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Sommaire

Dans le domaine médical, la numérisation des documents et 1'utilisation des dos-
siers patient électroniques (DPE, ou en anglais EHR pour Electronic Health Record)
offrent de nombreux avantages, tels que le gain de place ou encore la facilité de
recherche et de transmission de ces données. Les systémes informatiques doivent re-
prendre ainsi progressivement le role traditionnellement tenu par les archivistes, réle
qui comprenait notamment la gestion des acces a ces données sensibles. Ces der-
niers doivent en effet étre rigoureusement controlés pour tenir compte des souhaits
de confidentialité des patients, des regles des établissements et de la législation en
vigueur.

SGAC, ou Solution de Gestion Automatisée du Consentement, a pour but de
fournir une solution dans laquelle ’acces aux données du patient serait non seulement
basé sur les regles mises en place par le patient lui-méme mais aussi sur le reglement
de I'établissement et sur la législation. Cependant, cette liberté octroyée au patient
est source de divers problemes : conflits, masquage des données nécessaires aux soins
ou encore tout simplement erreurs de saisie. C’est pour cela que la vérification et
la validation des régles d’acces sont cruciales : pour effectuer ces vérifications, les
méthodes formelles fournissent des moyens fiables de vérification de propriétés tels
que les preuves ou la vérification de modeles.

Cette these propose des méthodes de vérification adaptées a SGAC pour le pa-
tient : elle introduit le modele formel de SGAC, des méthodes de vérifications de
propriétés telles I’accessibilité aux données ou encore la détection de document inac-
cessibles. Afin de mener ces vérifications de maniere automatisée, SGAC' est modélisé
en B et Alloy; ces différentes modélisations donnent acces aux outils Alloy et ProB,

et ainsi a la vérification automatisée de propriétés via la vérification de modeles ou
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Introduction

Contexte et problématique

L’avenement de la dématérialisation des données, illustré par la prolifération des
bases de données, facilite et accélere la circulation des informations. Dans cette op-
tique, plusieurs pays ont décidé de mettre en place des structures de partage de
données cliniques : les dossiers médicaux électroniques. Selon Inforoute Santé du Ca-
nada [24], organisme mandaté par le gouvernement canadien pour la mise en place des
dossiers médicaux électroniques, ces derniers permettent aux équipes de soins d’avoir
une image plus complete de la santé de leurs patients et d’améliorer la communication
entre les équipes soignantes.

On retrouve parmi les avantages octroyés par l'usage des dossiers médicaux élec-

troniques :

— une efficacité accrue dans les cabinets de médecins avec des démarches plus
simples et moins longues pour 'acces aux données patient. Par conséquent, les

médecins se concentrent davantage sur les soins a prodiguer aux patients ;

— une réduction des examens redondants, car les praticiens ont une vue précise

des examens déja effectués;

— une sécurité du patient accrue, grace a ’historique des réactions aux différents

médicaments ;
— une communication plus efficace entre les différents acteurs de la santé ;

— une meilleure prise en charge des patients pour les soins préventifs et la gestion

des maladies chroniques.
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Cependant, les modalités d’acces au dossier different selon chaque pays, voire province.
Certains incluent par défaut le consentement du patient, c¢’est-a-dire que ce dernier
doit se manifester s’il ne veut pas que ses données soient partagées sans son accord
préalable. C’est le cas par exemple du Québec [13], de I’Alberta [36], du Royaume-
uni. D’autres pays (e.g. France [9], Suede [35], Washington [19]) n’incluent pas le
consentement du patient par défaut, le patient devant se manifester s’il veut que ses
données soient partagées entre les différents établissements.

Dans le domaine médical, le secret professionnel et 1’éthique du personnel soignant
garantissent la confidentialité des informations renseignées sur des supports papiers.
Au Québec, l'acces aux dossiers médicaux papiers se fait sous la supervision des
archivistes qui gerent les acces allant de la simple consultation au cas d'urgence, en
passant par les cas de transfert de patients entre deux établissements. Cependant,
avec le passage progressif au format électronique, la question de la gestion de I'acces
aux informations dématérialisées se pose.

Les solutions adoptées par certains pays permettent au personnel soignant d’ac-
céder soit a 'intégralité du dossier, soit a un sous-ensemble prédéfini en fonction du
role de I'intervenant. Ce choix, loin d’étre satisfaisant, ne permet pas au patient d’ex-
primer son consentement d’une maniere granulaire. En effet, accepter que ses données
soient échangées équivaut a consentir aux acces de tous les intervenants : le patient
ne peut permettre/interdire une personne en particulier d’accéder a une ressource en
particulier.

Outre la nécessité de protéger le patient des fuites d’informations et des acces non
autorisés, le controle d’acceés doit prendre également en compte la sécurité physique
du patient : en cas de restriction d’acces trop forte, le contrdle d’acces pourrait com-
promettre la santé du patient en empéchant le personnel médical de prodiguer les
soins adéquats par manque d’'information.

Afin de laisser le patient gérer de lui-méme la divulgation de ses données tout en
garantissant sa sécurité, le Québec a choisi comme solution le consentement encadré
par la loi. En effet, le consentement du patient est requis pour accéder a son dossier, a
I’exception de cadres spécifiques définis strictement par la loi. Par exemple, lors d’une
situation de vie ou de mort, les acceés nécessaires a la prise en charge du patient dans

ce contexte sont autorisés sans le consentement de celui-ci.
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L’introduction du consentement permet au patient d’interdire des accés normale-
ment autorisés par les regles de controle d’acces en vigueur, ou également d’autoriser
des acces qui auraient été interdits : un patient peut autoriser une sage-femme exté-
rieure qu’il connailt personnellement & accéder a ses données psychiatriques méme si
cela n’aurait pas été en temps normal autorisé, a cause du profil de I'intervenant.

Cependant, la possibilité donnée au patient de spécifier lui-méme des regles d’acces

via son consentement introduit les problemes potentiels suivants.

1. Des conflits peuvent survenir entre les regles définies par le patient et celles
provenant des deux autres sources que sont le réglement interne de 1'hdpital et
la législation en vigueur. Ce probléme est traité au cas par cas par les archi-
vistes. Cela est possible pour I'instant vu le faible nombre de patients exprimant
leur consentement en dehors du consentement global. Dans I'optique d’une uti-
lisation du consentement a plus grande échelle, une solution systématique de

résolution de conflits semble nécessaire.

2. Le patient peut provoquer une diminution drastique de la qualité des soins
regus en interdisant au personnel soignant ’acces aux informations pertinentes.
Ce probleme peut survenir lorsque le patient tente de masquer des données
importantes telles que des allergies médicamenteuses ou des antécédents. Afin
d’assurer la sécurité du patient et le sensibiliser aux choix qu’il fait, une situation
ou le patient cache des données jugées importantes doit pouvoir étre détectée

et il doit pouvoir étre averti des conséquences du masquage.

3. Le patient peut faire des erreurs en ajoutant ses regles : il peut par exemple
penser qu’en cas de conflit la derniere régle ajoutée 'emporterait. Dans ces cas,
il est nécessaire de pouvoir montrer au patient les répercussions des nouvelles
regles ajoutées afin qu’il puisse comparer ce qu’il attendait de ces regles et le

comportement effectif.

4. Le patient peut accumuler des régles au fur et a mesure et ne plus s’y retrouver.
Ce probleme intervient lorsque le patient n’entretient pas sa base de regles et,
par exemple, modifie sans supprimer ses regles. Afin d’assurer un fonctionne-
ment optimal et une lisibilité dans la base de regles du patient, il est nécessaire

de pouvoir faire le tri dans les regles et différencier les regles qui sont inutiles,
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redondantes et donc supprimables.

5. Un patient peut produire un nombre important de regles, et avoir beaucoup
de documents dans son dossier. Le systeme de gestion de controle d’acces doit
pouvoir supporter un volume de données tres important, de l'ordre de

plusieurs centaines de milliers de patients et données.

La vérification et la validation des regles d’acces et des propriétés les concernant
deviennent donc primordiales afin d’assister au mieux le patient dans la mise en place
de ses regles et que celles-ci n’induisent pas de risques pour sa vie en dégradant la
qualité des soins prodigués par le personnel. De plus, la vérification doit pouvoir

prendre en compte le volume important de données.

Objectifs

Durant nos travaux de maitrise [21], une étude comparative des différents moyens
de gestion du consentement dans les échanges de données médicales a été effectuée.
Avec laide de différents scénarios fournis par le Centre Hospitalier de I’Université de
Sherbrooke (CHUS), nous avons mis au point une méthode de gestion de consente-
ment, SGAC (Solution de Gestion Automatisée du Consentement). Elle permet de
prendre en compte le consentement du patient, les regles usuelles d’acces des inter-
venants des établissements de soins et ainsi que des régles issues de la législation en
vigueur. La méthode de résolution de conflits qui surviennent entre les différentes
regles, élaborée a la maitrise, n’est pas parfaite, ni correctement définie et ne prend
pas en compte tous les cas de figure. Cette thése poursuit les travaux sur SGAC
en le perfectionnant, notamment par I'ajout de méthodes de vérification appliquées
aux politiques de controle d’acces aux données des patients. L’objectif, a terme, est
d’élaborer un outil assurant au patient que le controle d’acces qu’il a mis en place
est conforme a ce qu’il souhaite, et également cet outil doit étre capable de I'avertir
si les regles qu’il a définies risquent de dégrader la qualité des soins. Cet outil doit
donc pouvoir simuler le comportement d'un ensemble de regles d’acces, résoudre les
conflits entre celles-ci s’il y a lieu et détecter les cas d’informations inaccessibles.

Nous nous proposons donc dans cette these de :
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— formaliser SGAC, décrire formellement le comportement de SGAC et notam-

ment la méthode de résolution de conflits ;
— définir une méthode de détection de documents inaccessibles ;
— définir une méthode de détection de régles inefficaces ;
— développer un outil de vérification pour SGAC;

— définir des méthodes d’optimisation afin d’améliorer le temps de traitement des

requétes par SGAC ainsi que le temps de la vérification.

Contribution et plan de these

Nous adoptons ici le format d’une these par articles, dans laquelle chacun des trois

premiers chapitres correspond a un des articles rédigés au cours de la these.

1. Evaluation d’un modeéle de controle d’acceés normalisé

Apres avoir identifié les besoins du Centre Hospitalier de 1’Université de Sher-
brooke (CHUS) pour la mise en place du controle d’acces pour le dossier patient
électronique, nous nous sommes intéressés aux modeles de contréle d’acces existants
et leurs formalisations, afin de déterminer s’ils pouvaient étre utilisés pour répondre a
notre problématique. Nous avons commencé par étudier 'adéquation de RBAC (Role
Based Access Control) [16], un modele de contrdle d’acces normalisé et largement
utilisé, pour déterminer si ce modele pourrait permettre la mise en place du controle
d’acces pour le dossier patient électronique.

Cette étude a requis de tout d’abord formaliser RBAC en B [1] en suivant la norme
ANSI. La méthode B [1] est une méthode de spécification formelle qui permet de spé-
cifier un systeme de son analyse jusqu’a son implémentation. Cette formalisation
rigoureuse a révélé des problemes au niveau de la norme allant des fautes typogra-
phiques aux erreurs de logique. Une liste détaillée des lacunes détectées et la méthode
appliquée pour les vérifier, ainsi que des propositions de solutions de corrections font

I'objet de I'article présenté dans le premier chapitre.
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2. Proposition d’un modele de contréle d’acces

Au-dela des défauts identifiés dans la partie précédente, RBAC s’est par ailleurs
avéré incompatible avec les besoins définis par le CHUS, du fait de 'impossibilité
de gérer de maniere satisfaisante les interdictions et les sources multiples de regles.
En effet, les interdictions ne peuvent étre exprimées directement, mais seulement
en altérant les regles de permissions déja en place, ces regles étant parfois issues de
sources différentes. Il en découle une perte d’information et I'impossibilité de modifier
une regle applicable a plusieurs patients.

Dans le cadre du méme travail d’analyse de 'existant, nous avons aussi évalué
d’autres modeles connus tels que OrBAC [27] (Organisation-Based Access Control)et
XACML [43] (eXtensible Access Control Markup Language) pour vérifier s’ils pou-
vaient s’appliquer a notre problématique. OrBAC ne répond pas aux exigences du
CHUS puisqu’il ne permet pas de résoudre les conflits automatiquement. Quant a
XACML, il satisfait la plupart des criteres du CHUS, mais il est difficile a mettre en
ceuvre car il nécessite d’ordonner les regles a la main. De plus, ses performances sont
insuffisantes, en particulier quand le volume de régles est important.

Nous avons donc travaillé a l’élaboration d’'un modele formalisé de gestion du
consentement : SGAC (Solution de Gestion Automatisée du Consentement). L’article
présenté dans le chapitre 2 décrit le fonctionnement de ce modele, sa formalisation
mathématique, les méthodes de vérification de propriétés qui lui sont attachées ainsi
qu’une comparaison de performance avec XACML. Cette derniere conclut a une nette

supériorité de SGAC pour résoudre les conflits dans le cas du CHUS.

3. Comparaison de deux outils de vérification sur notre modele

Le modele mathématique de SGAC et les méthodes de vérification de propriétés
associées décrites dans le second article ont été mis au point avec pour but de pouvoir
étre utilisés avec des outils de vérification automatisés. En effet, 'automatisation de

la vérification permettra a terme de proposer au patient un outil capable de :

— laider a vérifier que les regles qu’il ajoute ont bien les effets escomptés, c’est-
a-dire lui indiquer quelles sont les personnes qui auront acces a ses données et

dans quels contextes spécifiques,
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— simplifier la base des regles que le patient a congu pour améliorer la lisibilité en

détectant les regles qui n’affectent pas le comportement du systeme,

— le prévenir des dangers potentiels lors du masquage de données importantes, de

la dégradation de la qualité des soins qu’il recevra.

L’article constituant le troisieme chapitre présente une étude comparative de deux
outils de vérification en logique du premier ordre : Alloy [25] et ProB [29], comme
solutions d’implémentation de 'automatisation de la vérification des propriétés énon-
cées précédemment. La démarche appliquée a consisté a spécifier SGAC en Alloy et
en B, qui sont les langages de spécification respectifs de Alloy et ProB, et a procé-
der ensuite a des tests de performances dans le but de déterminer comment évolue le
temps de réponse des deux outils en fonction des divers parametres tels que le nombre
de régles, de patients, de documents et de contextes. Les résultats montrent que ProB
possede de meilleures performances et qu’il peut analyser un plus grand nombre de
regles, de patients et de documents. Les limites de ProB, a savoir des graphes avec 300
sommets, 160 regles et 100 contextes avec 200 requétes en 15 minutes, permettent de
valider I'utilisation de notre modele dans le cadre réel : des techniques de réduction
peuvent étre utilisées pour réduire la taille des graphes et le nombre de regles. De
surcroit, des optimisations peuvent étre apportées au modele en B, par exemple en

programmant l'ordre dans laquelle sont résolues les contraintes du modele.

4. Conclusion et perspectives

Le dernier chapitre clot cette these en présentant notre conclusion ainsi que les

perspectives.

Etat de Dart

L’état de 'art est réparti dans les chapitres 1, 2 et 3.
Dans le chapitre 1, nous nous intéressons tout d’abord au modele RBAC et a
sa formalisation. Pour cela, nous étudions la norme et des travaux concernant la

formalisation de RBAC), et la détection d’erreurs dans les spécifications de la norme.
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Dans les chapitre 2 et 3, nous faisons une revue des différents modeles de controle
d’acces qui pourraient convenir a la gestion du consentement : RBAC, OrBAC,
XACML. Nous nous intéressons également a la vérification de propriétés faite avec la

formalisation de ces modéles.



Chapitre 1

Validation de la norme RBAC
ANSI 2012 a ’aide de B

Résumé

L’article présente une étude critique de la norme ANSI de RBAC, un modele de
controle d’acces basé sur les roles. RBAC est un modele tres utilisé et a fait I’objet
d’'une norme ANSI qui a été revue en 2012. L’article releve des incohérences
dans la tentative de formalisation de RBAC de la norme grace a la méthode B,
et suggere des solutions aux problemes trouvés. Les problemes trouvés vont des
fautes de typographie aux défauts de cohérence en passant par des problemes
d’imprécision. Les incohérences de la normalisation ont été découverts grace a

des violations d’invariants.
Commentaires

Le travail a été fait dans le cadre d'une étude de I'adéquation de RBAC avec
les besoins du Centre Hospitalier de I’Université de Sherbrooke (CHUS) : est-ce
qu'un modele de controle d’acces déja existant pourrait satisfaire les besoins du
CHUS? Les modeles les plus utilisés ont donc été analysés, dont I'un des plus
connus et des plus répandus, RBAC. RBAC ne répond pas a premiere vue aux
exigences du CHUS, car il est par exemple impossible de spécifier des interdic-

tions, mais a la chance d’étre doté d’une norme introduisant une formalisation du

9



modele. Cette norme présente toutefois des erreurs qui ont d’abord attiré notre
attention, puis motivé une étude approfondie, étude qui a permis de mettre en
évidence des erreurs beaucoup plus séveres et de graves lacunes dans la norme et
sa pseudo-formalisation.

Cet article a été accepté a la conférence ABZ 201/ qui a eu lieu a Toulouse,
puis sélectionné et publié dans le journal Science of Computer Programming,
pour I’édition spéciale consacrée a la conférence ABZ, en version longue qui est

présentée ci-apres. Ma contribution se résume comme suit :

— formalisation de RBAC en B en suivant a la lettre la description donnée

dans la norme;

— vérification du modele a l'aide de preuves et d’outils tels qu’AtelierB et
ProB;

— détection des lacunes et proposition de correctifs.
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Abstract

We validate the RBAC ANSI 2012 standard using the B method. Numerous
problems are identified: logical errors, inconsistencies, ambiguities, typing errors,
missing preconditions, invariant violation, inappropriate specification notation.
A clean version of the standard written in the B notation is proposed. We argue
that the ad hoc mathematical notation used in the standard is inappropriate
and we propose that a more methodological and tool-supported approach must
definitely be used for writing standards, in order to avoid the issues identified
in the paper. Human reviewing is insufficient to produce error-free international

standards.
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1.1. INTRODUCTION

1.1 Introduction

RBAC is one of the most cited access-control models in the scientific literature
(27 300 references in Google Scholar, 1 326 references in ACM digital library), and one
of the most widely used models in industry [37]. It is an ANSI standard developed by
INCITS (International Committee for Information Technology Standards) [2, 3, 40],
with a first edition produced in 2004 and a recent revision published in 2012. It is
recommended by numerous governmental agencies, like Canada’s Health Infoway, for
controlling access to sensitive information like electronic health records (EHR). In a
recent project on access control and consent management, we decided to follow these
recommendations and evaluate the adequacy of RBAC for managing access to EHR.
We were surprised by the number of errors and inconsistencies found in the standard.
Even more surprising, all errors can be found in both editions (2004 and 2012), and
the 2012 edition has been reviewed/voted by more than 141 persons (as listed in the
standard).

The standard is written using mathematical definitions in the style of Z, but
without strictly following the Z syntax. The mathematical definitions have not been
syntax-checked nor type-checked, thus several errors could have been easily avoided.
Some mathematical notations are not drawn from 7Z and seem rather ad hoc, as
they are not easily found in standard mathematical textbooks, leaving the reader to
guess their meaning from the context. More importantly, not sticking to the Z syntax
also leads to several ambiguities, since the mathematical text interpreted with the Z
semantics does not always match the natural language description. In order to make
sense of the mathematical definitions, the reader must assume declarations which have
been omitted in the Z schemas, relying on the natural language text to make such
inferences. This is contrary to good specification practice, where the mathematical
text is the definitive description, since it offers more precision than natural language.
The standard leaves out important concepts, which certainly do not help in reaching

the objective stated in the introduction of the standard:

Development [of] this standard was initiated [...] in recognition of a need
among government and industry purchasers of information technology

products for a consistent and uniform definition of role-based access con-
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1.1. INTRODUCTION

trol (RBAC) features. [...] This lack of a widely accepted model resulted
in uncertainty and confusion about RBAC’s utility and meaning. This

standard seeks to resolve this situation [...].

The idea of using mathematics to write the standard was certainly a good idea, as it
significantly helped in describing abstract concepts, and allowed us to identify incon-
sistencies, ambiguities and missing elements. Finding errors in a natural language text
is definitely more difficult, because too many interpretations are possible, and each
reader picks one, according to his personal experience, knowledge and context. For
comparison, we have also evaluated the XACML standard [13] where mathematics
are not used at all. We found that it is far more difficult to grasp the subtle concepts
of XACML and to be reasonably sure that we could comply to it. Thus, using math-
ematics is a great idea, but it is insufficient to achieve the highest level of confidence
in the quality of a standard. In this paper, we hope to show that the use of a formal
method, which has a formal syntax and a formal semantics, supported by tools like
syntax checkers, type checkers, provers, model checkers and animators, can definitely
help in producing a precise and unambiguous description of a standard. We have
chosen to use the B method for its rich tool set. In addition, we believe that B has
helped us in detecting errors that may not be easy to find with Z, mainly because B
requires proving invariant preservation, whereas in Z, invariants are typically included
in the state definition and in the definition of operations through the AState decora-
tion, as it was implicitly done in the RBAC standard. Proving invariant preservation
helps in finding missing preconditions in operations and in reviewing the behaviour
of operations when proof obligations fail.

Li et al published a critique of the 2004 standard in [32]. They identified several
technical problems and suggested improvements to the standard, which they formu-
lated using plain mathematics [31]. The leading authors of the standard responded
to this critique in [10], without really agreeing on any of the critique of [32] (even
the typos and type errors identified by Li et al are still present in the 2012 version of
the standard). The improvements suggested by Li et al in [31] do not simply correct
the logical flaws, but also propose a different view of RBAC, where, among other
things, the notion of session is not included in the core part of RBAC, and permis-

sions are inherited when a role hierarchy is used. Noticing issues with the format of
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1.2. DATA STRUCTURES OF THE ANSI RBAC STANDARD

the specification of [31], Power et al [11] provided a formal Z specification of its state
space, leaving out the specification of administrative functions described in [3]. They
also suggested normalisation functions for permission assignment, and formalised the
three interpretations of role hierarchy suggested in [31].

In this paper, our objective is to show that formal methods can significantly help
avoiding errors in the specification of RBAC. We take the RBAC standard as it is
described in [3], and fix all errors that we have found, to the best of our understanding
of the natural language description and the accompanying mathematical text found
in [3]. We do not suggest any new behaviour or feature, contrary to [31, 41]. Another
goal is to stress that formal methods should be used in a comprehensive manner when
writing a standard. This includes specifying both the state invariant and the adminis-
trative functions since specifying only the state invariant is insufficient. Proving that
administrative functions preserve the invariant provides a greater level of confidence
in the standard. We have identified errors that neither [31] nor [11] identified. Using
a specification animator is also crucial to validate a specification. It allows to uncover
inappropriate behaviours which can not be detected by invariant preservation proofs.

The paper is structured as follows. Section 1.2 provides relevant excerpts of the
RBAC standard [3] on data structures and administrative functions to update the
value of RBAC data structures. Errors and omissions are identified and discussed.
We describe and outline the structure of our B specification in Section 1.3. The
complete specification is available in [12]. Section 1.4 provides an overview of the
formal validation process we have used and discusses the advantages of using a formal
method like B. Section 1.5 compares our findings with similar work on validating and
specifying the RBAC standard. We conclude this paper with an appraisal of our work

in Section 1.6.

1.2 Data structures of the ANSI RBAC standard

The RBAC standard [3] is decomposed in three components.
1. Core RBAC is the main component and is required in any RBAC system.

2. Hierarchical RBAC introduces a role hierarchy which defines role inheritance.
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1.2. DATA STRUCTURES OF THE ANSI RBAC STANDARD

3. Constrained RBAC introduces separation of duties (SOD) constraints.

A compliant RBAC system is made of the Core RBAC component plus any combi-

nation of the other two.

1.2.1 Core RBAC

The main idea of RBAC is that permissions are assigned to roles and users are
granted these permissions by being assigned to roles. The Core RBAC component
includes the following sets: USERS, ROLES, OPS, OBS and SESSIONS, which
respectively stand for the set of users, the set of roles, the set of operations, the set
of objects on which are applied the operations and the set of sessions where a user
can activate a role.

The following definitions are reproduced verbatim from [3]. As a convention, all
verbatim excerpts from [3] are in blue, while problems are in red within the excerpts
and numbered in superscript. Problems are explained in the text following the ex-

cerpts, numbered with Pi.

Core RBAC Reference Model

e USERS,ROLES, OPS and OBS! (users, roles, operations and objects re-
spectively).
e UA C USERS x ROLES, a many-to-many mapping ? user-to-role assignment

relation.

o assigned_users : (r : ROLES) — o USERS he mapping of role r onto a set
of users.
Formally: assigned_users(r) = {u € USERS|(u,r) € UA}

o PRMS = 2(0P5x0OBS) 3, the set of permissions.

e PA C PERMS* x ROLES a many-to-many mapping permission-to-role as-

signment relation.
- Cor : PRMS : -
e assigned_permissions(r : ROLES) — 2 , the mapping of role r onto a
set of permissions.

Formally: assigned_permissions(r) = {p € PRMS|(p,r) € PA}
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e Op(p: PRMS) — {op € OPS}?, the permission to operation mapping, which
gives the set of operations associated with permission p.

e Ob(p: PRMS) — {ob C OBS}5, the permission to object mapping, which
gives the set of objects associated with permission p.

e SESSIONS = the set of sessions.

o session_users (s : SESSIONS) — USERS, the mapping of session s onto the

corresponding user.

e session_roles(s : SESSIONS) — ZROLES7 the mapping of session s onto a
set of roles.
Formally: session_roles(s;) C {r € ROLES|(session_users(s;),r) € UA}

o avail_session_perm®(s) — QPRMS, the permissions available to a user in a

session = U assigned_permissions(r)
resession_roles(s)

Description of problems

P1 Typo: all functions of Section 7 (Functional Specification Overview) of [3] use

set OBJS instead of OBS. OBS is declared here and used everywhere in this

section, but not in the rest of the standard.

P2 Improper terminology: in standard mathematics, a mapping is a function. The
notion of a “many-to-many mapping” does not make sense strictly speaking. The

term “relation” used further in the sentence suffices.

P3 Type error: functions of Section 7 (Functional Specification Overview) of [3] use
this set as if it was defined as OPS x OBS. Note that this set is never updated in
any administrative functions of Section 7. This leads us to conclude that PRMS
is a type and that all operations on objects are possible, that is, the standard does
not provide means for controlling which operations are valid on which objects.
On the other hand, functions Op and Ob, declared afterwards, but undefined,

hint at the usage of a subset of operations on objects; otherwise, they would be
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useless. But these functions are not used in the rest of the standard.

P4 Typo: this symbol is not declared so far. One could presume that it is a typo
for PRMS defined above and used everywhere in the rest of the data structure
declarations, but PRMS is not used in Section 7; PERMS is used instead.

P5 Unused symbol: this function is not used in the rest of the specification. By its
description, it is a derived function, but its definition is not provided; only its type.
Moreover, the notation {op C OPS} is not standard mathematics nor standard
Z notation. One first guesses that its intended meaning is {op | op € OPS}, but
since this sentence seems to be only providing a type for function Op, the set
OPS would suffice.

P6 Unused symbol: same issues as for Op. This function is undefined and not used

in the rest of the specification.

P7 Unused symbol: this function is not used in the rest of the standard. The func-
tion user_sessions, which maps users to sessions is used instead (and undeclared

anywhere).

P8 Unused symbol: this function is not used in the rest of the standard. Administra-

tive function CheckAccess provides the same information.

Appraisal of the definitions

Four symbols out of twelve are introduced upfront in the standard, but never used
in the sequel. This generates unnecessary noise for the reader. Moreover, none of these
definitions clearly emphasises under what conditions a user can use an operation on an
object. This is quite surprising, because this is the core purpose of the standard. The
definition of awvail_session_perm describes the permissions available in a session, but
it does not explicitly state that it determines if a user can execute an operation on an

object. The reader has to wait until Section 7, page 17, where function CheckAccess,
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buried among other administrative functions, nails it down in a decisive manner:

This function returns a Boolean value meaning whether the subject of a given

session is allowed or not to perform a given operation on a given object.

The standard introduces a number of symbols (sets, relations, functions), but
does not state whether they are state variables, specification parameters, or sets used
only for typing. For instance, no distinction is made on the nature of sets USERS,
ROLES, OPS and OBS. The first two are state variables (since they are updated by
some administrative functions of Section 7); the last two are never updated and can be
considered as parameters of the specification used for typing only. These distinctions
would be made if a formal specification like B, Z or ASM was used. The use of derived
functions like assigned_users, assigned_permissions and avail_session_perms can cre-
ate some confusion and inconsistencies when writing administrative functions. For
instance, UA and assigned_users(r) are both updated and kept consistent in admin-
istrative functions updating them. Similarly for PA and assigned_users. On the other
hand, function avail_session_perm is never maintained in the administrative func-
tions. Following common practice in the B method, these derived functions would not
be included as state variables, since they do not contain any new information. Their
inclusion would only complicate the invariant preservation proof and the specification
of operations. They would be included as DEFINITIONS, which are similar to LET
constructs in programming languages. Li et al. [32] also suggested not to use derived
functions.

Finally, ad hoc mathematical notations are used (e.g., declaration of function Op),
while in Section 7, the Z notation is said to be used for specifying operations. For the

sake of uniformity, the Z notation could have also been used to define functions.
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1.2. DATA STRUCTURES OF THE ANSI RBAC STANDARD

1.2.2 Hierarchical RBAC

This component introduces role hierarchies which define an inheritance relation

among roles.

This relation has been described in terms of permissions: r; “inherits" role ry if?
all privileges of ry are also privileges of ry. [...]

This standard recognizes two types of role hierarchies—general role hierarchies and
limited role hierarchies. General role hierarchies provide support for an arbitrary
partial order to serve as the role hierarchy, to include the concept of multiple inher-
itances of permissions and user membership among roles. Limited role hierarchies

impose restrictions resulting in a simpler tree structure (i.e., a role may have one

or more immediate ascendants, but is restricted to a single immediate descendent).

General role hierarchy specification

e RH C ROLES x ROLES is a partial order on ROLES called the inher-
itance relation written as >, where r; = 7y only if'° all permissions of
ro are also permissions of 71, and all users of r; are also users of ro, i.e. ,

r1 > T = authorized_permissions(rs) C authorized_permissions(ry).

— QUSERS, the mapping of role r onto a set

e authorized_users(r : Roles)
of users in the presence of a role hierarchy. Formally:
authorized_users(r) = {u € USERS|r' = r, (u,r") € UA} "

— QPRMS, the mapping of role r

e authorized_permissions'?*(r : ROLES)
onto a set of permissions in the presence of a role hierarchy. Formally:

authorized_permissions(r) = {p € PRMS|r' = r'3 (p,r') € PA}

(]

Roles in a limited role hierarchy are restricted to a single immediate descendent.
Node r; is represented as an immediate descendent '* of 79 by 7| == rq, if 71 = 19
but no role in the role hierarchy lies between r; and ry. That is, there exists no

role r3 in the role hierarchy such that r; = r3 = ry, where r; # 79 and ry # r3 1.
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Limited Role Hierarchy Specification

General Role Hierarchies !¢ with the following limitation:

e V17,79 € ROLES,r =1  Ar =1 T =1 =15 .

Description of problems

P9 Bad definition: this is the first sentence where the inheritance relation is described,
and the standard uses a sufficient condition (“all privileges of ro are also privileges
of r1”) to describe it; the reader shall later understand that this is instead a

necessary condition (i.e., a consequence of stating rq = rg).

P10 Bad definition: this is the formal declaration of the inheritance relation, but it
is provided in a necessary condition referring to two functions not declared yet
(authorized_users and authorized_permission), leading the reader to question
whether he has overlooked some definitions involving > in the previous sections.
Moreover, part of the sentence is reformulated in mathematics (authorized_per-
mission), but the other part is not (authorized_users), so the reader is not sure

if the mathematics covers one or both.

P11 Formal definition: it should be {u € USERS|3r" 1" > r (u,r") € UA} in-
stead, otherwise r’ would be a free variable. Same goes for the expression of

authorized_permissions.

P12 Unused symbol: this function is never used in the rest of the standard. More-
over, it leads the reader to believe that the permissions of a role include the
permissions inherited by the role, but this is not the case. The reader shall later
learn, after reading the definition of CheckAccess page 17 and CreateSession
and AddActiveRole page 21, that a user only gets the permissions of his active
roles, and the inheritance hierarchy has no effect on the permissions of a role. The
inheritance hierarchy only determines the users authorised to activate a role. For
instance, following the definition of the two aforementioned administrative func-

tions, if r; = 7o and u — r; € UA, then user u is allowed to activate r; and ry. By
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activating 1, user u only gets the permission granted to r; in PA; the permissions
of ry can be exercised only if u also activates 5. Li et al. [32] claim that inheritance
as presented in the standard can be interpreted in three different ways, but we do
not agree with them. If the reader sticks to the mathematical definitions of the
standard, then there is only one plausible interpretation. Of course, the natural
language text, the errors and superfluous definitions like authorized_permissions
create confusion, diverting the reader from the mathematical text, which should
prevail. This shows the importance of properly distinguishing between definitions

and propositions.

P13 Error: it should be r > r/, to match the necessary condition defined for > just

above, i.e.,

r1 = 1o = authorized_permissions(rq) C authorized_permissions(ry)

This error was also pointed out by Li et al. [32].

P14 Ambiguity: The sentence

Roles in a limited role hierarchy are restricted to a single immediate descendent.

and its formal representation as the following assertion

Vr,ri,79 € ROLES,r == 11 AT == 1T9 = 11 =179

(where we have corrected the error P17 on > explained below) entail that ry is the
descendent in r; > r9. This usage is also consistent with the formal definition

of operation AddInheritance provided on page 19 of [3].
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AddInheritance(r_asc, r_desc)

This commands establishes a new immediate inheritance relationship

r_asc > r_desc between existing roles r_asc, r_desc.

However, the following sentence defines r; as the descendent:

Node 7 is represented as an immediate descendent of ry by 7y == 1o, if r1 > 1o

but no role in the role hierarchy lies between r; and rs.

Thus, there is confusion in the usage of the word “descendent”. This confusion
probably arises from two different meanings of the word “descendent”. In the
first case, it means “descending in power”, whereas in the second case, it means

“descendent” in an inheritance hierarchy.

P15 Error: the standard claims to define the covering relation of an ordered set, which
they call immediate descendent, and which is typically used in Hasse diagrams.
A third condition is missing to do so, namely r; # r3. This error was also pointed
out by Li et al. [32], but their suggested correction is incorrect: they suggest
to replace 1 # 19 by r1 # r3, which is insufficient, because the intent of the
authors is to define the covering relation of a partial order. All three inequalities

are required.

P16 Version change: we have reproduced the 2004 version of the standard [2] here,
because the 2012 version [3] uses Definition 2a instead, but there is no definition
labelled with 2a in the standard.

P17 Error: the standard claims to define the notion of single immediate descendent
in a partial order, 7.e., the partial order is a tree, as claimed in the following

sentence:
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Limited role hierarchies impose restrictions resulting in a simpler tree structure

(i.e., a role may have one or more immediate ascendants, but is restricted to a

single immediate descendent).

To do so, the standard should use instead r => r; A r =»> ry. This error was

also pointed out by Li et al. [32].

Appraisal of the definitions

Given all these problems, this section of the standard is quite hard to understand.
The meaning of relation > is unclear until the specification of the administrative
functions is provided in Section 7 of the standard. This is where the reader learns
the indirect effect of > on the CheckAccess predicate, which describes if a user can
perform an operation on an object in a given state of the RBAC system. Describing
the connection between > and the active sessions would help clarify the meaning of
. The following assertion, which is the body of function CheckAccess, would show

that > does not directly impact the access a user has in a given state.

CheckAccess(s,op,0b) < s& SESSIONS Nop € OPS Nobe OBJS A
drer € ROLES Ar € session_roles(s) N

(op ¥ ob) — 1 € PA

This assertion shows that what is accessible is determined by the roles activated by a
user in a session. One then has to find out how variable session_roles is updated, by
looking at the administrative functions updating it. This is where > comes into play.
Function AddActiveRole(u, s,r) says that user u can activate role r in session s if

u € authorized_users(r).

1.2.3 Constrained RBAC

Constrained RBAC adds Separation of Duty relations to the core RBAC model.
Static Separation of Duty is specified by a role set rs and an integer n such that

2 < n < card(rs). That type of constraint specifies that a user can be assigned to at
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most (n — 1) roles of rs. Formally, let SSD be the set of the static separation of duty

constraints :

o SSD C 2RIOLES |

e V(rs,n) € SSD,Vt Crs: [t| > n = () assigned_users(r) = ()

ret
e In presence of role hierarchy

V(rs,n) € SSD,Vt Crs: |t| > n = () authorized_users(r) = 0
ret

Dynamic Separation of Duty is specified by a role set rs and an integer n such that
2 < n < card(rs). That type of constraint specifies that a user can simultaneously
hold at most (n — 1) roles of rs, during one session. Formally, let DSD be the set of

dynamic separation of duty constraints :

e DSD C 2lROLES y N

o Vrs e 2ROLES,n e N, (rs,n) € DSD = n > 2,|rs| > n and
Vs e SESSIONS,Vrs € 2ROLES,Vr0l623ubset € QROLES,
Vn €N, (rs,n) € DSD,role2subset C rs,

role2subset C session_roles(s) = |role2subset| < n.

We did not find any problem with this part of the specification. However, these
constraints could be expressed in a simpler manner, which we have done in our B

specification [12].
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1.2.4 Administrative functions

Administrative functions describe how the RBAC system state evolves. The stan-

dard claims to use the Z notation for specifying administrative functions.

The notation used in the formal specification of the RBAC functions is a subset of

the Z notation. The only change is the representation of a schema as follows:
Schema-Name (Declaration) <1 Predicate; .. .; Predicate >

Most abstract data types and functions used in the formal specification are defined
in Section 3, RBAC Reference Model. New abstract data types and functions are

introduced as needed.

Some examples of such specifications are provided below to illustrate problems with

the adapted Z notation used in the standard. They are provided in Figure 1.1, 1.2,

1.3 and 1.4. The specification uses the following B operators.

dom(r) ={x | Jy -z — y € r} is the domain of relation r;

ran(r) = {y | 3z - &+ y € r} is the range of relation r;

id(s) = {x + x | x € s} is the identity relation on set s;
s<dr={r—y|xry€rAxcs}isthe domain restriction of relation r by
set s;

r>s={z—y|x—yErAy € s} is the range restriction of relation r by set
3

s<dr={rwy|xryErAx¢s}is the domain antirestriction of relation
by set s;

res={z—y |z yErAyds}is the range antirestriction of relation r by
set s;

r[s] = ran(s <) is the image set of set s by relation r;

closure1(r) = 7 is the transitive closure of relation 7;

closure(r) = r* = r*Uid(s) is the reflexive-transitive closure of relation 7 defined

on set s;
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AddUser
This command creates a new RBAC user. |[...]

AddUser (user : NAME ) '®
<

user & USERS

USERS = USERS U{user}

user_sessions = user_sessions U {user — ) }

>
AddUser (user) =
PRE

user € USERS N user ¢ Users
THEN

Users := Users U {user}
END:

Figure 1.1 -~ AddUser administrative function specification and translation

— op(#) = PRE C THEN S || ...| S, END is the declaration of an operation

op with parameters ¥, precondition C' and assignment statements Sy, ...

which are simultaneously executed (“||”).

Description of problems

P18 Notation: the notation used in the standard omits important elements of a Z

operation schema. First, it does not identify the state space of the operation.

A typical Z operation schema will include a AState declaration, introducing

unprimed and primed variables, to denote the before and after states, and their

associated invariant. The predicate part should describe the relationship between

unprimed and primed variables. Primed variables which are not subject to any

condition are allowed to take any value. Obviously, this convention has not been

followed in the standard, because we do not expect operation AddUser to let all

other state variables take any value after execution. Thus, we must assume that

the standard uses the convention that primed variables 2’ which are not occurring

in the operation specification are preserved with the equality 2’ = x. However, this
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DeleteUser
This command deletes an existing user from the RBAC database. |[...]

DeleteUser(user : NAME )

<
user € USERS
Vs € SESSIONS e s € user_sessions(user) = DeleteSession(s)?]
UA"= UA — {r : Roles e user — r}
assigned_users = {r : Roles ® r — (assigned_users(r) — {user})}
USERS'= USERS — {user}

>

DeleteUser (user) =
PRE
user € USERS N
user € Users
THEN
Sessions := Sessions — User_sessions|[{user}]

User_sessions := {user} < User_sessions

Session_roles := User_sessions[{user}] < Session_roles
]
UA := {user} 9 UA

Users := Users — {user}
END:

Figure 1.2 — DeleteUser administrative function specification and translation
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DeleteSession(user,session)
This function deletes a given session with a given owner user. |...]|

DeleteSession (user,session : NAME) %! =

<
user € USERS; session € SESSIONS; session € user_sessions(user)
user_sessions’ = user_sessions — {user — user_sessions(user)} U

{user — user_sessions(user) — {session}}

session_roles’ = session_roles — {session v+ session_roles(session)}
SESSIONS' = SESSIONS — {session}

>

DeleteSession (user,sess) =
PRE
user € USERS A wuser € Users N\ sess € SESSIONS A (user — sess) €
User_sessions
THEN
User_sessions := User_sessions — {user — sess}

Sessions := Sessions — {sess}

Session_roles := {sess} < Session_roles
END:

Figure 1.3 - DeleteSession administrative function specification and translation
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DeleteRole
This command deletes an existing role from the RBAC database. |...]

DeleteRole (role : NAME) # =
<
role € ROLES
[Vs e SESSIONS e role € session_roles(s) = DeleteSession(s)]
UA"= UA — {u: USERS e u +s role}
assigned_users' = assigned_users — {role — assigned_users(role)}
PA" = PA — {op: OPS,o0bj : OBJ e (op,0bj) — role}
assigned_permissions = assigned_permissions—
{role — assigned_permissions(role)}
ROLES" = ROLES — {role}
>

DeleteRole (role) =
PRE
role € ROLES A role € Roles
THEN
User_sessions := User_sessions & dom(Session_roles > { role })

Session_roles := dom(Session_roles > { role }) < Session_roles

Sessions := Sessions — dom(Session_roles > { role })
(uA = UA & {role}
lyA := PA & {role}
]goles := Roles — {role}
END:

Figure 1.4 — DeleteRole administrative function specification and translation (1/2)
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DeleteRoleRH (role) =
PRE

role € ROLES N role € Roles
THEN

DeleteRole(role)

|

RH := {role} 9 RH & {role}
END

DeleteRoleHC (role) =
PRE
role € ROLES A role € Roles N
V ssd.(ssd € Ssd = role & ssd) N
V dsd.(dsd € Dsd = role ¢ dsd)
THEN
DeleteRoleRH(role)
END;

Figure 1.5 — DeleteRole administrative function specification and translation (2/2)

convention has not been followed everywhere. For instance, symbol >3 is used in
operation AddInheritance where > is updated, but >> is not. However since
> is supposed to be the covering relation of >, we can’t assume the equality
=>='=», because it would break the invariant linking > and >=>. This may
suggest that the standard assumes that derived functions need not to be explicitly
updated since their definition acts like a state invariant which is assumed to
be maintained by operations, as it is the case in Z when AState is used. But
the standard doesn’t follow this convention either. For instance, in operations
maintaining variable UA, which maps users to roles, variable assigned_users is

also maintained, which is not needed, since assigned_users is derived from UA.

P19 Undeclared symbol: variable user_sessions has not been declared in the data
structures in the previous section. Variable session_users, which has been de-
clared in the data structure section, is not updated by this operation. So the

assumption we made in P18 to make sense of the notation used is broken here, be-
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cause it makes session_users inconsistent with user_sessions. Luckily, session_users
does not seem to be used at all in the specification of administrative functions,
so we deduce that its declaration is superfluous in the data structure section of

the standard, which solves the inconsistency problem.

P20 Notation: this is one example of operation call which does not follow the Z syn-
tax and that is logically unsatisfiable. The reader must suppose that a more
“imperative programming language” view is used here. There are other cases in
the standard (e.g., AddAscendant, AddDescendant, where the two calls are
represented implicitly as a conjunction, but sequential composition should have

been used, to make sense out of it).

P21 Signature inconsistency: DeleteSession is declared with parameters (user, ses-
sion: NAME), but called as DeleteSession(session) in DeleteRole and Dele-
teUser. Since a session is related to a single user, as provided by the unused
function session_users, there is no need for parameter user. Note also that
updating function session_users is simpler than updating its functional inverse

user_sessions, i.e.,
session_users = {session} <9 session_users .

The Z domain subtraction is not used in the standard, and that makes the spec-

ification harder to read.

P22 Operation DeleteRole does not update relation “>” and separation of duty
constraints SSD and DSD. The last two ones raise more serious issues to deal

with. We see two options:
— remove the deleted role from all the constraint role sets where it appears;
— restrict the operation to a role which is not used in SSD/DSD constraints.

The first option raises the issue of updating the cardinality. Recall that an SS-
D/DSD constraint (RS, n) states that at most n — 1 roles of RS can be assigned
to/activated by a user. It is subject to the invariant n > 2A|RS| > n. If |RS| < n,
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then the constraint can never be violated and it is useless. After deleting a role,

we have the following cases:

— n > 2A|RS'| = n—1: n must be decremented by 1, in order for the constraint

to satisfy the state invariant;

— if n =2A|RS’| = 1, the constraint is deleted because it does not satisfy the
state invariant |RS’| > n and n cannot be fixed by decrementing n, since

n > 2 is required by the state invariant;

— |RS'| > n: n could be decremented by 1 or left unchanged; it depends on

the particular access-control requirements of the application.

In any case, the constraint could be deleted if it does not make sense in the
security requirements of the application. Furthermore, removing a role in a con-
straint role set may introduce constraint redundancy: if two constraints have the
same role set, the one with the bigger cardinality is redundant. Then, Delete-
Role should in addition remove the redundant constraint. Given these cases, it
seems safer to let the RBAC manager manually adjust SSD/DSD affected by a
role deletion before deleting a role. Hence, we have added a precondition in our
specification of DeleteRoleHC in Figure 1.4 to check that a role is not used in
any SSD/DSD constraint.

We have discovered this issue by proving that operations preserve state invariants

and it hasn’t been raised in [31, 11].

Appraisal of the definitions

There are two main issues in this section. The first one is the inappropriate usage
of the Z notation, which leads to incorrect specifications of several operations that are
logically unsatisfiable, but the intent of the specifiers is reasonably understandable.
The second one raises a more serious problem; there are missing preconditions in
operation DeleteRole which cause an invariant violation. We have proposed a new
version of this operation in order to have a coherent set of SSD /DSD constraints when

a role is deleted.
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m CoreTools 0 Hierarchical 0 Hierarchical Constrained

INCLUDES INCLUDES

Basic operations Inheritance operations Constraint operations
Auxiliary operations < AddActiveRoleRH < Inheritance operations
- ) DeleteRoleRH AddActiveRoleHC
Lines of code : 276 Rest of the basic operations promoted AssignUserHC
- ) DeleteRoleHC
Lines of code : 110 Rest of the basic operations promoted
INCLUDES Lines of code : 296
INCLUDES
0 Core 0 Constrained
Basic operations promoted Constraint operations
- AddActiveRoleCST
Lines of code : 25 DeleteRoleCST
AssignUserCST

Rest of of the basic operations promoted

Lines of code : 251

Figure 1.6 — Architecture of our B specification of the RBAC standard

1.3 The B specification of the RBAC standard

Due to space limitation, our B specification is partly omitted and fully provided
n [12]. Our specification is structured as follows. Each RBAC component has its own
machine, and the Core RBAC machine is included in the other two components. We

have a total of five machines; their relationship is illustrated in Figure 1.6.

— CoreTools.mch: This is an auxiliary machine which contains the declaration of
elements which are needed in each of the machines representing an RBAC com-
ponent. Thus, it contains the common features needed by each RBAC com-
ponent: abstract sets, state variables and operations representing the core be-
haviour of administrative functions, with weakened preconditions to be reused

and strengthened in the other machines according to their needs.
— Core.mch: This machine includes CoreTools.mch and represents Core RBAC.

— Hierarchical.mch: This machine includes CoreTools.mch and introduces the in-

heritance relation among roles. It represents Hierarchical RBAC.

— Constrained.mch: This machine includes CoreTools.mch and introduces the static
and dynamic constraints for separation of duty, by adding them to the invari-

ants. It represents Constrained RBAC.
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Component LOC | Proof Obliga- | W.D. | Automatic | Interactive
tions PO

CoreTools.mch 275 51 0 42 9

Core.mch 25 0 0 0 0

Hierarchical.mch 110 16 0 6 10

Constrained.mch 250 105 22 69 58

HierarchyConst.mch | 295 112 25 69 68

Table 1.1 — Statistics on our RBAC model in B

— HierarchyConst.mch: This machine includes Hierarchical.mch and adds constraints

to represent separation of duty. It represents the combination of Hierarchical

RBAC and Constrained RBAC.

Table 1.1 provides statistics on model size and proof obligations, including well-
definedness proof obligations. Automatic proofs were automatically discharged by the
prover; interactive proofs required human intervention to guide the prover in finding
a proof. For information, it took around a hundred hours to fully read, understand,
model the standard: most of the time spent have been used into proofs, debugging

the specification and animation.

1.3.1 CoreTools.mch

Figure 1.7a presents the static part of CoreTools.mch, which contains the declara-
tion of the core sets, the core variables and the invariants. Choices have been made
to simplify the model by removing the relation assigned_user since it is derived from
UA. The same goes for assigned_permission and PA. CoreTools.mch has all the fea-
tures needed for Core RBAC except the fact that it does more than Core RBAC: it
has auxiliary operations which are called by machines including CoreTools.mch. In B,
a machine D which includes a machine C has read-only access to the variables and
sets of C. To modify the variables of C, machine D must invoke C’s operations. Op-
eration promotion lets the including machine claim the promoted operation from the
included machine as its own. Proofs are also inherited: including a machine already

proven reduces the number of proofs obligation to discharge in the including ma-
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chine. Some administrative functions like AddActiveRole have different behaviours
depending on the component. CoreTools.mch factors out the common behaviour of
the operations in the different components. For example, in Core RBAC, the function
AddActiveRole(user,session,role) activates the role in the session of the user user
only if the role can be activated, i.e. role is assigned to user. This is not true in
presence of a role hierarchy since the user can activate any role he has been assigned
directly or by role inheritance. Finally, we have simplified the signature of operation
CreateSession by omitting parameter ars, which is a set of roles to activate when
creating the session; this can be achieved by calling operation AddActiveRole after

creating the session.

1.3.2 Core.mch

Since CoreTools.mch already provides all the operations, sets and variables needed
to run a Core RBAC system, Core.mch is very simple. It only includes CoreTools.mch
and promotes most of the operations of CoreTools.mch except those operations which

are needed only in the other two RBAC components.

1.3.3 Hierarchical.mch

This machine introduces the role hierarchy and includes CoreTools as shown in
figure 1.7b. The only modification we have made with respect to the standard is
to use a directed acyclic graph RH such that = = RH", as suggested in [31]. This
greatly simplifies the maintenance of the role hierarchy, while preserving the intent of
the RBAC standard. Indeed, this allows operation DeleteInheritance to cancel the
changes made with AddInheritance. This cannot always be done with the model
used in the standard. Since the standard updates only > and since > is the smallest
relation whose closure equals >, this leads to the behaviour presented in Figure 1.8 as
pointed out by Li et. al. Adding pair 75 — 73 also removes pair r; +— 73 from >, since
this pair can be obtained by the transitive closure of {ry — 79,79 + r3}. The invariant
= = (>>)* and the condition that > represents the immediate successor relation
forces > to be the transitive reduction of >. Adding a new pair to > also leads to

add this pair to > since it was not in »=. Thus, some of the pairs of > in the before
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MACHINE
CoreTools

SETS
USERS ;
ROLES
SESSIONS ;
ACTIONS ;
RESOURCES

VARIABLES
Users,
Roles,
Sessions,
Actions,
Resources,

Permissions,

PA,

UA,

User_sessions,

Session_roles,
INVARIANT

Users C USERS N

Roles € ROLES N

Sessions C SESSIONS N

Actions € ACTIONS N

Resources C RESOURCES A

Permissions C Actions X Re-
sources N\

User_sessions C Users x Ses-
stons N\

PA C Permissions X Roles A

UA C Users x Roles N\

Session_roles C  Sessions X
Roles

MACHINE
Hierarchical

INCLUDES
CoreTools

PROMOTES
AddUser,
DeleteUser,
AddRole,
CreateSession,
DeleteSession,
AssignUser,
DeassignUser,
GrantPermission,
RevokePermission,
DropActiveRole,
CheckAccess

VARIABLES
RH

INVARIANT
RH C Roles x Roles

INITIALISATION
RH =10

(a) Static part of CoreTools.mch

(b) Static part of Hierarchical.mch

Figure 1.7 — Static part of CoreTools.mch and Hierarchical.mch
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state might be removed in the new state when they no longer represent the immediate
successor and they can be retrieved in the transitive closure by a combination with

the added pair. Cancelling the addition does not return these deleted pairs.

AddInheritance(ry, r3) ? eleteInheritance(ry, r3)
(e ks (Y
{7’1 — 7’2}
{7’1 — 7‘2}

-
=

{r1 = ro,m — 13} -
{T1*>T277”1*>7’3} -

{ri = ro,re = 13} -
{7’1*>T27T1*>7”377”2*>T3} -

Figure 1.8 — Adding and deleting the same role following the standard

The administrative function AddActiveRole does not have the same precondi-
tion in Core RBAC and in Hierarchical RBAC. Thus, we have defined an auxiliary
operation AuxAddActiveRoleRH in CoreTools.mch which has a weaker precon-
dition than AddActiveRole. This auxiliary operation is called by operation Ad-
dActiveRoleRH in Hierarchical.mch with the additional preconditions to deal with
the inheritance hierarchy RH instead of looking solely at UA. Operation AddAc-
tiveRoleHC adds the precondition to check dynamic separation of duty. These op-
erations are illustrated in Figures 1.9 and 1.10. Note that in B, when an operation
calls an operation of an included machine, one must prove that the precondition of
the called operation is satisfied, which forces the specifier to essentially repeat the
precondition of the called operation into the calling operation. This proof obligation

guarantees that an operation is never called outside of its precondition.

1.3.4 Constrained.mch

This machine introduces the static and dynamic constraints. It includes Core-
Tools.mch and adds invariants to check compliance to each constraints. A simplifi-
cation of the constraints has been made. In the standard, each constraint has an
identifier which permits to retrieve the role set and the cardinality associated with

the constraint. In our model, the role set is used as an identifier: if there are two
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AddActiveRole(user,sess,role) =
PRE
user € USERS A user € Users N\
sess € SESSIONS N sess € Sessions N\
role € ROLES N role € Roles N\
user — sess € User_sessions N\
sess — role & Session_roles N
user — role € UA
THEN
Session_roles := Session_roles U {sess +— role}
END;

AuxAddActiveRole(user,sess,role) =
PRE
... parameter typing conditions . ..
user — sess € User_sessions N\
sess — role & Session_roles N\
THEN
Session_roles := Session_roles U {sess — role}
END;

Figure 1.9 — Administrative function AddActiveRole specified in CoreTools.mch,
Hierarchical.mch and HierarchyConst.mch (1/2)
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AddActiveRoleRH (user,sess,role) =
PRE
... parameter typing conditions . ..
user — sess € User_sessions A
sess — role & Session_roles N
3 role2.(role2 € Roles N user — role2 € UA N (role2 — role € closure1(RH) V
role2 = role))
THEN
AuxAddActiveRole(user,sess,role)
END:;

AddActiveRoleHC(user,sess,role) =
PRE
... parameter typing conditions . ..
user — sess € User_sessions N
sess — role & Session_roles N\
3 role2.(role2 € Roles N user — role2 € UA A (role2 — role € closure1(RH) V
role2 = role))
YV dsd.(dsd € Dsd = card((Session_roles[{sess}] U {role}) N
dsd)<dsd_card(dsd))
THEN
AddActiveRoleRH(user,sess,role)
END;

Figure 1.10 — Administrative function AddActiveRole specified in CoreTools.mch,
Hierarchical.mch and HierarchyConst.mch (2/2)
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constraints with the same role set, one of them is redundant. In fact, the constraint
with the higher cardinality is redundant since, when this constraint is violated, the
constraint with the lower cardinality also is violated. Thus, we chose to identify each
constraint by its role set which permits the removal of redundant constraints. The
redundancy check must be also done when adding or deleting a role member from
a constraint. The invariants stating that ssd_card and dsd_card are total functions

(see Figure 1.11) ensure that there is no redundancy among the constraints.

1.3.5 HierarchyConst.mch

At first glance, one could think that the combination of Hierarchical RBAC and
Constrained RBAC is a simple inclusion of both machines, but this is inappropriate
since the preconditions of operations of one machine are insufficient to preserve the
invariant of the other machine, or are too strong for the other machine. Moreover, the
invariants on separation of duty constraints cannot be reused from Constrained.mch,
because they involve the role hierarchy when combined with hierarchical RBAC. Thus,
there is no point in defining a machine for SSD variables, including it into Constrained
RBAC and then into the combination of Hierarchical RBAC and Constrained RBAC.
The easiest solution was to include Hierarchical.mch in HierarchyConst.mch, to promote
operations which required no changes, and to define new invariants and operations

with appropriate preconditions for the remaining operations.

1.3.6 Proving acyclicity of the role hierarchy

We tried to prove an invariant which was not in the standard, the acyclicity of the
role hierarchy, expressed as RH' Nid(Roles) = ). This turns out to be surprisingly
non trivial. Since Atelier B has no rule about the transitive closure, it was impossible
to prove it without adding new rules in the prover. We had to add the following
rules, which can be manually proved using laws found in standard relational algebra

textbooks like [17]; we have also checked them using Alloy [20]. Let S be some set,
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MACHINE
Constrained

INCLUDES
CoreTools

PROMOTES
AddUser,
DeleteUser,
AddRole,
CreateSession,
DeleteSession,
DeassignUser,
GrantPermission,
RevokePermission,
DropActiveRole,
CheckAccess

VARIABLES
ssd_card,
dsd_card,
Ssd,

Dsd

INVARIANT

Ssd C P (Roles) A

Dsd C P (Roles) A

ssd_card € Ssd — NAT A

dsd_card € Dsd — NAT A

V ssd.(ssd € Ssd = ssd_card(ssd) > 2 A ssd_card(ssd) < card(ssd)) A

V dsd.(dsd € Dsd = dsd_card(dsd) > 2 N dsd_card(dsd) < card(dsd)) A

V user.(user € Users = VY ssd.(ssd € Ssd = card(UA[{user}] N ssd)<
ssd_card(ssd))) A

V sess.(sess € Sessions = VY dsd.(dsd € Dsd = card(Session_roles[{sess}]
N dsd) < dsd_card(dsd)))

Figure 1.11 — Static part of Constrained.mch
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X, X1, X0, X3, X4 C S, let x,y,z€ Sand let r,s C S xS.

(rus)® =rtu((rs);r") (1.1)
X1 ﬂX4:X2ﬂX3:® = (X1 XXQUX3 XX4)+ = (Xl XX2>+U(X3 XX4)+

)

(X x {z})* = X x {z} (13)
rCs = r"Cs?t (1.4)
dom(r*) C dom(r) (1.5)
ran(r*) C ran(r) (1.6)
(17)

{r—=yy—2ztCri={z—z}ert

Since these rules can’t be proved using Atelier B, we also decided to use relation
algebra [17] and Kleene algebra [28], of which binary relations are models, to formally
prove preservation of acyclicity when adding a new pair in an acyclic relation. The
proof is provided below. In addition, we have carried the same task using the auto-
mated theorem prover Prover9 [34]. This can be found along the B specification [12].

For the sake of concision, we adopt some of the conventions of abstract rela-
tion algebra. For instance, we write P(Q) instead of P;() for relational composition.
Let L = Roles X Roles denote the universal relation, P = L — P, I = id(Roles),
A C Roles x Roles denote the role hierarchy RH, B = {x + y} where z # y and
{z,y} C Roles, be a new pair to add to A.

Theorem 1 Assuming
AtNnI=0 (18) B1nAT=0 (1.9
BB =) (1.10) BLBCB (1.11)

then
(AuB)*NI=0.

Condition (1.8) states that the role hierarchy is acyclic. Condition (1.11) states that
B is a relation of the form X x Y for some (possibly empty) subsets X and Y of
Roles. Because of condition (1.10), X and Y are disjoint. Conditions (1.10) and (1.11)
are obviously satisfied when X = {z}, Y = {y} and = # y. Finally, condition (1.9)
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states that there is no path in the role hierarchy from the codomain Y to the domain
X of B, in order to avoid the creation of a cycle. The conclusion of the theorem is
that adding a new pair to RH returns an acyclic role hierarchy.

To prove this theorem, we use the following laws of [28, 417], which include the

laws of Boolean algebra, since a relation algebra is a Boolean algebra.

PQCR & P'RC@Q < RQ'CP (1.12)
PURQCR = PQ*CR (1.13)

We also need the following two lemmas, which follow from (1.8) to (1.11).

A*BA*NIT =0 (1.14)
(AUB)T C AT U A*BA* (1.15)
PROOF of (1.14)
A*BA*N I =1
& (PNQ=0&PCQ)
A*BA* C 1T
& ((1.12), (PQ)™ =Q7'P™")
B7lA*[ C A
& (PI=P,(1.12),P=P)
A*A* C Bt
& (PPr=P,PNQ=0PCQ)
A*NB1t=0
& ( P*=TUPH)
(TUATYNB =0
& ( Distributivity, IN B~ =INB=(INB)(INB)C BB =0 by

(1.10), and (1.9) )
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true

PROOF of (1.15)
(AUB)T C AT U A*BA*
< (AUB)(AUB)* C AT U A*BA*
= ( (1.13))
AUBU(ATUA*BA*)(AUB) C AT U A*BA*
& ( Distributivity, A C AY, B C A*BA* ATA C AT
A*B C A*BA*,
A*BA*A C A*BA*)
A*BA*B C AT U A*BA*
<= BA*B C ()
& ( BA*B=BBUBA*B)
BBCWO N BATBC)

= ( (1.10) and since A* C B=1 by (1.9) )
BB-1B C
o ((112), (PQ)'=Q'P, P =P Pi-l=P)
LB'BCB
& ((1L12), (PQ)' =@ P Lh=1L)
BLBC B
<= ( (L.11) )
true
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PROOF of Theorem 1

(AUB)"NI=9
= ( (1.15))
(ATUA*BA ) NT =10

& ( Distributivity )
AtNI=0 N A*BA*NI =0

& ( (1.8), (1.14))
true

1.4 Overview of the formal validation approach

Table 1.2 summarises the types of errors we have found in the RBAC standard.
The process we have followed to discover these errors was the following. We carefully
reviewed the text of the standard, in order to develop a good understanding of the
specification. In parallel, we incrementally built the specification, piece by piece, ani-
mating it and model checking it using ProB [11, 29]. Several iterations were necessary
in order to get the structure and the behaviour right. When no more errors were found
using ProB, we used Atelier B [5] to discharge the proof obligations of the machines.

Ambiguities, typos, unused symbols, undeclared symbols, bad definitions were
discovered both by reading the specification and trying to translate it into B. It is
surprising how the objective of formalizing a text changes the perspective of a reader.
In such a context, the reader pays careful attention to every possible detail, especially
when he has no a priori knowledge of what the document should say. Simple errors
which seem innocuous to the expert when noticed are very disturbing for the reader
with no a priori knowledge. Such a reader does not know which elements are typos and
assumes first that he has missed something somewhere, or that a subtle distinction
he has not grasped yet must exist.

Constructing a formal specification in a language like B forces the reader to ques-
tion each element of the standard and find out where it fits in the formal specification.

The reader questions any redundant concept, because as a specifier, he knows that any
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redundancy will induce additional work when proving the correctness of the B speci-
fication. Moreover, B imposes a clear structure (machine parameters, sets, constants,
variables, invariants, operations, preconditions, state modifications) with various val-
idation mechanisms like syntax checking (and all the consistency checking that is
included with syntax checking), type checking, invariant preservation and inappropri-
ate behaviour found by specification animation. An error quickly breaks one of these
validation steps. These validation steps do not exist when one simply writes a natural
language text and unexecutable mathematics. We believe this explains in part why so
many errors were left in by so many of the readers of the standard. And it also shows

the benefits of using a comprehensive method like B with numerous safeguards.

‘ Error type ‘ Nbr ‘ Description ‘
Ambiguity 1| A term is used with two different meanings
Logical error 3 | Incorrect mathematical expressions to specify a
concept

Improper terminol- 1 | Standard mathematical meaning is improperly used

ogy

Bad definition 2 | A definition is ill-structured

Invalid precondition 1 | An operation’s precondition is insufficient to pre-
serve an invariant

Formal notation 4 | The formal notation is incorrectly used and has no
meaning

Type error 1 | An operator is used with expressions of incompati-
ble types

Typo 3

Undeclared symbol 1

Unused symbol 5

Total 22

Table 1.2 — Summary of error types found in the standard

1.5 Related work

Our objective in this paper is to analyse the text and the mathematical description
of the ANSI RBAC standard, to validate its consistency and clarity. We do not address
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the modelling choices made by the authors of the standard. We rather want to argue
about how the standard was written and how standards should be written in order
to avoid ambiguities and inconsistencies. The reader is referred to [17] for a concise
appraisal of the concepts of RBAC and its industrial adoption issues. Numerous other
papers have proposed critiques and extensions of the RBAC model itself. This review
of this literature is outside the scope of this paper.

Despite the fact that RBAC is widely spread and well known and that the ANSI
standard contains several errors and inconsistencies, there are relatively few papers
addressing its consistency and clarity. Li et al. [32] pointed out 7 errors out of the 22
we have found (i.e., P1, P4, P12, P13, P15, P17, P21) and suggested other features
for RBAC. For instance, they disagree with the importance of having sessions with
multiple role activation; their proposed model differs from RBAC on that aspect.
They also pointed out the need of maintaining explicitly added dominance relation-
ships in the role hierarchy because it has “significant weakness when one considers
updates to [it]", which we have adopted. They discuss three interpretations for the
role hierarchy, arguing that the standard leaves room for interpretation. We take a
different viewpoint by sticking to the mathematical text of the standard, which leads
to a single interpretation, in our opinion. This single interpretation becomes clear
when considering the Core RBAC administrative functions that Hierarchical RBAC
modifies: only CreateSession and AddActiveRole are redefined to take the role
hierarchy into account. These operations must check in their precondition that the
role to activate is either a role assigned to the user or a role inherited by one of
the roles assigned to the user. Thus, role inheritance only affects role activation, and
even if ry inherits from 79, they must still be activated separately. None of the three
interpretations proposed by Li et al. is coherent with the mathematical specification
provided in the standard. Among others, Li et al. missed important problems with
the DeleteRole administrative function as shown in P22 where the role hierarchy
and separation of duty constraints are not updated during a role deletion. These er-
rors are discovered by checking the preservation of invariants. Power et al. based their
models[11, 10] on [32], thus they did not find them either, but proposed an approach to
normalise and compare RBAC systems. Hu et al. [19] managed to find problems with

the DeleteRole function by modelling the standard in Alloy [26] and then specifying
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functional properties to test: functional properties are generated from a UML model
of RBAC with OCL constraints which are then translated and given to Alloy. Their
test has been made only on a portion of the RBAC model. Our approach includes
the complete verification and proof of the entire RBAC model. We also enhanced it
by providing necessary preconditions on DeleteRole and slightly modifying the way
the constraints are specified in order to guarantee that each constraint is unique and
non-redundant. Issues like constraint management upon role deletion (see P22) have
not been discussed by [11, 32, 40]. All of these stem from checking invariants in our
model. In addition, animation of our models with tools like ProB allows us to test
policies: for instance, given an initial situation and policies, it is possible to check
whether a user can get all the available permissions or if a user can get redundant

permissions.

1.6 Conclusion

RBAC is a widely adopted access-control model and is also widely used in com-
mercial products, such as database management systems or enterprise management
systems. The RBAC model has been published as the NIST RBAC model [16] and
adopted as an ANSI/INCITS standard in 2004, which has been revised in 2012. In
this paper, we have pointed out a number of technical errors identified using formal
methods, by modelling in a B the RBAC specification, then animating it and proving
it. Using mathematics without a methodological framework and a supporting tool set
is bound to open the door to errors. The B method seems to be particularly appropri-
ate for specifying standards of dynamic systems like RBAC. The fact that B makes
a clear distinction between the specification of operations and the state properties
that these operations must satisfy (i.e., invariant preservation) proved to be very
useful in validating the RBAC standard. The example of role deletion (problem P22)
is a nice illustration of this. This case study also shows that human-based reviews
are insufficient to detect errors in a standard. Mechanical verification is essential;
syntax checking, type checking, animation, model checking and theorem proving are
complementary in finding errors in a specification. This exercise of specifying RBAC

in B shows that B has all the necessary features to specify and validate a system
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like RBAC. However, it also shows that specifying different versions of a system,
like the various components of RBAC and their combinations, and factoring common
behaviours is not as straightforward as it seems to be. This problem is similar to en-
gineering product line architectures [38]. Formal methods like B may benefit from the
results obtained in this field to streamline specification engineering, although formal
correctness surely imposes strong constraints on reuse and sharing mechanisms.
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Chapitre 2

SGAC : une méthode de controle
d’acces centrée sur le patient

Résumé

Cet article présente la méthode SGAC : une méthode de controle d’acces qui
permet au patient d’exprimer son consentement quant aux accés a son dossier
médical.

Cette méthode contient le modele congu avec 1'aide du CHUS, ébauché durant
ma maitrise, sa formalisation et ainsi que son implémentation sous forme d’ou-
til. L’article décrit donc les besoins auxquels SGAC répond, son fonctionnement
avec divers exemples illustrant la méthode de résolution de conflits de SGAC.
L’article présente également la formalisation complete de SGAC qui permet de
vérifier diverses propriétés telles que la détection de données inaccessibles, la vé-
rification d’un droit d’acces ou encore la détermination des contextes qui font que
la requéte soit acceptée. Enfin, les performances de I'implémentation de SGAC

sont comparées a celles de XACML.
Commentaires

Ce travail s’inscrit dans la continuité de ma these : apres avoir formalisé RBAC,

nous avons formalisé SGAC afin de voir quelles propriétés pouvaient étre vérifiées.
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Il est possible avec notre formalisation de SGAC de vérifier si une personne a
acces ou non a une ressource, quelles sont les données cachées ou encore détecter
des regles inefficaces, voire redondantes. Cet article a été accepté a la conférence
RCIS 2016 ayant eu lieu a Grenoble, et a été récompensé du Best Paper Award.

Ma contribution sur cet article est la suivante :
— formalisation de SGAC';
— définition de méthodes de vérification des propriétés
— d’acces;
— de détection de données cachées ;
— de contextes validant une requéte ;
— de détection de regles redondantes.

— comparaison de SGAC avec les autres modeles de controle d’acces.
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Abstract

This paper presents SGAC(Solution de Gestion Automatisée du Consente-
ment, automatised consent management solution), a new healthcare access con-
trol model and its support tool, that manages patient wishes regarding access to
their electronic health record (EHR). The development of this model has been
achieved in the scope of a project with the Sherbrooke University Hospital, and
thus has been adapted to take into account laws and regulations applicable in
Québec and Canada, as they set bounds to patient wishes: under strictly defined
contexts, patient consent can be overridden to protect his/her life. Moreover,

since patient wishes and laws can be in conflict, SGAC provides a mechanism to
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address this problem. Besides, laws do not cover all cases where consent should
be overridden to ensure patient safety. To this end, we define a formal model of
SGAC which allows for property verification, making it possible to detect these
cases. A performance comparison with XACML (WSO2/Balana) is presented

and demonstrates the superior performances of SGAC.
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2.1. INTRODUCTION

2.1 Introduction

Before being electronic, patient data were stored physically in each health cen-
tre. In Québec, access to health records is managed by specially trained staff, the
archivists, who are responsible for applying the laws and regulations to access re-
quest. Laws set a frame within which patients can manage access to their health
record, as long as they are not endangering themselves. Access control in healthcare
knows two major contentious concerns: patient data confidentiality and patient safety.
The former is about non-disclosure of data their owner would judge confidential; the
latter is about the rules not being too restrictive and a burden for the health worker
when requesting all necessary data to provide suitable care to the patient. Having
patients specifying access rules to their records (thus expressing their consent) is a
way to address the first concern. To address the second concern, laws and regulations
set a frame that allows accesses to patient data without consent under strictly de-
fined contexts. The problems this approach rises are multiple: laws generally set frame
only for exceptional cases and not for everyday care, thus it does not always allow to
override patient consent in order to give him/her suitable care, for instance when the
patient is hiding important data like medicinal allergies. Furthermore, conflicts may
arise between hospital rules, which define health workers regular access, patient rules,
and break-the-glass rules which must provide full access to the physicians in strictly
defined contexts.

In this paper, we present an access control method named SGAC (Solution de
gestion automatisée du consentement)/(Automated consent management solution,),
which offers a resolution mechanism to the different conflicts that may occur between
rules from different sources. This method allows formal verification in order to detect
cases where suitable care cannot be given.

The rest of this paper is structured as follows. Section 2.2 provides requirements
for access control and consent management used at the Sherbrooke University Hos-
pital (CHUS) and scenarios illustrating expected behaviours. Section 2.3 introduces
SGAC. We illustrate how SGAC behaves in Section 2.4. Section 2.5 provides a com-
plete formal model of SGAC. Section 2.6 compares our findings with similar work on

access control in healthcare. A performance comparison with XACML [413] is given in
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2.2. AccEss CONTROL REQUIREMENTS AT CHUS

section 2.7. We conclude this paper with an appraisal of our work in Section 2.8.

2.2 Access Control Requirements at CHUS

Our access control model has been designed to meet the requirements of CHUS
within the context of applicable laws on privacy protection in Québec and Canada. We
believe these requirements are sufficiently general to be applicable in other countries

as well.

Req. 1: The patient’s consent must be obtained in order to provide access to his/her
electronic health record (EHR).

Req. 2: A patient can grant or deny access to any of his/her EHR to any person of
the hospital staff.

Req. 3: As required by the laws of Québec, when the patient’s life is in danger, the
medical staff must have access to his/her EHR, without regards to his/her
consent. Other conditions, like a court order, can also override the patient’s

rules.

Req. 4: Rules can be specified for a single person or a group of persons. Persons
can be grouped according to any criteria, like functional role, work group,

departments, care unit, etc.

Req. 5: Rules can be specified for a single record or a group of records. Records can

be grouped according to the taxonomy commonly used for EHR.

Req. 6: When several rules are applicable for a user request, they must be ordered
according to the following priority to determine which rule prevails: the rules
prescribed by laws override the patient’s rules; the rules of the patient override

the rules of the hospital.

Req. 7: For two rules at the same level of priority, a rule which targets a group of
person (G1 has precedence over a rule targeting a less specific group of persons
Go, (ie, when Gy C Gy).

Req. 8: For two rules at the same level of priority, when neither of the two groups of
persons is more specific than the other (i.e., when —(G; C Gy V Gy C Gy)),

a prohibition rule overrides a permission rule.
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2.2. AccEss CONTROL REQUIREMENTS AT CHUS

Req. 9: Each rule has a condition that determines its applicability. This condition
can refer to any attribute that can be computed using the context of the
clinical system (e.g., the state of the patient, the presence of the patient in
the hospital, etc).

Req. 10: The access control system shall be able to handle a very large volume of data,

hundreds of thousands of patients and rules.

To illustrate some of these requirements, we provide the following scenarios. In these
scenarios, Anna and Sam are patients, Alice is a nurse and Bob is a doctor. For each

scenario, we refer to the requirements that it illustrates.

Scenario 1 - Group prohibition

Anna wants to deny access to her psychiatric records to the entire hospital staff.

Requirements: Req. 2, Req. 4 and Req. 5.

Scenario 2 - Record taxonomy

Sam has two laboratory results, labl and lab2. He authorises hospital staff to access
all his laboratory results. Later, Sam receives a third laboratory result, labs3.
Expected behaviour: all requests from hospital staff to access Sam’s laboratory results,
including lab3 should be permitted.

Requirements: Req. 5.

Scenario 3 - Priority

Sam wishes to grant all hospital staff access to his blood tests, DNA tests and psy-
chiatric records. However, there is a law that restricts access to psychiatric records to
psychiatrists only.

Expected behaviour: all requests from hospital staff, other than psychiatrists, to ac-
cess Sam’s psychiatric records are denied; all requests of hospital staff to access Sam’s
blood and DNA record are permitted.

Requirements: Req. 6.
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2.3. SGAC DATA STRUCTURES, RULES AND REQUESTS
Scenario 4 - Specificity

Anna wants to deny Alice access to her laboratory results. Anna also has a rule
granting nurses access to her laboratory results.

Expected behaviour: all requests from nurses, except Alice, to access Anna’s laboratory
results are permitted; Alice can’t access Anna’s laboratory results.

Requirements: Req. 7.
Scenario 5 - User group specificity

Anna specifies two rules: the first rule denies emergency staff access to her EHR; the
second rule grants general practitioners access to her EHR. Bob, working in both
department, requests access to Anna’s EHR.

Expected behaviour: Bob’s request should be denied, since the group of general prac-
titioners is not more specific than the group of emergency staff, and vice-versa.

Requirements: Req. 8.
Scenario 6 - Condition

Sam wants to specify rules that are valid in certain contexts: he want to restrict access
to his EHR when he is hospitalised; when he is not hospitalised, Sam wants to deny
access to his EHR to all hospital staff.

Requirements: Req. 9.

2.3 SGAC Data Structures, Rules and Requests

This section presents our model SGAC and the different data structures needed to
specify rules and requests. Conflict resolution is then illustrated by different examples.

Notations are first introduced.
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2.3. SGAC DATA STRUCTURES, RULES AND REQUESTS

2.3.1 Notation

For the rest of the paper, we introduce the following notations drawn, in most

cases, from the B notation [1].

Set Theory

Let A, B, C be sets.
— For a n-tuple a = (ay, ..., a,) we denote by a.a;, the component of a named ay,.
— P(A) ={X | X C A}, called the power set of A, is the set of all subsets of A.
— AxB={z—y|x e ANy € B} is the Cartesian product; it is a set of ordered
pairs x > .
— A relation R from A to B is a subset of A x B.
— id(A) = {z — 2z | z € A} denotes the identity relation on A, i.e. the relation

that associates each element of A to itself.
— A+ B =P(A x B) denotes the set of relations between A and B.
— dom(R) = {x € A|Jy € Bex+— y € R} denotes the domain of R.

— R[C]={y|y€e BANIJx e Ceoxr— y e R)} denotes the image set of C' by
relation R € A <+ B.

— A -+ B denotes the set of (partial) functions from A to B. A partial function f
from A to B is a relation such that |f[{z}]| <1 for z € A.

— A — B denotes the set of total functions from A to B. A total function f is a
partial function such that dom(f) = A.

— RigRy={x— 2z |JdJye Bexr yec R Ny— z € Ry} is the relational
compositon of R € A<+ B and Ry € B +» C.

— Let R € A <> A. R" denotes the composition of R with itself n times (n > 0),
with R"™ = Rg R" and R° = id(A).

— Rt = 91 R™ denotes the transitive closure of R, i.e., the smallest transitive

relation which contains R.

— Let Re A+ A. R* = RT UId(A) denotes the transitive and reflexive closure

of R, i.e., the smallest transitive and reflexive relation which contains R.
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Graph

A directed graph is an ordered pair G = (V, E') where V' is the set of vertices V and
E is the set of edges, such that £ € V + V. G is said acyclic ifft G.ET Nid(G.V) = 0.
In an edge = +— y, y is called a successor of x and x a predecessor of y. In an edge
x — y of G.ET, i.e., the transitive closure of G.E, z is an ancestor of y and ¥ is a
descendant of x. A vertex without any successor is called a sink and sinks reachable
from a vertex v in a graph G are denoted by sink(G,v) = G.E*[{v}] —dom(G.E). All
the sinks of a graph G are denoted by sink(G) = G.V — dom(G.E).

2.3.2 Using graphs

In SGAC, two directed acyclic graphs are needed in order to specify rules and
requests:
— the subject graph represents the hierarchy which mirrors the functional organ-

isation chart or any grouping of users relevant for access control;

— the resource type graph represents the taxonomy of EHR and their organisation

in the healthcare facilities.

Fig. 2.1 illustrates a subject graph. The graph includes people and subjects as
vertices. A subject represents a person or a set of people. The hierarchy works as
follows: a rule on subject s is inherited by all the successors of s in G.E™. For instance
in Fig. 2.1, if a permission is given to the General Practice department then this
permission is inherited by GP Physicist and GP Nurse, Bob and Alice.

Fig. 3.1b illustrates the resource type graph. We distinguish between resources
types and documents. Medical records are structured into a taxonomy which is rep-
resented by a graph of resource types. A document is an actual medical record of a
patient. Documents are instances of sinks of the resource type graph. A document
has attributes which can be given as parameters to non-sink vertices. For instance,
a certain AIDS screening test can have many attributes such has: the patient it is
related to, the visit when it was ordered, the ID of the screening test etc... There
is a functional dependency between the document type identifier and the other at-
tributes, making the key document identifier sufficient to retrieve a document, and

all its attributes.
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Psychiatry ' Emergency

Bob Alice Charles David

General
practice
@ Physici@ <GP Nurse>

Figure 2.1 — Subject graph example

The resource type graph sinks are document type, and the non-sink vertices repre-

sents aggregations of these document types. For instance, the vertex patient represents

all the data types of all patients and can be instantiated with a parameter to target

the data of a particular patient.

Fig. 2.2b illustrates the resource type graph being instantiated for the document

Blood 123 of the patient Simon during his visit no. 2.

These two graphs define the basis on which rules and requests are built.

2.3.3 Rule and request specification

A rule allows to specify a control over the access to a resource. It is defined by:

— a subject: a person or a group of people to control;

— a resource: the data to be protected;
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Patient = Simon

Blood = 123

Patient = Simon
visit = 2
Blood =123

Legend

(a) Resource type graph (b) Instantiated resource type graph

Blood Test 123

Figure 2.2 — Resource graph example
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— an action: the operation the subject wants to do on the resource;

— a priority: a number which defines the priority of the rule;

— a modality: an authorisation or a prohibition which defines the effect of the rule;

— a condition: a formula which determines the applicability of the rule. It can be
evaluated at run time by functions checking for instance information stored in
a database. For the rest of the paper, we describe rule conditions in natural
language.

A request is the demand the subject issues in order to execute an action on a
resource. It has then the following attributes:
— a subject: the request initiator;
— a document: a document the request initiator wants access to;

— an action: the operation the subject wants to do on the document.

2.3.4 Conflict resolution

When more than one rule apply to a request, and if they have different modalities,
a situation, typically called a conflict in the literature, arises. To decide whether access
is granted or denied, we define an ordering (a precedence) on rules. The rule with
the “highest” precedence determines the access decision. Let r1, 79 be two applicable

rules for a request.
1. If r1 has a smaller priority than r9, we say that r; has precedence over rs.

2. If ri and 79 have the same priority, and if the subject of r; is more specific than
the subject of ry (i.e., the subject of r; is a descendant of the subject of 75 in

the subject graph), then r; has precedence over ry.

3. If r1 and r5 have the same priority, and neither of their subjects is more specific

than the other, then prohibitions have precedence over permissions.

This ordering is not total. There may be two rules rq, 7, such that neither of them
precedes the other. However, in such a case, r; and ry have the same modality, thus
there is no conflict and the decision is the modality of these elements with highest
precedence. The formal definition of this ordering in Section 2.5 shall clarify the third

clause in some subtle cases, to avoid any ambiguity in its interpretation.
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Rule Resource Subject Pri. Mod. Cond.
1 Psychiatry (patient = Anna) CHUS 2 — TRUE

Table 2.1 — Scenario 1 rule (for the action read)

This conflict resolution method is absolutely autonomous and does not require
the intervention of an external actor. Section 2.4 illustrates the conflict resolution

technique with three examples.

2.4 Examples

This section illustrates the behaviour of SGAC with three examples. For the sake
of simplicity, we illustrate read requests. The same approach applies for any other

action.

2.4.1 Example 1: basics

Let’s model scenario 1. The resource type graph must be instantiated with the
parameters defining Anna’s data. Modelling Anna’s rule consists in prohibiting access
to the documents descending from the vertex Psychiatry in the resource graph. The
vertex Patient gets the unique identifier of the patient Anna. The vertex CHUS in the
subject graph (Fig. 2.1) represents all the personnel from the hospital. By convention,
patient rules are of priority 2. When no condition is specified, the rule condition is

7

set to TRUE. A prohibition is represented by symbol “—”, whereas a permission is
represented by symbol “+7. The rule is presented in Table 2.1.

If Bob requests an access to Anna’s psychiatric report no.20, then SGAC will
first determine the applicable rules. Rule r; is applicable because: ri.subject is an
ancestor of the request subject, ri.resource is an ancestor of the requested resource,
the action matches, the condition is verified, and the parameter fits. If this is the
only rule applicable, then the system returns prohibition. We only described the rule
issued by Anna’s consent for the sake of simplicity in this example. In the case where
no rules from laws and regulations are applicable, if Anna’s rule is among the other

rules applicable to a request, then this request is denied.
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2.4.2 Example 2: let’s get started

In this example, the rule base is as follow:

— the laws and regulations allow emergency physicians to access (read and write)

the data of any patient who is in a life-threatening situation;

— the hospital allows general physicians to read and write data for any patient

under their care;

— the hospital allows nurses to read vitals of a patient at any time.

Rule Resource Subject Pri. Mod. Cond.

1 Patient Emergency 1 + patient life is threatened

9 Patient GP Physician 3 + the subject is the attending physi-
cian

T3 Vitals Nurses 3 + TRUE

Table 2.2 — Example 2 rules (for the action read)

This can be represented by the rule base presented in Table 2.2. By convention
for these examples, the priority of a rule is determined by the entity issuing the rule:
if the rule is from a healthcare facility, then it is set to 3, if it is from the patient,
then priority is set to 2, and if the rule is from laws and regulations, priority is set to
1. The lower the value a rule priority has, the higher precedence the rule gets. This
reflects the wanted behaviour: laws and regulation have precedence over patient rules,
which have precedence over healthcare facility rules.

Rule r; translates the fact that any physician in the Emergency department can
access a record if its owner’s life is threatened: an authorisation given to the vertex
Emergency to read all documents from Patient, under the specified condition. The
priority is set to 1 since the rule stems from the laws and regulations.

The rule ry translates the fact that a physician is allowed to read the data of
the patients under his/her care, i.e. the physician has to be the patient’s attending
physician: an authorisation given to the vertex GP Physician to read all documents
from Patient, under the condition that the physician is the attending physician of the
patient. The priority of this rule is set to 3 since the rule stems from the hospital.

Finally, the rule r3 translates the fact that a nurse is allowed to read the vitals of

any patient, at any time. Since, the nurse can access the Vitals of any Patient in any
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condition, the condition of r3 is set to TRUFE. The priority is also set to 3 since the
rule stems from the hospital too.
In order to have a better understanding of the rules, the subject graph, the resource

type graph and the rules are presented in the same picture in Fig. 2.3.

Bob Alice Charles David

Figure 2.3 — Example 2 graphs with rules

Now let’s say that patient Anna is treated for some light mental disorder by
Charles, a psychiatrist. Since Charles is Anna’s attending physician, he can access
her records while others can’t except Alice who can read Anna’s vitals. The access

rights are summed up in Table 2.3.

Staff Pulse | Blood Pres- | Report | Blood | Urine
sure

Alice Vv Va X X X

Bob X X X X X

Charles V V V v V

David X X X X X

Table 2.3 — Example 2: Access of the CHUS personnel to Anna’s Record, wrt Fig. 2.3

Then comes Sam, badly hurt, unconscious in the Emergency department. Since,
Bob and David are working in the Emergency department and that Sam’s life is
threatened, both have access to his records. Alice still can read Sam’s vitals while

Charles does not have any access to Sam’s data. The resulting accesses are presented
in Table 2.4.
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Staff Pulse | Blood Pres- | Report | Blood | Urine
sure

Alice v v X X X

Bob Y Vv vV Vv Vv

Charles X X X X X

David vV vV vV vV vV

Table 2.4 — Example 2: Access of the CHUS personnel to Sam’s Record, wrt Fig. 2.3

Finally, in the case of a patient who has no attending physician, and whose life is
not threatened, the only person who can access this patient’s records is Alice, who is

allowed to read the vitals.

2.4.3 Example 3: adding consent

In this example, we take the same initial rule base (Table 2.2), and we add some
consent rules. Let’s say Anna personally knows Bob and does not want him to access
her records (rule r4). This rule targets directly Bob and Anna’s data, and is applicable
at any time. Since r4 is directly issued by a patient, its priority is set to 2. At this
point, even if Anna is under Bob’s care, Bob won’t have access to Anna’s records
because of r4, unless there is an emergency context where Anna’s life is threatened.
In that case, r; would allow him to access the data.

Then, Anna is hospitalised and gets on with the staff of the Emergency depart-
ment. When she has to undergo rehabilitation, she decides to allow the whole Emer-
gency department to access her vitals data in order to let her new friends follow her
progress (rule 75). In this situation, there is a conflict between 7, and r5 when Bob
wants to access Anna’s vitals. Bob still can’t access any data of Anna, since ry is
considered to have precedence over rs since the target of ry is more specific than
the target of r5, but David who is also affected by r5 can access Anna’s vitals. The
accesses at this point are presented in Table 2.5.

Finally, Anna decides to share her vitals to Bob and she adds a new rule, rg, to
do so, but forgets to remove r4. These two rules contradict each other: they have the
same priority, and one is not more specific than the other. In that case, a prohibition

has precedence over a permission. Bob’s access is unchanged: he can’t access Anna’s
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Staff Pulse | Blood Pres- | Report | Blood | Urine
sure

Alice Vv Vv X X X

Bob X X X X X

Charles X X X X X

David V V X X X

Table 2.5 — Example 3: Access of the CHUS personnel to Anna’s Record

Rule Resource Subject Pri. Mod. Cond.
1 Patient Emergency 1 + patient life is threatened
) Patient GP Physician 3 + the subject is the attending physi-
cian
T3 Vitals Nurses 3 + TRUE
T4 Patient = | Bob 2 — TRUE
Anna
5 Vitals Emergency 2 + TRUE
6 Vitals Bob 2 + TRUE

Table 2.6 — Example 3 rules (for the action read)

data, unless there in an emergency context where Anna’s life is threatened. The final

rule base of this example is presented in Table 2.6 and with the graphs in Fig. 2.4.

T4 patient = Anna

s Permission

mmmm Prohibition

General
practice

Bob Alice Charles David

Figure 2.4 — Example 3 graphs with rules
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2.5 Formal model

In this section, our formalisation of SGAC is presented. This formalisation provides

a way to evaluate requests for a given set of rules, and a way to verify properties.

2.5.1 Subject graph

The subject graph is denoted by S. We denote by SUBJECT the set of all subjects
and by PERSON the set of all persons. Formally, S is described by S = (V| E, Z)
with:

— (V,E) is a DAG;
— V C SUBJECT is the set of the subjects;
— Z =V N PERSON represents the persons, and elements of V' — Z are entities

which represent groups of persons;
— Z C sink(S) since a person is a sink of S.

S.FE represents the inheritance relation: recall that a rule on a subject s is inherited
by all the successors of s in S.E™ There are two types of subject: persons and entities.
A sink of S can be either a person or an entity, but a person is by definition a sink.

A non-sink vertex is then an entity.

2.5.2 Resource Graph

As mentioned in Section 2.3.2, data have been abstracted by types into a resource
type graph. Recall that an atomic element of data is called a document and can be
for instance a prescription, a radiography, etc... We introduce the notion of paramet-
ric directed acyclic graph (PDAG) as follows: R = (G, K) where G is a DAG and
H = (T,D,U,W) denotes constraints linking the DAG G to the documents. More
precisely, G = (V, E, P) where V is the set of the vertices, £ the edges and P the set
of the parametric vertices. We denote by DOCUMENT the set of all documents.

— (. P denotes parametric vertices that are called parametric groups and the el-

ements of G.V — G.P are called groups. Parametric groups introduce exactly
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one parameter, like patient, visit etc...

GPCGV

— Sinks of R are document types, so they are parametric groups since a type of

document requires an identifier.
sink(R) = sink(G.V,G.E) C G.P;

— D denotes the set of all the documents, and U the type of a document. Each

document has exactly one type, so
U € D — sink(R);

D C DOCUMENT

— W denotes a valuation of parameters of the documents. The parameter valua-
tion W is defined for each document and associates a document with a (partial)
function between parametric groups and parameter values. It is a partial func-
tion since a document does not use all the parameters of the graph, but only
those of its ancestors. Since each document has unique attributes, valuation of

parameters is defined for all documents, thus we have
WeD— (P+1T),
— W is defined for each parameter inherited by a document,

Vd € D edom(W(d)) = G.E-™[U(d)]NG.P

2.5.3 Rule

A rule [ is a septuplet which contains:
— a modality mod;

— a resource res with the valuation val of its parameters;
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— an action act;
— a subject sub;
— a priority pri;
— a condition con.

We denote by ACTION and RULFE the sets of all actions, and of all rules. Since a
rule depends on a subject graph and a resource type graph, we introduce the object
Policy, composed of a subject graph, a resource type graph, and a set of rules. Each

rule of the policy targets elements of the graphs of the policy. Formally, we denote by
P =(S,R, L) a policy and we have:

— S = (V,E, P) a subject DAG;
— R = (G, H) a resource type PDAG;
— L C RULE the set of rules of the policy.

We have to link the rules of a policy to the graphs by the following constraints:

— the subject is a person of S:
Vie Lel.sube sink(S)

— the action belongs to ACTION and the priority is a positive real:
Vie Lel.act € ACTION

Vic Lelpric RT

— l.resis avertex of R.G.V and l.val is a valuation of parametric groups of R.G.P

with adequate values:
Vie Lelrese RG.V ANlwval C RG.Px RHT
— the only possible modalities are permission, and prohibition;
V1 € Lel.mod e {permission, prohibition}
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We also introduce the function documents:

documents(R,v, K) ={d|d € R.H.D A
R.H.U(d) € sink(R,v) N K C R.HW(d)}.

The function documents(R,v, K) returns all documents reachable from vertex v in
PDAG R with document parameter valuation K.

For example, documents(R, Visit,{patient — Simon}) denotes the set of all doc-
uments issued during any visit of patient Simon. The blood test of the example of

Fig. 2.2b denoted by bt has the following associated parameters:

R.H.W (bt)
= {patient — Simon,visit — 2,id — 123}
D {patient — Simon}
K

Y

thus bt € documents(R.H, Visit, {patient — Simon}).

2.5.4 Request

We define a request ¢ as a triplet (sub, act, doc) where:
— sub € PERSON is the person initiator of the request;
— act € ACTION is the action sub wants to do;
— doc € DOCUMENT is the document targeted by the action act.

Do note that a request is made by one person and only targets one document at a

time.

2.5.5 Request evaluation

The approach to evaluate a request is the following:
— extract all rules applicable to the request;
— sort extracted rules and represent them by a rule DAG;

— evaluate the request from the rule DAG.
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Rule extraction

to this end, we introduce the function Rules(P, q) for a policy P and a request g:
Rules(P,q) ={l |l € P.L \ sub A act_con N\ doc}

where:
— sub := q.sub € (P.S).E*[{l.sub}];
— act_con := (l.act = q.act) A evals(l.con);

— doc =

(P.R.U)(q.doc) € P.S.E*|l.res]
A lwal € P.R.W (q.doc)

— the function eval;(f) evaluates the formula f, taking into account values of

variables occurring in f.

Then for a policy P and a request ¢, Rules(P,q) designates all rules of P.L of
which:

— action corresponds to g.act;
— subject is g.sub or an ancestor of q.sub;
— condition is evaluated to TRUE;

— reachable documents contains g.doc.

Rule ordering

once we have all applicable rules, we need to sort them. We therefore introduce a

partial order relation < defined as follows :
Va,y € RULE o
T <Y
Y.pri < x.pri

Vo (z.pri=y.pri A y.sub € S.ET[{x.sub}])
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Rule ordering =

GP Physician Psychologist

/A

Edouard
Figure 2.5 — TIllustration of the partial order relation <

This relation < captures the fact that precedence is given to the rule with a lower
priority or, at equal priority, to the rule targeting the lower subject (inclusion-wise).
This order does not take into account the resources targeted by a rule. For instance,
in Fig. 2.5, we suppose that ry, 79,73 and r, share the same priority. We have then
ry < Tre, 11 < 13, ry < 14, r3 < 14 and finally r; < r4. Note that ro and r3 can’t be
compared with <.

If ry, 79,73 and r4 are the only applicable rules then precedence over the other rule
would be given to r, since it is the only maximal element (there is no other rule ' such
that 74 < r'). But what happens when there are more than one maximal element?
Let’s take the previous example, and remove 4. We have r; < ro and r; < r3, but ro
and r3 still can’t be compared. We then define another partial order on rules, noted

“<” The set of maximal elements of the set Rules(P, ¢) with the relation < is denoted
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by max~. Formally,
maz~ = {x € Rules(P,q) | By € Rules(P,q) e x < y}

We define < on rules as follows:

Vz,y € Rg.V e
T <y

T <Yy

Vo ( z,y € mazg
A y.mod = prohibition
A x.mod # y.mod

)

The partial order < extends <: in the case there are more than one maximal
element, precedence over the permissions are given to the prohibitions. Thus ordered
rules can be represented in the DAG Rgp, which is calculated from a request ¢ in

the policy P. Rgp, is defined by:
— Rgp,.V = Rules(P, q);

— Rgpq.E is the covering relation of <, which is in our case equal to the transitive

reduction of <, in order to find the immediate successor precedence-wise.

Rule graph analysis

The rule graph Rgp, contains all rules applicable to a request ¢ in a policy P
ordered by precedence. Thus the rules from sink(Rgp,) have precedence over the
other. We denote by the function eval(P,q) the evaluation of the request ¢ in the
policy P; eval(P,q) returns TRUE if q is approved. In order to determine eval:

1. we determine first all applicable rules by calculating
Rules(P, q);

2. we create the DAG Rgp,;
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3. we verify the following property:
Prop(P,q) = sink(Rgp,) # 0 AN V1 € sink(Rgp,) ® l.mod = permission.

We define eval(P,q) as follows:
eval(P,q) := evals(Prop(P, q))

If all sinks of Rg are permissions, then a permission is returned and eval returns
TRUE. If Rg.V is empty (i.e., no rules are applicable), a prohibition is returned and
eval returns FALSE.

As noted before, < ensures that all sinks of Rg have the same modality. To see

this, let 71,79 € sink(Rg) with r1.mod # ro.mod. There are two cases:

e r1.pri = r9.pri: according to the definition of <, we have r| < ry or ro < 7y,

which is absurd since 71,79 € sink(Rg).
e 11.pri # ro.pri then we have r; < 9 or 75 < rq, which is absurd.

Thus we have the following properties for eval:

eval(P,q) < A 3l € sink(Rgp,) ® l.mod = permission

and

eval(P, q) < Rules(P,q) # 0 A Pz € maz_ e x.mod = prohibition

The first says that if a sink of Rgp, is a permission, then access is granted. The
second says that if there is at least one applicable rule and if there is no prohibition

in the maximal elements of Rules(P,q) wrt <, then access is granted.

2.5.6 Example

Let’s say that the patient Anna is to be hospitalised in the CHUS. She did work
there when she was a nurse and had befriended most of her former colleagues, but

also had some rivals like Alice. Anna decided to share her laboratory data to her
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] Rule‘ Resource ‘ Subject ‘ Pri.‘ Mod‘. Cond.
1 Laboratory (Pa- | Nurse 2 |+ TRUE
tient = Anna)
Ty Laboratory (Pa- | Alice 2 | - | TRUE
tient = Anna)
T3 Laboratory (Pa- | GP 2 |+ | TRUE
tient = Anna) Physi-
cian
T4 Patient Emergenqy3 | + the subject is the attending physi-
cian of the data owner
s Patient = Anna Emergenqgy2 | — TRUFE
e Patient Emergenqgyl | + data owner’s life is threatened

Table 2.7 — Rule Base Example, for the action read

nurse friends except for Alice and general practice physicians. She is aware that in
the emergency department, physicians can access the all records of the patient, while
that patient is under their care. Since she knows personally some of these physicians,
she decides to prevent the department from accessing her records. But in the case
her life is threatened, regulations and laws permit emergency physicians to access her
records in order to provide faster and better medical care. We denote by P; the policy
containing all the previous rules, the subjects and resources. We have the following
rules presented in the Tab. 2.7 as P;.L. We use Fig. 2.1 as the subject graph P;.S
and Fig. 2.2a as the resource graph P;.R

We suppose that Anna’s EHR only contain two blood tests bty, bty and a psychiatry
report pri. bt; has been issued during the first visit, and bty and pr; during the second
visit. For this example, P;.R only contains Anna’s documents. Formally, we introduce

the documents in P;.R.H, which we simply denote by H in the sequel:
T HD = {btlabt27prl};
— H.U = {bt; — Blood, bty — Blood, pri — Report} ;

— HW =
{bty — {Patient — Anna, Visit — 1, Blood — 1},
bty — {Patient — Anna, Visit — 2, Blood — 2},
pt1 — {Patient — Anna,Visit — 2, Report — 1}}.
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We then have:
documents(Py.R, Patient, Patient — Anna) = {bty, bty, pt,}.
Let’s assume that Alice wants to access bt;. Let’s denote by ¢; the request (Alice, read, bty ).
Rules(Py, q1) = {ri,m2}

We then calculate Rgp, 4,.F = {r; + ra} since Alice belongs to the subject Nurse.
We have sink(Rgp, 4,) = {r2}. Thus: eval(P,q1) = false. Moreover, in all possi-
ble contexts, Alice can’t access Anna’s data, since RulesRgp, 4, will not vary with
contexts.

Now Bob wants to access bto, go = (Bob, read, bty). We suppose that Anna is fine,
and that Bob is her attending physician.

Rules(Py, q2) = {rs,ra,75}

Since, Bob belongs to GP Physician and Emergency, he is affected by any rules
targeting one of the two entities. The calculus of Rgp, 4,.F is a bit trickier than
before: we have r; < rs3 and ry < r5 because r4 < rs3 and r4 < r5 but r3 and rs5 are
incomparable with <. In fact, r3 < 75 since they are both maximal elements and r;
is a prohibition and r3 is a permission. Then we take the transitive reduction of <,
thus Rgp, g-F = {rs — 13,735 — r5}. We have then sink(Rg) = {rs}. Bob’s request
is thus denied.

But in an emergency context, where Anna’s life would be threatened, Bob would
have access to this data, more precisely, to all Anna’s data, since sink(Rgp, 4,) = {76}

in this context for any data requested by Bob.

2.5.7 Potential danger detection

We are working on the formalisation of SGAC in B [1] and in Alloy [25]. This allows
for the detection of potential dangerous situations, for instance when the patient hides

important data from the medical staff. In that case, the following property must hold
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for the patient p within the policy P:

Vd € documents(P.R, Patient, { Patient — p}),
Ji € (P.S).Z e eval(P, (i, read, d))

Model checking this property allows for counter-example exhibition, thus identify
a patient who has concealed all his/her data, and warn him/her about a potential

danger. This verification can be done for all patient:

Vp € ran(P.R.H.W)[Patient],
Vd € documents(P.R, Patient, { Patient — p}),
i € (P.S).Z e eval(P, (i, read, d))

This property can be simplified into:
Vd € documents(P.R, Patient,{}), i € (P.S).Z e eval(P, (i, read, d))

Finding a patient who has all of his data hidden is the same as finding a document
which is completely hidden. Moreover, our formalisation of SGAC allows for access

verification.

— Determination of necessary conditions for a subject to access a resource: it is

possible to determine a formula which must hold in order to authorise a request.

— Redundant rule detection; a rule is said redundant within a policy if the requests

accepted by the policy is the same with and without the rule.

— Determination of the data accessible by a subject: since we can determine the

result of a request, we can determine all accessible documents for a given subject.

2.6 Related Work

RBAC (Role Based Access control) [15, 15], is a classic access control model which
uses the notions of user, role, operation, object and session. In order to gain privileges,

which are represented by a pair (operation, object), the user must have activated one
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of his roles in a session that has the privileges needed. There are two additional fea-
tures: role hierarchy allows for privilege inheritance among roles, and separation of
duty constraints prevent a user from activating/being assigned to specified combina-
tions of roles. Formalisation of RBAC has been done in Z [11] and in B [22]. Verified

properties on those formalisation are:
— role activation: a role can be activated only if it is assigned to the user;

— role hierarchy: a role properly passes assigned privileges to its children, and the

role hierarchy is acyclic;
— separation of duty all constraints of separation of duty hold.

RBAC allows privilege grouping, thanks to roles and role inheritance, but it does
not support prohibition, conditions, priority, and resource inheritance. This makes
the management of complex fine-grain policies quite difficult. Thus, RBAC does not
satisfy the requirements of SGAC.

OrBAC [27] (Organisation-Based Access Control), is a logic-based access control
model which takes into account RBAC weaknesses and fixes some of them. It reuses
the notions of role, user, action, object, and adds some new concepts: i) activity,
an abstraction of actions, ii) view, an abstraction of objects, iii) contexts, which
allow for the expression of complex rule conditions, iv) prohibition, v) priority in
order to manage conflicts, and vi) organisation. The concept of organisation is used
to parameterise assignment of roles to users, of views to objects, and of subjects to
roles. It supports two kinds of rules: organisational rules that use abstract notions, and
concrete rules that use concrete notions. Conflicts are detectable by static checking
with the Prolog-based tool MotOrBAC [6]. If two organisational rules with different
modalities are applicable to the same abstract concepts, then a potential conflict is
detected. This conflict is only potential since there may not exist a common concrete
entity (subject, action or object) for which the two organisational rules apply. The
user can solve a potential conflict by modifying the priority or the rules, by adding
separation constraints, or by just ignoring the conflict when the user knows that there
is no concrete entity for which the two organisational rules simultaneously apply.
Inheritance among roles or views can be specified by using logic rules. OrBAC is

powerful enough to satisfy the SGAC requirements, but its logic-based approach may
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suffer from performance problem for a very large number of rules, since its execution
engine is based on a prolog-like language. Conflict management also requires manual
intervention, whereas SGAC uses an ordering that forbids conflicts.

Ponder [11] has a domain hierarchy which contains resources and subjects in the
same graph. A rule in Ponder has a subject, a resource, an action, a modality and
a condition. It can also be marked as final to have precedence over another rule
not marked as such. In case both are/are not marked final, if their subjects are
comparable, then precedence is given to the rule with the more specific subject, and
if their subjects are the same, then precedence is given to the rule with the more
specific resource. Finally, if their subject are not comparable, rules marked as final
become normal and if there still is a modal conflict then Ponder returns a prohibition.
Ponder does not include a rule priority attribute, and it uses a single graph to represent
both subjects and resources, which cannot be used in our case where there is a huge
number of resources and subjects. Moreover, its conflict management is not adapted
to the SGAC requirements.

XACML [43] (eXtensible Access Control Markup Language) is an attribute-based
access control language. A rule has a target defined by a subject, an action, a re-
source, a condition, an effect which can be either permit or deny. There is no native
inheritance among subjects or resources. Tree-like inheritance can be simulated by
using paths for resources and subjects identifiers. Precedence among rules is managed
by using a rule combination algorithm. The basic rule combination algorithms are:

— permit-overrides: it returns permit if at least one applicable rule returns permit;

— deny-overrides: it returns deny if at least one applicable rule returns deny;

— first applicable: it returns the effect of the first applicable rule.
XACML satisfies most of the SGAC requirements, but its weak support of inheritance
and its management of conflicts make it difficult to manage large security policies. It
also suffers from poor performance when a large number of rules are used. Brians []
formalises XACML with CSP in order to simulate policies. Using CSP has some
drawbacks: conditions are not handled, properties can not be always specified in CSP
and our own combining algorithms can’t be added easily.

Table 2.8 summarises the difference between the different models for which a

formal model exists.
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Model | Native Native Dynamic | Explicit | Autonomous | Ease of
Subject | Resource Rules prohibi- Conflict Rule Ex-
Hierar- | Hierarchy tion Manage- pression

chy ment

RBAC vV X X X vV vV

OrBAC vV VvV vV vV X vV

XACML  x X vV vV vV X

SGAC v v v YA YA v

Table 2.8 — Comparison between access control models having a formal model

2.7 Performance comparison

Since XACML is an industrial standard and that it is very close to satisfying
SGAC requirements, we tried to simulate SGAC policies in XACML using paths and
the rule combining algorithm first-applicable. The other rule combination algorithms
do not fit the SGAC requirements.

To simulate SGAC policies in XACML, we proceed as follows. We define three poli-
cies, one for each level of priority (law, patient and hospital). We use first-applicable
as the policy combination algorithm. Within a policy, we order rules according to
the subject hierarchy and modality, enumerating the subject graph in a post-order
fashion (i.e.. bottom-up). We use first-applicable as the rule combination algorithm
of a policy. SGAC rule subjects are translated as a regular expression of the form
“xsx”. A request ¢ = (s;,a,r) is rewritten using the XACML context handler as
q=(s1/.../si,a,r), where s1/.../s; is the path from the root of the subject graph
to the vertex s; targeted by the request. Of course, this only works when the subject
graph is a tree, in which case there is a single path from the root to s;. A request can
then match any rule that applies to any ancestor subject of s;, since rule subjects are
expressed as regular expression matching any path that contains the rule subject.

To compare the performance of XACML with SGAC, we have used Balana [50],
an open-source implementation of XACML based on Sun’s XACML implementation.
The tests were performed on a server running a virtual machine (Intel(R) CPU 2.67
GHz, 4.00 GB RAM). Balana is written in Java. SGAC is written in NodelJS.

We have generated SGAC policies in a random fashion using a program that
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generates a subject tree and a resource tree with depth h and node branching factor
b, which gives a tree of size (b" —1)/(b — 1). Rules are randomly generated. The size
of the trees ranged from 1093 to 21845 vertices. Fig. 2.6 shows the average request
processing time versus the number of rules given in thousands. Here are some of the

conclusions we drew from these results.

— Request processing time with XACML is significantly longer than SGAC’s to
evaluate the same request. When the number of rules is important (e.g., 100
000 rules), SGAC is in average 300 times faster.

— Request processing time with XACML increases linearly with the number of
rules whereas SGAC’s is near constant (< 2 ms in average for up to 1M rules,
and a maximum of 7 ms). SGAC uses an nlogn algorithm for indexing rules at
system initialisation, where n is the size of the subject graph, and a hash table

provides a near constant time for fetching rules applicable to a request.

— When the number of rules is high (200 000 rules for instance), XACML cannot
load the file containing the policies: the error returned refers to insufficient Java
heap space, which remained even after increasing the memory to 12 GB on a
64-bit architecture. SGAC could process all tests on a 4GB virtual machine with
a 32-bit architecture. XACML policies are written in XML, and they are quite

verbose.

2.8 Conclusion

We have proposed SGAC, an innovative access control method, to meet the EHR
access control and consent management requirements of a large hospital in Canada
(CHUS). SGAC uses an intuitive ordering on rules to manage rule conflicts. This
ordering uses priority to manage the different providers of rules and their precedence
according to the applicable laws. Subject specificity and modalities are used to order
rules of the same priority. SGAC’s implementation can manage large policies (at least
1M rules) and large subject and resource graphs. Its implementation performs signifi-
cantly better than Balana, an open-source implementation of XACML. SGAC’s access

control model offers flexibility in managing policies and in satisfying various laws on
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Figure 2.6 — Performances summary

privacy in Canada. It should be applicable to other legislations in other countries, and
to other application domains, like banking, insurance, social networks, government
services, etc. In order to ensure patient safety, we have proposed a formal model of
SGAC policies to enable automated analysis of policy properties. In future work, we
plan to explore tools like Alloy [25], ProB [29] and Yices [10], to automatically analyse
SGAC policies.
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Chapitre 3

Utilisation d’Alloy et de ProB
pour ’analyse de politiques de

sécurité SGAC.

Résumé

Cet article compare deux outils Alloy et ProB sur la vérification de propriétés
pour SGAC. Pour cela, une modélisation de SGAC est faite dans les langages
Alloy et B, ainsi qu'une analyse des performances du temps de vérifications de

différentes propriétés avec les deux outils. Les différentes propriétés vérifiées sont :

— des propriétés d’acces : on vérifie si un utilisateur a acces a un document

dans un contexte précis;

— détection de documents cachés : on vérifie s’il existe des documents qui sont

inaccessibles dans un contexte précis, et on détermine ces documents;

— détection des contextes acceptants : étant donné un ensemble de regle et
une requéte, on détermine les contextes qui font que ’ensemble de regles

accepte la requéte dans ces contextes trouvés;

— détection des regles inefficaces : on recherche dans la base de regles, les regles
qui ne jouent dans aucun contexte un role déterminant dans la décision

rendue par le systeme.
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L’analyse des performances révele que :
— le temps de traitement est indépendant du nombre de contexte ;

— le temps de traitement est plus fortement assujetti a la taille de la base de
regle, i.e.le temps augmente beaucoup plus rapidement lorsqu’on augmente

la taille de la base de regle qu’'un autre parametre ;
— le temps de traitement est linéaire en la taille du graphe;

— ProB a de loin de meilleurs temps de traitement, grace notamment a sa

capacité de résolution de contraintes "programmable".

Les résultats de ProB sont assez prometteurs pour envisager son utilisation pour
la vérification des regles d’acces de SGAC. Cet article a été soumis a la conférence

HASFE2017 et il est présentement en cours d’évaluation.

Commentaires

Ce travail s’inscrit dans la continuité de ma these : apres avoir formalisé
SGAC, comment peut on vérifier de maniére automatisée des propriétés sur les
politiques d’acces de SGAC? La formalisation en Alloy et en B a nécessité plu-
sieurs optimisations a cause des différentes limitations de chaque outils : Alloy ne
prend en charge qu'un nombre limité d’éléments, ce qui empéche la déclaration de
I’ensemble des requétes et ProB doit étre "guidé" dans la résolution de contraintes
afin de controler I'explosion combinatoire dans la résolution de contraintes. Ma
contribution a cet article se compose de la formalisation de SGAC dans les deux
langages, ainsi que des différentes optimisations. J’ai également mis en place un
protocole de test pour comparer les deux outils : on compare les performances
des deux outils pour tous les parametres identifiés fixés, sauf un que 'on fait
varier. Pour cela, j’ai développé une application qui génere le code Alloy et B
a partir de graphes orientés acycliques (DAG) générés aléatoirement, de régles
générées aléatoirement également et des propriétés a vérifier. Comme les graphes
et les regles sont aléatoires, les tests ont été effectués sur de multiples graphes

ainsi que sur des multiples requétes afin d’obtenir un échantillonnage moyen.
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Abstract

This paper investigates the verification of access control policies for SGAC, a
new healthcare access-control model, using Alloy and ProB, two first-order logic
model checkers based on distinct technologies.

SGAC supports permission and prohibition, rule inheritance among subjects
and resources ordered by acyclic graphs; conflicts are autonomously managed
using rule precedence based on priority, specificity and modality.

In order to protect patient privacy while ensuring effective caregiving in
safety-critical situations, we check four types of properties: accessibility, availabil-
ity, contextuality and rule effectivity. Our performance results show that ProB
performs two orders of magnitude better than Alloy, thanks to its programmable
approach to constraint solving. Results are promising enough to consider ProB

for verifying patient policies in SGAC.
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3.1 Introduction

With medical data being stored electronically, access control over these sensitive
data has become crucial and compulsory. But control over medical data is not an easy

task. Access control
— must ensure the patient’s privacy;
— must not hinder health worker’s work and endanger the patient’s life.

SGAC (Solution de Gestion Automatisée du Consentement — Automated Consent
Management Solution) [23] is an access control method which has been developed
for the Sherbrooke University Hospital. It allows patients and the hospital to specify
fine-grained access control rules over the medical data. In order to ensure patient
safety and privacy, properties must be checked on the access control policies. For
instance, the hospital would like to ensure that crucial patient data is available when
the patient’s life is in danger. Patients want to ensure that sensitive data that could
damage their reputation, employability or social relationships are only disclosed to
the appropriate persons in the right context.

SGAC is a sophisticated access control system which supports permission and
prohibition, rule inheritance, priority definition and complex rule conditions. It can
support large graphs of subjects and resources (>200K vertices) and large number
of rules (>1M), while providing an excellent response time of around 3ms per access
request. It is implemented in Node.js for scalability (7.e., the controller can be easily
parallelised using Node.js server facilities).

The flexibility of SGAC’s policy language makes it mandatory to use automated
verification techniques to check properties of SGAC access control policies. SGAC
is based on relational structures and first-order logic. Building a custom property
verification tool for such a language is an expensive task. Reusing existing model-
checking tools is more cost effective and less risky in terms of long-term maintenance,
while allowing for leveraging of future improvements.

There are three main classes of model checkers for first-order logic: SAT-based
approaches like Alloy [20], constraint-based approaches like ProB [I1], and SMT-
based approaches like CVC4 [3], Yices [10] and Z3 [7]. ProB and Alloy are easier to

use to model SGAC policies and they have both been shown to be useful in solving
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graph problems and complex first-order constraints like the ones used in SGAC [18,
14, 30, 48].

In this paper, we evaluate the applicability of Alloy and ProB for checking four
basic properties of SGAC policies.

1. accessibility: verify if a user has access to a document in a given context;

2. availability: verify that for a given context, each document of a patient is ac-

cessible by some user (i.e., nothing is completely hidden);

3. contextuality: enumerate the contexts that provides access to a patient’s data

for a given user;

4. rule effectivity: identify rules that are ineffective, i.e., rules that are always over-
ridden by other rules, and thus have no effect on the access granting decisions,

and hence may denote misrepresented safety /privacy requirements.

Applicability of a model checking tool in our industrial context means: i) the ease
of modelling SGAC policies; ii) the capability to deal with the access control policy
of a patient, which includes graphs and rules. Ease of modelling is important, from
a safety perspective. The easier it is to model a policy and the properties to check,
the less likely there will be errors in the modelling. SGAC policies can be huge. They
may contain millions of rules and hundreds of millions of documents. We don’t expect
any model checker to be able to handle such large numbers. Thus, the verification of
policies must be done on a patient-by-patient basis, by extracting the rules applicable
to a patient, and for a subset of a patient’s document, those which are most critical
for the patient safety and privacy.

The rest of this paper is structured as follows. Section 3.2 introduces SGAC, and
its conflict resolution mechanism for ordering rules applicable to a given request. Sec-
tion 3.3 presents Alloy and ProB, and a brief overview of the formalisation of SGAC
in these respectives languages. Section 3.4 provides examples of how the formalisa-
tion is used in order to verify properties. Verification performance results are given
in Section 3.5. Section 3.6 compares our findings with similar work on access control.

We conclude this paper with an appraisal of our work in Section 3.7.
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3.2 SGAC: presentation

SGAC has been developed in collaboration with the Sherbrooke Area University
Hospital Network (CIUSSS-Estrie), which includes 17 000 employees and more than
1 000 physicians. It has been designed to be generic enough to be reused in other
domains. The SGAC access control engine has nothing specific about the medical
domain. We present here all elements of SGAC needed to understand property ver-
ification. A more detailed discussion about our model and illustration of it can be
found in [23].

SGAC handles requests made by users to access documents and returns a permis-
sion or a prohibition depending on the rules specified by the patients, the hospitals

or required by laws and regulations.

3.2.1 Rule and request specification

A rule controls access requests of subjects to resources. It is defined by:
— a subject: a person or a group of people to control;
— a resource: the data to be protected;
— an action: the operation the subject wants to do on the resource;
— a priority: a number which defines the priority of the rule;
— a modality: a permission or a prohibition which defines the effect of the rule;

— a condition: a formula which determines the applicability of the rule. This for-

mula represent a specific context, in which the rule is applicable.

A request is the demand the subject issues in order to execute an action on a

document. It has the following attributes:
— a subject: the request initiator;
— a document: a document the request initiator wants access to;

— an action: the operation the subject wants to do on the document.

3.2.2 Subject graph and resource graph

In order to specify rules and requests, two directed acyclic graphs are needed:
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— the subject graph represents the hierarchy which mirrors the functional organ-

isation chart or any grouping of users relevant for access control;

— the resource type graph represents the taxonomy of medical documents and

their organisation in the healthcare facilities.

A resource denotes a group of documents. A document is a particular kind of resource;

subject can submit access request on documents only.

CHUS
CHUS
Y

Gene_raD (Nurse) 6ergen§
ractice

Psychiatry Laboratory

| . !

I I

- — I I
: Vertex O :

Bob Alice Charles | i

_____________________________________

(a) Subject graph example (b) Resource type graph

Figure 3.1 — Subject and resource graphs example

Fig. 3.1a illustrates a subject graph. A subject represents a person or a set of
people. The hierarchy works as follows: a rule on subject s is inherited by all the
vertices reachable from s. For instance in Fig. 3.1a, if a permission is given to the
General Practice department then this permission is inherited by GP Physician and GP
Nurse, Bob and Alice. Persons are sinks of this graph.
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In order to minimize the size of the resource graph, which could include several
hundred millions of records in a hospital like CHUS, vertices are parameterized, as
shown in Fig. 3.1b. Thus the resource Patient denotes all records of all patients. In a
rule, a resource vertex can be instantiated: for instance, the resource Patient denotes
all patient records, whereas the resource Patient = Anna denotes all records of the
specific patient Anna. The actual medical records of a patient, called documents,
are sinks of this graph. In the rest of this paper, we suppose that all parameterized
documents nodes are instantiated with their instance. To conduct tractable analysis,

we analyse a subgraph of the resource graph (e.g., only Anna’s records).

3.2.3 Behaviour and conflict resolution

A rule applies to a request when i) there is a path from the rule’s subject to the
request’s subject, ii) there is a path from the rule’s resource to the request’s document,
and the rule’s condition hold. When more than one rule apply to a request, and if they
have different modalities, a situation, typically called a conflict in the literature, arises.
To decide whether access is granted or denied, we define an ordering (a precedence)
on rules. The rule with the “highest” precedence determines the access decision. Let

r1,T9 be two applicable rules for a request.
1. If r; has a smaller priority than r9, we say that r; has precedence over rs.

2. If r1 and 79 have the same priority, and if the subject of r; is more specific than
the subject of ry (i.e., the subject of r; is a descendant of the subject of o in

the subject graph), then r; has precedence over 5.

3. If r; and 79 have the same priority, and neither of their subjects is more specific

than the other, then prohibitions have precedence over permissions.

This ordering is not total. There may be two rules rq, 75 such that neither of them
precedes the other. However, in such a case, r; and ro have the same modality, thus
there is no conflict and the decision is the modality of these elements with highest
precedence in this ordering.

The conflict resolution method relies on the fact that, generally, a rule which
targets a smaller group (inclusion-wise) than other rules should have precedence over

these. For instance, if a patient has a rule that permits nurses to access his/her data
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and another rule that prohibits a specific nurse from doing that, then the more specific
rule should have precedence when this specific nurse issues a request. This conflict
resolution method is absolutely autonomous and does not require the intervention of

an external actor.

3.2.4 Example

We illustrate the presented behaviour with the following example: let Bill be an
anaesthetist and a surgeon. Since he has two profiles, he inherits access privileges from
both of them. In Fig. 3.2, rules which apply to a request of Bill to read the document
D are: r1,79,73 and r4. We suppose they share the same priority. In the case where
all these four rules are active under the same context (i.e., their condition holds):
surgeons are not able to access the document D while anaesthetists can, making Bill
unable to access the document. We have r; that is less specific than 79, and the same
goes for r3 and r4. Since o and r4’s subjects are incomparable, precedence is given
to the prohibition, resulting in a prohibition for Bill’s request. If there is a context
where only ry, r3 and r4 are active, Bill’s request would be granted in this context

since anaesthetists would be allowed to access the document.

3.3 Formalisation of SGAC

In this section, we present an overview of the formalisation of SGAC in Alloy and
B.

3.3.1 Alloy

Alloy is a formal language for describing relational structures. Relations are de-
clared using an object-oriented syntax. All variables of an Alloy specification are n-ary
relations, with n < 5. Alloy is supported by a tool, the Alloy Analyzer, for analysing
and exploring the relational specification. It is a first-order logic model finder: the
solver takes the constraints of a specification and finds instances that satisfy them,
thus it bears some similarities with model checking. The Alloy Analyzer is used to

explore a specification by generating sample instances of it, to check its properties by
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Document D

+
_> Permission

% = Prohibition

Bill

Figure 3.2 — Example of rule precedence

generating counterexamples in case of property violations. An instance is an assign-
ment of values to the symbols of the Alloy specification; an instance is typically called
“a model” in the logic literature. Alloy offers a customisable graphical interface and
an evaluator which improves the user experience and greatly helps in understand-
ing the model and counterexamples. Its graphical interface is particularly convenient
when handling complex graphs with several vertices and edges.

Alloy is a relational language, where relations are declared using an object-oriented
syntax. The semantics of an Alloy specification is represented by a set of n-ary rela-
tions. Sets are represented as unary relations. Elements of a set are represented by

singleton sets. Set membership is represented by set inclusion.

Instances and signatures

The specification is described with structures, called signatures. These signatures
can have fields, similarly to classes in object-oriented programming. Accessing field r
of an instance a of a signature A is denoted by a.r. In Fig. 3.3 we define an abstract

signature A denoting a set of instances of type A (Line 1). The field r of type set A of
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the structure A is represented by a relation from A to A. An abstract signature has no
proper instance. The signature B that extends A (Line 5) can be instantiated since it
is not abstract. Signature A declares a field r of type A. A type can also be a cartesian
product of signatures, represented by the operator —>. A type is decorated by the
multiplicity constraint set, which says that the value of a. r is a set. Multiplicity can

be specified as a constraint in fields, but also in formulas and signature declarations:
— one: the structure is instantiated exactly once.
— lone: the structure can be instantiated at most once.

— some: the structure must be instantiated at least once.

non

Relations can be composed with the (or join) operator, an extension of the rela-

tional composition to n-ary relations with n > 1, as follows:

Vp,qep.q=1{(P1, - Pn-1,G2: - Gm) | (D1, Pn) €EPA (P2, -, qm) € ¢}

In particular, the join operator can be used on instances or on a signature. For
example, a . r returns the value of r for the instance a, A. r returns the codomain of
r, i.e., the set of values of r for all the instances of A, and r.A returns the domain
of r, i.e., the set of all the instances of A that are mapped to the values of r.

To specify constraints on a signature, we have two choices:

— Declare a constraint specifically bound to a signature: this constraint is present
in the signature declaration, or it follows its definition and it always refers to
this signature fields. This is the case for the constraint on line 6 of Fig. 3.3.
— Declare a constraint as a fact: this constraint is declared outside a signature.
This is the case for the constraint on line 9 of Fig. 3.3.
Operator fe returns the number of elements of the set e. For instance, in Fig. 3.3,
the signature B that extends A (line 5) has the constraint that each instance of B is
related by r to more than two instances of A (line 6). The fact constraint on line 9
ensures that each instance of A is related to less than four instances of A. An instance
of an Alloy specification must verify all the constraints and facts. For the specification
of Fig. 3.3, there can only be instances of B, and there are at least three of them,
since each instance of B is related to exactly three instances of B, by the conjunction

of constraints of lines 6 and 9 in Fig. 3.3.
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abstract sig A({
r : set A

}

sig B extends A {}{
#r>2
}

© X N O A W N

fact {
10 all a:A | #a.r < 4
11 }

Figure 3.3 — Example of Alloy declarations of signatures and constraints

Predicate, function and assertion

The following list describes three other constructs of the Alloy language:
— pred, which declares a predicate,
— fun, which declares a function, and

— assert, which declares an assertion, that is, a formula that should hold on all
instances of the Alloy specification. An assertion is similar to a theorem of a

theory.

Generating specification instances

Once all signatures and constraints have been specified, the specification explo-
ration can start: Alloy tries to find a specification instance satisfying all the con-
straints and displays it. One can also use the evaluator to manually check predicates,
and functions, or ask Alloy to find another instance. At this point, the user can run

the specification or check some constraints by executing the following commands:

— run p for scope: this command searches for an instance satisfying the sig-
natures, the facts and the predicate p within the scope. A scope determines
the number of instances for each signature. The predicate p and the scope are

optional.
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U A W N

run {some B} for 4 int

assert assertionl{ all b:B | #b.r<=1 }

check assertionl for 4 int

Figure 3.4 — Using Alloy commands

check p for scope, or check name £for scope: checks that the assertion p, or
the assertion declared as name, holds on all the instances of the specification for
the scope. If it does not, Alloy provides a counterexample, that is, an instance

where p does not hold.

Fig. 3.4 illustrates how to use these commands.

run at line 1 finds an instance of the model for up to 4 instances of each
signature. The analyser finds an instance satisfying all the constraints of Fig. 3.3
and exhibits it.

assert at line 3 declares an assertion: each instance of B is related by r to at

most one instance.

check at line 5 verifies the assertion assertionl previously defined. Keyword
int defines the number of bits (i.e.bitwidth) used to store integers. If a coun-
terexample is found, it is shown, and that is obviously the case here, since the
specification allows an instance of B to be related to exactly three instances.

Assertion assertionl is violated.

3.3.2 SGAC in Alloy

To model SGAC in Alloy, we define the following basic types (Alloy signatures):

the subjects, that represent the users, with their graph;

the resources, that represent the data, with their graph;

the contexts, which represent different conditions where a rule can apply;
the modalities, prohibition or permission;

the rules, that represents rules.
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Request

subSucc

Resource resSucc Int Context

Fxtends

seq/Int

Figure 3.5 — Basic structure of SGAC

From these basic types, we can define the edges of the subject and resource graphs:
subSucc, resSucc. We do so by adding a field in the subject and resource signatures,
mapping a subject or a resource to a set of same type objects (lines 2 & 6). The type
rule is mapped to one subject, one resource, one modality, one integer (priority) and
a set of context.

Figure 3.5 illustrates the relationships between these signatures.

In order to capture the fact that conditions may have dependencies between them,
our first attempt consisted in using booleans and truth tables to model the dependen-
cies. Since it was very resource consuming, we use instead sets of abstract contexts
which are by far more efficient. For instance the condition ¢; which states "in Septem-
ber" must imply the condition ¢, which states "between August and November". We use
two contexts con; and congy such that con; denotes the time window [August, Novem-
ber| minus September, and cony the whole month of September. This way ¢; = {cons}

and ¢y = {cony,cony}, and "¢; = " is equivalent to "context; C contexts".

97



3.3. FORMALISATION OF SGAC

sig Subject {
subSucc: set Subject

sig Resource {
resSucc: set Resource

© ® N O A W N

fact{
acyclic[subSucc, Subject]
acyclic[resSucc, Resource]

P S S TS YRR =Y
AW N = O
—

abstract sig Modality {}

15 one sig prohibition, permission extends Modality {}
16

17 sig Context {}

18

19 sig Rule {

20 p : one Int,

21 s : one Subject,

22 t : one Resource,

23 m : one Modality,

24 ct : set Context

25 }{

26 p >= 0

27 }

28

29 pred evalRuleCond[r:Rule,c:Context]{

c in r.ct

}

w W
= o

Figure 3.6 — Alloy declaration of the Subject and Resource graphs and Rules signature
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We then add the request type that basically is the Cartesian product of the sinks
of the subject and resource graphs. To order the rules and determine which rule will
have precedence over the others, we have to create a rule graph.

In [23], the approach we proposed was to build a rule graph from the applicable
rules which have their conditions verified. Thus for each couple (regq,con), we had
to create a graph to determine the result of the request req in the context con. The
sinks of the rule graph determine the result of the request: if all sinks are permissions,
the request is granted, if not, it is denied. The edges of the graph are represented
by ruleSucc. In this case ruleSucc is a quaternary relation: this leads to a heavy
computational burden. We came up with an alternative to avoid computing a rule
graph for each couple and reuse the graph made without regards to contexts. We now
build a rule graph for each request only. To evaluate a request req given a context
con instead of looking for sinks of the rule graph, we look for the deepest rules that
apply for the context con, i.e.vertices that have no successor which contains con in
its condition. Those vertices are called pseudo-sinks.

The resulting Alloy code for the request signature declaration is presented in
Fig. 3.7: the constraints in lines 6-7 compel the request to target only sinks of the
graphs and constraints in lines 8-9 define the rule graph only among the rules appli-
cable to the request. We define for this purpose the function appRules (from line 12)
which returns the set of rules applicable to a given request: a rule r is applicable to a
request req iff the subject of req is a successor (or is the subject) of r and the resource
of req is also a successor (or the resource) of r.

The next step is to specify how the rules are ordered in the graph within the set of
the applicable rules. First we define the predicate lessSpecific that compares two rules
with their priority, and in the case they share the same priority, with their subject.
The rule ry is lessSpecific that a rule ro means that either r; has a higher priority
value or 71’s subject is a predecessor (strict) of ry’s. Note that all rules cannot be
compared with that relation.

We then define isPrecededBy, based on lessSpecific, which compare two rules
as lessSpecific does, and in addition, in the case the rules are not comparable by
lessSpecific and that those rules are maximal elements of lessSpecific, their modality

is compared; precedence is given to prohibitions. Note that in our graphical represen-
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sig Request{

sub: one Subject,

res: one Resource,

ruleSucc: Rule -> set Rule

H

no sub.subSucc

no res.ressSucc

Rule.ruleSucc in appRules[this]
ruleSucc.Rule in appRules|[this]

}

© X N O A W N

e e
N = O

fun appRules[reg:Request]: set Rule({
{r: Rule | reqg.sub in (r.s).=*subSucc
and reqg.res in (r.t).xresSucc}

}

-
TUoh W

Figure 3.7 — Alloy declaration of the request

tations, maximal elements appear at the bottom of the graphs.

The requirement that only maximal elements of lessSpecific can be compared by
their modality is crucial: for instance, if we take the example of Fig. 3.8, we have
isLessSpecific(ry,ro] and isLessSpecific[rs,ry] but ry and ry cannot be
compared with this predicate. If we remove the maximal element condition from the
predicate isPrecededBy (denoted by '<’) then we would have r; < 7o, r3 < 74,
ry < rg and ry < r1, forming a cycle and destroying the ordering.

Finally, for readability we want a rule graph with as few edges as possible denot-
ing rule precedence, with the same coverage than isPrecededBy, so we compute the

transitive kernel of relation isPrecededBy.

3.3.3 The B-Method and the ProB tool

The B language [1] relies on first order logic, arithmetic and set theory. The B
language is used to specify systems, by describing state variables and operations that
modify these state variables. A system in B is described in a machine. In B, a machine

contains:

— a clause SET'S containing the declaration of basic sets and types;
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+
+
T4
Document D
+
=———— Permission

m =———Jp Prohibition

Bill

Figure 3.8 — Rule ordering example

— a clause CONSTANTS containing the declaration of all constants;

— a clause PROPERTIES containing all properties binding constants, such as

their type, or their valuation;
— a clause VARIABLES containing the declaration of all variables used;

— a clause INVARIANT containing all the invariants the variables must satisfy

at all time, such as typing, etc. ;

— a clause INITTALISATION containing the initial valuation of all variables,
with regards to INVARIANT;

— a clause OPERATIONS containing the operations that can be done on the
variables. In B, an operation is defined by preconditions and postconditions on

variables and can return a value.

ProB is a tool for the B-Method that can animate, model check and solve con-
straints: the animation of a B specification is fully automatic, and the constraint-
solving capabilities of ProB can be used for model finding, deadlock checking and

test-case generation. In our case, we use the constraint solver to verify the properties
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pred lessSpecific[rl,r2: Rule]{
(r2.p < rl.p)
or ( r2.p = rl.p
and r2.s in (rl.s).”subSucc)

1
2
3
4
5 }
6
7 pred maximal[r:Rule]{
8
9

no rl : Rule | lessSpecific[r,rl]
t
10
11 pred isPrecededBy[rl,r2:Rule]{
12 (
13 lessSpecific(rl, r2]
14 or
15 (
16 not lessSpecific[r2,rl]
17 and maximal[rl]
18 and maximal[r2]
19 and r2.m = prohibition
20 and rl.m != r2.m
21 )
22 )
23 }
24
25 fact {
26 all rg: Request | all rl,r2: appRules[rqg] |
27 rl in reg.ruleSucc.r2
28 <=>
29 ( isPrecededBy[rl, r2]
30 and not some r3 : appRules|[rqg] |
31 isPrecededBy[rl, r3]
32 and isPrecededBy[r3,r2]
33 )
34 }

Figure 3.9 — Alloy declaration of the predicates and function needed to sort the rules
such as for, instance, "the rules allow the health worker X to access to the resource
Y'.

Let A, B, C be sets.
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— P(A) ={X | X C A}, called the power set of A, is the set of all subsets of A.

— AxB={z—y|x € ANy € B} is the Cartesian product; it is a set of ordered
pairs x > .

— A relation R from A to B is a subset of A x B.

— id(A) = {z — x | x € A} denotes the identity relation on A, i.e. the relation

that associates each element of A to itself.
— A<+ B =P(A x B) denotes the set of relations between A and B.
— dom(R) = {x € A|Jy € Bex+— y € R} denotes the domain of R.

— R[C]={y|y€e BANIJx e Cexr— ye R)} denotes the image set of C' by
relation R € A < B.

— A -+ B denotes the set of (partial) functions from A to B. A partial function f
from A to B is a relation such that |f[{z}]| <1 for z € A.

— A — B denotes the set of total functions from A to B. A total function f is a
partial function such that dom(f) = A.

— RigRy={xw— z|Jyc Bexr—ye R Ny z € Ry} is the relational
compositon of R € A<+ B and Ry € B+ C.

— Let R € A<+ A. R" denotes the composition of R with itself n times (n > 0),
with "™ = Rg R" and R° = id(A).

— R* = U R" = closure(R) denotes the transitive closure of R, i.e., the smallest

n>1
transitive relation which contains R.

— Let Re A+ A R* = RTUId(A) = closurel (R) denotes the transitive and
reflexive closure of R, i.e., the smallest transitive and reflexive relation which

contains R.

— Let prjl(A, B) denotes the first relation projection of Ax B in A. Let prj2(A, B)
denotes the second relation projection of A x B in B. Thus,
prjl(A,B) ={z,y,z | z,y,2 € AXx BX AN z=ux}.
prj2(A,B) ={z,y,z | z,y,2 € AXx BX BA z=y}.

— Let A denotes the operator for lambda expression. Let Az.(x € A A P | e(z))
denotes the relation that maps the element = of A to the expression e(z) with

regards to the predicate P.
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SETS

CONTEXT={ ¢0, c1, c2, ... };
V_SUB = {s0, s1, s2, ... };
V_RES ={r0, r1, 12, ... };
RULE_T = {rule0, rulel, rule2...};
MODALITY = {per,pro}

Figure 3.10 — SETS clause of the B specification of SGAC

— Let S = struct(Idy : Ty, ..., Id, : T,) denotes the record, or set formed by the
ordered collection of n types T; called field of the record. Each field has a unique
identifier Id; called label. Then S’Id; denotes the field of type T} with the label
Id; of the record S.

3.3.4 Formalisation in B

In order to model SGAC in B, we use the model finder and constraint solving
features of ProB. We tried two approaches. In the first approach, we model the SGAC
policies and the properties using solely sets, constants and properties clause of a B
machine, in a way pretty similar to the Alloy specification. This approach failed
because ProB was unable to solve the constraints in an efficient manner.

In the second approach, we use variables and operations to impose an order in
which the constraints can be efficiently solved by ProB. Thus, some of the data is rep-
resented as constants and properties, and the others are represented as state variables
which are computed in a specific order in the initialisation clause of the machine, and
operations are used to compute values of the properties to check. This approach is
highly successful and represents a decisive advantage for ProB in comparison with

Alloy. Our final model is structured as follows:

1. Declaration of the basic types in the clause SET'S, presented in Fig. 3.10. Those

are the same basic types as in Alloy, except that we add rule identifier as a basic

type.
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2. Declaration of the other definitions such as the request type in the clause CON-

STANTS except for those related to rule ordering. The constants we use are

constrained in the Fig. 3.11.

3. Declaration of the types of the constants in PROPERTIES, and initialisation
of the two graphs and the rule base, presented in Fig. 3.11:

e_sub, e_res denote the edges of the subject and resource graphs;

REQUEST_T denotes the type of request, being the Cartesian product of
the sinks of the graphs;

rule denotes a function associating a RULFE_T to a record containing a ver-
tex of each graph (subject & resource), an integer (priority), a MODALITY
and a set of CONTEXTs;

we set constants containing the closures of the different graphs, cl_e_sub

for the closure of e_sub etc...;

we check that the graphs are acyclic with ¢l_e_subNid(V_SUB) = () for

instance;
we set the values of the constants:

— we set the constant lessSpecific (same semantic as the relation in Alloy)

by comparing each rule with their priority and their subject;

— we then set the graphs and the rules.

4. Declaration of the rule ordering related variables in VARIABLES, plus some

variables that avoid recomputing some heavy calculus such as closure of the rule

graph:

applicable denotes a function that returns the set of rules applicable to a

given request;

conRule denotes a function that returns the set of rules that contain a

given context;

isPrecededBy denotes a function that returns a relation mapping rules to

rules given a request (same semantic as the alloy isPrecededBy);

ruleSucc denotes a function that given a request req returns the transitive

reduction of isPrecededBy(req) (readability purpose);
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PROPERTIES /] *** Types ***
e_sub € V_.SUB < V_SUB A
e_res € V_RES <+ V_RES A
REQUEST_T = (V_SUB-dom(e_sub)) x (V_RES-dom(e_res)) A
rules € RULE_T — (struct(su: V_SUB, re: V_RES, mo: MODALITY, pr:
Z , co: P (CONTEXT))) A
lessSpecific € RULE_T <» RULE_T N
/) F** Closures ***
cll_e_sub = closurel(e_sub) A
cl_e_sub = closure(e_sub) A
cll_e_res = closurel(e_res) A
cl_e_res = closure(e_res) A
/] % Acyclicity of the graphs ***
cll_e_sub N id(V_SUB) = 0 A
cll_e_res N id(V_RES) = 0 A
// *** rule ordering: lessSpecific
lessSpecific = {zz,yy | oz € dom(rules) A yy € dom(rules) A

(

((rules(zx)) pr > (rules(yy)) pr)
V

kksk

((rules(zz)) pr = (rules(yy)) pr)
A
(rules(yy))'su € cll_e_sub[{(rules(zr)) su}]

)
)
A
// ***Setup of the graphs and ruleset™**
e_sub = {s0+— s1, s0+ s2, ...} A
e_res ={r0w— 11, 70 — 12, ... } A
rules = {
rule0 — (rec(su:sl, re:r0, mo:per, pr: 4, co: () )),
rulel — (rec(su:s0, re:r0, mo:pro, pr: 3, co: {c1,c3})),

LA

Figure 3.11 — PROPERTIES clause of the B specification of SGAC
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VARIABLES
applicable,
conRule,
isPrecededBy,
ruleSucc,
cll_ruleSucc,
pseudoSink
INVARIANT
applicable € REQUEST_ T — P (RULE_T) A
conRule € CONTEXT — P (RULE_T) A
isPrecededBy € REQUEST_T — (RULE_T <> RULE_T) A
ruleSucc € REQUEST_T — (RULE_T <» RULE_T) A
cll_ruleSucc € REQUEST_T — (RULE_T <» RULE_T) A
pseudoSink : (REQUEST-T x CONTEXT) — P (RULE_T)

Figure 3.12 -~ VARIABLES and INVARIANT clauses of the B specification of
SGAC

— cl1_ruleSucc denotes the transitive closure of ruleSucc;

— pseudoSink denotes a function that returns given a request and a context,

the pseudosinks of the rule graph of that request, with that context.

5. Declaration of the types of the variable, the constraints binding the variables in
the INVARIANT, presented in Fig. 3.12;

6. Initialisation of the variables with a sequence, with regards to the dependency
in Fig 3.13 and Fig 3.14: for instance isPreceded By has to be set before ruleSuce,
since it is its transitive reduction. Thus we set first applicable, then isPreceded By,
then ruleSuce, then cli1_ruleSucc and then pseudoSink. Since ruleCon has no
dependency link with the other variables it can be initialised in any order.
Afterwards we can set cll_ruleSucc then pseudoSink. ProB is having a very
hard time computing isPrecededBy and ruleSucc in parallel, not inferring the
dependency: that is the main reason we use variables and constant, to force

ProB to set them in the proper order.
7. Declaration of the operations which represent the different properties we want

to verify.
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INITTALISATION

BEGIN
applicable := X rr.(rr € REQUEST_T' | applicable_def(rr));

conRule := X con.(con € CONTEXT | {cc | cc € dom(rules) N\ con :
(rules(cc))’co});
isPrecededBy := X\ zx.(xx € REQUEST_T |
{yy, 2 |
yy € applicable(zz) N
2z € applicable(zx) N
yy # 2z A

(

yy — 2z € lessSpecific
V

(

{yy,zz} C maxElem(zzx) A
(rules(yy))'mo = per A
(rules(zz))'mo = pro
)
)
P
ruleSucc := X zx.(xzx € REQUEST_T |
{yy.2z |
yy € applicable(xzx) N
2z € applicable(zx) N
yy v 2z € isPreceded By(zzx) A
= (3 wu(
uwu € RULE_T A
yy — uu € isPreceded By(zz) N
uu — 2z € isPrecededBy(zz) A
uu #£ Yy N\ uu # 2z
)
D
cll_ruleSucc := X zx.(zx € REQUEST_T |
closurel(ruleSucc(xz))
) END ;

Figure 3.13 — INITIALISATION clause of the B specification of SGAC (1)
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pseudoSink = X\ (reg,con).(req € REQUEST_T A con € dom(conRule)
| { ru | ru € applicable(req) N
ru € conRule(con) A
Y subr.(
(subr € cli_ruleSucc(req)[{ru}]) = — ( subr € conRule(con))

) 1)

Figure 3.14 — INITIALISATION clause of the B specification of SGAC (2)

In B, we can use macros that we define in the DEFINITIONS clause: the
macros are replaced in the same manner as #define in C. The macros we use are
presented in Fig. 3.15: we define here the definitions for applicable, for isPreceded By,
with applicable_def and maxFElem, and the definition of access_def.

3.4 Properties verification

We check the following properties.

3.4.1 Accessibility

In order to verify that a user u can access the document d under the context con,
we check that the pseudo-sinks of the rule graph of the request defined by (u,d) are
all permissions. If there is at least a prohibition among them or no applicable rule
are found, the request is denied. This is illustrated for the B specification in Fig. 3.17
and in Fig. 3.16 for Alloy.

In Alloy, we introduce the function pseudoSinkRule that retrieves the pseudo
sinks of the rule graph for given context and request. We then declare the predicate
AccessCondition which returns true iff the given request is granted in the given
condition. Then in order to verify that a user u can access the document d under
the context con, we check that Alloy Analyzer (line 29) can find an instance of a
model where: the pseudo-sinks of the rule graph of the request defined by (u,d) are
all permissions. If there is at least a prohibition among them or no applicable rule are

found, the request is denied. For efficiency, we try to keep the number of explicitly
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DEFINITIONS
applicable_def(req) ==
{rul | is_applicable(req,rul) };
is_applicable(req,rul) ==
(rul€e RULE_-T A
dom({req}) C cl_e_sub[{(rules(rul))’ su}] U {(rules(rul)) su} A
ran({req}) C cl e_res[{(rules(rul)) re}] U {(rules(rul)) re}

)i

mazxElem(req) ==
rul | rul € applicable(req)
A
~
3 rul2.(
rul2 € applicable(req) N rul — rul2 € lessSpecific
)

)
%

access_def(req,con) ==

(

Y rsinks.(rsinks € pseudoSink(req,con) == (rules(rsinks)) mo
per)

A

pseudoSink(req,con) # ()

)

Figure 3.15 — DEFINITIONS clause of the B specification of SGAC

110




3.4. PROPERTIES VERIFICATION

declared signatures to the minimum for each run. Thus for each request evaluation,
each request is explicitly declared in separate Alloy file.

The formalisation of it in B is provided in Fig. 3.17 and is similar to the Alloy
definition: we check that all pseudo-sinks are permissions and that at least one rule
applies to grant the given request in the given context. Here, the result of the operation
CheckAccess is returned in the variable access as a boolean. The body of the operation

is very close to the Alloy specification.

3.4.2 Availability and contextuality

Once we are able to check that someone has access or not to a document, we can
find hidden data in order to warn the patient that in some contexts, some data will
be out of everyone’s reach. A document is defined unreachable or hidden under the
context con if all the requests that target it are denied under con. The formalisation
in Alloy is presented in Fig. 3.18. We define the predicate HiddenDocument: it
returns true if the given document is not reachable under the given context. We
then check that predicate with the command check (line 10): Alloy tries to find a
counterexample with a granted request that targets the document.

We do the same in B: the operation HiddenDocument presented in Fig. 3.19 checks
if there is a document under the context con that cannot be accessed by anyone.

We can in the same manner determine contexts which make a given request
granted. We introduce the signature Grant ingContext containing all contexts that
make a given request granted. We then need the predicate grantingContextDet
binding all contexts that make a given request granted to GrantingContext. The
Alloy formalisation is presented in Fig. 3.20. We then ask the Analyzer to find an
instance that satisfies the predicate grantingContextDet (line 10).

In B we do not need to introduce an object that will wrap up the contexts since
we can return the set of granting context. The operation GrantinContexts presented

in Fig. 3.21 returns all contexts that make the given request granted.
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1 fun pseudoSinkRule[req: Request,c:Context]
2 set Rule({

3 {r : appRules|[reqg] |evalRuleCond[r,c] and
4

5 all ru : r.”(reg.ruleSucc) |

6 not evalRuleCond[ru,c]

7 t

8 }

9

10 pred accessCondition

11 [reg:Request, c:Context] {

12 (

13 no r:pseudoSinkRulelreq,c] |

14 r.m=prohibition

15

16

17 ) and

18 some r:appRules[req] | evalRuleCond[r,c]
19

20 }

21

22 one sig reg(0 extends Request({}{
23 sub=s1

24 res=r0

25 }

26

27 run accessReq0_cl/{

28 accessCondition[reqg0, cl]

29 } for 4

Figure 3.16 — Checking Access with Alloy
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© X N O A~ W N

e
N = O

access < CheckAccess(req,con) =
PRE

req € REQUEST_T A

con € CONTEXT
THEN

access := bool(access_def(req,con))

END;

Figure 3.17 — Checking access with ProB

fun documentsG[]: set Resource{
{ rt : Resource | no rt.resSucc}

pred HiddenDocument [reso:Resource,c:Context] {
no req: Request | (reg.res = reso and
access_condition[req,cl)

check HiddenDocument_docl_cO0{
HiddenDocument [docl, cO]
} for 4

Figure 3.18 — Detection of hidden documents with Alloy
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hidden < HiddenDocument(con) =
PRE
con € CONTEXT
THEN
hidden := bool(3 (hdoc).(
hdoc € V_RES - dom(e_res) A
V req .(reqg € REQUEST_T A prj2(V_SUB,V_RES)(req)=hdoc
=
= access_def(reg,con))))

END;

Figure 3.19 — Detection of hidden documents with B

one sig GrantingContext {
acc: set Context

H}

pred grantingContextDet [reg:Request] {
all c: Context | accessCondition[req,c]
<=> c in GrantingContext.acc

}

© N O o W N =

10 run grantingContextDetermination({
11 grantingContextDet [reql]
12 } for 5

Figure 3.20 — Determination of the contexts that make a request accepted with Alloy
Analyzer
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granting < GrantingContexts(req) =
PRE
req € REQUEST_T
THEN
granting =
{ con | con € CONTEXT N
access_def(reg,con)
}

END:;

)

Figure 3.21 — Determination of the granting contexts in B

3.4.3 Rule effectivity

A rule is considered ineffective if it can never be determinant for the evaluation of
a request. For instance, if we take two rules which only differ in their priority, one of
them is ineffective since the one with the lowest priority will always have precedence

over the other. Formally, the criteria for a rule r not to be tagged as ineffective are:

— if it’s a prohibition: there is at least one couple request-context where r is a
pseudo-sink of the rule graph, and r is the only prohibition among the pseudo-
sinks;

— if it’s a permission: there is at least one couple request-context where r is the

only pseudo-sinks.

Indeed, if the rule is a prohibition, then it is effective in the case where the pro-
hibition is the only pseudo-sinks with this modality. It does not matter if there are
permissions among the pseudo-sinks, since prohibitions will have precedence. In the
case of a permission, it is slightly different since no prohibitions must be among the
pseudo-sinks, ¢.e.then the permission is the only pseudo-sink.

We introduce the predicate ineffectiveRule in Fig. 3.22 which returns TRUE

iff there is no request and no context for which:
— the given rule r is a pseudo-sink of the rule graph;

— there is no other pseudo-sink of the same modality than the given rule;
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1 pred ineffectiveRule[r:Rule] {

2 no rqg : Request | (

3 r in appRules|[rq]

4 and some cr : r.c | (

5 r in pseudoSinkRule[rq, cr]

6 and

7 (no ru : pseudoSinkRulel[rqg,cr]-r |
8 r.m = ru.m)

9 and

10 (r.m = permission implies

11 no (pseudoSinkRulel[rqg,cr]-r))
12 )

13 )

14 }

15

16 check ineffectiveRule_rule3{
17 ineffectiveRule|[rule3]
18 }

Figure 3.22 — Determination of the ineffective rules in Alloy

— if the given rule r is a permission, there is no prohibition among the pseudo-

sinks, i.e.r is the only pseudo-sink .

Then to verify that a rule is not ineffective, we use the command check (line 16).
Since we specify a property over all the requests, we are compelled to use the command
check because all the requests are not explicitly declared for efficiency. Thus, we can-
not use a signature wrapping up all ineffective rules as we did with GrantingCon-
text.

In B, all the ineffective rules are returned by executing the operation Ineffec-
tiveRuleSet presented Fig. 3.23. The set of ineffective rules cannot be removed all at
once: for instance, let r; and ry be two permissions that share the same attributes
and condition. Let’s suppose that there is a request req; for which only r and 79
applies. They both are flagged to be ineffective since each is a copy of the other rule.
However if both are removed, then req; that was previously granted would be denied,

because no rule would apply.
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ineffectiveSet < IneffectiveRuleSet =
PRE
TRUE = TRUE
THEN
ineffectiveSet 1= {
ru | ru € RULE_T N\
al
3 (reg,con).(
req € REQUEST_T A
ru € conRule(con) A
ru € pseudoSink(reg,con) A
(
pseudoSink(reg,con) - {ru} =0 Vv
(
(rules(ru))’mo = pro A
Vo ru2.(ru2:(pseudoSink(req,con)-{ru})
(rules(ru2)) mo = per)

Figure 3.23 — Detection of ineffective rules in B
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Figure 3.24 — Varying the number of contexts versus the solving time (30 vertices,
12 rules)

3.5 Performance tests

To test our models, we randomly generate graphs and requests. We control the
following parameters: the number of vertices in the graphs, the number of contexts, the
number of rules and the number of requests. We check all four properties by varying
only one parameter at a time. For a given value of the parameters, we generate at
least 6 models and compute the average execution time for checking the properties of
the models. For Alloy, each property is verified by running a check or run command.
For ProB, one execution can verify all four properties. Tests were performed on a
virtual server (Intel Xeon 3.10GHz) using Java 1.7 with 12GB of RAM.

3.5.1 Varying the number of contexts

In this experiment, the number of vertices is set to 30 in each graph, and the
number of rules to 12. The results presented in Fig. 3.24 show that the solving time

is quite constant and seems to be independent of the number of contexts.
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Figure 3.25 — Varying the number of vertices versus the solving time (13 rules, 10
contexts)

3.5.2 Varying the number of vertices

For this second test in Fig. 3.25, the number of rules is set to 13, the number of

contexts to 10. Alloy grows linearly. ProB is also linear with a slower growth speed
than Alloy

3.5.3 Varying the number of rules

For this test in Fig. 3.26, the number of vertices in each graph is set to 100 and the
number of context to 30. For 26 rules, Alloy takes more than 16 minutes to give the
result of one run command while ProB takes 16 seconds for the whole verification. We
observe that increasing the number of rules is the fastest way to increase the solving
time in both Alloy and ProB. We also repeated the experience with smaller graphs
and number of contexts (40 and 20, 20 and 3), the result is the same: rule number

has the greatest impact on solving time, greater than the number of vertices.

3.5.4 Varying the number of possible requests

The previous tests highlight that another parameter in the graphs may affect
the solving time: the number of sinks of the graphs. In this fourth experiment, we

generate graphs in order to control the number of sinks, which determines the number
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Figure 3.26 — Varying the number of rules versus the solving time (100 vertices, 30
contexts)

of possible requests. In Fig. 3.27, we compare Alloy and ProB for 30 vertices, 20 rules
and 10 contexts when varying the number of sinks (requests) in each graph. A cloud of
points appears, because for a given number of requests, there are several combinations
of sinks in the subject graph and the resource graph (e.g., 12 = 6 x 2 = 4 x 3 possible

requests from 2 resources sinks and 6 subjects, or 4 resources and 3 subjects).

3.5.5 Upper bounds

We managed to reach 300 vertices, 160 rules, 100 contexts with 200 requests in
about 15 minutes with ProB. This could be sufficient to use ProB on real verification

cases, since property verification is done per patient.

3.6 Related work

RBAC [15], a standardized and well-known access-control model based on roles,
allows for specification of permissions associated to a role, to execute actions on re-
sources. The lack of prohibition and condition in this model makes the verification
of an access property easier, since there are no conflicts. However, it has been shown
in [39] that RBAC is inappropriate for fine-grained access control as found in health-
care requirements like CIUSSS-Estrie’s. RBAC has been formalised in Z [11, 12] and
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Figure 3.27 — Varying the number of requests versus the solving time (30 vertices,
20 rules and 10 contexts)

B [15]. Traditional RBAC properties are checked (role activation, role hierarchy and
separation of duty).

OrBAC [27], a logic-based access-control model, introduces the notion of organ-
isation and includes among other things explicit prohibitions and contexts. A rule
can be defined to be only applicable in specific contexts. Conflicts are detectable by
static checking with the Prolog-based tool MotOrBAC [6]. OrBAC does not fit our
needs since it do not have an automatised conflict resolution, and once a static check
reveals a conflict, a human intervention is required to solve it.

XACML [43] is an attribute-based access-control language that features prohi-
bitions and conditions, and allows to determine how conflicts are managed by rule
combination algorithms. As shown in [39], XACML does not natively support rule
inheritance, since it does not include a graph of subjects or resources; it can be sim-
ulated using paths in resource name, but this complexifies the maintenance of a rule
base, while providing poor performance for very large rule bases. Formalisations of
XACML has been made using process algebra [1], a logic-based language that can
be used with a SAT solver [20], and Alloy [33]. These formalisations allow for access

property verification. Furthermore, it cannot be reused easily with our rule ordering.
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3.7 Conclusion

We have presented an approach to verify four types of crucial properties (accessi-
bility, availability, contextuality and rule effectivity) for SGAC access control policies
using Alloy and B. B performs significantly better (at least two orders of magni-
tude) than Alloy for all properties, thanks to the ability to control the solving process
in ProB by using B operations which allows one to determine an optimal order in
which the constraints are solved, and also by storing frequently needed results into
state variables of a B machine. Performance results are promising enough to consider
ProB for the verification of real SGAC patient policies. The verification process is
completely automatic.

In future work, we plan to investigate SMT solvers and compare their efficiency to
ProB. Those like Z3 offering programmable tactics may also offer a good performance;
it may allow us to simulate the ordering of the constraint solving process like we did
with ProB. However, it is not clear yet whether SMT solvers are good at solving
constraints on concrete data sets like our graphs. In addition, SMT solvers may also
facilitate the representation of rule conditions. In this paper, we have abstracted from
conditions by representing them with sets of contexts. A better approach would be to
use the real predicates, which would constitute some kind of higher-order specification
where rules are treated as objects and predicates are represented by Boolean functions
which must evaluate to true for a rule to apply.

To the extent of our knowledge, this is the first experiment that uses ProB on large
data sets, uses rules in constraint solving, and uses B operations to guide the solving
process. ProB has been previously used for verifying large data sets of railway param-
eters, but for some simpler formulas [30], and for university time tables [18]. Treating
rules as objects for a constraint solver is a quite challenging task, as illustrated by

the heavy computation times of Alloy.
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Conclusion

Les objectifs de cette these sont d’étendre le modele de contrdle d’acces issu de
nos travaux de maitrise, SGAC (Solution de Gestion Automatisée du Consentement)
afin de permettre au patient d’exprimer son consentement, et de lui fournir des outils
lui permettant de créer une politique d’acces qui lui convient. Pour cela, nous avons
choisi de doter SGAC d’une formalisation, de formaliser sa méthode de résolution de

conflit et de définir des méthodes de vérification des propriétés suivantes :
— un utilisateur peut-il accéder & un document dans un certain contexte ?

— un patient possede-t-il une donnée qui est inaccessible de tous dans un certain

contexte ?

— quelles sont les contextes qui autorisent un certain utilisateur d’accéder a un

certain document ?

— quelles sont les régles qui n’interviennent jamais dans le processus de décision

de controle d’acces ?

Le Centre Hospitalier de I’Université de Sherbrooke (CHUS) fournit un cadre
d’application réel : SGAC, et les méthodes de vérifications de propriétés doivent
pouvoir prendre en charge un grand nombre de patients, de données et de regles.

Pour ce faire, nous avons dans un premier temps conduit une étude comparative
de plusieurs modeles de controle d’acces existants, et nous avons notamment choisi
de modéliser un des modeles les plus connus et utilisé : RBAC (Role-Based Access
Control). La littérature sur ce modele standardisé est abondante, et des formalisa-
tions de celui-ci existent dans divers langages. Pourtant, subsistent dans le standard
des incohérences, des oublis voire des erreurs détectées grace a la formalisation en B

proposée dans le chapitre 2. RBAC, du fait de plusieurs lacunes, entre autres I'impos-
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sibilité de spécifier des interdictions, ne peut convenir a la gestion du consentement.
Ce premier pan de la these a permis une immersion dans la vérification appliquée
a des modeles de controle d’acces et a donné un apercu des différentes propriétés
vérifiées sur ce type de modeles.

Dans un second temps, nous avons défini une formalisation de SGAC, modele
congu pour répondre a la problématique de la gestion du consentement. Issu de nos
travaux de maitrise, SGAC a été complété et affiné grace a cette formalisation qui
permet de vérifier diverses propriétés, comme par exemple la détection de cas dan-
gereux, ou le patient empécherait les personnes aptes a le soigner d’avoir acces aux
informations nécessaires. Nous définissons a partir de cette formalisation des méthodes

pour
— vérifier 'acces d’un utilisateur a une ressource sous un contexte donné,
— vérifier qu'un document soit inaccessible sous un contexte donné.

La formalisation de SGAC a constitué la majeure partie du travail, notamment
au niveau de l'identification de tous les concepts présents et leurs relations. Les défis
auxquels nous avons été confronté sont le couplage des ressources avec les parametres,
et la relation de comparaison des regles. Cette derniere s’est révélée plus délicate que

prévu et doit étre décomposée en deux étapes majeures :

1. comparaison sur la priorité et la spécificité des sujets qu’on notera < (des regles

peuvent étre incomparables par <) ;

2. extension de < pour traiter les cas ou deux sont incomparables, en utilisant la

modalité.

Enfin, dans 'optique d’une utilisation de SGAC et de sa composante vérification
dans un cadre réel ou il faut prendre en compte un nombre important de données,
le choix du vérificateur de modeles pour mener les vérifications automatisées des
propriétés étudiées précédemment est crucial. Nous avons donc effectué une étude
comparative de deux outils, Alloy et ProB. Notre étude montre la supériorité ma-
nifeste de ProB dans la vérification de propriétés sur SGAC : meilleur temps de
vérification et facilité d’utilisation. Cela vient principalement du fait qu’il est possible
avec ProB de spécifier une propriété sur un ensemble, ce qui n’est pas toujours le

cas avec Alloy. En effet, Alloy ne peut répondre a une propriété que par “satisfiable”
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ou “non satisfiable”, alors que ProB permet de retourner un ensemble qui satisfait
une propriété : il faut donc autant d’exécutions que de documents pour détecter les
documents inaccessibles en Alloy, contre une seule avec ProB. Ce troisiéme volet de
la these, a la fois technique et expérimental, inclut le développement d’une applica-
tion permettant de convertir les graphes de sujets, de ressources et les regles ainsi
que les propriétés dans les deux langages puis de comparer les performances des deux
outils. Le modele présenté dans [23] ne pouvant pas étre utilisé comme tel, un travail
d’adaptation du modele pour chaque outil s’est imposé afin de contourner leurs limi-
tations respectives. Par exemple pour pouvoir effectuer des vérifications en Alloy, au
lieu de déclarer I’ensemble des requétes dans sa totalité, seule la requéte a évaluer est
explicitement déclarée : on utilise la commande check qui cherche un contre-exemple
lorsqu’on doit vérifier I’existence d’une requéte satisfaisant une certaine propriété, ou

une propriété que toutes les requétes doivent satisfaire.

Perspectives

Cette these ouvre plusieurs perspectives de recherche :
— réduction du temps nécessaire a la vérification,
— adaptation de SGAC a d’autres contextes,
— ajouts de nouvelles fonctionnalités telle que la délégation.

L’exploration d’autres outils tels que les vérificateurs de modeles basés sur des
SMT solvers peut conduire a une amélioration du temps nécessaire a la vérification.
Ce gain de temps peut également étre obtenu grace a diverses optimisations. On dis-
tingue deux types d’optimisations : les optimisations faites sur le modele traduit pour
un outil spécifique, et les optimisations faites sur le modele avant traduction. Dans le
chapitre 3, des optimisations ont été appliquées sur le modele traduit, mais il doit étre
possible d’en trouver davantage : par exemple en omettant le calcul de la réduction
transitive ou encore en factorisant 1’évaluation des requétes. Les optimisations effec-
tuées sur I'ensemble des regles, des graphes de sujets et/ou ressources ne dépendent

pas d'un outil donné. Ces optimisations peuvent étre faites localement :

— Au niveau des regles : le patient peut vouloir réduire le nombre de ses regles
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tout en conservant le comportement de son ensemble de regles. Ainsi, les regles
redondantes ou inutiles doivent étre enlevées, certaines regles peuvent étre re-

groupées ou fusionnées.

— Au niveau des sujets : 'organisation ou la hiérarchie des sujets peut potentiel-
lement étre simplifiée en réduisant le nombre de sommets (groupe de sujets)
tout en conservant les acces de chaque intervenant, par exemple en fusionnant
les groupes d’utilisateurs dont les utilisateurs ont les mémes privileges. Cette
optimisation doit se faire en s’assurant qu’elle n’engendre pas de regles sup-
plémentaires : il est simple d’imaginer un graphe de sujets réduit a I’ensemble
des utilisateurs, sans aucun groupe, avec leur acces conservés par le report des
regles de groupe sur chaque utilisateur. Cela multiplierait le nombre de regles

et rendrait leur maintenance difficile.

Une autre perspective est de transposer SGAC a un autre domaine d’application,
par exemple celui des infrastructures réseau. Les pare-feux disposent de regles d’adres-
sage des paquets. Ces regles qui définissent le comportement du pare-feu peuvent étre
adaptées au format des regles SGAC.

Les regles du pare-feu sont ordonnées, et la premiere applicable trouvée est celle
qui sera appliquée : 'entretien de la base de regles du pare-feu est ardu et tres difficile,
chaque modification de la base devant étre faite a la main avec des risques importants
d’erreur. L’utilisation de SGAC pourrait rendre la modification des politiques d’acces
réseaux beaucoup plus simple et également permettre la vérification de propriétés
telles que la vérification de blocage effectif de certains types paquets, ou la détection
de regles inefficaces.

La délégation, qui permet a un utilisateur de confier ses droits d’acces a un autre
utilisateur, constitue un autre axe de développement ajoutant des degrés de com-
plexité supplémentaire. En plus de la délégation simple des droits d’acces, il est pos-
sible de déléguer un droit de délégation, il devient donc possible de créer une chaine
de délégations. Cela peut devenir problématique lorsqu’il y a révocation des déléga-
tions : une révocation entraine également la révocation des sous-délégations, mais si
une personne avait recu la délégation d’'un autre personne, cette personne peut ne pas
étre affectée par la révocation. Cette notion ajoute par ailleurs de potentiels conflits

entre les regles appliquées a un individu et celles qu'on lui a déléguées : quel est le
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comportement a adopter lorsqu’un utilisateur, autorisé a accéder a un document, hé-
rite d’une interdiction par la délégation, et vice-versa ? Etendre SGAC avec la notion
de délégation est un défi intéressant et qui possede une application concrete : un mé-
decin peut se faire remplacer, et son remplacant doit étre, en principe, en mesure de

continuer le travail de son prédécesseur.
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