
 

 

UNIVERSITÉ DE SHERBROOKE 

Faculté de génie  

Département de génie électrique et de génie informatique 

 

SURVEILLANCE PHOTONIQUE DES ACTIVITÉS 

BIOLOGIQUES DE BACTÉRIES IMMOBILISÉES SUR DES 

SURFACES DES SEMICONDUCTEURS QUANTIQUES 

BIOFUNCTIONNALISÉES  

 

 

PHOTONIC MONITORING OF BIOLOGICAL ACTIVITIES 

OF BACTERIA IMMOBILIZED ON BIOFUNCTIONALIZED 

SURFACES OF QUANTUM SEMICONDUCTORS 

 

 Thèse de doctorat  

Spécialité: Génie électrique 

Elnaz NAZEMI 

 

Jury : Jan J. DUBOWSKI (Directeur) 

            Eric H. FROST (Co-directeur) 

Paul G. CHARETTE (Rapporteur) 

Patrick VERMETTE (Examinateur) 

Azam F. TAYABALI (Examinateur) 

 

Sherbrooke (Québec) Canada       January 2017



 

 

 

 

 

À mon mari et mes parents

 

 



i 

 

RÉSUMÉ 

Le suivi de la viabilitié, la croissance et le métabolisme cellulaire des bactéries peut contribuer 

de manière significative au diagnostic précoce de la maladie, mais peut aussi aider à améliorer 

le rendement des produits bactériens dans des expériences industrielle ou à petite echelle. Les 

méthodes conventionnelles utilisées pour l'étude de la sensibilité des bactéries aux antibiotiques 

sont basées principalement sur la culture, une technique qui prend au moins 12 heures pour 

rendre un résultat. Ce retard conduit au surtraitement d'un large éventail d'infections par des 

antibiotiques à large spectre, ce qui est coûteux et peut conduire à l'apparition de résistance à 

ces antibiotiques précieux, tandis que la détection rapide d'une infection virale ou l'absence de 

bactéries pourrait prévenir de tels traitements et, dans le cas d'une infection bactérienne, 

l'identification de la sensibilité aux antibiotiques pourrait permettre l'utilisation d'antibiotiques 

à spectre étroit. Le projet décrit dans le présent document vise à surveiller les activités 

biologiques des bactéries vivantes immobilisées sur les surfaces biofonctionnalisées de 

microstructures composées de semi-conducteurs quantiques (QS). Le procédé dépend de la 

sensibilité de la photoluminescence (PL) émise par des semi-conducteurs à la perturbation du 

champ électrique induit par la charge électrique des bactéries immobilisées sur la surface de ces 

structures. Dans la première phase du projet, nous avons étudié une méthode innovante 

impliquant la surveillance par PL de l'effet de photocorrosion dans des hétérostructures 

GaAs/AlGaAs. Le maintien d'un équilibre entre la sensibilité et la stabilité du biocapteur dans 

l'environnement aqueux nous a permis de détecter Escherichia coli K12 dans des solutions 

salines tamponnées au phosphate (PBS) avec une limite de détection attrayante de 103 UFC/ml 

en moins de 2 heures. Suite à cette recherche, nous avons émis l'hypothèse que ces 

hétérostructures pourraient être utilisés pour développer une méthode à faible coût et quasiment 

en temps reel de la croissance et de la sensibilité des bactéries aux antibiotiques. L'un des 

éléments clés dans le développement de cette plate-forme de biocapteurs était de démontrer que 

le GaAs (001), normalement utilisé pour recouvrir les hétérostructures de GaAs/AlGaAs, ne 

nuira pas à la croissance des bactéries. Dans la deuxième phase du projet, nous avons exploré la 

capture et la croissance de E. coli K12 sur des surfaces nues et biofonctionnalisées de GaAs 

(001). Il a été déterminé que la couverture initiale et les taux de croissance de bactéries 

dépendent de l'architecture de biofonctionnalisation utilisée pour capturer les bactéries: les 

surfaces biofonctionnalisées avec d'anticorps présentaient une efficacité de capture 

significativement plus élevée. En outre, on a trouvé que pour des suspensions contenant des 

bactéries à moins de 105 UFC/ml, la surface des plaquettes de GaAs ne supportait pas la 

croissance des bactéries, quel que soit le type d'architecture de biofonctionnalisation. Dans la 

troisième phase du projet, nous avons suivi la croissance et la sensibilité aux antibiotiques de E. 

coli K12 et E. coli HB101. Tandis que la présence de bactéries retardaient d’apparition du 

maximum de PL, la croissance des bactéries retardaient encore plus ce maximum. Par contre, 

en presence d’antibiotiques efficaces, la croissance des bactéries était arrêtée et le maximum de 

PL est arrivé plus tôt. Ainsi, nous avons pu distinguer entre des E. coli sensibles ou résistantes 

à la pénicilline ou à la ciprofloxacine en moins de 3h. En raison de la petite taille, du faible coût 

et de la réponse rapide du biocapteur, l'approche proposée a le potentiel d'être appliquée dans 

les laboratoires de diagnostic clinique pour le suivi rapide de la sensibilité des bactéries aux 

antibiotiques. 
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ABSTRACT 

Monitoring the viability, growth and cellular metabolism of bacteria can contribute significantly 

to the early diagnosis of disease, but can also help improve yield of bacterial products in 

industrial- or small-scale experiments. Conventional methods applied for investigation of 

antibiotic sensitivity of bacteria are mostly culture-based techniques that are time-consuming 

and take at least 12 h to reveal results. This delay leads to overtreatment of a wide range of 

infections with broad spectrum antibiotics which is costly and may lead to the development of 

resistance to these precious antibiotics, whereas rapid detection of a viral infection or absence 

of bacteria could prevent such treatments and, in the case of bacterial infection, identification of 

antibiotic susceptibility could allow use of narrow spectrum antibiotics. The project outlined in 

this document aims at monitoring biological activities of live bacteria immobilized on 

biofunctionalized surfaces of quantum semiconductor (QS) microstructures. The method takes 

advantage of the sensitivity of photoluminescence (PL) emitting semiconductors to the 

perturbation of the electric field induced by the electric charge of bacteria immobilized on the 

surface of these structures. Our hypothesis was that bacteria growing on the surface of 

biofunctionalized QS biochips would modify their PL in a different, and measurable way in 

comparison with inactivated bacteria. In the first phase of the project, we investigated an 

innovative method involving PL monitoring of the photocorrosion effect in GaAs/AlGaAs 

heterostructures. Maintaining the balance between device sensitivity and stability in the 

biosensing (aqueous) environment allowed us to detect Escherichia coli K12 in phosphate 

buffered saline solutions (PBS) at an attractive limit of detection of 103 CFU/mL in less than 2 

hours. Following this research, we hypothesised that these heterostructures could be employed 

to develop a method for inexpensive and quasi-real time monitoring of the growth and antibiotic 

susceptibility of bacteria. One of the key elements in the development of this biosensing 

platform was to demonstrate that GaAs (001), normally used for capping PL emitting 

GaAs/AlGaAs heterostructures, would not inhibit the growth of bacteria. In the second phase of 

the project, we explored the capture and growth of E. coli K12 on bare and biofunctionalized 

surfaces of GaAs (001). It has been determined that the initial coverage, and the subsequent 

bacterial growth rates are dependent on the biofunctionalization architecture used to capture 

bacteria, with antibody biofunctionalized surfaces exhibiting significantly higher capture 

efficiencies. Moreover, for suspensions containing bacteria at less than 105 CFU/mL, it has been 

found that the surface of GaAs wafers could not support the growth of bacteria, regardless of 

the type of biofunctionalization architecture. In the third phase of the project, we used PL to 

monitor the growth and antibiotic susceptibility of E. coli K12 and E. coli HB101 bacteria. 

While immobilization of bacteria on the surface of GaAs/AlGaAs heterostructures retards the 

PL monitored photocorrosion, growth of these bacteria further amplifies this effect. By 

comparing the photocorrosion rate of QS wafers exposed to bacterial solutions with and without 

antibiotics, the sensitivity of bacteria to the specific antibiotic could be determined in less than 

3 hours. Due to the small size, low cost and rapid response of the biosensor, the proposed 

approach has the potential of being applied in clinical diagnostic laboratories for quick 

monitoring of antibiotic susceptibility of different bacteria. 
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CHAPTER 1: Introduction  

1.1 Project outline  

Bacterial infections are one the major causes of human and animal diseases ranging from food 

poisoning to respiratory infections and death. Food poisoning or food-borne illness (FBI) are 

one of the most common diseases throughout the world today (Addis and Sisay 2015). FBI is 

caused by bacteria, viruses, moulds, parasites and some chemicals present in foods. Although 

the majority of bacteria are harmless and some of them are even helpful for production of some 

foods such as cheese and yogurt, pathogenic bacteria are the main cause of food poisoning. It 

has been reported that 66% of FBI are caused by bacteria (Adams and Moss 2008; Addis and 

Sisay 2015; CDC 2011). According to the report provided by Centers for Disease Control and 

Prevention (CDC), around 48 million people got sick and 3,000 died from FBI in USA in 2011 

(CDC 2011). Water-borne disease is another type of illness which is transmitted through 

drinking or industrial water. Circulating cooling water systems provide desirable conditions for 

growth of bacteria due to the favourable pH (generally between 7-9) and temperature (between 

20° C-40° C). Cooling towers are favourable environments for growth of Legionella which 

causes Legionnaires' disease (a dangerous type of lung infection) (CDC 2016b). Plumbing 

systems, especially hospital plumbing can harbour Pseudomonas, Mycobacteria, and Legionella 

(Falkinham et al. 2015). Typhoid fever, bacillary dysentery and cholera are the most important 

bacterial water-borne illnesses (Cabral 2010). Water-borne diseases don’t threaten only 

developing countries. Developed countries are also affected by this type of illness, e.g., around 

12,000 people die from water-borne diseases in USA per year (Cabral 2010; Medema et al. 

2003).  

Antibiotics play a vital role in treating infections and saving patients’ lives. They are also of 

great importance in achievement of significant advances in medicine and surgery fields (Gould 

and Bal 2013). The first prescription of antibiotics for treating severe infections goes back to 

1940s (CDC 2016a). During World War II penicillin succeeded to treat bacterial infections 

among soldiers (Sengupta et al. 2013). However, by the 1950s resistance of bacteria to penicillin 

http://www.cdc.gov/legionella/patient_facts.htm
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became a clinical problem and threatened the prior advances in this field (Spellberg and Gilbert 

2014). To control this crisis, new beta-lactam antibiotics were introduced and developed 

(Sengupta et al. 2013; Spellberg and Gilbert 2014), however, shortly thereafter, methicillin-

resistant bacteria were identified in the United Kingdom and USA in 1960s (Sengupta et al. 

2013). Nowadays, antibiotic-resistance has been recognized as a major clinical problem that 

threatens human lives (Ventola 2015; WHO 2016). It has been reported that at least 2 million 

people become infected with antibiotic-resistant bacteria and at least 23,000 people die directly 

because of these infections each year in the USA (CDC 2016a).  

There are several factors leading to antibiotic-resistance such as overuse and inappropriate 

prescription of antibiotics (Ventola 2015). Generally bacteria could inherit genes from relatives 

or receive them through horizontal gene transfer (HGT). Through HGT genes responsible for 

resistance of bacteria to antibiotics, which are usually found in plasmids, could be transferred 

among various types of bacteria and make them antibiotic-resistant. Resistance of bacteria to 

antibiotics could spread naturally when antibiotics remove drug-sensitive competitors of 

bacteria and fail to stop bacterial growth or kill bacteria (Read and Woods 2014). It has been 

reported that prescription of antibiotics in 30% to 60% of cases is not appropriate or necessary 

in intensive care units (ICUs) (Bergmans et al. 1997; Kollef 2001; Kollef and Fraser 2001; 

Roberts et al. 2014). This is often due to the fact that treatment must be started before antibiotic 

sensitivity is known or even bacteria identified.  

The main methods used for investigation of antibiotic susceptibility of bacteria are broth 

microdilution and Kirby-Bauer disk diffusion tests. In the broth microdilution method, bacteria 

are inoculated into broth with increasing concentrations of antibiotic. The lowest concentration 

of the antibiotic that inhibits the growth of bacteria is called the minimum inhibitory 

concentration (MIC). In this method, the growth of bacteria in the presence of the antibiotic is 

evaluated according to the turbidity of the bacterial suspension. In the Kirby-Bauer method, the 

bacteria are evenly inoculated in the Petri dish and then paper disks containing precise amounts 

of the antibiotics are placed in the Petri dish. If the antibiotic is effective against the bacteria, a 

circle without bacterial growth is observed around the paper disk. The larger the circle, the more 

the bacteria is sensitive to the antibiotic (Jorgensen and Ferraro 2009; Poupard et al. 1994; 

Versalovic et al. 2011). These techniques are time-consuming and require controlled laboratory 
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conditions. A variety of nanomethods like surface plasmon resonance (SPR) (Chiang et al. 

2009), impedance (Rieder et al. 2009; Zavizion et al. 2010), and cytological methods (Quach et 

al. 2016) have been developed to assess antibiotic sensitivity more rapidly. However, they often 

rely on very subtle changes and so may be difficult to bring to hospital laboratories without 

highly specialized technicians. Therefore, development of a simple, rapid and sensitive method 

for detection of growth and antibiotic sensitivity of bacteria at low cost remains an attractive but 

elusive goal for clinical diagnostics, food and water control industries.  

Photoluminescence-emitting semiconductors have great potential of being applied in biosensing 

fields due to the sensitivity of their PL signal to the phenomena taking place at the surface of 

these materials (Adamowicz et al. 1998; Gfroerer 2006; Lebedev 2001; Moumanis et al. 2006; 

Tomkiewicz et al. 2009). For instance, immobilization of electrically charged molecules at the 

surface of a semiconductor modifies the bending of energy bands near the surface which could 

affect PL of such a material (Seker et al. 2000; Zhang and Yates 2012). Syshchyk et al. 

(Syshchyk et al. 2015) employed PL emission of nanoporous Si layers to detect different 

concentrations of glucose and urea.  

The goal of this thesis was to develop a photonic method for monitoring biological activities of 

bacteria immobilized on the surfaces of biofunctionalized quantum semiconductor (QS) 

microstructures. The approach of this thesis was based on measuring the photoluminescence 

signal from specially designed QS microstructures that is highly sensitive to the amount of 

negative electric charge accumulated on the surface of these devices. Previous PL studies of 

functionalized QS biochips have been focused on detection of E. coli K12 bacteria. It has been 

reported that the negative electric charge of bacteria immobilized on the GaAs/AlGaAs biochips 

increased the intensity of the PL signal emitted from these microstructures (Duplan et al. 2011). 

Following this research, we hypothesized that bacteria growing on the surface of 

biofunctionalized GaAs/AlGaAs biochips would modify their PL in a different, and measurable 

way in comparison with inactivated bacteria. Our hypothesis was that the local field interactions 

between the bacteria and the QS substrate on which the bacteria were immobilized would induce 

changes in the PL of QS and allow us to monitor some activities of bacteria such as growth and 

their reactions to antibiotics. Using the PL emission of semiconductors to study biological activities 

of bacteria is a relatively novel approach, and the first challenge was to demonstrate if bacteria, 

indeed, could grow on surfaces of the investigated biochips. 
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1.2 Research project objectives 

The principal objective of the project was to investigate an Ab-based architecture for 

immobilization of E. coli K12 bacteria in order to develop a GaAs/AlGaAs-based photonic 

biosensor for monitoring biological activity of bacteria. The first hypothesis was that bacteria 

can grow on a biofunctionalized surface of GaAs. The second hypothesis was that 

photoluminescence of bulk GaAs or epitaxial GaAs/AlGaAs microstructures could be used to 

monitor bacterial growth. The third hypothesis was that sensitivity of a photoluminescence-

based biosensor allows detecting differences between growth rates of intact and antibiotic 

affected bacteria. To achieve the principal objective of the project, it was necessary to define 

and fulfill specific intermediate objectives.  

1.2.1 Optimization of the biofunctionalization architecture to immobilize 

bacteria 

The first step of the project was to find an efficient bio-architecture to functionalize the surface 

of GaAs/AlGaAs heterostructures. This step was of high importance to improve the ability of 

the surface to capture bacteria. In order to be able to monitor growth and antibiotic susceptibility 

of bacteria by using PL emission of the GaAs/AlGaAs biochip, the bacteria should first be 

immobilized on the surface of the biochip, therefore, improving biofunctionalization methods 

to increase the ability of the biosensor to capture the bacteria and improve sensitivity was needed 

in this project. 

1.2.2 Detection of bacteria using PL emission of GaAs/AlGaAs 

heterostructures 

Before monitoring the biological activity of bacteria immobilized on the biofunctionalized 

surfaces of GaAs/AlGaAs heterostructures, we should investigate the effect of bacterial 

immobilization on the PL of these structures. Although the detection of E. coli K12 bacteria 

based on PL emission of GaAs/AlGaAs heterostructures has been carried out before (Duplan et 

al. 2011), we should investigate the effect of bacterial immobilization on PL of the biochips 

functionalized with our optimized bio-architecture.  



 

5 

 

1.2.3 Growth of bacteria on bare and biofunctionalized surfaces of GaAs 

One of the key elements in the development of the proposed photonic biosensor to monitor 

growth and antibiotic susceptibility of bacteria is investigation of growth of bacteria on the 

surface of GaAs, our material of interest for capping GaAs/AlGaAs heterostructures. Due to the 

toxic properties of arsenic (As) and gallium (Ga) (Tanaka 2004), we should find the minimum 

bacterial concentration that could grow on GaAs surfaces while the biochips are kept in darkness 

or irradiated under laser light.  

1.2.4 Photonic monitoring of bacterial growth 

After investigation of bacterial growth on the surfaces of GaAs samples, we intended to monitor 

the growth of bacteria using PL emission of GaAs/AlGaAs heterostructures. The growth of 

bacteria would be investigated by comparison of PL emission of the samples exposed to live 

bacteria and growth medium with that of UV-killed bacteria and growth medium. 

1.2.5 Photonic monitoring of bacterial susceptibility to antibiotics 

The final goal of the project was to investigate antibiotic susceptibility of bacteria using PL 

emission of GaAs/AlGaAs heterostructures. The reaction of bacteria to a specific antibiotic 

would be interpreted from the PL curves showing the PL emission of the biofunctionalized 

GaAs/AlGaAs heterostructures exposed to (1) bacteria and growth medium and (2) bacteria, 

growth medium containing antibiotics.  

1.3 Thesis plan  

The thesis is structured in 7 chapters. 

In the present chapter an introduction to the subject of the thesis is provided. After discussion 

of bacterial threats to human health and the emerging antibiotic resistance problem, the general 

outline of the project and the objectives of the project are presented.  
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In Chapter 2 an introduction to bacteria and their adhesion to solid surfaces are described. 

Moreover, we review different methods, including conventional and biosensing approaches, 

applied to investigate bacterial adhesion and monitor antibiotic susceptibility of bacteria. In this 

chapter, semiconductor-based sensors and the importance of surface functionalization of 

semiconductors for biosensing purposes are also discussed. 

Chapter 3 demonstrates the detection of E. coli at different concentrations by PL monitoring of 

the photocorrosion effect from GaAs/AlGaAs heterostructures functionalized with self-

assembled monolayers (SAMs) of alkanethiols, post-processed in an ammonium sulfide 

solution and exposed to neutravidin and biotinylated antibodies against E. coli. The formation 

of surface oxides and dissolution of a limited thickness of the GaAs cap material results in the 

appearance of a characteristic maximum in temporal PL plots collected over time. The position 

of the PL maximum (the photocorrosion rate) depends on the concentration of the electric charge 

immobilized in the vicinity of the surface of PL emitting semiconductor biochips, and is delayed 

with increasing concentrations of bacteria in PBS solutions surrounding the antibody 

functionalized biochips. Post-processing of alkanethiol SAM functionalized biochips with 

ammonium sulphide increases their photonic stability in a biological environment, and enables 

us to demonstrate detection of E. coli in PBS at 103 CFU/mL, which represents a one-order 

improved limit of detection in comparison to that reported in 2011 without the use of ammonium 

sulphide (Duplan et al. 2011). This chapter has been published in Sensors and Actuators B: 

Chemical. 

Chapter 4 studies growth of E. coli on bare and biofunctionalized surfaces of GaAs (001) and 

gold samples using microscopy to count adherent bacteria. We observed that, as long as the 

GaAs wafers were exposed to bacterial suspensions at concentrations of at least 105 CFU/mL, 

bacteria could grow on the surface of wafers, regardless of the type of the biofunctionalization  

architecture used to capture the bacteria. However, the initial coverage and the subsequent 

bacterial growth rate were found to depend on the bio-architecture, with antibody functionalized 

surfaces clearly being more efficient in capturing bacteria and providing better conditions for 

bacterial growth. In this chapter, we have compared the initial capture and growth rate of 

bacteria at different initial concentrations ranging from 105-108 CFU/mL using 
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biofunctionalization architectures based on SAMs of 16-mercaptohexadecanoic acid (MHDA) 

thiols. This chapter has been submitted to Journal of Biological Engineering. 

Based on our success in showing microscopic growth of bacteria on GaAs and gold surfaces, in 

chapter 5, growth and antibiotic sensitivity of E. coli have been investigated by PL monitoring 

of photocorroding GaAs/AlGaAs heterostructures. While bacteria captured on the surface of 

biochips retard the PL maximum, growth of these bacteria further delays the PL maximum. By 

monitoring the formation of PL maxima of biofunctionalized GaAs/AlGaAs biochips exposed 

to different bacterial and antibiotic solutions, we demonstrated the functionality of the biochips 

for monitoring the growth and antibiotic sensitivity of penicillin-sensitive and penicillin-

resistant E. coli at ambient temperature in less than 3 hours. This chapter has been published in 

Biosensors and Bioelectronics. The extended abstract of this chapter has also been accepted for 

publication in Procedia Technology (PROTCY).  

In Chapter 6 mechanisms of bacterial interactions with semiconductor surfaces and the 

experimental results complementary to Chapters 3-5 are presented. Section 6.3 of this chapter 

describes principal points of a related patent application (publication number of 

WO2015113164A1).    

Chapter 7 summarizes an overview of the research project. In addition, the perspectives and the 

proposed future work are also explained.  

http://www.journals.elsevier.com/procedia-technology
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CHAPTER 2: State of the art 

The first step to achieve the main goal of the project is immobilization of bacteria on the surface 

of GaAs which is a material of interest for capping GaAs/AlGaAs heterostructures. Since there 

is no literature discussing this subject, in this chapter we are presenting an introduction of 

bacterial adherence to other surfaces, mechanisms of adherence and factors influencing 

adhesion of bacteria to solid surfaces. This chapter also draws a picture of different methods 

applied to investigate bacterial adhesion and monitor their activities. In this chapter different 

techniques including conventional methods and biosensing approaches applied to monitor 

activities of bacteria such as growth and antibiotic susceptibility are discussed. At the end, a 

review of the methods employed to functionalize the surface of semiconductors is also provided.  

2.1 Bacteria and their adhesion to surfaces 

2.1.1 Bacterial characteristics relevant for biosensor technology 

Bacteria are unicellular prokaryotic microorganisms that are invisible to the naked eye, except 

for a few cases such as Thiomargarita namibiensis that have been discovered with diameter of 

up to 0.75 mm (Planck 1999; Schulz et al. 1999). Bacteria can be found in almost all 

environments and play an important role in recycling the materials and production of different 

types of biomolecules such as amino acids, enzymes, hormones and etc. The majority of bacteria 

are beneficial or harmless, however, some of them are pathogenic and threaten human health 

(Doyle et al. 2013; Lim et al. 2010; Mead et al. 1999; Wanke 2001). 

The genome (genetic material) of most bacteria consists of a single circular DNA molecule. 

They also can have smaller pieces of circular DNA called plasmids that often carry genes 

conferring resistance to substances like Hg or antibiotics. Plasmids can be transferred from the 

donor bacterium to a recipient bacterium through the conjugation or transformation processes 

(Bennett 2008; Grohmann et al. 2003). These processes are responsible for the appearance and 

dissemination of antibiotic-resistant bacteria, particularly multiple drug resistant enteric bacteria 

like some recent isolates of E. coli (McGann et al. 2016; Ruppé et al. 2015). Antibiotic resistance 

has become a world problem (Carlet et al. 2014; CDC 2013; Gootz 2010; WHO 2015). 
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Bacteria are generally classified into two groups of gram-positive and gram-negative based on 

the composition of their cell walls. Gram-positive bacteria have a rigid layer of peptidoglycan 

that is 15-80 nm thick on top of the plasma membrane. For gram-negative bacteria, the 

peptidoglycan layer is thinner (1-2 nm) and it is sandwiched between the plasma membrane and 

the outer membrane (Kleijin and van Leeuwen 2000; Poortinga et al. 2002; Tsien et al. 1978) 

(see Figure 1). The general method applied to differentiate between these two species is called 

Gram staining or Gram's method in which type of the bacteria is identified based on bacterial 

colour after staining.  

 

Figure 1. Schematic illustration of gram-positive and gram-negative bacteria (scales are not 

accurate). Adapted from (Istockphoto LP 2015). 

There are various types of structural features on the surface of the outer membrane in gram-

negative and on top of the peptidoglycan layer in gram-positive bacteria. The ability of bacteria 

to adhere to solid surfaces is associated with their surface appendages and surface 

macromolecules. Flagella, fibrils and fimbriae are the most important surface features that are 

mostly involved in bacterial movement and bacterial attachment to solid surfaces. Flagella are 

threadlike appendages that are made of several polypeptides. They are around 20 nm in diameter 

and 10-20 µm in length. Fimbriae are proteinaceous appendages that are found in many gram-

negative and gram-positive bacteria. They can be rigid or flexible and are about 0.2-2.0 µm in 
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length and 2-10 nm in diameter. Fibrils are another type of appendages that are less than 0.2 µm 

long and small variable width (Busscher et al. 2000; Poortinga et al. 2002). In addition to these 

appendages, there are lipopolysaccharides in gram-negative bacteria, and proteins, 

polysaccharides and many other macromolecules on the surface of bacteria involved in energy 

(ATP) production, transport into and out of the bacteria and other bacterial functions including 

synthesis and assemblage of the outer membrane and flagella. Some pathogenic bacteria are also 

surrounded by a capsule made of polysaccharides that prevents white blood cells from ingesting 

the bacteria and antibodies from binding to the proteins underneath. Some bacteria use their 

surface appendages to adhere to surfaces and survive, for example oral bacteria use their fibrils 

or fimbriae to adhere to tooth surfaces for their survival and not to be swallowed (Poortinga et 

al. 2002; Sjollema and Busscher 1989). However, in some cases surface macromolecules block 

adherence of bacteria to surfaces, e.g., presence of capsular polysaccharide colonic acid on the 

surface of uropathogenic E. coli blocks adhesion of bacteria on both hydrophilic and 

hydrophobic surfaces (Hanna et al. 2003). We will need to use these surface molecules to attach 

bacteria to semiconductor surfaces. 

2.1.2 Bacterial adhesion to solid surfaces 

Bacterial adhesion is an important phenomenon in soil ecology, the food industry and in medical 

fields related to human life. In general, bacteria can exist freely in solutions (planktonic bacteria) 

or can adhere to solid substrates and form biofilms (Garrett et al. 2008). Bacteria produce 

biofilms to be protected from antimicrobial agents such as antibiotics (Goldberg 2002) and 

disinfectants (Peng et al. 2002). Biofilms have become a serious problem in many industries 

such as oil (Nemati et al. 2001), maritime (Busscher and van Der Mei 1995), food (Srey et al. 

2013) and water systems (Bott 1998). Some of the problems caused by biofilms are speeding 

up the corrosion of steel, blocking the pores of membranes and decreasing the trans-membrane 

pressure, and contamination of water and food products (Mortensen 2014). Research into 

bacterial adhesion is also of great importance in healthcare and pharmaceutical fields because 

adhesion of bacteria to human tissue surfaces is considered as the first step of the pathologic 

process (An and Friedman 2000; Gristina and Costerton 1985). If they do not adhere, they will 

be swept away by host defenses. In addition, study of bacterial adhesion and investigation of 
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the factors influencing adhesion of bacteria to surfaces plays an important role in the biosensing 

field, because the first step in performance of most of the biosensors applied for detection and/or 

monitoring biological activities of bacteria is adhesion of bacteria to the biosensing elements.  

Stable attachment of bacteria to a solid surface requires the following processes: movement to 

the vicinity of the surface, attachment to the surface and resistance of detachment in the presence 

of any forces by means of molecular and cellular interactions. In general, adhesion of bacteria 

to solid substrates is described as a two-phase process: reversible physiochemical interactions 

(phase I) and irreversible intimate molecular and cellular interactions (phase II) (Deupree 2009; 

Gristina 1987; Quirynen et al. 2000). Phase I happens quickly where a set of mechanical 

processes including gravity, Brownian motion and chemotaxis are first responsible for bringing 

the bacteria close to the surface. After that, attachment of the bacteria to the surface happens via 

long- and short-range reversible physiochemical interactions including electrostatic attractions, 

hydrophobic interactions and van der Waals forces. These interactions happen along vectors 

perpendicular to the surface (Deupree 2009; van Loosdrecht et al. 1990). Bacterial attachment 

enters the second phase if the net attractions exceed the repulsive forces in the first phase. During 

phase II, macromolecules on the surface of the bacteria, if present, may attach to the substrate 

via cellular and molecular interactions, as illustrated in Figure 2. 

There are some parameters affecting adhesion of bacteria to biomaterial surfaces such as surface 

free energy, charge and hydrophobicity of surface and charge and hydrophobicity of bacteria 

(Busscher et al. 1984; Dutta et al. 2012; Merritt and An 2000; Reynolds and Wong 1983). In 

addition, surface roughness also plays an important role in bacterial immobilization rates on 

solid surfaces (Merritt and An 2000), e. g., it has been suggested to use intraoral hard surfaces 

with optimal smoothness to reduce the rate of bacterial immobilization (Quirynen et al. 1993). 

The adhesion of bacteria to solid substrates can be predicted by the thermodynamic approach. 

On the basis of this rule, neglecting the electrical charge interactions, adhesion of bacteria to a 

solid surface may be expected only if (Absolom et al. 1983; Busscher et al. 1984), 

AFadh = γsb - γsl - γbI < 0 (2.1) 
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where AFadh is the interfacial free energy of adhesion, γsb is the solid-bacterium interfacial free 

energy, γsl is the solid-liquid interfacial free energy and γb1 is the bacterium-liquid interfacial 

free energy.  

 

Figure 2. Schematic illustration of attachment of bacteria to solid surfaces including reversible 

physiochemical interactions (phase I) (A) and irreversible intimate molecular and cellular 

interactions (phase II) (B). Adapted from (Deupree 2009). 

Another parameter affecting adhesion of bacteria to solid substrates is the charge of the surface 

and the bacteria. It should be noted that most bacteria are negatively charged at a pH greater 

than 4. The negative charge mainly arises from the excess number of carboxyl and phosphate 

groups compared with the amino groups (Poortinga et al. 2002). When bacteria are suspended 

in a solution, like PBS (1X), the bacterial surface would be surrounded by positively charged 

counter ions present in the solution as presented in Figure 3. For a bacterial surface with 𝑁1 acid 

(like -COOH) and 𝑁2 base (like –NH2) uncharged groups per unit volume with dissociation 

constants of 𝐾𝑎1 and 𝐾𝑎2, a space charge density fixed to the cell surface is determined by 

equation (2.2) (Healy and White 1978; Poortinga et al. 2002), 

𝜌𝑓𝑖𝑥 = 𝑒𝑁1

−𝐾𝑎1

𝐾𝑎1 + [𝐻+]exp (−𝑒𝜓/𝑘𝑇)

+ 𝑒𝑁2

[𝐻+ ]𝑒𝑥𝑝 (−𝑒𝜓/𝑘𝑇)

𝐾𝑎2 + [𝐻+]𝑒𝑥𝑝 (−𝑒𝜓/𝑘𝑇)
 

(2.2) 
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where 𝑒 is the charge of electron, [H+] is the concentration of proton, ψ is the electric potential 

at the location of the ionisable surface group, 𝑘 is Boltzmann constant and 𝑇 is the absolute 

temperature.  

 

Figure 3. Immobilization of positively charged counter ions on the surface of a negatively 

charged bacterium. The diagram shows the electric potential as the function of distance from 

the bacterium surface. Adapted from (Larryisgood 2012). 

The surface of bacteria is dynamic and responds strongly to environmental changes. Changes in 

the pH of the environment cause association or dissociation of charged groups (carboxyl, 

phosphates and amino groups) present on the surface of bacteria (Poortinga et al. 2002) and 

change the zeta potential of bacteria. It has been reported that the zeta potential of E.coli is not 

affected by the pH in the range of pH 6.0 to 10.0, while it is strongly dependent on the pH when 

the pH is less than 6.0. In the range of pH 3.0 to 6.0 the zeta potential of E. coli varies from +15 

mV to around -35 mV, respectively (Lin et al. 2003).   

https://commons.wikimedia.org/w/index.php?title=User:Larryisgood&action=edit&redlink=1
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As it was discussed before, adhesion of bacteria to solid surfaces is also influenced by 

hydrophobicity of both bacteria and the receiving surface. Bacterial hydrophobicity is 

determined by the molecules and components present on the surface of bacteria (Merritt and An 

2000), such as polypeptides (Jenkinson 1986) and fimbriae (Gibbons et al. 1983). Surface 

hydrophobicity of bacteria is of great importance when the solid substrates are either 

hydrophobic or hydrophilic. For example, it has been reported that hydrophobic P. aeruginosa 

bacteria are immobilized more on silicone hydrogel lenses compared with HEMA-based lenses 

because the hydrophobicity of silicone hydrogel lenses is higher than HEMA-based lenses 

(Dutta et al. 2012). 

2.2 Methods applied to detect bacteria, monitor their activities and 

their adhesion 

2.2.1 Conventional methods 

2.2.1.1 Culture-based methods to monitor antibiotic sensitivity  

The culture-based method is a central technique used in biology labs to monitor bacterial growth 

and investigate susceptibility of bacteria to different antibiotics. This method is based on the 

ability of bacteria to form visible colonies with or without the presence of antibiotics. There are 

four possible ways to investigate the sensitivity of bacteria to antibiotics. In the first approach 

bacteria are inoculated in the series of Petri dishes containing increasing amounts of the 

antibiotic. Alternatively, in the second approach which is called broth microdilution method, 

employed in most automatic apparatus, bacteria may be inoculated into broth with increasing 

concentrations of antibiotic. The lowest concentration of the antibiotic that prevents the bacterial 

growth is called the minimum inhibitory concentration (MIC). The main advantage of this 

method is its reproducibility and the potential of providing quantitative results such as MIC. In 

addition, presence of prepared panels in automated apparatus have made this technique as one 

of the most convenient methods for investigation of antibiotic susceptibility of bacteria. 

However, this method is time-consuming and it cannot provide same-day results.  
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In the third approach, called the Kirby-Bauer method, bacteria are evenly inoculated in the Petri 

dish and then paper disks containing precise amounts of the antibiotics are placed on the Petri 

dish. If the antibiotic is effective on the bacteria, a circle without bacterial growth is observed 

around the paper disk after bacterial growth. The larger the circle, the more sensitive the bacteria 

is to the antibiotic (Jorgensen and Ferraro 2009; Poupard et al. 1994; Versalovic et al. 2011). 

This method is simple, inexpensive and does not need any specific equipment. The disadvantage 

of this method is that it could not provide same-day results. In addition, this technique could not 

be automated (Jorgensen and Ferraro 2009).  

In the fourth approach, called antimicrobial gradient method or epsilometry (E-test), an 

antimicrobial concentration gradient is placed on a plastic strip that is added to a Petri dish 

inoculated evenly with bacteria. Following overnight incubation, the MIC is evaluated at the 

place of intersection of the growth inhibition area with the lowest concentration of antibiotic 

marked on the strip. This method is time-consuming and expensive if more than a few 

antimicrobials are investigated (Jorgensen and Ferraro 2009).  

2.2.1.2 Enumerating bacterial adhesion to surfaces 

2.2.1.2.1 Culture methods 

Culture-based methods can also be employed for investigation of bacterial adhesion. For that 

purpose, after bacteria have attached to a surface, they can be counted by detaching them from 

the surface, culturing on Petri dishes, and counting the colonies to obtain colony forming units 

(CFU). This reflects the number of bacteria immobilized on the surface. This technique is simple 

and straightforward and does not require the application of specific and complicated 

technologies. However, there are potential disadvantages to this method as well, e. g., the 

detachment process may be incomplete and it may also damage the bacteria (Christensen et al. 

2000). Moreover, the bacteria can aggregate and single colonies can arise from more than one 

bacterium.  

2.2.1.2.2 Light microscope 

Light microscopy provides an inexpensive and simple technique for investigation of bacterial 

attachment to surfaces. Under the appropriate circumstances, this method is the fastest way to 
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investigate the number of bacteria immobilized on solid substrates. However, this method has 

some disadvantages as well. The first limitation is that the investigated surface should be planar 

and optically clear. Furthermore, this method does not provide any information about the 

viability of bacteria (Christensen et al. 2000) unless a series of examinations are performed over 

time to demonstrate increases in the number of bacteria. Finally, bacteria are very small and 

pleomorphic, so particles that resemble bacteria may also be present and it is difficult to 

distinguish them from bacteria, resulting in possible over- or under-estimations.  

2.2.1.2.3 Transmission electron microscope 

Transmission electron microscope (TEM) operates like the light microscope but here instead of 

light, electrons operate. This microscope has a high potential for visualization and 

characterization of bacterial attachment (Knutton 1995). In this microscope, a beam of electrons 

is transmitted through a specimen and the image is constructed from the specimen-electron 

interaction (Wang 2000). This technique has a higher resolution than light microscopy and 

allows the researchers to investigate small details in the cells. The disadvantage of this method 

is that for soft-bodied organisms like bacteria or cells, chemical fixation is required. In addition, 

this microscope cannot assess the viability of bacteria (Christensen et al. 2000). Another 

disadvantage is that this method requires a lot of time for each individual specimen and so 

throughput is quite slow.  

2.2.1.2.4 Scanning electron microscope 

Scanning electron microscopy (SEM) allows researchers to observe adhesion of bacteria to 

surfaces in good detail (Knutton 1995). With this microscope, the surface of the sample is 

scanned by a beam of electrons and information about the surface morphology is obtained based 

on interaction of specimen and electrons (Reimschuessel 1972). Like TEM, imaging of soft-

bodied organisms requires chemical fixation which may cause artifacts (Matthysse 1995). 

Furthermore, this technique has slow throughput and cannot provide information about viability 

of bacteria. 
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2.2.1.2.5 Atomic force microscope 

Atomic force microscopy (AFM) is one of the techniques applied for observation of bacterial 

attachment and is ideally suited for observing biological activities of bacteria in physiological 

environments, e. g., imaging interactions of bacteria during formation of biofilms (Meyer et al. 

2010) or monitoring interaction of drugs with cell membranes of bacteria (Li et al. 2015). AFM 

could also be employed to investigate roughness of the samples such as root mean square (RMS) 

roughness. The critical point in AFM imaging of biological specimens is that the specimens 

should be well attached to the surface to resist removal through the force of the cantilever 

(Dufrene 2002). In addition, the process of AFM imaging of each individual specimen is time-

consuming and so throughput is quite slow.  

AFM could operate in contact, tapping and non-contact modes. In contact mode, the tip of the 

cantilever is dragged across the surface of the specimen. In this mode, which is the general 

operation mode of AFM, images are constructed based on the deflections of the cantilever. In 

non-contact mode, the tip does not touch the surface and just hovers at a distance above the 

surface. In this mode, the tip oscillates quite close to the surface and the images are constructed 

based on the amplitude or frequency changes of the oscillation. In tapping mode, like non-

contact mode, the tip oscillates up and down in the close distance of the surface. However, the 

amplitude of oscillation in this mode is much higher than non-contact mode, so the tip taps the 

surface and does not damage the surface of the sample. Tapping mode is an ideal mode for 

imaging of soft and fragile specimens (Li 1997). 

2.2.1.3 Optical density measurements 

One of the common techniques used in microbiology to monitor bacterial growth is optical 

density (OD) measurement. In this method, a spectrophotometer is employed to measure the 

OD of the bacterial suspension at a specific wavelength of irradiation which is normally at 600 

nm. Growth of bacteria results in increase of the number of bacteria present in the suspension 

which causes enhancement of scattered light. Therefore, most of the light does not reach the 

photoelectric cell and the amount of the electric current decreases compared with a cell-free 
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suspension or a suspension with lower number of bacteria. The electric current is then 

transformed to an OD value which reflects the turbidity of the suspension (see Figure 4).  

 

Figure 4. Schematic illustration of the basis of a spectrophotometer. The scattering of light is 

assumed to be zero in the reference experiment and the photoelectric cell records all the 

irradiated light (a).The irradiated light is scattered by the bacteria present in the suspension and 

the photoelectric cell records less light which results in decrease of the electric current. The 

electric current is then transformed to an OD value (b). Adapted from (Widdel 2007). 

If we assume that N0 represents the initial number of bacteria in the suspension and td shows the 

generation time of bacteria, the number of bacteria reaches N in the period of t following Eq. 

(2.3) (Widdel 2007), 

/ /ln 2

0 02 ( )d dt t t t
N N N e          (2.3) 

If we define
ln 2

dt
  , Eq. (2.3) could be written as follows, 

0

tN N e            (2.4) 

The cell density or cell concentration is defined as the number of cells per volume unit, as 

presented in Eq. (2.5),   
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N

V
=cell density          (2.5) 

According to Eq. (2.4), cell density could be written as follows, 

0

tN eN

V V



           (2.6) 

In addition, optical density (turbidity) of the bacterial suspension is proportional to the cell 

density ( ~
N

OD
V

), consequently, Eq. (2.6) could be written as follows, 

0

tOD OD e           (2.7) 

Therefore, OD of the bacterial suspension could be followed by optical measurements and 

plotted vs. time to obtain the growth curve of bacteria and calculate the bacterial generation 

time. A typical bacterial growth curve shows four phases which are lag phase, exponential or 

log phase, stationary phase and death phase (Atlas 1988) (see Figure 5). During the lag phase 

bacteria prepare to produce proteins and cellular enzymes and the size of bacteria increases, 

though no growth occurs in this stage (Garbutt 1997). When the log phase is reached, the 

bacterial growth (biomass accumulation) begins and the number of bacteria doubles every 

period of time (Akerlund et al. 1995). During the stationary phase, the rates of bacterial growth 

and bacterial death are equal and no increase is observed in the number of viable cells (Akerlund 

et al. 1995). Finally when the death phase is reached bacterial lysis happens which is mainly 

because of augmentation of inhibitory products and environmental factors such as pH changes 

(Garbutt 1997).  
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Figure 5. A typical bacterial growth curve consisting of lag phase, exponential or log phase, 

stationary phase and death phase. Adapted from (Komorniczak  2009). 

OD measurement could also be employed for investigation of bacterial adhesion. For that 

purpose, bacteria are removed actively from the surface of the substrate by sonication and the 

OD of the bacterial solution is measured. This approach is simple, well standardized and 

applicable to a wide variety of bacteria with different shapes (Christensen et al. 2000; 

Wengrovitz et al. 1991). The drawback of this method is that it does not distinguish between 

live and dead bacteria (Matlock et al.) and it is only sensitive to large numbers of bacteria (> 

106). 

2.2.1.4 McFarland standards 

One of the most convenient techniques to monitor bacterial growth and investigate the antibiotic 

susceptibility of bacteria is using McFarland standards. In this method, the density of the 

bacterial suspension is estimated by visual or spectrophotometric comparison of the turbidity of 

the bacterial sample with one of the McFarland standard solutions. McFarland standards are 

made by mixing different concentrations of barium chloride and sulfuric acid numbered from 

0.5 to 6. Each number of McFarland standards corresponds to a specific bacterial concentration 

so the bacterial suspension can be diluted or concentrated to be compared to one of the 

McFarland standards (McFarland 1907).  

 

https://commons.wikimedia.org/wiki/User:M.Komorniczak
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2.2.2 Conventional biosensing methods 

The general operation of a biosensor is comprised of capture of a specific analyte by applying a 

sensing element and detection of the captured analyte by use of a unique transducer device (Sin 

et al. 2014; Thakur and Ragavan 2013; Turner et al. 1987). Antibodies, enzymes, cell receptors 

and nucleic acids can be considered as some usual examples of sensitive biological elements. 

Biological elements capture the analyte by forming lock-and-key complexes such as antigen-

antibody, enzyme-reaction and DNA hybridization (Moina and Ybarra 2012) which have been 

schematically shown in Figure 6. The performance of a biosensor is measured statistically by 

sensitivity and specificity. Sensitivity depends on the efficacy inherent in the sensing process 

and is affected by several parameters such as signal to noise ratio and stability of the biosensor. 

Specificity describes the ability of the biosensor to distinguish and recognize a specific analyte 

in the environment of operation, for example, to detect a particular type of bacteria among other 

kinds of bacteria. Moreover, short response time and sensor linearity are also considered as 

important parameters (Marshall 2011; Thakur and Ragavan 2013).  

 

Figure 6. Three common examples of biosensing complexes including antigen-antibody, DNA 

hybridization and enzyme reaction. Adapted from (Marshall 2011). 

The glucose sensor is the best-known and most commercially successful device based on the 

concept of a transduction mechanism. In this biosensor, the input elements are glucose and 

oxygen that are converted to gluconic acid and hydrogen peroxide (H2O2) in the presence of the 

enzyme glucose oxidase. The transduction mechanism is based on the reduction of the H2O2 

product at the cathode that results in a measurable current. Thus, the glucose sensor is an 

amperometric device taking advantage of enzymatic reactions. The amperometric sensors based 
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on the concept of enzymatic reactions are considered as the first developed biosensors (Clark 

and Lyons 1962; Marshall 2011). In 1985 when Elsevier launched the principle journal in the 

field of biosensing, Biosensors and Bioelectronics, the journal published around 30 papers out 

of the total number of 100 papers published in this field in the world. The number of biosensor 

publications reached approximately 4500 in 2011. This number accounts for more than 10% of 

all the publications in this field from 1980 to 2011 which shows the phenomenal growth of the 

biosensing field during this period (see Figure 7) (Turner 2013). 

In spite of publication of many interesting academic papers and patents in the biosensing field, 

only a small number of biosensors have been commercialized. The commercial success of 

biosensors is limited by their cost and some technical problems such as reliability, sensitivity 

and stability (Luong et al. 2008). In addition, small size, simplicity of operation and the potential 

of being automated also play important roles in commercial success of biosensors. As an 

example, the glucose sensor comprises around 85% of the biosensing market (Newman and 

Turner 2005) and its success can be considered as the consequence of low cost, ease of use, 

rapidity and reliability of the biosensor (Newman and Turner 2005; Yoo and Lee 2010). 

Biosensing is a wide and rapidly progressing field and has great potential applications in medical 

diagnostics, environmental monitoring, pharmaceutical fields, food and agricultural industries 

(Turner 2013).  

 

Figure 7. Approximate number of biosensor publications from 1980 to 2010. Reproduced from 

(Turner 2013) with permission of The Royal Society of Chemistry 

(http://dx.doi.org/10.1039/C3CS35528D). 
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In general, biosensors are classified based on their transduction mechanisms. Table 1 briefly 

demonstrates general types of biosensors and some common examples (Marshall 2011; Moina 

and Ybarra 2012). 

Table 1. Classification of biosensors according to their transduction mechanism (Marshall 2011; 

Moina and Ybarra 2012). 

Classification of 

biosensors 

Transducer effect Example 

Electrochemical Amperometric/Potentiometric

/Conductimetric 

In vivo electrode 

 

Optical 

Colourimetric/ 

Spectroscopic/Mode 

dispersion 

Fluorescence resonance energy 

transfer (FRET)/Surface plasmon 

resonance (SPR) 

 

Piezoelectric 

 

Mass increase 

Quartz crystal microbalance 

(QCM)/Bio-Micro electro 

mechanical systems 

 (Bio-MEMS) 

Semiconductor Channel conductance/ 

Photoluminescence 

Biosensing field effect transistor 

(BioFET)/Quantum dots 

Electrochemical biosensors monitor changes of the electrical signal due to the redox reactions 

happening in the vicinity of the electrode surface. The name “electrochemical” has been chosen 

for this type of biosensors because their operation is based on measuring the variations of the 

electrical signal induced by the chemical reactions. These changes can be measured as variations 

in the current (amperometric), in the voltage (potentiometric) or in the conductivity 

(conductimetric) (Moina and Ybarra 2012). In optical biosensors the recognition of the analyte 

can generate an optical signal such as colour, or it can change the optical properties of the device 

(Moina and Ybarra 2012). One of the popular types of optical biosensors is surface plasmon 

resonance (SPR) devices. In SPR sensors, surface plasmons are excited at a specific (resonance) 

angle or wavelength of the incident light, which results in attenuation of the intensity of the 

reflected light. Immobilization of an analyte on the surface of the SPR device changes the 

refractive index in the vicinity of the surface and results in the modification of the resonance 

angle (Liu et al. 2012). In piezoelectric biosensors capture of the analyte causes mass increase 

which is detectable with piezoelectric devices (Moina and Ybarra 2012). Cantilevered MEMs 

(Raiteri et al. 2001) and QCMs (Kaewphinit et al. 2012) are the best known examples of this 
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kind of biosensor. Semiconductor-based sensors are divided into channel conductance-based 

and photoluminescence-based sensors which are described in detail in Sec.2.2.3.  

In the following sections, we present a review of the biosensors applied to investigate bacterial 

adhesion to surfaces and to monitor bacterial activities such as their reactions to antibiotics.  

2.2.2.1 Polymerase chain reaction 

The polymerase chain reaction (PCR) is a technique developed by Kary Mullis in the 1980s 

(Bartlett and Stirling 2003) which is based on the exponential synthesis of copies of a specific 

DNA sequence which doubles for every cycle of PCR. This method can be applied for different 

purposes such as bacterial detection (Zariffard et al. 2002) and diagnosis of infectious diseases 

(Atkins and Clark 2004; Speers et al. 2003). It can also be used to produce large amounts of 

fragments of a specific gene that can be sequenced or otherwise analysed to infer antibiotic 

sensitivity (Baz et al. 2007; Ge et al. 2013) or genetic disorders such as cystic fibrosis (CF) 

(Vrettou et al. 2002). The PCR technique is a rapid, sensitive and specific method for monitoring 

bacterial growth (Wittwer and Kusukawa 2004). PCR can also be used for determination of 

sensitivity of bacteria to different antibiotics either by detecting resistance genes or by 

measuring the number of DNA copies in the presence or absence of a specific antibiotic. 

Hombach et al. (Hombach et al. 2010) employed real-time PCR methods to detect the mecA 

gene responsible for resistance of Staphylococcus aureus to methicillin. Rolain et al. (Rolain et 

al. 2004) used PCR to detect antibiotic susceptibilities of different bacterial strains, e.g., 

Streptococcus pneumoniae and E. coli. If the bacteria are resistant to the antibiotic, the number 

of DNA copies is similar to the growth control test without the antibiotic and if the bacteria are 

sensitive to the antibiotic, the number of DNA copies is lower than the growth control test. In 

spite of considerable benefits of PCR over culture-based methods including rapidity, the cost 

and complexity of the method limits its application to specialized laboratory environments 

(Toze 1999). Automation of PCR has brought this method to clinical laboratories, but only for 

specific antibiotic sensitivity determinations like S. aureus resistant to methicillin (Grisold et al. 

2002). Another major disadvantage of PCR is its inability to detect living versus dead bacteria. 
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2.2.2.2 Fluorescence-based assays  

Fluorescence-based assays are one of the salient techniques which are applied to investigate 

bacterial adhesion. Adhesion of bacteria could be investigated by using fluorescent bacteria or 

adding fluorescent molecules such as antibodies after immobilization of bacteria. For example, 

Lorenzetti et al. (Lorenzetti et al. 2015) applied green fluorescent protein-expressing (GFP) E. 

coli to investigate adhesion of these bacteria to titanium substrates and Müller et al. (Müller et 

al. 2007) investigated adhesion of biotinylated Streptococcus gordonii, Streptococcus mitis and 

Staphylococcus aureus on silicon wafers by using fluorescence-labelled avidin-D. This method 

is highly selective, however, it has some disadvantages such as photobleaching of the 

fluorophores.  

Over the past two decades, a number of fluorescence-based assays have been described for 

detection of live vs. dead bacteria and analysis of antibiotic susceptibility of bacteria (Boi et al. 

2015; Braga et al. 2003; Pore 1994; Quach et al. 2016; Roth et al. 1997). Quantum dots (QDs) 

are a new class of fluorescent material which has been introduced to improve these assays 

(Borchert et al. 2003). The main advantage of QDs over fluorophores is that they have a narrow 

emission spectrum and the spectral location of the emission band is tunable by the size of QDs 

(Resch-Genger et al. 2008), however, toxicity of QDs (Lewinski et al. 2008) limits their 

application in biological fields. Meyer et al. (Meyer et al. 2010) employed SYTO9 and 

propidium iodide fluorophores to assess the viability of Staphylococcus sciuri immobilized on 

glass surfaces using polyphenolic adhesive protein. The viability of bacteria was distinguishable 

by this method because live and dead bacteria stained green (with SYTO9) and red (with 

propidium iodide), respectively. This method has also been accompanied with flow cytometry 

to evaluate antibiotic susceptibility of different strains of E. coli (Boi et al. 2015). Flow 

cytometry is a laser-based technology that is applied for cell counting and cell sorting. In the 

method applied by Boi et al. (Boi et al. 2015) bacteria were stained with SYTO9 and propidium 

iodide fluorophores before and after incubation with antibiotics and the antibiotic susceptibility 

of bacteria was determined by the degree of decrease in the intensity of the light emitted by 

green (viable) bacteria.  
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Quach et al. (Quach et al. 2016) employed bacterial cytological profile (BCP) to rapidly 

investigate antibiotic susceptibility of Staphylococcus aureus. In this approach, bacteria were 

incubated with antibiotics for 1-2 h, stained with fluorophores and observed under a 

fluorescence microscope. WGA-Cy5 (red) and DAPI (blue) were used to stain cell walls and 

DNA of bacteria, respectively. SYTOX (green) was also used to analyse membrane 

permeability of bacteria. The data obtained by the fluorescence microscope was then used to 

create BCP that showed cytological parameters of bacteria. By comparison between BCP of 

antibiotic-treated and non-treated bacteria, the sensitivity of bacteria to antibiotics could be 

determined. 

2.2.2.3 Colourimetric biosensors 

In colourimetric biosensors, the interaction of an optical dye with the analyte causes changes in 

the absorption band of the optical dye and changes its colour or opacity (Yotter et al. 2004). 

Colourimetric biosensors are of great importance because they do not require complicated and 

expensive technologies (Sharma 2010). Some of the products of metabolic activities of 

biological cells that can be monitored using these biosensors are oxygen, carbon dioxide, 

glucose, adenosine triphosphate (ATP) and pH variations (Yotter et al. 2004). The disadvantage 

of colorimetric approaches is that a high number of biological cells should be present in the 

environment to produce a colorimetric reaction. Besides that, these methods are time-

consuming.  

Enzyme-linked immunosorbent assay (ELISA) is one of the colourimetric techniques employed 

to verify the number of attached bacteria. For that purpose, anti-bacterial antibody (usually 

raised in a mouse or rabbit) is added to the medium to bind to the attached bacteria. After 

washing off unbound antibody, a second, enzyme-linked, antibody directed against mouse or 

rabbit antibodies is added which binds to the bound antibody. Then, the enzyme substrate is 

added and the reaction produces a colour change which is measured by a spectrophotometer. By 

monitoring the amount of the colour change, the number of bacteria attached to the substrate 

can be estimated. ELISA is also employed as a diagnostic tool to detect the presence of specific 

proteins such as antibodies (Gudino and Miller 1981). The critical point in this technique is that 

the antibody should be highly specific and should not attach specifically or non-specifically to 

https://en.wikipedia.org/wiki/Medical_diagnosis
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the substrate. The disadvantage of this method is that, like other biologic assays, each 

experiment should be standardized to correlate the amount of the colour change to the number 

of attached bacteria (Christensen et al. 2000).  

2.2.2.4 Surface plasmon resonance biosensors 

Due to the sensitivity of SPR biosensors to the refractive index changes at the surface of these 

structures, these biosensors can also be applied for investigation of bacterial adhesion and 

biofilm growth. For example, Zagorodko et al. (Zagorodko et al. 2015) used the SPR method to 

investigate the effet of flow rate changes on adhesion of E. coli on aminoheptyl α-D-

mannopyranoside-coated gold surfaces. The SPR biosensors have also been applied for 

monitoring activities of biological cells. Liu et al. (Liu et al. 2012) used a SPR biosensor for 

monitoring secretions of vascular endothelial growth factor (VEGF) from SKOV-3 ovarian 

cancer cells. Secretion of VEGF protein and capture of this protein by the sensitive surface of 

the SPR biosensor causes a shift in the SPR angle. Cuerrier et al. (Cuerrier et al. 2008) employed 

SPR to monitor cellular activity of HEK-293 cells stimulated by angiotensin (Ang) II. HEK-293 

cells, with AngII receptor, were seeded on gold-coated glass substrates and exposed to different 

concentrations of AngII. As presented in Figure 8 (a), immediately after stimulation of the cells 

with AngII, a decrease in the SPR signal is observed. Thereafter, the SPR signal increases and 

exceeds the baseline. The magnitude of the SPR signal depends on the concentration of AngII 

and enhances by increasing the concentration of AngII. Figure 8 (b) shows the dependency of 

the reflectance variation on the concentration of AngII. As it is presented in this figure, by 

increasing the concentration of AngII the reflectance variation increases. 
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Figure 8. (a) SPR signal measured for increasing AngII concentrations (1, 10 and 100 nM). (b) 

The amplitude of the initial decrease (inset) was used to generate a concentration response 

graphic of the AngII receptor activation graphic of the AngII receptor activation (Cuerrier et al. 

2008)1. 

Chiang et al. (Chiang et al. 2009) employed a SPR biosensor to determine susceptible and 

resistant strains of Staphylococcus epidermidis and E. coli to tetracycline and ampicillin. In this 

approach, bacteria were immobilized on poly-l-lysine-coated gold substrates and exposed to DI-

water and Luria Bertani (LB). Thereafter, another washing step was applied and then bacteria 

were exposed to antibiotic solution. The amount of SPR angle shift after incubation of bacteria 

with the antibiotic revealed information about resistance or susceptibility of bacteria to the 

antibiotic. The SPR angle shift in the case of susceptible bacteria was higher than the one 

                                                 

1 Cellular and Molecular Bioengineering, Surface Plasmon Resonance Monitoring of Cell Monolayer Integrity: 

Implication of Signaling Pathways Involved in Actin-Driven Morphological Remodeling, 1(4), 2008, 229-239, C. 

M. Cuerrier, V. Chabot, S. Vigneux, V. Aimez, E. Escher, F. Gobeil, P. G. Charette, M. Grandbois, "With 

permission of Springer" (http://dx.doi.org/10.1007/s12195-008-0028-4). 

 

http://link.springer.com/journal/12195
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cuerrier%20CM%5BAuthor%5D&cauthor=true&cauthor_uid=21052479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chabot%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21052479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Vigneux%20S%5BAuthor%5D&cauthor=true&cauthor_uid=21052479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Aimez%20V%5BAuthor%5D&cauthor=true&cauthor_uid=21052479
https://www.ncbi.nlm.nih.gov/pubmed/?term=Escher%20E%5BAuthor%5D&cauthor=true&cauthor_uid=21052479
Gobeil
Charette
Grandbois
https://dx.doi.org/10.1007/s12195-008-0028-4
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observed for resistant bacteria. For example, in the case of ampicillin-resistant E. coli the SPR 

angle shift was around -0.00154, while for ampicillin-sensitive E. coli was -0.01608.  

Kee et al. (Kee et al. 2013) used a plasmonic nanohole sensing platform for monitoring growth 

and antibiotic susceptibility of E. coli. The performance of the biosensor is based on the 

extraordinary optical transmission (EOT) phenomenon shift in plasmonic nanoholes as a result 

of refractive index changes in the vicinity of the biosensor surface. Figure 9 illustrates the 

structure of the biosensor and the transmission spectra of the sensor at different stages of 

measurement. The transmission spectra of the blank biosensor, after antibody immobilization, 

after 1 h and after 3 h of bacteria seeding is shown in Figure 10 (a). When the immobilized 

bacteria are exposed to a growth medium, the bacteria grow and the increased number of bacteria 

on the surface cause a shift in the transmission peak to higher wavelengths. This shift provides 

a method of monitoring bacterial growth. Figure 10 (b) shows susceptibility of E. coli to two 

types of antibiotics. After exposure of the bacteria to ampicillin solution, E. coli continue to 

grow and the resonant wavelength shift increases with time. This indicates resistance of the 

bacteria to this type of antibiotic. In the case of exposure to a tetracycline solution, bacterial 

growth is stopped and a plateau is observed in the resonant wavelength shift curve.  
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Figure 9. Schematic illustration of the biosensor structure and its transmission spectra, bare 

plasmonic nanohole sensor platform (a), immobilization of antibody on the surface of the 

biosensor (b), immobilization of bacteria on the surface of the biosensor (c), growth of bacteria 

on the surface of the biosensor (d), experimental setup applied for monitoring growth and 

antibiotic susceptibility of bacteria (e) and transmission spectra of plasmonic nanohole structure 

at different stages of the measurement (f) (Kee et al. 2013)2. 

                                                 

2 "Reprinted from Sensors and Actuators B: Chemical, Vol. 182, J. S. Kee, S. Y. Lim, A. P. Perera, Y. Zhang, M. 

K. Park, Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test, Pages 576–

583, Copyright (2013), with permission from Elsevier." (http://dx.doi.org/10.1016/j.snb.2013.03.053). 

http://www.sciencedirect.com/science/journal/09254005
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://dx.doi.org/10.1016/j.snb.2013.03.053
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(a) (b) 

Figure 10. Transmission spectra of the biosensor measured for blank structure, after antibody 

immobilization, after 1 h and after 3 h of bacterial seeding. Inset shows fluorescence 

microscopic images of bacteria immobilized on the biosensor surface (a), monitoring antibiotic 

susceptibility of E. coli to ampicillin and tetracycline by measuring the resonant wavelength 

shift (b) (Kee et al. 2013)3.  

2.2.2.5 Fourier transform infrared spectroscopy and Raman spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is a fast, sensitive and reliable method for 

investigation of chemical compositions on the surface of a sample. The absorption or transmission 

of IR for each molecule is specific, so investigating the spectral location and intensity of FTIR 

signal helps us to detect the molecules on the surface of the sample (Griffiths and de Haseth 

1986; ThermoNicoletCorporation 2001). The disadvantage of this method is that the FTIR 

spectrum is highly affected by the environmental conditions, therefore, numerous scans of the 

sample and background scans are needed to obtain the accurate spectrum (Davis and Mauer 

2010). Over the past two decades, this technique has been applied for analyzing variations in 

morphology and chemical compositions of biological cells (Cohenford et al. 1998; Rigas et al. 

                                                 

3 "Reprinted from Sensors and Actuators B: Chemical, Vol. 182, J. S. Kee, S. Y. Lim, A. P. Perera, Y. Zhang, M. 

K. Park, Plasmonic nanohole arrays for monitoring growth of bacteria and antibiotic susceptibility test, Pages 576–

583, Copyright (2013), with permission from Elsevier." (http://dx.doi.org/10.1016/j.snb.2013.03.053). 

 

http://www.sciencedirect.com/science/journal/09254005
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://www.sciencedirect.com/science/article/pii/S0925400513003341
http://dx.doi.org/10.1016/j.snb.2013.03.053
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1990). Gasparri et al. (Gasparri and Muzio 2003) applied the FTIR method based on attenuated 

total reflectance (ATR) to monitor apoptosis of HL60 (human promyelocytic leukaemia) cells. 

Apoptosis causes many biochemical and biophysical changes in the proteins of the cells. During 

apoptosis, changes in localization and folding of the proteins affect the IR absorption range of 

the peptidic bonds.  

Raman spectroscopy is another spectroscopic technique which uses a scattering mechanism to 

identify molecules (Matthäus et al. 2008). In this technique, a sample is irradiated with a laser 

beam and the photons interact with the molecular vibrations. The changes in the energy of the 

scattered photons compared with the laser photons reveal information about the vibrational 

modes of the molecules. This method has the potential of being applied to monitor biological 

activities of cells. Lo et al. (Lo et al. 2011) used Raman spectroscopy to monitor the maturation 

process of an oral mucosa equivalent (EVPOME). Spectroscopic techniques are also of great 

importance in the field of biofilm research (Wolf et al. 2002), e.g., ATR/FTIR spectroscopy has 

been applied to monitor biofilm formation on a germanium internal reflection element (IRE) 

(Bremera and Geesey 1991). Tinham et al. (Tinham and Bott 2003) employed an IR monitor to 

investigate formation of biofilms in flowing systems. Due to the dependence of the amount of 

the absorbed IR by the biofilm to the thickness of the biofilm, effect of pH and flow rates were 

investigated on the biofilm growth.  

2.2.2.6 Impedance spectroscopy  

Impedance spectroscopy is a promising tool for monitoring the physiological state and activities 

of biological cells in culture (Ehret et al. 1997). In this method, electrical properties of materials 

placed between the electrodes or immobilized on the surface of the electrodes are measured at 

a specific frequency range. Ghafar-Zadeh et al. (Ghafar-Zadeh et al. 2008) applied the charge 

based capacitive measurement (CBCM) to monitor the growth of E. coli. By placing two sensing 

electrodes in the bacterial suspension and measurement of the standing impedance between the 

electrodes, the bacterial growth was monitored. Electrochemical approaches have also been 

employed for investigation of antibiotic susceptibility of bacteria. Besant et al. (Besant et al. 

2015) monitored the electrochemical reduction of resazurin, a redox-active molecule, and based 

on this reaction, the antibiotic susceptibility of E. coli was evaluated in less than 1 hour. If the 
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bacteria were resistant to the antibiotic, they continued to grow in the presence of the antibiotic 

and created a reducing environment in which resazurin was reduced to resorufin. When bacteria 

were sensitive to the antibiotic, bacterial growth was inhibited and reduction of the dye was 

prevented. 

Mach et al. (Mach et al. 2011) applied an electrochemical approach based on the detection of 

bacterial 16S rRNA to investigate antibiotic susceptibility of E. coli isolated from clinical 

samples.  In their approach, bacteria were incubated with different antibiotics and the amount 

of the output current of the biosensor was measured for each test. If the output current was 

comparable with the growth control test (in the absence of the antibiotic), the bacteria were 

resistant to the antibiotic and if the output current was lower than the growth test, the bacteria 

were affected by the antibiotic.  

Zavizion et al. (Zavizion et al. 2010) investigated stress responses of E. coli and S. aureus by 

monitoring dielectric permittivity of the bacterial suspension. Their approach was applied to 

monitor antibiotic susceptibility of bacteria and responses of bacteria to heat shock and chemical 

stresses induced by Triton X-100 or H2O2. Differential impedance sensing methods were applied 

to directly evaluate the dielectric permittivity of the bacterial suspension which was represented 

as the normalized impedance response (NIR). When the bacteria were affected by the antibiotic 

or exposed to the heat or chemicals, the NIR decreased continuously. If the bacteria were 

resistant to the antibiotic, the NIR slightly increased, similar to the growth control test. One 

example of NIR monitoring of E. coli suspension exposed to different concentrations of 

gentamicin is presented in Figure 11. A continuous decrease is observed for the antibiotic-

treated bacteria. This decrease is more considerable for higher concentrations of the antibiotic. 

NIR  monitoring was also applied by Rieder et al. (Rieder et al. 2009) to investigate 

susceptibility of M. tuberculosis H37Ra to anti-tuberculous drugs such as rifampicin and 

pyrazinamide. 
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Figure 11. NIR monitoring of E. coli exposed to different concentrations of gentamicin. Ec-

Growth shows the NIR of the bacterial suspension in the absence of the antibiotic and control 

shows the NIR of the medium without the bacteria. Reproduced from (Zavizion et al. 2010). 

Impedance spectroscopy could be employed for investigation of bacterial adhesion and biofilm 

growth. Kim et al. (Kim et al. 2011) developed an electrochemical approach based on 

monitoring the double-layer capacitance variations to investigate bacterial adhesion and biofilm 

maturation. As presented in Figure 12, the adhesion and/or growth of bacteria on the sensing 

electrode results in a considerable change in the double layer capacitance. 
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Figure 12. Changes in the double-layer capacitance as the result of the bacterial adhesion and 

biofilm maturation (Kim et al. 2011)4. 

2.2.2.7 Optical time-lapse assays 

Optical time-lapse assays are other approaches which have the potential of being applied to 

investigate antibiotic susceptibility of bacteria. Fredborg et al. (Fredborg et al. 2013) developed 

an optical screening system (oCelloScope) to evaluate antibiotic sensitivity of different bacteria 

such as E. coli, S. aureus and Streptococcus pneumoniae based on digital time-lapse 

spectroscopy of bacteria-antibiotic suspension. They applied an optical source, a lens and a 

camera to get multiple optical images of bacteria and evaluated the bacterial growth while they 

were exposed to antibiotics. They succeeded in determining antibiotic susceptibility of E. coli 

within 6 min for monoculture and within 30 min for complex samples isolated from pigs with 

urinary tract infections. In another study, the same setup was employed to evaluate antibiotic 

susceptibility of methicillin-resistant S. aureus within the net average time of 108 min (Fredborg 

et al. 2015).  

                                                 

4 "Reprinted from Water Research, Vol. 45, T. Kim, J. Kang, J-H. Lee, J. Yoon, Influence of attached bacteria and 

biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy, Pages 

4615-4622, Copyright (2011), with permission from Elsevier." (http://dx.doi.org/10.1016/j.watres.2011.06.010) 

http://www.sciencedirect.com/science/journal/00431354
http://www.sciencedirect.com/science/article/pii/S0043135411003447
http://www.sciencedirect.com/science/article/pii/S0043135411003447
http://www.sciencedirect.com/science/article/pii/S0043135411003447
http://www.sciencedirect.com/science/article/pii/S0043135411003447
http://dx.doi.org/10.1016/j.watres.2011.06.010
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Choi et al. (Choi et al. 2013) employed a microfluidic agarose channel (MAC) system to 

incubate bacteria with antibiotics and used a time-lapse assay to investigate antibiotic sensitivity 

of P. aeruginosa and S. aureus within 3-4 h. As presented in Figure 13, multiple images of 

bacteria were taken as they were exposed to different concentrations of gentamicin for different 

incubation times. Based on the time-lapse images, the growth rate of bacteria was calculated 

and the minimum inhibitory concentration (MIC) of the antibiotic was determined for each test. 

For example S. aureus was able to grow when the concentration of gentamicin was lower than 

1 µg/mL, but for this concentration and higher concentrations the bacterial growth was inhibited 

even after 3 h of incubation with the antibiotic.  

 

Figure 13. Time-lapse microscopy of S. aureus (A) and P. aeruginosa (B) incubated for different 

times with different concentrations of gentamicin. Based on the time-lapse images the MIC of 

the antibiotic was determined for each bacteria. Reproduced from (Choi et al. 2013) with 

permission of The Royal Society of Chemistry (http://dx.doi.org/ 10.1039/C2LC41055A). 
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2.2.3 Semiconductor-based sensors 

2.2.3.1 Channel conductance-based sensors  

A field-effect transistor (FET) is a three terminal unipolar semiconductor device which controls 

the flow of charge carriers from the source to the drain by affecting the conductivity of the 

channel by application of the voltage applied across the gate and source terminals (Streetman 

and Banerjee 1999). FETs could be employed in the biosensing field to detect a wide range of 

targets. A FET-based biosensor (bio-FET) is a biosensing platform which consists of a FET and 

a biosensing element (Lee et al. 2014; Matsumoto and Miyahara 2013). In bio-FETs, the channel 

region is functionalized to capture a specific analyte. Immobilization of the analyte on the 

channel region changes the electrical properties of the bio-FET (Lee et al. 2009). Two main 

derivatives of bio-FETs are ion-sensitive FETs (ISFET) and molecular controlled 

semiconductor resistor (MOCSER) devices which are described in the following paragraphs. 

ISFETs have been historically developed by Bergveld (Bergveld 1970). The ISFET devices are 

like metal oxide semiconductor FETs (MOSFET) but the metal gate connection in these devices 

is in the form of a reference electrode in an electrolyte solution which is in contact with the gate 

oxide. The schematic illustration of one type of MOSFET and ISFET devices and their 

electronic diagram are shown in Figure 14 (Bergveld 2003).  
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Figure 14. Schematic illustration of (a) MOSFT, (b) ISFET and (c) their electronic diagram 

(Bergveld 2003)5. 

The drain current in MOSFET and ISFET devices in the non-saturated mode can be calculated 

by equation (2.8) (Bergveld 2003), 

𝐼𝑑 = 𝐶𝑂𝑋µ
𝑊

𝐿
[(𝑉𝑔𝑠 − 𝑉𝑡)𝑉𝑑𝑠 −

1

2
𝑉𝑑𝑠

2 ] 
(2.8) 

where 𝐶𝑂𝑋 is the oxide capacity per unit area, µ is the mobility of electrons in the channel, W 

and L are width and length of the channel respectively, 𝑉𝑔𝑠 is the gate-source voltage,  𝑉𝑑𝑠 is the 

drain-source voltage, and 𝑉𝑡 is the threshold voltage. As equation (2.8) shows that the drain 

current can be a unique function of 𝑉𝑔𝑠 if 𝑉𝑡 , 𝑉𝑑𝑠 and the geometric sensitivity parameter 

β=𝐶𝑂𝑋µ𝑊/𝐿 are constant. By definition 𝑉𝑡  is described by equation (2.9) for MOSFET devices 

(Bergveld 2003),  

                                                 

5 "Reprinted from Sensors and Actuators B, Vol. 88, P. Bergveld, Thirty years of ISFETOLOGY What happened 

in the past 30 years and what may happen in the next 30 years, Pages 1-20, Copyright (2003), with permission from 

Elsevier." (http://dx.doi.org/10.1016/S0925-4005(02)00301-5) 

http://dx.doi.org/10.1016/S0925-4005(02)00301-5
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𝑉𝑡 =
Ф𝑀−Ф𝑆𝑖

𝑞
−

𝑄𝑂𝑋 + 𝑄𝑆𝑆 + 𝑄𝐵

𝐶𝑂𝑋
+ 2ф𝑓 

(2.9) 

where the first term is the difference in workfunction between the gate metal (Ф𝑀) and silicon 

(Ф𝑆𝑖),  the second term is related to the collected charge in the oxide (𝑄𝑂𝑋), at the oxide-silicon 

interface (𝑄𝑆𝑆) and the depletion charge in silicon (𝑄𝐵), and the third term depends on the doping 

level of silicon. For ISFET the observed ion sensitivity is described as an additional parameter 

in definition of 𝑉𝑡 and the threshold voltage is expressed by equation (2.10) (Bergveld 2003),  

𝑉𝑡 = 𝐸𝑟𝑒𝑓 − 𝜓 + 𝜒𝑠𝑜𝑙 −
Ф𝑆𝑖

𝑞
−

𝑄𝑂𝑋 + 𝑄𝑆𝑆 + 𝑄𝐵

𝐶𝑂𝑋
+ 2ф𝑓 

(2.10) 

where 𝐸𝑟𝑒𝑓 and 𝜒𝑠𝑜𝑙 describe the potential of the reference electrode and surface potential of 

the solvent, respectively, and have constant values. The parameter 𝜓 in equation (2.10) describes 

the chemical input parameter which is a function of pH of the solution. It should be noted that 

parameter Ф𝑀 is hidden in 𝐸𝑟𝑒𝑓 term and does not appear in this equation. Note that the potential 

of the reference electrode and 𝑉𝑑𝑠 are held constant, ISFET devices can be operated as a sensor 

sensitive to the pH of the electrolyte (Bergveld 2003).   

As it was discussed in the beginning of this section, another derivative of bio-FET is MOCSER 

device in which no reference electrode is needed. Naaman et al. (Naaman et al. 2013) employed 

a MOCSER device to detect triacetone triperoxide (TATP) vapors in gaseous mixtures. The 

schematic illustration of the MOCSER device is shown in Figure 15. By applying a constant 

potential between two conduction pads, the current change is monitored when the device is 

exposed to gaseous mixtures containing vapors of the target. Absorption of the target molecules 

on the sensing layer causes charge transfer from the substrate and results in current variations.  
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Figure 15. Schematic illustration of the MOCSER device used for detection of TATP in gaseous 

mixtures. Adapted from (Naaman et al. 2013). 

2.2.3.2 Semiconductor optical (photoluminescence) sensors  

Absorption of a photon with energy greater than the bandgap energy of a semiconductor raises 

electrons from the valance band to the conduction band. Photoluminescence (PL) is the radiative 

recombination of excited conduction band electrons and valance band holes that happens after 

the electrons move down to the valance band. Non-radiative recombination of electrons and 

holes happens as the result of diffusion movement of minority carriers and occurs within a thin 

layer near the surface, typically less than a few hundred nanometers thick. The surface 

recombination velocity (SRV) is determined by the surface conditions and dominates the rate 

of non-radiative recombination. Radiative and non-radiative recombination of electrons and 

holes are schematically shown in Figure 16.  

 

Figure 16. Schematic illustration of recombination processes in GaAs. Absorbing photons of 

higher energy than bandgap energy of GaAs excites electrons and raises them to the conduction 

band. Electrons relax to the edge of the conduction band by releasing phonons. Non-radiative 

recombination is the result of diffusion movement of minority carriers while radiative 

recombination is the result of direct transition of excited conduction band electrons to the 

valance band which leads to emission of photons. Adapted from (Marshall 2011). 
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The overall recombination rate is inversely proportional to the minority carrier life time (τ) 

which is defined by the reciprocal sum of radiative and non-radiative recombination terms 

(equation 2.11). For n-type material, the radiative and non-radiative recombination rates are 

approximately defined by equations (2.12) and (2.13), respectively. A similar equation can be 

written for p-type semiconductors (Yacobi 2003), 

1

𝜏
=

1

𝜏𝑟
+

1

𝜏𝑛𝑟
 

(2.11) 

𝑟𝑟 = 𝜏𝑟
−1 ≈ 𝛽(𝑛0 + 𝛥𝑛) = 𝛽𝑛 (2.12) 

𝑟𝑛𝑟 = 𝜏𝑛𝑟
−1 = 𝜎𝑝𝑣𝑡ℎ,𝑝𝑁𝑡 (2.13) 

In equation (2.12) β is the radiative recombination rate which is defined under non-degenerate 

injection  conditions (Lambert et al. 1990), 𝑛0 is defined as the equilibrium majority carrier 

(electron) concentration and 𝛥𝑛 is the photo-generated excess concentration because of 

electron-hole generation. In equation (2.13), defined by Shockley-Read-Hall recombination 

theory (Shockley and Read 1952), 𝜎𝑝, 𝑣𝑡ℎ,𝑝 and 𝑁𝑡 are the minority carrier (holes) capture cross-

section, minority carrier thermal velocity and trap density, respectively. The PL intensity can be 

quantified by the internal quantum efficiency (𝛾𝑃𝐿) which is defined in terms of radiative and 

non-radiative recombination rates (Yacobi 2003). According to equation (2.14) any change in 

the radiative and/or non-radiative recombination rates alters the PL intensity which is considered 

as the suitable metric in PL-based sensors.   

𝛾𝑃𝐿 =
𝑟𝑟

𝑟𝑟 + 𝑟𝑛𝑟
 

(2.14) 

Discontinuity of bulk properties of semiconductors such as GaAs results in presence of 

significant number of surface states at the surface of these materials. Consequently, when these 

materials are exposed to air, water or other medium, additional bending occurs of the energetic 
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bands approaching the surface. As the result, a space charge region (SCR) is formed near the 

surface of semiconductors. The associated electric field separates electrons (e-) and holes (h+) 

produced in this layer and thus, it decreases the chance of radiative recombination rate of 

electrons and holes and reduces PL intensity. For n-type semiconductors the associated electric 

field drives photo-excited holes to the surface and the photo-excited electrons toward the bulk 

(Yu and Cardona 2010).  

The basis of PL based biosensors relies on changes in the energy distribution, trapping and/or 

occupation of surface state defects. Variations in radiative and non-radiative recombination and 

as the result changes in the PL intensity depend on changes in these parameters. Figure 17 

schematically illustrates the band bending at the surface of an n-type semiconductor. The surface 

barrier height (qΦsb), built-in electric field (E), space charge density (qNd), space charge region 

(SCR), depletion depth (Zd), surface charge density (Qss), surface trapped charge (-), ionized 

donors (+), conduction/valance bands (CB/VB) and Fermi level energy (FL) are also shown in 

this figure. 

 

Figure 17. The schematic illustration of the near-surface band structure in a typical n-type 

semiconductor. The photo-excited minority carriers (⊕) are driven towards the surface by drift 

and diffusion movements. The surface barrier height (qΦsb ), built-in electric field (E), space 

charge density (qNd), space charge region (SCR), depletion depth (Zd), surface charge density 

(Qss), surface trapped charge (-), ionized donors (+), conduction/valance bands (CB/VB) and 

Fermi level energy (FL) are also indicated in the figure. Adapted from (Marshall et al. 2011). 
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PL-based sensors have the potential of being applied for chemical sensing (Seker et al. 2000) 

such as ammonia detection (Luebker et al. 1991). In PL-based sensors, analytes can be 

immobilized either on the surface directly, or on the surface coated with a transducer film. 

Transducer films are employed to functionalize the surface of semiconductors  and are able to 

change the PL intensity by affecting surface conditions of the biosensing device (Seker et al. 

2000). An example is a Si3N4-coated surface of GaAs which was employed to detect E. coli 

bacteria in aqueous solutions (Duplan et al. 2011). In the direct adsorption type sensor, the 

analyte is adsorbed on the semiconductor surface via physical attraction. For example, exposure 

of a single-crystal n-CdSe sensor to gaseous amines results in adduct formation between the 

semiconductor surface and the gaseous amines which causes reduction of the depletion width 

and enhancement of PL (Meyer et al. 1988). An example of a more recent PL-based sensor is a 

GaAs-aptamer device applied for detection of adenosine 5´-triphosphate (ATP) (Budz et al. 

2010). During the ATP-aptamer formation, the aptamer probes fold and adopt a tertiary structure 

simulating a stem and loop. Formation of this structure on the surface of the sensor changes the 

charge distribution on the GaAs surface, decreases the width of the depletion region and 

increases the PL intensity. Another example of PL-based sensor is a III–V quantum 

semiconductor (QS) device which has been applied for rapid detection of E. coli bacteria in 

phosphate buffered saline solution (PBS) (Duplan et al. 2011). Immobilization of electrically 

charged bacteria on the biofunctionalized surface of the device modifies the band bending of 

the semiconductor and increases the PL intensity. Figure 18 shows PL emission of QS samples 

as they are exposed to different concentrations of bacteria in PBS. After 2 hours of PL 

measurement, the difference in the intensity of PL signals can be used for calibration of the 

biosensor. A negative control test with Lactococcus lactis bacteria shows the specificity of the 

biosensor functionalized with E. coli antibody. 
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Figure 18. In situ PL intensity of biofunctionalized QS samples exposed to PBS (purple line) 

and different concentrations of E. coli (black, red and blue lines) or L. lactis (green line) (Duplan 

et al. 2011)6. 

The systems employed for PL measurements are composed of an optical source to excite the 

sample, lenses to concentrate the irradiation light and the PL signal, filters to isolate the 

irradiation light from the PL signal, a spectrometer, and a photo-detector. The intensity of the 

PL signal, which depends on the number of photo-excited electrons and holes, is directly 

proportional to the intensity of the irradiation light. By increasing the power of the excitation 

source the intensity of the PL signal increases until it reaches a saturation level (Gfroerer 2006; 

Marshall et al. 2011).  

In our project we employed two custom designed PL reader systems, hyperspectral imaging 

photoluminescence mapper (HI-PLM) and quantum semiconductor photonic biosensor (QSPB) 

reader, to record the PL emission of QS biochips at room temperature. In the HI-PLM, the whole 

sample is irradiated with a green laser (at 532 nm) and PL emissions from the sample are 

collected and separated spectrally by using a volume Bragg grating (VBG). This results in 

production of multiple images of the sample, each image at a different wavelength of PL set by 

                                                 

6 "Reprinted from Sensors and Actuators B: Chemical, Vol. 160, V. Duplan, E. Frost, J. J. Dubowski, A 

photoluminescence-based quantum semiconductor biosensor for rapid in situ detection of Escherichia coli, Pages 

46-51, Copyright (2011), with permission from Elsevier."( http://dx.doi.org/10.1016/j.snb.2011.07.010) 

http://dx.doi.org/10.1016/j.snb.2011.07.010
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the user (Lepage et al. 2010). The images are then stacked in three dimensional arrays (x,y,z) 

called raw cubes. The x, y position of the cube corresponds to the position of the sample and z 

shows the wavelength. It should be noted that every taken image is not at an accurate 

wavelength. The center of the image is at the desired wavelength set by the user and the sides 

are at ±60 nm difference. Therefore, the system should scan 60 more nm to provide images at 

the precise wavelength and construct rectified cubes. To eliminate the effect of background, the 

system creates background cubes with the laser shutter closed. The final PL map is then built 

by subtraction of the background cubes from the rectified cubes. The schematic illustration of 

the HI-PLM used in our project is presented in Figure 19. 

 

Figure 19. The schematic illustration of the HI-PLM used in our project to record PL emission 

of QS biochips. Adapted from (Lepage et al. 2010). 

The operation of the QSPB reader is similar to a fluorescence microscope. The system does not 

record the PL spectrum, but it acquires images of PL emission intensity in a wavelength band 

determined by an emission filter. The schematic illustration of the QSPB reader employed in 

our project is shown in Figure 20. In this system a light-emitting diode (LED) operating near 

660 nm is used to excite the samples. In HI-PLM and QSPB systems, the exposure time of the 

samples is controlled by a computer-programmed shutter and the PL maps are recorded by a 

CCD camera. In addition, the intensity of the irradiation light could be controlled manually in 

both systems.  
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Figure 20. Schematic illustration of the QSPB reader used in our project to record PL emission 

of QS biochips. Adapted from (Aziziyan et al. 2016). 

In Table 2, basic features of conventional biosensing techniques introduced for the evaluation 

of antibiotic susceptibility of bacteria have been compared. Although culture-based techniques, 

such as broth microdilution and Kirby-Bauer disk diffusion, are inexpensive and reproducible, 

these methods are time-consuming and labour intensive (Chiang et al. 2009; Kee et al. 2013; 

Versalovic et al. 2011). Polymerase chain reaction (PCR) techniques offer considerable benefits 

over culture-based methods including rapidity, however, these techniques are expensive and 

they need the presence of highly qualified personnel for both sample preparation and 

interpretation of the data (Toze 1999). In addition, resistance of bacteria to antibiotics might be 

related to the presence of different genes, while the PCR technique only evaluates the presence 

of specific genes (Cockerill 1999). Electrochemical impedance spectroscopy (EIS) represents 

another approach to rapidly detect antibiotic susceptibility of bacteria (Zavizion et al. 2010). 

However, the sample preparation procedure in this technique is time consuming. Moreover, the 

EIS analysis suffers due to the difficulties in accurate interpretation of experimental data and 

assigning a correct modeling (Lasia 2014). Surface plasmon resonance (SPR) (Chiang et al. 
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2009) and fluorescence-based assays (Boi et al. 2015; Roth et al. 1997) are other approaches 

introduced to rapidly investigate antibiotic susceptibility of bacteria. However, the cost of 

sensitive SPR systems (Lazcka et al. 2007) and technical complexity of fluorescent dye use are 

inhibitory factors restricting application of these techniques to laboratory environments. 

Therefore, development of a simple, rapid and inexpensive method for detection of antibiotic 

sensitivity of bacteria remains an attractive but elusive goal for clinical diagnostics, food and 

water control industries.  

Table 2. Characteristics of different methods introduced to investigate antibiotic susceptibility 

of bacteria 

Method Time to result Ease of use Potential 

for 

automation 

Cost Ref. 

Broth microdilution Overnight Simple Could be 

combined 

with 

automated 

panel reader 

$10 to $22 

each panel 

(Jorgensen 

and 

Ferraro 

2009) 

Disk diffusion 16–24 h Simple No $2.50–$5 

per test 

(Jorgensen 

and 

Ferraro 

2009) 

Antimicrobial 

gradient 

Overnight Simple No $2–$3 each 

strip 

(Jorgensen 

and 

Ferraro 

2009) 

PCR 2 h for Gram-

negative bacilli 

4 h for Gram-

positive cocci 

Complex Yes Expensive (Rolain et 

al. 2004) 

Fluorescence-based 1–2 h for 

methicillin-

susceptible and 

-resistant              

S. aureus 

Complex Yes Expensive (Quach et 

al. 2016) 
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SPR 2 h for E. coli Relatively 

complex 

Yes Expensive (Kee et al. 

2013) 

Electrochemical 1 h for E. coli Complex No Not quoted (Besant et 

al. 2015) 

Optical-time lapse 3-4 h for             

P. aeruginosa 

and S. aureus 

Relatively 

simple 

Yes Not quoted (Choi et 

al. 2013) 

Photoluminescence 

-based 

 

Less than 3 h 

for E. coli 

Relatively 

simple 

Yes inexpensive This work 

 

2.2.4 Surface functionalization of semiconductors  

Development of an efficient and low-cost method to functionalize the surface of semiconductors 

is of great importance to the operation of electronic and optoelectronic devices made with these 

materials (Jaouad et al. 2004). In addition to efficiently capturing a specific target molecule, it 

is highly desirable in sensing applications to protect cleaned and etched surfaces of 

semiconductors from oxidization and absorption of unwanted molecules (Adlkofer et al. 2000). 

There are numerous methods applied for surface functionalization of semiconductors including 

deposition of organic molecules and coating the surface with vacuum evaporated dielectric films 

such as  𝑆𝑖3𝑁4. In the following, some of the functionalization methods used for GaAs will be 

discussed. 

2.2.4.1 Organic thiols  

An effective approach to functionalize the surface of semiconductors is deposition of self-

assembled monolayers (SAMs) of organic thiols (Dassa et al. 2006; Lunt et al. 1991b; 

Schvartzman et al. 2001). One type of SAMs used widely for this purpose is n-alkanethiol 

[𝐻𝑆(𝐶𝐻2)𝑛𝑅]. This type of SAMs is of high interest for passivation of GaAs due to the ability 

of this thiol to make a covalent bond with the surface of GaAs through formation of S–As and 

S-Ga bonds. In addition, the terminal group (R) of alkanethiols can be used for selective 

attachment and identification of different types of biomolecules (Bienaime et al. 2013; Budz et 
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al. 2009; Ding and Dubowski 2005; Dubowski et al. 2010; Lee et al. 2008; Voznyy and 

Dubowski 2008). Some common examples of terminal groups are COOH (carboxylic acid), OH 

(hydroxyl), NH2 (amine) and C10H16N2O3S (biotin). 

In practice, a mixture of OH-terminated and biotinylated polyether alkanethiols shown in Figure 

21 are often used to form a mixed monolayer. The advantage of mixing these two types of thiols 

is that the OH-terminated thiols space out the biotin coupling sites of polyether alkanethiols to 

reduce steric hindrance and thus provide better conditions for binding of streptavidin (Mittler-

Necher et al. 1995). Alkanethiol-based SAMs with biotin functional groups are widely used for 

coupling with proteins, such as neutravidin or streptavidin. These proteins can be used as linkers 

for immobilization of other biotinylated species such as biotinylated antibodies (Cho et al. 2007; 

Hirsch and Haugland 2005; Mao 2010; Orth et al. 2003). Biotinylated polyethylene glycol thiols 

have been applied successfully for specific immobilization of E. coli bacteria and influenza A 

virus on GaAs surfaces (Duplan et al. 2011; Duplan et al. 2009).  

 

Figure 21. Schematic illustration of OH-terminated and biotinylated polyether alkanethiols that 

can be mixed to form a monolayer for immobilization of streptavidin or neutravidin. Adapted 

from (Marshall 2011). 

It has been reported that surface passivation of semiconductors with SAMs leads to an 

enhancement of their photoluminescence (Adlkofer et al. 2002; Adlkofer et al. 2003; Dassa et 

al. 2006; Ding et al. 2006; Liu and Kauffman 1995; Lunt et al. 1991a; Schvartzman et al. 2001). 

The reason is that the electric field of the interfacial dipole layer (IDL) formed by the SAMs 

interacts with the electric field in the depletion layer of the semiconductor and decreases the rate 

of non-radiative e--h+ recombination, which results in an increase in the PL signal (Marshall et 

al. 2011). The rate of PL increase depends on the length of the molecule chain and 
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hydrophobicity of its terminal group (Ding et al. 2006). Wieliczka, Ding, and  Dubowski 

(Wieliczka et al. 2006) have investigated the efficiency of 5 types of alkanethiols on surface 

passivation of GaAs: 11-mercapto-1-undecanol (MUDO, HS(CH2)11OH), 11-

mercaptoundecanoic acid (MUDA, HS(CH2)10CO2H), 1-hexadecanethiol (HDT, 

HS(CH2)15CH3), 1-undecanethiol (UDT, HS(CH2)10CH3) and 16-mercaptohexadecanoic acid 

(MHDA, HS(CH2)15CO2H). According to X-ray photoelectron spectroscopy (XPS) of O1s core 

levels of the GaAs samples, the relative oxygen intensity is weaker for the SAMs with 

hydrophobic terminal groups (HDT and UDT) than hydrophilic thiols (MHDA, MUDA, 

MUDO), which means that SAMs with hydrophobic terminal groups are more efficient in 

protecting the surface of GaAs from ambient oxygen (Wieliczka et al. 2006). It is worthwhile 

to mention that besides the role of length and terminal group of alkanethiols, the surrounding 

solvent environment also plays an important role in efficiency of surface passivation (Bain et 

al. 1989; Sur and Lakshminarayanan 2004). It has been reported that aqueous solutions create 

favourable situations for formation of well-organized alkanethiols on GaAs and Au surfaces 

(Dai et al. 2008; Huang and Dubowski 2014). 

It is claimed that although thiols can bind to both Ga and As, they are able to cover only 50% 

of the available sites (Voznyy and Dubowski 2008). Therefore, new methods are necessary to 

improve surface passivation and stabilization. In that context, Arudra et al. (Arudra et al. 2012) 

proposed post-growth processing of alkanethiol SAM coated GaAs (001) in ammonium sulfide 

(AS). According to XPS and PL data, this treatment increases surface concentration of sulfur 

atoms reacting with Ga and As, which has a positive effect on the photonic stability of GaAs in 

aqueous environments.  

2.2.4.2 Coating with silicon nitride 

Deposition of silicon nitride (Si3N4) on the surface of GaAs is an attractive way to passivate 

GaAs because Si3N4 films are optically transparent and chemically inert (Jaouad et al. 2004). 

Thin films of Si3N4 have often been used in the fabrication of integrated circuits to electrically 

isolate different structures and provide a barrier against water molecules, oxygen and sodium 

ions that are considered to be three major sources of corrosion in microelectronics (Yota 2009).  
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There are two methods mainly applied for silicon nitride deposition on the surface of solid 

substrates (Nishi and Doering 2007). The first method is low pressure chemical vapor deposition 

(LPCVD) which operates at high temperatures up to 600° C (Harbeke et al. 1984). In the 

LPCVD method, gaseous species are transported to the substrate, absorb on the surface and 

produce a solid phase film on the surface of the wafer (Stoffel et al. 1996). The second method 

is plasma enhanced chemical vapor deposition (PECVD) in which high-quality Si3N4 films 

could be fabricated at lower temperatures than those of the standard LPCVD technique. The use 

of plasma improves also the rates of chemical reactions between different precursors (Alayo et 

al. 2002; Lazerand and Lishan 2014).  

Thin films of Si3N4 have been studied for sensing applications because they can be chemically 

modified relatively easily to produce sensitive surfaces (Headrick and Berrie 2004; Kruchinin 

et al. 1995). As an example, following etching of Si3N4 coated GaAs samples with HF, it was 

possible to exploit the reactivity of the silicon-hydrogen (Si-Hx) bonds and follow further 

functionalization procedures with antibodies designed for detection of bacteria (Duplan et al. 

2011). 

Surface of GaAs could also be passivated with Ga2O3. This oxide could be deposited on the 

surface of GaAs by a physical vapor deposition (PVD) method. Thin oxide films, nanometers 

to millimetres thick, are fabricated by evaporation of a source material in a vacuum (Diaspro et 

al. 2006; Guo-Ping and Ruda 1998; Mattox 2010). It has been demonstrated that formation of a 

Ga2O3/GaAs interface decreases the number of surface states responsible for non-radiative 

recombination and increases the PL emission of GaAs (Passlack et al. 1995).  
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bactéries immobilisées à la surface du semiconducteur. Le maintien d’un équilibre entre la 

sensibilité et la stabilité du biocapteur dans un environnement aqueuse est l'un des paramètres 

essentiels permettant la biodétection réussie. Pour immobiliser les bactéries, nous avons utilisé 

un réseau d’anticorps biotinylés retenu à la surface du semiconducteur à l’aide d’une 

monocouche autoassemblée  de thiol polyéthylène glycol biotinylés par les liens fournis par la 

neutravidine. Les surfaces ont reçu un post-traitement avec le sulfure d'ammonium pour 

augmenter la stabilité des architectures de biodétection et pour augmenter la sensibilité de la 

biodétection. Escherichia coli a été détectée dans une solution saline tamponnée au phosphate 

à 103 UFC/ml; toutefois, il apparaît que les niveaux de sensibilité encore plus grandes sont 

possibles avec cette technique. 
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CHAPTER 3: GaAs/AlGaAs heterostructure based 

photonic biosensor for rapid detection of Escherichia 

coli in phosphate buffered saline solution 

3.1. Abstract  

We have investigated photonic biosensing of bacteria based on photoluminescence (PL) of 

GaAs/AlGaAs heterostructures. The method takes advantage of the GaAs PL sensitivity to the 

perturbation of the semiconductor near-surface electric field induced by the charge of bacteria 

immobilized in its vicinity. Maintaining the balance between device sensitivity and stability in 

the biosensing (aqueous) environment is one of the key parameters allowing successful 

biosensing. To immobilize bacteria, we have employed a network of biotinylated antibodies 

interfaced with biotinylated polyethylene glycol thiols through the link provided by neutravidin. 

Post-processing of thiolated samples in ammonium sulfide was applied to increase the stability 

of the biosensing architectures while allowing biosensing at an attractive level of detection. 

Escherichia coli was detected in phosphate buffered saline solutions at 103 CFU/mL; however, 

it appears that even greater sensitivity levels are feasible with this technique.  

3.2. Introduction 

The need to detect pathogenic bacteria rapidly and with high sensitivity is well documented in 

the literature (Deininger and Lee 2005; Turner 2013; Velusamy et al. 2010). While traditional 

bacteria detection techniques involving culture-based methods (Fratamico 2003) are sensitive 

and relatively inexpensive (Velusamy et al. 2010), they are time-consuming and labour intensive 

(Lazcka et al. 2007; Leonard et al. 2003; Wang et al. 2014). The polymerase chain reaction 

(PCR) (Pau et al. 2010) offers considerable benefits over culture based methods including 

rapidity and equivalent sensitivity; however, the complexity of this technique and the 

requirement of highly qualified personnel for both sample preparation and interpretation make 

it unattractive for many users (Toze 1999). Automated PCR systems are expensive and target a 



 

55 

 

limited number of microorganisms. Piezoelectric biosensors (Babacan et al. 2002) hold good 

potential for detection of food-born and water-born microorganisms, but they are affected by 

relatively low sensitivity (Wang et al. 2014). Electrochemical impedance spectroscopy (EIS) 

represents a sensitive approach to detect pathogenic microorganisms with a low limit of 

detection and a large linear range (Barreiros dos Santos et al. 2013; Li et al. 2014; Mannoor et 

al. 2010). However, the EIS analysis, in addition to time consuming sample preparation 

procedure, has suffered due to the difficulties in accurate interpretation of experimental data and 

assigning a correct modeling (Lasia 2014). Thus, the fabrication of an EIS device capable of 

delivering attractive results has remained an elusive task (see, e.g., (Wang et al. 2012) and 

references therein). In that context, the surface plasmon resonance (SPR) technique has 

demonstrated detection of pathogenic microorganisms, such as O157:H7 (Taylor et al. 2005), 

but the cost and the generally large size of SPR instruments limit their application to the 

laboratory environment (Lazcka et al. 2007). Table 3 illustrates typical detection limits and time 

to detection of L. pneumophila, E. coli and Salmonellae bacteria achieved with common 

detection techniques. It is worth mentioning that the requirement of a low limit of detection 

could result in a significantly increased time to detection. For instance, it takes around 3 hours 

for a dual wavelength fluorometry technique to detect 103
 CFU/mL of Enterococcus faecalis, 

whereas detection of these bacteria at less than 102 CFU/mL requires more than 5½ hours (Noble 

and Weisberg 2005). 

Table 3. Typical detection limits and time to detection of selected bacteria achieved with some 

common detection techniques. 

Detection 

Technique 

Bacteria Time of 

Analysis 

Detection 

Range 

(CFU 

mL-1) 

Detection 

Limit 

(CFU 

mL-1) 

Ref. 

Colony count L. 

pneumophila 

5-14 days 2.5-994 1 (Villari et al. 

1998) 

Enzyme-linked 

immunosorbent 

assay (ELISA) 

E. coli Next day 103-104 1.2 ×103 (Blais et al. 

2004) 

PCR-ELISA E. coli 5 h 100-104 102 (Daly et al. 2002) 

PCR-

electrophoresis 

E. coli 2 h 101-104 103 (Daly et al. 2002) 

Real-time PCR E. coli 5 h 20 min 5-5 ×104 5 (Fu et al. 2005) 
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Piezoelectric E. coli 30-50 min 103-108 103 (Su and Li 2004) 

Quartz Crystal 

Microbalance 

(QCM) 

Salmonellae 60 min 105–5×108 104 (Wong et al. 

2002) 

QCM E. coli 170 min 103-108 103 (Brooks et al. 

2004) 

EIS E. coli Not 

quoted 

3×101-

3×104 

2 (Barreiros dos 

Santos et al. 

2013) 

SPR E. coli 10-30 min 104-108 104 (Taylor et al. 

2005) 

SPR L. 

pneumophila 

2 h 20 min 102-109 102 (Oh et al. 2003) 

Photoluminescence (PL) emitting semiconductors offer an attractive alternative in developing 

biosensing devices due to the sensitivity of the PL effect to the presence of electrically charged 

molecules, such as viruses or bacteria trapped in the vicinity of the semiconductor surface. 

Examples of devices built on such a principle include colloidal QDs of CdSe, ZnS, CdS, ZnSe, 

CdTe and PbSe (Gao et al. 2002; Mattoussi et al. 2000; Medintz et al. 2005; Stringer et al. 2008) 

and bulk GaAs (Budz et al. 2010; Seker et al. 2000; Tang et al. 2013). Protection (passivation) 

of cleaned and etched surfaces of semiconductors from oxidization plays an important role in 

functioning of PL-based biosensors (Adlkofer et al. 2000), and investigation of electronic or 

photonic properties of semiconductors surrounded by aqueous environments (Baumgartner et 

al. 1995; Herman and Terry Jr. 1992; Tkachev et al. 2013). The common approach in passivation 

of GaAs involves sulfurization from ammonium sulfide (Bessolov et al. 1997; Carpenter et al. 

1989) or coating with vacuum evaporated Ga2O3  (Guo-Ping and Ruda 1998) and Si3N4 films 

(Duplan et al. 2011; Jaouad et al. 2004). Deposition of self-assembled monolayers (SAMs) of 

n-alkanethiols [HS(CH2)nR] on the surface of GaAs is attractive because the SAM head group 

(HS) provides means of sulfurization while its terminal group (R) could be implicated in 

building biosensing architectures (Arudra et al. 2012; Dubowski et al. 2010; Lee et al. 2008; 

Voznyy and Dubowski 2008). While full chemical passivation of GaAs has been successfully 

achieved and demonstrated, e.g., in the operation of molecular controlled semiconductor resistor 

(MOCSER) devices (Tkachev et al. 2013), working with a not entirely passivated GaAs surface 

allows to investigate the role of the photocorrosion effect for biosensing. This is possible since 

electrically charged molecules, if immobilized in the vicinity of the semiconductor surface, 
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could modify both band bending of a semiconductor and the concentration of photo-holes 

generated at the semiconductor surface. A detailed discussion of this approach has been 

published elsewhere (Dubowski et al. 2015).  

Previously, we used SAM functionalized GaAs/AlGaAs microstructures and demonstrated PL-

based detection of Escherichia coli in phosphate buffered saline (PBS) solution at 104
 CFU/mL 

(Duplan et al. 2011). In the present study, we have investigated detection of E. coli using SAM 

functionalized GaAs/AlGaAs microstructures with their surface also coated with sulfur 

precipitated from an ammonium sulfide (AS) solution. This additional processing step yields 

microstructures with the increased photonic stability (Arudra et al. 2012) expected to play an 

important role while addressing detection of bacteria at reduced concentrations. 

3.3 Experimental methods 

3.3.1 Materials 

A nominally undoped epitaxial GaAs/AlxGa1-xAs (x=0.35) heterostructure used in this study 

(J0149) comprised a 500 nm thick layer of GaAs that emitted a strong PL signal at 869 nm 

excited with a homogenized beam of a 532 nm laser. Grown above that layer were 3 and 8 nm 

thick GaAs layers separated by 100 and 10 nm thick AlxGa1-xAs layers. Figure 22 shows 

schematically a cross-section of the device and a typical PL emission plot observed at 869 nm 

during photocorrosion of the GaAs cap. 
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Figure 22. Schematic of the GaAs/Al0.35Ga0.65As heterostructure employed for biosensing. The 

inset shows PL emission at 869 nm observed during photoocorrosion of the GaAs cap. 

Biotinylated polyethylene glycol (PEG) thiols and hexadecane thiols (HDT) were obtained from 

Prochimia Surfaces (Gdansk, Poland) and Sigma-Aldrich (Ontario, Canada), respectively. 

Polyclonal biotinylated antibodies against E. coli were purchased from ViroStat, Inc. (Portland, 

ME) and a PBS solution (10X, pH 7.4) was purchased from Sigma (Oakville, Canada). 

Neutravidin was bought from Molecular Probes (Invitrogen, Burlington, Canada). The solvents 

used to remove impurities from the surface of the samples are OptiClear (National Diagnostics 

(Mississauga, Canada)), acetone (ACP, Montréal, Canada) and isopropanol (2-propanol) (Fisher 

Scientific, Ottawa, Canada). Ammonium hydroxide 28% (NH4OH) was purchased from 

Anachemia (Richmond, Canada) and ammonium sulfide (48%) from Sigma-Aldrich (Ontario, 

Canada). The streptavidin-coated microbeads used in a modeling study of bacteria 

immobilization were purchased from Bangs Laboratories, Inc. (Indiana, United States). 

Escherichia coli K12 and Bacillus subtilis bacteria were obtained from the Department of 
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Biology of the Université de Sherbrooke (Quebec, Canada). The E. coli and B. subtilis bacteria 

were grown in Luria Bertani (LB) and minimal broths, respectively. Before use, the bacteria 

were stored in 50% glycerol at −26 °C. 

3.3.2 Preparation of the GaAs (001) surface and biofunctionalization 

Semiconductor samples of 2 mm ×2 mm were cleaned using OptiClear, acetone and isopropanol 

in an ultrasonic bath (5 min for each). After the cleaning step, the samples were dried using a 

flow of nitrogen and then etched in a concentrated solution of ammonium hydroxide (28%) for 

2 min at room temperature to remove native oxides. Following rinsing with deoxygenized 

ethanol, the samples were incubated for 20 h at room temperature in a mixture of biotinylated 

PEG thiol and HDT (1:15) diluted in the deoxygenized ethanol at a final concentration of 2 mM. 

PEG-based thiols were used because they are known to decrease non-specific binding (Nagasaki 

et al. 2007). After the thiolation step, the samples were rinsed with deoxygenized ethanol to 

remove surplus thiol molecules physisorbed on the surface. Thereafter, the samples with biotin 

terminated SAMs were exposed to 0.1% AS for 15 min and then rinsed with deionized (DI) 

water. The preparation process continued by incubation of the samples for 2 h in PBS (1X) 

solution containing 0.2 mg/mL of neutravidin. This step was followed by the exposure of the 

neutravidin-coated samples to biotinylated antibodies against E. coli diluted in PBS (1X) at 0.1 

mg/mL, corresponding to a concentration of 0.625 1 µM. The samples were stored for 1 hour in 

antibody (Ab) solution at room temperature After the Ab coating step, the samples were exposed 

to different concentrations of E. coli bacteria suspended in PBS (1X) and their PL emission was 

recorded by in situ measurements. For the negative control tests, the biofunctionalized samples 

with E. coli Ab were exposed to 105
 CFU/mL of B. subtilis bacteria. The structure of the 

biosensor used for bacteria detection is schematically shown in Figure 23. The validation of a 

similar PEG-thiol SAM structure for immobilization of influenza A virus was investigated by 

us previously using Fourier transform IR spectroscopy (FTIR) (Duplan et al. 2009). 
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Figure 23. Schematic illustration of the biosensor structure functionalized with PEG SAM and 

biotin conjugated antibodies exposed to E. coli K12. 

3.3.3 Immobilization of streptavidin coated microbeads 

To investigate the 2-dimensional immobilization efficiency of bacteria on the surface of 

functionalized biochips, we employed a model consisting of 3 μm diameter microbeads coated 

with streptavidin and a network of biotinylated PEG thiol SAMs. The SAM formation was 

achieved by following the standard thiolation procedure. GaAs (001) samples of 2 mm x 2 mm, 

after etching in ammonium hydroxide (28%) and rinsing with deoxygenized ethanol, were 

incubated for 20 h at room temperature in a mixture of biotinylated PEG thiols and OH-

terminated PEG thiols (1:5) diluted in the deoxygenized ethanol to a final concentration of 2 

mM. After this step, the samples were rinsed again with deoxygenized ethanol and exposed for 

30 min to beads suspended in PBS (1X) at 105 beads/mL. At the final step, the samples were 

rinsed with PBS (1X) and then with DI water. The microbead-coated samples were analyzed 

with a ZEISS optical microscope with the total magnification of 500 X working in DIC mode. 
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The same procedure was applied for the bacteria exposed samples. High-resolution imaging was 

carried out with an atomic force microscope (AFM, Digital Instruments Dimension 3000). For 

the AFM images, etched single-crystal silicon tips of around 5-20 nm radius with a rectangular, 

single beam cantilever (TESP from Digital Instruments) were applied. The cantilever spring 

constant and the resonance frequency were 20-100 N/m and 200-400 kHz, respectively. For this 

measurement, the bacteria exposed samples were rinsed with DI-water and the bacteria were 

fixed with glutaraldehyde (2.5%). The AFM measurement operated in a tapping mode and the 

measurement has been carried out in an air environment. The AFM images were analysed with 

WSxM 3.0 software and the brightness and contrast were slightly enhanced using Adobe 

Photoshop CS4 software. 

3.3.4 PL based GaAs/AlGaAs biosensor 

Due to the discontinuity of the bulk properties of GaAs and AlxGa1-xAs, the presence of 

significant density surface states is expected on the surface of these materials. This, and the 

exposure to air, water or other medium will result in a significant band bending of both GaAs 

and AlxGa1-xAs. The associated near-surface electric field plays an important role in the 

behavior of carriers (electrons and holes) excited in this region. For n-type semiconductors, 

photo-excited holes (h+) will be driven towards the interface and photo-excited electrons (e-) 

towards the bulk. The net result is a decreased chance of radiative e−–h+ recombinations and, 

consequently, a reduced intensity PL signal (Yu and Cardona 2010). In contrast, the process of 

surface passivation of III-V semiconductors manifests by an enhanced PL emission due to the 

reduced concentration of surface states and decreased surface recombination velocity (SRV) of 

electrons and holes (Arudra et al. 2012; Arudra et al. 2010; Ding et al. 2006; Dubowski et al. 

2010; Lunt et al. 1991a; Marshall et al. 2011). An illustration of such a process is enhanced PL 

observed during thiolation of GaAs samples (Adlkofer et al. 2002; Adlkofer et al. 2003; Ding 

et al. 2006; Kauffman et al. 1998; Liu and Kauffman 1995; Lunt et al. 1991a). Due to the 

interaction with the depletion layer of GaAs, the electric field of an interfacial dipole layer 

formed by SAM decreases the number of non-radiative recombination events and, consequently, 

results in an increased PL signal (Marshall et al. 2011). The increase of PL emission has also 

been observed depending on the length of a molecular chain, its wetting characteristics and time 
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of immersion of GaAs in a thiol solution (Ding and Dubowski 2005). However, it is known that 

alkanethiol SAMs provide only partial passivation of the GaAs (001) surface (Dubowski et al. 

2010; Voznyy and Dubowski 2008), resulting in relatively unstable SAM-GaAs interfaces in a 

water environment. This instability is related to the formation of photo-holes at the surface GaAs 

irradiated with photons of energy exceeding its bandgap energy. The photo-holes induce 

photocorrosion of GaAs via the formation of surface oxides that dissolve into solution due to 

their thermodynamic instability in an acidic environment. The process, described by the 

following reaction (Ruberto et al. 1991): 

                                                             (3.1) 

indicates that photocorrosion of an n-type semiconductor strongly dependents on the presence 

of positively charged minority carriers (h+) on its surface. To address the problem of a limited 

surface passivation provided in such a case by SAM, we have investigated post-processing of 

alkanethiol SAM coated GaAs (001) with AS and, based on X-ray photoelectron spectroscopy 

and FTIR measurements, we have demonstrated that this treatment increases the number of 

sulfur atoms reacting with Ga and As without measurable modification of the quality of SAM 

(Arudra et al. 2012). 

The process of photocorrosion was investigated with a custom designed (Photon etc., Montreal) 

hyperspectral imaging PL mapper (HI-PLM) designed for collecting in situ PL spectra of laser 

irradiated samples (Kim et al. 2009). Normally, GaAs and AlGaAs layers are etched at a rate 

determined by the parameters of an excitation source (laser) and electrolytes of different etching 

power, such as PBS, water or ammonium hydroxide. As etching removes surface defects and 

GaAs and, consequently, reveals the AlGaAs layer, one can expect to observe measurable 

changes of the PL signal originating from the 500 nm thick GaAs layer of a structure depicted 

in Figure 22. Furthermore, as positively charged objects, such as bacteria decorated with 

positive ions extracted from the solution, approach the semiconductor surface, the band bending 

at the surface is reduced, resulting in reduced transport of photo-excited holes to the surface. 

This process is expected to slow down photocorrosion with the efficiency increasing with the 

concentration of bacteria trapped in the vicinity of the semiconductor surface. 

GaAs+2H2O+6h
+®Ga3+ +HAsO2 +3H

+
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3.4 Experimental results and discussion 

3.4.1 Immobilization of functionalized microspheres and E. coli bacteria on 

GaAs (001) 

Figure 24 shows a uniformly covered surface of GaAs with microbeads following the exposure 

to a microbead solution at 105/mL. The mechanism of attachment of microbeads is based on the 

streptavidin-biotin interaction characterized by the dissociation constant, Kd of 4×10-14
 M 

(Holmberg et al. 2005). A significantly greater dissociation constant, Kd = 10-9
 M (He et al. 

2013) characterizing antigen-antibody complexes, suggests that for a comparable concentration 

of binding sites, the surface concentration of the investigated microbeads should be greater than 

that of bacteria. 

 

Figure 24. Microscopic image of a functionalized surface of GaAs (001) following the exposure 

to a PBS solution of streptavidin coated microspheres at 105/mL. 

In spite of these differences, we systematically observed greater surface coverage with E. coli 

for comparable volume concentrations of microbeads and bacteria. Figure 25 shows examples 

of optical images obtained for E. coli Ab functionalized samples exposed to PBS, 105
 CFU/mL 

of B. subtilis and 105
 CFU/mL of E. coli. The inset in Figure 25c shows an AFM picture of one 

of the E. coli bacterium immobilized on the Ab functionalized surface of GaAs. The long and 

short axis of this glutaraldehyde fixed bacterium, respectively 2 and 1 μm, are consistent with 

the typical dimension of a E. coli bacterium reported in literature (Kubitschek 1990; Trueba and 
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Woldringh 1980). For the negative control test, the maximum number of B. subtilis immobilized 

on the biochip was at 0.13 bacteria/100 μm2. This compares to 1.1 bacteria/100 μm2 of E. coli, 

and to 0.5 microbeads/100 μm2
 observed for the same volume concentrations. The average 

number of bacteria immobilized on the 100 μm2
 of GaAs was 0.9 and 0.09 for 105

 CFU/mL of 

E. coli and 105
 CFU/mL B. subtilis respectively. The relatively greater surface coverage 

achieved with E. coli in comparison to that with microbeads is surprising given the relatively 

large dissociation constant characterizing the antibody-bacteria interaction. Our measurements 

show that the zeta potential of streptavidin coated microbeads in their buffer is around -16 mV, 

whereas, the zeta potential of E. coli in PBS (1X) at pH=7.4 is around -19 mV. Thus, the almost 

identical zeta potentials of the beads and bacteria cannot account for the observed differences 

in the surface coverage. Plausible reasons of the reduced binding efficiency of the investigated 

microbeads could be low concentration of streptavidin sites on surface of microbeads as well as 

the increased curvature and rigidity of the microbeads surface when compared to E. coli. 

Furthermore, steric hindrance occurring between larger-than-bacteria microbeads and the 

streptavidin binding sites could also lead to a reduced binding efficiency. 

 

Figure 25. Optical images of the GaAs samples biofunctionalized with E. coli Ab and exposed 

for 30 min to (a) PBS (1×) solution, (b) 105 CFU/mL of B. subtilis (0.1 bacteria/100 μm2), and 

(c) 105 CFU/mL of E. coli (1.1 bacteria/100 μm2). Inset shows an AFM image of an 

individual E. coli (AB = 2 μm, CD = 1 μm). 

3.4.2 Photonic detection of E. coli in PBS 

After functionalization of the GaAs/AlGaAs biochips with E. coli Ab, as described in Sec. 3.3.2, 

the samples were exposed either to PBS or to different concentrations of bacteria diluted in PBS, 

while their PL emission was recorded in situ over the period of up to 2 h. Following the initial 

30 min exposure to bacteria suspensions, the samples were rinsed with PBS to reduce the 
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contribution to the PL signal from the bacteria nonreacted with Ab. The 30-min exposure time 

was assumed sufficient for allowing a reasonable amount of bacteria in the microfluidic chamber 

to interact with the antibody sites of the biochip surface (Hlady et al. 1990). This step could be 

refined further, e.g., by increasing the exposure time or recirculating the stream of bacterial 

solution over the biochip surface. 

Figure 26 shows a series of time-dependent PL intensity plots for samples exposed to E. coli at 

103, 104
 and 105

 CFU/mL, and to B. subtilis at 105
 CFU/mL. For comparison, we also show a 

PL plot collected from an Ab biofunctionalized chip exposed to PBS. A characteristic feature 

of each plot is the presence of a maximum revealed at some time from the onset of the 

experiment. In agreement with data from the literature (Passlack et al. 1995) and our XPS 

experiments (Dubowski et al. 2015), the increasing intensity of the PL signal is related to the 

formation Ga2O3 that passivates the surface of GaAs. However, during this process, GaAs is 

slowly dissolved and the PL signal begins decreasing as the thickness of the GaAs layer falls 

below the critical level where the etch rate of GaAs exceeds the rate of Ga2O3 formation. The 

photocorrosion rate of the GaAs/AlGaAs heterostructures correlates with the concentration of 

E. coli in solution: the greater the bacteria concentration the slower the photocorrosion rate and 

the formation of the characteristic maximum is delayed. A plausible mechanism behind this 

behavior is related to a strong interaction between negatively charged bacteria that become 

decorated with positive ions available in the PBS solution and, upon immobilization in the 

vicinity of an Ab functionalized semiconductor surface, attract electrons from the bulk of the 

semiconductor. This will result in a reduced concentration of photo-excited surface holes and 

lead to a reduced rate of photocorrosion (Ruberto et al. 1991), in proportion to the average 

concentration of the positive charge of the object immobilized in the vicinity of the 

semiconductor. Additionally, immobilized bacteria could reduce mass transfer of the products 

of photocorrosion from the semiconductor surface, changing the chemical environment and 

reducing photo-oxidation rates. Figure 26 shows an example of normalized PL intensity plots 

measured in situ for a series of samples exposed to different concentrations of bacteria. Note 

that the E. coli antibody functionalized biochip exposed to B. subtilis generated PL response 

comparable to that from the biochip exposed just to PBS. This result confirms a highly specific 

character of the biosensing architecture employed in these experiments. 
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Figure 26. Normalized PL intensity measured in situ for the samples exposed to different 

concentrations of bacteria. The samples were exposed to bacteria at t = 0 and then were rinsed 

with PBS after 30 min of bacteria exposure. 

Similar sets of experiments were repeated 3 times enabling us to determine temporal position of 

the PL maxima and calibrate response of the biochips, as well as to evaluate an experimental 

error of the measurements. The results, summarized in Table 4, indicate an attractive 

reproducibility of the measurements. It can be seen that the PL maximum position related to the 

negative test has been determined with ±5 % and the error of the maximum position for 105
 

CFU/mL of E. coli does not exceed ±3.9 %. A relatively large error of ±25 % related to the 

position of the maximum observed for the biochips exposed to the PBS solution seems to be 

related to the more aggressive photocorrosion rate induced in that case and a stronger 

dependence of the result on the diffusion of a fresh etching medium towards the semiconductor 

surface. 
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Table 4. PL peak position for E. coli Ab functionalized samples exposed to PBS and different 

concentrations of E. coli. A negative test was carried out for E. coli Ab functionalized samples 

exposed to 105 CFU/mL of B. subtilis 

Medium Concentration PL Maximum Position (min) 

PBS 1X 32.33±25% 

E. coli 103 CFU/mL 64.50±1.1% 

E. coli 104 CFU/mL 77.00±1.8% 

E. coli 105 CFU/mL 90.50±3.9% 

  B. Subtilis 105 CFU/mL 41.33±5% 

Figure 27 shows a semi-logarithmic plot of the position of PL maxima as a function of the 

investigated concentrations of bacteria. Both specificity and detection at 103
 CFU/mL are well 

illustrated. It appears that a direct detection of bacteria in less concentrated solutions should be 

feasible pending the development of a protocol for defining the biochip response to the PBS 

solution with better accuracy. This development, in addition to the introduction of advanced 

methods for bacteria concentration, e.g., based on filtration, electrophoresis or chemotaxis, has 

the potential to lead to an effective detection of bacteria at ~1 CFU/mL. 

 

Figure 27. PL peak position vs. different concentrations of bacteria. The PL peak position for 

the sample exposed to PBS is 32.3 ± 25%. 
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3.5 Conclusion 

We have investigated detection of E. coli K12 suspended in PBS solution using an innovative 

method involving PL monitoring of the photocorrosion effect in GaAs/AlxGa1-xAs 

nanoheterostructures. The rate of photocorrosion depends on the concentration of the electric 

charge immobilized in the vicinity of the surface of PL emitting semiconductor biochips, and it 

slows down with increasing concentrations of bacteria in PBS solutions surrounding the 

antibody functionalized biochips. Post-processing of alkanethiol SAM functionalized biochips 

with ammonium sulphide, which increases their photonic stability in a biological environment, 

enabled us to demonstrate a direct detection of E. coli at 103
 CFU/mL. This represents one order 

improved limit of detection in comparison to that reported by us previously for the same bacteria 

(Duplan et al. 2011), but it appears that the detection of an even lower concentration of bacteria 

should be feasible pending the development of a protocol for defining the biochip response to 

the PBS solution with better accuracy. This development, in addition to the introduction of 

advanced methods for bacteria concentration, e.g., based on filtration, electrophoresis or 

chemotaxis, have the potential to lead to an effective detection of bacteria at ~1 CFU/mL. 
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La détection de bactéries pathogènes et la surveillance de leur capacité à se développer sont 

importantes dans les domaines de la médecine, la recherche pharmaceutique, ainsi que les 

industries de l'eau et des produits alimentaires. Dans une tentative de développer un biocapteur 

photonique pour surveiller la croissance et la sensibilité aux antibiotiques de bactéries en tirant 

avantage de la photoluminescence (PL) émise de semiconducteurs quantiques (QS) III-V, nous 

avons exploré la capture et la croissance d'Escherichia coli K12 sur des surfaces nues et 

biofonctionnalisées de GaAs (001) - un matériau d'intérêt pour recouvrir différentes QS III-V. 
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Nous avons trouvé que des tranches de GaAs placés sur gélose nutritive dans les boîtes de Pétri 

inoculées avec des bactéries, n'a pas inhibé la croissance des bactéries, indépendamment du fait 

que les surfaces GaAs étaient nues ou biofonctionnalisées. Nous avons également étudié la 

capture et la croissance de bactéries sur les surfaces biofonctionnalisées de GaAs tandis que les 

biopuces ont été maintenus dans une cellule d'écoulement et exposées à différentes 

concentrations de bactéries et un milieu de croissance. Nous avons observé que, tant que les 

plaquettes de GaAs ont été exposées à des suspensions bactériennes à des concentrations d'au 

moins 105 UFC/ml, les bactéries peuvent se développer sur la surface des plaquettes, quel que 

soit le type d'architecture de biofonctionnalisation utilisé pour capturer les bactéries. Cependant, 

la couverture initiale des surfaces de GaAs avec des bactéries et les taux de croissance des 

bactéries se sont révélées dépendre de l'architecture de la biofonctionnalisation. Les surfaces 

revêtues d'anticorps étaient nettement plus efficace pour capturer de bactéries et offraient de 

meilleures conditions pour la croissance de bactéries. 
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CHAPTER 4: Growth of Escherichia coli on the GaAs 

(001) surface 

4.1 Abstract 

Detection of pathogenic bacteria and monitoring their susceptibility to antibiotics are of great 

importance in the fields of medicine, pharmaceutical research, as well as water and food 

industries. In order to develop a photonic biosensor for detection and monitoring antibiotic 

susceptibility of bacteria by taking advantage of photoluminescence (PL) emission of 

photocorroding III-V quantum semiconductors (QS), we have explored the capture and growth 

of Escherichia coli K12 on bare and biofunctionalized surfaces of GaAs (001) - a material of 

interest for capping different III-V QS. Once capture and growth of E. coli have been 

demonstrated, future studies with PL will have a rational basis. We found that GaAs or Au 

wafers placed on nutrient agar Petri dishes inoculated with bacteria did not inhibit bacterial 

growth as evidenced by counting bacteria with a microscope, regardless of whether the GaAs 

surfaces were bare or biofunctionalized. However, the capture and growth of bacteria on 

biofunctionalized surfaces of GaAs wafers kept in a flow cell and exposed to different 

concentrations of bacteria and growth medium revealed that the initial coverage of the GaAs 

surfaces with bacteria, and the subsequent bacterial growth rates were dependent on the 

biofunctionalization architecture, with antibody-coated surfaces clearly being most efficient in 

capturing bacteria and offering better conditions for growth of bacteria. We observed that, as 

long as the GaAs wafers were exposed to bacterial suspensions at concentrations of at least 105 

CFU/mL, bacteria could grow on the surface of wafers, regardless of the type of 

biofunctionalization architecture used to capture the bacteria. The demonstration that a 

biofunctionalized surface of GaAs provides conditions attractive for the growth of bacteria is an 

important step towards advancing an innovative method of photonic monitoring of bacterial 

activities in different biochemical environments. 
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4.2 Background 

Evaluating growth of bacteria to determine antibiotic susceptibility and metabolic traits is 

essential to diagnostic microbiology (Versalovic et al. 2011). Monitoring the viability, growth 

and cellular metabolism of bacteria also plays an important role in yielding bacterial products 

in industrial- or small-scale experiments (Garneau and Moineau 2011; Kee et al. 2013; Nayak 

et al. 2009; Schuler and Marison 2012; Sonnleitner et al. 1992). Conventionally, bacterial 

growth has been investigated by (1) plate counting where colony forming units (CFU) are 

determined (Sonnleitner et al. 1992), and (2) visualization of growth in broth either by eye or 

by nephelometry (de Freitas et al. 2003; Joubert et al. 2010; Versalovic et al. 2011). Broth 

microdilution and Kirby-Bauer disk diffusion are widely applied in clinical laboratories to 

evaluate the antibiotic susceptibility of bacteria (Poupard et al. 1994; Versalovic et al. 2011). 

These techniques are time-consuming and labour intensive and, typically, they are not able to 

provide same-day monitoring (Chiang et al. 2009; Kee et al. 2013; Versalovic et al. 2011). 

Polymerase chain reaction (PCR) (Cotto et al. 2015; Rolain et al. 2004; Versalovic et al. 2011), 

surface plasmon resonance (SPR) (Chiang et al. 2009) and fluorescence-based assays (Boi et al. 

2015; Roth et al. 1997) have been introduced for rapid evaluation of growth and antimicrobial 

sensitivity of bacteria. However, the cost of PCR (Mwaigwisya et al. 2015) and SPR systems 

(Lazcka et al. 2007) and technical complexity of fluorescent dye use are inhibitory factors that 

limit the application of these methods in clinical laboratories.  

Photoluminescence (PL) emitting semiconductors hold a great potential for biosensing 

applications due to the sensitivity of the PL signal to the surface localized phenomena 

(Adamowicz et al. 1998; Gfroerer 2006; Lebedev 2001; Moumanis et al. 2006; Tomkiewicz et 

al. 2009). Electrically charged molecules, if immobilized at the surface of a semiconductor, 

could affect PL of such a material by modifying bending of its energy bands near the surface 

(Seker et al. 2000; Zhang and Yates 2012). PL of some semiconductors has been used for 

chemical sensing (Seker et al. 2000) and detection of biomolecules (Budz et al. 2010). We have 

demonstrated a successful detection of electrically charged viruses (Dubowski et al. 2014), 

Escherichia coli K12 bacteria (Duplan et al. 2011; Nazemi et al. 2015) and, more recently, 

Legionella pneumophila (Aziziyan et al. 2016) by taking advantage of PL emission of 
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GaAs/AlGaAs nano-heterostructures. The major advantage of the GaAs/AlGaAs biosensor, in 

comparison to a variety of biosensors employing Au surfaces, is its low cost (GaAs/AlGaAs 

microstructures are used by ubiquitous light emitting diodes), also related to its simple (planar) 

surface structure, a straightforward biofunctionalization protocol and inexpensive hardware for 

reading the biosensor signal. Furthermore, the microstructures with stacks of GaAs/AlGaAs 

nano-heterostructures have the potential to be applied as multi-biosensors, each defined by a 

photocorroding pair of GaAs/AlGaAs. Following this research, we have hypothesised that these 

nano-heterostructures could be employed to develop a method for inexpensive and quasi-real 

time monitoring of the growth and antibiotic susceptibility of bacteria. One of the key elements 

in the development of this innovative biosensing platform is to demonstrate that GaAs (001), 

normally used for capping PL emitting GaAs/AlGaAs nano-heterostructures, could support the 

growth of bacteria. We note that GaAs (001) denotes a specific, technologically important 

surface of a zinc blende crystal structure GaAs material (LaBella et al. 2005; Ohtake 2008) that 

is well-known in the production of optoelectronic devices (Mokkapati and Jagadish 2009; Wada 

1988).  

Growth of bacteria on solid surfaces can be affected by biocompatibility of the substrate. Some 

metal surfaces such as silver (Ag) are well-known to have antimicrobial activity and prevent 

bacterial colonization (Golubovich and Rabotnova 1974). Silver coating is widely applied for 

reducing bacterial contamination of medical tools and minimizing nosocomial infections related 

to operating rooms and other sections of hospitals (Casey et al. 2012). Some gold (Au)-coated 

nanoparticles were found toxic to bacteria (Zhou et al. 2012), whereas others were not (Williams 

et al. 2006). Furthermore, arsenic (As) and gallium (Ga) have been reported to affect bacterial 

viability (DeLeon et al. 2009; Harvey and Crundwell 1996; Mukhopadhyay et al. 2002; 

Podol'skaia et al. 2002; Rzhepishevska et al. 2011). 

To investigate the effect of surface biocompatibility in the growth of bacteria on GaAs, we 

studied the growth of E. coli K12 on bare and biofunctionalized surfaces of GaAs (001) and 

compared the results with the growth on Au surfaces. Related experiments were carried out as 

a function of the initial concentration of bacteria to assess the toxicity of GaAs and Au surfaces, 

https://en.wikipedia.org/wiki/Zinc_blende
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and we addressed the impact of different binding architectures on the capture and growth 

potential of these bacteria.  

4.3 Experimental methods 

4.3.1 Materials  

Semi-insulating (SI) undoped GaAs (001) wafers (AXTG108-36) were obtained from AXT Inc. 

(Fremont, USA). OptiClear, acetone and isopropanol (2-propanol) used for cleaning the GaAs 

wafers were purchased from National Diagnostics (Mississauga, Canada), ACP Chemicals 

(Montréal, Canada) and Fisher Scientific (Ottawa, Canada), respectively. Anhydrous ethanol 

was obtained from Commercial Alcohols Inc. (Brampton, Canada). Deionized (DI) water with 

an electrical resistivity of 18 MΩ.cm was obtained with a Millipore purification custom system 

built by Culligan (Quebec, Canada). Ultra-high purity nitrogen 5.0 UHP (99.999%) used for 

deoxygenation the anhydrous ethanol and high purity nitrogen 4.8 HP (99.998%) used for drying 

the GaAs wafers were both purchased from Praxair Canada Inc. (Mississauga, Canada). 

Ammonium hydroxide 28% (NH4OH) was obtained from Anachemia (Richmond, Canada). 

Ammonium sulfide 48% (AS) was purchased from Sigma-Aldrich (Ontario, Canada). 

Biotinylated polyethylene glycol (b-PEG) thiols were bought from Prochimia Surfaces (Gdansk, 

Poland). Luria Bertani (LB) broth, phosphate buffered saline (PBS) solution (10X, pH 7.4), 16-

Mercaptohexadecanoic acid (MHDA) thiol, hexadecanethiol (HDT), 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) were all 

obtained from Sigma-Aldrich (Ontario, Canada). Non-conjugated polyclonal antibodies (Ab) 

and polyclonal biotinylated antibodies (b-Ab) against E. coli were both bought from ViroStat, 

Inc (Portland, ME). Neutravidin (NA) was purchased from Molecular Probes (Invitrogen, 

Burlington, Canada). Live E. coli K12 bacteria were obtained from the Department of Biology 

of the Université de Sherbrooke (Quebec, Canada). The Au-coated samples were made by 

deposition of a thin layer of Au (40 -50 nm) on glass substrates in the cleanroom of the 

Interdisciplinary Institute for Technological Innovation (3IT), Université de Sherbrooke 

(Quebec, Canada). 
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4.3.2 Biofunctionalization of GaAs (001) and Au surfaces  

Samples of 2 mm × 2 mm were cleaved from GaAs (001) wafers and cleaned in an ultrasonic 

bath with OptiClear, acetone and isopropanol sequentially for 5 min each. Following the 

cleaning steps, the GaAs samples were dried under a flow of compressed nitrogen and etched 

in a solution of NH4OH (28%) for 2 min at room temperature. Three different bio-architectures 

have been applied to functionalize the surface of freshly etched GaAs (001) samples, as 

described below. The Au-coated glass samples, 2 mm × 2 mm, were cleaned in OptiClear, 

acetone and isopropanol, and then dried with a flow of compressed nitrogen. Dried samples 

were functionalized with MHDA-EDC/NHS-Ab in the same way as the GaAs samples.  

4.3.2.1 b-PEG-NA-b-Ab functionalization 

Freshly etched GaAs samples were rinsed with deoxygenated anhydrous ethanol and 

immediately incubated for 20 h at room temperature in a 2 mM mixture of b-PEG (1:15) and 

HDT (14:15) thiols diluted in deoxygenated anhydrous ethanol. After the thiolation step, the 

GaAs samples were rinsed with deoxygenated anhydrous ethanol and exposed to AS (0.1%) for 

15 min. Following this step, the samples were rinsed with DI water and incubated for 2 h at 

room temperature in PBS (1X) solution containing 200 µg/mL of neutravidin. Thereafter, the 

neutravidin-coated samples were immersed for 1 h at room temperature in a solution of 

biotinylated polyclonal antibodies against E. coli diluted in PBS (1X) at 0.1 mg/mL. The 

antibodies were biotinylated by the manufacturer by covalent attachment of biotin molecules to 

free amine groups (NH2) in the antibody structure. Figure 28 shows a schematic illustration of 

bacteria immobilized on the GaAs (001) surface functionalized with an architecture comprising 

mixed b-PEG and HDT thiols, neutravidin and biotinylated polyclonal antibodies against E. coli 

(b-PEG-NA-b-Ab). The formation of HDT self-assembled monolayers (SAMs) on the GaAs 

(001) surface has been investigated with PL (Arudra et al. 2012; Ding et al. 2006; Huang and 

Dubowski 2014; Kim et al. 2009), ellipsometry (Rosu et al. 2009), X-ray diffraction (McGuiness 

et al. 2007) and Fourier transform infrared spectroscopy (FTIR) (Arudra et al. 2012). The SAM 

formation from b-PEG diluted in OH-terminated PEG thiols has also been investigated using 

FTIR (Duplan et al. 2009). In each case, the intensity and full-width-at-half-maximum of two 
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peaks in the 2800 to 3000 cm-1 region, that are assigned to stretching vibrations of CH2 in the 

alkane chains (Arnold et al. 2002), are considered as a measure of the quality of formed SAMs. 

Mixed SAMs comprising different thiols have also been investigated on Au surfaces (Folkers 

et al. 1992; Mustafa et al. 2012; Nelson et al. 2001; Olbris et al. 1995; Tarnawski and Ulbricht 

2011; Yoshioka et al. 2010), suggesting the feasibility of formation of such architectures on 

GaAs (001) surfaces as well. We employed the b-PEG-NA-b-Ab architecture to support the 

growth of bacteria on GaAs samples placed on nutrient LB-agar plates. A similar architecture 

was previously used by us for detection of E. coli K12 bacteria (Duplan et al. 2011; Nazemi et 

al. 2015). 

 

 

Figure 28. Schematic illustration of a GaAs (001) surface functionalized with a biotinylated 

PEG-neutravidin-biotinylated antibody architecture for immobilization of E. coli bacteria.  

4.3.2.2 MHDA-EDC/NHS functionalization 

Freshly etched GaAs samples were rinsed with deoxygenated anhydrous ethanol and 

immediately incubated for 20 h at room temperature in a 2 mM solution of MHDA thiol diluted 

in deoxygenated anhydrous ethanol. Following this step, the GaAs samples were rinsed with 

deoxygenated anhydrous ethanol and then PBS (1X). Thereafter, the samples were incubated 

for 30 min at room temperature in a mixture of 400 mM of EDC and 100 mM of NHS diluted 

in PBS (1X) to activate the COOH group of the MHDA thiol. A schematic illustration of the 
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MHDA-EDC/NHS biofunctionalization procedure applied to immobilize E. coli bacteria on the 

GaAs (001) surface is presented in Figure 29. The formation of MHDA SAM on the GaAs (001) 

surface and activation of COOH group of this thiol with the EDC/NHS step has recently been 

discussed by Lacour et al. (Lacour et al. 2016). The appearance of a C=O peak at 1741 cm-1 in 

FTIR absorption spectra of MHDA-coated samples that follows the EDC/NHS exposure, 

confirms the activation of the COOH group of MHDA thiol (Frey and Corn 1996). This process 

allows direct attachment of bacteria through covalent binding with naturally-occurring NH2 

groups on the bacterial surface (Meyer et al. 2010). The EDC/NHS activated MHDA SAM 

architecture has been applied to directly capture E. coli bacteria on GaAs samples kept in a flow 

cell. 

 

Figure 29. Schematic illustration of the biofunctionalization steps employed for non-specific 

immobilization of E. coli bacteria on the surface of GaAs (001). Following formation of SAM 

of MHDA thiol on the freshly etched surface of GaAs (001) (a), COOH group of MHDA thiol 

is activated with EDC/NHS (b), which allows immobilization of E. coli via naturally-occurring 

NH2 groups on the bacterial surface (c). 

4.3.2.3 MHDA-EDC/NHS-Ab functionalization 

The fabrication of MHDA-EDC/NHS-Ab bio-architecture on GaAs (001) and Au surfaces 

included covalent linkage of polyclonal Ab against E. coli to COOH groups of MHDA SAM 
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that had been activated by EDC/NHS, as described in the previous section. The reaction was 

carried out for 1 h at room temperature from an antibody solution in PBS (1X) at 0.1 mg/mL. 

The illustration of the biofunctionalization steps employed in this case is presented 

schematically in Figure 30. The immobilization of antibodies depended on covalent binding of 

their NH2 groups with carboxyl-functionalized surfaces activated by EDC/NHS. As 

demonstrated by Lacour et al. with FTIR measurements (Lacour et al. 2016), the presence of 

amide A, amide I and amide II bands in the 3300, 1660 and 1520 cm-1 regions (Bandekar 1992; 

Lacour et al. 2016) validate the attachment of E. coli Ab to the GaAs (001) surface. This 

architecture has been applied to specifically capture E. coli bacteria on GaAs and Au samples 

kept in a flow cell. We note that no special procedure was employed to block activated COOH 

against reaction with bacteria (in MHDA-EDC/NHS bio-architecture) or with antibodies (in 

MHDA-EDC/NHS-Ab bio-architecture). It is reasonable, however, to expect that the buffers 

and the LB growth medium contributed to the saturation of free COOH. 

 

Figure 30. Schematic illustration of the biofunctionalization steps applied for immobilization of 

E. coli bacteria with antibody on the surface of GaAs (001). Following formation of MHDA 

SAM on the freshly etched surface of GaAs (001) (a), COOH group of MHDA thiol is activated 

with EDC/NHS (b), followed by immobilization of E. coli antibodies whose NH2 groups react 

with the EDC/NHS activated carboxyl sites (c), and antibody specific immobilization of E. coli 

bacteria (d). 
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4.3.3. Growth of E. coli on GaAs (001) and Au surfaces in contact with 

nutrient LB-agar plate 

Freshly cultured E. coli K12 suspension was prepared by overnight growth of bacteria in LB at 

37º C before use the following morning. On the day of the experiment, the concentration of the 

bacteria was measured with a cell density meter (Fisher Scientific, model 40) operating at 600 

nm. Bacteria were then centrifuged in LB for 25 min at 3000 rpm. After that, the medium was 

removed and the pellets were suspended in PBS (1X) and centrifuged at 3000 rpm for 15 min. 

Finally, PBS (1X) was removed and the pellets were resuspended in PBS (1X) and diluted to 

give 105 CFU/mL. A group of 8 b-PEG-NA-b-Ab functionalized and 8 bare GaAs (001) samples 

were placed upside down on a nutrient agar plate that had been inoculated evenly with 100 µL 

of the bacterial suspension at 105 CFU/mL. Assuming homogenous distribution of bacteria on 

the nutrient agar plate, the initial coverage of the agar plate with bacteria was around 2 

bacteria/mm2. This number was calculated by dividing the total number of bacteria used to 

inoculate the agar plate (104 bacteria) by the total area of the agar plate (45.6 cm2). Figure 31 

schematically illustrates the top and side views of the experimental setup. The plate with GaAs 

samples was then kept at 37° C for up to 8 hours.  

Every hour, one of the bare samples and one of the biofunctionalized samples were removed 

from the agar plate and adherent bacteria were counted with an optical microscope following 

the procedure discussed in the Microscopic enumeration of bacteria section. These 

measurements allowed us to investigate the dynamics of the immobilization process on the 

surface of both samples. As a control experiment, a series of experiments was also carried out 

for bare Au samples which are, no doubt, the most commonly used surfaces in biosensor studies 

(Lazcka et al. 2007) following the methodology applied for GaAs (001) samples. The principle 

of studying the growth of bacteria on GaAs and Au samples in contact with bacterial cultures 

on Petri dishes can be compared to a Kirby–Bauer antibiotic sensitivity test (Poupard et al. 1994; 

Versalovic et al. 2011) where paper disks containing different types of antibiotics are placed on 

Petri dishes to allow evaluation of the impact of the antibiotics on bacterial growth.  
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Figure 31. Top view (a) and side view (b) of the setup for studying the growth of E. coli in 

proximity of GaAs samples. The nutrient agar plate was inoculated evenly with 100 µL of E. 

coli K12 bacteria (red ovals in (b)) at 105 CFU/mL. Biofunctionalized and bare GaAs (001) 

samples were placed upside down. The same setup and procedure was applied for bare Au 

samples. 

4.3.4 Growth of E. coli on the surface of GaAs (001) and Au in a flow cell 

In this approach, growth of E. coli K12 bacteria on biofunctionalized GaAs (001) and Au 

surfaces was investigated for samples kept in an ULTEMTM flow cell and exposed to bacterial 

suspensions and LB broth, sequentially. A schematic illustration of the setup used in this 

experiment is presented in Figure 32. It consists of a flow cell with an outer diameter of 38.1 

mm and a height of 3.92 mm containing a groove where samples were placed that had a volume 

of 0.15 mL. This groove could be filled with bacterial solutions and then rinsed with LB medium 

stored in a dedicated vessel using a peristaltic pump with a 0.89 mm diameter Santoprene tube. 

This setup is similar to that employed for monitoring PL in situ from GaAs/AlGaAs biochips 

exposed to different bacterial solutions (Aziziyan et al. 2016; Nazemi et al. 2015).   

Following 10 min injection of 1 mL of freshly-cultured bacterial suspension into the flow cell 

using the peristaltic pump (flow rate of 0.1 mL/min), the samples were left in contact with the 

bacterial suspension for an additional 20 min without any further injection. This resulted in a 

total of 30 min exposure of the samples to specific bacterial solutions, similar to that used by 

others for antigen-antibody reactions at liquid/solid interfaces (Hlady et al. 1990). Following 

this step, LB was injected into the flow cell for 30 min (flow rate of 0.1 mL/min which would 

replace the liquid volume of the flow cell groove 20 times) to rinse away unattached bacteria 
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and provide surface-attached bacteria with a growth medium. The bacteria were exposed to LB 

for an additional 4 h without any further injection while the flow cell was kept at 37° C to 

stimulate the growth of bacteria. The biochips were analyzed after 30 min exposure to bacterial 

suspension, and after an additional 4.5 h exposure to LB broth with an optical microscope as 

described in the Microscopic enumeration of bacteria section. We performed this experiment 

for bacterial concentrations ranging from 104 to 108 CFU/mL and GaAs samples functionalized 

with MHDA-EDC/NHS and MHDA-EDC/NHS-Ab architectures. This allowed investigation 

of the impact of different binding architectures on the initial capture and the subsequent growth 

of bacteria. The growth rate of bacteria was also addressed as a function of the initial bacterial 

concentration for each bio-architecture. As a control, the same setup and procedure were applied 

for Au samples functionalized with MHDA-EDC/NHS-Ab and exposed to initial bacterial 

suspensions at 104 and 105 CFU/mL. Since the first step of our experiments was immobilization 

of bacteria on the surface of the biochips, we only worked with biofunctionalized GaAs or Au 

samples and did not employ bare samples which are not able to efficiently capture the bacteria. 
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Figure 32. Schematic illustration of the flow cell setup. The biofunctionalized GaAs (001) or 

Au biochips were placed in the flow cell and exposed to bacterial suspension (red ovals) and 

LB, sequentially. The bacteria and LB were injected into the flow cell at a flow rate of 0.1 

mL/min using the peristaltic pump.  

4.3.5 Microscopic enumeration of bacteria  

Biochips were removed after each experiment and placed on glass slides with the bacteria 

exposed surface facing up, for microscopic analysis. Without fixation, washing, or staining, 

bacteria were observed with an optical microscope (Zeiss, Axiotech) using overhead 

illumination. Bacteria were readily observed through a 100X lens with supplemental 10X digital 

enlargement. Total bacteria adherent to the surface in each experiment was estimated by 

analysing several optical images at magnification of 1000X (each image with the surface area 

of ~3500 µm2 per field) collected at different sites of the sample and reported per mm2. 
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4.4 Results and discussion 

4.4.1 Growth of E. coli K12 on the surface of GaAs (001) and Au samples in 

contact with a nutrient agar plate  

The growth of E. coli K12 was observed on both bare and b-PEG-NA-b-Ab functionalized 

surfaces of GaAs (001) biochips placed on nutrient agar plates. Not only was there no inhibition 

zone around the biochips as has been observed in similar experiments with silver nanoparticles 

(Naqvi et al. 2013), but neither bare nor functionalized GaAs samples prevented bacteria from 

multiplying. The time dependent surface density of immobilized bacteria on bare and b-PEG-

NA-b-Ab functionalized surfaces of GaAs (001) is shown in Figure 33(a). Each experiment was 

performed at least in triplicate to obtain average values with standard deviation. The number of 

bacteria immobilized on the bare GaAs increased from 3±1 bacteria/mm2 at 1 h to 2687±173 

bacteria/mm2 at 8 h. This compares with 20±3 and 2967±339 bacteria at 1 and 8 h for the 

biofunctionalized samples. The greater initial concentration of bacteria on the biofunctionalized 

surface suggests, as expected, more efficient capture of bacteria. The number of bacteria 

visualized on the GaAs surfaces probably reflected both non-specific and specific capture. It 

can be seen that initially (1 hour), the number of bacteria captured with Ab-based architectures 

exceeded ~ 7X the number of non-specifically captured bacteria. However, after 6 hours, in both 

cases, the surface coverage with bacteria reached a saturation number of around 3×103 

bacteria/mm2. The saturation effect might be related to the stationary phase of bacterial growth 

when the rates of bacterial growth and bacterial death are equal (Akerlund et al. 1995; Fujikawa 

and Morozumi 2005).  

The data in Figure 33(a), fitted with exponential curves, indicate that the number of bacteria 

doubled every 31 and 44 min on the surface of bare and antibody functionalized GaAs, 

respectively. This compares to the ability of E. coli to double every 20 min under ideal 

conditions of temperature, oxygen concentration and a rich liquid nutrient medium (Berg 2004). 

However, for comparable growth rates of bacteria in the exponential phase in liquid and solid 

environments (agar plates), the longer latency phase of bacteria on solid media could explain 

the lower rate of bacterial growth on solid substrates than in liquid environments (Fujikawa and 
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Morozumi 2005). This test demonstrates the feasibility of growing E. coli bacteria on GaAs 

(001) biochips placed on agar plates. 

Figure 33(b) illustrates the time dependent surface density of E. coli bacteria immobilized on 

bare GaAs and Au samples. The number of bacteria immobilized on bare Au samples increased 

from 8±2 bacteria/mm2 at 1 h to 2955±341 bacteria/mm2 at 8 h. Fitted with the exponential 

curve, the number of bacteria in this case doubled every 35 min, which compares to the 31 min 

required by bacteria to double on the surface of bare GaAs. Thus, the similar growth rates of 

bacteria on bare GaAs and Au samples indicate that GaAs was no more inhibitory to the growth 

of E. coli bacteria than Au for the biochips placed on nutrient agar Petri dishes inoculated with 

bacteria.  

  

Figure 33. Time dependent surface density of E. coli bacteria immobilized on bare and b-PEG-

NA-b-Ab functionalized surfaces of GaAs (001) (a) and on bare Au surfaces compared to those 

of bare GaAs (b).  

4.4.2 Growth of E. coli K12 on GaAs (001) and Au surfaces in a flow cell  

Figure 34 presents the initial surface coverage (after 30 min exposure to a bacterial suspension) 

and the coverage after a 4.5-h incubation in LB medium for GaAs biochips functionalized with 

MHDA-EDC/NHS and MHDA-EDC/NHS-Ab (See related data included in Supplementary 

Material). For the set of bacterial suspensions ranging from 105, 106, 107 and 108 CFU/mL, each 
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experiment was performed at least in triplicate. Examples of optical images for a biochip 

functionalized with MHDA-EDC/NHS-Ab and exposed to bacterial suspension at 106 CFU/mL, 

before and after incubation in LB, are shown in Figure 35. We noted that the size of the bacteria 

before and after growth was in good agreement with literature data, indicating increased 

bacterial length after entering the growth phase (Trueba and Woldringh 1980). All bacteria 

appeared to be immobilized on the surface and not free in the film of LB medium that 

surrounded the sample because no bacteria could be seen moving by Brownian or flagella-

assisted movement, nor were partially out of the plane of focus. For this reason, we attributed 

increased coverage with surface growth rather than with growth free in the medium and 

subsequent attachment. 

The average growth rate of bacteria was calculated for each bio-architecture and for each 

concentration of bacteria, and is presented in Table 5. The average growth rate of bacteria was 

calculated using the following formula: 

2

1

N
N

R
T

                       (4.1) 

where  and  correspond to the average surface coverage with bacteria before and after 

bacterial growth, respectively, and  is the duration of the experiment, which is equal to 300 

min. 

We systematically observed a greater initial surface coverage with E. coli using the EDC/NHS-

Ab capture method compared with the direct EDC/NHS method for comparable concentrations 

of bacteria. The difference between the two bio-architectures in terms of the initial surface 

coverage was more noticeable for lower concentrations of bacteria. This might be related to a 

limitation in the number of bacteria that the antibody-coated surface is able to capture and 

saturation of this surface at higher bacterial concentrations. Due to the higher efficiency of 

antibody-coated surface in initial capture of bacteria, the surface coverage after bacterial growth 

(see Figure 34), and the bacterial growth rate (see Table 5) were higher compared with the 

EDC/NHS functionalized surface for each concentration of bacteria. It is also possible that the 

lower number of bacteria on the EDC/NHS functionalized surface compared with antibody-
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coated surface, might be related to the reduced capture of growing bacteria directly on the 

EDC/NHS functionalized surface due to the inactivation of COO-NHS groups following their 

reaction with free NH2 groups of proteins in the LB medium. 

 

Figure 34. Growth of E. coli on GaAs biochips functionalized with EDC/NHS-Ab (a) and 

EDC/NHS without antibody (b) detected by measuring initial (after 30 min exposure to a 

bacterial suspension) and final (after 4.5 h in LB) bacterial surface coverage for different 

concentrations of bacteria.  

 

 

Figure 35. Examples of microscopic images of E. coli K12 bacteria immobilized on the MHDA-

EDC/NHS-Ab functionalized surface of GaAs (001) exposed for 30 min to a 106
 CFU/mL 

solution (a), and after 4.5 h exposure to a growth medium (b). The scale bars correspond to 10 

µm.  
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Table 5. Average growth rate of bacteria on the functionalized surface of GaAs for different 

bacterial concentrations. 

Bacterial 

Concentration 

(CFU/mL) 

Growth rate using  

EDC/NHS-Ab Capture 

method (min-1) 

Growth rate using 

EDC/NHS capture 

method (min-1) 

105 0.016 0.015 

106 0.023 0.018 

107 0.021 0.016 

108 0.028 0.018 

We were not able to observe the growth of bacteria on either of the investigated architectures 

for bacterial concentration of 104 CFU/mL. A minimum threshold concentration for bacterial 

growth might be related to the toxicity of Ga and As ions that are known to affect the viability 

and/or growth of bacteria (DeLeon et al. 2009; Harvey and Crundwell 1996; Mukhopadhyay et 

al. 2002; Podol'skaia et al. 2002; Rzhepishevska et al. 2011). The release of these ions is a 

consequence of GaAs corrosion (Ruberto et al. 1991): 

      (4.2) 

It is possible that for bacterial concentrations below 105 CFU/mL, the amount of Ga and/or As 

ions released per bacteria could reach a toxic dose (Diorio et al. 1995; Podol'skaia et al. 2002) 

and affect bacterial viability and growth. Moreover, the growth of bacteria might also be 

inhibited by the antibodies used to capture bacteria in MHDA-EDC/NHS-Ab bio-architecture 

(Chalghoumi et al. 2009; Lin et al. 1998). 

As a control, we investigated the growth of E. coli on Au substrates functionalized with MHDA-

EDC/NHS-Ab. Following the methodology applied for GaAs samples, the biofunctionalized Au 

samples were kept in the flow cell and exposed to the bacterial suspension at 105 CFU/mL and 

then to LB medium. The initial coverage of Au samples exposed for 30 min to the bacterial 

suspension and for 4.5 h to LB medium was at 17±5 and 98±25 bacteria/mm2, respectively. The 

average bacterial growth rate of 0.019 min-1 on these samples was slightly higher than that of 

0.016 min-1 on MHDA-EDC/NHS-Ab functionalized GaAs samples, suggesting that for the 105 

CFU/mL solution, the GaAs substrate had only a minor negative effect on bacterial growth in 

comparison to the Au substrate. We note that the Petri dish experiments with GaAs (001) and 

3
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Au substrates in contact with nutrient agar plates inoculated with bacteria at ~ 2 bacteria/mm2, 

revealed comparable growth rates of bacteria on bare both GaAs and Au substrates. This 

suggests that the concentration of As and/or Ga released to the Petri dish was not sufficient to 

affect bacterial growth, or that the agar growth medium neutralized any toxicity. Given that 

some toxicity has been observed with Au in an ionic form (Williams et al. 2006), our inability 

to observe bacterial growth on both Au and GaAs substrates kept in the flow cell, when initial 

concentrations of bacteria were below 105 CFU/mL, could be due to comparable toxicity of the 

Au and GaAs substrates. Nevertheless, these results have revealed that the GaAs surface 

provides conditions satisfactory for the growth of bacteria in a flow cell, which potentially is 

attractive for photonic monitoring in situ of the growth and reaction of bacteria to different 

biological environments and particularly antibiotics. 

4.5 Conclusion 

In our endeavor to develop a GaAs-based photonic biosensor for monitoring reaction of bacteria 

to different biochemical conditions, we have investigated the capture and growth of E. coli K12 

on surfaces of GaAs (001). The experiments with bare GaAs and Au in contact with nutrient 

agar plates inoculated with bacteria at ~ 2 bacteria/mm2 suggested that neither of these substrates 

inhibited the growth of bacteria. However, the experiments in a flow cell revealed that the initial 

coverage, and the subsequent bacterial growth rates were dependent on the biofunctionalization 

architecture used to capture bacteria. Antibody biofunctionalized surfaces exhibited 

significantly higher capture efficiencies, especially at lower concentrations of bacteria. For 

suspensions containing bacteria at less than 105 CFU/mL, we were not able to observe the 

growth of bacteria, regardless of the biofunctionalization architecture. This threshold might be 

related to the toxicity of As and/or Ga released from the GaAs samples. Nevertheless, we have 

recently demonstrated the successful application of this method for detection of E. coli reaction 

to antibiotics in less than 3 h (Nazemi et al. 2016). We realize that our current approach requires 

bacterial suspensions at  105 CFU/mL. However, this shortcoming is also present for matrix-

assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) which 

requires 104 – 105 cells per assay (van Belkum et al. 2013), yet is about to revolutionize clinical 
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diagnostic laboratories. Whereas MALDI-TOF MS does not determine antibiotic sensitivity, 

our approach does and could thus complement MALDI-TOF MS in the same time frame. 

4.6 List of abbreviations  

CFU, Colony forming unit; PCR, Polymerase chain reaction; SPR, Surface plasmon resonance; 

PL, Photoluminescence; SI, Semi-insulating; DI water, Deionized water; AS, Ammonium 

sulfide; b-PEG, Biotinylated polyethylene glycol; LB, Luria Bertani; PBS, Phosphate buffered 

saline; MHDA, 16-Mercaptohexadecanoic acid; HDT, Hexadecanethiol; EDC, 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide; NHS, N-hydroxysuccinimide; Ab, Non-conjugated 

polyclonal antibodies; b-Ab, Polyclonal biotinylated antibodies; NA, Neutravidin; SAM, Self-

assembled monolayer; FTIR, Fourier transform infrared spectroscopy  
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4.8 Supplementary material 

Table 6. Bacterial surface coverage of functionalized GaAs for different bacterial 

concentrations. 

 Bacterial concentration (CFU/mL) 

105  106  107  108  

Initial coverage with 

 EDC/NHS-Ab capture method (/mm2) 
16±3 44±5 72±6 93±23 

Initial coverage with  

EDC/NHS capture method (/mm2) 
9±2 28±6 52±8 71±10 

Coverage after growth with 

EDC/NHS-Ab capture method (/mm2) 
76±19 306±39 460±26 776±46 

Coverage after growth with 

EDC/NHS capture method (/mm2) 
40±9 151±25 249±26 382±29 
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Résumé français :  

Le développement de méthodes rapides et fiables afin d'étudier la sensibilité des bactéries aux 

antibiotiques est essentiel pour empêcher l'utilisation inappropriée et non ciblée des 

antibiotiques et de contrôler la crise de la résistance aux antibiotiques. Les auteurs ont développé 

une approche bon marché, innovante et rapide pour évaluer la sensibilité aux antibiotiques des 

bactéries en utilisant la photoluminescence (PL) émise lors de la photocorrosion de biopuces 

GaAs/AlGaAs en puits quantiques (QW). Les biopuces étaient fonctionnalisés avec des 
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monocouches auto-assemblées de thiols biotinylés de polyéthylène glycol, de neutravidine et 

d'anticorps biotinylés pour immobiliser les bactéries. L'irradiation d'une biopuce avec le 

rayonnement au-dessus de la bande interdite conduit à la formation d'oxydes de surface et la 

dissolution d’une épaisseur limitée du matériau de recouvrement en GaAs (≤10 nm) qui résulte 

en l'apparition d'un maximum caractéristique dans la PL collectée au fil du temps. La position 

du maximum PL dépend du taux de la photocorrosion qui, à son tour, dépend de la charge 

électrique immobilisée à la surface des biopuces GaAs/AlGaAs. Les bactéries capturées à la 

surface des biopuces retardent l’apparition du maximum PL tandis que la croissance de ces 

bactéries retarde encore plus le survenu du maximum PL. Pour les bactéries inhibées par les 

antibiotiques, le maximum PL apparaissait plus rapidement, en comparaison avec les bactéries 

en croissance. En exposant les bactéries à un bouillon nutritif contenant de la pénicilline ou de 

la ciprofloxacine, nous avons été en mesure de distinguer les bactéries sensibles et résistantes 

aux antibiotiques en moins de 3 h, ce qui est beaucoup plus rapide que les méthodes fondées sur 

la culture. L'émission PL des hétérostructures a été contrôlée avec un lecteur peu coûteux. Cette 

détermination rapide de la sensibilité des bactéries aux différents antibiotiques pourrait avoir 

des applications cliniques et de recherche. 
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CHAPTER 5: Monitoring growth and antibiotic 

susceptibility of Escherichia coli with 

photoluminescence of GaAs/AlGaAs quantum well 

microstructures 

5.1 Abstract 

Development of quick and reliable methods to investigate antibiotic susceptibility of bacteria is 

vital to prevent inappropriate and untargeted use of antibiotics and control the antibiotic 

resistance crisis. The authors have developed an innovative, low-cost and rapid approach to 

evaluate antibiotic susceptibility of bacteria by employing photoluminescence (PL) emission of 

photocorroding GaAs/AlGaAs quantum well (QW) biochips. The biochips were functionalized 

with self-assembled monolayers of biotinylated polyethylene glycol thiols, neutravidin and 

biotinylated antibodies to immobilize bacteria. The illumination of a QW biochip with above 

bandgap radiation leads to formation of surface oxides and dissolution of a limited thickness of 

GaAs cap material (≤ 10 nm) that results in the appearance of a characteristic maximum in the 

PL plot collected over time. The position of the PL maximum depends on the photocorrosion 

rate which, in turn, depends on the electric charge immobilized on the surface of the 

GaAs/AlGaAs biochips. Bacteria captured on the surface of biochips retard the PL maximum, 

while growth of these bacteria further delays the PL maximum. For the bacteria affected by 

antibiotics a faster occurring PL maximum, compared with growing bacteria, is observed. By 

exposing bacteria to nutrient broth and penicillin or ciprofloxacin, the authors were able to 

distinguish in situ antibiotic-sensitive and resistant Escherichia coli bacteria within less than 3 

h, which is considerably more rapid than with culture-based methods. The PL emission of the 

heterostructures was monitored with an inexpensive reader. This rapid determination of 

bacterial sensitivity to different antibiotics could have clinical and research applications. 
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Figure 36. Graphical abstract of the paper on monitoring growth and antibiotic susceptibility of 

Escherichia coli with photoluminescence of GaAs/AlGaAs heterostructures. 

5.2 Introduction 

Monitoring bacterial growth and reactions to specific environments plays an important role in 

the fields of medicine, food production, and pharmaceutical research with great importance for 

small-scale, as well as industrial-scale production of natural or genetically engineered bacterial 

products such as enzymes or hormones (Garneau and Moineau 2011; Kee et al. 2013; Nayak et 

al. 2009; Schuler and Marison 2012; Sonnleitner et al. 1992; Versalovic et al. 2011). 

Antimicrobial resistance has been recognized as a global problem (Gootz 2010) related to 

inappropriate or untargeted use of antibiotics (Engel 2009; Fleming-Dutra et al. 2016; Kee et al. 

2013). Part of the solution lies in effective, rapid and low-cost diagnostic tools to guide optimal 

use of antibiotics (WHO 2015). Microbiological antibiotic susceptibility tests (AST) help 

medical personnel predict the reactions of bacteria to specific drugs and allow them to prescribe 

appropriate treatments (Jorgensen and Ferraro 2009). Conventional techniques such as broth 

microdilution and Kirby-Bauer disk diffusion tests for AST (Poupard et al. 1994; Versalovic et 

al. 2011) are analytical diagnostic methods which do not provide same-day results (Chiang et 
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al. 2009; Kee et al. 2013; Versalovic et al. 2011) nor can they be easily applied outside 

laboratory settings. The polymerase chain reaction (PCR) can also be applied for investigation 

of bacterial susceptibility to antibiotics by detecting resistance markers like the mecA gene of 

Staphylococcus aureus (Hombach et al. 2010). However, genetic methods require background 

knowledge of resistance genes (Quach et al. 2016) and they lack standardization (Cockerill 

1999). In addition, resistance of bacteria to antibiotics might be related to presence of different 

genes, while the PCR technique only evaluates the presence of specific genes (Cockerill 1999). 

An approach based on electrochemical reduction of resazurin, a redox-active molecule, has 

recently been proposed for evaluation of antibiotic susceptibility of Escherichia coli claiming 

that the results could be delivered in one hour (Besant et al. 2015). Surface plasmon resonance 

(SPR) and plasmonic nanohole arrays represent other approaches to monitor antibiotic 

susceptibility of bacteria, with a time-to-result for E. coli claimed to be 2 h (Chiang et al. 2009; 

Kee et al. 2013). However, the cost of sensitive SPR systems (Lazcka et al. 2007) and the 

demanding fabrication process necessary to make uniform plasmonic nanoholes (Kee et al. 

2013) are inhibitory factors restricting application of these techniques to laboratory 

environments. Clearly, development of a simple, rapid and sensitive method for detection of 

growth and antibiotic sensitivity of bacteria at low cost remains an attractive but elusive goal 

for clinical diagnostics, food and water control industries. Photoluminescence (PL) emitting 

semiconductors have the potential to be applied in the biosensing field due to the sensitivity of 

the PL signal to reactions taking place at the surface of these materials (Adamowicz et al. 1998; 

Gfroerer 2006; Lebedev 2001; Moumanis et al. 2006; Tomkiewicz et al. 2009). For instance, 

Budz et al. (Budz et al. 2010) demonstrated operation of a GaAs-based biosensor for PL 

detection of adenosine 5′-triphosphate (ATP), and we used a PL-based approach to detect E. 

coli at 104 CFU/mL (Duplan et al. 2011). PL spectroscopy has also been employed to 

characterize photocorrosion of semiconductors, such as laser-induced  etching of GaAs (Joshi 

et al. 2009). Since the photocorrosion of III-V semiconductors is driven by the surface presence 

of photo-generated holes (Ruberto et al. 1991), electric and/or electrostatic interactions 

occurring at the semiconductor surface could increase/decrease concentration of photo-

generated holes and, consequently, accelerate/delay the photocorrosion process. Based on this 

approach, we have developed a PL-monitored photocorrosion method for detection of E. coli 
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(Nazemi et al. 2015) and Legionella pneumophila (Aziziyan et al. 2016). Furthermore, we have 

reported that functionalized surfaces of GaAs/AlGaAs biochips remain relatively stable in 

biological fluids, and provide satisfactory conditions for cultivating E. coli (Nazemi et al. 2016 

). In this report, we discuss the innovative concept of PL monitored photocorrosion of 

GaAs/AlGaAs biochips for evaluating the growth and susceptibility of bacteria to antibiotics. 

Using as an example E. coli K12 and E. coli HB101, we identified the sensitivity of these 

bacteria to penicillin and ciprofloxacin in less than 3 hours. This approach has a considerable 

advantage over alternative biosensing techniques due to the application of commercially 

available GaAs/AlGaAs microstructures, suggesting that related experiments could be realized 

with low-cost devices. 

5.3 Experimental methods 

5.3.1 Materials 

The biochips were fabricated from an epitaxially grown GaAs/Al0.35Ga0.65As quantum well 

(QW) wafer (10-413) obtained from Azastra Inc. (Ottawa, Canada). A cross-sectional view of 

the wafer microstructure is shown in Figure 37a. It comprises 30 pairs of 6 nm thick GaAs QWs 

and 10 nm thick Al0.35Ga0.65As barriers grown on a 500 nm thick buffer layer of GaAs that was 

deposited on a semi-insulating GaAs (001) substrate. The QW architecture is capped with a 10 

nm thick GaAs layer. The irradiation of such a microstructure with above bandgap radiation, 

such as that of a 532 nm laser, induces a PL signal dominated by the QW emission at 829 nm, 

as shown in Figure 37b. 
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Figure 37. Cross-section of the GaAs/AlGaAs QW microstructure employed for the fabrication 

of biochips (a), and an example of the PL emission observed at RT from the microstructure 

irradiated with a 532 nm laser (b). 

The solvents used for cleaning the QW wafers were OptiClear, acetone and isopropanol (2-

propanol) which were purchased from National Diagnostics (Mississauga, Canada), ACP 

(Montréal, Canada) and Fisher Scientific (Ottawa, Canada), respectively. Anhydrous ethanol 

was obtained from Commercial Alcohols Inc. (Brampton, Canada). Ammonium hydroxide 

(NH4OH) from Anachemia (Richmond, Canada) was employed to remove oxides from the 

surface of the wafers. Deionized (DI) water with an electrical resistivity of 18 MΩ.cm was 

obtained through a domestic purification system connected to the city water supply. Ultra-high 

purity nitrogen 5.0 UHP (99.999%) used for deoxygenation of anhydrous ethanol, and high 

purity nitrogen 4.8 HP (99.998%) used for drying the chips were both purchased from Praxair 

Canada Inc. (Mississauga, Canada). Hexadecane thiol (HDT) and biotinylated polyethylene 

glycol (PEG) thiol were bought from Sigma-Aldrich (Oakville, Canada) and Prochimia Surfaces 

(Gdansk, Poland), respectively. A 48% aqueous solution of ammonium sulfide (AS) was 

obtained from Sigma-Aldrich (Oakville, Canada). Phosphate buffered saline (PBS) solution 

(10X, pH 7.4) and polyclonal biotinylated antibodies (Ab) against E. coli were purchased from 

Sigma (Oakville, Canada) and ViroStat, Inc (Portland, ME), respectively. Neutravidin (NA) was 

bought from Molecular Probes (Invitrogen, Burlington, Canada). Penicillin, ciprofloxacin and 
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Luria Bertani (LB) medium were purchased from Sigma-Aldrich (Oakville, Canada). Live E. 

coli K12 and E. coli HB101 bacteria were obtained from the Department of Biology, Université 

de Sherbrooke (Quebec, Canada). The bacteria were grown in LB broth and kept overnight at 

37° C before starting experiments. 

5.3.2 Biofunctionalization of the GaAs/AlGaAs biochips 

Chips of 2 mm × 2 mm were separated from the QW wafer and cleaned in an ultrasonic bath 

sequentially in acetone, OptiClear, acetone, and isopropanol for 5 min each. Thereafter, the 

chips were dried with compressed high-purity nitrogen and etched in NH4OH (28%) for 2 min 

at room temperature to remove native surface oxides. Following this step, the freshly etched 

chips were rinsed with deoxygenated anhydrous ethanol and immersed for 20 h in 0.13 mM 

biotinylated PEG thiol and 1.87 mM HDT in deoxygenated anhydrous ethanol. After the 

thiolation step, the biochips were exposed to AS 0.1% for 15 min and rinsed with deionized (DI) 

water. Following this step, the samples were incubated for 2 h in NA dissolved in PBS (1X) at 

0.2 mg/mL. The preparation process continued by exposure of the NA-coated biochips to 0.1 

mg/mL of biotinylated polyclonal E. coli antibodies for 1 h at room temperature. Previously, 

this architecture had been successfully used by us for detection of E. coli bacteria (Nazemi et 

al. 2015). 

5.3.3 Methodology of monitoring bacterial growth and their reactions to 

antibiotics 

We investigated growth and antibiotic susceptibility of two strains of E. coli bacteria, E. coli 

K12 (penicillin-sensitive) and E. coli HB101 (penicillin-resistant). Freshly cultured bacteria 

were employed to reduce the lag phase and to be able to monitor antibiotic susceptibility in less 

than 3 h. The procedure to prepare freshly cultured bacteria is described in Supporting 

Information. 

To monitor bacterial growth, Ab-coated biochips were placed in an ULTEMTM flow cell and 

exposed to 1 mL of freshly cultured bacteria at 2×108 CFU/mL that was injected into the flow 

cell at a flow rate of 0.1 mL/min. The biochips were then incubated for an additional 20 min to 
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allow capture of bacteria on the surface of the biochips. It was assumed that 30 min was 

sufficient to achieve this goal as suggested by reports of antigen-antibody binding reactions 

(Hlady et al. 1990). Thereafter, LB broth was injected into the flow cell for 30 min (with flow 

rate of 0.1 mL/min) and the biochips were incubated in LB at room temperature for an additional 

4 h without any further injection to allow the bacteria to grow. The photocorrosion process was 

investigated in situ using a custom designed quantum semiconductor photonic biosensor 

(QSPB) reader (Aziziyan et al. 2016) capable of rapidly collecting PL maps of 2 mm × 2 mm 

biochips excited with a light-emitting diode (LED) operating near 660 nm, i.e., delivering the 

above QW bandgap (829 nm) radiation. The QSPB reader employed a long pass filter with a 

transmission wavelength threshold at near 820 nm and a CCD camera to record the PL signals. 

The biochips were irradiated with 6 s pulses, 35 mW/cm2 each, delivered in every 60 s period 

with the help of a computer-programmed shutter. The 829 nm PL emission of photocorroding 

biochips was recorded for up to 5 h. This procedure is neither technically complicated nor 

expensive. The cost  of a QSPB reader is less than $3k, which in comparison to traditional 

optical systems for detection of bacteria, such as those based on Raman spectroscopy (Wu et al. 

2016) offers an economically attractive approach. The necessary apparatus occupies a footprint 

of less than 30 cm × 30 cm.  

As a reference experiment, one series of the Ab-coated samples were exposed to 1 mL of UV-

killed bacteria (the preparation procedure of UV-killed bacteria is explained in Supporting 

Information) at 2×108 cell/mL in the same way that live bacteria had been tested. The 

susceptibility of the bacteria to penicillin G at 50 µg/mL, or ciprofloxacin at 10 µg/mL, was 

investigated by adding antibiotic solutions to fresh LB, following the initial 30 min exposure of 

the biochips to LB. The antibiotic solutions were injected into the flow cell for 15 min at a flow 

rate of 0.1 mL/min and the biochips were incubated in antibiotics for an additional 225 min 

without any further injection. To study the effect of penicillin and ciprofloxacin on PL emission 

of the biochips, we compared the PL plots collected from Ab functionalized biochips exposed 

for 30 min to PBS (1X) and 4.5 h to LB, with the PL plots of the biochips exposed for 30 min 

to PBS (1X), 30 min to LB and 4 h to either penicillin or ciprofloxacin in LB solutions. These 

antibiotics have different mechanisms of bacteria-antibiotic interaction. Penicillin inhibits cell 

wall synthesis of bacteria  (Yocum et al. 1980), which could result in bacterial lysis or 

http://www.sciencedirect.com/science/article/pii/S0956566315303559#s0060
http://www.sciencedirect.com/science/article/pii/S0956566315303559#s0060
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detachment from the surface, whereas ciprofloxacin inhibits DNA synthesis and might not affect 

the bacterial surface proteins that are involved in capture or cause lysis (LeBel 1988). 

A schematic illustration of the experimental setup is presented in Figure 38. The setup consists 

of the flow cell for holding the biochips, the peristaltic pump, and the QSPB reader for collecting 

PL of photocorroding biochips. All the experiments have been carried out at ambient 

temperature and repeated at least three times to provide average value and standard deviation. 

After finishing the PL-monitored photocorrosion experiments, the biochips were analyzed with 

an optical microscope (Zeiss, Axiotech) to detect changes in bacterial cell shape and biochip 

surface coverage (see Supporting Information for details). 

 

Figure 38. Schematic illustration of the experimental setup (a), top view of the flow cell (b), and 

time required for different steps of the experiment (c). The biofunctionalized biochips were kept 

in the flow cell and exposed to bacterial suspension (red ovals) and LB with or without 

antibiotics while their PL was recorded during the experiment. 

5.4 Results and discussion 

5.4.1 Photonic monitoring of growth and reaction of E. coli K12 to antibiotics 

An example of normalized time-dependent PL intensity plots from biochips exposed to 

penicillin-sensitive live and UV-killed E. coli K12 bacteria during incubation in LB without 
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antibiotics, or with penicillin, or ciprofloxacin is shown in Figure 39. The formation of 

characteristic maxima in these plots is related to the growth of surface oxides and 

photocorrosion of the 10 nm thick GaAs cap layer (Nazemi et al. 2015). It can be seen that the 

maximum of the PL plot from the biochip exposed to live E. coli K12 bacteria and LB medium 

has been delayed to near 240 min, while remaining plots exhibit maxima at less than 180 min. 

Furthermore, the PL maxima from the biochips exposed to bacteria and antibiotic solutions 

occurred earlier than those induced by UV-killed bacteria. The average position of the PL 

maxima for the biochips exposed to live E. coli K12 bacteria and LB has been determined at 

231 min ±4.9%, UV-killed E. coli K12 bacteria and LB at 160 min ±3.5%, live E. coli K12 

bacteria, LB and ciprofloxacin at 113 min ±8.8% and live E. coli K12 bacteria, LB and penicillin 

at 107 min ±2.6%. Moreover, the average number of bacteria immobilized on the surface of the 

biochips exposed to live bacteria and LB increased from 929 ±133 bacteria/mm2 to 3436 ±244 

bacteria/mm2, while this number for UV-killed bacteria was 885 ±168 bacteria/mm2. In the case 

of exposure to penicillin and ciprofloxacin, the average number of bacteria immobilized on the 

surface was 169 ±64 bacteria/mm2 and 786 ±177 bacteria/mm2, respectively (see Supporting 

Information for examples of optical images). 

The position of the PL maxima for the biochips without bacteria, but exposed to PBS, LB and 

penicillin has been determined at 101 min ±4.2%, to PBS, LB and ciprofloxacin at 94 min ±9%, 

while exposed to PBS and LB has been determined at 83.5 min ±5.9%. Comparable positions 

of the PL maxima for the biochips exposed to PBS and LB with those of the biochips exposed 

to PBS, LB and penicillin or ciprofloxacin solutions, suggests that the presence of the 

investigated antibiotics does not affect the photocorrosion of the GaAs/AlGaAs biochips. This 

behaviour has been verified also for penicillin and ciprofloxacin solutions at 1 mg/mL. 
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Figure 39. Examples of normalized PL intensity measured in situ for biochips exposed to 

penicillin-sensitive live E. coli K12 bacteria and LB (solid line), UV-killed E. coli K12 bacteria 

and LB (dashed line), live E. coli K12 bacteria, LB and penicillin (dotted line), and live E. coli 

K12 bacteria, LB and ciprofloxacin (dashed-dotted line). 

5.4.2 Photonic monitoring of growth and reaction of E. coli HB101 to 

antibiotics 

Figure 40 shows an example of normalized time-dependent PL plots of the biochips exposed to 

penicillin-resistant live E. coli HB101 bacteria and LB medium with or without antibiotics (data 

shown only for 250 min), as described in Sec. 5.3.3. The E. coli HB101 bacteria used in this 

study have the ability to secrete penicillinase enzyme to hydrolyze the penicillin structure which 

makes them penicillin-resistant (Dever and Dermody 1991). Therefore, the presence of 

penicillin should not interfere with bacterial growth, as indicated by the almost identically 

located PL maxima produced by HB101 bacteria exposed to LB (solid line in Figure 40) and to 

LB and penicillin solution (dotted line). Since E. coli HB101 are sensitive to ciprofloxacin, the 

PL maximum occurred earlier when the bacterial solution was exposed to ciprofloxacin, and is 

consistent with the inhibition of bacterial growth (dashed-dotted line). According to Figure 40, 

the maximum of the PL plot from the biochip exposed to live E. coli HB101 bacteria and LB 
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with or without penicillin has been delayed to near 160 min, while the PL plot from the biochip 

exposed to bacteria and ciprofloxacin exhibits maximum at less than 120 min. The position of 

the PL maxima for the biochips exposed to live E. coli HB101 bacteria and LB was at 155 min 

±4.6%, live E. coli HB101 bacteria, LB and penicillin at 147 min ±3.8% and live E. coli HB101 

bacteria, LB and ciprofloxacin at 111 min ±7.6%. The exposure to LB without and with 

penicillin resulted in this case in the average number of bacteria immobilized on the surface of 

the biochips increased from 821 ±96 bacteria/mm2 to 2843±203 bacteria/mm2 and 2605±163 

bacteria/mm2, respectively, while this number decreased to 739±190 bacteria/mm2 when the 

biochips were exposed to bacteria and ciprofloxacin (see Supporting Information for examples 

of optical microscopy images). 

 

Figure 40. Examples of normalized PL intensity measured in situ for biochips exposed to 

penicillin resistant, ciprofloxacin sensitive E. coli HB101 bacteria and LB (solid line), live E. 

coli HB101 bacteria, LB and penicillin (dotted line), and live E. coli HB101 bacteria, LB and 

ciprofloxacin (dashed-dotted line). 

In Figure 41, we summarize the positions of the PL maxima for the biochips exposed to live E. 

coli K12 or E. coli HB101 and LB with or without antibiotics. The comparable position of the 

PL maxima for the biochips exposed to E. coli HB101 and LB with those exposed to E. coli 

HB101, LB and penicillin is consistent with the resistance of these bacteria to penicillin. In the 
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case of exposure of the biochips to E. coli K12, LB and penicillin, we observed PL maxima 

sooner in comparison with the E. coli K12 growth control tests, which showed the sensitivity of 

these bacteria to penicillin. The advance in the position of the PL maxima for the biochips 

exposed to E. coli K12 or E. coli HB101, LB and ciprofloxacin in comparison with growth 

control tests demonstrates the sensitivity of both bacteria to ciprofloxacin. 

 

Figure 41. PL maxima positions observed for Ab-coated biochips exposed to penicillin-sensitive 

E. coli K12 or penicillin-resistant E. coli HB101 and LB without or with antibiotics. 

5.4.3 Effect of photoelectrochemical reactions on PL of GaAs/AlGaAs 

biochips 

The dynamics of temporal PL plots shown in Figure 39 and Figure 40 depends on the power of 

the 660 nm LED employed for excitation of the biochips, duration of the pulse, and the time 

allowed between the pulses for the product of photocorrosion to dissipate in the solution. Under 

the conditions of the current experiment, the built-in electric field in the depletion region of the 

semiconductor separates photo-excited electrons (e) and holes (h+). The electric field driven h+ 

arriving to the semiconductor surface will induce the corrosion of this material through the 

transient formation and dissolution of surface oxides dominated by Ga2O3 (Choi et al. 2002; 
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Ruberto et al. 1991). It is the formation of Ga2O3 that reduces the density of surface states and 

decreases the surface recombination velocity of e - h+, leading to the increased intensity of the 

PL signal emitted by GaAs surrounded by an aqueous solution (Passlack et al. 1995). As the 

surface oxides are dissolved into solution and GaAs photocorrodes, a new interface with 

AlGaAs is formed. This results in a quickly decreasing QW PL signal and formation of a 

maximum of the temporally dependent PL signal. The formation of this maximum could be 

accelerated or delayed depending on the electrostatic interaction between the semiconductor and 

molecules immobilized in its vicinity. For instance, the immobilization of electron donor 

molecules on the surface of an n-type GaAs (GaAs investigated in this work behaves at room-

temperature as an n-type material) will decrease band bending and depletion width of this 

material (Zhang and Yates 2012), which would result in a decreased concentration of photo-

excited h+ arriving to its surface and, consequently, a delayed photocorrosion process.    

The surface of most bacteria at pH greater than 4 is negatively charged, primarily due to the 

excessive concentration of phosphate and carboxyl groups in comparison to their amino groups 

(Poortinga et al. 2002). Thus, bacteria suspended in a PBS solution could become decorated 

with positively charged counter ions present in the solution. The close proximity interaction of 

these counter ions with the surface of a GaAs/AlGaAs biochip could affect (reduce) transport 

of photo-excited holes to the semiconductor surface, resulting in a decreased photocorrosion 

rate of the biochip (delayed formation of the characteristic PL maximum). This characteristic of 

photocorroding GaAs/AlGaAs nano-heterostructures has been previously explored by us for 

detection of bacteria tethered to Ab-coated biochips. The dependence of the position of PL 

maxima vs. different concentrations of bacteria has also been demonstrated in the form of 

calibration curves (Aziziyan et al. 2016; Nazemi et al. 2015). While immobilization of bacteria 

could be responsible for electrostatic repulsion of photo-excited h+ from the surface of the 

investigated GaAs/AlGaAs microstructures, the growth of these bacteria would further amplify 

this effect and slow down the photocorrosion rate. The result would be a delayed position of the 

PL maximum. An alternative mechanism of the biochip interaction with bacteria could involve 

electric charge transfer, such as that observed between bacteria and indium tin oxide coated 

glass plates (Poortinga et al. 1999). It is possible that secretion of H+ ions to create a 

chemiosmotic or proton motive force associated with bacterial metabolism (Mitchell 2011) 
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could reduce photocorrosion as the presence of H+ ions in the vicinity of the biosensor surface 

could reduce the transport of photo-excited h+ towards the surface through the electrostatic 

interaction.   

The exposure of Ab-functionalized biochips to UV-killed E. coli K12 and LB broth produced 

PL maximum at t ~180 min (Figure 39), which is delayed in comparison to that corresponding 

for the penicillin or ciprofloxacin-treated bacteria, but consistent with the much delayed 

maximum (~ 250 min) observed for the case of growing bacteria. The more rapidly occurring 

PL maxima for the biochips exposed to E. coli K12 and antibiotics, either penicillin or 

ciprofloxacin, compared with those exposed to UV-killed bacteria might be related to the 

drastically decreased zeta potential of these bacteria after antibiotic treatment (data not shown), 

consistent with the literature data concerning effect of different antimicrobial agents on 

reduction of zeta potential of bacteria (Alves et al. 2010; Nomura et al. 1995). In contrast, we 

have not observed a significant effect of UV treatment on decreasing the zeta potential of E. coli 

K12 (M. R. Aziziyan, private communication).  

The exposure of Ab-functionalized biochips to penicillin-resistant live E. coli HB101 bacteria 

and LB with or without penicillin produced PL maxima coinciding with each other (Figure 40). 

In contrast, the exposure to ciprofloxacin inhibited the bacterial growth, which resulted in a 

slightly accelerated photocorrosion (faster occurring PL maximum). Generally, the position of 

the PL maxima for the biochips exposed to E. coli HB101 and LB occurs earlier in comparison 

to that induced with E. coli K12 and LB. This result seems consistent with the weaker zeta 

potential of E. coli HB101 bacteria in 1X PBS (-18 mV) in comparison to that of E. coli K12 (-

30 mV). Since photocorrosion of the biochips depends on the electrical charge of bacteria, the 

greater zeta potential of bacteria indicates stronger electrostatic interaction with the biochip and 

results in a much delayed PL maximum. 

For bacterial concentrations lower than 2×108 CFU/mL, for which around 800-900 

bacteria/mm2 were observed immobilized on the biochip surface (see Supporting Information), 

we were not able to monitor bacterial growth. The likely reason for this behaviour is a poisonous 

effect of As and Ga ions released by the photocorroding biochip to the flow cell, which could 

affect the viability of bacteria (Harvey and Crundwell 1996; Podol'skaia et al. 2002; Tanaka 
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2004). We note that a non-irradiated GaAs substrate could support the growth of E. coli K12 at 

concentrations as low as 105 CFU/mL (Nazemi et al., 2016 ). This suggests that under optimized 

conditions the PL-based monitoring of bacterial reaction to antibiotics should be possible for 

suspensions with bacteria diluted to less than 2×108 CFU/mL. 

All the experiments reported here were carried out at ambient temperature, however, it might 

be possible to operate the biosensor at 37º C. Due to the higher growth rates at 37º C, it is 

expected that the results of the antibiotic sensitivity of bacteria could then be delivered in a 

shorter period of time. Our present results were obtained, each time, with a freshly fabricated 

biochip. During a 5 h long biosensing run, photocorrosion consumed the entire 10 nm thick 

GaAs cap and, partially at least, the 10 nm thick Al0.35Ga0.65As layer. This left 30 pairs of 

GaAs/Al0.35Ga0.65As heterostructures (see Figure 37) that, potentially, could be used for other 

biosensing runs. The advancement of this concept would additionally increase the commercial 

value of a proposed biosensor, although such an approach exceeds the scope of the research 

reported in this document.   

5.5 Conclusions 

We have investigated an innovative method of monitoring growth and reaction of bacteria to 

antibiotics using PL emission of photocorroding GaAs/AlGaAs QW heterostructures. The 

method takes advantage of the sensitivity of the photocorrosion effect to the perturbation of the 

electric field induced by electrically charged bacteria immobilized in the vicinity of a biosensor 

surface. By monitoring the formation of PL maxima of biofunctionalized GaAs/AlGaAs 

biochips exposed to different bacterial solutions and antibiotics, we have demonstrated the 

functionality of this process for monitoring the growth and antibiotic sensitivity of E. coli K12 

(penicillin-sensitive) and E. coli HB101 (penicillin-resistant) bacteria at ambient temperature in 

less than 3 h. The functionalization of the biochips with antibodies makes the process suitable 

for specific investigation of different bacteria, although it could also be applied for studying 

bacteria captured non-specifically, e.g., through covalent binding (Meyer et al. 2010; Nazemi et 

al. 2016 ). The reduction in time-to-result can be considered as the main advantage of this 

method over culture-based techniques, while a relatively simple functionalization process, the 
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potential for automation of all the steps of the experiment and low-cost of the analysis seem to 

be attractive for developing clinical diagnostic applications. The method could lead to a 

significant progress in the pharmaceutical field and help medical personnel to rapidly identify 

suitable drugs for treating bacterial infections. 
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5.7 Supporting information 

5.7.1 Preparation of freshly cultured bacteria 

E. coli K12 and E. coli HB101 were grown in LB and LB containing penicillin, respectively, 

and incubated overnight at 37° C before use the following morning in experiments. On the day 

of the experiments, the bacterial concentration ( ) was measured with a cell density meter 

(Fisher Scientific, model 40) operating at 600 nm. The concentration of the bacterial suspension 

was estimated using the following formula (Hassen et al. 2016): 

         (5.1) 

where is the readout of the cell density meter. The bacteria were centrifuged for 25 min at 

3000 rpm in LB medium. After that, the medium was removed and the pellets were suspended 

in PBS (1X) and centrifuged at 3000 rpm for an addition 15 min. Finally, the PBS (1X) was 

removed and the pellets were resuspended in PBS (1X) at 2×108 CFU/mL. 
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5.7.2 Preparation of UV Killed E. coli K12 bacteria 

The E. coli K12 bacteria were exposed for 2 min to UV light delivering 100 mW/cm2 radiation 

of which 95 % was located in the 250-260 nm region. The efficiency of this process to kill all 

of the E. coli bacteria was verified by culture tests (data not shown), showing complete killing 

consistent with literature reports (Vermeulen et al. 2008). 

5.7.3 Optical microscopy of bacteria immobilized on the biochip surface 

After finishing the PL measurements, the biochips were analyzed with an optical microscope 

(Zeiss, Axiotech) operating in a differential interference contrast mode with overhead 

illumination. This allowed counting bacteria as well as detecting changes in bacterial cell shape. 

Optical microscopy was also carried out after 30 min exposure of the biochips to bacterial 

suspension to investigate the initial coverage of the samples with bacteria. No staining or 

washing was applied before observation of the biochips with the optical microscope. Our 

intention was to count all the bacteria, so we did not want to wash away the bacteria that were 

loosely bound to the surface. The biochips were removed from the flow cell and placed on glass 

slides with the surface that had been exposed to bacteria facing up. The surface coverage of each 

sample with bacteria was calculated based on analyzing several optical images at total 

magnification of 500X (each image with a surface area of ~14000 µm2 per field) and 1000X 

(each image with a surface area of ~3500 µm2 per field) collected at 15 or more different sites 

for the sample and reported per mm2. 

5.7.3.1 Optical microscopy of E. coli K12 bacteria immobilized on the biochip surface 

Examples of optical images taken after 30 min exposure of the Ab functionalized biochip 

surfaces to live E. coli K12 bacteria, and after an additional 4.5 h exposure in LB broth are 

shown in Figure 42a and b, respectively, while Figure 42c shows an example of an optical image 

taken after an Ab functionalized biochip was exposed for 30 min to UV killed E. coli K12, 

followed by a 4.5 h exposure in LB broth. Comparing Figure 42a and Figure 42c reveals that 

following exposure of E. coli K12 to UV light, the shape of the bacteria remained relatively 

unchanged and little bacterial debris were observed, in agreement with literature data (Challice 
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and Gorrill 1954). The bacteria initially covered the surface of the biochip with an average 

density of 929 ±133 bacteria/mm2. After incubation of the biochip in LB broth for 4.5 h, the 

average number of bacteria increased to 3436 ±244 bacteria/mm2. For Ab functionalized GaAs 

exposed to UV treated bacteria and LB broth, the number of immobilized bacteria was 885 ±168 

bacteria/mm2, which is comparable to the initial coverage and consistent with the expected lack 

of bacterial growth. When antibiotics were added to the LB medium, the number of immobilized 

E. coli K12 decreased from 929 ±133 to 169 ±64 bacteria/mm2 for penicillin G, and to 786 ±177 

bacteria/mm2 for ciprofloxacin, as exemplified by Figure 43a and b, respectively. Schematically, 

the capture, growth and penicillin sensitivity of bacteria on the biosensor surface functionalized 

with HDT and biotinylated PEG thiols, NA and biotin conjugated antibodies are illustrated in 

Figure 44. The lower number of bacteria on the biochips exposed to penicillin compared with 

that on the biochips exposed to ciprofloxacin is likely related to different mechanisms of 

bacteria-antibiotic interaction. Penicillin inhibits cell wall synthesis of bacteria  (Yocum et al. 

1980), which could result in bacterial lysis or detachment from the surface, whereas 

ciprofloxacin inhibits the DNA synthesis and might not affect the bacterial surface proteins that 

are involved in capture or cause lysis (LeBel 1988). 

 

Figure 42. Examples of optical images of E. coli K12 immobilized on the biochip surface 

exposed to live bacteria for 30 min (a), followed by 4.5 h exposure in LB broth (b), and after 

exposure of the biochip to UV killed bacteria for 30 min, followed by 4.5 h exposure in LB 

broth (c). The scale bars correspond to 10 µm. 
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Figure 44. Schematic illustration of the biosensor surface functionalized with PEG SAM, NA 

and biotin conjugated antibodies employed to tether live bacteria (a), induce growth in the LB 

broth medium (b), and study the effect of penicillin on the bacteria (c). The blue dots and broken 

lines around the bacteria in (c) represent the penicillin and the effect of this antibiotic on rupture 

of bacterial cell walls, respectively. 

Figure 43. Examples of optical images of E. coli K12 immobilized on the biochip surface 

exposed to live bacteria for 30 min, followed by 30 min exposure in LB and 4 h in LB broth 

with penicillin at 50 µg/ml (a), and in LB broth where penicillin was replaced with ciprofloxacin 

at 10 µg/ml (b). The scale bars correspond to 10 µm. 



 

112 

 

5.7.3.2 Optical microscopy of E. coli HB101 immobilized on the biochip surface 

Figure 45 shows examples of optical images taken after exposure of the biochip to live E. coli 

HB101. A 30 min exposure results in surface coverage of the biochip with an average of 821 

±96 bacteria/mm2 (Figure 45a). After 4.5 h incubation of such a biochip in LB broth, the average 

density of bacteria increased to 2843±203 bacteria/mm2 (Figure 45b). Since these bacteria have 

been genetically modified to be resistant to penicillin (have a plasmid encoding for β-lactamase, 

also called penicillinase), the exposure of the biochip to a solution of bacteria with penicillin 

have allowed their growth and the average density of bacteria immobilized on the surface 

increased to 2605±163 bacteria/mm2 (see Figure 45c). The exposure of the biochip to a 

ciprofloxacin solution, however, resulted in inhibition of the bacterial growth and the number 

of bacteria immobilized on the surface remained constant at about 739±190 bacteria/mm2 (see 

Figure 45d). 

 

Figure 45. Examples of optical images of E. coli HB101 immobilized on the biochip surface 

exposed for 30 min to live bacteria (a), exposed for 30 min to live bacteria and 4.5 h in LB broth 

(b), exposed for 30 min to live bacteria followed by 30 min in LB broth and 4 h in LB broth 

with penicillin at 50 µg/ml (c), and after exposure for 30 min to live bacteria followed by 30 

min in LB broth and then 4 h in LB broth with ciprofloxacin at 10 µg/ml (d). The scale bars 

correspond to 20 µm.  
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Chapter 6: Complementary experimental results 

In this chapter, we discuss photocorrosion of semiconductors and mechanisms of bacterial 

interactions with semiconductor surfaces. We also present related data that complement the 

results discussed in Chapters 3-5.  

6.1 Mechanism of interaction of bacteria with semiconductor 

surfaces 

When a semiconductor is brought into contact with an electrolyte, there would be a transient 

charge transfer across the semiconductor/electrolyte interface due to the difference between 

work function of the semiconductor and electrolyte. The charge transfer causes band bending at 

the surface of the semiconductor and continues until the Fermi level of the semiconductor and 

the redox potential of the electrolyte become equal. The band bending is upward in n-type and 

downward in p-type semiconductors (Rajeshwar 2002). The built-in electric field in the SCR of 

the semiconductor separates photo-excited electrons (e) and holes (h+), resulting in a reduced 

radiative recombination of e-h+ pairs and, consequently, reduced PL intensity of the 

semiconductor. For n-type semiconductors the build-in electric field drives holes towards the 

surface and electrons towards the bulk (Yu and Cardona 2010). The influence of the built-in 

electric field extends to the electrolyte and causes formation of the Helmholtz layer (stern layer) 

at the semiconductor/electrolyte interface. The Helmholtz layer consists of the inner Helmholtz 

layer (IHL) and the outer Helmholtz layer (OHL). The IHL is formed by the ions which are 

strongly adsorbed to the surface of the semiconductor and the OHL consists of the ions which 

are bound to the IHL. The diffuse layer is formed by the ions which are loosely bound to the 

OHL (van de Krol 2011). Figure 46 schematically illustrates the formation of Helmholtz and 

diffuse layers at the n-type semiconductor/electrolyte interface. 
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Figure 46. Schematic illustration of formation of Helmholtz (Stern) and diffuse layers at the n-

type semiconductor/electrolyte interface. The Helmholtz layer consists of the inner Helmholtz 

layer (IHL) and the outer Helmholtz layer (OHL). In the figure     represents the photo-excited   

electron,     shows the photo-excited hole,          and     show the positively-charged and negatively-

charged counter ions, respectively, and E represents the built-in electric field.  

Immersion of the semiconductor in the electrolytic solution leads to the corrosion of this 

material. The corrosion is induced by the holes arriving to the surface of the semiconductor and 

happens through the transient formation and dissolution of surface oxides. For instance, the 

corrosion of GaAs in aqueous solutions is described by the following formula (Ruberto et al. 

1991),     

3

2 22 6 3GaAs H O h Ga HAsO H            (6.1) 

Since in n-type semiconductors the built-in electric field drives holes towards the surface, the 

corrosion process could be photoactivated for these materials. Irradiation of an n-type 

semiconductor with photons of energy exceeding the bandgap of the semiconductor results in 

increase of the number of holes arriving to the surface and, consequently, accelerates the 

corrosion (photocorrosion) process. The rate of photocorrosion is also influenced by other 
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factors such as ionic strength of the electrolyte, energy of the photons irradiating the 

semiconductor (Mavi et al. 2004), and electrostatic interactions taking place at the surface of 

the semiconductor. It has been reported that immobilization of electron donor molecules on the 

surface of an n-type semiconductor modifies the band bending of this material due to the 

formation of positively charged ions on the surface (Zhang and Yates 2012). Thus, following 

this immobilization, holes are repelled from the surface and, consequently, the photocorrosion 

process is delayed. The same mechanism could happen in the case of exposure of an n-type 

semiconductor to a bacterial suspension with a pH greater than 4. In this range of pH, the surface 

of most bacteria is negatively charged (Poortinga et al. 2002). By suspension of bacteria in an 

electrolytic solution, like PBS (1X), the surface of bacteria could be decorated by positively 

charged counter ions present in the solution. As schematically illustrated in Figure 47, when the 

bacteria approach the surface, the strength of the near-surface electric field is reduced and the 

band bending of the semiconductor is modified. Therefore, transport of photo-excited holes 

towards the semiconductor surface is reduced and photocorrosion is delayed. We have taken 

advantage of the dependency of the photocorrosion rate of GaAs/AlGaAs heterostructures on 

the electrostatic interactions taking place at the surface of these materials to detect bacteria 

suspended in PBS (1X) (See Chapter 3) and monitor growth and antibiotic susceptibility of 

bacteria immobilized on the surface of these structures (See Chapter 5).  

 

Figure 47. Electron-hole generation in an n-type semiconductor immersed in an electrolyte and 

irradiated with photons of energy exceeding the bandgap of the semiconductor. Immobilization 

of negatively charged bacteria decorated with positively charged ions on the surface of the 

semiconductor decreases the strength of the built-in electric field and reduces the band bending 

of the semiconductor. Consequently, the concentration of photo-excited holes arriving to the 

surface decreases and the photocorrosion process is delayed. 
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6.2 Immobilization of streptavidin-coated microbeads on GaAs 

surfaces 

To investigate the 2-dimensional immobilization efficiency of bacteria on the surface of 

functionalized GaAs biochips, we employed a model consisting of 3 μm diameter microbeads 

coated with streptavidin and a network of biotinylated PEG thiol SAMs. More information about 

the microbeads and biofunctionalization of the GaAs samples is available in Chapter 3. In the 

experiments discussed in Sec. 3.4.1, the biochips were kept in a flow cell (the flow cell is 

explained in Chapter 4) and the bead suspension was injected into the flow cell with a flow rate 

of 0.1 mL/min for 10 min. Following this step, the biochips were exposed to the beads for an 

additional 20 min without any further injection. For microscopic analysis, the biochips were 

removed from the flow cell and placed in a Petri dish with the bead exposed surface facing up. 

The biochips were then rinsed with DI-water while the Petri dish was shaken slightly. This 

procedure was repeated three times to completely remove beads that were non-specifically 

attached to the surface (physisorbed beads). Following this step, the biochips were placed on 

glass slides and analyzed under an optical microscope (Zeiss, Axiotech) equipped with objective 

lenses of 5X, 10X, 20X, 50X and 100X and an ocular lens with a magnification of 10X. The 

microscope was able to operate in different modes such as differential interference contrast 

(DIC) and phase contrast. A CCD camera and the Infinity Capture software were used to take 

in-situ optical images of the biochips. The magnification of the images taken by the camera was 

the product of the magnification of the objective lens used in the microscope and supplemental 

10X digital enlargement. It should be noted that the same procedure was applied for microscopic 

analysis of bacteria immobilized on the surface of the biochips.  

We carried out extra tests in which the dynamics of immobilization of the beads on 

biofunctionalized surfaces of the biochips was investigated. For that purpose, bead suspensions 

at concentrations ranging from 5×102 to 5×106 beads/mL were injected into the flow cell for 

100 min at a flow rate of 10 µL/min. The biochips were imaged every minute with the optical 

microscope and the dynamics of the capture of streptavidin-coated microbeads on the 

biotinylated surfaces of GaAs samples was investigated. As presented in Figure 48 the number 

of beads immobilized on the surface increased with time for each concentration of bead 
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suspensions and detection of beads took more time for low concentrations of beads. We found 

that the total number of beads immobilized on 100 µm2 of surface varied from 1.2×10-3 to 200 

beads for the concentrations mentioned above over 100 min of the experiment. Figure 49 shows 

some examples of bead immobilization on the surface of the biochip exposed to 5×106 beads 

/mL at different stages of the experiment. The video of immobilization of the beads on the 

surface of the biochip during this period of time is available at 

https://www.researchgate.net/profile/Jan Dubowski.   

 

Figure 48. Time dependent surface density of streptavidin-coated microbeads immobilized on 

biofunctionalized surfaces of GaAs samples. 

 

Figure 49. Examples of optical images of microbeads immobilized on a functionalized GaAs 

biochip after 10 (a), 30 (b), 50 (c) and 100 (d) min exposure to a bead suspension at 5×106 

beads/mL which was injected into the flow cell at a flow rate of 10 µL/min. Scale bars 

correspond to 150 µm. 

https://www.researchgate.net/profile/Jan
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We also studied the effect of velocity of injection (flow rate) on the number of beads 

immobilized on GaAs surfaces. Figure 50 and Figure 51 show the number of beads immobilized 

on the GaAs surfaces for two concentrations of bead suspensions, 5×103 beads/mL and 5×102 

beads/mL, respectively, and for two velocities of injection, 10 µL/min and 50 µL/min. It was 

found that the total number of beads immobilized on the GaAs surface depended on the velocity 

of injection. Increasing the velocity of injection decreased the time for detection of the first 

bead, however, it decreased the total number of beads immobilized on the surface as well. The 

time for detection of the first bead in 5×102 beads/mL and 5×103 beads/mL was around 10 min 

for Vinjection= 50 µL/min. This time increased to around 30 min for Vinjection=10 µL/min. 

 

Figure 50. Time dependent surface density of streptavidin-coated microbeads immobilized on 

biofunctionalized surfaces of GaAs samples. The bead suspensions at 5×103 beads/mL were 

injected into the flow cell with different flow rates (10 µL/min and 50 µL/min). 

 

Figure 51. Time dependent surface density of streptavidin-coated microbeads immobilized on 

biofunctionalized surfaces of GaAs samples. The bead suspensions at 5×102 beads/mL were 

injected into the flow cell with different flow rates (10 µL/min and 50 µL/min). 
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Capturing of microbeads on GaAs surfaces could be considered as a model of immobilization 

of bacteria. The goal was to enhance the total number of bacteria immobilized in as short as 

possible time on GaAs. We noticed that for each concentration, the number of beads 

immobilized on the surface increased with time. Furthermore, increasing the velocity of 

injection helps to detect the beads in a shorter time, but excessive velocity of injection decreased 

the maximum number of beads that could be immobilized. Immobilization of 1 bead/100 µm2 

was observed in 25 min from a solution comprising 5 ×106 beads/mL. For bead concentrations 

< 105 beads/mL, it was impossible to observe 1 bead/100 µm2, even after a 100 min experiment. 

To make a more realistic model of bacterial immobilization on GaAs surfaces, we suggest to 

employ beads of smaller size (comparable to the size of bacteria). In addition, antigen-coated 

beads (Hilton and Parham 2013) and an antibody-based architecture, like the one used for 

capturing bacteria, could also be employed to create a more accurate model of bacterial 

immobilization.   

6.3 Development of an innovative photo-electrochemical biosensor 

An extensive examination of the PL effect in a series of GaAs/AlGaAs nano-heterostructures 

exposed to PBS and different PBS solutions with bacteria allowed us to observe the effect of 

PL-monitored photocorrosion of these materials. In order to specifically immobilize bacteria on 

the surface of the biochips, we functionalized the exterior layer of the GaAs/AlGaAs 

heterostructures with polyclonal antibodies directed against the bacteria. Irradiation of the 

heterostructure in an etching fluid using an illumination source, such as a laser, induced 

photocorrosion of this material. The photocorrosion rate depended on the power of the 

illumination source and the etching power of the fluid. We noticed that the photocorrosion rate 

was reducing as the surface concentration of immobilized bacteria was increasing. This 

observation led to the idea of an innovative biosensor based on photocorrosion of semiconductor 

nano-heterostructures. As it was explained in Sec. 6.1, the photocorrosion of III-V 

semiconductors strongly depends on the concentration of photo-excited surface holes. 

Therefore, immobilization of negatively charged bacteria decorated with positively charged 

counter ions on the surface of the biochip repels the photo-excited holes from the surface and 

slows down the photocorrosion process.  
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Figure 52 shows photo-chemical etching of a freshly etched GaAs/AlGaAs biochip and a 

biochip immersed in a 0.1% AS solution for 15 min. The GaAs/AlxGa1-xAs (x=0.35) 

heterostructure used in this study comprised a GaAs cap (10 nm thick) placed on top of a 

AlGaAs/GaAs microstructure. The AlGaAs layer located below the cap is 100 nm thick, and a 

500 nm thick epitaxial layer of GaAs was located below the AlGaAs. The PL of the samples 

immersed in PBS (1X) was recorded in situ using the HI-PLM.  

 

Figure 52.  In situ PL emission of freshly etched and AS treated biochips in PBS (1X). 

As the biochips are immersed in PBS and irradiated with a 532 nm laser (~30 mW/cm2) the 

photocorrosion process starts. This process is indicated by the presence of two peaks in the PL 

spectra of the samples. As the 10-nm thick cap layer of GaAs was etched away, the PL signal 

increased gradually to reach the maximum at 30 and 45 min for the freshly etched GaAs and AS 

treated samples, respectively. This was followed by the decrease of the PL signal, which 

corresponds to the situation where the AlGaAs electrodes are gradually exposed to PBS. The 

appearance of the second PL peak in these plots was related to the presence of the second GaAs 

layer that was revealed by the photo-etching process. These results illustrate that the photo-

etching process of a freshly etched GaAs is significantly faster than that of S-coated GaAs. We 

argue that the electrons donated by the S atoms were partially responsible for flattening the 

GaAs band structure near the surface, which resulted in reduced surface concentration of h+ and, 

consequently, in a reduced photo-etching effect. Following this observation, we hypothesized 
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that postprocessing of antibody-coated biochips with AS would increase the photonic stability 

of the biochips in PBS solution and allow detection of bacteria at low concentrations. We 

employed the photocorrosion of GaAs/AlGaAs biochips functionalized with antibody 

molecules and postprocessed with AS to detect E. coli suspended in PBS (1X) at an attractive 

limit of detection of 103 CFU/mL (See Chapter 3 for more information).   

It should be noted that for each 2 h long biosensing run discussed in Chapter 3, we employed a 

new GaAs/AlGaAs biochip. According to the feasibility of revealing the second layer of GaAs 

in PL measurements (see Figure 52), it might be possible to carry out two biosensing runs with 

just one biochip. For that purpose, after finishing the first experiment, the biochip should be 

completely photocorroded to reach the second GaAs layer. By biofunctionalization of the new 

GaAs layer, a second biosensing run could be carried out. Employing a heterostructure with 

many heterojunctions, such as the heterostructure used in Chapter 6, would make it possible to 

carry out more biosensing runs. 

These results, along with some other results obtained by QS group members, contributed to the 

data that supported a patent application aiming to protect the original idea of a photocorrosion-

based biosensor (Dubowski et al. 2015).  

6.4 Growth of E. coli on GaAs (001) surfaces (optical microscopy 

data) 

In our attempt to develop a GaAs-based biosensor to monitor growth and antibiotic 

susceptibility of bacteria, we investigated the growth of E. coli on bare and biofunctionalized 

surfaces of GaAs (001) samples. It has been reported that some of the common semiconductors 

such as GaAs and AlGaAs have toxic effects and their toxicity is related to the presence of both 

As and the counter-elements of As, such as Ga (Tanaka 2004). However, some bacteria have 

plasmids carrying arsenic resistance determinants (ars) which make them resistant to arsenic 

(Paez-Espino et al. 2009). Diorio et al. (Diorio et al. 1995) discovered a chromosomal arsenic-

induced ars operon in E. coli which makes these bacteria resistant to arsenic at concentrations 

lower than 0.2 mg/mL. Gallium has recently been found to present antimicrobial activity against 
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both gram-negative and gram-positive bacteria such as Pseudomonas aeruginosa and S. aureus 

(DeLeon et al. 2009; Rzhepishevska et al. 2011). The reason is that the ionic radius of the 

gallium ion (Ga3+) is similar to ferric iron (Fe3+), so Ga3+ could easily replace Fe3+ in bacterial 

metabolism. Since Ga3+ cannot reduce, unlike Fe3+, it would block the reactions where a reduced 

form of Fe3+ (Fe2+) is required (DeLeon et al. 2009). Due to the antimicrobial effect of Ga, some 

researchers have suggested adding Ga to antibiotics such as gentamicin to increase the activity 

of the antibiotics (Halwani et al. 2008). 

In one of our experiments, bare and biofunctionalized GaAs (001) samples were placed upside 

down on Nutrient agar plates inoculated evenly with 105 CFU/mL of a freshly cultured E. coli 

suspension and kept in darkness at 37° C for up to 8 hours. The GaAs samples were 

biofunctionalized with HDT and biotinylated PEG thiols, neutravidin and biotinylated 

polyclonal antibodies (see Sec. 4.3.2.1 for more information). The reason for using neutravidin 

in this bio-architecture instead of streptavidin is that neutravidin offers lower non-specific 

binding compared with streptavidin (ThermoFisherScientific 2016). Every hour one of the bare 

samples and one of the antibody-coated samples were removed from the agar plate and analyzed 

under the optical microscope. We found that the presence of GaAs samples on the agar plate did 

not inhibit bacterial growth and bacteria were able to grow next to either bare or 

biofunctionalized surfaces of GaAs. Figure 53 and Figure 54 show examples of optical images 

of bare and antibody-coated GaAs samples, respectively, after 1, 4 and 8 hours of incubation on 

the agar plate. As it is exemplified in these figures, the number of bacteria that grew next to the 

biofunctionalized samples was higher than the number that grew next to the bare samples, 

however, after 8 hours, the surface of both samples was almost completely covered with 

bacteria. The time dependent surface density of immobilized bacteria on the bare and 

functionalized surfaces of GaAs was fitted with exponential curves, as shown in Eq. (6.2). The 

doubling time of bacteria on the surface of the samples was also estimated using Eq. (6.3). 

Further discussion of this study is presented in Chapter 4. 

0 max 0exp( ( ))tX X U t t   
         (6.2) 
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Figure 53. Examples of optical images of E. coli immobilized on bare GaAs (001) samples after 

1 (a), 4 (b) and 8 (c) hours of exposure of the samples to the Nutrient agar plate inoculated 

evenly with 100 µL of 105 CFU/mL of E. coli. The presence of bare GaAs samples in the 

Nutrient agar plate did not inhibit the bacterial growth. The scale bars correspond to 10 µm.  

 

Figure 54. Examples of optical images of E. coli immobilized on biofunctionalized GaAs (001) 

samples after 1 (a), 4 (b) and 8 (c) hours of exposure of the samples to the Nutrient agar plate 

inoculated evenly with 100 µL of 105 CFU/mL of E. coli. The presence of biofunctionalized 

GaAs samples in the Nutrient agar plate did not inhibit the bacterial growth. The scale bars 

correspond to 10 µm. 

In another study, biofunctionalized GaAs (001) samples were kept in a flow cell and exposed 

for 30 min to freshly cultured E. coli suspension and then for 4.5 h to Luria Bertani broth (LB). 

The biochips were kept in darkness at 37° C during these experiments. The bacteria were 

immobilized specifically on the GaAs samples functionalized with MHDA-EDC/NHS-Ab. The 

bacteria were also captured non-specifically on the GaAs samples functionalized with MHDA-

EDC/NHS which is a simpler bio-architecture compared with MHDA-EDC/NHS-Ab. The 
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functionalization procedure of the samples has been described in Sec. 4.3.2.2 and Sec. 4.3.2.3. 

To investigate the growth of bacteria on GaAs surfaces, the samples were analyzed after 30 min 

of exposure to bacterial suspensions and after an additional 4.5 h of exposure to LB. It was 

revealed that bacteria were able to grow on the surface of both samples if their initial 

concentration was at least 105 CFU/mL. However, the initial capture and the growth rate of 

bacteria depended on the bio-architectures used to capture bacteria. Figure 55 and Figure 56 

show examples of GaAs samples functionalized with MHDA-EDC/NHS and MHDA-

EDC/NHS-Ab, respectively, after 30 min of exposure to a 106 CFU/mL suspension of E. coli 

and after 4.5 h growth of bacteria in LB medium. As it is exemplified in these figures, the initial 

capture and the subsequent bacterial growth on Ab-coated surfaces was higher than on 

functionalized surfaces without Ab. The detailed discussion of this study is presented in Chapter 

4.  

 

 

Figure 55.Microscopic images of bacteria directly immobilized on the MHDA-EDC/NHS 

functionalized surface of GaAs (001) exposed to a 106 CFU/mL solution of E. coli for 30 min 

(a) and after 4.5 h growth of bacteria in LB medium (b). The scale bars correspond to 10 µm. 
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Figure 56. Microscopic images of bacteria immobilized on the MHDA-EDC/NHS-Ab 

functionalized surface of GaAs (001) exposed to a 106 CFU/mL solution of E. coli for 30 min 

(a) and after 4.5 h growth of bacteria in LB medium (b). The scale bars correspond to 10 µm.  

6.5 PL emission of GaAs/AlGaAs biochips in growth medium 

In order to evaluate growth and antibiotic susceptibility of bacteria using PL of GaAs/AlGaAs 

heterostructures, investigation of PL emission of these samples in growth medium is necessary.  

The wafer used in this study comprised 30 pairs of 6 nm thick GaAs quantum wells (QW) and 

10 nm thick AlGaAs barriers grown on a 500 nm thick buffer layer of GaAs that was deposited 

on a semi-insulating GaAs (001) substrate. The QW architecture was capped with a 10 nm thick 

GaAs layer. The schematic illustration of the wafer structure is presented in Sec. 5.3.1. The 

biochips were biofunctionalized with HDT and biotinylated PEG thiols, neutravidin and 

biotinylated antibodies, following the procedure described in Sec. 5.3.2. The biofunctionalized 

samples were then kept in a flow cell (the flow cell is explained in Chapter 4) and exposed to 

PBS (1X) for 30 min and then to LB medium. Figure 57 shows PL emission of the samples 

recorded with the QSPB reader. The PL measurements were carried out for the samples 

irradiated with a LED at 660 nm with a power of 35 mW/cm2 for different duty cycles (DC). As 

presented in Figure 57, the photocorrosion rate of the biochips and presence of the PL maximum 

depended on the DC of irradiation. When the time of exposure of the biochip to the LED light 

increased, for instance 10s/60s compared with 6s/60s, the number of photons irradiating the 

biochip and the number of photo-excited holes increased as well. Since holes are responsible 

for initiation and progression of the photocorrosion process, by increasing the number of photo-

excited holes the photocorrosion process is accelerated and, consequently, the position of the 
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PL maximum is advanced. These experiments showed that the photocorrosion of GaAs/AlGaAs 

heterostructures in LB medium is qualitatively similar to what was observed in PBS (1X). We 

selected a DC of 6s/60s for our experiments where the biochips were exposed to bacteria and 

LB with or without antibiotics and the PL emission of the samples was recorded to evaluate 

growth and antibiotic susceptibility of bacteria (see Chapter 5).   

 

Figure 57. Normalized PL intensity for the biofunctionalized GaAs/AlGaAs samples irradiated 

in LB medium with a LED light at 660 nm with power of 35 mW/cm2 and for different duty 

cycles. 

6.6 PL monitoring of bacterial growth at room temperature  

Growth of freshly-cultured E. coli K12 at an initial concentration of 107 CFU/mL on 

biofunctionalized surfaces of GaAs/AlGaAs biochips was investigated. The wafer used in this 

study was the same as the one employed in the previous section. The 2 mm × 2 mm biochips 

were biofunctionalized with HDT and biotinylated PEG thiols, neutravidin and polyclonal 

biotinylated antibody following the procedure described in Sec. 5.3.2. The polyclonal 

biotinylated antibody used in this experiment recognized O and K antigenic serotypes of E. coli. 

After the functionalization step, the biochips were kept in a flow cell (the flow cell is explained 

in Chapter 4) and exposed to bacteria suspended in PBS (1X) at pH 7.4 for 30 min. Following 

that, LB medium was injected into the flow cell to stimulate the bacteria to grow. The biochips 

were exposed to LB medium for 4.5 h. The PL of the biochips was recorded during this period 
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at room temperature with the QSPB reader. The samples were irradiated at 660 nm with power 

of 35 mW/cm2 and duty cycle of 6s/60s. As a reference experiment, the PL of the biochips 

exposed to PBS (1X) for 30 min (instead of bacterial suspension) and LB medium for 4.5 h was 

also studied. To investigate the growth of bacteria, the biochips were analyzed with the optical 

microscope after 30 min of exposure to the bacterial suspension and after 4.5 h of bacterial 

growth in LB medium. Figure 58 shows PL emission of the biochips exposed to PBS (1X) with 

or without bacteria and LB medium. Examples of optical images of the biochips exposed 30 

min to bacteria followed by 4.5 h of exposure to LB are shown in Figure 59. According to Figure 

58, the PL maximum for the biochip exposed to bacteria and LB was observed at around 135 

min and was delayed compared to that of one exposed to PBS and LB. Based on the optical 

images, the bacteria initially covered the surface of the biochip with an average density of 

410±112 bacteria/mm2 and the coverage of the surface with bacteria following 4.5 h of exposure 

to LB was just increased to 500±121 bacteria/mm2. It was expected that exposure of the bacteria 

to LB would increase the density of bacteria on the biochip, but numbers of bacteria only 

increased marginally compared to the seeded density after 4.5 in LB. The reason for observing 

no bacterial growth could be related to the toxicity of Ga and As ions (Podol'skaia et al. 2002; 

Rzhepishevska et al. 2011; Tanaka 2004) released from the biochips. The release of these ions 

is the consequence of the photocorrosion of GaAs/AlGaAs samples, as shown in Eq. (6.1) 

(Ruberto et al. 1991). The presence of an earlier PL maximum for the biochip exposed to PBS 

compared with that of one exposed to bacteria could be explained by the effect of bacteria 

induced retardation of the photocorrosion process resulting in postponing the PL maximum, as 

explained in Sec. 6.1. 
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Figure 58. Normalized PL intensity for the biochips exposed to PBS (1X) without or with E. 

coli K12 and LB medium. The PL measurements were carried out at room temperature. 

  

(a) (b) 

Figure 59. Microscopic images of bacteria immobilized on the functionalized surfaces of 

GaAs/AlGaAs biochips exposed to a 107 CFU/mL solution of E. coli for 30 min (a) and after 

4.5 h growth of bacteria in LB medium (b). The scale bars correspond to 10 µm.  

It should be mentioned that while in darkness we were able to observe bacterial growth on GaAs 

surfaces for bacterial concentrations of at least 105 CFU/mL, no growth was observed for a 

bacterial concentration of 107 CFU/mL when irradiated biochips were used. As discussed 

before, the likely reason for this behavior is a poisonous effect of As and Ga ions released by 

the photocorroding biochip to the flow cell that could affect the viability and/or growth of 
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bacteria (Podol'skaia et al. 2002; Rzhepishevska et al. 2011; Tanaka 2004). Since the rate of 

photocorrosion of the biochips is higher under irradiation compared with darkness, the release 

of As and Ga ions into the flow cell would be higher in this situation, therefore, it will be 

necessary to work with a higher concentration of bacteria in order to observe their growth, e.g., 

2×108 CFU/mL. It should be noted that for the concentration of 107 CFU/mL the surface 

coverage with bacteria was around 400 bacteria/mm2 while for the concentration of 2×108 

CFU/mL around 900 bacteria/mm2 were observed immobilized on the biochip surface (see 

Chapter 5). The minimum concentration of bacteria required in photonic evaluation of bacterial 

reactivity to antibiotics could be reduced by improving surface functionalization techniques and, 

consequently, increasing the initial coverage of the surface with bacteria. Alternatively, methods 

could be devised to reduce the toxic effects of Ga and As like adding protective amounts of Fe 

ions to the LB or adding ions that would selectively precipitate Ga and/or As. In addition, some 

methods such as electrophoresis, chemotaxis and filtration could be integrated with this method 

to concentrate the bacteria on the surface of the biochip and make the biosensor operate at lower 

concentrations of bacterial suspensions. In the filtration method, bacteria are passed through 

filters with different pore sizes and selectively separated from solution (Bobbitt and Betts 1992). 

This technique could be applied in the biosensing field to improve limit of detection (LOD) of 

biosensors. Following filtration, bacteria would be separated from other particles, concentrated 

and then exposed to the biosensors. In this technique a calibration curve is needed to correlate 

the concentration of the filtered suspension to the concentration of the suspension before 

filtration. Although the biosensor would be exposed to the concentrated suspension of bacteria, 

the initial concentration of bacteria before filtration, which had been lower than the filtered 

suspension, would be considered as the LOD of the biosensor. Bernhardt et al. (Bernhardt et al. 

1991) employed a 0.22-micron membrane filter to separate E. coli and S. aureus from human 

blood and then applied a plate counting method to detect these bacteria. More recently, Wu et 

al. (Wu et al. 2016) combined a filtration method with surface-enhanced Raman spectroscopy 

(SERS) to detect Salmonella from cantaloupe cubes and E. coli O157:H7 from lettuce. They 

showed that adding the filtration procedure to their SERS method could significantly improve 

the LOD of the biosensor, e. g., a LOD of 100 CFU/mL was reported for Salmonella.  
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Chemotaxis is a process in which organisms, such as bacteria, change their speed or alter the 

frequency of turning of their flagella in response to a chemical stimulus. This process allows 

bacteria to move towards a nutrient, or move away from a noxious chemical (Hauri and Ross 

1995). Hassen et al. (Hassen et al. 2016) employed chemotaxis to attract E. coli or L. 

pneumophila towards the surface of functionalized GaAs samples  and increase immobilization. 

They attached the enzyme beta-galactosidase to the surface of the biochips included its 

substrate lactose in the growth medium in order to produce a gradient of glucose/galactose in 

the vicinity of the GaAs samples to attract bacteria towards the surface. Since the sensitivity of 

GaAs-based biosensors used for bacterial detection depends on the number of bacteria 

immobilized on their surfaces (Aziziyan et al. 2016; Duplan et al. 2011; Nazemi et al. 2015), 

chemotaxis could help to concentrate the bacteria on the surface or in the vicinity of the 

biosensors and enhance the sensitivity of these devices.  

Electrophoresis is the mechanism in which charged particles, such as bacteria, are exposed to 

an electric field and affected by electrostatic forces which results in movement of the particles 

in a specific direction. This method has many applications such as DNA and protein analysis 

(Badcock and Editor 2012). In 1995, capillary electrophoresis (CE) was first combined with 

biosensing technology (Zhou et al. 1995). In this approach, the CE unit was coupled to the 

biosensor and caused the desired analytes to move towards the biosensor and allow specific 

detection (Bossi et al. 2000). For instance, Zhou et al. (Zhou et al. 1995) employed a CE/laser 

induced fluorescence (LIF) system to detect aspartate and glutamate. Chen et al. (Chen et al. 

2005) coupled an amperometric biosensor to a CE system to detect glucose.  

6.7 PL monitoring of bacterial growth at 37° C 

To accelerate bacterial growth, all the steps of the previous test (Figure 58) were repeated at 37° 

C. During the PL measurements, the flow cell was placed on a heater whose temperature was 

set at around 37° C. Figure 60 shows PL emission of the biochips exposed to PBS (1X) with or 

without bacteria followed by LB medium. Examples of optical images of the samples after 30 

min of exposure to the bacteria and after 4.5 h of bacterial growth in LB medium are presented 

in Figure 61. As expected, bacteria grew at 37°C at a higher rate and the number of bacteria 
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immobilized on 1 mm2 of the surface increased from 410±112 to 849±123. However, heating 

the biochips resulted in acceleration of the photocorrosion process. In spite of the growth of 

bacteria on the surface of the biochip in this experiment, no difference was observed in the 

position of the PL maximum for the biochip exposed to bacterial suspension with that of one 

exposed to PBS (1X). It is was interesting that while at room temperature only the first PL 

maximum was observed within 5 hours, we were able to distinguish two PL maxima at 37° C. 

At 37° C, both the 10 nm thick GaAs cap layer and the first 10 nm thick AlGaAs layer were 

photocorroded as evidenced by PL maxima. The second PL maximum corresponded to the 

second layer of GaAs which was revealed during the photocorrosion process.  

To operate the biosensor at 37° C, the power of the irradiation light and/or the exposure time of 

the biochips to the light should be reduced to moderate the photocorrosion rate. Working at 37º 

C which is the optimum temperature for growth of E. coli would enable us to monitor the 

antibiotic sensitivity of bacteria in a shorter period of time and, perhaps, for lower bacterial 

concentrations. 

 

Figure 60. Normalized PL intensity for the biochips exposed to PBS (1X) without or with E. 

coli K12 and LB medium. PL measurements were carried out at 37° C. 
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(a) (b) 

Figure 61. Microscopic images of bacteria immobilized on the functionalized surfaces of 

GaAs/AlGaAs biochips exposed to a 107 CFU/mL solution of E. coli for 30 min (a) and after 

4.5 h growth of bacteria at 37° C in LB medium (b). The scale bars correspond to 10 µm.  

6.8 Zeta potential measurements of bacteria 

We applied the electrophoresis method to measure the zeta potential of freshly-cultured, UV-

treated, ciprofloxacin-treated (concentration of ciprofloxacin: 10 µg/mL) and penicillin-treated 

(concentration of penicillin: 50 µg/mL) E. coli K12 suspended in PBS (1X) at a concentration 

of 108 CFU/mL. Zeta potential ( ) is a parameter defined for dispersed particles that shows 

the electrostatic potential at the location of the slipping layer of the fluid attached to the particles 

(Sze et al. 2003). The magnitude of the zeta potential demonstrates the stability of the particles 

in the dispersion medium, therefore, zeta potential analysis is of great importance in various 

fields of science. To measure zeta potential, using the electrophoresis technique, particles are 

suspended in a solvent with a refractive index of n, dielectric constant of ε and viscosity of η. 

The particles are then exposed to an electric field (E) and their mobility is measured under the 

influence of the electric field by using the Doppler effect. For this purpose, a laser light with 

wavelength of λ and frequency of ν0 irradiates the particles and the scattered light with a 

frequency of ν0+νd at the angle of θ is measured (see Figure 62). The mobility of the particles 

was calculated following Eq. (6.4) (Shimko et al. 2014), 

.

2. . .Sin( / 2)
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                  (6.4) 

The zeta potential of the particles is then calculated following Eq. (6.5), 
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where f (ka) is henry coefficient which is normally either 1.5 or 1.0.  

 

Figure 62. Schematic illustration of a zeta potential analyzer used to measure zeta potential of 

particles by the electrophoresis method.  

Figure 63 shows the zeta potential of live, UV-treated and antibiotic-treated bacteria. According 

to this Figure, the zeta potential of freshly-cultured and UV-treated bacteria are comparable, 

while the absolute value of the zeta potential of antibiotic-treated bacteria is significantly lower 

than freshly-cultured bacteria. These data are in good agreement with the literature concerning 

the considerable decrease of the absolute value of the zeta potential of bacteria treated with 

different antimicrobial agents (Alves et al. 2010; Nomura et al. 1995).  
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Figure 63. Zeta potential of freshly-cultured, UV-treated, penicillin-treated and ciprofloxacin-

treated E. coli K12 in PBS (1X). Each experiment was repeated three times to obtain average 

values with standard deviations.  

6.9 PL measurement of Si3N4-coated GaAs/AlGaAs biochips in PBS 

(1X) 

The PL emission of Si3N4-coated GaAs/AlGaAs biochips in PBS (1X) was investigated. A 40 

nm thick Si3N4 layer was deposited on a GaAs/AlGaAs wafer using the PECVD technique. The 

wafer used in this study was the same as the one used in Sec. 6.5. The Si3N4-coated samples 

were cleaned with OptiClear, acetone and isopropanol in an ultrasonic bath (5 min for each). 

Following this step, the samples were dried under a flow of high-purity compressed nitrogen 

and etched in a HF solution (2.5%) for 15 seconds. The samples were then incubated in a 25% 

solution of glutaraldehyde for 1 hour at room temperature. This step was done to provide 

covalent binding of unconjugated antibodies on the surface of the biochip through the formation 

of imine bonds (Barrios et al. 2008). Thereafter, the samples were rinsed with PBS (1X) and 

immersed in a 1 µM solution of polyclonal unconjugated antibodies against E. coli for 1 hour at 

room temperature. The antibody-coated samples were then rinsed with PBS (1X) and DI-water. 

Following this step, the samples were kept in a flow cell (the flow cell is explained in Chapter 

4) and exposed to PBS (1X) of pH 7.4. The PL of the samples was recorded with the QSPB 

reader for around 20 hours. The biochips were irradiated with a power of 35 mW/cm2 and a duty 

cycle of 6s/60s. According to the PL measurement, no photocorrosion occurred for the sample 

and the PL was stable for a period of 20 hours with variation of less than 3% during this time. 
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This PL stability is, no doubt, due to the efficient passivation of the surface of the biochip with 

Si3N4 that prevents photocorrosion of the biochip.  

In the next experiment, after initial exposure of the biochip to PBS (1X), a suspension of E. coli 

at 105 CFU/mL was injected into the flow cell. After injection of the bacterial suspension the 

PL signal decreased to less than 3% and then recovered to the previous level. The follow-up of 

this work could be decreasing the thickness of the Si3N4 layer to decrease the stability and 

increase the sensitivity of the biochip. 

6.10 Enumeration of bacteria immobilized on the surface of the 

biochips using fluorescence microscopy 

Bacterial immobilization on the surface of biofunctionalized GaAs samples was investigated 

using an Olympus IX71 fluorescence microscope which was equipped with a xenon arc lamp 

emitting at 470 and 490 nm. The microscope was connected to a DP71 digital camera and in-

situ fluorescence images of the samples were taken by using Q-capture software. The GaAs 

samples were biofunctionalized with HDT and biotinylated PEG thiols, neutravidin and 

biotinylated antibody, following the procedure described in Sec. 5.3.2. Following this step, the 

samples were kept in a flow cell (the flow cell is explained in Chapter 4) and exposed for 30 

min to bacterial suspensions ranging from 103 to 105 CFU/mL. Thereafter, PBS (1X) at pH 7.4 

was injected into the flow cell to wash away the physisorbed bacteria. Following this step, 

fluorescent antibody against E. coli at a concentration of 1 µM was injected into the flow cell to 

bind to the bacteria. The samples were exposed to the fluorescent antibody for 1 hour in darkness 

and then rinsed with DI-water prior to counting bacteria with the fluorescence microscope. The 

fluorescent images were analyzed with ImageJ software and the number of bacteria immobilized 

on the samples was calculated for each concentration of bacteria, as presented in Figure 64. 

According to this figure, the number of bacteria immobilized on the surface of the biochips was 

low at each concentration of bacteria, e. g., as low as 30 bacteria/mm2 for 103 CFU/mL. It is 

possible that the fluorescence microscope underestimated the number of bacteria. The reason 

might be related to the inefficiency of the antibody to bind to all of the bacteria. It is also possible 

that the fluorescence intensity of some of the labelled bacteria was too low and these bacteria 

were not counted in the data analysis. However, it should be noted that we might have 
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overestimated of the number of E. coli bacteria using the optical microscope due to the counting 

of bacteria which were not E. coli but had grown in the growth medium. 

 

Figure 64. Number of bacteria immobilized on 1 mm2 of GaAs samples for different 

concentrations of E. coli. 
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CHAPTER 7: Conclusions and perspectives 

In the fields of microbiology and medicine it is important to monitor the biological activities of 

bacteria exposed to specific environments. The conventional methods used for evaluation of 

antibiotic susceptibility of bacteria are mostly culture-based techniques which are time-

consuming and cannot provide same-day results. This delay leads to overtreatment of a wide 

range of infections which is costly and sometimes inefficient in the case of viral infections. The 

inappropriate and untargeted use of antibiotics leads to antibiotic resistance and this problem is 

a significant issue for public health (Gootz 2010). Therefore, a sensitive, rapid and low-cost 

method for detection of the growth and antibiotic susceptibility of bacteria is needed to improve 

the phenotypic assay procedures used in pharmaceutical fields. 

In this thesis we have developed a PL-based method to monitor growth and antibiotic 

susceptibility of bacteria immobilized on the surface of biofunctionalized quantum 

semiconductors. The approach of this project was based on measuring the PL signal which, for 

specially designed QS microstructures, is highly sensitive to the amount of electric charge 

accumulated on the surface of such microstructures. We noticed that bacteria growing on the 

surface of biofunctionalized GaAs/AlGaAs biochips affected the PL of these structures in a way 

different from antibiotic-treated or UV-killed bacteria. Thus, following this method we were 

able to distinguish antibiotic-resistant and antibiotic-sensitive bacteria in less than 3 hours. 

Applying the PL emission of semiconductors to study bacterial reactions to antibiotics is a 

relatively new approach, therefore, it has several challenges that are discussed in the following 

paragraphs. 

The first challenge in our work was to find an efficient bio-architecture to immobilize bacteria 

on the surface of GaAs/AlGaAs biochips. Since the sensitivity of the proposed biosensor 

depends on the density of bacteria immobilized on its surface, the efficiency of concentrating 

bacteria on the surface or in the vicinity of the biosensor is of great importance. The second 

challenge was to monitor the effect of bacterial immobilization on the PL emission of 

GaAs/AlGaAs biochips. After that, we had to investigate the growth of bacteria immobilized on 

the surface of these structures. Due to the toxicity of Ga and As (DeLeon et al. 2009; 
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Rzhepishevska et al. 2011; Tanaka 2004), we had to determine the minimum number of bacteria 

required to permit growth on the surface of the biochips when the samples were kept in darkness 

or irradiated with a laser (Which increases the release of Ga and As). The last challenge of the 

work was to investigate the capability of the PL monitoring method to detect the growth and 

antibiotic susceptibility of bacteria. We had to study if this method is sensitive enough to 

distinguish antibiotic-resistant from antibiotic-sensitive bacteria. 

In the first phase of the project a novel photo-electrochemical biosensor was developed to 

rapidly detect E. coli suspended in PBS (1X). The sensor comprises a PL emitting 

GaAs/AlGaAs heterostructure, with GaAs as its cap layer, which undergoes photocorrosion 

when illuminated by a laser. The photocorrosion rate of GaAs and AlGaAs layers depended on 

the power of the laser and the electrolyte in which the heterostructure was irradiated, such as 

PBS, water, or LB broth. Photocorrosion was also influenced by the amount of the electric 

charge immobilized on, or in the vicinity of the surface of the heterostructure. Therefore, 

monitoring photocorrosion of the heterostructure by using PL emission of a photoluminescent 

material in the heterostructure would enable us to detect charged molecules, such as bacteria, in 

the electrolyte and determine their concentrations.  

The photocorrosion of GaAs strongly depends on the presence of positively charged minority 

carriers (h+) on the surface of this material (Choi et al. 2002; Ruberto et al. 1991). In our 

experiments where GaAs/AlGaAs biochips were immersed in an electrolytic solution and 

irradiated with photons, photo-holes were formed near the surface of GaAs which contributed 

to the formation of surface oxides dominated by Ga2O3 (Choi et al. 2002). It is the formation of 

that oxide that reduced the density of surface states and decreased the SRV of electrons and 

holes which led to the increasing intensity of the PL signal emitted by GaAs surrounded by an 

aqueous solution, as reported (Passlack et al. 1995). The surface oxides were dissolved into 

solution as the GaAs photocorroded. As the GaAs cap material photocorroded, a new interface 

with AlGaAs was formed, which led to a quickly decreasing PL signal and formation of a 

maximum on the temporal dependent PL signal. The formation of this maximum could be 

accelerated or delayed depending on the electrostatic interaction between the semiconductor and 

molecules immobilized in its vicinity. If an electron-donating molecule arrives at the GaAs 
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surface, that extra electron will replace the electron that came from the bulk of GaAs. 

Consequently, the band bending near the surface will decrease (the near surface electric field 

will become weaker) (Zhang and Yates 2012) and there will be less photocorrosion-inducing 

photo-holes that could arrive to the surface. It should be noted that the surface of most bacteria 

is negatively charged at pH greater than 4 (Poortinga et al. 2002). When bacteria are suspended 

in a solution, like PBS (1X), the bacterial surface would be surrounded by positively charged 

counter ions present in the solution. Since the GaAs investigated in our work behaved at room-

temperature as an n-type material, immobilization of bacteria decorated with positively charged 

ions on the surface of the biochip should contribute to a reduced transport of photo-excited holes 

to the surface and decrease the photocorrosion rate of the GaAs/AlGaAs biochips (delay the 

formation of the characteristic PL maximum). We observed, as shown in Figure 26, Figure 39 

and Figure 40, that the greater the bacterial concentration, the more the PL maximum was 

delayed and, no doubt, the slower would have been the photocorrosion rate.  

To immobilize bacteria, the exterior layer (cap layer) of the heterostructure was functionalized 

with a network of biotinylated antibodies interfaced with biotinylated PEG and HDT thiols 

through the link provided by neutravidin (b-PEG/HDT/NA/b-Ab). To increase the photonic 

stability of our biochips in biological environments and to improve the sensitivity of our 

biosensor, the biofunctionalized biochips were postprocessed with AS. It has been suggested 

that postprocessing of SAM-coated GaAs samples with a solution of 20% AS for 15 min 

increases the concentration of sulfur atoms reacting with Ga and As and improves the surface 

passivation of GaAs samples (Arudra et al. 2012). Consequently, the photonic stability of these 

biochips was enhanced in aqueous solutions (Arudra et al. 2012). We confirmed this observation 

for AS solutions at much lower concentrations (0.1%) by showing that this postprocessing 

caused delayed PL maxima for freshly etched GaAs and helped us to discover that a slowly 

proceeding photocorrosion becomes sensitive to the electric charge of surface immobilized 

bacteria (Dubowski et al. 2015). Consequently, we could detect live E. coli K12 at a detection 

limit of 103 CFU/mL which was improved from the previously reported 104 CFU/mL (Duplan 

et al. 2011). This method has the potential to lead to effective detection of bacteria at 

∼1 CFU/mL. Indeed, improving surface functionalization techniques, such as optimization of 

the amount of antibodies, or applying techniques such as filtration (Wu et al. 2016), chemotaxis 
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(Hassen et al. 2016) and electrophoresis (Bossi et al. 2000) could help to bring more bacteria to 

the surface of the biochip and might result in detection of lower concentrations of bacteria. A 

variety of filtration methods could be applied to concentrate bacterial suspensions (this method 

is currently employed in our lab to concentrate bacterial suspensions such as E. coli 

suspensions). By exposing the biochips to the concentrated bacteria, lower concentrations of 

bacteria would be detectable by our proposed biosensor. Chemotaxis is another technique which 

could help to immobilize more bacteria on the surface and improve LOD of the biosensor. It has 

been reported that producing a gradient of glucose in the vicinity of the GaAs biochip helps to 

bring more bacteria toward the surface (Hassen et al. 2016). They employed MUDA/EDC-

NHS/Ab/bovine serum albumin (BSA)/β-galactosidase and b-PEG/MHDA/EDC-NHS/β-

galactosidase/BSA/NA/b-Ab bio-architectures to create such a gradient. Electrophoresis is 

another approach which could be applied in our scheme to improve LOD of the biosensor. Since 

bacteria are electrically charged, a capillary electrophoresis (CE) unit (Bossi et al. 2000) could 

be coupled to our biosensor to separate bacteria and concentrate them before being injected into 

the flow cell. Another suggestion to improve LOD of the biosensor is modification of the flow 

cell (Chen et al. 2007; Jha et al. 2011; Jiang et al. 2014) in which the biochips are exposed to 

bacterial suspensions. An optimized flow cell should be designed to decrease laminar flow of 

bacteria and enhance number of bacteria captured by the biochips. The bacterial suspension 

could also be circulated over the surface of the biochips. Following this approach, bacteria 

would have more time to be captured by the biofunctionalized surface of the biochips and the 

number of bacteria immobilized on the surface would probably increase.   

In the second phase of the project, we investigated the capture and growth of E. coli on bare and 

biofunctionalized surfaces of GaAs (001) and gold. We found that placing GaAs (001) samples 

on a Nutrient agar plate inoculated evenly with 105 CFU/mL of bacterial suspension did not 

inhibit bacterial growth, and bacteria were able to grow next to either bare or biofunctionalized 

surfaces of GaAs samples. In addition, it was revealed that bacteria can grow on the surface of 

biofunctionalized GaAs (001) samples when the samples were kept in a flow cell and exposed 

to bacteria and growth medium. However, no bacterial growth was observed on the GaAs 

surfaces in the flow cell when bacterial suspensions were employed at concentrations lower than 

105 CFU/mL. This minimum threshold might be related to the toxicity of Ga or As ions released 
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from the GaAs wafers (Tanaka 2004) and distributed into the flow cell. At concentrations lower 

than 105 CFU/mL, the number of Ga and/or As ions per bacteria might be greater than the 

number of bacterial protective molecules such as siderophores or Fe ions, reach toxic levels, 

and affect bacterial viability and/or growth. At higher bacterial concentrations, the amount of 

Ga or As ions per bacteria might be lower than the bacterial capacity to neutralize them and thus 

not affect bacterial growth. Moreover, the reason for observing no bacterial growth for 

concentrations lower than 105 CFU/mL might also be related to the inhibition of bacterial 

growth by the antibodies used to capture the bacteria (Chalghoumi et al. 2009; Lin et al. 1998).  

We employed two architectures based on PEG and MHDA thiols. In the first case, b-

PEG/HDT/NA/b-Ab bio-architecture was used and in the second case, we employed EDC and 

NHS linkers to directly bind E. coli or to facilitate covalent binding of antibodies to the 

carboxyl-functionalized surface (MHDA/EDC-NHS or MHDA/EDC-NHS/Ab). It was 

observed that bacteria can grow on both architectures, however, the bacterial coverage and the 

bacterial growth rate were higher for the antibody coated surfaces than non-antibody coated 

ones. We also investigated the efficiency of two antibody-coated architectures, MHDA/EDC-

NHS/Ab and b-PEG/HDT/NA/b-Ab, in terms of initial capture of bacteria. We noticed that the 

surface coverage with bacteria was higher on b-PEG/HDT/NA/b-Ab than MHDA/EDC-

NHS/Ab for comparable concentrations of bacteria. Non-specific capture of bacteria with 

neutravidin might bias the b-PEG/HDT/NA/b-Ab approach.   

By increasing the initial coverage of the surface with bacteria, it is possible that we could be 

able to observe bacterial growth with concentrations lower than 105 CFU/mL. The reason is that 

by increasing the number of bacteria immobilized on the surface, the ratio of Ga or As per 

bacteria decreases and, consequently, the dose might not reach the toxic levels. In addition, 

bacteria would be able to communicate with each other and promote other cells to grow. As 

explained before, increasing the surface coverage with bacteria could be achieved by applying 

some techniques such as chemotaxis (Hassen et al. 2016), filtration (Wu et al. 2016) or 

electrophoresis (Bossi et al. 2000).  

Following successful growth of bacteria on GaAs surfaces, in the third phase of the project, we 

used PL emission of photocorroding GaAs/AlGaAs heterostructures to investigate growth and 
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bacterial reactions to antibiotics. For immobilization of bacteria, we employed the b-

PEG/HDT/NA/b-Ab biofunctionalization architecture. This architecture was selected for our 

experiments because it provided higher efficiency in capturing bacteria compared with the 

MHDA/EDC-NHS/Ab bio-architecture. After immobilization of bacteria on the surface of the 

biochips, the samples were exposed to nutrient broth and antibiotic solutions and susceptibility 

of bacteria to antibiotics was investigated by in situ monitoring the PL emission of the 

heterostructures. As it was proved in the first phase of the project, the position of the PL 

maximum depended on the electric charge immobilized on the surface of PL emitting 

GaAs/AlGaAs biochips. The close proximity interaction of positively charged counter ions 

surrounding the bacteria with the surface of a GaAs/AlGaAs biochip could affect (reduce) 

transport of photo-excited holes to the semiconductor surface, resulting in a decreased 

photocorrosion rate of the biochip. Since dissolution of the GaAs cap material results in the 

appearance of a characteristic maximum in the PL plot collected over time, a decrease in the 

photocorrosion rate of the biochip results in a delayed formation of the characteristic PL 

maximum. Based on that, we could provide a calibration curve showing the dependence of the 

position of the PL maximum on the concentration of the bacterial suspension. This concept was 

further supported in the third phase of the project where we exposed the bacteria immobilized 

on the surface of the biochips to growth medium with or without antibiotics and deduced the 

reactions of bacteria to these environments by monitoring the photocorrosion rate (position of 

the PL maximum) of the biochips. We observed that while immobilization of bacteria on the 

surface of the biochip postponed the PL maximum, growth of these bacteria further delayed the 

PL maximum. When the bacteria grow, the increased number of bacteria on the biochip will 

increase the negative charge and thus protect the surface from photocorrosion and postpone the 

PL maximum. Another possible reason could be related to the release of hydrogen (H+) ions 

during the metabolic activity of bacteria. H+ ions are secreted by the bacteria to create a 

chemiosmotic or proton motive force associated with bacterial metabolism to synthesize ATP 

(Mitchell 2011). Our assumption is that immobilization of H+ ions in the vicinity of the 

biosensor surface results in a reduced transport of photo-excited holes toward the surface and 

contributes to reduction of the photocorrosion rate. By comparing the position of the PL 

maximum for the biochip exposed to bacteria and growth medium with that of one exposed to 
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bacteria and antibiotic solution, the antibiotic sensitivity of the bacteria could be investigated. 

When bacteria grow, the PL maximum is delayed, but when exposed to an effective antibiotic, 

their growth is stopped and the PL maximum is advanced. Based on this method, we 

demonstrated the functionality of our biosensor for monitoring growth and antibiotic 

susceptibility of E. coli K12 (penicillin-sensitive) and E. coli HB101 (penicillin-resistant) 

bacteria at ambient temperature in less than 3 hours. The functionalization of the biochips with 

antibodies makes the process suitable for specific investigation of different bacteria, although it 

could also be applied for studying bacteria captured non-specifically, e.g., through covalent 

binding (Meyer et al. 2010; Nazemi et al. 2016 ), using adhesive polyphenolic proteins (Meyer 

et al. 2010) or supported lipid bilayers (SLB) (Afanasenkau and Offenhäusser 2012). 

It should be noted that whereas in darkness bacteria were able to grow on GaAs surfaces if their 

concentration was at least 105 CFU/mL, the minimum concentration of bacteria necessary to 

grow on the biochips irradiated with the laser was at least 2×108 CFU/mL. The same suspension 

is also used to identify the bacteria by MALDI-tof (Wieser et al. 2012). The poisonous effects 

of gallium and arsenic were less of an issue when the biochips were kept in darkness, and where 

the release of Ga and As ions was at a lower rate. Photocorrosion provoked by laser illumination 

of the GaAs biochips gives rise to release of Ga and As ions. By corrosion of the GaAs biochips, 

Ga and As ions are released into the solution which could affect the viability and/or growth of 

bacteria. When the GaAs/AlGaAs biochip is irradiated with laser light, the concentration of h+ 

near the surface of the biochip increases and, as the result, the photocorrosion rate is accelerated. 

Therefore, the minimum threshold of bacterial growth is higher when the samples are irradiated 

with the laser compared with samples kept in the dark. 

It is worth mentioning that all the PL measurements for investigation of antibiotic susceptibility 

of bacteria were carried out at ambient temperature. The reason was that at 37º C the 

photocorrosion rate of the GaAs/AlGaAs heterostructures was accelerated and no discrimination 

was observed in the PL emission of the biochips exposed to different environments. However, 

it might be possible to operate the biosensor at 37º C by reduction of the exposure time of the 

biochip to the laser light and, consequently, reduce the photocorrosion rate of the biochip. 

Indeed the PL signals were collected in the period of 5 h for the biochips irradiated with 6 s 
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pulses with power density of 35 mW/cm2 delivered every minute (duty cycle of 6s/60s). It could 

be possible to reduce the exposure time to 1 s (duty cycle of 1s/60s) or decrease the power 

density of the laser to 20 mW/cm2. Working at 37º C, which is the optimum temperature for 

growth of E. coli, would enable us to monitor the antibiotic sensitivity of bacteria in a shorter 

period of time and, perhaps, for lower bacterial concentrations. We might also be able to reduce 

the time-to-result at room temperature by using GaAs/AlGaAs samples with thinner cap layers 

(less than 10 nm). This would result in speeding up the photocorrosion process and might allow 

us to detect differences between growth rates of intact and antibiotic affected bacteria in a 

shorter period of time. In addition, it is expected that by improving surface functionalization 

techniques, or by applying some methods such as chemotaxis, filtration and electrophoresis we 

could increase the initial coverage of the surface with bacteria and, consequently, monitor 

biological activities of bacteria at lower initial concentrations (less than 2×108 CFU/mL). The 

rapidity of the proposed biosensor, with the time-to-result of 3 h, can be considered as the main 

advantage of our platform over culture-based methods which are time-consuming and cannot 

produce same-day results. Although some rapid biosensing techniques such as PCR (Hombach 

et al. 2010) have been proposed for evaluation of antibiotic susceptibility of bacteria, these 

genetic methods require background knowledge of resistance genes (Quach et al. 2016) and they 

lack standardization (Cockerill 1999). Surface plasmon resonance (Chiang et al. 2009) and 

plasmonic nanohole arrays (Kee et al. 2013) are other methods introduced for rapid evaluation 

of growth and antimicrobial sensitivity of bacteria. However, the cost and the generally large 

size of sensitive SPR systems (Lazcka et al. 2007) and the demanding fabrication process 

necessary to make uniform plasmonic nanoholes (Kee et al. 2013) are inhibitory factors 

restricting application of these techniques to laboratory environments. Impedance (Rieder et al. 

2009; Zavizion et al. 2010) and cytological methods (Quach et al. 2016) have also been 

developed to assess rapidly antibiotic sensitivity of bacteria. However, these methods often rely 

on very subtle changes and so may be difficult to bring to hospital laboratories without highly 

specialized technicians. The PL reader employed in our experiments is relatively inexpensive 

which shows the practical feasibility of this method. This approach has the potential of being 

applied in biological laboratories for rapid determination of antibiotic sensitivity of different 
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bacteria due to its small size, low cost and the potential of being automated for all the steps of 

the experiment (biofunctionalization of the biochips and PL measurements). 
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CHAPTER 7: Conclusions et perspectives 

Dans les domaines de la microbiologie et de la médecine, il est important de surveiller les 

activités biologiques des bactéries exposées à des environnements spécifiques. Les méthodes 

classiques utilisées pour l'évaluation de la sensibilité des bactéries aux antibiotiques sont pour 

la plupart des techniques fondées sur la culture qui prennent du temps et ne peuvent pas fournir 

des résultats le même jour. Ce retard conduit au surtraitement d'un large éventail d'infections 

qui est coûteuse et parfois inefficace dans le cas d'infections virales. L'utilisation inappropriée 

et non ciblée des antibiotiques conduit à la résistance aux antibiotiques qui est un problème 

important pour la santé publique (Gootz 2010). Par conséquent, un procédé sensible, rapide et 

peu coûteux pour la détection de la croissance et de la sensibilité des bactéries aux antibiotique 

est nécessaire pour améliorer les procédures d'essai phénotypique utilisés dans les domaines 

pharmaceutiques.  

Dans ce thèse, nous avons développé une méthode basée sur la PL pour surveiller la croissance 

et la sensibilité aux antibiotiques des bactéries immobilisées sur la surface des semi-conducteurs 

quantiques biofonctionnalisées. L'approche de ce projet a été basée sur la mesure du signal PL 

par des microstructures QS spécialement conçus. Le PL est très sensibles au niveau de la charge 

électrique accumulée sur la surface de ces microstructures. Nous avons remarqué que les 

bactéries qui se développent sur la surface de GaAs/AlGaAs biofonctionnalisèes affectent la PL 

des biopuces d'une manière différente de bactéries traitées aux antibiotiques ou tuées aux UV. 

Ainsi, en se servant de cette méthode, nous avons été en mesure de distinguer les bactéries 

résistantes aux antibiotiques des bactéries sensibles en moins de 3 heures. L'application de 

l'émission PL de semi-conducteurs pour étudier les réactions bactériennes aux antibiotiques est 

une approche relativement nouvelle, donc, il a plusieurs défis qui sont abordés dans les 

paragraphes suivants.  

Le premier défi dans notre travail était de trouver un bio-architecture efficace pour immobiliser 

les bactéries sur la surface de biopuces GaAs/AlGaAs. Etant donné que la sensibilité du 

biocapteur proposé dépend du nombre de bactéries immobilisées sur sa surface, l'efficacité de 

la capture des bactéries sur la surface ou au voisinage du biocapteur est d'une grande importance. 

Le deuxième défi était de surveiller l'effet d'immobilisation bactérienne sur l'émission PL de 
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biopuces GaAs/AlGaAs. Ensuite, nous avons dû enquêter sur la croissance des bactéries 

immobilisées sur la surface de ces structures. En raison de la toxicité de Ga et As (DeLeon et 

al. 2009; Rzhepishevska et al. 2011; Tanaka 2004), il a fallu déterminer le nombre minimal de 

bactéries nécessaires pour permettre la croissance sur la surface des biopuces lorsque les 

échantillons ont été conservés dans l'obscurité ou irradié avec un laser (qui augmente la 

libération de Ga et As). Le dernier défi du travail était d'étudier la capacité de la méthode de 

surveillance PL à détecter la croissance et la sensibilité des bactéries aux antibiotique. Nous 

avons dû étudier si cette méthode est suffisamment sensible pour distinguer les bactéries 

résistantes aux antibiotiques des bactéries sensibles.  

Dans la première phase du projet, un nouveau biocapteur photo-électrochimique a été développé 

pour détecter rapidement E. coli en suspension dans le PBS (1X). Le capteur comprend une 

hétérostructure GaAs/AlGaAs émettant la PL. Le GaAs sert de couche de recouvrement et elle 

subit la photocorrosion lorsqu'elle est irradiée par un laser. Le taux de photocorrosion des 

couches de GaAs et de AlGaAs dépend de la puissance du laser et de l'électrolyte dans lequel 

l'hétérostructure a été irradiée, tel que du PBS, de l'eau ou du bouillon LB. La photocorrosion 

est également influencée par le niveau de la charge électrique immobilisée sur ou au voisinage 

de la surface de l'hétérostructure. Par conséquent, la surveillance de la photocorrosion de 

l'hétérostructure à l’aide de la PL permettrait de détecter la présence de molécules chargées, 

telles que les bactéries, dans l'électrolyte et de déterminer leurs concentration.  

Le photocorrosion de GaAs dépend fortement de la présence de molécules chargées 

positivement minoritaires (h+) sur la surface de ce matériel (Choi et al. 2002; Ruberto et al. 

1991). Dans nos expériences, où des biopuces GaAs/AlGaAs ont été immergées dans une 

solution d’électrolyte que nous avons irradié avec des photons, les photo-trous ont été formés à 

la surface de GaAs, ce qui a contribué à la formation d'oxydes superficiels dominés par Ga2O3 

(Choi et al. 2002). C’est la formation de cet oxyde qui a réduit la densité des états de surface et 

provoquer une diminution de la SRV des électrons et des trous qui a conduit à l'intensité 

croissante du signal PL émis par le GaAs, tel que rapporté (Passlack et al. 1995). Les oxydes de 

surface ont été dissous dans la solution lorsque le  GaAs a photocorrodé. Lors de la 

photocorrosion du GaAs, une nouvelle interface avec AlGaAs a été formée, qui a conduit a une 

diminution rapide du signal PL et à la formation d'un maximum sur le signal temporel dépendant 
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PL. La formation de ce maximum peut être accélérée ou retardée en fonction de l'interaction 

électrostatique entre le semiconducteur et les molécules immobilisées dans son voisinage. Il a 

été suggéré que l'immobilisation des molécules de donneur d'électrons sur la surface d'un 

semiconducteur n-type diminue la bande de flexion et la région d'appauvrissement du semi-

conducteur en raison de la formation d'ions chargés positivement sur la surface (Zhang et Yates 

Jr. 2012). Ainsi, après cette immobilisation, la concentration des trous de surface diminue et, 

par conséquent, le processus de photocorrosion est retardée. Il convient de noter que la surface 

de la plupart des bactéries est chargée négativement à un pH supérieur à 4 (Poortinga et al. 

2002). Lorsque les bactéries sont mises en suspension dans une solution, comme PBS (1X), la 

surface bactérienne serait entourée par des contre-ions chargés positivement qui étaient présents 

dans la solution. Étant donné que le GaAs étudié dans notre travail se comportait, à la 

température ambiante, comme un matériel n-type, l'immobilisation des bactéries décorées avec 

des ions chargés positivement sur la surface de la biopuce devrait contribuer à réduire le 

transport de trous photo-excités à la surface et réduire le taux de photocorrosion des biopuces 

GaAs/AlGaAs (retarder la formation de la valeur maximale caractéristique PL). Nous avons 

observé, tel que démontré dans les Figure 26, Figure 39 et Figure 40, que plus la concentration 

bactérienne était élevée, plus le maximum PL a été retardé et, sans aucun doute, plus le taux de 

photocorrosion aura été ralentie.  

Pour immobiliser les bactéries, la couche extérieure (couche de surface) de l'hétérostructure a 

été fonctionnalisé avec un réseau d'anticorps biotinylés interfacés avec les thiols PEG et HDT 

biotinylés via le lien fourni par la neutravidine (b-PEG/HDT/NA/b-Ab). Pour augmenter la 

stabilité photonique de nos biopuces dans des environnements biologiques et d'améliorer la 

sensibilité de notre biocapteur, les biopuces biofonctionnalisées ont reçu un post-traitement avec 

AS. Il a été suggéré que le post-traitement d'échantillons de GaAs SAM-enduits avec une 

solution d’AS 20% pendant 15 min augmente la concentration des atomes de soufre réagissant 

avec Ga et As et améliore la passivation de la surface d'échantillons de GaAs (Arudra et al. 

2012). Par conséquent, la stabilité photonique de ces biopuces a été améliorée dans des solutions 

aqueuses (Arudra et al. 2012). Nous avons confirmé cette observation pour les solutions AS à 

des concentrations beaucoup plus faibles (0.1%) en montrant que ce post-traitement a provoqué 

un retard maxima PL pour le GaAs fraîchement gravés, et de plus nous avons pu détecter en 
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direct E. coli K12 avec une limite de détection de 103 UFC/ml qui était une amélioration sur la 

valeur 104 UFC/ml précédemment rapportée (Duplan et al. 2011). Selon les données PL, il 

semble que cette méthode a le potentiel de conduire à une détection efficace des bactéries à ~ 1 

UFC/ml. En effet, les techniques d'application tels que la chimiotaxie (Hassen et al. 2016), 

l'électrophorèse (Bossi et al. 2000) et la filtration (Wu et al. 2016) pourrait contribuer à apporter 

plus de bactéries à la surface de la biopuce et pourrait conduire à la détection de plus faibles 

concentrations de bactéries. Nous pourrions appliquer la filtration afin de concentrer les 

suspensions bactériennes (cette méthode est actuellement utilisée dans notre laboratoire pour 

concentrer des suspensions bactériennes telles que E. coli) et ensuite exposer les biopuces aux 

bactéries concentrées. Selon cette approche, des concentrations plus faibles de bactéries seraient 

détectables par notre biocapteur proposé. La chimiotaxie est une autre technique qui pourrait 

aider à immobiliser plus de bactéries sur la surface et améliorer la LOD de bactéries. Il a été 

rapporté que la production d'un gradient de glucose dans le voisinage de la biopuce GaAs permet 

d'apporter plus de bactéries vers la surface (Hassen et al. 2016). Ils ont utilisé des bio-

architectures de MUDA/EDC-NHS/Ab/albumine de sérum bovin (BSA)/β-galactosidase et b-

PEG/MHDA/EDC-NHS/β-galactosidase/BSA/NA/b-Ab pour créer un tel gradient. 

L'électrophorèse est une autre approche qui pourrait être appliquée dans notre système pour 

augmenter la sensibilité du biocapteur. Etant donné que les bactéries sont électriquement 

chargées, une électrophorèse capillaire (CE), (Bossi et al. 2000) peut être couplé à notre 

biocapteur pour séparer les bactéries et les concentrer avant d'être injecté dans la cellule 

d'écoulement. Selon cette approche, la sensibilité du biocapteur augmenterait. Une autre 

suggestion pour augmenter la sensibilité du biocapteur est une modification de la cellule 

d'écoulement (Chen et al. 2007; Jha et al. 2011; Jiang et al. 2014), dans lequel les biopuces sont 

exposés à des suspensions bactériennes. Une cellule d'écoulement optimisée devrait être conçue 

pour diminuer le flux laminaire de bactéries et d'améliorer la quantité de bactéries capturées par 

les biopuces. La suspension bactérienne pourrait également être distribuée sur la surface des 

biopuces. Suivant cette approche, les bactéries ont plus de temps à être capturées par la surface 

biofonctionnalisées des biopuces et le nombre de bactéries immobilisées sur la surface serait 

probablement augmenté.   

Dans la deuxième phase du projet, nous avons étudié la capture et la croissance d’E. coli sur des 
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surfaces nues ou biofonctionnalisées de GaAs (001) et de l'or. Nous avons découvert que le 

dépôt d’une plaque de GaAs (001) sur une gélose nutritive ensemencée uniformément avec 105 

UFC/ml de suspension bactérienne n'a pas inhibé la croissance bactérienne, et les bactéries sont 

capables de croître en contact avec des surfaces nues ou biofonctionnalisées de GaAs. En outre, 

il a été révélé que les bactéries peuvent se développer sur la surface biofonctionnalisée de GaAs 

(001) lorsque les échantillons ont été maintenus dans une cellule d'écoulement et exposés à des 

bactéries dans un milieu de croissance. Cependant, aucune croissance bactérienne n'a été 

observée sur les surfaces de GaAs dans la cellule d'écoulement lorsque des suspensions 

bactériennes ont été utilisées à des concentrations inférieures à 105 UFC/ml. Ce seuil minimum 

peut être lié à la toxicité d'ions Ga ou As libérés par les plaquettes de GaAs (Tanaka 2004) et 

distribué dans la cellule d'écoulement. À des concentrations inférieures à 105 UFC/ml, le nombre 

d’ions Ga et/ou As en solution peut être supérieur au nombre de molécules protectrices 

bactériennes telles que des sidérophores ou des ions Fe, atteindre des niveaux toxiques et 

affecter la viabilité et/ou la croissance bactérienne. A des concentrations plus élevées de 

bactéries, le nombre d’ions Ga ou As peut être inférieure à la capacité des bactéries à les 

neutraliser et ainsi ne pas nuire à la croissance bactérienne.  

Nous avons utilisé deux architectures basées sur les PEG et MHDA thiols. Dans le premier cas, 

la bio-architecture b-PEG/HDT/NA/b-Ab a été utilisée et dans le second cas, nous avons utilisé 

EDC et NHS pour lier directement E. coli ou pour faciliter la liaison des anticorps par lien  

covalent à la surface fonctionnalisée (MHDA/EDC-NHS ou MHDA/EDC-NHS/Ab). On a 

observé que les bactéries peuvent croître sur les deux architectures, cependant, la couverture 

bactérienne et le taux de croissance des bactéries étaient plus élevés sur les surfaces revêtues 

d'anticorps en comparaison avec les surfaces nues. Nous avons également étudié l'efficacité des 

deux architectures recouvertes d'anticorps, MHDA/EDC-NHS/Ab et b-PEG/HDT/NA/b-Ab, en 

termes de capture initiale des bactéries. Nous avons remarqué que la couverture des surfaces 

avec des bactéries était plus élevée sur b-PEG/HDT/NA/b-Ab que sur MHDA/EDC-NHS/Ab 

pour des concentrations comparables de bactéries. Cependant, la capture non spécifique des 

bactéries par la neutravidine pourrait biaiser l'approche b-PEG/HDT/ NA/b-Ab.  

En augmentant la couverture initiale de la surface avec des bactéries, il est possible que l'on 

pourrait être capable d'observer la croissance bactérienne à des concentrations inférieures à 105 
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UFC/ml. La raison en est que, en augmentant le nombre de bactéries immobilisées sur la surface, 

le rapport entre Ga et As/bactérie diminue et, par conséquent, la dose peut ne pas atteindre les 

niveaux toxiques. Comme expliqué précédemment, l'augmentation de la couverture de la 

surface avec des bactéries peut être obtenue en appliquant des techniques telles que la 

chimiotaxie (Hassen et al. 2016), la filtration (Wu et al. 2016) ou l'électrophorèse (Bossi et al. 

2000).  

Après une croissance réussie de bactéries sur les surfaces de GaAs, dans la troisième phase du 

projet, nous avons étudié la sensibilité des bactéries aux antibiotiques en suivant l’émission PL 

lors de la photocorrosion des hétérostructures GaAs/AlGaAs. Pour l'immobilisation des 

bactéries, nous avons utilisé l'architecture b-PEG/HDT/NA/b-Ab. Cette architecture a été 

sélectionnée pour nos expériences parce qu'il a fourni une plus grande efficacité dans la capture 

des bactéries par rapport à la bio-architecture MHDA/EDC-NHS/Ab. Après l'immobilisation de 

bactéries sur la surface des biopuces, les échantillons ont été exposés à un bouillon nutritif et à 

des solutions d'antibiotiques. La sensibilité des bactéries aux antibiotiques a été étudiée in situ 

par la surveillance de l'émission de PL des hétérostructures. Comme il a été démontré dans la 

première phase du projet, la position du maximum PL dépendait de la charge électrique 

immobilisée sur la surface des biopuces. L'interaction étroite de proximité des contre-ions 

chargés positivement entourant les bactéries avec la surface d'une biopuce GaAs/AlGaAs 

pourrait affecter (réduire) le transport des trous photo-excités à la surface des semi-conducteurs, 

ce qui entraînerait un taux de photocorrosion diminué de la biopuce (retardé l’apparition du 

maximum caractéristique PL). Sur cette base, nous pourrions fournir une courbe d'étalonnage 

montrant la dépendance de la position du maximum PL sur la concentration de la suspension 

bactérienne. Ce concept a également été évoqué dans la troisième phase du projet où nous avons 

exposé les bactéries immobilisées sur la surface des biopuces à un milieu de croissance avec ou 

sans antibiotiques et déduit les réactions des bactéries à ces environnements en surveillant le 

taux de photocorrosion (position du PL maximum) des biopuces. Nous avons observé que, bien 

que l'immobilisation des bactéries à la surface de la biopuce a retardé l’apparition du maximum 

de PL, la croissance de ces bactéries a retardé encore davantage ce maximum PL. Lorsque les 

bactéries se développent, l'augmentation du nombre de bactéries sur la biopuce va augmenter la 

charge négative et donc protéger la surface de la photocorrosion et de reporter le maximum PL. 
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Une autre raison possible pourrait être lié à la libération des ions hydrogène (H+) au cours de 

l'activité métabolique des bactéries. Les ions H+ sont sécrétées par les bactéries pour créer une 

force motrice protonique ou chimioosmotique associée au métabolisme bactérien pour 

synthétiser de l'ATP (Mitchell 2011). Notre hypothèse est que l'immobilisation d'ions H+ dans 

le voisinage de la surface du biocapteur résulte en la transport réduit de trous photo-excités vers 

la surface et contribue à la réduction du taux de photocorrosion. En comparant la position du 

maximum de la biopuce PL exposés à des bactéries et un milieu de croissance à celle d'une 

exposition à des bactéries et une solution antibiotique, la sensibilité aux antibiotiques des 

bactéries pourrait être évaluée. Lorsque les bactéries se développent, le maximum PL est retardé, 

mais lorsqu'elle est exposée à un antibiotique efficace, leur croissance est stoppée et le maximum 

PL est avancé. Sur la base de cette méthode, nous avons démontré la fonctionnalité de notre 

biocapteur pour surveiller la croissance et la sensibilité aux antibiotiques d’E. coli K12 (sensible 

à la pénicilline) et d’E. coli HB101 (résistant à la pénicilline) à la température ambiante en moins 

de 3 heures.  

Il convient de noter que, dans l'obscurité, les bactéries sont capables de croître sur les surfaces 

GaAs si leur concentration est d'au moins 105 UFC/ml, la concentration minimale de bactéries 

nécessaires à la croissance sur les biopuces irradiés par le laser est d'au moins 2 × 108 UFC/ml. 

Cette même suspension serait également utilisée pour identifier les bactéries par MALDI-TOF 

(Wieser et al. 2012). Les effets toxiques de gallium et de l'arsenic étaient moins un problème 

lorsque les biopuces ont été maintenus dans l'obscurité, et que la libération des ions Ga et As 

était au minimum. La photocorrosion provoquée par illumination laser des biopuces GaAs 

donne lieu à la libération d'ions Ga et As qui pourrait affecter la viabilité et/ou la croissance des 

bactéries. Lorsque la biopuce GaAs/AlGaAs est irradié avec une lumière laser, la concentration 

de h+ à la surface de la biopuce augmente et, en conséquence, le taux de photocorrosion est 

accélérée. Par conséquent, le seuil minimal de la croissance bactérienne est plus élevé lorsque 

les échantillons sont irradiés par le laser par rapport à des échantillons conservés à l'obscurité. 

Il est à noter que toutes les mesures PL d'investigation de la sensibilité aux antibiotiques des 

bactéries ont été réalisées à température ambiante. La raison en est que, à 37º C, le taux de 

photocorrosion de hétérostructures GaAs/AlGaAs a été accélérée et aucune discrimination n'a 

été observée dans l'émission PL des biopuces exposés à des environnements différents. 
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Toutefois, il pourrait être possible de faire fonctionner le biocapteur à 37° C par réduction de la 

durée d'exposition de la biopuce à la lumière laser et, par conséquent, de réduire le taux de 

photocorrosion de la biopuce. En effet, les signaux PL ont été recueillies dans la période de 5 h 

pour les biopuces irradiées avec les impulsions de 6 s avec une densité de puissance de 35 mW/ 

cm2 livré chaque minute (cycle de service de 6s/60s). Il pourrait être possible de réduire le temps 

d'exposition à 1 s (cycle de service de 1s/60s) ou de diminuer la densité de puissance du laser à 

20 mW/cm2. Travailler à 37º C qui est la température optimale pour la croissance d’E. coli nous 

permettrait de surveiller la sensibilité aux antibiotiques des bactéries dans un plus court laps de 

temps et, peut-être, pour des concentrations bactériennes inférieures. En outre, il est prévu que, 

en appliquant des méthodes telles que la chimiotaxie, ou l'amélioration des techniques de 

fonctionnalisation de surface, on peut augmenter la couverture initiale de la surface avec des 

bactéries et, par conséquent, de contrôler les activités biologiques des bactéries à des 

concentrations initiales plus faibles (moins de 2 × 108 UFC/ml). La rapidité du biocapteur 

proposé, avec un temps de résultat de 3 h, peut être considéré comme le principal avantage de 

notre plate-forme sur les méthodes de culture qui prennent du temps et ne peuvent pas produire 

des résultats le même jour. Bien que certaines techniques de biologie moléculaire telles que la 

PCR (Hombach et al. 2010) ont été proposés pour l'évaluation de la sensibilité aux antibiotiques 

des bactéries, ces méthodes génétiques nécessitent des connaissances de base des gènes de 

résistance (Quach et al. 2016) et ils manquent de standardisation (Cockerill 1999). La résonance 

plasmonique de surface (Chiang et al. 2009) et des réseaux de nanotrous plasmoniques (Kee et 

al. 2013) ont également été introduites pour une évaluation rapide de la croissance et de la 

sensibilité des bactéries aux antimicrobiens. Cependant, le coût et la grande taille des systèmes 

SPR sensibles (Lazcka et al. 2007) ainsi que le processus exigeant de fabrication nécessaire pour 

faire des nanotrous plasmoniques uniformes (Kee et al. 2013) sont des facteurs inhibiteurs 

limitant l'application de ces techniques à des environnements de laboratoire clinique. 

L’impédance (Rieder et al. 2009; Zavizion et al. 2010) et les méthodes cytologiques (Quach et 

al. 2016) ont également été développés pour évaluer rapidement la sensibilité des bactéries aux 

antibiotiques. Cependant, ces méthodes reposent souvent sur des changements subtils variables 

et peuvent donc être difficiles à apporter aux laboratoires hospitaliers sans techniciens 

hautement spécialisés. Le lecteur PL employé dans nos expériences est relativement peu coûteux 
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qui montre la faisabilité pratique de cette méthode. Cette approche a le potentiel d'être appliquée 

dans les laboratoires biologiques pour la détermination rapide de la sensibilité aux antibiotiques 

des bactéries différentes en raison de sa petite taille, son faible coût et le potentiel d'être 

automatisé pour toutes les étapes de l'expérience (biofonctionnalisation des biopuces et des 

mesures PL). 
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