feature maps and performs

pixel level classification 3. The encoder consists of 2, 3D convolutional layers in valid

mode 4 with kernel size 9×9×9 in both layers, followed by an ReLU activation function.

The up sampling part of the model consists of convolutions in full mode 5 which results

3. In the literature this way of up sampling is some times wrongly referred to as deconvolution.
4. Valid mode is when kernel and input have complete overlap.
5. Full mode is when minimum overlap is a sufficient condition for applying convolution.

66

4.5. OPEN PROBLEMS

Second Phase

T1C Epoch = 5 Epoch = 11 Epoch = 25 Epoch = 35 Epoch = 55Epoch = 1

Epoch = 7Epoch = 5Epoch = 4Epoch = 2 Epoch = 10GT

Figure 4.4 – Effect of second phase training proposed by [66]. The figure shows how
the second phase regularizes the predictions and removes false positives.

in up sampling the model. Balancing label classes is done by introducing weights per

class in the loss function. They improved on this method in [17] by introducing CEN-s,

where they combine feature maps from the first hidden layer to the last hidden layer. As

shown in Figure. 4.3 and Figure 4.2, this model is very similar to the U-Net by Ron-

neberger et al. [127] with a difference in the way the up sampling step is applied. While

U-Net uses interpolation for up sampling, CEN-s uses convolutions and the transfor-

mation weights are learnt during training. Also U-Net is deeper with 11 layers, while

CEN-s contains only 4 layers.

Combining feature maps from shallow layers to higher layers (also referred to as skip or

shortcut connections) are popular in semantic segmentation [96, 62].

4.5 Open Problems

4.5.1 Preparing the dataset

Preparing the dataset in a proper way can play a key role in learning. In this chapter, we

discuss important aspects of dataset preparation for medical imaging.

67

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

Pre-processing

As mentioned before, the grayscale distribution of MR images depends on the acquisi-

tion protocol and the hardware. This makes learning difficult since we expect to have the

same data distribution from one subject to another. Therefore, pre-processing to bring

all subjects to similar distributions is an important step. Also, it is desirable that all input

modalities have the same intensity range, so one modality does not have prior advan-

tage over others in deciding the output of the model. Among the many pre-processing

approaches reported in the literature, the following are the most popular:

— Applying the N4/N3 bias field correction [160, 66, 56, 183, 87, 58, 39]. Kleesiek

et al. [83] and Urban et al. [161] did not apply bias field correction, instead, they

performed intensity normalization with mean CSF value, which they claim to be

more robust and effective.

— Truncating the 1% or 0.1% quantiles of the histogram to remove outliers from

all modalities [160, 66, 162].

— Histogram normalization, which is mostly done by matching the histogram of

every modality to their corresponding template histogram. [8, 112, 162, 58].

— Normalizing modalities [66, 39] or the selected training patches [112] to have

zero mean and unit variance.

Shuffling

Introducing the data to the model in a sequential order results in biasing the gradients

and can lead to poor convergence. By sequential order, we mean training first on data

(i.e. patches or slices) extracted from a subject, then training on data extracted from

another subject, and so on until the end of the training set. Depending on the dataset,

MRI subjects can be very different in terms of noise and even intensity distribution.

Therefore, it is important to shuffle the entire dataset so the model does not overfit

to the current training subject and forget its previous findings. It is desirable that the

distribution from which we introduce training examples to the model does not change

significantly. An advantage of patch wise training over full image training is that patch

wise training allows us to fully shuffle the dataset. This means, in patch wise training,

every mini batch contains patches from different slices of different subjects while in full

68

4.5. OPEN PROBLEMS

image training, there is no shuffling at pixel level.

Balancing the dataset

A dataset is imbalanced when class labels are not approximately equally represented.

Unfortunately, brain imaging data are rarely balanced due to the small size of the lesion

compared to the rest of the brain. For example, the volume of a stroke is rarely more

than 1% of the entire brain and a tumor (even large glioblastomas) never occupy more

than 4% of the brain. Training a deep network with imbalanced data often leads to very

low, true positive rate since the system gets biased towards the one class that is over

represented.

Ideally, we want to learn features invariant to the class distribution. This can be done

through balancing the classes in the dataset. One approach is to take samples from the

training set so we get an equal number of samples for every class. Another approach is to

weight the loss for the training examples from different classes based on the frequency

of appearance of every class in the training data [127] [16]. Sampling from the training

set can be done randomly [132, 131, 130], or follow an importance sampling criterion

to help the model learn features we care about (for example border between classes).

In Havaei et al.’s [66] patch wise training method, the importance sampling is done

by computing the class entropy for every pixel in the ground truth and giving training

priority to patches with higher entropy. In other words, patches with higher entropy,

contain more classes which makes them good candidates to learn the border regions

from.

Training on a balanced dataset makes the model believe all classes are equiprobable and

thus may cause some false positives. In order to compensate for this, one can account for

the imbalanced nature of the data with a second training phase, during which, only the

classification layer is trained and other feature layers are fixed. This allows to regularize

the model and remove some false positives. The effect of the second phase training is

presented in Fig 4.4. Ronneberger et al. [127] took a different approach which is best

suited for full image training. In their approach, they compute the distance of every

pixel to class borders and, based on that, a weight is assigned to every pixel. A weight

map is created for every training image and is used in the loss function to weight every

69

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

sample differently.

Pereira et al. [112] balance classes mainly by data augmentation. In their case, data

augmentation can be either a transformation applied on a patch or simply using patches

from similar datasets. For example, using patches from brains with high-grade glioma

when training a low-grade glioma model.

4.5.2 Global information

Adding context information has always been a subject of interest in medical image

analysis [2, 32, 34]. Since anatomical regions in closeup view can appear similar and

borders may be diffused in some parts due to lack of contrast or other artifacts, additional

context is needed to localize a region of interest.

In a CNN, it is possible to encode more contextual information by increasing the portion

of the input image that each neuron sees (directly or indirectly). Although it is possible

to increase the receptive filed of a neuron on the input image through series of convolu-

tional and pooling layers of stride 1, using strides greater than 1 is computationally more

efficient and results in more robust features. By doing so, the model looses precision

of spatial information which is needed for segmentation purposes. To take advantage of

both worlds (i.e. having spatial precision while learning robust features through pooling

layers) encoder-decoder type architectures can be used. Ronneberger et al. [127] and

Brosch et al. [17] learn a global understanding of the input by down sampling the image

(through series of convolutional and pooling layers) to smaller size feature maps. These

feature maps are later up sampled in the decoder section of the model and combined

with feature maps of lower layers that preserve the spatial information (see Figure 4.2

and Figure 4.3).

Havaei et al. [66] take a different approach where feature maps from 2 convolutional

streams (using the same input) are concatenated before going through the classification

layer. This two pathway approach, allows the model to learn simultaneously local and

global contextual features (see Figure 4.1).

70

4.5. OPEN PROBLEMS

4.5.3 Structured prediction

Although CNNs provide powerful tools for segmentation, they do not model spatial

dependencies in the segmentation space directly. To address this issue, many methods

have been proposed to take the information of the neighboring pixels in the label image

into account. These methods can be divided into two main categories. The first category

are methods which consider the information of the neighboring labels in an implicit way,

while providing no specific pairwise term in the loss function. An example of such an

approach is provided by Havaei et al. [66] which refine predictions made by a first CNN

model by providing the posterior probabilities over classes as extra inputs to a second

CNN model. Roth et al. [132] also use a cascaded architecture to concatenate the prob-

abilities of their first convolutional model with features extracted from multiple scales

in a zoom out fashion [107]. The second category of methods are ones that explicitly

define a pairwise term in the loss function which is usually referred to as Conditional

Random Field (CRF) in the literature. Although it is possible to train the CNN and CRF

end to end, usually for simplicity, the CRF is trained or applied as a post processing

secondary model to smooth the predicted labels. The weights for the pairwise terms

in the CRF can be fixed [63], determined by the input image [63] or learned from the

training data [132]. In their work, Roth et al. [132] trained an additional CNN model

between pairs of neighboring pixels.

Post-processing methods based on connected components have also proved to be effec-

tive to remove small false positive blobs [162, 66, 112]. In [132], the authors also try

3D isotropic Gaussian smoothing to propagate 2D predictions to 3D and according to

them, Gaussian smoothing was more beneficial than using a CRF.

4.5.4 Training on small or incomplete datasets

Deep neural networks generalize better on new data if a large training set is avail-

able. This is due to the large number of parameters present in these models. However,

constructing a medical imaging dataset is an expensive and tedious task which causes

datasets to be small and models trained on these datasets prone to overfitting. Even

the largest datasets in this field does not exceed a few hundred subjects. This is much

71

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

smaller than datasets like ImageNet, which contains millions of images.

Another problem arises from incomplete datasets. Medical imaging datasets are often

multi-modal with images from MRI acquisitions (T1, T2, PD, DWI, etc.) [104, 95].

However, not all modalities are always available for every subject. How to effectively

use the incomplete data rather than simply discarding them is an open question. Another

scenario is how to generalize on subjects with missing modalities. In this section we

review several effective approaches to train on small and/or incomplete datasets

Data augmentation

Increasing the size of the dataset by data augmentation is commonly employed in ma-

chine learning to enrich a dataset and reduce overfitting [86]. Flipping the image, ap-

plying small rotations and warping the image are common practices for this purpose

[86, 26, 127]. Roth et al. [132] and Ronneberger et al. [127] use non-rigid deformation

transformations to increase the size of their datasets and report it to be a key element

in achieving good results. The type of data augmentation technique depends on the

anatomy of the data and the model being used. For example, Pereira et al. [112] only

tested with rotation for data augmentation because the label of the patch is determined

by the center pixel and so warping or applying translations might change the position of

the center pixel. They used angles multiple of 90◦ and managed to increase the size of

the dataset 4 times. They found data augmentation to be very effective in their experi-

ments.

Transfer learning

Deep learning has made significant breakthroughs in computer vision tasks due to train-

ing on very large datasets such as ImageNet. ImageNet contains more than 1.2 million

training examples on over 1000 classes. To improve generalization on smaller datasets,

it is common to first train a base model on a large dataset such as ImageNet and then

fine-tune the learnt features on a second target model which is often much smaller in

size. Yosinski et al. [176] showed that the transferability of the features depends on how

general those features are. The transferability gap increases as the distance between

72

4.5. OPEN PROBLEMS

the tasks increase and also as the features become less general in higher levels. How-

ever, initializing weights from a pre-trained model (preferably on a large dataset), is still

better than initializing weights randomly.

Transfer learning can take different forms. One way is to generate features from the

base model and then use those features to train a classifier such as SVM or logistic

regression [9, 166, 6]. Bar et al. [9] used an ImageNet pre-trained base model to extract

features. These features are concatenated with other hand-crafted features before being

introduced to an SVM classifier. Van et al. [166] used overfeat pre-trained weights to

generate features for lung tumor detection. To address the overfeats 3 input channels,

3 2d patches are extracted from axial, saggital and coronal views. SVM is used as

classifier.

Although this way of transfer learning has proved to be somewhat successful, the degree

of its usefulness depends on how similar the source and target datasets are. If not very

similar, a better alternative is to fine-tune the features on the target dataset [22, 21,

49, 101]. Gao et al. [49] used this fine-tuning scheme to detect lung disease in CT

images. To account for the 3 color channels of the base model which has been pre-

trained on ImageNet, 3 attenuation scales with respect to lung abnormality patterns

are captured by rescaling the original 1-channel CT image. Carneiro et al. [21] uses

this method to reach state-of-the-art results on the InBreast dataset. Shin et al. [140]

reported experimental results in 3 transfer learning scenarios for Lymph node detection.

1) No transfer learning 2) transfering the weights from a base model and only training

the classification layer (i.e. weights from other layers are frozen), 3) transfering the

weights from a base model and fine-tuning all layers. According to their experiments,

the best performance was achieved in the 3rd scenario where the weights of the target

model are initialized from the weights of a previously trained base model and then

all layers are fine-tuned on the Lymph node dataset. Also, scenario 1 achieved the

worst performance. This is expected since the two datasets are very different and the

features learnt by a model trained on ImageNet are not general enough to be used as

is on a medical imaging dataset. Tajbakhsh et al. [156] conducted a similar study on

transferring pre-trained weights from AlexNet trained on ImageNet to 4 medical imaging

datasets. Based on their findings, initializing the weights to a pre-trained model and fine-

tuning all layers should be preferred to training from scratch, regardless of the size of

73

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

the dataset. However, if the target dataset is smaller we should be expecting a better

gain in performance compared to when the target dataset is sufficiently large. They also

observed that transfer learning increases the convergence speed on the target model.

Also, since the natural scene image datasets such as ImageNet are very different from

medical imaging datasets, we are better off fine-tuning all the layers of the model as

opposed to only fine-tuning the last few layers. Van et al. [166] also came to a similar

conclusion.

Another approach to transfer learning is to initialize the model to weights which have

been pre-trained separately in an unsupervised way using models such as Autoencoders

or RBMs [89]. This allows the weights of the target model to be initialized in a better

basin of attraction [41]. In their lung segmentation problem where they had access to

a large un-annotated dataset and a smaller annotated dataset, Schlegl et al. [136] used

convolutional restricted boltzmann machine to pre-train a CNN model in an unsuper-

vised fashion. A shallow model is used as it helps the unsupervised model to learn more

general features and less domain specific features.

Missing modalities

Different modalities in MRI need to be acquired separately and it often happens that

different subjects are missing some modalities. The most common practice is to prepare

the dataset using modalities that exist for most subjects. This leads to either discarding

some subjects from the dataset or discarding some modalities which are not present in

all subjects. Another approach is to impute the missing modalities by zero or the mean

value of the missing modality. Li et al. [95] used a 3 dimensional CNN architecture

to predict a PET modality given a set of MRI modalities. Van et al. [167] proposed to

synthesize one missing modality by sampling from the hidden layer representations of

a Restricted Boltzmann Machine (RBM). They perform their experiments on BRATS

2013 using a patch wise training approach. For every training patch, they train the RBM

with every modality to learn the joint probability distribution of the four modalities. At

test time, when only one of the modalities is missing, they can estimate the missing

modality by sampling from the hidden representation vector.

74

4.6. FUTURE OUTLOOK

4.6 Future Outlook

Although deep learning methods have proven to have potential in medical image analy-

sis applications, their performance depends highly on the quality of the pre-processing

and/or the post processing. These methods tend to perform poorly when input data do

not follow a common distribution which is often the case. Learning robust represen-

tations which are invariant to the noise introduced by the acquisition is needed. Un-

supervised learning or weakly supervised learning might hold the key to this problem.

Also methods based on domain adaptation might help us learn representations which

can better generalize across datasets.

75

CHAPTER 4. DEEP LEARNING IN BRAIN PATHOLOGY SEGMENTATION

76

Chapter 5

Within-Brain Classification for Brain
Tumor Segmentation

Résumé

As discussed in previous chapters, the image distribution from one patient to

another, can vary significantly. Machine learning methods which use data

across patients rely on pre-processing methods to bring data distributions

close together. In this work, we propose an alternative approach which re-

quires minimum pre-processing. In this approach, the training and generaliza-

tion is done within a single brain. While requiring minimum user interaction,

we increase generalization accuracy. Taking into consideration the physical

characteristics of the tumor that the tumor cells are localized, we propose to

use the spatial feature coordinates as extensions to image intensity features.

Commentaires

This article was published in international journal of computer assisted radi-

ology and surgery in 2015.

The initial crude idea was proposed by the Ph.D candidate’s supervisors which

was refined and extended by the Ph.D. candidate. He was involved in the

77

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

development of the method from the beginning. The entire MATLAB code

and part of the python code associated to this project was developed by the

Ph.D. candidate. He carried out experiments, results submissions and wrote

most parts of the paper.

78

Within-Brain Classification for Brain Tumor
Segmentation

Mohammad Havaei
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
seyed.mohammad.havaei@usherbrooke.ca

Hugo Larochelle
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
hugo.larochelle@usherbrooke.ca

Philippe Poulin
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
Philippe.Poulin2@usherbrooke.ca

Pierre-Marc Jodoin
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
pierre-marc.jodoin@usherbrooke.ca

Keywords: Brain tumor segmentation machine learning

Abstract

Purpose: In this paper, we investigate a framework for interactive brain tumor

segmentation which, at its core, treats the problem of interactive brain tumor

segmentation as a machine learning problem.

Methods: This method has an advantage over typical machine learning meth-

ods for this task where generalization is made across brains. The problem

with these methods is that they need to deal with intensity bias correction and

other MRI-specific noise. In this paper, we avoid these issues by approaching

the problem as one of within brain generalization. Specifically, we propose a

semi-automatic method that segments a brain tumor by training and general-

izing within that brain only, based on some minimum user interaction.

Conclusion: We investigate how adding spatial feature coordinates (i.e. i,

j, k) to the intensity features can significantly improve the performance of

different classification methods such as SVM, kNN and random forests. This

79

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

would only be possible within an interactive framework. We also investigate

the use of a more appropriate kernel and the adaptation of hyper-parameters

specifically for each brain.

Results: As a result of these experiments, we obtain an interactive method

whose results reported on the MICCAI-BRATS 2013 dataset are the second

most accurate compared to published methods, while using significantly less

memory and processing power than most state-of-the-art methods.

80

5.1. INTRODUCTION

5.1 Introduction

Brain tumor segmentation is primarily used for diagnosis, patient monitoring, treatment

planning, neurosurgery planning and radiotherapy planning. The task of brain tumor

segmentation is to locate the tumor and delineate different sub-regions of the tumor,

namely edema, non-enhanced, and enhanced regions (see Fig. 1). A standard way

to diagnose a brain tumor is by using magnetic resonance imaging (MRI), for which

many different modalities can be used. The most frequent MRI modalities used for

brain tumor segmentation are Flair, T1-weighted (also referred to as T1), T2- weighted

(also referred to as T2) and T1-weighted contrast-enhanced (gadolinium-DTPA) which

we refer to as T1C. These different modalities are often used jointly as they provide

complementary information for locating tumors.

Unfortunately, tumors (especially glioblastomas and metastases) can appear almost any-

where in the brain. They have no prior shape, and often have poorly defined edges. Also,

they visually present themselves in grayscales that are present in healthy tissues as well.

As a consequence, brain tumor segmentation in practice is still done manually. Manual

segmentation is not only time consuming and tedious, it is also subject to variations

between observers and also within the same observer [137].

Non-enhancedNon-enhanced

Non-enhanced

Edema

Enhanced

Figure 5.1 – Left: T1C and T2 modal-
ity. Right: groundtruth tumor segmenta-
tion.

Many methods have been proposed to facilitate the

tumor segmentation process. Among them, auto-

matic methods, which rely on machine learning,

are very popular and in some cases very efficient

[12]. These methods are trained on a number of

subjects and generalize on data which might be

gathered from different MRI scanners. Because

there is no intensity standardization among MRI

scanners, this makes generalization difficult for

automatic methods. In an attempt to overcome

these difficulties, a lot of prepossessing steps are

made which can be time consuming. Also, to im-

prove generalization, these methods often compute

high dimensional feature vectors [137] which add to the processing time and take up a

81

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

lot of memory.

In this paper, we consider the specific problem of segmenting an imaged brain into 4

classes: edema, non-enhancing tumor, enhancing tumor and healthy tissue (see Fig. 5.1).

Note that the non-enhancing tumor sometimes includes necrotic tissue. Our approach

is halfway between automatic and semi-automatic methods. While machine learning

methods train on a pre-selected set of brains and then generalize to testing brains, our

method implements a “single brain" supervised learning method. The user roughly

selects brain voxels associated to each class and then these voxels are used as training

data. The method then generalizes by labeling non-selected voxels.

The main characteristics of our method are as follows:

— Since it treats each brain as a separate dataset, it is immune to the multi-MRI

disadvantages mentioned above.

— Although it uses only 6 simple features, it produces highly accurate results.

— The segmentation process for a 240 × 240 × 168 brain takes approximately 10

seconds for our fastest method which is much faster than most state-of-the-art

methods which can take up to 100 minutes.

— The method is extremely memory efficient (50 Mb vs. >2 Gb for other methods)

In this paper we first evaluate this framework on variations of three popular machine

learning methods namely; k nearest neighbor classifier (kNN), support vector machines

(SVM), random forests and boosted decision trees. Having confirmed that SVMs give

superior results, we propose better distance metrics to be used by SVM classifier in

the context of this approach. We also investigate the importance of performing hyper-

parameter selection individually for each brain, as opposed to using generic hyper-

parameters for every brain. Thanks to this investigation, we were able to significantly

improve the resulting brain segmentation system and achieve a competitive performance

compared to the methods submitted to the brain tumor segmentation challenge online

evaluation benchmark [104].

82

5.2. RELATED WORK

5.2 Related Work

Brain tumor segmentation methods can be divided into automatic methods and semi-

automatic (interactive) methods. Semi-automatic methods are those relying on user

interaction. Most of these methods use either deformable models or classification meth-

ods to perform segmentation (see Bauer et al. [12] for a survey).

For automatic methods, machine learning classification techniques are a tool of choice

for designing such systems, as they can easily integrate different MRI modalities as

well as other features. After integrating different intensity and texture features, these

methods decide to which class each voxel belongs to.

For instance, Festa et al. [104] used a series of intensity and texture based features to

make a feature space of over 300 dimensions, on which a random forest classifier was

trained. Tustison et al. and Reza et al. also used random forests [104]. Tustison et al.

constructed a multi-dimensional feature space by incorporating first order neighborhood

statistical images, GMM and Markov Random Field (MRF) posteriors, and template dif-

ferences. [93] performed binary segmentation (tumor vs. non-tumor) using T1, T2, T1C

in an SVM framework followed by a variation of conditional random fields to account

for neighborhood relationships. [10] used a kernel SVM for multiclass segmentation of

brain tumors, where a CRF is used to regularize the results.

Schmidt et al. [137] compared the combination of many different feature sets, such as

binary mask, average intensity, left to right symmetry. Luts et al. [98] also compared

different feature selection methods such as Fisher discriminant analysis, Kruskal wallis,

relief-f and ARD for LS-SVM.

Because automatic methods train on multiple brains, these methods are vulnerable to

the variations in the MRI data. These variations come from the fact that MR images

are generated by different machines and each have their own unique noise and intensity

level. To overcome this difficulty, most of these methods rely on a large number of

features, which requires a lot of memory and computation time.

As for semi-automatic methods, deformable models are often employed. These algo-

rithms are usually initialized by a user drawing a contour around the tumor. Following

an energy minimization criterion, the contour shrinks down towards the borders of the

83

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

tumor [76, 172]. Hamamci et al. [60] used a so-called CA-based method on T1 weighted

images to produce a probability map for the tumor, based on seeds provided by the user.

This probability map is later used in a level set framework. Later, they extend their

method to accept multi-modal MRI inputs namely T1C and Flair. For a two class seg-

mentation (tumor, edema) this method takes 1 minute for user interaction and 10-20

minutes for segmentation depending on the size of the tumor [59]. There exists a line

of research focusing on how to efficiently initialize the active contour and thus remove

user interaction. In this context, the location of the tumor is roughly determined by

some other method and deformable models are used as post-processing for refinement.

Ho et al. [67] use the difference between T1 and T1C together with a Gaussian mixture

model (GMM) to get a probability map of the tumor, which is used in a level-set model

to initialize the contour. Prastawa et al. [118] used voxel registration with an atlas as

a way to get a probability map for abnormalities. An active contour is then initialized

using this probability map and iterates until the change in posterior probability is below

a certain threshold.

Although deformable models have been popular in medical image analysis, they have

some significant disadvantages. Because these methods rely on image gradients, they

are likely to fail when the object of interest does not have well defined borders. The

contour may get attracted by strong gradients from surrounding objects. Incorporating

different features into the model is also non-trivial. Finally, without a GPU implemen-

tation, these methods can be extremely slow.

There has been research on ensembling results from multiple methods applied to brain

tumor segmentation. Huo et al. [72] used three segmentation methods: fuzzy connected-

ness, GrowCut and voxel classification using SVM to generate candidate segmentations

for each voxel. Confidance-based averaging (CMA) was used to make the ensemble.

Although our approach is a semi-automatic method, it shares with automatic methods

the use of a machine learning classification algorithm, ran on a feature representation

of voxels and improved by a spatial dependency model. The main difference is that

generalization is performed within each brain, based on the training data provided by

the user’s interaction. This simplified generalization problem allows us to use a very

simple feature space, yielding an interactive segmentation method that is fast and ef-

84

5.3. INVESTIGATING WITHIN-BRAIN GENERALIZATION

fective. [164] used a similar, semi-automatic, kNN classification method, applied to

proton density, T1 and T2 modalities. [19] also proposed a semi-automatic segmen-

tation method that uses instead Quadratic Discriminative Aanalysis to perform multi-

class segmentation. However, they did not use the 〈i, j, k〉 voxel positions as features

(see Section 5.3.2) nor did they deal with label spatial dependency modeling (see Sec-

tion 5.3.4), which we found to play a crucial role in obtaining competitive performances.

5.3 Investigating Within-Brain Generalization

Within-brain generalization treats the segmentation of each brain as its own machine

learning experiment, in which a classifier is trained (on user-labeled voxels) and used to

generalize to new observations (voxels not labeled by the user).

This approach is motivated by the observation that, with current computers and for

relatively small data sets with small feature spaces, a machine learning experiment (in-

cluding hyper-parameter selection) can actually be performed within a very short delay,

even for more sophisticated algorithms that require more than simply storing the data

(as in kNN). Moreover, segmenting only within a given brain removes the challenging

problem of generalizing across brain imaging acquisition conditions.

In what follows, we describe the details of our approach and enumerate the different

variations we explored in this direction.

Input Post processingUser interaction Generalization

Training

Figure 5.2 – Our method in a nutshell. The segmentation is performed on the entire
brain based on data provided by user interaction.

Figure 5.2 shows our method in a nutshell. We explain these steps in Section 5.3.

85

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

5.3.1 Feature representation and manual selection

The first step of our method is to collect voxel label data for a given brain image to

segment. This is done by the user who roughly selects a subset of voxels associated with

each class, through a graphical interface. The number of strokes required for obtaining

the training data depends on the number of tumors in a given brain. However, usually

one or two strokes per-class is enough. The user interaction step takes 1 minute on

average and up to 2 minutes for complicated tumors or noisy MRIs. We will note as

M a binary mask such that Mv ∈ {0, 1} indicates whether a voxel v has been manually

selected (i.e. labeled) or not. T will then be the class-selection mask where Tv ∈

{edema, non-enhancing tumor, enhancing tumor, healthy} is the class label associated

with the voxel v by the user.

We must also decide on a feature representation for the different voxels. Each brain im-

age I is assumed to come with 3 MRI modalities (T1C, T2, Flair), such that I is a tensor

where each voxel v in I is a 3D vector containing the grayscale values of the modalities.

These modalities are often chosen because of their discriminative power. In fact, while

the non-enhanced necrosis vs edema can be distinguished from T1C modality, the non-

enhanced active area and the edema can be distinguished with the Flair modality. This

is represented by I1
v , I2

v , I3
v . By converting each voxel v to an N-dimensional feature

representation Fv, it will be possible to train a classifier to predict the voxel label Tv, for

every voxel, from its feature representation. We propose a simple 6 dimensional feature

represeentation, which consists of the MRI modality gray scales and the 3d position of

voxel v: Fv = (I1
v , I2

v , I3
v , i, j, k). These features are normalized between zero and one.

At this point, from each labeled voxel, we can thus generate a training pair (Fv, Tv) and

construct a training set D that we shall use to classify the non-selected voxels using a

classifier.

5.3.2 Voxel classifiers

Having built the training set through manual interaction, the next step is to train a clas-

sifier and generalize the segmentation to non-selected voxels. We investigate the use of

different machine learning algorithms to produce a classifier. While we could, theoreti-

86

5.3. INVESTIGATING WITHIN-BRAIN GENERALIZATION

cally, consider any existing algorithm, it is natural to prefer algorithms that are known to

be robust and fairly "black box" in their use. For instance, we do not want the user (typ-

ically a doctor or a neuro-scientist) to have to manually tune hyper-parameters for each

brain, with trial and error. So we chose algorithms that are known to be easily tuned or

for which default values of their hyper-parameters tend to work well. These algorithms

have also shown to be successful for automatic brain tumor segmentation [137, 104].

K-Nearest Neighbors (kNN)

To start, k nearest neighbor (kNN), one of the simplest classifiers, is considered. For

every voxel v, kNN finds among the training data D, the set of k nearest neighbors (Nv)

based on Fv. Let Nv = ((Fv1 , Tv1), (Fv2 , Tv2), ..., (Fvk
, Tvk

)) where Fvi
is the ith closest

training point of Fv. The kNN classification rule assigns a class label to some voxel v

following this equation

Tv = arg max
c

1

k

∑

(Fvi
,Tvi

)∈Nv

δ(Tvi
, c) (5.1)

where c is a class label and δ(a, b) returns 1 when a = b and 0 otherwise. Note that this

formulation can be seen as using a posterior class probability:

p(Tv = c|Fv) =
1

k

∑

(Fvi
,Tvi

)∈Nv

δ(Tvi
, c) (5.2)

which states that the probability of an observation Fv of being in class c is given by the

proportion of nearest neighbors assigned to that class. This probabilistic formulation of

the classifier will be reused for the unary terms of a CRF, described in Section 5.3.4.

Support Vector Machine

The support vector machine (SVM) [35] is probably the most frequently used classifier.

This is in part due to the existence of many freely available, mature and easy-to-use

implementations. In its parametric form, it is a linear classifier that attempts to classify

data points by maximizing the margin between the decision boundaries of the different

87

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

classes and their closest points.

Of higher interest in our setting is the kernelized version of SVM [88]. A choice for the

kernel that often proves successful is the radial basis function (RBF) kernel:

K(Fj, Fv) = exp(-γ ‖ Fj − Fv ‖2
2). (5.3)

where γ is a hyper-parameter. Also, a slack variable C is used to relax the constraints in

the SVM optimization problem [88]. The resulting classifier effectively takes the form

of a template matcher, that compares a given input with all training examples, each

voting for their class with a weight related to their similarity with the input (as modeled

by the kernel). In this sense, it is similar to the kNN classifier, though the former often

outperforms the later in practice.

It is also possible to obtain a posterior class probability p(Tv = c|Fv) from the SVM.

This is done by training the parameters of an additional sigmoid function of the form

P (Tv = c|Fv) =
1

1 + exp (Af(Fv, c) + B)
(5.4)

where f(Fv, c) is the unthresholded output of the SVM and A, B are the parameters to

be estimated [114]. Here again, the posterior probability function will be used later on,

for the CRF unary term.

Ensemble of Decision Trees

Another popular approach to classification are ensembles of decision trees. Each de-

cision tree is trained by recursively partitioning the feature space, according to some

heuristic that favors a good separation of classes. Once a criterion for stopping the

tree growth is reached, a conditional class distribution is then computed at each leaf,

based on the training data falling into the corresponding partition. Specifically, the class

distribution p(Tv = c|Fv) is set as

P (Tv = c|Fv) =
Nc

N
(5.5)

88

5.3. INVESTIGATING WITHIN-BRAIN GENERALIZATION

where Nc is the relative frequency of examples belonging to class c of the partition in

which Fv falls and N is the total number of examples.

The performance of a single decision tree is often disappointing. However, by construct-

ing an ensemble of such trees, a competitive classification performance is achievable.

There are different approaches to combining decision trees into an ensemble. The two

most popular algorithms for ensembles of decision trees are random forests and Ad-

aboost [108]. We considered these two algorithms for our experiments.

5.3.3 Distance Metric/Kernel

The performances of the SVM classifier often depends on the choice of metric or kernel

used to compare data points. Thus, it is generally beneficial to adapt this choice to each

individual problem. For example, the conventional RBF kernel puts equal weight to

each dimension of the feature space. However, in our within-brain framework, the spa-

tial coordinate features 〈i, j, k〉 and the modality features actually play different roles.

Intuitively, one role of the spatial coordinates is to avoid that a user-labeled voxel starts

influencing the prediction made at a voxel far away from it, e.g. to avoid false posi-

tives in faraway regions. The modality features, are thus mostly informative within the

vicinity of a user-labeled voxel.

Therefore, we might want to weight the modality and spatial features differently, within

the RBF kernel of the SVM. To maintain positive-semidefiniteness of the kernel, we

simply opt for using two different values of γ for MRI modality intensities and the

spatial features:

K(Fj, Fv) = exp(−γ1 ‖ Fj,{1:N} − Fv,{1:N} ‖2
2 (5.6)

−γ2 ‖ Fj,{N+1:N+3} − Fv,{N+1:N+3} ‖2
2).

This kernel is also equivalent to the product of two RBF kernels, each defined on the

subspace of modalities and of spatial coordinates, and each having their own hyper-

parameters. The hyper-parameters required by this approach are γ1 and γ2.

89

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

5.3.4 Importance of Within-Brain Hyper-Parameter Selection

When training a classifier, hyper-parameter values must be specified. One approach

which is commonly implemented [104] is to choose hyper-parameters by cross-validation

in a grid search approach on a subset of brains and fix the selected set of hyper-parameters

for the rest of the brains. We hypothesize given the variations in MRI data, using a

fixed set of hyper-parameters for generalization is not optimal. An alternative way is to

perform hyper-parameter selection individually for each brain, in order to adapt to the

specificity of each case. We measure the potential gains of this approach in our exper-

iments when selecting the hyper-parameters for the SVM, namely the slack variable C

and the coefficient γ. A detailed discussion of this experiment is presented in section

5.4.2.

Conditional Random Fields (CRF)

As mentioned earlier, segmentation accuracy can easily be improved by leveraging a

model of the 3D spatial regularity of labels. One way of enforcing spacial regularity is

to define a joint (conditional) distribution over the labels of all voxels in the brain that

expresses the expected dependencies between neighboring voxels. Conditional Random

Fields (CRF) provide a convenient formalism for that. CRFs model directly the poste-

rior probabilities of the labels given the features P (T |F) directly, alleviating the need

to model the distribution over the feature vectors F and allowing us to construct rich

conditionals P (T |F).

Formally speaking, we use the following form for P (T |F):

P (T |F) =
1

Z

∏

v

φ(Fv, Tv)φ(Tv, Fv, Tr, Fr) where r ∈ ηv (5.7)

where Z is a normalization term, φ are clique potential functions and ηv is the set of

voxels surrounding v.

Segmenting a brain requires that we find the labeling T with highest probability P (T |F).

This leads to an optimization problem of the form T = arg maxT

∏
v φ(Fv, Tv)φ(Tv, Tr)

90

5.4. EXPERIMENTS

or, equivalently,

T = arg min
T ∈T

∑

v


V (Fv, Tv) +

∑

r∈ηv

I(Tv, Fv, Tr, Fr)


 . (5.8)

where we set the equivalence V (Fv, Tv) = − log φ(Fv, Tv) and I(Tv, Fv, Tr, Fr) =

− log φ(Tv, Fv, Tr, Fr).

In our case, we model the unary terms V (Fv, Tv) by taking the negative log of the

posterior distribution

V (Fv, Tv) = − log P (Tv|Fv) (5.9)

specified in Eq.(5.2), (5.4) or (5.5). As for the pairwise term, we set it to be

I(Tv, Fv, Tr, Fr) = λ(1 − δ(Tv, Tr)) exp(
−|Fv − Fr|

σ2
). (5.10)

The choice of these unary and pairwise terms allows us to perform the optimization of

Equation 5.8 using the graphcut algorithm.

We refer to the segmentation methods using this label dependency model as kNN-CRF,

SVM-CRF, and DT-CRF, depending on the unary term used.

5.4 Experiments

5.4.1 Experimental Setup

All our experiments were conducted on real patient data obtained from the brain tumor

segmentation challenge dataset (BRATS2013) (Menze et al. [104]) as part of the MIC-

CAI conference. The BRATS2013 dataset is comprised of 3 sub-datasets. The training

dataset, which contains 30 patient subjects all with pixel-accurate ground truth (20 high

grade and 10 low grade tumors); the test dataset which contains 10 (all high grade tu-

mors) and the leaderboard dataset which contains 25 patient subjects (21 high grade

and 4 low grade tumors). There is no ground truth provided for the test and leader-

board datasets. For each subject there exist 4 modalities which are co-aligned together,

91

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

namely: T1, T1C, T2 and Flair . In our experiments, we used T1C, T2 and Flair only.

We found T1 to be redundant with T1C and using it did not improve the overall perfor-

mance of the model. For each brain, the user is asked to manually label voxels in only

two 2D slices for each class. The choice of slices depend on the size and spread of the

tumor. Considering the fact that the user can choose slices from any view (i.e. axial,

sagittal and coronal), the tumor coverage is sufficient and the results are not very sen-

sitive to the slices chosen for labeling. On average, only 0.4% of the voxels containing

pathology and 0.03% of the voxels corresponding to healthy tissue were manually se-

lected, thus providing minimal labeled data to the algorithm. To make operations faster,

we disregard all the voxels outside of the skull and consider them as healthy.

The quantitative results for each method was obtained from the BRATS online evalu-

ation system, which provides Dice, Specificity and Sensitivity as measures of perfor-

mance. These measures are defined as follows:

Dice(P, T) =
|P1 ∧ T1|

(|P1| + |T1|)/2
,

Sensitivity(P, T) =
|P1 ∧ T1|

|T1|
,

Specificity(P, T) =
|P0 ∧ T0|

|T0|
,

where ∧ is the logical AND operation, P represents the model predictions and T repre-

sents the ground truth labels. We also note as T1 and T0 the subset of voxels predicted as

positives and negatives for the tumor region in question. Similarly for P1 and P0 [104].

We report these measures for the test subjects over the three categories considered by the

BRATS evaluation (i.e. complete, core, enhanced). The complete category is the union

of classes containing un-healthy tissue. i.e. {l|l ∈ [necrosis, edema, enhancing]}), the

core category are classes containing tumor core i.e. {l|l ∈ [necrosis, enhancing]} and the

enhancing category is the enhancing tumor class. i.e. {l|l ∈ [enhancing]}. The online

evaluation system also provides a ranking for every method submitted for evaluation.

This includes methods from the 2013 BRATS challenge published in [104] as well as

anonymized unpublished methods for which no reference is available. The methods in

each table presented in this section are ordered according to the ranking provided by the

92

5.4. EXPERIMENTS

online evaluation system.

Please note that we could not use the BRATS 2014 dataset due problems with both the

system performing the evaluation and the quality of the labeled data. For these reasons

the old BRATS 2014 dataset has been removed from the official website and, at the time

of submitting this manuscript, the BRATS website still showed: “Final data for BRATS

2014 to be released soon” For these reasons, we decided to focus on the BRATS 2013

data. Also, this article does not contain any studies with human participants performed

by any of the authors.

5.4.2 Results and Discussion

In this section, we report experimental results obtained with the machine learning meth-

ods presented in Section 5.3.2. This includes linear SVM (LSVM), kernel SVM with

rbf kernel (KSVM), our proposed product kernel SVM (PKSVM), kNN, decision trees

trained with Ada-Boost (ADT), and random forests (RDT). All these methods have

been explored with and without the CRF. The CRF parameters α and β were set for

each method, by cross-validation on 6 brains on the training set. We also investigate the

extent to which adding spatial features 〈i, j, k〉 helps improving the performance. This

is noted by adding a “∗" next to the method’s name.

KNN

The results for the kNN related experiments are presented in Table 5.1. We first made

an experiment without including the 〈i, j, k〉 position features in the feature vector as

presented by [164]. Since his method uses neither the spatial coordinate features nor the

CRF regularization, it performs significantly worse than other kNN related experiments.

While adding the spatial coordinates to this method improves the result by a significant

margin, the best performance is achieved when we use both spatial coordinates and a

CRF regularization.

93

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

Table 5.1 – Dice, Specificity and Sensitivity measures for kNN methods on BRATS-
2013 test set. “∗" shows the use of spatial features.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56
kNN* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

kNN-CRF 0.80 0.69 0.55 0.92 0.83 0.75 0.74 0.63 0.48
kNN 0.65 0.52 0.53 0.59 0.49 0.50 0.77 0.68 0.65

Table 5.2 – Dice, Specificity and Sensitivity measures for various SVM methods on the
BRATS-2013 test set. “∗" shows the use of spatial features.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

PKSVM* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71
KSVM* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73

KSVM-CRF 0.74 0.67 0.53 0.82 0.82 0.79 0.73 0.61 0.45
LSVM-CRF* 0.79 0.64 0.51 0.86 0.74 0.70 0.74 0.62 0.45

LSVM* 0.69 0.59 0.62 0.65 0.54 0.47 0.84 0.76 0.59
LSVM-CRF 0.72 0.60 0.46 0.77 0.66 0.59 0.72 0.61 0.44

KSVM 0.65 0.50 0.50 0.61 0.49 0.49 0.75 0.63 0.58
LSVM 0.51 0.35 0.45 0.48 0.35 0.43 0.73 0.59 0.59

SVM

The results for the SVM-related experiments are presented in Table 5.2. Results confirm

that using spatial coordinate features (shown with "*") and using the CRF model (shown

with "-CRF") improve the performance of both a linear SVM (LSVM) and an RBF

kernel SVM (KSVM). It is also quite clear from this experiment that the non-linearity

of the kernel SVM is crucial, as it significantly outperforms the linear SVM (LSVM).

As for the PKSVM method which stands for the RBF product kernel SVM presented in

Section 5.3.3 (c.f. Eq.(5.7)) it clearly improved the Kernel-SVM and Kernel-SVM+CRF

results. This underlines the relative importance of the spatial coordinate features 〈i, j, k〉

versus the input T1, T2 and Flair modalities.

94

5.4. EXPERIMENTS

Table 5.3 – Dice, Specificity and Sensitivity measures for ensemble of decision trees
with AdaBoost (ADT) and random forests (RDT) on BRATS-2013 test dataset. “∗"
shows the use of spatial features.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70
RDT-CRF* 0.82 0.69 0.51 0.92 0.83 0.79 0.73 0.61 0.50
RDT-CRF 0.80 0.66 0.49 0.92 0.83 0.78 0.71 0.60 0.40

ADT-CRF* 0.79 0.64 0.51 0.88 0.75 0.71 0.72 0.61 0.45
ADT-CRF 0.78 0.63 0.50 0.87 0.73 0.67 0.72 0.61 0.45

ADT* 0.73 0.57 0.58 0.73 0.60 0.59 0.75 0.64 0.66
RDT 0.67 0.55 0.55 0.66 0.55 0.53 0.72 0.65 0.65
ADT 0.65 0.48 0.54 0.66 0.55 0.53 0.69 0.52 0.62

Decision trees

For these experiments, we fixed the number of decision trees for AdaBoost (ADT) and

random forests (RDT) to 100 and the leaf size to 1. For AdaBoost, decision stumps were

used. The quantitative results are shown in Table 5.3. While adding spatial features are

beneficial for both random forests and AdaBoost, using the CRF model is mostly bene-

ficial except for random forest without spatial coordinates. However, the segmentation

systems relying on decision trees tend to be worse than using kNN or SVM methods.

Robustness of hyper-parameter selection

In our method when using the SVM as the classifier, the hyper-parameters (regulariza-

tion constant C and kernel hyper-parameters γ, γ1 and γ2) were always cross-validated

for each brain individually, using an automated grid search. For this purpose we create

a smaller training and validation set (with proportions of 70% for the training set and

30% for validation set) from the sub-sampled interaction points. The hyper-parameters

are selected based on the performance on the validation set. On the other hand, for

automatic methods, a fixed set of hyper-parameters is used for generalization. Given

the variation of the MRI data and tumor types, we hypothesize that using a fixed set of

hyper-parameters will degrade the performance quite significantly.

To evaluate the importance of performing per-brain model selection, we conducted an

experiment where we used a fixed configuration of hyper-parameters for all subjects.

95

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

For this experiment, we considered our top two segmentation methods, PKSVM-CRF*

and KSVM-CRF*. The values of the hyper-parameters were chosen by taking the hyper-

parameter value most frequently selected by these methods, across all the brains. The

idea was to pick values that are most likely to work well in general. For the KSVM-

CRF*, C was set to 1 and γ to 5 and for the PKSVM-CRF*, C was set to 1, γ1 to 100

and γ2 to 10.

The results (Table 5.4) show a decrease in performance if fixed hyper-parameters are

used for all brains. We also performed this experiment on the BRATS training data (not

shown here) and the performance decreased even more. This was not unexpected, since

the training data is more varied and actually consists of both high grade tumors and low

grade tumors, while the test data only contains high grade tumors.

While it appears the tuning of the SVM’s hyper-parameter to each brain is beneficial,

we tested the extent to which small changes to the optimal hyper-parameters would af-

fect the performance. This is meant to simulate the fact that cross-validation might not

always find the same hyper-parameters between variations on the manually labeled vox-

els. In order to measure how resilient our method is to slight hyper-parametric shifts,

we ran another experiment to measure the sensitivity of our model. We did so by

randomly selecting 20 brains from the BRATS training data, trained an SVM whose

hyper-parameters have been obtained from cross validation. We then added noise to the

hyper-parameters and measured the effect on the resulting segmentation. The noise cor-

responded to Gaussian noise, whose standard deviation was set to a certain percentage

of the hyper-parameters’ values. Figure 5.3 shows the resulting Dice measure for dif-

ferent noise level. As one can see, even with a noise level corresponding to a corruption

of 25% of the hyper-parameter values, the end result is still close to the one obtained

without any noise.

Finally, the importance of optimizing the hyper-parameters was found to be less crucial

for the other methods. For kNN, we evaluated the effect of using different values of k,

with k = 3 consistently producing higher performance. The same type of experiment

was performed to measure the effect of using different number of trees and leaf size in

ADT and RDT. For these methods, setting the number of decision trees to 100 and leaf

size to 1 always worked well.

96

5.4. EXPERIMENTS

5 10 15 20 25 30 35 40 45 50 55 60 65 70
Noise in percentage

0.00

0.05

0.10

0.15

0.20

0.25

0.30
D
ic
e
va
ri
at
io
n

Figure 5.3 – Sensitivity of the model with respect to the gamma hyper parameter.

Table 5.4 – The effect of having a fixed selection of hyper-parameters for kernel SVM
and product kernel SVM. “∗" shows the use of spatial features.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71

FixedKSVM-CRF* 0.82 0.69 0.56 0.93 0.82 0.78 0.75 0.64 0.49
FixedPSVM-CRF* 0.72 0.56 0.55 0.71 0.62 0.58 0.73 0.65 0.65

Speed-up procedure

Every segmentation method presented in this paper uses manually-selected voxels as

their input. However, these selected voxels often carry out similar information. That is

especially true for neighboring voxels whose 〈i, j, k〉 position is almost the same, and

whose T1,T2, Flair values are likely to be identical. Thus, in order to speed-up the

segmentation procedure, one can randomly down-sample the training data. To have an

overall idea to what extent we can down-sample the data without hurting too much the

overall precision, we conducted an experiment where we divide the training points into

healthy and non-healthy subsets and subsample them separately while trying to keep

equal proportions in the un-healthy classes and also balanced proportion for the healthy

vs union of un-healthy classes. In other words, the healthy class comprises of roughly

50% of the training data while non-enhanced, edema and enhanced classes each take

about 16%. The outcome of this process is a smaller training set but with roughly the

97

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

same proportion of healthy points and non-healthy points. Figure 5.4 shows the result

of this experiment. The curves were obtained by averaging the results of 20 randomly

selected brains from BRATS training data. The horizontal axes in Figure 5.4 shows the

number of training points in the subsampled training set. As shown in Figure 5.4(a),

with maximum number of training points (i.e 3000) we get an average Dice measure of

0.72 and by considering 1000 training points the average Dice measure barely drops to

0.71, while the processing time decreases by 60%. Thus, all experiments submitted to

the BRATS website were done with this subsampling measure.

0 500 1000 1500 2000 2500 3000
Training points

0.3

0.4

0.5

0.6

0.7

0.8

Av
er
ag

e
di
ce
 m

ea
su
re

(a)

0 500 1000 1500 2000 2500 3000
Training points

20

30

40

50

60

70

80

Av
er
ag

e
Pr
oc
es
si
ng

 ti
m
e
[s
ec
]

(b)

Figure 5.4 – Sensitivity of the model with respect to the number of training points.
(a) shows variation in average Dice measure while (b) shows variation in the average
processing time and memory usage.

5.5 Conclusion

5.5.1 Putting it all together

We finally present how our top performing methods compare with other state-of-the-

art methods. The BRATS official website provides a ranking system for this purpose.

However, because the BRATS organizers have recently made all methods anonymous,

a complete comparison is not possible. For that reason, we rank our method based on

98

5.5. CONCLUSION

Figure 5.5 – Illustration of brain tumor segmentation maps predicted by different varia-
tions of SVM. Top row from left to right : T1C modality, KSVM, KSVM*, PKSVM*.
Bottom row from left to right: ground truth, KSVM-CRF, KSVM*-CRF, PKSVM*-
CRF.

the MICCAI-BRATS 2013 challenge results for which references to the methods were

available. This is shown in table 5.5 1. As one can see, PKSVM-CRF* and KSVM-

CRF* are ranked second and third respectively, closely behind Tustison et al. and kNN-

CRF* is ranked 6th in this table. Using the spatial features 〈i, j, k〉, and CRF post-

processing is vital to produce highly accurate results. Many methods in this table (like

that of Tustison et al. Reza et al. and Festa et al.) use random forests with a large

number of features. In our case, random forests did not perform as well as the SVM or

kNN methods. This might be due to the low dimensionality of our feature space. Re-

cently Subbanna et al. [154] published competitive results on the BRATS 2013 dataset,

reporting Dice measures of 0.86, 0.86, 0.77 for Complete, Core and Enhancing tumor

regions. Since they do not report Specificity and Sensitivity measures, a completely fair

comparison with that method is not possible. However, as mentioned in [154], their

method takes 70 minutes to process a subject, which is significantly slower than our

1. Please note that the results mentioned in Table 5.5 are from methods competing in the BRATS 2013
challenge for which a static table is provided [https://www.virtualskeleton.ch/BRATS/StaticResults2013].
Since then, other methods have been added to the score board but for which no reference is available.

99

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

Table 5.5 – Comparison of our top implemented architectures with the state-of-the-art
methods on the BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83
PKSVM-CRF* 0.86 0.77 0.73 0.88 0.85 0.76 0.78 0.68 0.58
KSVM-CRF* 0.84 0.75 0.70 0.87 0.77 0.72 0.82 0.79 0.71
kNN-CRF* 0.85 0.75 0.60 0.91 0.85 0.77 0.78 0.69 0.56

Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

method.

To further validate our model, we present results of our top performing methods on

the BRATS 2013 leaderboard and compare it with published methods which reported

results on that same dataset. Note that as with BRATS 2013 test set, results from other

methods are currently available on the online scoreboard but for which no reference is

available. Results of published methods are presented in Table 5.6. As can be seen, our

top approaches out perform state-of-the-art methods on this dataset.

Please note that since BRATS2012 dataset is a subset of BRATS2013 leaderboard and

that more methods are competing on the BRATS2013 leaderboard, we did not include

results for the 2012 dataset.

Figure 5.5 shows a visualisation of segmentation results, for different variations of our

SVM method. This illustrates the contribution of adding spatial features, using a CRF

and using our improved kernel function, in improving the general performance of the

SVM approach.

5.5.2 Processing time and memory usage

A key advantage of our proposed method is in having a very small processing time

(1 minute 40 seconds in total which includes the user interaction) and memory usage,

while maintaining high accuracy. Due to the low dimensionality of our feature space, it

100

5.5. CONCLUSION

Table 5.6 – Comparison of our top implemented architectures with the state-of-the-art
methods on the BRATS-2013 leaderboard set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.83 0.69 0.59 0.86 0.78 0.55 0.84 0.71 0.67
KSVM-CRF* 0.81 0.68 0.56 0.81 0.75 0.61 0.83 0.69 0.58
kNN-CRF* 0.79 0.66 0.54 0.77 0.72 0.55 0.85 0.70 0.61

Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66
Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53
Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.6
Reza 0.73 0.56 0.51 0.68 0.64 0.48 0.79 0.57 0.63

Cordier 0.75 0.61 0.46 0.79 0.61 0.43 0.78 0.72 0.52

only takes up, on average, 50 MB of RAM to store the feature space of a brain. This is

very small compared to state-of-the-art methods, whose memory footprint of the feature

space is on the order of GB’s. For example, Festa et al. use a feature space of 300 di-

mensions for their random forest approach which would take up to 2.7GB’s. Tustison et

al. Reza et al. and Meier et al. also take a similar approach using random forests [104].

These methods rely on a high number of texture features which are computationally

time consuming and memory wise expensive.

Apart from the feature space, our proposed methods have different speed and memory

footprint. We can make a comparison in accuracy, speed and memory usage as presented

in Table 5.7. The processing time was measured on an 8-core processor and includes

both training and testing. The time required by graphcut inference is the same for all

methods and involves only an additional 8 seconds. As shown in Table 5.7, PKSVM-

CRF* has the highest accuracy but requires a higher processing time (35 seconds) and

memory usage (7.7 MB), on top of the 50 MB required to store the feature space. On

the other hand, KSVM-CRF* and kNN-CRF* are closer to real time implementations

with negligeable memory consumption. This allows the expert to interact in real-time

with the software. That being said, all methods presented in Table 5.7 are significantly

faster than state-of-the-art methods. For example, Tustison’s method takes around 30

minutes to process a brain as mentioned in Menze et al. [104].

In this paper we evaluated the capability of within brain generalization using a variety

of classifiers. We showed that the SVM reached the best performances, thanks in part

to a kernel function specifically adapted to our feature space. Most interestingly, we

also showed that adopting a fixed hyper-parameter configuration for all brains actually

101

CHAPTER 5. WITHIN-BRAIN SEGMENTATION

Table 5.7 – Best performing methods for each machine learning category with average
processing time and memory usage.

Method Dice Specificity Sensitivity Time Memory
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

PKSVM-CRF* 0.82 0.71 0.69 0.84 0.73 0.71 0.80 0.76 0.71 35sec 7.7MB
KSVM-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 10sec 75KB
kNN-CRF* 0.81 0.68 0.65 0.76 0.62 0.62 0.90 0.84 0.73 3sec. 40KB

RDT* 0.81 0.69 0.64 0.83 0.71 0.64 0.79 0.75 0.70 10sec 120KB

decreases the performance of the SVM. A better strategy was to also perform hyper-

parameter selection for each brain individually, in order to adapt to the specificities of

each brain, further motivating our within brain generalization framework.

5.6 Conflict of Interest

The authors declare that they have no conflict of interest.

5.7 Ethical approval

All procedures performed in studies involving human participants were in accordance

with the ethical standards of the institutional and/or national research committee and

with the 1964 Helsinki declaration and its later amendments or comparable ethical stan-

dards.

This article does not contain any studies with human participants performed by any of

the authors.

102

Chapter 6

Brain Tumor Segmentation with Deep

Neural Networks

Résumé

In this chapter, we present a fully automatic method for brain tumor segmen-

tation based on deep learning. While being very accurate, the method is ex-

tremely fast. The motivation for this work comes from recent success of con-

volutional neural networks in natural image datasets such as ImageNet. While

classical machine learning methods rely on high dimensional hand-designed

feature vectors, deep learning presents an arena for the model to learn its own

features from raw input data. This presents two promising advantages. It

removes the need for intermediate methods to extract hand crafted features

while learning more robust high level features which eliminate the need for

excessive pre-processing steps. We explore different deep learning architec-

tures and training procedures in order to efficiently utilize neural networks for

brain tumor segmentation.

Commentaires

This article was submitted to the journal of Medical Image Analysis in 2015

and was accepted for publication in in 2016 [66].

103

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

The initial idea was proposed by the professors involved in this project which

was refined and extended by the Ph.D. candidate as well as other students

involved. The initial python code was developed in University of Montreal

(LISA lab) by the Ph.D. candidate and other student co-authors. The project

was continued at University of Sherbrooke which with the help of his super-

visors, the Ph.D. candidate extended the method, the python code and carried

out the experiments. The paper was mostly written by the Ph.D. candidate.

104

Brain Tumor Segmentation with Deep Neural Networks

Mohammad Havaei
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
seyed.mohammad.havaei@usherbrooke.ca

Axel Davy
École Normale supérieure, Paris, France

axel.davy@ens.fr

David Warde-Farley
Université de Montréal, Montréal, Canada

david.warde-farley

Antoine Biard
École polytechnique, Palaiseau, France
antoine.biard.10@gmail.com

Aaron Courville
Université de Montréal, Montréal, Canada
aaron.courville@umontreal.ca

Yoshua Bengio
Université de Montréal, Montréal, Canada
yoshua.bengio@umontreal.ca

Chris Pal
École Polytechnique de Montréal , Canada

chris.j.pal@gmail.com

Pierre-Marc Jodoin
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
pierre-marc.jodoin@usherbrooke.ca

Hugo Larochelle
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
hugo.larochelle@usherbrooke.ca

Keywords: Brain tumor segmentation, k-nearest neighbour, interactive method,

within-brain generalization

Abstract

105

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

In this paper, we present a fully automatic brain tumor segmentation method

based on Deep Neural Networks (DNNs). The proposed networks are tai-

lored to glioblastomas (both low and high grade) pictured in MR images. By

their very nature, these tumors can appear anywhere in the brain and have

almost any kind of shape, size, and contrast. These reasons motivate our ex-

ploration of a machine learning solution that exploits a flexible, high capacity

DNN while being extremely efficient. Here, we give a description of differ-

ent model choices that we’ve found to be necessary for obtaining competitive

performance. We explore in particular different architectures based on Con-

volutional Neural Networks (CNN), i.e. DNNs specifically adapted to image

data.

We present a novel CNN architecture which differs from those traditionally

used in computer vision. Our CNN exploits both local features as well as

more global contextual features simultaneously. Also, different from most

traditional uses of CNNs, our networks use a final layer that is a convolutional

implementation of a fully connected layer which allows a 40 fold speed up.

We also describe a 2-phase training procedure that allows us to tackle diffi-

culties related to the imbalance of tumor labels. Finally, we explore a cascade

architecture in which the output of a basic CNN is treated as an additional

source of information for a subsequent CNN. Results reported on the 2013

BRATS test dataset reveal that our architecture improves over the currently

published state-of-the-art while being over 30 times faster.

106

6.1. INTRODUCTION

6.1 Introduction

In the United States alone, it is estimated that 23,000 new cases of brain cancer will be

diagnosed in 2015 1. While gliomas are the most common brain tumors, they can be less

aggressive (i.e. low grade) in a patient with a life expectancy of several years, or more

aggressive (i.e. high grade) in a patient with a life expectancy of at most 2 years.

Although surgery is the most common treatment for brain tumors, radiation and chemother-

apy may be used to slow the growth of tumors that cannot be physically removed. Mag-

netic resonance imaging (MRI) provides detailed images of the brain, and is one of the

most common tests used to diagnose brain tumors. All the more, brain tumor segmen-

tation from MR images can have great impact for improved diagnostics, growth rate

prediction and treatment planning.

While some tumors such as meningiomas can be easily segmented, others like gliomas

and glioblastomas are much more difficult to localize. These tumors (together with

their surrounding edema) are often diffused, poorly contrasted, and extend tentacle-like

structures that make them difficult to segment. Another fundamental difficulty with

segmenting brain tumors is that they can appear anywhere in the brain, in almost any

shape and size. Furthermore, unlike images derived from X-ray computed tomography

(CT) scans, the scale of voxel values in MR images is not standardized. Depending

on the type of MR machine used (1.5, 3 or 7 tesla) and the acquisition protocol (field

of view value, voxel resolution, gradient strength, b0 value, etc.), the same tumorous

cells may end up having drastically different grayscale values when pictured in different

hospitals.

Healthy brains are typically made of 3 types of tissues: the white matter, the gray matter,

and the cerebrospinal fluid. The goal of brain tumor segmentation is to detect the loca-

tion and extension of the tumor regions, namely active tumorous tissue (vascularized or

not), necrotic tissue, and edema (swelling near the tumor). This is done by identifying

abnormal areas when compared to normal tissue. Since glioblastomas are infiltrative

tumors, their borders are often fuzzy and hard to distinguish from healthy tissues. As

a solution, more than one MRI modality is often employed, e.g. T1 (spin-lattice re-

1. cancer.org

107

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

laxation), T1-contrasted (T1C), T2 (spin-spin relaxation), proton density (PD) contrast

imaging, diffusion MRI (dMRI), and fluid attenuation inversion recovery (FLAIR) pulse

sequences. The contrast between these modalities gives almost a unique signature to

each tissue type.

Most automatic brain tumor segmentation methods use hand-designed features [44,

104]. These methods implement a classical machine learning pipeline according to

which features are first extracted and then given to a classifier whose training procedure

does not affect the nature of those features. An alternative approach for designing task-

adapted feature representations is to learn a hierarchy of increasingly complex features

directly from in-domain data. Deep neural networks have been shown to excel at learn-

ing such feature hierarchies [15]. In this work, we apply this approach to learn feature

hierarchies adapted specifically to the task of brain tumor segmentation that combine

information across MRI modalities.

Specifically, we investigate several choices for training Convolutional Neural Networks

(CNNs), which are Deep Neural Networks (DNNs) adapted to image data. We report

their advantages, disadvantages and performance using well established metrics. Al-

though CNNs first appeared over two decades ago [90], they have recently become a

mainstay of the computer vision community due to their record-shattering performance

in the ImageNet Large-Scale Visual Recognition Challenge [86]. While CNNs have

also been successfully applied to segmentation problems [3, 96, 61, 24], most of the

previous work has focused on non-medical tasks and many involve architectures that

are not well suited to medical imagery or brain tumor segmentation in particular. Our

preliminary work on using convolutional neural networks for brain tumor segmentation

together with two other methods using CNNs was presented in BRATS‘14 workshop.

However, those results were incomplete and required more investigation (More on this

in chapter 6.2).

In this paper, we propose a number of specific CNN architectures for tackling brain tu-

mor segmentation. Our architectures exploit the most recent advances in CNN design

and training techniques, such as Maxout [53] hidden units and Dropout [147] regular-

ization. We also investigate several architectures which take into account both the local

shape of tumors as well as their context.

108

6.1. INTRODUCTION

One problem with many machine learning methods is that they perform pixel classifi-

cation without taking into account the local dependencies of labels (i.e. segmentation

labels are conditionally independent given the input image). To account for this, one

can employ structured output methods such as conditional random fields (CRFs), for

which inference can be computationally expensive. Alternatively, one can model la-

bel dependencies by considering the pixel-wise probability estimates of an initial CNN

as additional input to certain layers of a second DNN, forming a cascaded architecture.

Since convolutions are efficient operations, this approach can be significantly faster than

implementing a CRF.

We focus our experimental analysis on the fully-annotated MICCAI brain tumor seg-

mentation (BRATS) challenge 2013 dataset [44] using the well defined training and

testing splits, thereby allowing us to compare directly and quantitatively to a wide vari-

ety of other methods.

Our contributions in this work are four fold:

1. We propose a fully automatic method with results currently ranked second on the

BRATS 2013 scoreboard;

2. To segment a brain, our method takes between 25 seconds and 3 minutes, which

is one order of magnitude faster than most state-of-the-art methods.

3. Our CNN implements a novel two-pathway architecture that learns about the lo-

cal details of the brain as well as the larger context. We also propose a two-

phase training procedure which we have found is critical to deal with imbal-

anced label distributions. Details of these contributions are described in Sec-

tions 6.3.1 and 6.3.2.

4. We employ a novel cascaded architecture as an efficient and conceptually clean

alternative to popular structured output methods. Details on those models are

presented in Section 6.3.1.

109

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

6.2 Related work

As noted by Menze et al. [104], the number of publications devoted to automated brain

tumor segmentation has grown exponentially in the last several decades. This observa-

tion not only underlines the need for automatic brain tumor segmentation tools, but also

shows that research in that area is still a work in progress.

Brain tumor segmentation methods (especially those devoted to MRI) can be roughly

divided in two categories: those based on generative models and those based on dis-

criminative models [104, 12, 4].

Generative models rely heavily on domain-specific prior knowledge about the appear-

ance of both healthy and tumorous tissues. Tissue appearance is challenging to char-

acterize, and existing generative models usually identify a tumor as being a shape or

a signal which deviates from a normal (or average) brain [27]. Typically, these meth-

ods rely on anatomical models obtained after aligning the 3D MR image on an atlas or

a template computed from several healthy brains [38]. A typical generative model of

MR brain images can be found in Prastawa et al. [117]. Given the ICBM brain atlas,

the method aligns the brain to the atlas and computes posterior probabilities of healthy

tissues (white matter, gray matter and cerebrospinal fluid) . Tumorous regions are then

found by localizing voxels whose posterior probability is below a certain threshold. A

post-processing step is then applied to ensure good spatial regularity. Prastawa et al.

[118] also register brain images onto an atlas in order to get a probability map for ab-

normalities. An active contour is then initialized on this map and iterated until the

change in posterior probability is below a certain threshold. Many other active-contour

methods along the same lines have been proposed [81, 29, 115], all of which depend

on left-right brain symmetry features and/or alignment-based features. Note that since

aligning a brain with a large tumor onto a template can be challenging, some methods

perform registration and tumor segmentation at the same time [87, 111].

Other approaches for brain tumor segmentation employ discriminative models. Unlike

generative modeling approaches, these approaches exploit little prior knowledge on the

brain’s anatomy and instead rely mostly on the extraction of [a large number of] low

level image features, directly modeling the relationship between these features and the

110

6.2. RELATED WORK

label of a given voxel. These features may be raw input pixels values [63, 60], local his-

tograms [83, 126] texture features such as Gabor filterbanks [153, 154], or alignment-

based features such as inter-image gradient, region shape difference, and symmetry

analysis [110]. Classical discriminative learning techniques such as SVMs [10, 137, 91]

and decision forests [184] have also been used. Results from the 2012, 2013 and 2014

editions of the MICCAI-BRATS Challenge suggest that methods relying on random

forests are among the most accurate [104, 56, 83].

One common aspect with discriminative models is their implementation of a conven-

tional machine learning pipeline relying on hand-designed features. For these methods,

the classifier is trained to separate healthy from non-heatlthy tissues assuming that the

input features have a sufficiently high discriminative power since the behavior the clas-

sifier is independent from nature of those features. One difficulty with methods based

on hand-designed features is that they often require the computation of a large number

of features in order to be accurate when used with many traditional machine learning

techniques. This can make them slow to compute and expensive memory-wise. More

efficient techniques employ lower numbers of features, using dimensionality reduction

or feature selection methods, but the reduction in the number of features is often at the

cost of reduced accuracy.

By their nature, many hand-engineered features exploit very generic edge-related in-

formation, with no specific adaptation to the domain of brain tumors. Ideally, one

would like to have features that are composed and refined into higher-level, task-adapted

representations. Recently, preliminary investigations have shown that the use of deep

CNNs for brain tumor segmentation makes for a very promising approach (see the

BRATS 2014 challenge workshop papers of Davy et al. [36], Zikic et al. [183], Ur-

ban et al. [161]). All three methods divide the 3D MR images into 2D [36, 183] or 3D

patches [161] and train a CNN to predict its center pixel class. Urban et al. [161] as

well as Zikic et al. [183] implemented a fairly common CNN, consisting of a series of

convolutional layers, a non-linear activation function between each layer and a softmax

output layer. Our work here 2 extends our preliminary results presented in Davy et al.

2. It is important to note that while we did participate in the BRATS 2014 challenge, we could not
report complete and fair experiments for it at the time of submitting this manuscript. See Section 6.5 for
a discussion on this point.

111

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

[36] using a two-pathway architecture, which we use here as a building block.

In computer vision, CNN-based segmentation models have typically been applied to

natural scene labeling. For these tasks, the inputs to the model are the RGB channels of

a patch from a color image. The work in Pinheiro and Collobert [113] uses a basic CNN

to make predictions for each pixel and further improves the predictions by using them

as extra information in the input of a second CNN model. Other work [42] involves

several distinct CNNs processing the image at different resolutions. The final per-pixel

class prediction is made by integrating information learned from all CNNs. To produce

a smooth segmentation, these predictions are regularized using a more global superpixel

segmentation of the image. Like our work, other recent work has exploited convolution

operations in the final layer of a network to extend traditional CNN architectures for

semantic scene segmentation [96]. In the medical imaging domain in general there has

been comparatively less work using CNNs for segmentation. However, some notable

recent work by Huang and Jain [71] has used CNNs to predict the boundaries of neural

tissue in electron microscopy images. Here we explore an approach with similarities to

the various approaches discussed above, but in the context of brain tumor segmentation.

6.3 Our Convolutional Neural Network Approach

Since the brains in the BRATS dataset lack resolution in the third dimension, we con-

sider performing the segmentation slice by slice from the axial view. Thus, our model

processes sequentially each 2D axial image (slice) where each pixel is associated with

different image modalities namely; T1, T2, T1C and FLAIR. Like most CNN-based

segmentation models [113, 42], our method predicts the class of a pixel by processing

the M × M patch centered on that pixel. The input X of our CNN model is thus an

M × M 2D patch with several modalities.

The main building block used to construct a CNN architecture is the convolutional layer.

Several layers can be stacked on top of each other forming a hierarchy of features. Each

layer can be understood as extracting features from its preceding layer into the hierar-

chy to which it is connected. A single convolutional layer takes as input a stack of input

planes and produces as output some number of output planes or feature maps. Each

112

6.3. OUR CONVOLUTIONAL NEURAL NETWORK APPROACH

max

Maxout,
K = 2

convolution,
N = 3

max pooling,
p = 2

5x5 4x4

5x5
7x7

7x7

HsZs

Os

Os+1

X

X

X

Figure 6.1 – A single convolution layer block showing computations for a single feature
map. The input patch (here 7 × 7), is convolved with series of kernels (here 3 × 3)
followed by Maxout and max-pooling.

feature map can be thought of as a topologically arranged map of responses of a par-

ticular spatially local non-linear feature extractor (the parameters of which are learned),

applied identically to each spatial neighborhood of the input planes in a sliding window

fashion. In the case of a first convolutional layer, the individual input planes correspond

to different MRI modalities (in typical computer vision applications, the individual in-

put planes correspond to the red, green and blue color channels). In subsequent layers,

the input planes typically consist of the feature maps of the previous layer.

Computing a feature map in a convolutional layer (see Figure 6.1) consists of the fol-

lowing three steps:

1. Convolution of kernels (filters): Each feature map Os is associated with one kernel

(or several, in the case of Maxout). The feature map Os is computed as follows:

Os = bs +
∑

r

Wsr ∗ Xr (6.1)

where Xr is the rth input channel, Wsr is the sub-kernel for that channel, ∗ is the

convolution operation and bs is a bias term 3. In other words, the affine operation

3. Since the convolutional layer is associated to R input channels, X contains M ×M ×R gray-scale
values and thus each kernel Ws contains N × N × R weights. Accordingly, the number of parameters

113

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

being performed for each feature map is the sum of the application of R different

2-dimensional N × N convolution filters (one per input channel/modality), plus a

bias term which is added pixel-wise to each resulting spatial position. Though the

input to this operation is a M ×M ×R 3-dimensional tensor, the spatial topology

being considered is 2-dimensional in the X-Y axial plane of the original brain

volume.

Whereas traditional image feature extraction methods rely on a fixed recipe (some-

times taking the form of convolution with a linear e.g. Gabor filter bank), the key

to the success of convolutional neural networks is their ability to learn the weights

and biases of individual feature maps, giving rise to data-driven, customized, task-

specific dense feature extractors. These parameters are adapted via stochastic

gradient descent on a surrogate loss function related to the misclassification error,

with gradients computed efficiently via the backpropagation algorithm [134].

Special attention must be paid to the treatment of border pixels by the convolu-

tion operation. Throughout our architecture, we employ the so-called valid-mode

convolution, meaning that the filter response is not computed for pixel positions

that are less than ⌊N/2⌋ pixels away from the image border. An N × N filter

convolved with an M × M input patch will result in a Q × Q output, where

Q = M − N + 1. In Figure 6.1, M = 7, N = 3 and thus Q = 5. Note that the

size (spatial width and height) of the kernels are hyper-parameters that must be

specified by the user.

2. Non-linear activation function: To obtain features that are non-linear transfor-

mations of the input, an element-wise non-linearity is applied to the result of the

kernel convolution. There are multiple choices for this non-linearity, such as the

sigmoid, hyperbolic tangent and rectified linear functions [74], [52].

Recently, Goodfellow et al. [53] proposed a Maxout non-linearity, which has been

shown to be particularly effective at modeling useful features. Maxout features

are associated with multiple kernels Ws. This implies each Maxout map Zs is

associated with K feature maps : {OKs, OKs+1, ..., OKs+K−1}. Note that in Fig-

ure 6.1, the Maxout maps are associated with K = 2 feature maps. Maxout

features correspond to taking the max over the feature maps O, individually for

in a convolutional block of consisting of S feature maps is equal to R × M × M × S.

114

6.3. OUR CONVOLUTIONAL NEURAL NETWORK APPROACH

each spatial position:

Zs,i,j = max {OKs,i,j, OKs+1,i,j, ..., OKs+K−1,i,j} (6.2)

where i, j are spatial positions. Maxout features are thus equivalent to using a

convex activation function, but whose shape is adaptive and depends on the values

taken by the kernels.

3. Max pooling: This operation consists of taking the maximum feature (neuron)

value over sub-windows within each feature map. This can be formalized as fol-

lows:

Hs,i,j = max
p

Zs,Si+p,Sj+p, (6.3)

where p determines the max pooling window size and S is the stride hyper-

parameter, which corresponds to the horizontal and vertical increments at which

pooling sub-windows are positioned. The sub-windows can be overlapping or

not (Figure 6.1 shows an overlapping configuration). The max-pooling operation

shrinks the size of the feature map. This is controlled by the pooling size p and

S. Let Q × Q be the shape of the feature map before max-pooling. The output of

the max-pooling operation would be of size D × D, where D = (Q − p)/S + 1.

In Figure 6.1, since Q = 5, p = 2, S = 1, the max-pooling operation results

into a D = 4 output feature map. The motivation for this operation is to intro-

duce invariance to local translations. This subsampling procedure has been found

beneficial in other applications [86].

Convolutional networks have the ability to extract a hierarchy of increasingly complex

features which makes them very appealing. This is done by treating the output feature

maps of a convolutional layer as input channels to the subsequent convolutional layer.

From the neural network perspective, feature maps correspond to a layer of hidden

units or neurons. Specifically, each coordinate within a feature map corresponds to an

individual neuron, for which the size of its receptive field corresponds to the kernel’s

size. A kernel’s value also represents the weights of the connections between the layer’s

neurons and the neurons in the previous layer. It is often found in practice that the

learned kernels resemble edge detectors, each kernel being tuned to a different spatial

frequency, scale and orientation, as is appropriate for the statistics of the training data.

115

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

Finally, to perform a prediction of the segmentation labels, we connect the last convo-

lutional hidden layer to a convolutional output layer followed by a non-linearity (i.e. no

pooling is performed). It is necessary to note that, for segmentation purposes, a con-

ventional CNN will not yield an efficient test time since the output layer is typically

fully connected. By using a convolution at the end, for which we have an efficient

implementation, the prediction at test time for a whole brain will be 45 times faster.

The convolution uses as many kernels as there are different segmentation labels (in our

case five). Each kernel thus acts as the ultimate detector of tissue from one of the seg-

mentation labels. We use the softmax non-linearity which normalizes the result of the

kernel convolutions into a multinominal distribution over the labels. Specifically, let a

be the vector of values at a given spatial position, it computes softmax(a) = exp(a)/Z

where Z =
∑

c exp(ac) is a normalization constant. More details will be discussed in

Section 6.4.

Noting Y as the segmentation label field over the input patch X, we can thus interpret

each spatial position of the convolutional output layer as providing a model for the like-

lihood distribution p(Yij|X), where Yij is the label at position i, j. We get the probability

of all labels simply by taking the product of each conditional p(Y|X) =
∏

ij p(Yij|X).

Our approach thus performs a multiclass labeling by assigning to each pixel the label

with the largest probability.

6.3.1 The Architectures

Our description of CNNs so far suggests a simple architecture corresponding to a single

stack of several convolutional layers. This configuration is the most commonly imple-

mented architecture in the computer vision literature. However, one could imagine other

architectures that might be more appropriate for the task at hand.

In this work, we explore a variety of architectures by using the concatenation of feature

maps from different layers as another operation when composing CNNs. This opera-

tion allows us to construct architectures with multiple computational paths, which can

each serve a different purpose. We now describe the two types of architectures that we

explore in this work.

116

6.3. OUR CONVOLUTIONAL NEURAL NETWORK APPROACH

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 7x7 +
Maxout +
Pooling 4x4

Conv 13x13 +
Maxout

Input
4x33x33

Concatenation

Conv 21x21 +
Softmax

Output
5x1x1

64x21x2164x24x24

160x21x21

224x21x21

Parameters 651,488

Figure 6.2 – Two-pathway CNN architecture (TWOPATHCNN). The figure shows the
input patch going through two paths of convolutional operations. The feature-maps in
the local and global paths are shown in yellow and orange respectively. The convolu-
tional layers used to produce these feature-maps are indicated by dashed lines in the
figure. The green box embodies the whole model which in later architectures will be
used to indicate the TWOPATHCNN.

Two-pathway architecture

This architecture is made of two streams: a pathway with smaller 7 × 7 receptive fields

and another with larger 13 × 13 receptive fields. We refer to these streams as the local

pathway and the global pathway, respectively. The motivation for this architectural

choice is that we would like the prediction of the label of a pixel to be influenced by

two aspects: the visual details of the region around that pixel and its larger “context",

i.e. roughly where the patch is in the brain.

The full architecture along with its details is illustrated in Figure 6.2. We refer to this

architecture as the TWOPATHCNN. To allow for the concatenation of the top hidden

layers of both pathways, we use two layers for the local pathway, with 3 × 3 kernels

for the second layer. While this implies that the effective receptive field of features in

the top layer of each pathway is the same, the global pathway’s parametrization more

directly and flexibly models features in that same area. The concatenation of the feature

maps of both pathways is then fed to the output layer.

Cascaded architectures

One disadvantage of the CNNs described so far is that they predict each segmentation la-

bel separately from each other. This is unlike a large number of segmentation methods

117

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

in the literature, which often propose a joint model of the segmentation labels, effec-

tively modeling the direct dependencies between spatially close labels. One approach

is to define a conditional random field (CRF) over the labels and perform mean-field

message passing inference to produce a complete segmentation. In this case, the final

label at a given position is effectively influenced by the models beliefs about what the

label is in the vicinity of that position.

On the other hand, inference in such joint segmentation methods is typically more com-

putationally expensive than a simple feed-forward pass through a CNN. This is an im-

portant aspect that one should take into account if automatic brain tumor segmentation

is to be used in a day-to-day practice.

Here, we describe CNN architectures that both exploit the efficiency of CNNs, while

also more directly model the dependencies between adjacent labels in the segmenta-

tion. The idea is simple: since we’d like the ultimate prediction to be influenced by the

model’s beliefs about the value of nearby labels, we propose to feed the output prob-

abilities of a first CNN as additional inputs to the layers of a second CNN. Again, we

do this by relying on the concatenation of convolutional layers. In this case, we sim-

ply concatenate the output layer of the first CNN with any of the layers in the second

CNN. Moreover, we use the same two-pathway structure for both CNNs. This effec-

tively corresponds to a cascade of two CNNs, thus we refer to such models as cascaded

architectures.

In this work, we investigated three cascaded architectures that concatenate the first

CNN’s output at different levels of the second CNN:

— Input concatenation: In this architecture, we provide the first CNN’s output

directly as input to the second CNN. They are thus simply treated as additional

image channels of the input patch. The details are illustrated in Figure 6.3a. We

refer to this model as INPUTCASCADECNN.

— Local pathway concatenation: In this architecture, we move up one layer in the

local pathway and perform concatenation to its first hidden layer, in the sec-

ond CNN. The details are illustrated in Figure 6.3b. We refer to this model as

LOCALCASCADECNN.

— Pre-output concatenation: In this last architecture, we move to the very end of

118

6.3. OUR CONVOLUTIONAL NEURAL NETWORK APPROACH

the second CNN and perform concatenation right before its output layer. This

architecture is interesting, as it is similar to the computations made by one pass

of mean-field inference [173] in a CRF whose pairwise potential functions are

the weights in the output kernels. From this view, the output of the first CNN is

the first iteration of mean-field, while the output of the second CNN would be

the second iteration. The difference with regular mean-field however is that our

CNN allows the output at one position to be influenced by its previous value, and

the convolutional kernels are not the same in the first and second CNN. The de-

tails are illustrated in Figure 6.3c. We refer to this model as MFCASCADECNN.

6.3.2 Training

Gradient Descent By interpreting the output of the convolutional network as a model

for the distribution over segmentation labels, a natural training criteria is to maximize

the probability of all labels in our training set or, equivalently, to minimize the negative

log-probability − log p(Y|X) =
∑

ij − log p(Yij|X) for each labeled brain.

To do this, we follow a stochastic gradient descent approach by repeatedly selecting la-

bels Yij at a random subset of patches within each brain, computing the average negative

log-probabilities for this mini-batch of patches and performing a gradient descent step

on the CNNs parameters (i.e. the kernels at all layers).

Performing updates based only on a small subset of patches allows us to avoid having

to process a whole brain for each update, while providing reliable enough updates for

learning. In practice, we implement this approach by creating a dataset of mini-batches

of smaller brain image patches, paired with the corresponding center segmentation label

as the target.

To further improve optimization, we implemented a so-called momentum strategy which

has been shown successful in the past [86]. The idea of momentum is to use a temporally

averaged gradient in order to damp the optimization velocity:

119

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

Input
4x33x33

Output
5x1x1

64x21x2164x24x24

160x21x21

Input
4x65x65

224x21x21
Conv 7x7 +
Maxout +
Pooling 4x4

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout

5x33x33

Parameters 802,368

9x33x33

(a) Cascaded architecture, using input concatenation (INPUTCASCADECNN).

Input
4x33x33

Output
5x1x1

64x21x2169x24x24

160x21x21

5x24x24

224x21x21

Conv 7x7 +
Maxout +
Pooling 4x4

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout

Input
4x56x56

Parameters 654,368

(b) Cascaded architecture, using local pathway concatenation (LOCALCASCADECNN).

Input
4x33x33

Output
5x1x1

64x21x2164x24x24

160x21x21

Input
4x53x53

5x21x21

229x21x21

Conv 7x7 +
Maxout +
Pooling 4x4

Conv 3x3 +
Maxout +
Pooling 2x2

Conv 21x21 +
Softmax

Conv 13x13 +
Maxout # Parameters 662,513

(c) Cascaded architecture, using pre-output concatenation, which is an architecture with proper-
ties similar to that of learning using a limited number of mean-field inference iterations in a CRF
(MFCASCADECNN).

Figure 6.3 – Cascaded architectures.

120

6.3. OUR CONVOLUTIONAL NEURAL NETWORK APPROACH

Vi+1 = µ ∗ Vi − α ∗ ∇Wi

Wi+1 = Wi + Vi+1

where Wi stands for the CNNs parameters at iteration i, ∇Wi the gradient of the loss

function at Wi, V is the integrated velocity initialized at zero, α is the learning rate,

and µ the momentum coefficient. We define a schedule for the momentum µ where the

momentum coefficient is gradually increased during training. In our experiments the

initial momentum coefficient was set to µ = 0.5 and the final value was set to µ = 0.9.

Also, the learning rate α is decreased by a factor at every epoch. The initial learning

rate was set to α = 0.005 and the decay factor to 10−1.

Two-phase training Brain tumor segmentation is a highly data imbalanced problem

where the healthy voxels (i.e. label 0) comprise 98% of total voxels. From the remaining

2% pathological voxels, 0.18% belongs to necrosis (label 1), 1.1% to edema (label 2),

0.12% to non-enhanced (label 3) and 0.38% to enhanced tumor (label 4). Selecting

patches from the true distribution would cause the model to be overwhelmed by healthy

patches and causing problem when training out CNN models. Instead, we initially

construct our patches dataset such that all labels are equiprobable. This is what we

call the first training phase. Then, in a second phase, we account for the un-balanced

nature of the data and re-train only the output layer (i.e. keeping the kernels of all other

layers fixed) with a more representative distribution of the labels. This way we get the

best of both worlds: most of the capacity (the lower layers) is used in a balanced way to

account for the diversity in all of the classes, while the output probabilities are calibrated

correctly (thanks to the re-training of the output layer with the natural frequencies of

classes in the data).

Regularization Successful CNNs tend to be models with a lot of capacity, making

them vulnerable to overfitting in a setting like ours where there clearly are not enough

training examples. Accordingly, we found that regularization is important in obtaining

121

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

good results. Here, regularization took several forms. First, in all layers, we bounded

the absolute value of the kernel weights and applied both L1 and L2 regularization to

prevent overfitting. This is done by adding the regularization terms to the negative log-

probability (i.e. − log p(Y|X) + λ1|W|1 + λ2|W|2, where λ1 and λ2 are coefficients

for L1 and L2 regularization terms respectively). L1 and L2 affect the parameters of

the model in different ways, while L1 encourages sparsity, L2 encourages small values.

We also used a validation set for early stopping, i.e. stop training when the validation

performance stopped improving. The validation set was also used to tune the other

hyper-parameters of the model. The reader shall note that the hyper-parameters of the

model which includes using or not L2 and/or L1 coefficients were selected by doing a

grid search over range of parameters. The chosen hyper-parameters were the ones for

which the model performed best on a validation set.

Moreover, we used Dropout [147], a recent regularization method that works by stochas-

tically adding noise in the computation of the hidden layers of the CNN. This is done

by multiplying each hidden or input unit by 0 (i.e. masking) with a certain probability

(e.g. 0.5), independently for each unit and training update. This encourages the neural

network to learn features that are useful “on their own", since each unit cannot assume

that other units in the same layer won’t be masked as well and co-adapt its behavior.

At test time, units are instead multiplied by one minus the probability of being masked.

For more details, see Srivastava et al. [147].

Considering the large number of parameters our model has, one might think that even

with our regularization strategy, the 30 training brains from BRATS 2013 are too few to

prevent overfitting. But as will be shown in the results section, our model generalizes

well and thus do not overfit. One reason for this is the fact that each brain comes with

200 2d slices and thus, our model has approximately 6000 2D images to train on. We

shall also mention that by their very nature, MRI images of brains are very similar from

one patient to another. Since the variety of those images is much lower than those in

real-image datasets such as CIFAR and ImageNet, a fewer number of training samples

is thus needed.

Cascaded Architectures To train a cascaded architecture, we start by training the

TWOPATHCNN with the two phase stochastic gradient descent procedure described

122

6.4. IMPLEMENTATION DETAILS

previously. Then, we fix the parameters of the TWOPATHCNN and include it in the

cascaded architecture (be it the INPUTCASCADECNN, the LOCALCASCADECNN, or

the MFCASCADECNN) and move to training the remaining parameters using a similar

procedure. It should be noticed however that for the spatial size of the first CNN’s output

and the layer of the second CNN to match, we must feed to the first CNN a much larger

input. Thus, training of the second CNN must be performed on larger patches. For

example in the INPUTCASCADECNN (Figure 6.3a), the input size to the first model is

of size 65×65 which results into an output of size 33×33. Only in this case the outputs

of the first CNN can be concatenated with the input channels of the second CNN.

6.4 Implementation details

Our implementation is based on the Pylearn2 library [55]. Pylearn2 is an open-source

machine learning library specializing in deep learning algorithms. It also supports the

use of GPUs, which can greatly accelerate the execution of deep learning algorithms.

Since CNN’s are able to learn useful features from scratch, we applied only minimal

pre-processing. We employed the same pre-processing as Tustison et al., the winner of

the 2013 BRATS challenge [104]. The pre-processing follows three steps. First, the 1%

highest and lowest intensities are removed. Then, we apply an N4ITK bias correction [7]

to T1 and T1C modalities. The data is then normalized within each input channel by

subtracting the channel’s mean and dividing by the channel’s standard deviation.

As for post-processing, a simple method based on connected components was imple-

mented to remove flat blobs which might appear in the predictions due to bright corners

of the brains close to the skull.

The hyper-parameters of the different architectures (kernel and max pooling size for

each layer and the number of layers) can be seen in Figure 6.3. Hyper-parameters

were tuned using grid search and cross-validation on a validation set (see Bengio [13]).

The chosen hyper-parameters were the ones for which the model performed best on

the validation set. For max pooling, we always use a stride of 1. This is to keep per-

pixel accuracy during full image prediction. We observed in practice that max pooling

123

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

in the global path does not improve accuracy. We also found that adding additional

layers to the architectures or increasing the capacity of the model by adding additional

feature maps to the convolutional blocks do not provide any meaningful performance

improvement.

Biases are initialized to zero except for the softmax layer for which we initialized

them to the log of the label frequencies. The kernels are randomly initialized from

U (−0.005, 0.005). Training takes about 3 minutes per epoch for the TWOPATHCNN

model on an NVIDIA Titan black card.

At test time, we run our code on a GPU in order to exploit its computational speed.

Moreover, the convolutional nature of the output layer allows us to further accelerate

computations at test time. This is done by feeding as input a full image and not in-

dividual patches. Therefore, convolutions at all layers can be extended to obtain all

label probabilities p(Yij|X) for the entire image. With this implementation, we are able

to produce a segmentation in 25 seconds per brain on the Titan black card with the

TWOPATHCNN model. This turns out to be 45 times faster than when we extracted a

patch at each pixel and processed them individually for the entire brain.

Predictions for the MFCASCADECNN model, the LOCALCASCADECNN model, and

INPUTCASCADECNN model take on average 1.5 minutes, 1.7 minutes and 3 minutes

respectively.

6.5 Experiments and Results

The experiments were carried out on real patient data obtained from the 2013 brain

tumor segmentation challenge (BRATS2013), as part of the MICCAI conference [44].

The BRATS2013 dataset is comprised of 3 sub-datasets. The training dataset, which

contains 30 patient subjects all with pixel-accurate ground truth (20 high grade and 10

low grade tumors); the test dataset which contains 10 (all high grade tumors) and the

leaderboard dataset which contains 25 patient subjects (21 high grade and 4 low grade

tumors). There is no ground truth provided for the test and leaderboard datasets. All

brains in the dataset have the same orientation. For each brain there exists 4 modalities,

124

6.5. EXPERIMENTS AND RESULTS

namely T1, T1C, T2 and Flair which are co-registered. The training brains come with

groundtruth for which 5 segmentation labels are provided, namely non-tumor, necrosis,

edema, non-enhancing tumor and enhancing tumor. Figure 6.4 shows an example of the

data as well as the ground truth. In total, the model iterates over about 2.2 million exam-

ples of tumorous patches (this consists of all the 4 sub-tumor classes) and goes through

3.2 million of the healthy patches. As mentioned before during the first phase training,

the distribution of examples introduced to the model from all 5 classes is uniform.

Please note that we could not use the BRATS 2014 dataset due to problems with both the

system performing the evaluation and the quality of the labeled data. For these reasons

the old BRATS 2014 dataset has been removed from the official website and, at the time

of submitting this manuscript, the BRATS website still showed: “Final data for BRATS

2014 to be released soon”. Furthermore, we have even conducted an experiment where

we trained our model with the old 2014 dataset and made predictions on the 2013 test

dataset; however, the performance was worse than our results mentioned in this paper.

For these reasons, we decided to focus on the BRATS 2013 data.

As mentioned in Section 6.3, we work with 2D slices due to the fact that the MRI

volumes in the dataset do not posses an isotropic resolution and the spacing in the third

dimension is not consistent across the data. We explored the use of 3D information (by

treating the third dimension as extra input channels or by having an architecture which

takes orthogonal slices from each view and makes the prediction on the intersecting

center pixel), but that didn’t improve performance and made our method very slow.

Note that as suggested by Krizhevsky et al. [86], we applied data augmentation by

flipping the input images. Unlike what was reported by Zeiler and Fergus [178], it did

not improve the overall accuracy of our model.

Quantitative evaluation of the models performance on the test set is achieved by upload-

ing the segmentation results to the online BRATS evaluation system [43]. The online

system provides the quantitative results as follows: The tumor structures are grouped

in 3 different tumor regions. This is mainly due to practical clinical applications. As

described by Menze et al. [104], tumor regions are defined as:

a) The complete tumor region (including all four tumor structures).

125

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

T1 T2 T1-enhanced Flair GT

Figure 6.4 – The first four images from left to right show the MRI modalities used as
input channels to various CNN models and the fifth image shows the ground truth labels
where � edema, � enhanced tumor, � necrosis, � non-enhanced tumor.

b) The core tumor region (including all tumor structures exept “edema").

c) The enhancing tumor region (including the “enhanced tumor" structure).

For each tumor region, Dice (identical to F measure), Sensitivity and Specificity are

computed as follows :

Dice(P, T) =
|P1 ∧ T1|

(|P1| + |T1|)/2
,

Sensitivity(P, T) =
|P1 ∧ T1|

|T1|
,

Specificity(P, T) =
|P0 ∧ T0|

|T0|
,

where P represents the model predictions and T represents the ground truth labels. We

also note as T1 and T0 the subset of voxels predicted as positives and negatives for the

tumor region in question. Similarly for P1 and P0. The online evaluation system also

provides a ranking for every method submitted for evaluation. This includes methods

from the 2013 BRATS challenge published in [104] as well as anonymized unpublished

methods for which no reference is available. In this section, we report experimental

results for our different CNN architectures.

126

6.5. EXPERIMENTS AND RESULTS

6.5.1 The TWOPATHCNN architecture

As mentioned previously, unlike conventional CNNs, the TWOPATHCNN architecture

has two pathways: a “local" path focusing on details and a “global" path more focused

on the context. To better understand how joint training of the global and local pathways

benefits the performance, we report results on each pathway as well as results on aver-

aging the outputs of each pathway when trained separately. Our method also deals with

the unbalanced nature of the problem by training in two phases as discussed in Section

6.3.2. To see the impact of the two phase training, we report results with and without it.

We refer to the CNN model consisting of only the local path (i.e. conventional CNN ar-

chitecture) as LOCALPATHCNN, the CNN model consisting of only the global path as

GLOBALPATHCNN, the model averaging the outputs of the local and global paths (i.e.

LOCALPATHCNN and GLOBALPATHCNN) as AVERAGECNN and the two-pathway

CNN architecture as TWOPATHCNN. The second training phase is noted by appending

‘*’ to the architecture name. Since the second phase training has a substantial effect and

always improves the performance, we only report results on GLOBALPATHCNN and

AVERAGECNN with the second phase.

Table 6.1 presents the quantitative results of these variations. This table contains results

for the TWOPATHCNN with one and two training phases, the common single path CNN

(i.e. LOCALPATHCNN) with one and two training phases, the GLOBALPATHCNN*

which is a single path CNN model following the global pathway architecture and the

output average of each of the trained single-pathway models (AVERAGECNN*). With-

out much surprise, the single path with one training phase CNN was ranked last with the

lowest scores on almost every region. Using a second training phase gave a significant

boost to that model with a rank that went from 15 to 9. Also, the table shows that joint

training of the local and global paths yields better performance compared to when each

pathway is trained separately and the outputs are averaged. One likely explanation is

that by joint training the local and global paths, the model allows the two pathways to

co-adapt. In fact, the AVERAGECNN* performs worse than the LOCALPATHCNN*

due to the fact that the GLOBALPATHCNN* performs very badly. The top performing

method in the uncascaded models is the TWOPATHCNN* with a rank of 4.

Also, in some cases results are less accurate over the Enhancing region than for the Core

127

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

Global Path Local Path

Figure 6.5 – Randomly selected filters from the first layer of the model. From left to
right the figure shows visualization of features from the first layer of the global and
local path respectively. Features in the local path include more edge detectors while the
global path contains more localized features.

and Complete regions. There are 2 main reasons for that. First, borders are usually

diffused and there are no clear cut between enhanced tumor and non-enhanced tissues.

This creates problems for both user labeling, ground truth, as well as the model. The

second reason is that the model learns what it sees in the ground truth. Since the labels

are created by different people and since the borders are not clear, each user has a

slightly different interpretation of the borders of the enhanced tumor and so sometimes

we see overly thick enhanced tumor in the ground truth.

Figure 6.5 shows representation of low level features in both local and global paths.

As seen from this figure, features in the local path include more edge detectors while

the ones in the global path are more localized features. Unfortunately, visualizing the

learned mid/high level features of a CNN is still very much an open research problem.

However, we can study the impact these features have on predictions by visualizing the

segmentation results of different models. The segmentation results on two subjects from

our validation set, produced by different variations of the basic model can be viewed in

Figure 6.7 4. As shown in the figure, the two-phase training procedure allows the model

to learn from a more realistic distribution of labels and thus removes false positives

produced by the model which trains with one training phase. Moreover, by having

two pathways, the model can simultaneously learn the global contextual features as

well as the local detailed features. This gives the advantage of correcting labels at a

global scale as well as recognizing fine details of the tumor at a local scale, yielding a

better segmentation as oppose to a single path architecture which results in smoother

4. It is important to note that we do not train the model on the validation set and thus the quality of
the results is not due to overfitting

128

6.5. EXPERIMENTS AND RESULTS

Second Phase

T1C Epoch = 5 Epoch = 11 Epoch = 25 Epoch = 35 Epoch = 55Epoch = 1

Epoch = 7Epoch = 5Epoch = 4Epoch = 2 Epoch = 10GT

Figure 6.6 – Progression of learning in INPUTCASCADECNN*. The stream of figures
on the first row from left to right show the learning process during the first phase. As
the model learns better features, it can better distinguish boundaries between tumor
sub-classes. This is made possible due to uniform label distribution of patches during
the first phase training which makes the model believe all classes are equiprobable and
causes some false positives. This drawback is alleviated by training a second phase
(shown in second row from left to right) on a distribution closer to the true distribution
of labels. The color codes are as follows: � edema, � enhanced tumor, � necrosis, �
non-enhanced tumor.

boundaries. Joint training of the two convolutional pathways and having two training

phases achieves better results.

6.5.2 Cascaded architectures

We now discuss our experiments with the three cascaded architectures namely INPUT-

CASCADECNN, LOCALCASCADECNN and MFCASCADECNN. Table 6.2 provides

the quantitative results for each architecture. Figure 6.7 also provides visual examples

of the segmentation generated by each architecture.

We find that the MFCASCADECNN* model yields smoother boundaries between classes.

We hypothesize that, since the neurons in the softmax output layer are directly con-

nected to the previous outputs within each receptive field, these parameters are more

likely to learn that the center pixel label should have a similar label to its surroundings.

As for the LOCALCASCADECNN* architecture, while it resulted in fewer false pos-

itives in the complete tumor category, the performance in other categories (i.e. tumor

129

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

LocalPathCNNT1C

GT LocalCascadeCNN*

LocalPathCNN LocalPathCNN*

TwoPathCNN*

T1C

LocalCascadeCNN* MFCascadeCNN* InputCascadeCNN*GT

GlobalPathCNN* AverageCNN*

GlobalPathCNN* AveragePathCNN*

MFCascadeCNN* InputCascadeCNN*

LocalPathCNN*

TwoPathCNN*

Figure 6.7 – Visual results from our CNN architectures from the Axial view. For each
sub-figure, the top row from left to right shows T1C modality, the conventional one path
CNN, the Conventional CNN with two training phases, and the TWOPATHCNN model.
The second row from left to right shows the ground truth, LOCALCASCADECNN
model, the MFCASCADECNN model and the INPUTCASCADECNN. The color codes
are as follows: � edema, � enhanced tumor, � necrosis, � non-enhanced tumor.

130

6.5. EXPERIMENTS AND RESULTS

T1C GT InputCascadeCNN*

T1C GT InputCascadeCNN*

Figure 6.8 – Visual results from our top performing model, INPUTCASCADECNN*
on Coronal and Sagittal views. The subjects are the same as in Figure 6.7. In every
sub-figure, the top row represents the Sagital view and the bottom row represents the
Coronal view. The color codes are as follows: � edema, � enhanced tumor, � necrosis,
� non-enhanced tumor.

131

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

Figure 6.9 – Visual segmentation results from our top performing model, INPUTCAS-
CADECNN*, on examples of the BRATS2013 test dataset in Saggital (top) and Axial
(bottom) views. The color codes are as follows: � edema, � enhanced tumor, � necro-
sis, � non-enhanced tumor.

132

6.5. EXPERIMENTS AND RESULTS

Table 6.1 – Performance of the TWOPATHCNN model and variations. The second phase
training is noted by appending ‘*’ to the architecture name. The ‘Rank’ column repre-
sents the ranking of each method in the online score board at the time of submission.

Rank Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

4 TWOPATHCNN* 0.85 0.78 0.73 0.93 0.80 0.72 0.80 0.76 0.75
9 LOCALPATHCNN* 0.85 0.74 0.71 0.91 0.75 0.71 0.80 0.77 0.73

10 AVERAGECNN* 0.84 0.75 0.70 0.95 0.83 0.73 0.77 0.74 0.73
14 GLOBALPATHCNN* 0.82 0.73 0.68 0.93 0.81 0.70 0.75 0.65 0.70
14 TWOPATHCNN 0.78 0.63 0.68 0.67 0.50 0.59 0.96 0.89 0.82
15 LOCALPATHCNN 0.77 0.64 0.68 0.65 0.52 0.60 0.96 0.87 0.80

Table 6.2 – Performance of the cascaded architectures. The reported results are from
the second phase training. The ‘Rank’ column shows the ranking of each method in the
online score board at the time of submission.

Rank Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

2 INPUTCASCADECNN* 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80
4-a MFCASCADECNN* 0.86 0.77 0.73 0.92 0.80 0.71 0.81 0.76 0.76
4-c LOCALCASCADECNN* 0.88 0.76 0.72 0.91 0.76 0.70 0.84 0.80 0.75

core and enhanced tumor) did not improve.

Figure 6.8 shows segmentation results from the same brains (as in Figure 6.7) in Sagit-

tal and Coronal views. The INPUTCASCADECNN* model was used to produce these

results. As seen from this figure, although the segmentation is performed on Axial view

but the output is consistent in Coronal and Sagittal views. Although subjects in Figure

5 and Figure 6 are from our validation set for which the model is not trained on and the

segmentation results from these subjects can give a good estimate of the models perfor-

mance on a test set, however, for further clarity we visualise the models performance on

two subjects from BRATS-2013 testst. These results are shown in Figure 6.9 in Saggital

(top) and Axial (bottom) views.

To better understand the process for which INPUTCASCADECNN* learns features, we

present in Figure 6.6 the progression of the model by making predictions at every few

epochs on a subject from our validation set.

Overall, the best performance is reached by the INPUTCASCADECNN* model. It im-

proves the Dice measure on all tumor regions. With this architecture, we were able to

reach the second rank on the BRATS 2013 scoreboard. While MFCASCADECNN*,

TWOPATHCNN* and LOCALCASCADECNN* are all ranked 4, the inner ranking be-

133

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

tween these three models is noted as 4a, 4b and 4c respectively.

Table 6.3 shows how our implemented architectures compare with currently published

state-of-the-art methods as mentioned in [104] 5. The table shows that INPUTCAS-

CADECNN* out performs Tustison et al. the winner of the BRATS 2013 challenge

and is ranked first in the table. Results from the BRATS-2013 leaderboard presented

in Table 6.4 shows that our method outperforms other approaches on this dataset. We

also compare our top performing method in Table 6.5 with state-of-the-art methods on

BRATS-2012, "4 label" test set as mentioned in [104]. As seen from this table, our

method out performs other methods in the tumor Core category and gets competitive

results on other categories.

Let us mention that Tustison’s method takes 100 minutes to compute predictions per

brain as reported in [104], while the INPUTCASCADECNN* takes 3 minutes, thanks

to the fully convolutional architecture and the GPU implementation, which is over 30

times faster than the winner of the challenge. The TWOPATHCNN* has a performance

close to the state-of-the-art. However, with a prediction time of 25 seconds, it is over

200 times faster than Tustison’s method. Other top methods in the table are that of

Meier et al and Reza et al with processing times of 6 and 90 minutes respectively. Re-

cently Subbanna et al. [154] published competitive results on the BRATS 2013 dataset,

reporting dice measures of 0.86, 0.86, 0.77 for Complete, Core and Enhancing tumor

regions. Since they do not report Specificity and Sensitivity measures, a completely fair

comparison with that method is not possible. However, as mentioned in [154], their

method takes 70 minutes to process a subject, which is about 23 times slower than our

method.

Regarding other methods using CNNs, Urban et al. [161] used an average of two 3D

convolutional networks with dice measures of 0.87, 0.77, 0.73 for Complete, Core and

Enhancing tumor regions on BRATS 2013 test dataset with a prediction time of about 1

minute per model which makes for a total of 2 minutes. Again, since they do not report

Specificity and Sensitivity measures, we can not make a full comparison. However,

5. Please note that the results mentioned in Table 6.3 and Table 6.4 are from meth-
ods competing in the BRATS 2013 challenge for which a static table is provided
[https://www.virtualskeleton.ch/BRATS/StaticResults2013]. Since then, other methods have been
added to the score board but for which no reference is available.

134

6.6. CONCLUSION

based on their dice scores our TWOPATHCNN* is similar in performance while taking

only 25 seconds, which is four times faster. And the INPUTCASCADECNN* is better

or equal in accuracy while having the same processing time. As for [183], they do not

report results on BRATS 2013 test dataset. However, their method is very similar to the

LOCALPATHCNN which, according to our experiments, has worse performance.

Using our best performing method, we took part in the BRATS 2015 challenge. The

BRATS 2015 training dataset comprises of 220 subjects with high grade and 54 sub-

jects with low grade gliomas. There are 53 subjects with mixed high and low grade

gliomas for testing. Every participating group had 48 hours from receiving the test

subjects to process them and submit their segmentation results to the online evaluation

system. BRATS’15 contains the training data of 2013. The ground truth for the rest of

the training brains is generated by a voted average of segmented results of the top per-

forming methods in BRATS’13 and BRATS’12. Some of these automatically generated

ground truths have been refined manually by a user.

Because distribution of the intensity values in this dataset is very variable from one

subject to another, we used a 7 fold cross validation for training. At test time, a voted

average of these models was made to make prediction for each subject in the test dataset.

The results of the challenge are presented in Figure 6.10. The semi-automatic methods

participating in the challenge have been highlighted in grey. Please note since these

results are not yet publicly available, we refrain from disclosing the name of the partic-

ipants. In this figure the semi-automatic methods are highlighted in gray. As seen from

the figure, our method ranks either first or second on Complete tumor and tumor Core

categories and gets competitive results on active tumor category. Our method has also

less outliers than most other approaches.

6.6 Conclusion

In this paper, we presented an automatic brain tumor segmentation method based on

deep convolutional neural networks. We considered different architectures and investi-

gated their impact on the performance. Results from the BRATS 2013 online evaluation

system confirms that with our best model we managed to improve on the currently

135

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 6

competitor 7

competitor 12

competitor 4

competitor 11

competitor 9

competitor 5

competitor 3

InputCascadeCNN*

competitor 1

competitor 2

competitor 10

competitor 8

−5 −4 −3 −2 −1
Hausdorff

P
ar

ti
ci

p
an

ts

Hausdorff Distance Active Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7

competitor 6

competitor 5

competitor 9

competitor 11

competitor 12

competitor 1

competitor 4

competitor 8

competitor 10

competitor 3

InputCascadeCNN*

competitor 2

−4 −3 −2 −1
Hausdorff

P
ar

ti
ci

p
an

ts

Hausdorff Distance Tumor Core

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7

competitor 6

competitor 5

competitor 9

competitor 12

competitor 11

competitor 3

competitor 1

competitor 8

competitor 4

competitor 10

InputCascadeCNN*

competitor 2

−4 −3 −2 −1
Hausdorff

P
ar

ti
ci

p
an

ts

Hausdorff Distance Whole Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 6

competitor 7

competitor 4

competitor 12

competitor 3

competitor 5

competitor 11

competitor 1

competitor 9

InputCascadeCNN*

competitor 8

competitor 2

competitor 10

0.00 0.25 0.50 0.75

Dice

P
ar

ti
ci

p
an

ts

Dice Measure Active Tumor

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7

competitor 6

competitor 4

competitor 12

competitor 11

competitor 9

competitor 5

competitor 3

competitor 2

competitor 8

InputCascadeCNN*

competitor 10

competitor 1

0.00 0.25 0.50 0.75

Dice

P
ar

ti
ci

p
an

ts

Dice Measure Tumor Core

●

●

●

●

●

●

●

●

●

●

●

●

●

competitor 7

competitor 6

competitor 3

competitor 5

competitor 12

competitor 11

competitor 4

competitor 8

competitor 9

competitor 10

InputCascadeCNN*

competitor 1

competitor 2

0.00 0.25 0.50 0.75 1.00

Dice

P
ar

ti
ci

p
an

ts
Dice Measure Whole Tumor

Figure 6.10 – Our BRATS’15 challenge results using INPUTCASCADECNN*. Dice
scores and negative log Hausdorff distances are presented for the three tumor categories.
Since the results of the challenge are not yet publicly available, we are unable to disclose
the name of the participants. The semi-automatic methods are highlighted in gray. In
each sub-figure, the methods are ranked based on the mean value. The mean is presented
in green, the median in red and outliers in blue.

136

6.6. CONCLUSION

Table 6.3 – Comparison of our implemented architectures with the state-of-the-art meth-
ods on the BRATS-2013 test set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

INPUTCASCADECNN* 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80
Tustison 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83

MFCASCADECNN* 0.86 0.77 0.73 0.92 0.80 0.71 0.81 0.76 0.76
TWOPATHCNN* 0.85 0.78 0.73 0.93 0.80 0.72 0.80 0.76 0.75

LOCALCASCADECNN* 0.88 0.76 0.72 0.91 0.76 0.70 0.84 0.80 0.75
LOCALPATHCNN* 0.85 0.74 0.71 0.91 0.75 0.71 0.80 0.77 0.73

Meier 0.82 0.73 0.69 0.76 0.78 0.71 0.92 0.72 0.73
Reza 0.83 0.72 0.72 0.82 0.81 0.70 0.86 0.69 0.76
Zhao 0.84 0.70 0.65 0.80 0.67 0.65 0.89 0.79 0.70

Cordier 0.84 0.68 0.65 0.88 0.63 0.68 0.81 0.82 0.66
TWOPATHCNN 0.78 0.63 0.68 0.67 0.50 0.59 0.96 0.89 0.82

LOCALPATHCNN 0.77 0.64 0.68 0.65 0.52 0.60 0.96 0.87 0.80
Festa 0.72 0.66 0.67 0.77 0.77 0.70 0.72 0.60 0.70
Doyle 0.71 0.46 0.52 0.66 0.38 0.58 0.87 0.70 0.55

Table 6.4 – Comparison of our top implemented architectures with the state-of-the-art
methods on the BRATS-2013 leaderboard set.

Method Dice Specificity Sensitivity
Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

INPUTCASCADECNN* 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68
Tustison 0.79 0.65 0.53 0.83 0.70 0.51 0.81 0.73 0.66

Zhao 0.79 0.59 0.47 0.77 0.55 0.50 0.85 0.77 0.53
Meier 0.72 0.60 0.53 0.65 0.62 0.48 0.88 0.69 0.6
Reza 0.73 0.56 0.51 0.68 0.64 0.48 0.79 0.57 0.63

Cordier 0.75 0.61 0.46 0.79 0.61 0.43 0.78 0.72 0.52

Table 6.5 – Comparison of our top implemented architectures with the state-of-the-art
methods on the BRATS-2012 "4 label" test set as discussed in [104].

Method Dice
Complete Core Enhancing

INPUTCASCADECNN* 0.81 0.72 0.58
Subbanna 0.75 0.70 0.59

Zhao 0.82 0.66 0.42
Tustison 0.75 0.55 0.52

Festa 0.62 0.50 0.61

137

CHAPTER 6. BRAIN TUMOR SEGMENTATION WITH DEEP NEURAL NETWORKS

published state-of-the-art method both on accuracy and speed as presented in MICCAI

2013. The high performance is achieved with the help of a novel two-pathway archi-

tecture (which can model both the local details and global context) as well as modeling

local label dependencies by stacking two CNN’s. Training is based on a two phase pro-

cedure, which we’ve found allows us to train CNNs efficiently when the distribution of

labels is unbalanced.

Thanks to the convolutional nature of the models and by using an efficient GPU imple-

mentation, the resulting segmentation system is very fast. The time needed to segment

an entire brain with any of the these CNN architectures varies between 25 seconds and

3 minutes, making them practical segmentation methods.

138

Chapter 7

HeMIS:

Hetero-Modal Image Segmentation

Résumé

Most machine learning methods require a fixed number of input modalities.

Also, some input modalities do not provide a significant amount of informa-

tion to the model, yet their presence is necessary. Unfortunately in practice, it

is hardly the case that all modalities are available. Acquiring new acquisitions

means additional cost and time for the patient, which should be avoided un-

less absolutely necessary. In this work we address that problem by presenting

a framework which is flexible in terms of the input modalities to the model.

Using this framework, the model does its best to use the information it has to

do a reasonable prediction and the accuracy improves by adding modalities.

In some cases, the model is able to compensate for the missing modalities.

Commentaires

This article was accepted for oral presentation at the International Conference

on Medical Image Computing and Computer Assisted Intervention (MICCAI)

2016.

The initial idea was proposed by the seniors involved in the project (i.e. Yoshua

139

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

Bengio and Nicolas Chapados). The idea was refined and perfected by the

Ph.D. candiate and the second author (Nicolas Guizard). The main body of

the python code was written by the Ph.D. candidate. The Ph.D. candidate car-

ried out experiments for BRATS dataset. The Ph.D. candidate took active part

in writing the paper.

140

HeMIS:
Hetero-Modal Image Segmentation

Mohammad Havaei
Département d’informatique, Université de Sherbrooke,

Sherbrooke, Québec, Canada J1K 2R1
seyed.mohammad.havaei@usherbrooke.ca

Nicolas Guizard
Imagia Inc., Montreal, Qc, Canada

nicolas.chapados@imagia.com

Nicolas Chapados
Imagia Inc., Montreal, Qc, Canada

nicolas.chapados@imagia.com

Yoshua Bengio
Université de Montréal, Montréal, Canada
yoshua.bengio@umontreal.ca

Keywords: Segmentation, multi-modal, deep learning, convolutional neural

networks, data abstraction, data imputation

Abstract

We introduce a deep learning image segmentation framework that is ex-

tremely robust to missing imaging modalities. Instead of attempting to impute

or synthesize missing data, the proposed approach learns, for each modality,

an embedding of the input image into a single latent vector space for which

arithmetic operations (such as taking the mean) are well defined. Points in

that space, which are averaged over modalities available at inference time,

can then be further processed to yield the desired segmentation. As such,

any combinatorial subset of available modalities can be provided as input,

without having to learn a combinatorial number of imputation models. Eval-

uated on two neurological MRI datasets (brain tumors and MS lesions), the

approach yields state-of-the-art segmentation results when provided with all

modalities; moreover, its performance degrades remarkably gracefully when

modalities are removed, significantly more so than alternative mean-filling or

other synthesis approaches.

141

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

7.1 Introduction

In medical image analysis, image segmentation is an important task and is primor-

dial to visualize and quantify the severity of the pathology in clinical practice. Multi-

modality imaging provides complementary information to discriminate specific tissues,

anatomies and pathologies. However, manual segmentation is long, painstaking and

subject to human variability. In the last decades, numerous automatic approaches have

been developed to speed up medical image segmentation. These methods can be grouped

into two categories: The first, multi-atlas approaches estimate on-line intensity similar-

ities between the subject being segmented and multi-atlases (images with expert la-

bels). These techniques have shown excellent results in structural segmentation when

using non-linear registration [73]; when combined with non-local approaches they have

proven effective in segmenting diffuse and sparse pathologies (ie. multiple sclerosis

(MS) lesions [58]) as well as more complex multi-label pathology (ie. Glioblastoma

[31]). In contrast, model-based approaches are typically trained offline to identify a

discriminative model of image intensity features. These features can be predefined by

the user (e.g. with random forests [50]) or extracted and learned hierarchically directly

from the images [16].

Both strategies are typically optimized for a specific set of multi-modal images and usu-

ally require these modalities to be available. In clinical settings, image acquisition and

patient artifacts, among other hurdles, make it difficult to fully exploit all the modalities;

as such, it is common to have one or more modalities to be missing for a given instance.

This problem is not new, and the subject of missing data analysis has spawned an im-

mense literature in statistics (e.g. [165]). In medical imaging, a number of approaches

have been proposed, some of which require to re-train a specific model with the missing

modalities or to synthesize them [68]. Synthesis can improve multi-modal classification

by adding information of the missing modalities in the context of a simple classifier such

as random forests [158]. Approaches to imitate with fewer features a classifier trained

with a complete set of features have also been proposed [70]. Nevertheless, it should

stand to reason that a more complex model should be capable of extracting relevant fea-

tures from just the available modalities without relying on artificial intermediate steps

such as imputation or synthesis.

142

7.2. METHOD

This paper proposes a deep learning framework (HeMIS) that can segment medical im-

ages from incomplete multi-modal datasets. Deep learning [54] has shown an increasing

popularity in medical image processing for segmenting but also to synthesize missing

modalities [158]. Here, the proposed approach learns, separately for each modality, an

embedding of the input image into a latent space. In this space, arithmetic operations

(such as computing first and second moments of a collection of vectors) are well defined

and can be taken over the different modalities available at inference time. These com-

puted moments can then be further processed to estimate the final segmentation. This

approach presents the advantage of being robust to any combinatorial subset of available

modalities provided as input, without the need to learn a combinatorial number of im-

putation models. We start by describing the method (§7.2), follow with a description of

the datasets (§7.3) and experiments (§7.4) and finally offer concluding remarks (§7.5).

7.2 Method

7.2.1 Hetero-Modal Image Segmentation

Typical convolutional neural network (CNN) architectures take a multiplane image as

input and process it through a sequence of convolutional layers (followed by nonlinear-

ities such as ReLU(·) ≡ max(0, ·)), alternating with optional pooling layers, to yield a

per-pixel or per-image output [54]. In such networks every input plane is assumed to

be present within a given instance: since the very first convolutional layer mixes input

values coming from all planes, any missing plane introduces a bias in the computation

that the network is not equipped to deal with.

We propose an approach wherein each modality is initially processed by its own con-

volutional pipeline, independently of all others. After a few independent stages, feature

maps from all available modalities are merged by computing mapwise statistics such as

the mean and the variance, quantities whose expectation does not depend on the number

of terms (i.e. modalities) that are provided. After merging, the mean and variance fea-

ture maps are concatenated and fed into a final set of convolutional stages to obtain net-

work output. This is illustrated in Fig. 7.1. In this procedure, each modality contributes

143

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

Figure 7.1 – Illustration of the Hetero-Modal Image Segmentation architecture. Modal-
ities available at inference time, Mk, are provided to independent modality-specific con-
volutional layers in the back end. Feature maps statistics (first & second moments) are
computed in the abstraction layer, which after concatenation are processed by further
convolutional layers in the front end, yielding pixelwise classifications outputs.

a separate term to the mean and variance; in contrast to a vanilla CNN architecture, a

missing modality does not throw this computation off: the mean and variance terms

simply become estimated with larger uncertainty. In seeking to be robust to any subset

of missing modalities, we call this approach hetero-modal rather than multi-modal, rec-

ognizing that in addition to taking advantage of several modalities, it can take advantage

of a diverse, instance-varying, set of modalities. In particular, it does not require that

a “least common denominator” modality be present for every instance, as sometimes

needed by common imputation methods.

Let k ∈ K ⊆ {1, . . . , N} denote a modality within the set of available modalities for

a given instance, and Mk represent the image of the k-th modality. For simplicity, in

this work we assume 2D data (e.g. a single slice of a tomographic image), but it can be

extended in an obvious way to full 3D sections. As shown on Fig. 7.1, HeMIS proceeds

in three stages:

1. Back End: In our implementation, this consists of two convolutional layers with

144

7.2. METHOD

ReLU, the second followed with a (2, 2) max-pooling layer, denoted respectively C
(1)
k

and C
(2)
k . To ensure that the output layer consists of the same number of pixels as the

input image, the convolutions are zero-padded and the stride for all operations (includ-

ing max-pooling) is 1. In particular, pooling with a stride of 1 does not downsample, but

simply “thickens” the feature maps; this is found to add some robustness to the results.

The number of feature maps in each layer is given in Fig. 7.1. Let C
(j)
k,ℓ be the the ℓ-th

feature map of C
(j)
k .

2. Abstraction Layer: Modality fusion is computed here, as first and second moments

across available modalities in C(2), separately for each feature map ℓ,

Êℓ

[
C(2)

]
=

1

|K|

∑

k∈K

C
(2)
k,ℓ and V̂arℓ

[
C(2)

]
=

1

|K| − 1

∑

k∈K

(
C

(2)
k,ℓ − Êℓ

[
C(2)

])2
,

with V̂arℓ[C
(2)] defined to be zero if |K| = 1 (a single available modality).

3. Front End: Finally the front end combines the merged modalities to produce the

final model output. In our implementation, we concatenate all Ê
[
C(2)

]
and V̂ar

[
C(2)

]

feature maps, pass them through a convolutional layer C(3) with ReLU activation, to

finish with a final layer C(4) that has as many feature maps as there are target segmenta-

tion classes. The pixelwise posterior class probabilities are given by applying a softmax

function across the C(4) feature maps, and a full image segmentation is obtained by tak-

ing the pixelwise most likely posterior class. No further postprocessing on the resulting

segment classes (such as smoothing) is done.

Pseudo-Curriculum Training Procedure To carry out segmentation efficiently, the

model is trained fully convolutionnally to minimize a pixelwise class cross-entropy loss,

in the spirit of [96]. It has long been known that noise injection during training is a

powerful technique to make neural networks more robust, as shown among others with

denoising autoencoders [168], and dropout and related procedures [148]. Here, we make

the HeMIS architecture robust to missing modalities by randomly dropping any number

for a given training example. Inspired by previous works on curriculum learning [14]—

where the model starts learning from easy scenarios before turning to more difficult

ones—we used a pseudo-curriculum learning scheme where after few warmup epochs

where all modalities are shown to the model, we start randomly dropping modalities,

145

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

ensuring a higher probability of dropping zero or one modality only.

Interpretation as an Embedding An embedding is a mapping from an arbitrary source

space to a target real-valued vector space of fixed dimensionality. In recent years, em-

beddings have been shown to yield unexpectedly powerful representations for a wide

array of data types, including single words [105], variable-length word sequences and

images [174], and more.

In the context of HeMIS, the back end can be interpreted as learning to separately map

each modality into an embedding common to all modalities, within which vector algebra

operations carry well-defined semantics. As such, computing empirical moments to

carry out modality fusion is sensible. Since the model is trained entirely end-to-end

with backpropagation, the key aspect of the architecture is that this embedding only

needs be defined implicitly as that which minimizes the overall training loss. Cross-

modality interactions can be captured within specific embedding dimensions, as long as

there are a sufficient number of them (i.e. enough feature maps within C(2)), as they can

be combined by C(3).

With this interpretation, the back end consists of a modular assembly of operators,

viewed as reusable building blocks that may or may not be needed for a given instance,

each computing the embedding from its own input modality. These projections are

summarized in the abstraction layer (with a mean and variance, although additional

summary statistics are simple to entertain), and this summary further processed in the

front end to yield final model output.

7.3 Data and Implementation details

We studied the HeMIS framework on two neurological pathologies: Multiple Sclero-

sis (MS) with the MS Grand Challenge (MSGC) and a large Relapsing Remitting MS

(RRMS) cohort, as well as glioma with the Brain Tumor Segmentation (BRATS) dataset

[104].

MS MSGC: The MSGC dataset [150] provides 20 training MR cases with manual

ground truth lesion segmentation and 23 testing cases from the Boston Children’s Hos-

146

7.3. DATA AND IMPLEMENTATION DETAILS

pital (CHB) and the University of North Carolina (UNC). We downloaded 1 the co-

registered T1W, T2W, FLAIR images for all 43 cases as well as the ground truth lesion

mask images for the 20 training cases. While lesions masks for the 23 testing cases are

not available for download, an automated system is available to evaluate the output of a

given segmentation algorithm.

RRMS: This dataset is obtained from a multi-site clinical study with 300 relapsing-

remitting MS (RRMS) patients (mean age 37.5 yrs, SD 10.0 yrs). Each patient under-

went an MRI that included sagittal T1W , T2W and T1 post-contrast (T1C) images. The

MRI data were acquired on 1.5T scanners from different manufacturers (GE, Philips and

Siemens).

BRATS The BRATS-2015 dataset contains 220 subjects with high grade and 54 subjects

with low grade tumors. Each subject contains four MR modalities (FLAIR, T1W, T1C

and T2) and comes with a voxel level segmentation ground truth of 5 labels: healthy,

necrosis, edema, non-enhancing tumor and enhancing tumor. As done in [104], we

transform each segmentation map into 3 binary maps which correspond to 3 tumor cat-

egories, namely; Complete (which contains all tumor classes), Core (which contains

all tumor subclasses except “edema”) and Enhancing (which includes the “enhanced

tumor” subclass). For each binary map, the Dice Similarity Coefficient (DSC) is calcu-

lated [104].

BRATS-2013 contains two test datasets; Challenge and Leaderboard. The Challenge

dataset contains 10 subjects with high grade tumors while the Leaderboard dataset con-

tains 15 subjects with high grade tumors and 10 subject with low grade tumors. There

are no ground truth provided for these datasets and thus quantitative evaluation can be

achieved via an online evaluation system [104]. In our experiments we used Challenge

and Leaderboard datasets to compare the HeMIS segmentation performance to the state-

of-the-art, when trained on all modalities.

Pre-processing and implementation details Before being provided to the network,

bias field correction [143] and intensity normalization with a zero mean, truncation of

0.001 quantile and unit variance is applied to the image intensity. The multi-modal

images are co-registered to the T1W and interpolated to 1mm isotropic resolution.

1. http://www.nitrc.org/projects/msseg/

147

http://www.nitrc.org/projects/msseg/

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

We used Keras library [23] for our implementation. To deal with class imbalance, we

adopt the patch-wise training procedure mentioned in [66]. We first train the model with

a balanced dataset which allows learning features that are agnostic to the class distribu-

tion. In a second phase, we train only the final classification layer with a distribution

close to the ground truth. This ensures that we learn good features yet keep the correct

class priors. The method was trained using an Nvidia TitanX GPU, with a stochastic

gradient learning rate of 0.001, decay constant of 0.0001 and Nesterov momentum co-

efficient of 0.9 [155]. For both BRATS-2015 and MS, we split the dataset into three

separate subsets—train, valid and test—with ratios of 70%, 10% and 20% respectively.

To avoid over-fitting we used early stopping on the validation set.

7.4 Experiments and Results

We first validate HeMIS performance against state-of-the-art segmentation methods on

the two challenge datasets: MSGC and BRATS. Since the test data and the ranking

table for BRATS 2015 are not available, we submitted results to BRATS 2013 challenge

and leaderboard. These results are presented in Table 7.1. 2 As we observe, HeMIS

outperforms Tustison et al. [160], the winner of the BRATS 2013 challenge, on most

tumor region categories.

The MSGC dataset illustrates a direct application of HeMIS flexibility as only three

modalities (T1W, T2W and FLAIR) are provided for a small training set. Therefore,

given the small number of subjects, we first trained HeMIS on RRMS dataset with

four modalities and fine-tuned on MSGC. Our results were submitted to the MSGC

website 3, with a resuts summary appearing in Table 7.2. The MSGC segmentation

results include three other supervised approaches; when compared to them, HeMIS

obtains highly competitive results with a combined score of 83.2%, where 90.0% would

represent human performance given inter-rater variability.

The main advantage of HeMIS lies in its ability to deal with missing modalities, specif-

2. Note that the results mentioned in Table 7.1 are from methods competing in the BRATS 2013
challenge for which a static table is provided at https://www.virtualskeleton.ch/BraTS/StaticResults2013.
Since then, other methods have been added to the scoreboard but for which no reference is available.

3. http://www.ia.unc.edu/MSseg

148

7.4. EXPERIMENTS AND RESULTS

Table 7.1 – Comparison of HeMIS when trained on all modalities against BRATS-2013
Leaderboard and Challenge winners, in terms of Dice Similarity (scores from [104]).

Leaderboard
Method Complete Core Enhancing
Tustison [160] 79 65 53
Zhao [182] 79 59 47
Meier [104] 72 60 53
HeMIS 83 67 57

Challenge
Complete Core Enhancing
87 78 74
84 70 65
82 73 69
88 75 74

Figure 7.2 – MLP-imputed FLAIR for an MS patient. The figure shows from left to
right the original modality and the predicted FLAIR given other modalities.

Table 7.2 – Results of the full dataset training on the MSGC. For each rater (CHB and
UNC), we provide the volume difference (VD), surface distance (SD), true positive rate
(TPR), false positive rate (FPR) and the method’s score as in [150].

Method Rater VD (%) SD
(mm)

TPR
(%)

FPR
(%)

Score

CHB 86.4 8.4 58.2 70.6
80.0Souplet et al. [145]

UNC 57.9 7.5 49.1 76.3
CHB 52.4 5.4 59.0 71.5

82.1Geremia et al. [50]
UNC 45.0 5.7 51.2 76.7
CHB 63.5 7.4 47.1 52.7

84.0Brosch et al. [16]
UNC 52.0 6.4 56.0 49.8
CHB 127.4 7.5 66.1 55.3

83.2HeMIS
UNC 68.2 6.6 52.3 61.3

ically when different subjects are missing different modalities. To illustrate the model’s

flexibility in such circumstances, we compare HeMIS performance to two common ap-

149

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

Table 7.3 – Dice similarity coefficient (DSC) results on the RRMS and BRATS test sets
(%) when modalities are dropped. The table shows the DSC for all possible configura-
tions of MRI modalities being either absent (◦) or present (•), in order of FLAIR (F),
T1W (T1), T1C (T1c), T2W (T2). Results are reported for HeMIS, Mean (mean-filling)
and the imputation MLP (MLP).

RRMS BRATS

Modalities Lesion Complete Core Enhancing

F T1 T1c T2 HeMIS Mean MLP HeMIS Mean MLP HeMIS Mean MLP HeMIS Mean MLP

◦ ◦ ◦ • 1.74 2.66 12.77 58.48 2.70 61.50 40.18 4.00 37.32 20.31 6.25 18.62

◦ ◦ • ◦ 2.67 0.00 3.51 33.46 23.11 2.04 44.55 23.90 17.70 49.93 30.02 32.92

◦ • ◦ ◦ 3.89 0.00 6.64 33.22 0.00 2.07 17.42 0.00 10.52 4.67 6.25 10.78

• ◦ ◦ ◦ 34.48 9.77 38.46 71.26 72.30 63.81 37.45 0.00 34.26 5.57 6.25 15.90

◦ ◦ • • 27.52 4.31 25.83 67.59 35.01 64.97 63.39 30.92 49.38 65.38 39.00 60.30

◦ • • ◦ 8.21 0.00 8.26 45.93 23.63 1.99 55.06 41.89 26.55 62.40 43.80 40.93

• • ◦ ◦ 38.81 11.62 39.15 80.28 75.58 78.13 49.52 0.00 48.97 22.26 6.25 25.18

◦ • ◦ • 31.25 8.31 29.39 69.56 1.77 66.88 47.26 2.63 43.66 23.56 6.25 26.37

• ◦ ◦ • 39.64 33.31 38.55 82.1 81.01 81.35 53.42 25.94 52.41 23.19 6.25 25.01

• ◦ • ◦ 41.38 6.42 39.33 79.8 45.97 81.13 66.12 29.85 65.51 67.12 35.14 66.19

• • • ◦ 41.97 9.00 40.63 80.88 81.57 82.19 69.26 62.13 69.34 71.30 67.13 70.93

• • ◦ • 46.6 41.12 41.83 83.87 77.84 80.40 57.76 20.66 53.46 28.46 6.25 28.34

• ◦ • • 41.90 38.95 41.47 82.78 64.19 83.37 70.62 42.36 70.45 70.52 49.62 70.56

◦ • • • 34.98 5.78 29.46 70.98 30.86 67.85 66.60 45.79 55.40 67.84 50.21 64.81

• • • • 48.66 43.48 43.48 83.15 82.43 82.43 72.5 71.46 71.46 75.37 72.08 72.08

Wins / 15 9 0 6 10 1 4 14 0 1 9 0 6

proaches to deal with random missing modalities. The first, mean-filling, is to replace

a missing modality by the modality’s mean value. In our case since all means are zero

by construction, replacing a missing modality by zeros can be viewed as imputing with

the mean. The second approach is to train a multi-layer perceptron (MLP) to predict

the expected value of specific missing modality given the available ones. Since neural

networks are generally trained for a unique task, we need to train 28 different MLPs

(one for each ◦ in Table 7.3 for a given dataset) to account for different possibilities of

missing modalities. We used the same MLP architecture for all these models, which

consists of 2 hidden layers with 100 hidden units each, trained to minimize the mean

squared error. Fig. 7.2 shows an example of predicted modalities for an MS patient.

Table 7.3 shows the DSC for this experiment on the test set. On the BRATS dataset,

for the Core category, HeMIS achieves the best segmentation in almost all cases (14

out of 15) and for the Complete and Enhancing categories it leads in most cases (10

150

7.5. CONCLUSION

and 9 cases out of 15 respectively). Also, the mean-filling approach hardly outperforms

HeMIS or MLP-imputation. These results are consistent with the MS lesion segmen-

tation dataset, where HeMIS outperforms other imputation approaches in 9 out of 15

cases. In scenarios where only one or two modalities are missing, while both HeMIS

and MLP-imputation obtain good results, HeMIS outperforms the latter in most cases

on both datasets. On BRATS, when missing 3 out of 4 modalities, HeMIS outper-

forms the MLP in a majority of cases. Moreover, whereas the HeMIS performance

only gradually drops as additional modalities become missing, the performance drop

for MLP-imputation and mean-filling is much more severe. On the RRMS cohort, the

MLP-imputation appears to obtain slightly better segmentations when only one modal-

ity is available.

Although it is expected that tumor sub-label segmentations should be less accurate with

fewer modalities, we should still hope for the model to report a sensible characterization

of the tumor “footprint”. While MLP and mean-filling fail in this respect, HeMIS quite

well achieves this goal by outperforming in almost all cases of the Complete and Core

tumor categories. This can also be seen in Fig. 7.3 where we show how adding modal-

ities to HeMIS improves its ability to achieve a more accurate segmentation. From

Table 7.3, we can also infer that the FLAIR modality is the most relevant for identifying

the Complete tumor while T1C is the most relevant for identifying Core and Enhancing

tumor categories. On the RRMS dataset, HeMIS results are also seen to degrade slower

than the other imputation approaches, preserving good segmentation when modalities

go missing. Indeed, as seen in Fig. 7.3, even though with FLAIR alone HeMIS already

produces good segmentations, it is capable of further refining its results when adding

modalities, by removing false positives and improving outlines of the correctly identi-

fied lesions or tumor.

7.5 Conclusion

We have proposed a new fully automatic segmentation framework for heterogenous

multi-modal MRI using a specialized convolutional deep neural network. The embed-

ding of the multi-modal CNN back-end allows to train and segment datasets with miss-

151

CHAPTER 7. HEMIS:
HETERO-MODAL IMAGE SEGMENTATION

Figure 7.3 – Example of HeMIS segmentation results on BRATS and MS subjects for
different combinations of input modalities. For both cohorts, an axial FLAIR slice
of a subject is overlaid with the results where for BRATS (first row) the segmentation
colors describe necrosis (blue), non-enhancing (yellow), active core (orange) and edema
(green). For the MS case, the lesions are highlighted in red. The columns present
the results for different combinations of input modalities, with ground truth in the last
column.

ing modalities. We carried out an extensive validation on MS and glioma and achieved

state-of-the art segmentation results on two challenging neurological pathology image

processing tasks. Importantly, we contrasted the graceful performance degradation of

the proposed approach as modalities go missing, compared with other popular imputa-

tion approaches, which it achieves without requiring training specific models for every

potential missing modality combination. Future work should concentrate on extending

the approach to broader modalities outside of MRI, such as CT, PET and ultrasound.

152

Conclusion

There are many challenges facing brain tumor segmentation. Some of these challenges

are due to the natural properties of tumors themselves and some arise due to the image

acquisition process. While machine learning methods have been a source of great in-

terest for brain tumor segmentation, they are vulnerable to these challenges. This study

was set out to explore solutions to various challenges facing machine learning methods

applied to brain tumor segmentation.

We first explored an interactive method, where with minimum user interaction we were

able to produce accurate segmentations in about 1 to 2 minutes on CPU. Since the train-

ing and generalization is done within each brain, we are free from performing extensive

pre-processing steps. Considering the fact that the method can be highly parallelized,

it is possible to have a real time implementation on GPU. This method can be used in

health care institutions to help physicians to localize and segment brain tumors.

As interesting and beneficial that a semi-automatic method can be, it is still limited by

its reliance on human intervention. As a second step in this doctorate, we developed a

fully automatic method for brain tumor segmentation using deep neural networks. In-

stead of using hand crafting features, neural networks have the advantage of learning

task specific features. Also, these models learn a hierarchy of increasingly complex

features which resemble the way human visual cortex works. These capabilities allow

models based on neural networks to achieve higher performance than traditional ma-

chine learning methods. Our proposed method was selected as one of the 4 winners of

the brain tumor segmentation challenge (BRATS) in 2015.

In clinical settings, not all modalities are always present. This creates a challenge for

machine learning methods which assume all modalities used during training are present

153

CONCLUSION

at test time. As the final part of this research, we developed a framework which is

flexible with respect to the input modalities it requires. This framework can be used in

any multi-modality problem scenario and can compete with state-of-the-art methods in

brain tumor segmentation.

Although deep learning methods have proven to have potential in medical image anal-

ysis applications, their performance depends highly on the amount of training data and

they tend to perform poorly when training data is limited. A potential solution is to uti-

lize synthetically generated data. However, synthetic data do not lie on the same man-

ifold as the real MRI data. This situation is also true when different subjects are gath-

ered from different institutions where the acquisition protocol is different. Thus, learn-

ing robust representations which are invariant to the acquisition procedure is needed.

Unsupervised learning might hold the key to this problem. Also methods based on do-

main adaptation as in [1], might help us learn representations which better explain the

anatomy of the brain and can better generalize across datasets.

154

Bibliography

[1] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domain-

adversarial neural networks. arXiv preprint arXiv:1412.4446, 2014.

[2] H. Ali, M. Elmogy, E. El-Daydamony, and A. Atwan. Multi-resolution mri brain

image segmentation based on morphological pyramid and fuzzy c-mean cluster-

ing. Arabian Journal for Science and Engineering, 40(11):3173–3185, 2015.

[3] J. M. Alvarez, T. Gevers, Y. LeCun, and A. M. Lopez. Road scene segmentation

from a single image. In Proceedings of the 12th European Conference on Com-

puter Vision - Volume Part VII, ECCV’12, pages 376–389, Berlin, Heidelberg,

2012. Springer-Verlag.

[4] E. D. Angelini, O. Clatz, E. Mandonnet, E. Konukoglu, L. Capelle, and H. Duf-

fau. Glioma dynamics and computational models: a review of segmentation, reg-

istration, and in silico growth algorithms and their clinical applications. Current

Medical Imaging Reviews, 3(4):262–276, 2007.

[5] N. Archip, F. A. Jolesz, and S. K. Warfield. A validation framework for brain

tumor segmentation. Academic radiology, 14(10):1242–1251, 2007.

[6] J. Arevalo, F. A. Gonzalez, R. Ramos-Pollan, J. L. Oliveira, and M. A. Gue-

vara Lopez. Convolutional neural networks for mammography mass lesion clas-

sification. In Engineering in Medicine and Biology Society (EMBC), 2015 37th

Annual International Conference of the IEEE, pages 797–800. IEEE, 2015.

[7] B. B. Avants, N. Tustison, and G. Song. Advanced normalization tools (ants).

Insight J, 2:1–35, 2009.

155

BIBLIOGRAPHY

[8] S. Bakas, K. Zeng, A. Sotiras, S. Rathore, H. Akbari, B. Gaonkar, M. Rozycki,

S. Pati, and C. Davazikos. Segmentation of gliomas in multimodal magnetic

resonance imaging volumes based on a hybrid generative-discriminative frame-

work. Proceeding of the Multimodal Brain Tumor Image Segmentation Chal-

lenge, pages 5–12, 2015.

[9] Y. Bar, I. Diamant, L. Wolf, and H. Greenspan. Deep learning with non-medical

training used for chest pathology identification. In SPIE Medical Imaging, pages

94140V–94140V. International Society for Optics and Photonics, 2015.

[10] S. Bauer, L. Nolte, and M. Reyes. Fully automatic segmentation of brain tu-

mor images using support vector machine classification in combination with hi-

erarchical conditional random field regularization. In proc. of MICCAI, pages

354–361. Springer, 2011.

[11] S. Bauer, R. Wiest, and M. Reyes. Segmentation of brain tumor images based

on integrated hierarchical classification and regularization. in proc of BRATS-

MICCAI, pages 32–38, 2012.

[12] S. Bauer, R. Wiest, L. Nolte, and M. Reyes. A survey of mri-based medical

image analysis for brain tumor studies. Physics in medicine and biology, 58(13):

97–129, 2013.

[13] Y. Bengio. Practical recommendations for gradient-based training of deep ar-

chitectures. In Neural Networks: Tricks of the Trade, pages 437–478. Springer,

2012.

[14] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In

Proceedings of the 26th annual international conference on machine learning,

pages 41–48. ACM, 2009.

[15] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and

new perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 35(8):1798–1828, 2013.

[16] T. Brosch, Y. Yoo, L. Y. Tang, D. K. Li, A. Traboulsee, and R. Tam. Deep

convolutional encoder networks for multiple sclerosis lesion segmentation. In

156

BIBLIOGRAPHY

International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 3–11. Springer, 2015.

[17] T. Brosch, L. Tang, Y. Yoo, D. Li, A. Traboulsee, and R. Tam. Deep 3d convolu-

tional encoder networks with shortcuts for multiscale feature integration applied

to multiple sclerosis lesion segmentation. Medical Imaging, IEEE Transactions

on, 2016.

[18] N. Buduma. Fundamentals of deep learning. https://www.

safaribooksonline.com, 2017.

[19] H. Cai, R. Verma, Y. Ou, S.-k. Lee, E. R. Melhem, and C. Davatzikos. Prob-

abilistic segmentation of brain tumors based on multi-modality magnetic reso-

nance images. In Biomedical Imaging: From Nano to Macro, 2007. ISBI 2007.

4th IEEE International Symposium on, pages 600–603. IEEE, 2007.

[20] A.-S. Capelle, O. Alata, C. Fernandez, S. Lefèvre, and J. Ferrie. Unsupervised

segmentation for automatic detection of brain tumors in mri. In Image Process-

ing, 2000. Proceedings. 2000 International Conference on, volume 1, pages 613–

616. IEEE, 2000.

[21] G. Carneiro, J. Nascimento, and A. P. Bradley. Unregistered multiview mam-

mogram analysis with pre-trained deep learning models. In Medical Image

Computing and Computer-Assisted Intervention–MICCAI 2015, pages 652–660.

Springer, 2015.

[22] H. Chen, D. Ni, J. Qin, S. Li, X. Yang, T. Wang, and P. A. Heng. Standard

plane localization in fetal ultrasound via domain transferred deep neural net-

works. Biomedical and Health Informatics, IEEE Journal of, 19(5):1627–1636,

2015.

[23] F. Chollet. Keras. https://github.com/fchollet/keras, 2015.

[24] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural net-

works segment neuronal membranes in electron microscopy images. In Advances

in neural information processing systems, pages 2843–2851, 2012.

157

https://www.safaribooksonline.com
https://www.safaribooksonline.com
https://github.com/fchollet/keras

BIBLIOGRAPHY

[25] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep neural net-

works segment neuronal membranes in electron microscopy images. In Advances

in neural information processing systems, pages 2843–2851, 2012.

[26] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis de-

tection in breast cancer histology images with deep neural networks. In Medi-

cal Image Computing and Computer-Assisted Intervention–MICCAI 2013, pages

411–418. Springer, 2013.

[27] M. Clark, L. Hall, D. Goldgof, R. P. Velthuizen, F. Murtagh, and M. L. Silbiger.

Automatic tumor segmentation using knowledge-based clustering. IEEE Trans.

Med. Imaging, 17(2):187–201, 1998.

[28] J. Clarke, N. Butowski, and S. Chang. Recent advances in therapy for glioblas-

toma. Archives of neurology, 67(3):279–283, 2010.

[29] D. Cobzas, N. Birkbeck, M. Schmidt, M. Jägersand, and A. Murtha. 3d varia-

tional brain tumor segmentation using a high dimensional feature set. In ICCV,

pages 1–8, 2007.

[30] A. A. Constantin, B. R. Bajcsy, and C. S. Nelson. Unsupervised segmentation of

brain tissue in multivariate mri. In Biomedical Imaging: From Nano to Macro,

2010 IEEE International Symposium on, pages 89–92. IEEE, 2010.

[31] N. Cordier, H. Delingette, and N. Ayache. A patch-based approach for the seg-

mentation of pathologies: Application to glioma labelling. IEEE TMI, PP(99):

1–1, 2016. ISSN 0278-0062.

[32] J. J. Corso, E. Sharon, and A. Yuille. Multilevel segmentation and integrated

bayesian model classification with an application to brain tumor segmentation. In

Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006,

pages 790–798. Springer, 2006.

[33] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille. Efficient

multilevel brain tumor segmentation with integrated bayesian model classifica-

tion. Medical Imaging, IEEE Transactions on, 27(5):629–640, 2008.

158

BIBLIOGRAPHY

[34] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille. Efficient

multilevel brain tumor segmentation with integrated bayesian model classifica-

tion. Medical Imaging, IEEE Transactions on, 27(5):629–640, 2008.

[35] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):

273–297, 1995.

[36] A. Davy, M. Havaei, D. Warde-Farley, A. Biard, L. Tran, P.-M. Jodoin,

A. Courville, H. Larochelle, C. Pal, and Y. Bengio. Brain tumor segmentation

with deep neural networks. in proc of BRATS-MICCAI, 2014.

[37] P. Dollár and C. Zitnick. Structured forests for fast edge detection. In Proceedings

of the IEEE International Conference on Computer Vision, pages 1841–1848,

2013.

[38] S. Doyle, F. Vasseur, M. Dojat, and F. Forbes. Fully automatic brain tumor seg-

mentation from multiple mr sequences using hidden markov fields and variational

em. in proc of BRATS-MICCAI, 2013.

[39] P. Dvorak and B. Menze. Structured prediction with convolutional neural net-

works for multimodal brain tumor segmentation. Proceeding of the Multimodal

Brain Tumor Image Segmentation Challenge, pages 13–24, 2015.

[40] K. Egger, O. Maier, M. Reyes, and R. Wiest. Isles challenge 2015: Is-

chemic stroke lesion segmentation. http://www.isles-challenge.

org/ISLES2015/, 2015. Accessed: 2016-06-11.

[41] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio.

Why does unsupervised pre-training help deep learning? The Journal of Machine

Learning Research, 11:625–660, 2010.

[42] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features

for scene labeling. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 35(8):1915–1929, 2013.

[43] K. Farahani, B. Menze, and M. Reyes. Multimodal Brain Tumor Segmentation

(BRATS 2013), 2013.

159

http://www.isles-challenge.org/ISLES2015/
http://www.isles-challenge.org/ISLES2015/

BIBLIOGRAPHY

[44] K. Farahani, B. Menze, and M. Reyes. Brats 2014 Challenge Manuscripts, 2014.

[45] K. Farahani, B. Menze, and M. Reyes. Brats 2015 Challenge Manuscripts, 2015.

[46] J. Festa, S. Pereira, J. Mariz, N. Sousa, and C. Silva. Automatic brain tumor

segmentation of multi-sequence mr images using random dicision forests. Proc.

Workshop on Brain Tumor Segmentation MICCAI., 2013.

[47] D. Gai and J. Jones. T1 weighted images, 2016.

[48] D. Gai and J. Jones. T2 weighted images, 2016.

[49] M. Gao, U. Bagci, L. Lu, A. Wu, M. Buty, H.-C. Shin, H. Roth, G. Z. Papadakis,

A. Depeursinge, R. M. Summers, et al. Holistic classification of ct attenuation

patterns for interstitial lung diseases via deep convolutional neural networks.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging &

Visualization, pages 1–6, 2016.

[50] E. Geremia, B. H. Menze, and N. Ayache. Spatially adaptive random forests. In

2013 IEEE 10th International Symposium on Biomedical Imaging, pages 1344–

1347. IEEE, 2013.

[51] D. Girardi, J. Küng, R. Kleiser, M. Sonnberger, D. Csillag, J. Trenkler, and

A. Holzinger. Interactive knowledge discovery with the doctor-in-the-loop: a

practical example of cerebral aneurysms research. Brain Informatics, pages 1–

11, 2016.

[52] X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for large-scale senti-

ment classification: A deep learning approach. In Proceedings of the 28th Inter-

national Conference on Machine Learning (ICML-11), pages 513–520, 2011.

[53] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Max-

out networks. In ICML, 2013.

[54] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. Book in preparation

for MIT Press, 2016.

160

BIBLIOGRAPHY

[55] I. J. Goodfellow, D. Warde-Farley, P. Lamblin, V. Dumoulin, M. Mirza, R. Pas-

canu, J. Bergstra, F. Bastien, and Y. Bengio. Pylearn2: a machine learning re-

search library. arXiv preprint arXiv:1308.4214, 2013.

[56] M. Gotz, C. Weber, J. Blocher, B. Stieltjes, H.-P. Meinzer, and K. Maier-Hein.

Extremely randomized trees based brain tumor segmentation. In in proc of

BRATS Challenge - MICCAI, 2014.

[57] S. Goyal, S. Shekhar, and K. Biswas. Automatic detection of brain abnormalities

and tumor segmentation in mri sequences. In Image and Vision Computing New

Zealand Conference, IVCNZ, 2011.

[58] N. Guizard, P. Coupé, V. S. Fonov, J. V. Manjón, D. L. Arnold, and D. L. Collins.

Rotation-invariant multi-contrast non-local means for ms lesion segmentation.

NeuroImage: Clinical, 8:376–389, 2015.

[59] A. Hamamci and G. Unal. Multimodal brain tumor segmentation using the tumor-

cut method on the brats dataset. Proc. Workshod on Brain Tumor Segmentation,

MICCAI, pages 19–23, 2012.

[60] A. Hamamci, N. Kucuk, K. Karaman, K. Engin, and G. Unal. Tumor-cut: Seg-

mentation of brain tumors on contrast enhanced mr images for radiosurgery ap-

plications. IEEE trans. Medical Imaging, 31(3):790–804, 2012.

[61] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection and

segmentation. In Computer Vision–ECCV 2014, pages 297–312. Springer, 2014.

[62] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object

segmentation and fine-grained localization. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages 447–456, 2015.

[63] M. Havaei, P.-M. Jodoin, and H. Larochelle. Efficient interactive brain tumor

segmentation as within-brain knn classification. In 2014 22nd International Con-

ference on Pattern Recognition (ICPR), pages 556–561. IEEE, 2014.

[64] M. Havaei, F. Dutil, C. Pal, H. Larochelle, and P.-M. Jodoin. A convolutional neu-

ral network approach to brain tumor segmentation. In Brainlesion: Glioma, Mul-

161

BIBLIOGRAPHY

tiple Sclerosis, Stroke and Traumatic Brain Injuries, pages 195–208. Springer,

2015.

[65] M. Havaei, H. Larochelle, P. Poulin, and P.-M. Jodoin. Within-brain classifica-

tion for brain tumor segmentation. International journal of computer assisted

radiology and surgery, pages 1–12, 2015.

[66] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal,

P.-M. Jodoin, and H. Larochelle. Brain tumor segmentation with deep neural

networks. Medical Image Analysis, 35:18–31, 2016. ISSN 1361-8415.

[67] S. Ho, E. Bullitt, and G. Gerig. Level-set evolution with region competition:

automatic 3-d segmentation of brain tumors. In Proc. Int. Conf. Pattern Recog-

nition, volume 1, pages 532–535, 2002.

[68] M. Hofmann, F. Steinke, V. Scheel, G. Charpiat, J. Farquhar, P. Aschoff,

M. Brady, B. Schölkopf, and B. J. Pichler. MRI-based attenuation correction for

PET/MRI: a novel approach combining pattern recognition and atlas registration.

J. Nuclear Medicine, 49(11):1875–1883, 2008.

[69] A. Holzinger. Interactive machine learning for health informatics: when do we

need the human-in-the-loop? Brain Informatics, 3(2):119–131, 2016.

[70] S. Hor and M. Moradi. Scandent tree: A random forest learning method for

incomplete multimodal datasets. In MICCAI 2015, pages 694–701. Springer,

2015.

[71] G. B. Huang and V. Jain. Deep and wide multiscale recursive networks for robust

image labeling. ICLR, arXiv:1310.0354, 2014.

[72] J. Huo, K. Okada, E. M. van Rikxoort, H. J. Kim, J. R. Alger, W. B. Pope, J. G.

Goldin, and M. S. Brown. Ensemble segmentation for gbm brain tumors on mr

images using confidence-based averaging. Medical physics, 40(9):093502, 2013.

[73] J. E. Iglesias and M. R. Sabuncu. Multi-atlas segmentation of biomedical images:

A survey. Medical image analysis, 24(1):205–219, 2015.

162

BIBLIOGRAPHY

[74] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-

stage architecture for object recognition? In Computer Vision, 2009 IEEE 12th

International Conference on, pages 2146–2153, Sept 2009.

[75] T. R. Jensen and K. M. Schmainda. Computer-aided detection of brain tumor

invasion using multiparametric mri. Journal of Magnetic Resonance Imaging, 30

(3):481–489, 2009.

[76] C. Jiang, X. Zhang, W. Huang, and C. Meinel. Segmentation and quantification

of brain tumor. In Virtual Environments, Human-Computer Interfaces and Mea-

surement Systems, 2004. (VECIMS). 2004 IEEE Symposium on, pages 61–66,

2004.

[77] P.-M. Jodoin. Vision par ordinateur imn 786. In Vision par ordinateur, 2013.

[78] K. Kamnitsas, L. Chen, C. Ledig, D. Rueckert, and B. Glocker. Multi-scale 3d

convolutional neural networks for lesion segmentation in brain mri. Ischemic

Stroke Lesion Segmentation, page 13, 2015.

[79] M. Kaus, S. K. Warfield, F. A. Jolesz, and R. Kikinis. Adaptive template moder-

ated brain tumor segmentation in mri. In Bildverarbeitung für die Medizin 1999,

pages 102–106. Springer, 1999.

[80] M. R. Kaus, S. K. Warfield, A. Nabavi, P. M. Black, F. A. Jolesz, and R. Kikinis.

Automated segmentation of mr images of brain tumors1. Radiology, 218(2):

586–591, 2001.

[81] H. Khotanlou, O. Colliot, J. Atif, and I. Bloch. 3d brain tumor segmentation

in mri using fuzzy classification, symmetry analysis and spatially constrained

deformable models. Fuzzy Sets Syst., 160(10):1457–1473, 2009.

[82] H. Khotanlou, O. Colliot, and I. Bloch. Automatic brain tumor segmentation

using symmetry analysis and deformable models. In International Conference

on Advances in Pattern Recognition ICAPR, pages 198–202, 2007.

[83] J. Kleesiek, A. Biller, G. Urban, U. Kothe, M. Bendszus, and F. A. Hamprecht.

ilastik for multi-modal brain tumor segmentation. in proc of BRATS-MICCAI,

2014.

163

BIBLIOGRAPHY

[84] T. Klein, N. Batmanghelich, and W. W. III. Distributed deep learning framework

for large-scale 3d medical image segmentation. In MICCAI, volume 18. Int Conf

Med Image Comput Comput Assist Interv. MICCAI 2015, 10 2015.

[85] J. Kovalic, P. Grigsby, and B. Fineberg. Recurrent pituitary adenomas after sur-

gical resection: the role of radiation therapy. Radiology, 177(1):273–275, 1990.

[86] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, volume 1, pages 1097–1105. NIPS,

2012.

[87] D. Kwon, H. Akbari, X. Da, B. Gaonkar, and C. Davatzikos. Multimodal brain

tumor image segmentation using glistr. In proc of BRATS Challenge - MICCAI,

2014.

[88] C. H. Lampert. Kernel methods in computer vision. Foundations and Trends in

Computer Graphics and Vision, 4(3):193–285, 2009.

[89] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical

evaluation of deep architectures on problems with many factors of variation. In

Proceedings of the 24th international conference on Machine learning, pages

473–480. ACM, 2007.

[90] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[91] C.-H. Lee, M. Schmidt, A. Murtha, A. Bistritz, J. S, and R. Greiner. Segmenting

brain tumor with conditional random fields and support vector machines. In in

Proc of Workshop on Computer Vision for Biomedical Image Applications, 2005.

[92] C.-H. Lee, R. Greiner, and O. Zaïane. Efficient spatial classification using decou-

pled conditional random fields. In Knowledge Discovery in Databases: PKDD

2006, pages 272–283. Springer, 2006.

[93] C.-H. Lee, S. Wang, A. Murtha, M. R. Brown, and R. Greiner. Segmenting brain

tumors using pseudo–conditional random fields. In Medical Image Computing

and Computer-Assisted Intervention, pages 359–366. Springer, 2008.

164

BIBLIOGRAPHY

[94] H. Lee, A. Smeaton, N. O’Connor, and N. Murphy. User-interface to a cctv video

search system. In IEE Int Symp on Imaging for Crime Detec. and Prev., pages

39–43, 2005.

[95] R. Li, W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji. Deep learning

based imaging data completion for improved brain disease diagnosis. In Medi-

cal Image Computing and Computer-Assisted Intervention–MICCAI 2014, pages

305–312. Springer, 2014.

[96] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic

segmentation. In Proceedings of the IEEE CVPR, pages 3431–3440, 2015.

[97] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet,

B. W. Scheithauer, and P. Kleihues. The 2007 who classification of tumours of

the central nervous system. Acta neuropathologica, 114(2):97–109, 2007.

[98] J. Luts, A. Heerschap, J. Suykens, and S. V. Huffel. A combined mri and mrsi

based multiclass system for brain tumour recognition using ls-svms with class

probabilities and feature selection. Artificial Intelligence in Medicine, 40(2):87–

102, 2007.

[99] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve neural

network acoustic models. In Proc. ICML, volume 30, page 1, 2013.

[100] J.-F. Mangin, O. Coulon, and V. Frouin. Robust brain segmentation using his-

togram scale-space analysis and mathematical morphology. In Medical Image

Computing and Computer-Assisted Interventation—MICCAI’98, pages 1230–

1241. Springer, 1998.

[101] J. Margeta, A. Criminisi, R. Cabrera Lozoya, D. C. Lee, and N. Ayache. Fine-

tuned convolutional neural nets for cardiac mri acquisition plane recognition.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging &

Visualization, pages 1–11, 2015.

[102] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional auto-

encoders for hierarchical feature extraction. In Artificial Neural Networks and

Machine Learning–ICANN 2011, pages 52–59. Springer, 2011.

165

BIBLIOGRAPHY

[103] R. Meier, S. Bauer, J. Slotboom, R. Wiest, and M. Reyes. A hybrid model for

multimodal brain tumor segmentation. Multimodal Brain Tumor Segmentation,

page 31, 2013.

[104] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,

Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al. The multimodal brain tumor

image segmentation benchmark (brats). Medical Imaging, IEEE Transactions

on, 34(10):1993–2024, 2015.

[105] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed rep-

resentations of words and phrases and their compositionality. In NIPS, pages

3111–3119, 2013.

[106] B. Morel. Fourier transformation and data processing. chapter 4, August 2011.

[107] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic

segmentation with zoom-out features. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3376–3385, 2015.

[108] K. Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

[109] J. Nie, Z. Xue, T. Liu, G. S. Young, K. Setayesh, L. Guo, and S. T. Wong. Auto-

mated brain tumor segmentation using spatial accuracy-weighted hidden markov

random field. Computerized Medical Imaging and Graphics, 33(6):431–441,

2009.

[110] C. D. N.Tustison, M. Wintermark and B. Avants. Ants and árboles. In in proc of

BRATS Challenge - MICCAI, 2013.

[111] S. Parisot, H. Duffau, S. Chemouny, and N. Paragios. Joint tumor segmentation

and dense deformable registration of brain mr images. In MICCAI, volume 7511,

pages 651–658, 2012.

[112] S. Pereira, A. Pinto, V. Alves, and C. A. Silva. Deep convolutional neural net-

works for the segmentation of gliomas in multi-sequence mri. In Brainlesion:

Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pages 131–143.

Springer, 2015.

166

BIBLIOGRAPHY

[113] P. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene

labeling. In Proceedings of The 31st International Conference on Machine

Learning, pages 82–90, 2014.

[114] J. Platt. Probabilistic outputs for support vector machines and comparisons to

regularized likelihood methods. In Advances in large margin classifiers. Citeseer,

1999.

[115] K. Popuri, D. Cobzas, A. Murtha, and M. Jägersand. 3d variational brain tumor

segmentation using dirichlet priors on a clustered feature set. Int. J. Computer

Assisted Radiology and Surgery, 7(4):493–506, 2012.

[116] K. Popuri, D. Cobzas, M. Jagersand, S. L. Shah, and A. Murtha. 3d variational

brain tumor segmentation on a clustered feature set. In SPIE Medical Imaging,

pages 72591N–72591N. International Society for Optics and Photonics, 2009.

[117] M. Prastawa, E. Bullit, S. Ho, and G. Gerig. A brain tumor segmentation frame-

work based on outlier detection. Medical Image Anaylsis, 8(3):275–283, 2004.

[118] M. Prastawa, E. Bullitt, S. Ho, and G. Gerig. Robust estimation for brain

tumor segmentation. In Medical Image Computing and Computer-Assisted

Intervention-MICCAI 2003, pages 530–537. Springer, 2003.

[119] M. Prastawa, E. Bullitt, N. Moon, K. Van Leemput, and G. Gerig. Automatic

brain tumor segmentation by subject specific modification of atlas priors< sup>

1</sup>. Academic Radiology, 10(12):1341–1348, 2003.

[120] J. Putaala, M. Kurkinen, V. Tarvos, O. Salonen, M. Kaste, and T. Tatlisumak.

Silent brain infarcts and leukoaraiosis in young adults with first-ever ischemic

stroke. Neurology, 72(21):1823–1829, 2009.

[121] V. Rao, M. Shari Sarabi, and A. Jaiswal. Brain tumor segmentation with deep

learning. MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings,

winning contribution, pages 31–35, 2014.

[122] J. Rexilius, H. K. Hahn, J. Klein, M. G. Lentschig, and H.-O. Peitgen. Multispec-

tral brain tumor segmentation based on histogram model adaptation. In Medical

Imaging, pages 65140V–65140V, 2007.

167

BIBLIOGRAPHY

[123] S. Reza and K. Iftekharuddin. Multi-class abnormal brain tissue segmentation

using texture features. In in proc of BRATS Challenge - MICCAI, 2013.

[124] J. P. Ridgway. Cardiovascular magnetic resonance physics for clinicians: part i.

Journal of cardiovascular magnetic resonance, 12(1):1, 2010.

[125] R. Rifkin and A. Klautau. In defense of one-vs-all classification. Journal of

machine learning research, 5(Jan):101–141, 2004.

[126] R.Meier, S.Bauer, J.Slotboom, R.Wiest, and M.Reyes. Appearance- and context-

sensitive features for brain tumor segmentation. In in proc of BRATS Challenge -

MICCAI, 2014.

[127] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for

biomedical image segmentation. In Medical Image Computing and Computer-

Assisted Intervention–MICCAI 2015, pages 234–241. Springer, 2015.

[128] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri. Are loss functions

all the same? Neural Computation, 16(5):1063–1076, 2004.

[129] F. Rosenblatt. The perceptron, a perceiving and recognizing automaton Project

Para. Cornell Aeronautical Laboratory, 1957.

[130] H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang, J. Liu, E. Turk-

bey, and R. M. Summers. A new 2.5 d representation for lymph node detection

using random sets of deep convolutional neural network observations. In Medi-

cal Image Computing and Computer-Assisted Intervention–MICCAI 2014, pages

520–527. Springer, 2014.

[131] H. R. Roth, A. Farag, L. Lu, E. B. Turkbey, and R. M. Summers. Deep con-

volutional networks for pancreas segmentation in ct imaging. In SPIE Medical

Imaging, pages 94131G–94131G. International Society for Optics and Photonics,

2015.

[132] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey, and R. M.

Summers. Deeporgan: Multi-level deep convolutional networks for automated

pancreas segmentation. In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015, pages 556–564. Springer, 2015.

168

BIBLIOGRAPHY

[133] M. Rousson, T. Brox, and R. Deriche. Active unsupervised texture segmentation

on a diffusion based feature space. In Computer vision and pattern recognition,

2003. Proceedings. 2003 IEEE computer society conference on, volume 2, pages

II–699. IEEE, 2003.

[134] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5, 1988.

[135] B. N. Saha, N. Ray, R. Greiner, A. Murtha, and H. Zhang. Quick detection of

brain tumors and edemas: A bounding box method using symmetry. Computer-

ized Medical Imaging and Graphics, 36(2):95–107, 2012.

[136] T. Schlegl, J. Ofner, and G. Langs. Unsupervised pre-training across image do-

mains improves lung tissue classification. In Medical Computer Vision: Algo-

rithms for Big Data, pages 82–93. Springer, 2014.

[137] M. Schmidt, I. Levner, R. Greiner, A. Murtha, and A. Bistritz. Segmenting brain

tumors using alignment-based features. In Int. Conf on Machine Learning and

Applications, pages 6–pp, 2005.

[138] M. Schmidt. Automatic brain tumor segmentation. Thesis, 2005.

[139] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem.

In International Conference on Computational Learning Theory, pages 416–426.

Springer, 2001.

[140] H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,

and R. M. Summers. Deep convolutional neural networks for computer-aided

detection: Cnn architectures, dataset characteristics and transfer learning. IEEE

transactions on medical imaging, 35(5):1285–1298, 2016.

[141] A. W. Simonetti, W. J. Melssen, F. S. d. Edelenyi, J. J. van Asten, A. Heerschap,

and L. Buydens. Combination of feature-reduced mr spectroscopic and mr imag-

ing data for improved brain tumor classification. NMR in Biomedicine, 18(1):

34–43, 2005.

[142] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

169

BIBLIOGRAPHY

[143] J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for au-

tomatic correction of intensity nonuniformity in MRI data. IEEE Tr. on Medical

Imaging, 17(1):87–97, 1998.

[144] N. R. Smoll and K. J. Drummond. The incidence of medulloblastomas and prim-

itive neurectodermal tumours in adults and children. Journal of Clinical Neuro-

science, 19(11):1541–1544, 2012.

[145] J.-C. Souplet, C. Lebrun, N. Ayache, G. Malandain, et al. An automatic segmen-

tation of t2-flair multiple sclerosis lesions. In The MIDAS Journal-MS Lesion

Segmentation (MICCAI 2008 Workshop). Citeseer, MICCAI, 2008.

[146] J. B. Springborg, L. Poulsgaard, and J. Thomsen. Nonvestibular schwannoma

tumors in the cerebellopontine angle: a structured approach and management

guidelines. Skull Base, 18(04):217–227, 2008.

[147] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15:1929–1958, 2014.

[148] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. J. Mach.

Learning Research, 15(1):1929–1958, 2014.

[149] M. F. Stollenga, W. Byeon, M. Liwicki, and J. Schmidhuber. Parallel multi-

dimensional lstm, with application to fast biomedical volumetric image segmen-

tation. In Advances in Neural Information Processing Systems, pages 2980–2988,

2015.

[150] M. Styner, J. Lee, B. Chin, M. Chin, O. Commowick, H. Tran, S. Markovic-Plese,

V. Jewells, and S. Warfield. 3D segmentation in the clinic: A grand challenge ii:

Ms lesion segmentation. MIDAS, 2008:1–6, 2008.

[151] P. Su, Z. Xue, L. Chi, J. Yang, and S. T. Wong. Support vector machine (svm)

active learning for automated glioblastoma segmentation. In Biomedical Imaging

(ISBI), 2012 9th IEEE International Symposium on, pages 598–601. IEEE, 2012.

170

BIBLIOGRAPHY

[152] N. Subbanna and T. Arbel. Probabilistic gabor and markov random fields seg-

mentation of brain tumours in mri volumes. Proc. Workshop on Brain Tumor

Segmentation MICCAI., pages 47–50, 2012.

[153] N. Subbanna, D. Precup, L. Collins, and T. Arbel. Hierarchical probabilistic

gabor and mrf segmentation of brain tumours in mri volumes. In in proc of

MICCAI, volume 8149, pages 751–758, 2013.

[154] N. Subbanna, D. Precup, and T. Arbel. Iterative multilevel mrf leveraging context

and voxel information for brain tumour segmentation in mri. In in proc of CVPR.

IEEE, 2014.

[155] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initializa-

tion and momentum in deep learning. In Proc. of the 30th int’l conf. on machine

learning, pages 1139–1147, 2013.

[156] N. Tajbakhsh, J. Shin, S. Gurudu, R. Hurst, C. Kendall, M. Gotway, and J. Liang.

Convolutional neural networks for medical image analysis: Fine tuning or full

training? Medical Imaging, IEEE Transactions on, 2016.

[157] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the

Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.

[158] G. Tulder and M. Bruijne. MICCAI 2015 Proceedings, chapter Why Does Syn-

thesized Data Improve Multi-sequence Classification?, pages 531–538. Springer,

2015.

[159] N. Tustison, M. Wintermark, C. Durst, and B. Avants. Ants and arboles. Proc.

Workshop on Brain Tumor Segmentation MICCAI., pages 47–50, 2013.

[160] N. J. Tustison, K. Shrinidhi, M. Wintermark, C. R. Durst, B. M. Kandel, J. C.

Gee, M. C. Grossman, and B. B. Avants. Optimal symmetric multimodal tem-

plates and concatenated random forests for supervised brain tumor segmentation

with ANTsR. Neuroinformatics, 13(2):209–225, 2015.

[161] G. Urban, M. Bendszus, F. Hamprecht, and J. Kleesiek. Multi-modal brain tu-

mor segmentation using deep convolutional neural networks. in proc of BRATS-

MICCAI, 2014.

171

BIBLIOGRAPHY

[162] K. Vaidhya, S. Thirunavukkarasu, V. Alex, and G. Krishnamurthi. Multi-modal

brain tumor segmentation using stacked denoising autoencoders. In Brainlesion:

Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, pages 181–194.

Springer, 2015.

[163] S. Vaidya, A. Chunduru, R. Muthuganapathy, and G. Krishnamurthi. Longitu-

dinal multiple sclerosis lesion segmentation using 3d convolutional neural net-

works. proc. of THE 2015 LONGITUDINAL MS LESION SEGMENTATION

CHALLENGE, 2015.

[164] M. Vaidyanathan, L. Clarke, R. Velthuizen, S. Phuphanich, A. Bensaid, L. Hall,

J. Bezdek, H. Greenberg, A. Trotti, and M. Silbiger. Comparison of supervised

mri segmentation methods for tumor volume determination during therapy. Mag-

netic resonance imaging, 13(5):719–728, 1995.

[165] S. Van Buuren. Flexible imputation of missing data. CRC press, 2012.

[166] B. van Ginneken, A. A. Setio, C. Jacobs, and F. Ciompi. Off-the-shelf con-

volutional neural network features for pulmonary nodule detection in computed

tomography scans. In Biomedical Imaging (ISBI), 2015 IEEE 12th International

Symposium on, pages 286–289. IEEE, 2015.

[167] G. Van Tulder and M. de Bruijne. Why does synthesized data improve multi-

sequence classification? In Medical Image Computing and Computer-Assisted

Intervention–MICCAI 2015, pages 531–538. Springer, 2015.

[168] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and com-

posing robust features with denoising autoencoders. In Proc. 25th int’l conf. on

machine learning, pages 1096–1103, 2008.

[169] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion. The Journal of Machine Learning Research, 11:3371–

3408, 2010.

172

BIBLIOGRAPHY

[170] S. Vinitski, C. F. Gonzalez, R. Knobler, D. Andrews, T. Iwanaga, and M. Curtis.

Fast tissue segmentation based on a 4d feature map in characterization of intracra-

nial lesions. Journal of Magnetic Resonance Imaging, 9(6):768–776, 1999.

[171] VSD. Virtual skeleton database. http://www.virtualskeleton.ch/,

2013.

[172] T. Wang, I. Cheng, and A. Basu. Fluid vector flow and applications in brain tumor

segmentation. IEEE Trans. Biomedical Eng., 56(3):781–789, 2009.

[173] E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm

for variational inference in exponential families. In Proceedings of the Nine-

teenth conference on Uncertainty in Artificial Intelligence, pages 583–591. Mor-

gan Kaufmann Publishers Inc., 2002.

[174] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and

Y. Bengio. Show, attend and tell: Neural image caption generation with visual

attention. In Proc. ICML, pages 2048–2057, 2015.

[175] A. Yezzi, L. Zöllei, and T. Kapur. A variational framework for integrating seg-

mentation and registration through active contours. Medical Image Analysis, 7

(2):171–185, 2003.

[176] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? In Advances in Neural Information Processing Systems,

pages 3320–3328, 2014.

[177] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are features in

deep neural networks? In Advances in Neural Information Processing Systems,

pages 3320–3328, 2014.

[178] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional net-

works. In Computer Vision–ECCV 2014, pages 818–833. Springer, 2014.

[179] J. Zhang, K.-K. Ma, M.-H. Er, V. Chong, et al. Tumor segmentation from mag-

netic resonance imaging by learning via one-class support vector machine. In

International Workshop on Advanced Image Technology (IWAIT’04), pages 207–

211, 2004.

173

http://www.virtualskeleton.ch/

BIBLIOGRAPHY

[180] L. Zhao, D.Sarikaya, and J. Corso. Automatic brain tumor segmentation with

mef on supervoxels. Proc. Workshop on Brain Tumor Segmentation MICCAI.,

pages 51–54, 2013.

[181] L. Zhao, W. Wu, and J. J. Corso. Brain tumor segmentation based on gmm and

active contour method with a model-aware edge map. BRATS MICCAI, pages

19–23, 2012.

[182] L. Zhao, W. Wu, and J. J. Corso. MICCAI 2013, chapter Semi-automatic Brain

Tumor Segmentation by Constrained MRFs Using Structural Trajectories, pages

567–575. Springer, 2013.

[183] D. Zikic, Y. Ioannou, M. Brown, and A. Criminisi. Segmentation of brain tumor

tissues with convolutional neural networks. in proc of BRATS-MICCAI, 2014.

[184] D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp, J. Shotton,

O. Thomas, T. Das, R. Jena, and S. Price. Decision forests for tissue-specific

segmentation of high-grade gliomas in multi-channel mr. In Medical Image

Computing and Computer-Assisted Intervention–MICCAI 2012, pages 369–376.

Springer, 2012.

174

	Sommaire
	Remerciements
	Table des matières
	Table des figures
	Liste des tableaux
	Introduction
	Machine Learning
	kNN
	SVM
	Artificial Neural Networks
	Perceptron

	Convolutional neural networks
	Regularization
	L2 and L1 regularization
	Dropout

	Magnetic Resonance Imaging
	Brain Tumor Segmentation
	Anatomy of brain tumors
	Classification by place of origin
	Classification by terms of aggressiveness
	Classification by grade
	Classification by location in brain

	Brain Tumor Segmentation
	Challenges in brain tumor segmentation

	Previous work
	Semi-automatic methods
	Automatic methods

	BRATS datasets

	Deep learning in brain pathology segmentation
	Introduction
	Glossary
	Datasets
	State-of-the-art
	Pre deep learning era
	Deep learning based methods

	Open Problems
	Preparing the dataset
	Global information
	Structured prediction
	Training on small or incomplete datasets

	Future Outlook

	Within-Brain Segmentation
	Introduction
	Related Work
	Investigating Within-Brain Generalization
	Feature representation and manual selection
	Voxel classifiers
	Distance Metric/Kernel
	Importance of Within-Brain Hyper-Parameter Selection

	Experiments
	Experimental Setup
	Results and Discussion

	Conclusion
	Putting it all together
	Processing time and memory usage

	Conflict of Interest
	Ethical approval

	Brain Tumor Segmentation with Deep Neural Networks
	Introduction
	Related work
	Our Convolutional Neural Network Approach
	The Architectures
	Training

	Implementation details
	Experiments and Results
	The TwoPathCNN architecture
	Cascaded architectures

	Conclusion

	HeMIS:Hetero-Modal Image Segmentation
	Introduction
	Method
	Hetero-Modal Image Segmentation

	Data and Implementation details
	Experiments and Results
	Conclusion

	Conclusion

