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Abstract 

This is a study concerning comparisons between the Dubovik Aerosol optical depth (AOD) 

retrievals from AEROCAN (ARONET) stations and AOD estimates from simulations provided 

by a chemical transport model (GEOS-Chem : Goddard Earth Observing System Chemistry). 

The AOD products associated with the Dubovik product are divided into total, fine and coarse 

mode components. The retrieval period is from January 2009 to January 2013 for 5 Arctic 

stations (Barrow, Alaska; Resolute Bay, Nunavut; 0PAL and PEARL (Eureka), Nunavut; and 

Thule, Greenland). We also employed AOD retrievals from 10 other mid-latitude Canadian 

stations for comparisons with the Arctic stations. 

The results of our investigation were submitted to Atmosphere-Ocean. To briefly summarize 

those results, the model generally but not always tended to underestimate the (monthly) averaged 

AOD and its components. We found that the subdivision into fine and coarse mode components 

could provide unique signatures of particular events (Asian dust) and that the means of 

characterizing the statistics (log-normal frequency distributions versus normal distributions) was 

an attribute that was common to both the retrievals and the model. 

Keywords : Aerosol, Aerosol Optical Depth (AOD), GEOS-Chem, AEROCAN, Dubovik 

inversion 
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Résumé 

Cette étude compare des épaisseurs optiques d’aérosols (AOD) à 5 stations arctiques 

d’AEROCAN (AERONET), obtenues d’une part à l’aide de l’algorithme d'inversion de Dubovik 

appliqué à des mesures in situ, et d’autre part du modèle de transport chimique (GEOS-Chem : 

Goddard Earth Observing Système Chemistry). Les produits d’AOD associés à l’algorithme 

d’inversion sont divisés en composantes totales, fines et grossières. Pour chacune des 5 stations 

(Barrow, Alaska, Resolute Bay, au Nunavut, 0PAL et PEARL (Eureka), Nunavut, et Thulé, au 

Groenland), la période de récupération est de janvier 2009 à janvier 2013. Nous avons également 

utilisé les mesureurs d’AOD de dix autres stations canadiennes de latitudes moyennes, à des fins 

de comparaison. 

Les résultats de l’étude ont été soumis à la revue Atmosphere-Ocean. Pour résumer brièvement 

ces résultats, le modèle a généralement, mais pas toujours, eu tendance à sous-estimer l'AOD 

moyenne et de ses composantes. Nous avons constaté que la subdivision en composantes fine et 

grossière pourrait fournir des signatures uniques d'événements particuliers (poussière asiatique) 

et que les moyens de caractériser des statistiques (les distributions de fréquence log-normale 

versus les distributions normales) était un attribut qui était commun aux deux les mesureurs et le 

modèle. 

Mots clés : Aérosol, épaisseur optique d’aérosol, GEOS-Chem, AEROCAN, inversion Dubovik 
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CHAPTER 1. General introduction 

1.1 Atmospheric aerosols  

Atmospheric aerosols are small particles whose size (radius) varies from ~ 0.001 μm to 

100 μm and which are in solid, liquid or mixed phase (see Hinds, 1998 for fundamental 

text on the nature of aerosols and their measurement). These particles have impacts on 

human health inasmuch as they are commonly associated with pollution as well as 

important impacts on climate change. According to the authors of the IPCC, working 

group I report, aerosols represent the largest uncertainty in radiative forcing calculations 

(IPCC, 2013). This uncertainty manifests itself as the uncertainty in describing the direct 

and indirect effect of aerosols. The former effect, which is largely a cooling phenomenon, 

results from aerosol backscattering of solar radiation into space. The latter effect is the 

consequence of aerosols acting as condensation or ice forming nuclei for cloud particles 

and the fact that the properties of those cloud particles are dependent on the properties of 

the aerosol nuclei.    

The aerosol parameters considered in this study, are of two different types (see the 

introduction section of the submitted paper in the next chapter for more details). These 

parameters can be extensive in nature inasmuch as they vary with the number (amount) of 

aerosols : typically such properties are rather localized in space and time and are subject 

to high frequency variations in both those dimensions. Alternatively, they can be 

intensive in nature (per particle properties) : intensive properties tend to be more regional 

in space inasmuch as they are associated with the type (source) of the aerosol or hence 

with the type of air mass. The most important extensive parameter in our research is 

AOD (Aerosol Optical Depth) while the important intensive aerosol parameters are 

particle size and particle nature (nature being represented by refractive index in an optical 

sense and composition in a microphysical sense).  

The research carried out for this thesis was associated with a sub-project of NETCARE 

(Abbatt, 2012). NETCARE is a collaborative project involving academic participants 

from a number of Canadian universities as well as government participants from 

Environment Canada (EC) and The Department of Fisheries and Oceans Canada (DFO).  
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1.2 Different types of aerosols and their sources 

According to Hinds (1998), aerosols can be divided into different size categories: 

nucleation mode (0.001 μm – 0.01μm radius), Aitken mode (0.01μm – 0.1μm), 

accumulation mode (0.1μm - 1μm) and coarse mode (>1μm). Aerosols come from natural 

and anthropogenic sources. In terms of significant optical effects in the visible and near 

infra-red region these four modes essentially reduce to the accumulation (fine) mode and 

the coarse mode (O'Neill et al., 2001). Natural aerosols have diverse origins, including, 

for example volcanic eruptions, wild fires, wind impacted mineral dust over deserts, and 

sea salt from sea spray. Anthropogenic aerosols such as sulphates, nitrates and 

carbonaceous aerosols come mainly from combustion processes (Jacob, 1999).  

Both natural and anthropogenic aerosols can be grouped into two categories : primary and 

secondary aerosols. Primary aerosols are mostly coarse mode particles emitted directly 

into the atmosphere by disintegration and / or dispersion of plant, and animal matter (or 

the microbes from different living or non-living surfaces). Fine mode secondary aerosols, 

however, begin as gases which subsequently form aerosols after gas to particle 

conversion processes (see Seinfeld & Pandis, 2006 for a general reference on aerosol 

types). In general, the subdivision into fine and coarse mode components is important for 

understanding the dynamics of aerosols since the separate modes generally represent 

independent types of aerosols 

1.3 Aerosol spatio-temporal simulation using chemical transport models 

Concentrations of aerosol (and other atmospheric constituents) can be estimated from 

models without, in the first instance, the direct use of observations. Chemical Transport 

Models (CTMs) simulate the temporal and spatial evolution of aerosol and gaseous 

compounds using meteorological data sets, emission inventories, as well as the physical 

and chemical laws that govern the behaviour of atmospheric constituents (Van Donkelaar 

et al., 2012). GEOS–Chem (the global CTM that we employed in our paper) has proven 

to be useful in analyzing atmospheric observations and to achieve a better understanding 

of aerosol dynamics on global and regional scales. The NETCARE strategy, with respect 

to the GEOS-Chem model, is to test various approaches and algorithms, and subsequently 
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recommend mature algorithms to be implemented in the models that simulate aerosol 

dynamics across the Canadian domain (Abbatt, 2012).  

1.4 Objectives and hypothesis of the mémoire  

Model simulations are widely used to achieve a more universal understanding of the 

dynamics of aerosols and their impact on climate change and air quality (Martin et al., 

2010). These simulations involve complex inputs, processes, scaling considerations, etc. 

that, at one level or another must be compromised by the limitations of available 

computational resources as well as the limitations in our understanding of the basic 

mechanisms that influence the spatio-temporal evolution of aerosol properties. They 

therefore must be compared with aerosol measurements and adapted to the reality defined 

by those measurements. The information obtained from local, regional or global scale 

remote sensing of aerosols is arguably the most important model comparison source for 

measurements of aerosol models.  

The present work falls within Activity 4 of the NETCARE program ("Implications of 

Measurements on Simulations of Atmospheric Processes and Climate.). Verifying the 

aerosol predictive capabilities of the GEOS-Chem model in comparisons with 

AERONET/AEROCAN retrievals of total, fine and coarse mode AODs was our objective 

within the larger context of Activity 4).  

The GEOS-Chem capability of predicting the important (and robust) aerosol optical 

parameter of AOD, within the error uncertainty of the measurements, is the basis of the 

hypothesis that we sought to validate within the context of this study. Realistically we 

hoped to employ monthly means and the associated (natural) standard deviation of the 

measurements and the models as significance constraints on the intercomparability of 

total, fine and coarse mode AODs (where to total AOD is simply the sum of the fine and 

coarse mode AODs). 

1.5 Overview of the article submitted as part of this mémoire 

The climate behaviour of aerosols and their pollution effects in high latitude regions like 

the Arctic are not well known. Understanding the behaviour of aerosols in remote regions 

is important for modellers who wish to adequately characterize the meteorological scale 
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pollution impacts of aerosols as well as the longer term climate impacts in a region where 

such impacts are known to be magnified (IPCC technical summary of working group 2).  

The article that follows (Chapter 2) addresses certain elements of NETCARE Activity 4 

("Implications of measurements on simulations of atmospheric processes and climate" as 

defined in Abbatt, 2012). Future modifications of the paper during the revisions phase of 

the journal review will take into account some points to improve that were noted by the 

members of the mémoire jury. 

 

The principal objective of the paper is to compare the polar summer simulations of a 

chemical transport model (GEOS-Chem) with a climatology of total, fine and coarse 

mode AOD retrievals over five Canadian Arctic stations. These retrievals depend on 

measurements of spectral AOD and sky radiance acquired by CIMEL instruments of the 

AEROCAN / AERONET network and the fundamental concept that much of aerosol 

optical behaviour can be understood in terms of fine / coarse bimodal size distributions 

(O’Neill et al., 2001). Comparisons with the model exploit its ability to subdivide aerosol 

types into fine and coarse mode components and, in turn, their fine and coarse mode 

AODs. The most important contribution of the paper relates to the fact that the coarse 

mode retrievals, even though their relative errors are very large, are a fairly unique 

indicator of what is likely Asian dust because (a) the timing is right (April),  (b) GEOS-

Chem says the same thing (and says that the coarse mode AODs are dominated by dust), 

(c) the separation into fine and coarse mode allows a very weak signal (c from the 

retrievals <~ 0.01) to be discriminated from the background in spite of the fact the 

expected errors of the retrieval method (something bigger than the typical CIMEL AOD 

errors of 0.01 to 0.02) are competitive if not larger than the nominal c values, (d) that 

GEOS-Chem coarse mode AODs are significantly correlated with coarse mode retrievals 

(the correlations were marginal for total AODs, so division into coarse and fine modes 

was a significant step), (e) that people generally don’t think of this nuanced means of 

verifying a model and that there is little in the literature related to an evaluation of that 

nature that we are aware of. It was also demonstrated that both the measurements and the 

model were characterized by frequency distributions that were lognormal and that this 

characteristic led to better model vs retrieval correlations in log-log space. 
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Abstract 

We compared AERONET retrievals of total, fine-mode (sub-micron), and coarse-

mode (super-micron) aerosol optical depth (AOD) with simulations from a 

chemical transport model (GEOS-Chem) across five Arctic stations and a four year, 

Polar summer, sampling period. It was determined that the AOD histograms of both 

the retrievals and the simulations were better represented by a lognormal 

distribution and that the successful simulation of this empirical feature as well as its 

consequences (including a better model versus retrieval coefficient of determination 

in log-log AOD space) represented a general indicator of model evaluation success. 

Seasonal (monthly averaged) AOD retrievals were sensitive to how the averaging 

was performed: this was ascribed to the presence of highly variable fine mode 

smoke. The retrieved and modelled station-by-station fine mode AOD averages 

showed a peak in April / May which decreased across the summer period while the 

model underestimated the fine mode AOD by an average of about 0.01. Both the 

retrievals and simulations showed seasonal coarse mode AOD variations with a 

peak in April / May that was attributed to Asian dust. The success in capturing such 

weak seasonal events helps to confirm the relevance of the fine / coarse mode 

separation and the validity of model estimates in the Arctic.  

 

Keywords: AERONET, Aerosol Optical Depth, Arctic, Chemical Transport Model, 

GEOS-Chem 
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2.1. Introduction 

The IPCC (2013) affirmation concerning the importance of understanding aerosol 

contributions to the direct and indirect effect is of particular significance over the Arctic 

where climate change impacts are known to be magnified.  In order to properly analyse 

aerosol processes and emission modelling in chemical transport models (CTMs) one 

needs to develop a reliable and varied measurement program to exercise as many of the 

aerosol functionalities as possible. Ground-based sun photometry measurements of 

aerosol optical depth (AOD) and sky radiance measurements represent key components 

of such a measuring program since they provide vertically averaged, robust parameters 

that define the macroscale, 1st order comparative constraints that models must 

satisfactorily simulate.  

A climatological-scale analysis of AOD and its derivative products represents a basis of 

model comparison that gives perspective to more spatially and temporally demanding 

(event scale) comparisons.  Such analyses can permit one to effectively filter out 

information about the most robust and fundamental mechanisms that control aerosol 

behaviour. Also, the AOD contamination impact of clouds and other sources of sun 

photometry error as well as the AOD computation impact of model limitations such as 

spatial resolution and time-step resolution are often dampened by carrying out 

comparisons at climatological scales.  

The aerosol optical properties derived from sun photometry are predominantly 

constrained by a simple concept of bimodality : the detectable optical effects are largely 

driven by a bimodal (volume) particle size distribution (PSD) consisting of a  fine mode 

or submicron component and a coarse mode or super micron component (see, for 

example, Whitby et al., 1972 for an earlier statement on the microphysical bimodality of 

the volume PSD and O'Neill et al., 2001 for a discussion of the optical bimodality). This 

concept represents a higher order but (still) robust approach relative to the classical 

Angstrom approximation for which the aerosol model is a simple, monotonically 

decreasing PSD (a Junge distribution for which the volume PSD, varying as 𝑟−å yields an 

AOD spectrum that varies as 
−å

 : å being the classical Angstrom exponent determined 

from a multi-band, log(AOD) versus log (λ regression)).  
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The bimodality concept means that one can divide aerosol optics into total, fine and 

coarse mode AODs, Angstrom exponents and their derivative (𝜏𝑎, 𝛼, 𝛼′;  𝜏𝑓, 𝛼𝑓 , 𝛼𝑓′; 𝜏𝑐,

𝛼𝑐 , and 𝛼𝑐′ respectively, c.f. O'Neill et al., 2001). This presents an alternative, and 

arguably more natural means, of evaluating columnar CTM outputs whose microphysics 

packages are (appropriately) based on fine and coarse mode aerosol species. Bi-modality 

represents a purer apportionment into extensive (quantity dependant) and intensive (per 

particle) optical properties (𝜏𝑎, 𝜏𝑓, 𝜏𝑐 and  𝛼, 𝛼𝑓, 𝛼𝑐 , etc respectively). 

Model evaluation and comparison in the literature is largely based on comparisons of 

AOD and å as well as speciated surface concentrations. In the Arctic, Hardenberg et al., 

(2012) compared AODs and regression Angstrom exponents simulated by two global 

models (ECHAM-HAM and TM5) with AODs extracted from the Polar AOD network & 

MODIS data over 6 Arctic stations for a sampling period extending from 2001 to 2006. 

They found that the models reproduced good estimates of Angstrom exponent but 

significantly underestimated the measured AODs. Breider et al. (2014) compared 

seasonal GEOS-Chem estimations of Arctic AOD with AODs measured at 8 Arctic 

stations for a sampling period of 1999 -2011. They observed that the model had 

succeeded in simulating AERONET AODs and provided model-based, speciation insight 

into how the constituent components would have contributed to the total AOD (including 

a general apportionment into natural and anthropenic aerosols). Shindell et al. (2008) and 

Eckhardt et al. (2015) carried out multi-model comparisons with surface aerosol 

concentrations measured in the Arctic. A notable feature of Shindell's comparisons was 

the large amount of variation in seasonal concentration between the estimates of different 

models (attributed to differences in aerosol and chemical physical processing, including 

removal). Eckhardt et al. (2015) noted large model variation (for sulfates) over the Arctic 

and observed that the models appeared to capture BC and sulfate concentrations while 

struggling to capture the extremes of the seasonal variation of the surface concentrations 

(notably the higher concentrations of the Arctic Haze in the springtime and the lower 

concentrations characteristic of the summertime). 

In this paper we performed seasonal (monthly resolution) comparisons between the 

species dependent AODs simulated by a community CTM (GEOS-Chem) and 

AERONET sun photometry / radiometry retrievals of total, fine and coarse mode optical 
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depths over sites in or near the Canadian Arctic. The comparisons were carried out across 

a multi-year sampling period (MYSP) of 4 years (2009 – 2012). One of our major goals 

was to demonstrate the advantages of such an approach within a context of more 

traditional comparisons with generic AODs and Angstrom exponents. The investigation 

also includes an analysis of the most relevant means of presenting statistical results for 

both retrievals and simulations. 

2.2. Background 

2.2.1 Sun photometry and sky radiometry 

The sun photometry / sky radiometry capabilities of the AERONET network provide 

classical measurements of spectral AOD in the solar extinction mode and angular 

measurements of sky radiance in the almucantar mode (Holben et al., 2001). The spectral 

AOD mode provides robust microphysical and / or optical retrievals with limited degrees 

of freedom while the combination of spectral AOD and sky radiance measurements 

provides microphysical and/or optical retrievals of multiple degrees of freedom (see 

Twomey & Howell, 1967 for a general discussion on, respectively, the number of degrees 

of freedom in "transmission" and "forward scattering" mode). In the extinction mode one 

can employ an algorithm such as the (Spectral Deconvolution Algorithm) SDA (O'Neill 

et al., 2003) to extract 𝜏𝑎, 𝜏𝑓, and 𝜏𝑐 at a reference wavelength of 500 nm (the 

AERONET standard). In extinction / sky radiance mode one can extract particle size 

distribution and refractive index (Dubovik et al., 2000) and employ these results to 

compute 4-channel spectra of 𝜏𝑎, 𝜏𝑓, 𝜏𝑐which can be interpolated to a reference 

wavelength such as 500 nm. The two sets of quantities are very similar but the SDA 

represents a spectral retrieval approach while the Dubovik retrieval literally divides the 

retrieved particle size distribution at a specific radius (c.f. O’Neill et al., 2003). 

2.2.2 Averaging and standard deviation statistics 

― Averaging nomenclature 

In general, we will let < 𝜏𝑥 > and 𝜎𝑥 represent the arithmetic average and standard 

deviation across any averaging bin. These statistical parameters clearly depend on 
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conditions such as site, year, etc. Rather than overload the nomenclature with more 

subscripts, we will explain the context depending on the case being considered. Similarly, 

we will represent the geometric mean and standard deviation (that result from averages 

and standard deviations of  log (𝜏𝑥)  by 𝜏𝑔,𝑥 and 𝜇𝑥.  In the following section we discuss 

some implications of the averaging scheme (for this particular section only, we used a 

more elaborate subscripting scheme to help clarify the details of successive averaging). 

― Averaging procedure and the interpretation of successive averaging 

At any statistical level in this work we calculated an average or a standard deviation by 

employing all individual retrievals in any "averaging bin" (days, months, years, stations 

etc.). While one can debate the merits of any given averaging approach (see Levy et al., 

2009, for example), the approach of employing individual measurements does have the 

distinct advantage of providing a clear point of reference for the averaging chain. Given 

this statistical protocol, it behoves one to be clear on how the relationship between 

successive averages across different averaging bins can be interpreted (simply because it 

is an inevitable question which arises as one statistically processes the data).   

It is easy to demonstrate that requiring averages that employ all original measurements 

for a given averaging bin equates to a higher level average (monthly average, for 

example) being the weighted average of lower level averages (daily averages, for 

example) where the weights are the normalized number of measurements that contributed 

to the lower level averages (normalized number of measurements per day for our 

particular example). Thus the monthly AOD average of daily averages across month "k" 

would be:  

𝜏𝑥,𝑘     =  ∑ 𝜔𝑘,𝑗  𝜏𝑥,𝑘,𝑗

𝐽𝑘

𝑗=1

  where  𝜔𝑘,𝑗 =  
𝑁𝑘,𝑗

𝑁𝑘
                       (1) 

where 𝜏𝑥,𝑘,𝑗 and 𝑁𝑘,𝑗 represent respectively the measurement and the number of 

measurements acquired on day "j" of month "k" and 𝑁𝑘 is the total number of 

measurements during month "k" (we could have also proceeded by considering the means 

of 𝑙𝑜𝑔 (𝜏𝑥,𝑘) as per the section below on lognormal distributions). An analogous relation 
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would be then employed to proceed up another level of successive averaging (which 

could be, for example, averaging across all stations for a given month "k"). It is also easy 

to show that the average obtained for a given set of averaging bins is independent of the 

order of the averaging (for example, monthly averages for a given year and station to 

yearly averages for a given station to station averages across the total ensemble (total 

MYSP data set) of retrievals can be performed as monthly averages to station averages to 

yearly averages and the result would be the same). This commutativity property applies 

only to the measurement-frequency weighting scheme as defined in equation (1) and not 

the general-purpose type of weighting schemes discussed in Levy et al. (2009). 

― Lognormal versus normal representations 

Various investigations in the literature have led to the observation that AOD histograms 

are better represented by a lognormal distribution as opposed to a normal distribution 

(which means that the AOD histogram is more realistically represented by a normal or 

Gaussian curve in logarithmic space and a long-tailed, positively skewed curve in linear 

space). These investigations include those of O’Neill et al. (2000), Knobelspiesse et al. 

(2004) and Perrone et al. (2005) for sun photometric data, Matthias et al. (2004) for lidar-

retrieved AODs and Ignatov and Stowe (2002) for satellite-retrieved AODs. In terms of 

Arctic AOD multi-year analyses, the long-tailed, positively skewed asymmetry typical of 

a lognormal distribution appears in the histograms of Tomasi et al. (2015). In spite of this 

evidence for lognormality, the persistent if understandable inertia of historical reporting 

means that the AOD community, including some, if not all, of the co-authors of this 

paper, continue to report arithmetic statistics rather than geometric statistics. Basically 

this amounts, respectively, to reporting AOD statistics as the arithmetic mean and 

standard deviation1 < 𝜏𝑥 >    ±   𝜎( 𝜏𝑥 )  rather than as the geometric mean and standard 

deviation, 𝜏𝑥,𝑔    ×    𝜇𝑥
±1 (or some related form depending on the desired probability 

metric). The latter expression is almost invariably a better representation of the AOD 

histogram (as well as derived parameters such as the median and peak values). This fact 

has non-trivial consequences: a climate modeller, for example, who wanted to report the 

                                                            
1 See the acronym glossary where the means and standard deviation parameters are defined (x = a, f, or c). 
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most probable AOD of a future AOD distribution would be distinctly incorrect in tying 

the objective analysis to an assumption that < 𝜏𝑥 > was the most probable value.   

The inertia of traditional reporting protocols aside, the geometric mean and standard 

deviation approach is rarely used because people are generally not as comfortable with 

logarithmic statistics as they are with linear statistics (and / or because they are not aware 

of the simple formulation above). In any event, the more relevant geometric statistics can 

be retrieved from the arithmetic statistics. It is easy to show (from Table 1 of O'Neill et 

al., 2000) that the former can be related to the latter: 

𝜏𝑔,𝑥  = < 𝜏𝑥 > exp (− ln2(𝜇𝑥 2))⁄   where,               (2) 

𝜇𝑥  = exp [√ln (1 +   (
𝜎(𝜏𝑥)

< 𝜏𝑥 >
)

2

)]         (3) 

Limpert et al. (2001) make essentially the same argument (on the reporting of arithmetic 

statistics for data distributions that are clearly lognormal) in their general treatise on 

lognormal distributions in the sciences. 

The arithmetic and geometric statistics of measured and GC-simulated AODs will be 

compared below. Within the context of the model comparison goals of this paper, we 

seek to demonstrate that GC AODs generally subscribe to the same lognormal properties 

as retrieved AODs. 

2.3. Methodology 

2.3.1 AEROCAN / AERONET sites employed in this study 

Figure 1 shows the AEROCAN / AERONET sites which were employed for our GC 

comparisons (AEROCAN is the Canadian federated subnetwork of AERONET) while 

Table 1 gives the location and instrumental details for all sites.  



13 
 

 
Figure 1. Map showing the five Arctic stations whose data was used in this study as well 

as the 10 southern stations whose data was employed for purposes of comparison with the 

Arctic data. 
 

Our study was focussed on three sites in the Canadian Arctic (the 0PAL, PEARL 

AEROCAN sites at Eureka and Resolute Bay) and two other Arctic AERONET sites at 

the boundaries of the Canadian Arctic (Barrow, AK and Thule, Greenland). 0PAL and 

PEARL are located at Eureka, Nunavut with the 0PAL site being at a near sea-level 

elevation while the PEARL site is on a ridge about 15 km away at an elevation of 610 

meters. These two sites provide a degree of data redundancy which we often exploit to 

verify the robustness of retrievals. A series of 9 southern Canadian AEROCAN sites were 

employed to present comparative statistics with the Arctic retrievals. 
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Table 1. AEROCAN/AERONET sites employed in this study. 

 Latitude (N) 
Longitude 

(W) 

Elevation 

(meters) 

Data acquisition 

period 

Arctic     

Barrow, AK, USA 2 71° 18' 43" 156° 39' 54" 0 2001-2012 

0PAL, Eureka, NV 3 79° 59' 24" 85° 56' 20" 0 2007-2012 

PEARL, Eureka, NV 80° 03' 14" 86° 25' 01" 615 2007-2011 

Resolute Bay, NV3 74° 43' 58" 94° 54' 00" 40 2004-2012 

Thule, Greenland 2 76° 30' 57" 68° 46' 08" 225 2007-2012 

Southern sites     

Bratt's Lake, SK 4a 50° 16' 48" 104° 42' 00" 586 2004-2012 

Saturna Island, BC 4b 48° 46' 58" 123° 07' 58" 200 2004-2012 

FortMckay, AB 4c 57° 11' 02" 111° 38' 24" 267 2004-2012 

Yellowknife, NWT 4d 62° 27' 07" 114° 24' 25" 201 2008-2012 

Waskesiu, SK 53° 55' 01" 106° 04' 58" 550 2005-2012 

Iqaluit, NV3 63° 44' 52" 68° 32' 34" 15 2008-2010 

Egbert, ON 4e 44° 13' 33" 79° 45' 00" 264 2004-2012 

CARTEL, Sherbrooke, QC 4f 45° 22' 44" 71° 55' 51" 300 2004-2012 

Halifax, NS 4g 44° 38' 16" 63° 35' 38" 65 2004-2012 

Sable Island, NS 43° 55' 58" 60° 00' 36" 3 2010-2012 

Notes 

1. Sites have a nominal AOD sampling rate of 3 minutes (except for Barrow whose nominal rate is 15 

minutes) 

2. AERONET sites that are close to the AEROCAN regions 

3. Nunavut, Canada. There was no data in 2005 

4. "a" to "g"; the Canadian provinces of Saskatchewan, British Columbia, Alberta, North West 

Territories, Ontario, Québec, Nova Scotia 

 

2.3.2 Ground-based retrievals of AOD 

The basic AERONET instrument is the CIMEL sun photometer / sky radiometer 

manufactured by CIMEL Éléctronique. Different versions of the CIMEL exist (most 

notably the version that incorporates two additional NIR / SWIR channels at 1020 nm 

and 1640 nm and a version that permits nominal AOD sampling time intervals of 3 
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minutes as opposed to the older standard of 15 minutes). Except for Barrow with a 

nominal sampling time of 15 minutes, all instruments used in this study were versions 

incorporating the NIR/SWIR and 3-minute sample time capabilities. Solar extinction 

measurements acquired by the CIMEL instruments permit the retrieval of AOD spectra 

across eight channels (340, 380, 440, 550, 670, 870, 1020 and 1640 nm). The SDA is 

employed by AERONET to produce 𝜏𝑓 and 𝜏𝑐 estimates at a reference wavelength of 500 

nm. 

Combined solar extinction and sky radiance measurements are acquired at a significantly 

lesser (nominal) sampling frequency of once an hour and are employed in an AERONET 

inversion algorithm to extract columnar estimates of particle size distribution (PSD) and 

refractive index (Dubovik and King, 2000). The size distribution and refractive index can 

then be reprocessed to extract estimates of 𝜏𝑓 and 𝜏𝑐 across the 4 retrieval wavelengths 

(which can then be extrapolated to, for example, the standard SDA wavelength of 500 

nm). The partitioning into 𝜏𝑓 and 𝜏𝑐 is accomplished by defining a cut-off bin size 

corresponding to the minimum of the retrieved volume PSD (i.e. a variable cut-off 

radius). The cut-off radius, the retrieved PSD and the refractive indices are then 

employed to extract 𝜏𝑓 and 𝜏𝑐. 

The sampling rate is the key to the usage made of the different types of available 

retrievals: high frequency event-level studies and comparisons with lidar data are 

performed using 3-minute AOD spectra separated into 𝜏𝑓 and 𝜏𝑐 (see for example, Saha 

et al., 2010) while low frequency, climatological-scale analyses are carried out using the 

more comprehensive Dubovik inversions to extract 𝜏𝑓 and 𝜏𝑐. While some comparisons 

have been made between the SDA and Dubovik retrievals of 𝜏𝑓 and 𝜏𝑐  (see O'Neill et al., 

2003) the Dubovik retrievals are much more of a climatological-scale standard than the 

SDA retrievals. We accordingly chose to use the Dubovik retrievals of 𝜏𝑓 and 𝜏𝑐  for the 

climatological-scale comparisons employed in this paper. The SDA retrievals were 

employed to investigate / identify specific events that were suspected of being artifactual 

in nature (statistical outlier events). 
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2.3.3 Level 1.5 versus Level 2.0 retrievals 

Dubovik retrievals are available at Level 1.5 and Level 2 processing levels. The quality 

assurance criteria that define each level are given in Holben et al. (2006). In general, 

Level 1.5 retrievals are subject to certain QA protocols such as scan symmetry checks 

and requirements that (Level 2.0 extinction mode) AODs be acquired near the time of the 

almucantar scan (Level 2.0 extinction – mode AODs are defined at 

http://aeronet.gsfc.nasa.gov/new_web/data_description_AOD_V2.html ). The scan 

symmetry criteria along with the requirement for nearby Level 2.0 extinction-mode 

AODs amount to a form of cloud screening that is arguably more demanding than the 

extinction-mode AOD cloud-screening criteria that is incorporated in the Level 2.0 

extinction-mode product.  Level 2.0 retrievals are subject to additional QA criteria such 

as a maximum allowable sky radiance retrieval error (i.e. error residuals between the 

computed and measured almucantar sky radiance) and a minimal solar zenith angle. 

Table 2 compares Level 1.5 and Level 2.0 statistics for the three AOD components (𝜏𝑎,

𝜏𝑓, 𝜏𝑐  at 500 nm) and the ensemble of all five Arctic sites across the 2009 - 2012 MYSP 

employed in this paper. In terms of total numbers, there are about a factor of 3 ½ times 

more Level 1.5 measurements than Level 2.0 measurements (5739 versus 1670). While 

Level 2.0 retrievals are the recommended option for users of AERONET retrieval 

products, we chose to use Level 1.5 retrievals because of the significantly greater number 

of points and the expected benefit of greater statistical robustness. At the same time, we 

monitored the Level 1.5 and Level 2.0 products at every averaging level in order to better 

understand any significant differences.  

 

 

 

 

 

 

 

http://aeronet.gsfc.nasa.gov/new_web/data_description_AOD_V2.html
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Table 2. Ensemble monthly means of Level 1.5 and Level 2.0 AOD components and the 

differences of two levels for 5 Arctic stations over the period of 2009-2012. 

      Level 1.5       Level 2.0     <x>2.0 - <x>1.5   

Month Nk <f> <c> <a> Nk <f> <c> <a> <f> <c> <a> 

March 83 0.068 0.0113 0.0793 19 0.0553 0.0032 0.0585 -0.0127 -0.0081 -0.0207 

April 532 0.0811 0.0135 0.0946 231 0.0768 0.01 0.0868 -0.0043 -0.0035 -0.0078 

May 1154 0.0814 0.0111 0.0925 666 0.0783 0.0088 0.0872 -0.0031 -0.0022 -0.0053 

June 1494 0.0711 0.0037 0.0748 353 0.0795 0.0047 0.0843 0.0084 0.0011 0.0095 

July 1277 0.0787 0.0021 0.0808 178 0.0903 0.0029 0.0933 0.0116 0.0008 0.0124 

August 921 0.0615 0.0021 0.0636 113 0.0584 0.0021 0.0605 -0.0031 0.0001 -0.0031 

Septembre 278 0.0475 0.0023 0.0498 110 0.0543 0.0013 0.0555 0.0068 -0.0011 0.0057 

Year 5739 0.0731 0.0055 0.0786 1670 0.0764 0.0065 0.0829 0.0034 0.0010 0.0043 

 

With respect to Table 2, the most notable differences occur in the months of March, June 

and July with values of < 𝜏𝑎,2.0 > −  < 𝜏𝑎,1.5 >  =  −.021, 0.010 and 0.012 

respectively and an average of − 0.003 for the rest of the months (numbers that can be 

contextualized by corresponding Level 1.5 standard deviations of 0.041, 0.065, and 

0.059). The month of March has only 83 and 19 measurements respectively across the 

Level 1.5 and 2.0 ensembles: in such cases of near marginal statistics associated with 

very low numbers of retrievals (always problematic during the Polar dusk months of 

March and September), our feeling is that Level 2.0 measurements are much more likely 

to be subject to the vagaries of unrepresentative measurements than Level 1.5 data. The 

ensemble statistics for the months of June and July are subject to large 𝜏𝑓 variations (the 

standard deviations are large for both Level 1.5 and Level 2.0 data): this is likely due to 

seasonal smoke events (see the station by station fine mode discussion below). 

2.3.4 GEOS-Chem simulations 

The model that we employed for our comparisons was Version 9-01-03 of the GEOS-

Chem global chemical transport model (GC). It is driven by GEOS-5 assimilated 

meteorological fields from the NASA Goddard Modelling and Assimilation Office 

(GMAO). We used a 15-minute time step for transport and a 60-minute time step for 

chemistry and emissions, a latitude / longitude grid size of 2 by 2.5 (approximately 220 

km x 50 km at the high Arctic latitude of 0PAL and PEARL and 220 km x 90 km at 



18 
 

Barrow) 47 vertical levels up to 0.01 hPa. The temporal resolution of the GC AODs 

which we employed in our analysis was 6 hours. 

An overview of AOD physics and chemistry in GC is given in Park et al., (2004). We 

divided the simulated AODs into their fine and coarse mode components (𝜏𝑓,𝐺𝐶 and 𝜏𝑐,𝐺𝐶) 

using the species by species segregation provided by GC. The species are fine mode 

organic carbon (OC), sulfate (SO4) and black carbon (BC) along with fine and coarse 

mode sea-salt (SS) as well as fine and coarse mode mineral dust). Accordingly; 

𝜏𝑐,𝐺𝐶   =    𝜏𝑐,𝐺𝐶,𝑆𝑆  +   𝜏𝑐,𝐺𝐶,𝑑𝑢𝑠𝑡          (4𝑎) 

𝜏𝑓,𝐺𝐶   =    𝜏𝑓,𝐺𝐶,𝑆𝑂4  +   𝜏𝑓,𝐺𝐶,𝐵𝐶  +   𝜏𝑓,𝐺𝐶,𝑂𝐶  +   𝜏𝑓,𝐺𝐶,𝑆𝑆  +   𝜏𝑓,𝐺𝐶,𝑑𝑢𝑠𝑡          (4𝑏) 

All AODs are calculated at 550 nm using RH-dependent aerosol optical properties (see 

Martin et al., 2003 for an overview of the optical processing employed for GC aerosols). 

The dry-mass particle size distributions of all components except dust are represented by 

lognormal distributions implicitly partitioned into fine and coarse mode components 

according to their effective radius (http://wiki.seas.harvard.edu/geos-

chem/index.php/Aerosol_optical_properties). Dust is represented by a gamma 

distribution divided into 7 size bins (ibid): in this paper, we defined the fine and coarse 

mode cut-off radius for dust to be at 1.0 µm (meaning 4 fine-mode bins and 3 coarse-

mode bins). 

Emission sources in GEOS-Chem are generally dynamic with ties to temporally varying 

empirical indictors of emission strength (see "Aerosol emissions" on the GEOS-Chem 

Wiki site at http://wiki.seas.harvard.edu/geos-chem/index.php/Aerosol_emissions). 

Biomass burning emissions, for example, employ GFED3 emission estimates which are, 

in turn, based on MODIS-Terra and MODIS-Aqua fire counts acquired over sampling 

intervals of 3 hours. As another relevant example, dust emissions are driven dynamically 

by mobilization schemes that employ analysed wind fields. 

2.3.5 AOD differences due to small changes in the reference 

wavelength: GC versus AERONET retrievals 

The standard GC optical outputs are at 550 nm while, for reasons of coherency with our 
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past calculations and those of others, we chose a reference wavelength of 500 nm for the 

AERONET retrievals. The expected negative bias of the 550 nm AODs relative to 500 

nm AODs is generally small compared to the retrieval standard deviations (<~ 20% of the 

ensemble monthly standard deviations for the fine, coarse and total components) 

2.4. Results and discussions for the Canadian Arctic 

2.4.1 Analysis of lognormal versus normal representations 

Figure 2 (a) shows normal and lognormal histogram representations of the total AOD 

(𝜏𝑎) for both the AERONET retrievals (Level 1.5) and GEOS-Chem simulations 

respectively (for all points of the MYSP). In keeping with the conclusions of O’Neill et 

al. (2000) the top two AERONET histograms confirm that a lognormal representation is 

more appropriate for Arctic data (the histogram on the logarithmic scale looks more like a 

normal distribution, while the histogram on the linear scale shows a typical asymmetric, 

positively skewed, form). The bottom two histograms of Figure 2 (a) illustrate that the 

GC modelled histograms show the same general characteristics as their measured 

analogues. This general agreement in the form of measured and modelled histograms 

(also a characteristic of the fine and coarse modes) is a verification of the real-world 

simulation capability of the model: an element of model evaluation that we have not 

noted in the literature. 



20 
 

 

Figure 2. Normal and log-normal fit comparisons for AERONET and GC AOD 

histograms (a) Linear and lognormal histograms (left and right-hand graphs, respectively) 

for AERONET at λ = 500 nm and GC at λ = 550 nm (top and bottom rows respectively), 

(b) An example of how to employ the traditional means of reporting sun photometry 

AOD statistics (linear mean and standard deviation) to extract parameters that are 

representative of the lognormal distribution. In this illustration the linear mean and 

standard deviation are used to estimate the geometric mean of the histogram by 

calculating the latter from the lognormal parameterization (equations (2) and (3)). 

(a) 

(b) 
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Figure 2 (b) illustrates the estimation of the geometric mean of an AOD histogram, given 

the lognormal parameterization and the arithmetic mean statistics (given equation (3)). 

For this particular coarse mode example (as a function of station for all points during the 

MYSP) we compare the computed geometric mean from equation (2) with the actual 

geometric mean of the data histogram for both the AERONET retrievals and GC 

simulations (the disparity between the optical depth amplitudes of the measured and 

modelled results will be discussed below). The results show that the geometric mean 

values from equation (2) are close to the geometric means from the data histograms for 

both the AERONET retrievals and the GC simulations (less than 20% and 5% difference 

for measurements and models respectively): this is really just an illustrative confirmation 

that measured and modelled AOD histograms are better represented by a lognormal 

distribution.  In terms of the overwhelmingly common tendency to report AOD statistics 

in terms of arithmetic statistics, this result indicates that geometric statistics can be 

readily retrieved by future analysts and modellers from the arithmetic statistics (providing 

the arithmetic statistics include at least the arithmetic mean and standard deviation).  

2.4.2 General AOD statistics for the retrievals 

― General considerations 

For various reasons, we chose the climatological sampling period (MYSP) of 2009 - 2012 

for the analyses presented in this paper. At the same time, we regularly monitored the 

robustness of the 2009-2012 statistics compared to the statistics of a longer, 2007 - 2012 

MYSP.  All months with 10 or fewer retrievals for any given station across our MYSP 

were excluded from the analyses in order to maintain a rudimentary degree of statistical 

significance and robustness in the worst cases of sparse data (this eliminated the month of 

March for PEARL, April for 0PAL and all of the October retrievals).  

Figure 3 shows a sensitivity study that includes a variety of types of 500 nm AOD 

monthly averages referenced to the (green colored) monthly averages of Tomasi et al. 

(2015) for the four sites that were in common between our two studies (the Tomasi study 

is the only recent sun photometry multi-year analysis that includes AERONET stations 

common to our own). The solid symbols represent monthly averages of daily averaged 
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retrievals while the open symbols represent monthly averages employing all individual 

retrievals (without pre-averaging). The open-symbolled curve in purple (and its standard 

deviation error bars) represents our monthly averaging scheme over our selected MYSP. 

The comparisons with Tomasi are not identical even when the MYSP and the averaging 

scheme are identical because they employed AOD retrievals (solar extinction data) for 

their statistical analysis while our analysis comes from AODs processed through the 

AERONET Dubovik retrieval. This brings up an interesting predicament: their analysis 

nominally employs about a factor of five more AODs (and thus is nominally more 

statistically sound) than our analysis while one could argue, that the retrievals are better 

filtered than the AODs (both in terms of cloud screening and in terms of the physical 

soundness of the derived products; see Holben et al., 2006 for a general discussion of 

Dubovik retrieval filtering). 
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Figure 3. Comparison between various types of monthly averages (black and purple) and 

the monthly averages (green) of Tomasi et al. (2015). The Tomasi AOD averages 

represent Level 2.0 extinction data. The purple curve shows the averages for the MYSP. 

The error bars are standard deviations. 

As can be seen in Figure 3, the agreement (of any of the curves) with the station by 

station, multi-year Arctic AOD analysis of Tomasi (2015) is rather marginal for the two 

western stations of Barrow and Resolute Bay, affected as they are by intermittent, large-

0PAL 
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amplitude smoke events (see the fine mode station by station analysis below for further 

discussions). Indeed, the results can be rather precarious with large changes between the 

various types of averaging schemes and with variances that are considerably larger than 

the eastern station variances (as represented by the standard deviations of our chosen 

averaging scheme). In one particularly egregious example, the removal of two super-

unity 𝜏𝑓 days of data from Barrow's "daily avg -> monthly avg" scheme for June (black 

triangles in Figure 3) yielded a reduction in < 𝜏𝑓 > and 𝜎(𝜏𝑓) of 0.046 and 0.187 

respectively for the month of June (in effect the process of daily averaging before 

monthly averaging enhanced the statistical weight of those two days2). This level of 

precariousness appears to be damped down by averaging over a longer MYSP of 2004 to 

2012. However, such was not the case for the highly variable month of July in the 

Resolute Bay results: the same increase in the MYSP duration produced even greater 

departures from the Tomasi results. If we leave aside the case of July in Resolute Bay the 

RMSD values relative to the Tomasi results for our chosen MYSP and all 4 stations (the 

purple vs the green curves) vary from <~ 0.02 for the western stations to <~ 0.01 for the 

eastern stations (values that are all <~ the standard deviations of our chosen MYSP). 

― Seasonal variations of the total AOD 

Figure 4 shows the 〈𝜏𝑎〉 monthly mean variation for the total MYSP data ensembles of 

the 5 Arctic and 10 southern stations (the error bars represent the standard deviations as 

defined in the section on averaging and standard deviation statistics). In general, one can 

note the larger (if not always significantly larger) southern AODs and a peaking of the 

Arctic AODs in April (~ 0.10) with a decrease in the summer to fall period (~ 0.05 in 

September) while the southern station ensemble shows AOD (500 nm) peaking during 

the late summer (c.f. Holben et al., 2000, for general multi-year statistics of southern 

stations). The 8-station, (1999 - 2011) Arctic (AERONET) averages of Breider et al. 

(2014) and the (2004 - 2006) Alert results of Hardenberg et al. (2012) show a broadly 

similar type of (550 nm AOD) behaviour as do the 500 nm results of Tomasi et al. 

                                                            
2 June 12, 13, 2010 for which only 3 Level 1.5 retrievals were actually archived. The "all-AODs->monthly 

averaging" (pink) case placed    a factor of 3 less weight on those 3 measurements for the month of June 

2010 (this is reflected in the lower pink triangle in the June, Barrow case of Figure 3. 
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(2015).  Eck et al. (2009) show a similar (500 nm) AOD trend at Barrow for a 1999 - 

2008 MYSP (with infrequent, large amplitude excursions due to smoke) while the interior 

(Boreal forest) Alaskan site of Bonanza Creek showed a smoke dominated peak in 

August for seasonal statistics across a MYSP of 1994 to 2008. 

 
Figure 4. 〈 τa 〉 (averaged over the 2009 to 2112 MYSP) as a function of month for the 

Arctic stations compared with the analogous averages for the 10 southern stations. The 

error bars are standard deviations 

2.4.3 Comparisons with GC 

― Component AODs averaged over all stations 

Retrieved and modelled seasonal plots of monthly averaged component AODs (〈𝜏𝑓〉, 〈𝜏𝑐〉 

and 〈𝜏𝑎〉  for all the Arctic stations across our chosen MYSP of 2009 to 2012 are shown 

in Fig. 5. Both retrieved and modelled plots of 〈𝜏𝑓〉 indicate a peak in the April/May 

period and in July (the latter peaking being not unrelated to the above comparisons with 

the Tomasi reference). The GC estimations are systematically less than the retrievals but 

the differences of <~ 0.03 are usually within the retrieval standard deviations. 

Peaking of 〈𝜏𝑐〉 in April / May can be observed for both the retrievals and GC, with a 

significant amplitude disparity. GC results are relatively independent of the MYSP while 

retrieved 〈𝜏𝑓〉 and 〈𝜏𝑐〉 values are also fairly robust: the RMSD values of 〈𝜏𝑓〉2007−2012 −
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  〈𝜏𝑓〉2009−2012 and 〈𝜏𝑐〉2007−2012 −   〈𝜏𝑐〉2009−2012 for the 2007 - 2012 MYSP relative to 

the 2009 - 2012 MYSP were computed to be 0.0035 and 0.0032 respectively (values that 

are respectively much smaller than and less than or of the order of the standard deviation 

error bars seen in Figure 5). 

 
Figure 5. 〈 τf 〉 , 〈 τc 〉  and 〈 τa 〉  (monthly averages over the 2009 to 2112 MYSP) and 

modelled values (〈 τf,GC〉 ,〈 τc,GC〉   and 〈 τa,GC 〉 ) as a function of month. The error 

bars are standard deviations. 
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― Individual stations  

 Linear and logarithmic regressions of modelled AOD versus AERONET 

AODs 

Figure 6 shows the GC versus AERONET coefficient of determination (R2) computations 

for daily averaged 𝜏𝑎, 𝜏𝑓, and 𝜏𝑐 values as a function of the measurement station (as 

well as the combination of all station data) over the total MYSP. The plot includes a 

comparison of R2 for linear regressions (both modelled and AERONET AODs in linear 

space) as well as logarithmic regressions (both modelled and AERONET AODs in log 

space). The error bars correspond to one standard deviation of the Fisher's z 

transformation distribution (see, for example, Siegel, 1961). One can observe that the 

logarithmic regression is always characterized by a higher R2 value but that the value is 

not always significantly higher in the case of 𝜏𝑓 𝑎𝑛𝑑 𝜏𝑎 (notably for the eastern Arctic 

stations). In the case of 𝜏𝑐, the values show a significant improvement over the linear 

regressions for the "all" (stations) case and for each individual station. A superiority of R2 

values in log-space compared to R2 values in linear space, for lognormally distributed 

data frequencies has been noted, for example, by Zerovnik et al. (2013)3 where the degree 

of superiority was shown to vary with the strength of correlation between the independent 

and dependent variables and the COV (coefficient of variation) of the two variables ,  The 

results of Figure 6 are, in fact, further confirmation that both the retrieved and modelled 

AOD distributions are lognormal. 

                                                            
3 Specifically, their Figure 3 where their lognormal coefficient C(ln) is the coefficient of correlation for the 

linear space where the data probability distribution appears as lognormal while C(n) is the coefficient of 

correlation for the log space where the data probability distribution appears as normal. 
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Figure 6. Coefficient of determination between modelled and retrieved daily AOD means 

for the ensemble of all sites ("all") and for individual sites.  The error bars are the 

standard deviations corresponding to one standard deviation of Fisher's z transformation 

distribution (see Siegel, 1961, for example). 
 

The superiority of R2 values in log-space should be at its greatest when the COV is 

largest (ibid): this is the case for (retrieved and simulated) coarse-mode COVs which 

were >~ 1 while fine and coarse-mode COVs where <~ 1. The significant logarithmic 
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correlation is likely an indication that even though 〈𝜏𝑐〉 and 〈𝜏𝑐,𝐺𝐶〉 are <~   the standard 

sunphotometer AOD error4, their estimation / retrieval significance can be well below 

that nominal error. This means that the GC estimates can still be physically significant 

even though, for example, the simulated source strengths might be substantially 

underestimated. On the retrieval side this means that the estimation of 𝜏𝑐 is essentially a 

small fraction of 𝜏𝑎 that depends (mostly) on the spectral shape of the latter: the influence 

of this spectral shape scales down to the small values of 𝜏𝑐 that result from the retrievals. 

 Fine mode seasonal variations 

Figure 7 shows 〈𝜏𝑓〉 and 〈𝜏𝑓,𝐺𝐶〉 monthly average values for our chosen 2009-2012 MYSP 

in terms of the individual stations. The first thing we would note is the coherency of the 

PEARL and 0PAL retrievals. The simple average of the monthly average differences 

(< 𝜏𝑓 >0𝑃𝐴𝐿 − < 𝜏𝑓 >𝑃𝐸𝐴𝑅𝐿) for the 0PAL and PEARL bar graphs of Figure 7 is 0.0013: 

that this is a very small positive number5 well below the expected errors of CIMEL 

AODs is fortuitous. However, the fact that it is small in general does permit us to exploit 

the very useful redundancy afforded by the near co-location of the two instruments. 

                                                            
4 for newly calibrated instruments these are typically < 0.01 for λ > 440nm and < 0.02 for shorter 

wavelengths (Holben et al., 1998). 

5 As expected for an 0PAL CIMEL instrument which sees a moderately thicker atmosphere from its sea-

level location. 
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Figure 7. 〈τf 〉 Fine mode monthly averages over the MYSP for all 5 Arctic sites. The error bars 

are the standard deviations. 

 

Resolute Bay, as well as 0PAL and PEARL to a moderate degree, show 〈𝜏𝑓〉 peaking in 

July while the Resolute Bay standard deviation is very large (COV ~ 1.5) in keeping with 

the general averaging comments made above about the variability of AODs during this 

month (the fact that both 0PAL and PEARL show a weak peak is an example of the 

< τ
f 
> 
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potential values of the redundancy mentioned in the previous paragraph). That this AOD 

variability is largely in the fine mode and that it is likely smoke, is in keeping with our 

SDA investigations using individual events during the MYSP and, in general with our 

SDA / lidar experience that smoke is a common fine mode phenomenon in the Arctic (see 

Saha et al., 2010 for example). Barrow displays June peaking with a large standard 

deviation (also in keeping with general averaging comments made above). The fine mode 

contribution of Resolute Bay is largely responsible for the July peaking seen in Figure 3. 

That peaking is, at best, marginally evident in the GC simulations and the OC 

contribution to that marginal peaking is roughly shared between fine mode sea-salt and 

fine mode sulphates (in other words there is no GC evidence for strong seasonal smoke 

influence at Resolute Bay during the month of July). 

Excluding the peaking of the retrievals in July and the Barrow peak in June (as we did for 

the Tomasi comparison above and as we noted for the all-station case), one can generally 

observe a broad and decreasing, spring to fall 〈𝜏𝑓〉 trend displayed by all the stations with 

a peak in April / May. The 〈𝜏𝑓,𝐺𝐶〉 curves show a broad and weak peak in April / May 

with a moderate July inflection: this behaviour results from a combination of a strong 

biomass-burning OC peak in May and a decreasing sulphate trend from an Arctic haze 

peak in February, both of which decrease until June where they tend to flatten out. The 

average GC underestimate relative to the retrievals, for all the sites is 0.0132 (a general 

figure, without excluding any months). 

 Coarse mode seasonal variations 

Coarse mode, 〈𝜏𝑐〉 and 〈𝜏𝑐,𝐺𝐶〉 monthly average results are shown in Figure 8 for each 

station. We found infrequent but strong 𝜏𝑐 outlier excursions in the individual retrieval 

results with a significant effect on the monthly means and standard deviations (<~ 1 to 10 

outlier excursions for ~ 20 to 400 retrievals in a given monthly bin over the MYSP). A 3σ 

outlier exclusion filter was accordingly applied to the coarse mode, individual station 

retrievals and these are the results seen in Figure 8. Investigations of a few trial cases 

using the SDA applied to high-frequency solar extinction data suggested that these strong 

𝜏𝑐  excursions were due to temporally and spatially homogeneous clouds whose 𝜏𝑐 

contributions had not been eliminated by the cloud screening impacts of the Level 1.5 
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retrieval QA protocols defined in Holben et al. (2006). We note that no appeal could be 

made to Level 2.0 retrievals since the number of retrievals in a given monthly bin was, 

more often than not, <~ 10. 

 

Figure 8. 〈τc〉 Coarse mode monthly averages over the MYSP for all 5 Arctic sites. The 

error bars are the standard deviations. 

The AERONET retrievals of Figure 8 indicate < 𝜏𝑐 > peaking in April / May for all 

stations while a degree of weak < 𝜏𝑐 > peaking can be observed in the August / 

< τ
c 
> 
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September period. The < 𝜏𝑐,𝐺𝐶 > simulations show a broad and comparatively weak 

(dust dominated) peak around the April/May period as well as broad and strong 

(predominantly sea-salt) peaking at Barrow in the autumn (with comparatively weak dust 

peaking and / or sea-salt peaking at the other sites).  The springtime GC dust simulations 

are, in fact, predominantly fine mode across all the Arctic stations and across all months 

with a consistent fraction 𝜏𝑓,𝑑𝑢𝑠𝑡,𝐺𝐶  ~ 2/3 of 𝜏𝑑𝑢𝑠𝑡,𝐺𝐶 . If the AERONET retrievals were 

similarly affected it would be impossible to subjectively back out such a contribution 

from the significantly larger 𝜏𝑓 values : the coarse mode peak is thus a rather unique 

optical retrieval indicator of dust and acts somewhat as a dust signature for AERONET 

retrievals. The fact that the retrievals and GC simulations are in agreement, at least in 

terms of an April/May peak, lends credence to both the partitioning of the retrieved AOD 

into fine and coarse modes (where the coarse mode contribution is <~ typical sun 

photometry errors) at the same time as it lends credence to the predictive capabilities of 

GC over the Arctic.  

That GC generally tends to underestimate 〈𝜏𝑐〉 relative to the retrievals (by up to 75% in 

the Barrow case for the month of April) while overestimating 〈𝜏𝑐〉 in the fall, could 

certainly be related to the need to better develop GC representation of emissions and 

atmospheric processes. On a more procedural level the 〈𝜏𝑐,𝐺𝐶〉 values could be increased 

in April, for example, by ~ 40 - 50% by repartitioning the dust bins to reflect the actual 

(variable) fine/coarse cut-off radius of AERONET retrievals. However, this only 

improves the relative agreement with respect to the AERONET retrievals by ~ 10 - 15% 

and degrades the agreement in the fall by <~ 10%. The springtime overestimates could 

also be related to problems in the data and the retrievals; spatially / temporally 

homogeneous clouds and / or ice crystals are a known issue (O'Neill et al., 2016) and our 

3σ filtering to eliminate the more egregious instances of this type of problem may well 

have left residual cloud effects in the coarse mode retrievals (ibid). 

In terms of independent support for springtime dust phenomena in the Arctic, numerous 

authors have reported April / May peaks from climatological-scale in-situ dust 

measurements (Sirois & Barrie, 1999 at Alert, Fan, 2013 at Alert; Breider, 2014 at 

Trapper Creek, AK) or from event-based sun photometry supported by back trajectories 

(Stone et al., 2007 at Barrow). These authors largely attributed the dust presence to Asian 
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dust (with the exception of Breider et al. (2014) who employed GC simulations to argue 

for a Saharan dust contribution that was about three times the Asian dust contribution). 

Empirical evidence for the presence of a fine mode dust component is less common. 

Brieder et al. (2014) explicitly state that the dust concentration measurements they 

employed for GC validation at Trapper Creek were fine mode (radius < 1.25 µm). We 

have ourselves, based on more southerly AEROCAN retrievals at Vancouver, BC, 

suggested the presence of Asian dust which consisted of a mixture of fine and coarse 

mode particles (Cottle et al., 2013). 

2.5. Conclusions 

We compared GEOS-Chem (GC) simulations of total, fine and coarse mode optical depth 

(𝜏𝑎, 𝜏𝑓, and 𝜏𝑐 ) with AERONET retrievals across a four-year sampling period 

(contextualized by other multi-year sampling periods). We noted that the histograms of 

both the AERONET retrievals and the GC estimates were better represented by a 

lognormal distribution (that the statistics were better represented by a geometric mean 

and geometric standard deviation than an arithmetic mean and standard deviations). 

Because there is an overwhelming tendency to report AOD statistics in terms of the 

arithmetic parameters we noted that those parameters could be readily converted to their 

geometric analogues using analytical, lognormal relationships between the two types of 

parameters. A marginal 𝑙𝑜𝑔 〈𝜏𝑓〉 correlation and a significant 𝑙𝑜𝑔 〈𝜏𝑐〉 correlation were 

noted between GC estimates and AERONET retrievals for all the Arctic stations. We 

noted that logarithmic (log-log or log-space) coefficients of determination for regressions 

between the model and the retrievals were significantly greater than linear-space 

correlations, a result that was expected for a lognormal AOD frequency distribution.  We 

further argued that the stronger 𝑙𝑜𝑔 〈𝜏𝑐〉 correlation was related to the premise that the 

GC estimates and the AERONET retrievals were physically significant, even though 

< 𝜏𝑐,𝐺𝐶 > values were substantially less than retrievals values and even though the 

retrieval values were less than or ~ typical AOD errors. 

Our multi-year analysis of the retrievals yielded seasonal (monthly averaged) AODs 

whose values could be sensitive to how averaging was performed (whether with a 

different MYSP or a different averaging approach). It was argued that this sensitivity was 
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largely due to the presence of highly variable 𝜏𝑓 values associated with smoke. While 

distancing the analysis from the problematic months of (respectively), June and July in 

the Barrow and Resolute Bay data, we found that the station by station seasonal 〈𝜏𝑓〉 trend 

showed a peak in April / May which decreased across the summer period (in other words, 

since the fine mode generally tends to dominate 〈𝜏𝑎〉 we found a trend that is very similar 

to the 〈𝜏𝑎〉 trend: a decrease from a peak ~ 0.10 in April / May to ~ 0.05 in the fall ).  

Both the retrievals and GC simulations showed coarse mode seasonal variations with 

peaks in April / May and August / September. The former are likely due to Asian dust 

while the latter are, according to the simulations, sea-salt (Barrow) or a weak 

combination of sea-salt and dust. The GC simulations (and our own measurements of 

Asian dust in the south) suggest that the April / May dust peaks are characterized by a 

strong if not dominant fine mode contribution.  

The separation of the retrieved AOD into a relatively strong coarse mode component 

whose presence is also predicted by the GC simulations helps to confirm the general 

validity and utility of separating AODs into fine and coarse mode components even 

though the retrieved coarse mode AODs are less than the nominal accuracy of AOD 

measurements. The separation also provides a coarse mode, optical retrieval "signature" 

for dust: a fine mode dust contribution (which the GC simulations, in any month at any 

station, predicted were ~ 2/3 of the dust optical depth) cannot be readily backed out of 

〈𝜏𝑓〉. There were large relative differences between the monthly average amplitudes of 

〈𝜏𝑐〉 and 〈𝜏𝑐,𝐺𝐶〉. We argued that this might be model related shortcomings and / or 

problems with the measurements or the retrievals. In terms of the latter, we found and 

eliminated rather large excursions in 𝜏𝑐 which were likely due to spatially and temporally 

homogeneous clouds: we tried to eliminate these cases with a 3σ outlier but it is difficult 

to ascertain, in the absence of independent measurements such as lidar profiles whether 

significant residuals of homogeneous cloud remained. 
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Symbol and acronym glossary 

AERONET  World-wide NASA network of combined sunphotometer / sky-scanning radiometers 

manufactured by CIMEL Éléctronique. See http://aeronet.gsfc.nasa.gov/ for documentation 

and data downloads 

AEROCAN Federated Canadian subnetwork of AERONET run by Environment and Climate Change 

Canada (ECCC) 

AOD The community uses "AOD" to represent anything from nominal aerosol optical depth which 

hasn't been cloud-screened to the conceptual (theoretical) interpretation of aerosol optical 

depth. In this paper we use it in the latter sense and apply adjectives as required. 

COV Coefficient of variation 

MYSP Multi-year sampling Period (spring 2009 to fall 2012) for which we compared AERONET 

component AODs with GC. Comparisons between the statistics of this MYSP were made 

with the statistics of a 2007-2012 MYSP GC GEOS-Chem, version 9.01.03. FlexAOD (Flexible AOD) is employed to perform offline 

calculations of AOD. R2 Coefficient of determination 

SDA Spectral Deconvolution Algorithm described in O'Neill et al. (2003).  

𝜏𝑥 τa, τf, or τc for total, fine and coarse mode AODs. Without explicit subscript qualification to 

GC, this nomenclature is reserved for outputs of the Dubovik retrieval algorithm (at 500 nm). 

τf, or τc is conserved in the sense that τa = τf + τc. This expression propagates thorough daily 

and monthly averages. 

〈𝜏𝑥〉 Arithmetic mean for monthly averaging bins (see the section entitled "Averaging and 

standard deviation statistics") 

σ(𝜏𝑥) Arithmetic standard deviation for monthly averaging bins (see the section entitled 

"Averaging and standard deviation statistics") 

x, g Geometric mean for monthly averaging bins. 𝜏𝑥,𝑔   =    10<𝑙𝑜𝑔𝜏𝑥> (see Table 1 of O'Neill et 

al., 2000).  

x Geometric standard deviation for monthly averaging bins. 𝜇𝑥   =    10𝜎(𝑙𝑜𝑔𝜏𝑥) (see Table 1 of 

O'Neill et al., 2000). 

x,  GC GEOS-Chem estimate of τx at 550 nm.  

x x = a, f, or c (total, fine mode or coarse mode)  

 

 

 

 

http://aeronet.gsfc.nasa.gov/
http://wiki.seas.harvard.edu/geos-chem/index.php/FlexAOD
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CHAPTER 3. Conclusions and recommendations 

Climatologically (monthly) averaged GEOS-Chem fine, coarse and total AODs (<f>, 

<c> and <a>) were compared with sunphotometer AODs from 5 Arctic measurement 

sites (Barrow, Resolute Bay, the Eureka sites of PEARL & 0PAL and Thule) across a 

measurement period from Jan.2009 to Jan. 2013. Comparisons were made with 10 

southern Canadian stations as a means of better understanding the relative turbidity of the 

Arctic sites and as a means of investigating the commonalities between the AODs for 

these distinct regions. Same comparisons were also made for a longer 6-year period from 

January, 2007 to January, 2013 in order to investigate the robustness of seasonal 

variations in the retrievals and the model. 

In this study, the GEOS-Chem subdivision into fine or coarse mode AODs was based on 

aerosol types. Dubovik retrievals (level 1.5 and level 2.0) were employed because of their 

climatological appropriateness (in certain respects, notably because of their inclusion of 

sky radiance information in addition to solar extinction measurements, they are arguably 

a better indication of the actual aerosol properties in the atmosphere). 

 

We explored different approaches of formulating monthly statistics in the paper (averages 

of daily averages, averages of individual retrievals, etc). This statistical approach could 

result in large variations in the monthly averages and standard deviations (whatever the 

averaging technique) when large artefactual events occurred at a given station (notably 

large artefactual fine-mode smoke AODs at Barrow and Resolute Bay (a different, year to 

year perspective, on the large variations in the months of June and July can be observed 

in the all-station, fine mode plots of Figure 10 in Appendix B).  We also found that the 

means of characterizing the statistics (log-normal frequency distributions versus normal 

distributions) was an attribute that was common to both the retrievals and the model. One 

can refer to the submitted paper (second chapter of the master thesis) for more details on 

the conclusions of our study.  

There are a few improvements that can be suggested as recommendations of this study : 
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 More Arctic stations, especially stations located outside the Canadian Arctic 

would test the pan-Arctic commonalities and differences of the AOD retrievals 

and the GEOS-Chem comparisons (but this is a mandate that is outside of the 

requirements of the NETCARE project). 

  We need to extend the purely extensive-parameter GEOS-Chem investigations of 

this study to include retrieval / model comparisons of intensive parameters whose 

scale of variability tends to be regional (currently the Ph.D. project of Yasmin 

Ahmed Samy Aboelfetouh). 

 GEOS-Chem version 9.01.03 was employed in this study. Evaluating new 

versions of the model will enable us to better understand the impact of using 

different temporal/spatial model resolutions, modified physical processes, inputs, 

etc. 

 Dubovik retrievals are not possible with Polar winter (starphotometer and 

moonphotometer) data because these instruments do not perform almucantar 

scans.  Therefore, it will continue to be important to compare GEOS-Chem polar 

winter simulations with AOD retrievals using a method such as the SDA to 

extract the fine and coarse mode AODs. To a certain extent this has already been 

done (O'Neill et al., 2016); what was not done, for example, was to investigate the 

continuity of the total, fine and coarse mode optical depths from the polar winter 

to the polar summer during the spring and fall. We also need to analyze the newly 

acquired Polar winter data that was not included in O'Neill et al. (2016) as well as 

a longer period of Ny Alesund starphotometer data that was not employed in that 

paper. 
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Appendix A 

Correlation between measurements & model 
Figure 9 shows the AOD scattergrams between the GEOS-Chem predictions and the 

AERONET retrievals based on linear and logarithmic regression (in linear-linear and in 

log-log space respectively). The linear and logarithmic regression equations along with 

the coefficients of determination (R2) are shown on the top left and bottom right 

respectively. We have plotted these scattergrams as supplementary data in support of 

Figure 6 of the submitted article. 
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(b) 
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(c) 

Figure 9. Scattergrams in log-log space of the model versus AERONET retrievals (a for 

file mode, b for coarse mode and c for total AOD) based on a linear regression (bold line) 

and logarithmic regression (thicker dashed line) for the ensemble of all sites.  The very 

short dashed line is the y=x line. 
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Appendix B 

Intra-annual AODs versus time 
Figures 10 and 11 show yearly intra-annual variations of fine and coarse mode AODs 

over the MYSP for the combined simulations / retrievals of the 5 Arctic stations. We 

have plotted these intra-annual graphs as supplementary data to provide a different 

perspective in support of Figures 5, 7 and 8 of the submitted article. 

 

Figure 10. Intra-annual variation of fine AODs over the MYSP 
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Figure 11. Intra-annual variation of coarse AODs over the MYSP 
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