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RÉSUMÉ 
Rôle de la chymase humaine (CMA 1) dans la conversion de la big-endothéline-1 en 

endothéline-1 (1-31) 
 

Par 
Walid Semaan 

Programme de pharmacologie 
 

Mémoire présenté à la Faculté de médecine et des sciences de la santé en vue de l’obtention du 
diplôme de maître ès sciences (M.Sc.) en pharmacologie, Faculté de médecine et des sciences de la 

santé, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4 
 

La voie de conversion de Big ET-1 en ET-1, chymase dépendante a été établie in vitro. Ce n'est que 
récemment, en 2009 que notre groupe a démontré que la conversion de Big ET-1 en ET-1 (1-31) peut 
avoir lieu in vivo chez la souris (Simard et al., 2009), sachant que ET-1 (1-31) est convertie en ET-1 
via NEP in vivo (Fecteau et al., 2005). En plus, en 2013, notre laboratoire a démontré que la mMCP-
4, l'analogue murin de la chymase humaine, produit l'ET-1 (1-31) à partir du précurseur Big ET-1 
(Houde et al., 2013). Jusqu'a présent, dans la littérature, on ne trouve pas de caractérisations 
spécifiques de chymases (humaine ou murine) recombinantes. En fait, le groupe de Murakami, en 
1995, a publié une étude caractérisant, d'une façon chymostatin dépendante, la CMA1 (chymase 
humaine) en utilisant l'Angiotensine I comme substrat (Murakami et al., 1995). Cependant, le 
chymostatin est un inhibiteur non-spécifique de la chymase. Il a été démontré que le chymostatin 
peut inhiber l'élastase, une enzyme pouvant convertir l'Angiotensine I en Angiotensine II (Becari et 
al., 2005). Basé sur ces observations, l'hypothèse formulée dans la présente étude est que la CMA1 
recombinante ou extraite des cellules LUVA (lignée humaine de mastocytes) ou des fractions 
solubles des aortes humaines convertit la Big ET-1 en ET-1 (1-31) d'une façon TY-51469 (un 
inhibiteur spécifique de la chymase) sensible. Dans un deuxième volet, on a étudié la cinétique 
enzymatique de CMA1 en vers le substrat Big ET-1 et Ang I. L’affinité de CMA1 contre la Big ET-1 
était plus grande comparé à l’Ang I (KM Big ET-1 : 12.55 μM et Ang I : 37.53 μM). Cependant 
CMA1 était plus efficace dans le clivage de l’Ang I comparé à la Big ET-1 (Kcat/KM Big ET-1 : 6.57 
x 10-5 μM-1.s-1 et Ang I : 1.8 x 10-4 μM-1.s-1). Dans un troisième volet impliquant des expériences in 
vivo, l’effet presseur de la Big ET-1, l’ET-1 et l’Ang I a été testé chez des souris conscientes mMCP-
4 KO comparé à des souris de type sauvage. L’augmentation de la pression artérielle moyenne a été 
plus importante chez les souris de type sauvage après l’administration de Big ET-1 que chez les 
souris mMCP-4 KO. Cet effet n’a pas été observé après l’administration d’ET-1 et/ou d’Ang I ce qui 
explique le rôle de la chymase dans l’effet de la conversion de Big ET-1 en ET-1 (1-31). 
 

Mots clés : Chymase, Enzymes recombinantes, Spectrométrie de masse, radio-télémétrie, analyse in 
silico 

  

  



ABSTRACT 

Role of human chymase (CMA 1) in the conversion of big-endothelin-1 to endothelin-1 (1-31) 

by 

Walid Semaan 

Program of Pharmacology 

Thesis submitted to the Faculty of Medicine and Health Sciences for Masters of Science (M.Sc.) in 
Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, 

Quebec, Canada, J1H 5N4 

The chymase-dependant pathway responsible for converting Big ET-1 to ET-1 was established in 
vitro. It has only been recently, in 2009, that our group demonstrated that the conversion of Big ET-1 
to ET-1 (1-31) can occur in vivo in mice (Simard et al., 2009), knowing that ET-1 (1-31) is converted 
to ET-1 via NEP in vivo (Fecteau et al., 2005). In addition, our laboratory demonstrated in 2013 that 
mMCP-4, the murine analogue of human chymase, produces ET-1 (1-31) from the Big ET-1 
precursor (Houde et al. 2013). 
Thus far, in the literature, there are no specific characterizations of recombinant chymases (human or 
murine). In fact, the group of Murakami published in 1995 a study characterizing the CMA1 (human 
chymase) in a chymostatin-dependent fashion, using Angiotensin I as a substrate (Murakami et al., 
1995). However, chymostatin is a non-specific inhibitor of chymase. It has been shown that 
chymostatin can inhibit elastase, an enzyme that can convert Angiotensin I to Angiotensin II (Becari 
et al., 2005). 
Based on these observations, the proposed hypothesis in the present study suggests that recombinant 
as well as extracted CMA1 from LUVA (human mast cell line), in addition to soluble fractions of 
human aortas, convert Big ET-1 into ET-1 (1-31 ) in a TY-51469 (a chymase-specific inhibitor) 
sensitive manner. 
In a second component, we studied the enzyme kinetics of CMA1 with regard to the Big ET-1 and 
Ang I substrate. The affinity of CMA1 against Big ET-1 was greater compared to Ang I (KM Big 
ET- 1: 12.55 μM and Ang I: 37.53 μM). However, CMA1 was more effective in cleaving Ang I 
compared to Big ET-1 (Kcat / KM Big ET-1: 6.57 x 10-5 μM-1.s-1 and Ang I: 1.8 x 10-4 ΜM-1.s-
1). 
In a third component involving in vivo experiments, the pressor effects of Big ET-1, ET-1 and Ang I 
were tested in conscious mMCP-4 KO mice compared to wild-type mice. The increase in mean 
arterial pressure after administration of Big ET-1 was greater in wild-type mice compared to mMCP-
4 KO mice. This effect was not observed after administration of ET-1 and / or Ang I. 
 
Key words: Chymase, Recombinant enzymes, Mass spectrometry, radio-telemetry, in silico analysis 
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I- INTRODUCTION 

 

1.1 Mast cells development 

Mast Cells (MC) are immune cells maturing from Mast cell-committed progenitor (MCcP) and 

originating from hematopoietic progenitors in the bone marrow .The multipotent hematopoietic 

progenitor stem cells (MPP) develop into common myeloid progenitor (CMP) and common 

lymphoid progenitor (CLP) (Kondo et al., 1997; Akashi et al., 2000).CMP will further divide 

into Megakaryocyte/Erythrocyte progenitor (MEP) and Granulocyte/Monocyte progenitor 

(GMP).The lineage origin of Mast cell-committed progenitor was a debate since the literature 

shows conflicting data. It was known for a certain time that they belong to the CMP/GMP 

lineage (Suda et al., 1983). However in 2005, Chen and collaborators concluded that it could be 

directly derived from MPP. On the other hand, Franco and collaborators found that MCcP are 

closer to the MEP lineage relying on gene expression profiling of cells (Franco et al., 2010). In 

contrast, Arinobu and colleagues verified that MCcP belonged to GMP lineage (Arinobu et al., 

2005). Moreover, Bipotent Basophil/Mast cell progenitors (BMCP) were identified in the spleen 

of C57BL mice (Arinobu, 2005; Iwasaki, 2006; Qi et al., 2013); these progenitors were isolated 

and were capable of developing basophils and MC within the GMP fraction in the bone marrow 

(Qi et al., 2013). When put together, the data suggests that within the GMP pathway, bipotent 

progenitors give rise to the MCcP. These MCcP circulate in the blood and are home to tissues 

where they will mature into MC. MCcP express several markers and receptor such as CD34, 

CD13, c-kit, stem cell factor (SCF) and the IgE receptor FcƐRI just like the mature MC; however 

they are less granulated than MC. Homing of the MCcP is triggered by several cytokines and 

mediator such as IL-3 and SCF (Kawakami and Galli, 2002). 

 

The maturation of MCcP give rise to two types of MC, the MCT and MCTC depending on the 

type of tissue they are maturing in (Irani et al., 1986; Kitamura et al., 1989; Metcalfe et al., 

1997; Kawakami and Galli, 2002). The MCT are present essentially in the mucosa of the 

gastrointestinal tract and the bronchi. Their granules contain mostly Tryptase. On the other hand, 

the MCTC are present in the skin, lymph nodes and submucosa of the gastrointestinal tract. Their 

granules contain Tryptase and Chymase (Irani et al., 1986; Irani et al., 1989; Kitamura et al., 
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1989; Metcalfe et al., 1997). It has been shown that MCTC are similar to murine connective 

tissue MC while MCT resemble mucosal MC. (Miyazaki et al., 2006; Pejler et al., 2010). 

 

1.2 Mast Cell dependent diseases 

MC have been known for their role in allergy (Williams and Galli,2000). Once activated, by 

Immunoglobulin E (IgE) binding on their Fcε receptor, they will degranulate and thus release 

hormonal mediators and proteases, triggering an allergic reaction and resulting in sustained 

inflammation (Galli,1993; He and Shi, 2013). 

In addition to their pivotal role in allergy, mast cells are key players in mediating the immune 

response. Due to their Fcγ receptors I and III and toll-like receptors (TLR) types 2 and 4, they 

sense the microenvironment thus guiding the innate and acquired immunity (Frossi et al., 2004; 

Mekori et al., 2000; Okumura et al., 2003). For example, MC-deficient mice are not protected 

against sepsis secondary to bacterial peritoneal infection (Schneider et al., 2007). Given this role, 

their implication in inflammatory, immune and autoimmune diseases becomes consequential. It 

has, for example been shown that MC have an involvement in Rheumatoid arthritis, 

inflammatory bowel disease, metabolic diseases, atopic dermatitis, idiopathic pulmonary 

fibrosis, liver fibrosis and psoriasis.  

In addition, their function is becoming clearer in neoplasms such as gynecological neoplasms 

and prostate cancer. MC are associated with tumor progression and cancer cells invasion in 

prostate cancer (Li et al., 2015; Johansson et al., 2010). Moreover, new studies are presenting 

MC as a target for immunotherapy in prostate cancer (Olford and Marshall, 2014).  Furthermore, 

their implication in vascular and cardiovascular diseases is of significant importance especially 

regarding atherosclerosis, plaque erosion and abdominal aortic aneurysms (AAA) (Bot et al., 

2008; Bot and Biessen, 2011). 
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1.3 Mast Cells in Cardiovascular diseases 

 

In the 1950’s, MC were thought to have a protective role in atherosclerosis (Constantinides, 

1953; Cairns and Constantinides, 1954) since their number was found to be inversely correlated 

with the disease. Myocardial tissue from atherosclerotic patients showed a reduced number of 

mast cells compared to healthy subjects (Constantinides, 1953; Cairns and Constantinides, 1954). 

However in the following years the tendency shifted more towards the proatherogenic function 

of Mast cells. Later studies showed that the number of MC increased in the intima and adventitia 

of atherosclerotic plaques with the progression of the disease. (Laine et al., 1999; Kaartinen et 

al., 1994a; 1994b; Kovanen et al., 1995). These results were further confirmed to be true in 

human aorta, coronary arteries and carotid arteries (Atkinson et al., 1994; Jeziorska et al., 1997). 

Both types of Mast cells were found to be present in the plaque the MCTand MCTC (Kaartinen 

et al., 1994b). In addition, Mast cell granules were found to be ingested by foam cells and 

smooth muscle cells suggesting a role for MC in plaque expansion (Kaartinen et al., 1995). 

Furthermore, some studies showed that MC expressing bFGF an angiogenic factor, were co-

localized along with intraplaque neovessels. Indeed, the group of Kaartinen hypothesized in 1995 

that with the release of histamine, the neovessels could bleed causing intraplaque hemorrhage 

and therefore plaque destabilization (Kamat et al., 1987Kaartinen et al., 1995; Lappalainen et al., 

2004). 

 

1.4 Mast Cell Proteases 

 

 The numerous physiological and pathological roles of MC are suggested to be dependent on 

their granule content. The MC degranulation can be initiated by various stimuli such as Fc 

receptor mediated activation- in allergic reactions- (Genovese et al., 2000), complement receptor 

mediated activation (Nilsson et al., 1996) or Toll-like receptor activation. MC activation 

enhances de novo synthesis of cytokines, prostaglandins (PGE2, PGD2) and Leukotrienes (Galli 

et al., 2005). Once degranulated, MC release several mediators such as histamine (known role in 

allergies), proteases and cytokines. 
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MC granules contain several proteases such as matrix metalloproteases (MMPs) (Baram et al., 

2001), cathepsin D, C, and E (Dragonetti et al., 2000;Henningsson et al., 2005;Wolters et al., 

2000), Chymase, Tryptase and Carboxypeptidase A (MC-CPA); of which the last three are 

known to be MC-specific. Tryptases and chymases belong to theserine protease class, while MC-

CPA is a zinc-dependent metalloprotease. These proteases have different substrate specificities. 

Tryptases have a Trypsin-like activity; Chymases have a Chymotrypsin like activity; whereas 

MC-CPA cleave at the C-terminal of peptides.  It is believed that these MC proteases, especially 

the chymases and tryptases are at the basis of the role of MC in cardiovascular and metabolic 

diseases (Sun et al., 2011; Yang et al., 2008; Lutgens et al., 2006). 

 

1.5 Chymase Synthesis 

The chymase, a mast cell protease found in the granules, is synthesized as a preproenzyme. The 

preproenzyme has a signal on its N terminal responsible for the guidance of the peptide to the 

endoplasmic reticulum lumen (for review see Nakano et al., 1997; Watts et al., 2007; Pejler et 

al., 2010 and Takai et al., 2010). Although there is no consensus regarding the biosynthesis of 

the active chymase from prepro-chymase (Nakano et al., 1997; Watts et al., 2007; Pejler et al., 

2010 and Takai et al., 2010), it is postulated that this signal peptide is 2 amino acids (aa) long. 

Once cleaved, the preproenzyme will give rise to a proenzyme that will also be cleaved on the N-

terminal site leading to the active enzyme. It is noteworthy that the active enzyme itself is stored 

in the granules unlike other known zymogens. The prochymase is constituted of 226 aa. An 

additional 2 aa on the N-terminal will be cleaved (from the prochymase) to lead to the active 

chymase (Caughey et al., 1991; Huang et al., 1991; Serafin et al., 1991; Urata et al., 1991). 

Dypeptidyl Peptidase I (DPPI) or cathepsin C is believed to be the enzyme responsible for this 

cleavage. A paramount role for heparin has been demonstrated in this cleavage (Murakami et al., 

1995; McEuen et al., 1998).The N-terminal of the proenzyme is attached to a region on the 

proenzyme which makes it inaccessible for cleavage by DPPI. Heparin will cause a 

conformational change in the prochymase, by binding to a heparin binding site on the 

proenzyme, exposing the N-terminal to DPPI. The cleavage can thus occur and activation of the 

enzyme takes place (Murakami et al., 1995; McEuen et al., 1998). In a DPPI Knockout (KO) 

mouse model, there was a failure in generating active chymase in connective tissue MC, 
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demonstrating further the importance of DPPI in the synthesis of active chymase (Wolters et al., 

2001). 

 

Once liberated from the granules, the active chymase will be bound to the extracellular matrix 

(ECM). In the ECM, endogenous chymase inhibitors (such as α1-antitrypsin, α2 

antichymotrypsin, α 2-macroglobulin, and eglin C) block the activity of the chymase. However, 

the fact that it will be bound to heparin renders it resistant to the endogenous inhibitors and 

preserves its activity for several weeks (Lindstedt et al., 2001). 

 

In Humans, a single chymase has been identified to date, the CMA1. Despite the fact that it is an 

α-chymase, it shows similarities in proteolytic activities to the mouse mast cell protease 4 

(mMCP-4) which is a β-chymase present in murine connective tissue MC (Wu et al., 2005; 

Andersson et al., 2008; Urata et al., 1990). 
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Figure1. Structure of CMA1: CMA1 and PMSF-bound inhibitor (in grey)- complex. Catalytic 

residues are shown in ball-and-stick representation: His66 in purple, Asp110 in pink and Ser203 

in orange. α-helices are shown in red and β-pleated sheets are shown in green. (MEROPS 

database) 
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1.6 Chymase substrates 

Chymase plays an important role in physiology and pathophysiology. This role is attained due to 

its broad cleavage specificity which explains its ability to process a large number of 

proteins/peptides. In table I, some chymase substrates are listed. It is important to note that some 

of these substrates were identified in vitro either by direct incubation or by the use of chymase 

inhibitors; other substrates were identified in vivo in mice models with chymase Knock-out (KO) 

genes. 
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Table I. Chymase substrates modified from Pejler et al. 2007 

 

Substrates Chymase activity References 

Procollagen Activation Kofford et al., 1997 

Procollagenase Activation Saarinen et al., 1994 

Pro-MMP-9 Activation Chen et al., 2002; 
Tchougounova et al., 2005 

Fibronectin Degradation Lazaar et al., 2002 ; 
Tchougounova et al.,2003 

Vitronectin Degradation Banovac et al., 1993 
TIMP-1 Inactivation Frank et al., 2001 
Substance P 
 

Degradation Caughey et al., 1988 

VIP Degradation Caughey et al., 1988 
Bradykinin 
 

Inactivation Reilly et al., 1985 

Kallidin 
 

Inactivation Reilly et al., 1985 

Big-endothelin 1/2 Cleavage Kido et al., 1998; Nakano et 
al., 1997;Takai et al., 1998 

Neurotensin 
 

Hydrolysation Goldstein et al., 1991 

Hepatocyte growth factor 
 

Inactivation Raymond et al., 2006 
 

CTAP-III Activation Schiemann et al., 2006 

Pro-IL-18 Activation Omoto et al., 2006 
IL-6, IL-13 
 

Degradation Zhao et al., 2005 

TGF-β1 
 

Activation Taipale et al., 1995 

SCF Liberation de Paulis et al., 1999; 
Longley et al.,1997 

apoE, apoA-I, apoA-II 
 

Degradation Lee et al., 2002b, 2003a; 
Lindstedt et al., 1996 

apoB 
 

Degradation Kokkonen et al., 1986 
 

Phospholipid transfer protein Degradation Lee et al., 2003b 

PAR-1 
 

Activation Schechter et al., 1998 
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Table I. Chymase substrates modified from Pejler et al. 2007 continued 

 

Substrates Chymase activity References 
C3a Degradation Gervasoni et al., 1986; 

Kajita and Hugli, 1991 

Albumin Degradation Raymond et al., 2003 
 

Occludin Degradation Scudamore et al., 1998 

C1 inhibitor Inactivation Schoenberger et al., 1989 
Ang I Processing and cleavage Urata et al., 1990 
Thrombin Inactivation Pejler and Karlstrom, 1993 
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1.7 The Role of Chymase in Physiology and Pathophysiology 

1.7.1 Chymase in wound healing 

Wound healing comprises three major stages: the inflammatory phase, the proliferative phase 

and the remodeling phase (Schilling 1976). Chymase has a role in all stages. It has a paramount 

role in ECM regulation in direct and indirect ways which is a key step in the inflammatory phase 

of wound healing (Nishikori et al., 1998; Noli and Miolo 2001, 2010; Younan et al., 2010). This 

is expected given the abundance of CTMC in the connective tissue (Irani et al., 1986; Kitamura 

et al., 1989; Metcalfe et al., 1997; Kawakami et al., 2002). Chymase is responsible for the 

degradation of fibronectin and Vitronectin, both of which are components of the ECM (Lazaar et 

al., 2002; Tchougounova et al., 2003; Banovac et al., 1993). 

On the other hand, in the proliferative and remodeling phases, chymase stimulates fibroblasts by 

releasing TGF-β1 causing ECM deposition (Lindstedt et al., 2001). In addition, chymase was 

shown to contribute to angiogenesis and vascular growth, in granulation tissue (Norrby et al., 

1986). Furthermore, chymase was demonstrated to cleave precollagen leading to fibril formation 

(Kofford et al., 1997). 

 

1.7.2 Chymase in cardiovascular diseases and Atherosclerosis 

Atherosclerosis is an inflammatory disease of the arteries. As we have mentioned earlier, MC 

have been shown to be involved in this disease. More evidence has demonstrated a role for 

chymase in atherosclerosis (Bot et al., 2015). 

Chymase can affect SMC directly and indirectly. It indirectly regulates SMC differentiation, 

migration and proliferation by the activation of TGF-β1 (Otsuka et al., 2006). It can also directly 

induce their apoptosis (Leskinen et al., 2001) which explains the thinning of the aortic wall 

media in atherosclerosis. Chymase can also inhibit collagen synthesis and induce the apoptosis of 

endothelial cells by degrading Vitronectin and Fibronectin of the ECM (Heikkilä et al., 2008) 

and/or via TGF-β1 which will further cause endothelial dysfunction. 

Chymase has also a role in activating the metalloprotease Pro-MMP-9 which has been implicated 

in atherosclerosis (Wågsäter et al., 2011).  
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Within the atheroma, chymase is involved in the proteolysis of LDL, the step preceding foam 

cell formation (Lee et al., 1992). In addition, by degrading ApoE, ApoAI and HDL3, it inhibits 

the efflux of cholesterol from foam cells, the process that will maintain the presence of foam 

cells in atherosclerotic plaques (Lee et al., 1992, 1999, 2002 a, 2002 b; Lindstedt L et al., 1996). 

Finally, higher chymase levels were found in the serum of patients who suffered from a 

myocardial infarction or unstable angina compared to individuals without coronary artery disease 

(Xiang et al., 2011). 

 

1.7.3 Chymase in Metabolic diseases and Diabetes Mellitus 

Mast cells have been shown to be involved in the pathogenesis of metabolic diseases such as 

Obesity, Diabetes Mellitus (DM), type I (DM I) and II (DM II) and in complications of DM. 

Studies have shown that MC are present in a larger amount in white adipose tissue (WAT) of 

obese patients compared to lean subjects (Tanaka et al., 2011; Liu et al., 2009).  

Mast cell deficient mice gained less body weight, had less adipose tissue inflammation and had 

improved glucose intolerance (Liu et al., 2009). 

In a more specific way, chymase has been linked to metabolic diseases and DM. In fact, in a 

hamster model of DM I there was an increase in blood glucose levels, pancreatic chymase and 

Ang II formation; all of which were decreased with the inhibition of chymase by TY-51469 

(Maeda et al., 2010; Takai et al., 2009).  

On the other hand, chymase levels were measured in the blood of patients suffering from pre-

diabetes and DM II and were shown to be higher than chymase levels in the blood of controls 

(with normal blood glucose levels) (Wang et al., 2011). 

 

DM complications, such as nephropathies and retinopathies can be detrimental. Although it has 

not been directly linked to these complications, chymase has been reported to have an 

unfavorable role in these processes. Chymase levels were elevated in diabetic nephropathy. 

These levels were associated with glomerulosclerosis and tubulointerstitial fibrosis (Ritz, 2003) 

and diabetic vascular diseases secondary to Ang II formation (Koka et al., 2006). Furthermore, 

once activated by the chymase, pro-MMP-9 is believed to be active in diabetic nephropathy and 

retinopathy (Van der Zijl et al., 2010; Kowluru et al., 2012). 
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1.8 The role of Chymase in the conversion of Angiotensin I to Angiotensin II  

The role of chymase in Ang II synthesis is well documented (for review see Takai et al., 2010 

and Pejler et al., 2010). As mentioned in table I, Ang I is a substrate for chymase (Urata et al., 

1990). Chymase was found to cleave Ang I and form Ang II. Ang I is a peptide constituted of ten 

aa Asp1-Arg2-Val3-Tyr4-Ile5-His6-Pro7-Phe8-His9-Leu10, chymase is responsible for the 

cleavage of the Phe8-His9 bond to form Ang II, an eight aa peptide (Reilly et al., 1982; Urata et 

al., 1990). 

It is well known that Ang II is a product of the activation of the Renin-Angiotensin system 

(RAS). The conventional conversion of Ang I to Ang II is done via Angiotensin converting 

enzyme (ACE). RAS is activated, in normal physiology, when the body senses a decrease in 

blood flow to the kidneys (decreased intratrarenal pressure), which implies a decrease in blood 

pressure. Ang II will be formed and will cause a vasoconstriction leading to restoration of normal 

blood pressure. This is believed to occur in the blood stream. 

However this is not the only pathway, since ACE inhibitors could not inhibit totally the 

production of Ang II (Padmanabhan et al., 1999; Wolny et al., 1997) and in an ACE KO model 

of mice, the formation of Ang II was not totally repressed either (Wei et al., 2002). The 

alternative route, involving the chymase was shown to occur mainly in the tissues (as opposed to 

bloodstream) form Ang II in the tissues where Ang II plays a major role in Pathophysiology. 

 

1.9 The role of Angiotensin II in physiology and Pathophysiology 

As mentioned in the previous paragraph, Ang II plays a key role in physiology and 

Pathophysiology and works on several systems.  

The main system we are interested in here is the cardiovascular system where Ang II can 

stimulate cardiac remodeling and hypertrophy as well as vascular hypertrophy (Humma and 

Terra, 2002; Mehta and Griendling, 2007). It also causes constriction of the resistance vessels 

which will increase the systemic vascular resistance hence increasing the arterial pressure 

(Humma and Terra, 2002). 

Ang II also affects the renal system. It stimulates the release of aldosterone in the adrenal cortex 

causing an increase in sodium reabsorption and water retention; besides the stimulation of 



13 
 

Vasopressin or antidiuretic hormone (ADH) release will further increase fluid retention in the 

body (Humma and Terra, 2002). 

On another level, Ang II impacts the nervous system by facilitating Norepinephrine release and 

inhibiting its reuptake on sympathetic synapses (Humma and Terra, 2002). 

 

In more details, Ang II affects all the cells in the cardiovascular system. With excess production 

of Ang II, growth, hypertrophy and migration of vascular smooth muscle cells (VSMC) will take 

place. In addition, endothelial dysfunction will occur and there will be an increase in the 

expression of the adhesion molecules. Moreover, with cardiac remodeling, electrophysiological 

conduction will be altered (Mehta and Griendling, 2007). 

 

These changes in physiology secondary to excess Ang II production implies that this peptide has 

a supreme role in myocardial infarction, arrhythmias, strokes, diabetic vascular diseases and 

congestive heart failure (Schieffer et al., 2000 ; Mehta and Griendling, 2007) 

 

1.10 Angiotensin receptors 

Most physiologic and pathophysiologic effects of Ang II are mediated by its receptor angiotensin 

type 1 receptor (AT1R). Other receptors also exist, such as angiotensin type 2, 3 and 4, however 

our focus will be on AT1R since it is responsible for most of the cardiovascular diseases related 

to the renin-angiotensin system (RAS). AT1R is a seven-membrane G protein-coupled receptor. 

It is composed of 359 aa. The receptor is widely distributed in the body: It is present on tissues of 

the heart, vessels, kidneys, adrenals, liver, lungs and brain (Griendling, Lassegue and Alexander, 

1996). 

 

As shown in Fig. 2, once Ang II binds to AT1R, the Gαq/11 and Gα12/13 protein cascade will be 

activated (Ushio-Fukai et al., 1998). The Gαq/11 will activate the phospholipase C (PLC) which 

will cleave the Phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and 

inositol-1,4,5-triphosphate (IP3). IP3 will increase calcium levels in the cytoplasm by binding to 

its receptor on the sarcoplasmic reticulum and opening a channel facilitating calcium efflux. 

Calcium released from the sarcoplasmic reticulum activates the myosin light chain kinase 

(MLCK) which will phosphorylate the myosin light chain thereby enhancing the interaction 
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between actin and myosin leading to SMC contraction (Yan et al., 2003). On the other hand, 

DAG will activate protein kinase C (PKC) which will phosphorylates the Sodium/Hydrogen 

(Na+/H+) exchange and will act as an effector in the Ras/Raf/MEK/ERK pathway (Yan et al., 

2003).  
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Figure 2 AT1R signaling pathway after activation by Ang II. PLC: Phospholipase C, PIP2: 

Phosphatidylinositol 4,5-bisphosphate, DAG:Diacylglycerol, IP3: Inositol-1,4,5-triphosphate, 

SR: Sarcoplasmic Reticulum, Ca2+: Calcium, CaM: Calmodulin, MLC: Myosin light chain, 

MLCK: Myosin light chain kinase, MLC-P: Phosphorylated myosin light chain, PKC: Protein 

Kinase C. (Modified from Ushio-Fukai et al., 1998) 

 

  

Ca2+ Channel 
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1.11 Endothelin-1 

As mentioned in table I, Big endothelin-1 (Big ET-1) has been shown in vitro to be a substrate 

for the chymase (Kido et al., 1998; Nakano et al., 1997; Takai et al., 1998). The end product of 

the processing and cleavage of the Big ET-1 is endothelin-1 (ET-1).  

ET-1 is a potent vasoconstrictor constituted of 21 aa. It was first isolated in 1988 from porcine 

aortic endothelial cells by Yanagisawa (Yanagisawa et al., 1988). Three isomers of endothelin 

exist ET-1, ET-2 and ET-3 (Inoue et al., 1989). Each peptide is encoded by a different gene. ET-

1 is produced by endothelial cells, mainly the vascular endothelium (Masaki, 2000; Simonson 

and Dunn, 1990). ET-2 is produced by the renal medulla and is implicated mainly in the vascular 

function in the kidneys; ET-3 was found to be present in nerve endings and implicated in 

neurotransmission (Waeber et al., 1990; Spyer et al., 1991). 

 

1.12 The role of Endothelin-1 in Physiology and Pathophysiology 

ET-1 has several important physiologic actions in the embryologic and adult life. In fact, a 

repression of the ET-1 gene in mice caused their deaths from cardiovascular and craniofacial 

anomalies leading to respiratory failure minutes after their delivery (Kurihara et al., 1994; 

Yanagisawa et al., 1998). In addition, ET-1 has a key role in maintaining the basal vascular tone 

(Masaki, 2000).  It is also involved in sodium excretion from the renal tubules (Hirata et al., 

1988, Murray et al., 2008). It is also involved in bronchoconstriction, sputum production and 

MC degranulation (Rubanyi and Polokoff, 1994; Murray et al., 2008). 

On the other hand, ET-1 is involved in several diseases and pathologies. Table II summarizes 

most of them. 
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Table II. Diseases and pathologies which ET-1 is involved in 

 

Conditions References 

Atherosclerosis Attina et al., 2005; Ihling et al., 2001 

HTN Dhaun et al., 2008 

Pulmonary HTN Attina et al., 2005 

Metabolic syndrome Weil et al., 2011 

IBS  

Congestive Heart failure Wei et al., 1994; Kiowski et al., 1995; 

Pacher et al., 1996 

Cancer metastasis Grant et al., 2003; Said and Theodorescu, 

2012 

Pain mediation Hans et al., 2008 
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1.13 Biosynthesis of Endothelin-1 

The first product of the ET-1 gene is Pre-proendothelin, a peptide constituted of 212 aa. This 

peptide will be processed by a carboxypeptidase to form proendothelin which is the precursor of 

the Big ET-1. Furin, an enzyme of the subtilisin family will cleave the proendothelin further to 

generate Big ET-1(Blais et al., 2002; D’Orleans-Juste et al., 2003). 

 

1.14 Classical Pathway 

Big ET-1 is found in the peripheral circulation. It has some vasoconstrictive capacities however 

once converted to ET-1 via the Endothelin Converting Enzyme (ECE), the product, ET-1, has a 

much higher- 140 times higher- vasoconstrictive potency (Rubanyi and Polokoff, 1994). 

 

1.15 Endothelin Converting Enzyme 

The ECE cleaves the bond between Trp 21 and Val 22 of the Big ET-1 to generate ET-

1(McMahon et al., 1991; D'Orleans-Juste et al., 2003). The ECE is a Zinc-dependent 

Metalloendopeptidase localized in several cell types such as endothelial cells, SMC, 

cardiomyocytes and macrophages (Hioki et al., 1991; Hisaki et al., 1993; Takahashi et al., 1995; 

Barnes et al., 1997; Barnes and Turner, 1999; Korth et al., 1999). Three isoforms of ECE have 

been identified, the ECE-1, ECE-2 and ECE-3 (Xu et al., 1994; Shimada et al., 1994 ; Maguire 

et al., 1997; Schweizer et al., 1997; Fukuchi and Giaid, 1998; Kobayashi et al., 1998; Rossi et 

al., 1999). 

ECE-1 and ECE-2 were shown to generate ET-1 from Big ET-1 (Emoto and Yanagisawa, 1995), 

however ECE-1 is believed to be more involved physiologically since ECE-2 maximal activity 

occurs at a more acidic pH (pH= 5.5) (Emoto and Yanagisawa, 1999). Furthermore, ECE-1 binds 

and process several substrates such as bradykinin, substance P, Ang I and insulin, with different 

affinities (Hoang et al., 1997; Johnson et al., 1999).  

Four isoforms of ECE-1 as well as of ECE-2 have been identified: ECE-1a, ECE-1b, ECE-1c 

and ECE-1d; ECE-2a-1, ECE-2a-2, ECE-2b-1 and ECE-2b-2 (Shimada et al., 1995; Schweizer et 
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al., 1997; Valdenaire et al., 1999; Ikeda et al., 2002). The isoforms differ in their N terminal 

sequences which dictate their cellular location. 

 

1.16 Alternative pathway 

The ECE dependent pathway does not seem to be the sole pathway leading to the formation of 

ET-1. It has been shown that in embryos of mice whose ECE-1 and ECE-2 genes were KO, the 

production of ET-1 was not completely inhibited; but was only decreased by 33% (Yanagisawa 

et al., 2000). This suggests that other pathways involved in the production of ET-1 exist, 

independent of ECE. Even though the role of chymase in Ang II biosynthesis is well covered in 

the literature (for review see Takai et al., 2010 and Pejler et al., 2010), less is reported 

concerning the role of chymase in ET-1 synthesis (for review see Nakano et al., 1997 and Watts 

et al., 2007). One of the enzymes able to cleave Big ET-1, as mentioned in table I, is the 

chymase. It has been shown that the latter enzyme can cleave the Big ET-1 at the bond Tyr 31-

Gly 32 leading to an intermediate peptide formed of 31 aa, the ET-1 (1-31). This ET-1 (1-31) 

will be further processed by the neutral endopeptidase (NEP) which cleaves the Trp 21- Val 22 

bond to form ET-1 (Hanson et al., 1997; Nakano et al., 1997); as shown in fig. 3. The NEP is a 

ubiquitous membrane bound metalloendopeptidase responsible not only for the generation of 

ET-1 from ET-1 (1-31) but has a role in the degradation of ET-1 (Vijavaraghavan et al., 1990; 

Turner and Tanzawa, 1997). 
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Figure 3: Schematization of the synthesis of ET-1 via the classical pathway (green arrow) 
and the alternative pathway (blue arrows). (Modified according to Goto et al., 1996, 
Hanson et al., 1997 and Nakano et al., 1997)  
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1.17 Endothelin-1 (1-31) 

There has not been a clear conclusion in the literature on whether ET-1 (1-31) acts directly on 

the endothelin receptors or it has to be cleaved into ET-1 to achieve its activity. Many in vitro 

studies have shown that ET-1 (1-31) can act as an agonist on the endothelin receptors. For 

example, the group of Maguire showed in 2001 that ET-1 (1-31) has vasoconstrictive properties 

when activating the endothelin receptors in a human mammary artery (Maguire et al., 2001). 

Some studies have concluded that ET-1 (1-31) is a selective agonist for one of the endothelin 

receptors, the endothelin A receptor (ETA) (Mazzochi et al., 2000), whereas other studies have 

shown that ET-1 (1-31) is an agonist of both endothelin receptor, ETA and endothelin B (ETB). 

On the other hand, other studies indicated that ET-1 (1-31) needs to be processed by the NEP to 

generate ET-1 which will activate the receptors (Hayasaki-Kajiwara et al., 1999). 

It is important to note that the studies mentioned in the previous paragraph were conducted in 

vitro. A closer look to the studies performed on animals in vivo shows a consensus on the 

necessity of the conversion of the ET-1 (1-31) to ET-1 by the NEP to get its functionality in vivo 

(Fecteau et al., 2005; Simard et al., 2009). 

 

1.18 Endothelin receptors 

There are two known receptors for the endothelin, ETA and ETB. They are G protein coupled 

receptors (GPCR) that have seven transmembrane domains. These receptors are coupled to Gq/11. 

They share about 50 % of identical sequence with the main differences existing in the N-terminal 

(Ogawa et al., 1991; Rubanyi and Polokoff, 1994; Murray et al., 2008). ETA is localized mainly 

on the VSMC whereas ETB is localized on the VSMC along with the endothelial cells (Hosoda et 

al., 1991; Fan et al., 2000; Giannessi et al., 2001). 

 

1.19 ETA receptor 

The binding of ET-1 to ETA will activate the receptor. Similar to the AT1 receptor, stimulation of 

ETA receptor will activate the protein Gq/11 and activate phospholipase C (PLC) which will 

hydrolyze phosphatidylinositol-4,5-bisphosphate (PIP2) into inositol-1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG). In addition, activation of both ETA and AT1 receptors induces 

proliferation in non-excitable cells and hypertrophy in excitable cells (Bkaily et al., 2011; 
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Alvarenga et al., 2016). Both types of receptors induce increase of intracellular calcium via 

stimulation of L- and R-type calcium channels as well as release of calcium from the 

endoplasmic reticulum (Bkaily et al., 2005, 2011; Simonson and Dunn, 1990; Giannessi et al., 

2001; Becker et al., 2009). Little is known concerning the differences in signaling and biological 

effects between ETA and AT1 receptors activation. 

 

1.20 ETB receptor 

As mentioned earlier and shown in fig. 4, ETB is present on VSMC and endothelial cells. The 

receptors present on VSMC will activate Gq and Giwill cause an increase in intracellular calcium, 

in a cascade similar to the activation to ETA which will cause a contraction of the VSMC and 

hence a vasoconstriction. However, the activation of ETB present on the endothelial cells will 

cause an increase in Nitric Oxide (NO) and prostacyclin causing a relaxation of the VSMC hence 

a vasodilation (Giannessi et al., 2001; Attina et al., 2005; Murray et al., 2008). 
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Figure 4: ETA and ETB signaling pathway after activation by ET-1. PLC: Phospholipase C, 

PIP2: Phosphatidylinositol 4,5-bisphosphate, DAG:Diacylglycerol, IP3: Inositol-1,4,5-

triphosphate, SR: Sarcoplasmic Reticulum, Ca2+: Calcium, CaM: Calmodulin, MLC: Myosin 

light chain, MLCK: Myosin light chain kinase, MLC-P: Phosphorylated myosin light chain, 

PKC: Protein Kinase C, NO: Nitric Oxide, PI3K: Phosphatidylinositol-4,5-bisphosphate 3-

kinase, PIP3: Phosphatidylinositol (3,4,5)-trisphosphate, eNOS: Endothelial Nitric Oxide 

synthase. (Modified from Ushio-Fukai et al., 1998) 
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1.21 Chymase inhibitors and clinical relevance 

Many chymase inhibitors are currently in clinical trials, some are currently in phase two such as 

SUN 13834 (Ogata et al., 2011). Table III summarizes some of the chymase inhibitors and their 

potential clinical relevance. 
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Table III. Chymase inhibitors and their therapeutic potential 

 

  

 

  

Chymase inhibitors Therapeutic potential Reference 

SUN-C8257 Atherosclerois, pulmonary 
fibrosis, skin disease 

Doggrell, 2008 

SUN13834 Atopic dermatitis Ogata et al., 2011 
BCEAB Cardiac diseases Doggrell, 2008 
Compound 17 Cardiac diseases, asthma Doggrell, 2008 
NK 3201 Cardiac diseases Doggrell, 2008 
TEI-ES48 Cardiac diseases Hoshino et al., 2003 
RO5066852 Atherosclerosis Bot et al., 2011 
JNJ-10311795 Anti-inflammatory De Garavilla et al., 2005 
Suc-Val-Pro-Phe (OPh)2 Cardiac adhesions Soga et al., 2004 
Y-40613 Atopic dermatitis Akahoshi et al., 2001; Imada 

et al., 2002 

TY-51463 Cardiac diseases, liver 
fibrosis, gastroentesitinal 
diseases, diabetes mellitus 

Oyamada et al., 2011; 
Komeda et al., 2010 ; 
Kakimoto et al., 2010 ; Takai 
et al., 2009 

Chymostatin Glaucoma, chorioretinal, 
Gastroentestinal diseases 

Doggrell, 2008; Groschwitz 
et al., 2009 
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1.22 Aim of the study and targeted objectives 

Since the establishment of the chymase dependent route of conversion of Big ET-1, the 

production of ET-1 was not demonstrated to occur in vivo up until recently in 2009, when our 

laboratory has shown that the conversion of Big ET-1 into ET-1 (1-31) occurs in mice (Simard et 

al., 2009); knowing that ET-1 (1-31) is converted to ET-1 via NEP in vivo (Fecteau et al., 2005). 

In addition in 2013, our laboratory has demonstrated that the mMCP-4, which is the murine 

analog of the human chymase, can generate ET-1 (1-31) from the Big ET-1 in vitro and in vivo 

(Houde et al., 2013). However, no information is available concerning the ability of recombinant 

chymases (murine or human) to cleave Big ET-1. In fact the literature shows a chymostatin 

dependent characterization of CMA1 in regards to generation of Ang II from Ang I (Murakami 

et al., 1995). Chymostatin is a general chymotrypsin-like protease inhibitor, not specific to 

chymase. It was shown to inhibit elastase II as well, an enzyme involved as well in the 

production of Ang II from its precursor Ang I (Becari et al., 2005). 

Based on these observations, we hypothesized in this study that the CMA1, whether 

recombinant, extracted from the LUVA cells (human mast cell line) or in the soluble fractions of 

human aortas would generate ET-1 (1-31) from Big ET-1 in a chymase inhibitor - sensitive 

manner. 

In a second aim, we also characterized the kinetic enzymatic activity of CMA1 towards its 

substrate Big ET-1. 

In order to achieve these aims, we propose the following objectives: 

 To validate that the recombinant human chymase (CMA1) converts Big ET-1 into ET-1 
(1-31)  

 To verify if CMA1 has a role in the degradation of ET-1 or ET-1 (1-31) 

 To determine the Kinetic constants of CMA1 towards a fluorogenic substrate, Big ET-1 
and Ang I 
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 To verify if the chymase extracted from the LUVA cells (human Mast cell line) converts 
the Big ET-1 into ET-1 (1-31) 

 To verify if CMA1 extracted from soluble fractions of healthy human aortas would 
generate ET-1 (1-31) from the precursor Big ET-1 
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ABSTRACT 

 

Important structural differences imply that human and mouse mast cell chymases may differ with 

respect to their enzymatic properties. We compared in this study the catalytic efficiencies of 

recombinant human chymase (rCMA1) and its functional murine homologue recombinant mouse 

mast cell protease-4 (rmMCP-4) toward a fluorogenic chymase substrate (Suc-Ala-Ala-Pro-Phe-

7-amino-4-methylcoumarin (AMC) and by their ability to convert Big-endothelin (ET)-1 into 

ET-1 (1–31) using a LC/MS/MS system. Activities toward a fluorogenic substrate (Suc-Leu-

Leu-Val-Tyr-AMC) and Big ET-1 were also measured in extracts from mouse peritoneal mast 

cells, LUVA human mast cell-like cells and human aortas. The specificity of these activities was 

assessed with the chymase inhibitor TY-51469 (2-[4-(5-fluoro-3- methylbenzo[b]thiophen-2-yl) 

sulfonamido-3-methanesulfonyl-phenyl]thiazole-4-carboxylic acid). For similar affinities, 

rmMCP-4 showed a higher activity toward the fluorogenic substrate and a higher ability to 

process Big ET-1 as compared to recombinant CMA1 (chymase activity (kcat/KM in µM-1s-1): 

2.29 x 10-4 vs. 6.41 x 10-6; ET-1 (1–31) production: 2.19 x 10-3 vs. 6.57 x 10-5), and both of these 

activities of mouse and human chymase were sensitive to TY-51469. Furthermore, extracts from 

mouse peritoneal mast cells, LUVA cells and human aorta homogenates contained processing 

activities toward the fluorogenic chymase substrate as well as Big ET-1, all of which were 

sensitive to TY-51469. Finally, the pressor responses to Big ET-1 but not to ET-1 were 

significantly reduced in conscious and free moving mMCP-4 KO mice when compared to wild 

type congeners. Our results suggest that both mouse and human chymases have potent ET-1 (1–

31)-producing abilities, with the murine isoform being more efficient. 

 

Keywords: Chymase, Recombinant enzymes, Mass spectrometry, Radiotelemetry, In silico 

analysis 
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1. Introduction 

Chymases are serine proteases released by activated mast cells, involved in tissue repair and 

inflammatory processes such as wound-healing/fibrosis [1], cardiac remodelling and 

angiogenesis [2,3]. In humans and rodents, two types of mast cells have been identified. Human 

mast cells positive for both chymase and tryptase (MCTC) are similar to murine connective 

tissue mast cells (CTMC) while those positive only for tryptase (MCT) resemble murine mucosal 

mast cells (MMC) [4,5]. To date, a single chymase, a-chymase or CMA1 [6] has been identified 

in humans, expressed in MCTC. In mice, mouse mast cell protease 4 (mMCP-4), predicted as a 

rodent b-chymase from its deduced amino acid sequence, shows angiotensin II (Ang II)- forming 

properties, CTMC localization and serglycin storage dependence [7] similar to those afforded by 

CMA1 [6]. Importantly, like the a-chymase CMA1 [8], mMCP-4 does not share the preferential 

b-chymase Tyr4-Ile5 cleaving activity on Ang-II that mMCP-1 and rat mast cell protease 1 

(rMCP-1, the mMCP-4 rat homolog) possess, making the mouse a more representative model 

than that of the rat to study human-like Ang-II formation [9]. mMCP-4 plays a protective role in 

a mouse model of cerebral trauma [10], yet is detrimental in bleomycin-induced lung 

inflammation and immune complex-induced glomerulonephritis [11,12]. 

The potent vasopressor peptide endothelin-1 (ET-1) on the other hand, is generated from a larger 

38 amino acid precursor Big-endothelin-1 (Big ET-1) via the hydrolytic activity of an 

endothelin-converting enzyme (ECE) [13]. Besides, other proteases are also involved in the 

overall production of mature ET-1. Among those, chymase derived from human purified 

pulmonary tissue cleaves the Tyr31–Gly32 bond of Big ET-1 (1–38) to yield ET- 1 (1–31) [14]. 

Our group later reported that ET-1 (1–31) requires a further neutral endopeptidase (neprilysin, 

NEP)-dependent hydrolysis of the Trp21–Val22 bond to produce mature ET-1 in vivo [15]. 

Whether mMCP-4 is also involved in the in vivo synthesis of endothelins remained unexplored 

until we recently reported that this particular chymase isoform converts Big ET-1 to ET-1 (1–31) 

and subsequently to ET-1 in a study using anesthetised mMCP-4-/- mice [16]. 

Human chymase generated by a recombinant approach produces chymostatin-sensitive Ang II 

from Ang I, with a KM of 59 µM [17]. Chymostatin however, a general chymotrypsin-like 

protease inhibitor, is much less specific than newer generation chymase inhibitors such as TY-
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51469 [18]. In addition, the comparative capacities of recombinant mMCP-4 and CMA1 to 

generate ET-1 (1–31) have not been assessed. 

Based on our previous reports on the chymase-dependent conversion of the precursor Big ET-1 

to ET-1 (1–31) in the anesthetised mouse model in vivo [16,19], we hypothesized that 

recombinant or mast cell-extracted mMCP-4 as well as CMA1, would generate the 31-amino 

acid intermediate in a TY 51469- sensitive fashion.  

The first principal aim of this study was therefore to compare, by using recombinant mMCP-4 

and its human counterpart CMA1, the capacity of murine and human chymases to generate ET-1 

(1– 31). A second aim was to assess the ET-1 (1–31)-producing capacities of chymases derived 

from mouse (peritoneal mast cells) and human mast cells (LUVA cells, [20]) as well as the role 

of chymase in the production of ET-1 (1–31) by human aortic biopsies. 

 Our data show that the murine mMCP-4 and the human CMA1 generate ET-1 (1–31) from the 

precursor Big ET-1 via recombinant enzymes as well as in cellular or tissue extracts of mouse 

and human origin. 
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2. Materials and methods 

 

 2.1. Drugs and chemicals  

Phosphate buffered saline (PBS) pH 7.4, ammonium hydroxide, bovine serum albumin (BSA), 2-

(N-morpholino)ethanesulfonic acid (MES), pluronic F-68, formic acid (FA), trifluoroacetic acid 

(TFA), and N-ethylmaleimide (NEM) were obtained from Sigma-Aldrich (Oak- ville, ON, 

Canada). The StemPro-34 SFM culture medium was purchased from Invitrogen (Carlsbad, CA, 

USA). The RPMI-1640 and I-Max (IPL-41) culture media, fetal bovine serum (FBS) and the 

antibiotics hygromycin B and penicillin were obtained from Wisent (Montreal, QC, Canada). 

Dithiotreitol (DTT), dimethyl sulfoxide (DMSO) and HPLC-grade acetonitrile (ACN) were 

obtained from Fisher Scientific (Ottawa, ON, Canada). Murine active cathepsin C and 

recombinant CMA1 were obtained from R&D Systems (Minneapolis, MN, USA). Heparin was 

purchased from LEO Pharma A/S, (Ballerup, Denmark). Triton X-100 was obtained from ICN 

Biochemical (Aurora, OH, USA). Suc-Ala-Ala-Pro-Phe-7-amino-4-methylcoumarin (AMC), 

Suc-Leu-Leu-Val-Tyr-AMC and ET-1 (1–31) were obtained from Peptide Institute (Osaka, 

Japan), Big ET-1, Ang-I, Ang-II and Pro11- DAla12-Ang-I were obtained from American 

Peptide Company (Sunnyvale, CA, USA), ET-1 was obtained from Tocris Bioscience (Bristol, 

UK) and (13C6)Leu6-ET-1 was obtained from Bachem (Bubenford, Switzerland). Suc-Ala-Ala-

Pro-Phe-chloromethylketone (CMK) was obtained from MP Biomedicals (Santa Ana, CA, 

USA). Ketamine was obtained from Bioniche (Belleville, ON, Canada), xylazine from Bimeda 

(Cambridge, ON, Canada) and buprenorphine from Reckitt Benckiser Healthcare (Slough, 

United Kingdom). Finally, TY-51469 (2-[4-(5-fluoro-3-methylbenzo[b]thiophen-2-yl)sulfona- 

mido-3-methanesulfonylphenyl]-thiazole-4-carboxylic acid) was graciously provided by Toa 

Eiyo Ltd. (Osaka, Japan). 
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2.2. Expression, purification, activation and titration of recombinant mMCP-4 and CMA1  

2.2.1. Expression  

The vector pAc5.1 (Life Technologies, Burlington, ON, Canada) containing the recombinant 

DNA of pro-mMCP-4 or pro-CMA1, with poly-histidine and V5 tags, was co-transfected with 

the selection vector pCoHygro (Life Technologies) into S2 drosophila cells. The S2 cells were 

grown in I-Max culture medium IPL-41 complemented by 10% of fetal bovine serum (FBS) and 

hygromycin B (300 mg/ml). The cells were scaled up and finally suspended in serum-free culture 

medium containing 1% pluronic F-68 at a concentration of 2 x 106 cells/ml. 

2.2.2. Purification  

The crude extract sample containing the secretion of the drosophila cells was concentrated by 

ultrafiltration on an Ultracell Microcon 10 kDa filter (EMD Millipore, Billerica, MA, USA). 

This sample was then purified on a nickel affinity column by FPLC with an imidazole gradient 

(up to 250 mM) for isolation of poly-histidine tag positive samples. Those samples were then put 

on a Superdex200 26/60 size exclusion column (GE Life Sciences, CA, USA) and the V5-

positive fractions (determined by Western blot, data not shown) were pooled and frozen. 

2.2.3. Activation 

The recombinant enzymes were thawed and diluted to a concentration of 20 mg/ml in maturation 

buffer (50 mM MES, 0.1% BSA, pH 5.5,). Active murine cathepsin C was diluted to 0.481 ng/ml 

in cathepsin C buffer (50 mM MES, 50 mM NaCl, 5 mM DTT, pH 5.5). Activation was 

performed by adding equal volumes of recombinant chymase and cathepsin C, adding 50 µg/ml 

heparinand incubating 1 h at room temperature. Chymase activation was stopped with NEM (3 

mM) and diluted with assay buffer (20 mM Tris, 2 M KCl, 0.02% Triton X-100 (replaced with 

(0.1%) BSA for Ang- I assays), pH 9.0) to bring the recombinant chymase concentration to 2 

mg/ml, and 5 min was afforded to completely stop the cathepsin C-dependent reaction. 

2.2.4. Titration  

The activated recombinant enzymes (0.025 ng/ml rmMCP-4 or 0.25 ng/ml rCMA1) were 

incubated for 25 min at 37 ºC with multiple concentrations (1.12 x 10-6 to 1.12 x 10-9 M) of the 
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inhibitory substrate Suc-Ala-Ala-Pro-Phe-chloromethylketone (CMK). When cleaved, the CMK 

compound covalently binds to the active site of recombinant chymase and blocks it. After this 

incubation, the fluorogenic substrate Suc-Ala-Ala-Pro-Phe-AMC was added and the chymase-

like activity was analyzed as described in the main body of the article. The threshold of total 

inhibition of chymase activity was interpreted as the number of active sites in the recombinant 

chymases preparations and used as the molar concentration of enzymes for determination of their 

kinetics. 

 

2.3. Animals  

C57Bl/6J mice were purchased from Charles River (Montreal, QC, Canada) and housed in our 

facilities. Genitor mMCP-4 KO mice [2] were bred in our facilities. All animals were kept at 

constant room temperature (23ºC) and humidity (78%) under a controlled light/dark cycle (6:00 

AM–6:00 PM), with standard chow and tap water available ad libitum. Animal care and 

experiments were approved by the Ethics Committee on Animal Research of the University of 

Sherbrooke following the Canadian Council on Animal Care guidelines and the Guide for the 

Care and Use of Laboratory Animals of the United States National Institutes of Health. All 

experiments on mice were performed on newly sacrificed animals, except for telemetric 

hemodynamic recording performed on live animals. The mice underwent general anesthesia, by 

the intramuscular administration of ketamine/xylazine (87/13 mg/kg). Complete anesthesia was 

assumed when no withdrawing reflex was found during pressure on any paw of the mouse. 

Anesthetized mice were killed by cervical dislocation. 

 

2.4. Mast cell preparation  

Mouse peritoneal mast cells preparations were used, as they are readily available, fully mature 

connective tissue resident mast cells containing their full complement of granule proteases 

without being primed with cytokines [21]. 5 ml of isolation buffer (phosphate buffer solution 

containing 1 mg/ml of BSA and 37.5 U/ml heparin, pH 7.4) was introduced into the peritoneal 

cavity of mice after peritoneal skin removal, then collected after 1 min of peritoneal massage and 
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centrifuged (200 x g, 5 min). In another series of experiments, mast cell-like LUVA cells were 

maintained in a StemPro1-34 SFM solution at a cell density of 5 x 105cells/ml, in the absence of 

additional growth factors. The suspension was divided into 2 equal volumes of 30 ml and 

centrifuged (200 x g, 5 min). Treatment of LUVA and mouse mast cell pellets was similar 

thereafter. The supernatant was discarded and the mast cell rich pellet was suspended in RPMI-

1640 medium (enriched with penicillin (100 U/ml), 2 mM L-glutamine and BSA (1 mg/ml)) and 

incubated for 1 h at 37 ºC. The suspension was centrifuged for 5 min at 200 x g, the supernatant 

was discarded and the pellet was suspended in isolation buffer. The cells were counted according 

to the Moore and James method [22] and adjusted to 2 x 105mast cells/ml in PBS pH 8. The cells 

were lysed through sonication and then centrifuged at 200 x g for 5 min. The resulting pellet was 

washed thrice in 0.1 M PBS pH 8.0 by further centrifugation cycles. 

 

2.5. Human aortas preparation  

The human aortas were collected from middle-aged brain-deceased individuals with no 

histological signs of atherosclerosis. The tissues were weighed and grinded in PBS on ice by a 

tissue homogenizer (Polytron, ultra-turax T8, IKA, Wilmington, NC, USA) for 30 s. 

Centrifugation for 20 min at 25,000 x g at 4 ºC took place then the soluble fractions 

corresponding to the supernatant were collected and frozen at -80 ºC. 

 

2.6. Specific chymase activity in vitro  

Activated rmMCP-4 (0.025 ng/ml), activated rCMA-1 (0.25 ng/ml) or mast cell extracts (from 4 

x 105 peritoneal mouse mast cells or LUVA cells) were incubated in a 96 well plate. Increasing 

concentrations of the non-fluorescent substrates Suc-Ala-Ala-Pro- Phe-7-amino-4-

methylcoumarin (AMC) (for recombinant enzymes) or Suc-Leu-Leu-Val-Tyr-AMC (for mast 

cell and tissue extracts) were added and the fluorescence AMC-forming activity, as chymase 

activity, was then measured with a fluorescence spectrophotometer (λex: 370 nm; λem: 460 nm) 

for 20 min (Molecular Devices, Sunnyvale, CA). Another series of experiments was performed 

at 10 µM of fluorogenic substrate with pretreatment of the diluted samples with the specific 



38 
 

chymase inhibitor TY-51469 (10–50 µM). To determine enzyme kinetics, the recombinant 

enzyme active sites were titrated with the inhibitor substrate Suc-Ala-Ala-Pro-Phe-CMK. 

 

2.7. In vitro conversion of Big ET-1 to ET-1 (1–31) and Ang-I to Ang-II  

2.7.1. Recombinant enzymes  

Big ET-1 and Ang-I dilutions were prepared in 0.1 M PBS pH 8.0. The recombinant enzymes 

(28.57 ng/ml activated rmMCP-4 or 1428 ng/ml activated rCMA1) were incubated at 37 ºC with 

Big ET-1 (0.15, 0.75, 1.5, 4.5, 7.5, 15 and 26 µM) or Ang-I (1.5625, 3.125, 6.25, 12.5, 25, 50 

and 100 µM) for 20 min, after which the reactions were stopped with an equal volume of 

water:acetonitrile:dimethylsulfoxide:formic acid (H2O:ACN:DMSO:FA) mix (73:20:6:1) 

containing (13C6)Leu6-ET-1 (100 µg/ml) or a H2O:ACN:FA mix (76:20:4) containing Pro11-

DAla12-Ang-I (176 ng/ml) (peptides as internal standards). In another series of experiments, 

16.7 µM of Big ET-1 was incubated in the presence of TY-51469 (10 µM) and the reaction was 

stopped as described above. Samples were diluted 1:10 with the same stop solution without the 

internal standard before LC–MS/MS analysis. Kinetics parameters were calculated using Prism 

Software (GraphPad, La Jolla, CA, USA). 

 2.7.2. Mast cell and aortic extracts 

 In another series of experiments, the soluble fractions of 9 x 105 WT peritoneal mouse mast 

cells, 4 x 106 LUVA cells or the soluble fraction of the human aortas (adjusted to 2.2 mg/ml of 

protein) were pretreated with vehicle or TY-51469 (10 µM) and then incubated with Big ET-1 at 

37 ºC at concentrations of 5, 5 and 13 µM, respectively, for 20 min. The reactions were stopped 

in with the stop solution described above containing (13C6) Leu6-ET-1 (50 ng/ml) and 

subsequently processed by solid phase extraction (SPE) before LC-MC/MS analysis, albeit the 

stop solution for the human aorta assay was ACN:DMSO:FA (88:6:6). 
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2.8. LC–MS/MS quantification of Big ET-1, ET-1 (1–31) and ET-1  

2.8.1. Sample preparation  

For in vitro conversion by recombinant enzymes, samples were analyzed directly. For analysis of 

samples from masts cells or human aortic tissue, SPE was performed consisting of a polymeric 

mixed mode strong cation exchange 1 ml cartridge containing 30 mg of sorbent (Phenomenex, 

Strata-X-C, Torrance, CA, USA).Briefly samples were pre-treated with 2% FA and loaded on 

the SPE column, samples were next washed once with 60% methanol containing 2% FA and 

eluted with 2 x 700 µl of 75% ACN containing 10% ammonium hydroxide. 

2.8.2. System description 

Analysis was performed by LC–MS/MS on TripleTOF 5600 mass spectrometer (ABSciex, 

Foster City, CA, USA) equipped with DuoSpray source. Samples were introduced to the 

electrospray ionization (ESI) source in a 50 µm ESI probe using a microLC200 system equipped 

with a 50 mm x 500 µm HALO C18 2.7 µm column. 

2.8.3. System conditions  

Chromatography was performed with a gradient of water containing 0.2 % formic acid and 3% 

DMSO (A) and ACN containing 0.2% formic acid 3% DMSO (B) (without DMSO for Ang-II 

determination). For endothelin peptides analysis, column temperature was set at 50 ºC. A 4 min 

gradient was run at 40 µl/min. It consisted of the following steps: hold at 10% B from 0 to 0.5 

min, 10% B to 75% from 0.5 min to 2.7 min, hold at 100% B from 2.9 to 3.4 min and 

equilibration from 3.5 to 4 min at 10% B. Source parameters where the following: curtain gaz 

was set at 28, gaz 1 was set at 17, gaz 2 was set at 28, ion source voltage was set at 5500 and ESI 

probe temperature was set at 375. For Ang-II analysis, a 2.5 min gradient was run at 40 µl/min. It 

consisted of the following steps: hold at 15% from 0 to 0.4 min, 15% B to 100% from 0.4 min to 

1.4 min, hold at 100% B from 1.4 to 2.9 min and equilibration from 2 to 2.5 min at 15% B. 

Source parameters where the following: curtain gaz was set at 27, gaz 1 was set at 25, gaz 2 was 

set at 20, ion source voltage was set at 4900 and ESI probe temperature was set at 400. 
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2.8.4. Analysis  

Compounds were monitored using optimized collision energy parameter in product ion mode at 

unit resolution with a mass range from 100 to 2000 m/z in high sensitivity MS/MS scan. Data 

integration and analysis was performed using MultiQuant software V2.0 with the signal finder 

algorithm (ABSciex) by selecting the appropriate product ion transition with a mass range of 

0.05 Da subsequently analyzed. 

 

2.9. Effect of recombinant CMA1 or mMCP-4 on ET-1 (1–31) in vitro  

The activated recombinant enzymes were incubated with ET-1 (1–31) (3.2 µM) for 20 min at 37 

ºC, after which samples were filtered through a 30 K Amicon centrifugal filter unit (Millipore 

Corporation, Billireca, MA, USA) (14,000 x g, 20 min) for high performance liquid 

chromatography (HPLC) analysis. Filtrates were collected and purified by reversed phase HPLC 

(1100 series) with a Zorbax DSC-18 analytical column (Agilent Technologies, Santa Clara, CA). 

The flow was 1 ml/min, water was used as solvent, acetonitrile as eluent, 0.1% trifluoroacetic 

acid as buffer and the acetonitrile fraction going from 28% to 40% in 35 min. Quantification was 

assessed with absorbance at a wavelength of 214 nm using area under the curve measurements 

(in arbitrary units). 

 

2.10. Telemetric hemodynamic recording of the pressor activity of Big ET-1 in conscious mice 

2.10.1. Probe implantation  

Telemetry probe implantation was achieved in accordance to Carlson and Wyss [23] and Butz 

and Davisson [24]. Briefly, ketamine/xylazine-anesthetised WT and mMCP-4 KO mice were 

implanted with a catheter-tipped transmitter (TA11PA-C10; Data Sciences International, St. 

Paul, MN, USA) into the aortic arch via the left common carotid artery. The transmitter was 

placed subcutaneously along the right flank of the animal. A buprenorphine protocol of 0.1 

mg/kg every 8 h for 24 h post-operation was conducted to control surgical pain. The mice had a 

10-day recovery period before recording of hemodynamic data. 
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2.10.2. Hemodynamic recording  

The mice were trained to the contention chamber with saline injections through the caudal vein 

to minimize stress. After two training sessions, the mice received Big ET-1, Ang-I (both at 1 

pmol/kg), ET-1 or Ang-II (both at 0.1 pmol/kg) intra-caudally (200 µl injection) and 

subsequently released in their cage. Hemodynamic recording in the freely moving mouse was 

performed every 30 s, each data point representing a 10 s average, for 1 h via Acquisition 

Dataquest 4.33 (Data Sciences International). 

 

2.11. In silico analysis  

The X-ray structure of the complex of human chymase (CMA1) and a substrate analog (Protein 

Data Bank code; 1PJP) [25] was used as the template for homology modeling of mouse chymase 

(mMCP-4), and the mouse molecular model was optimized by energy minimization using 

Amber12 force fields [26]. Big ET-1 (28-35) binding structure on the active site of each chymase 

model was constructed referencing the substrate analog in 1PJP. Each complex model was 

optimized by 100 ps molecular dynamics simulation using the same force fields and a periodic 

cube of water molecules as solvent, and the most stable structure during the latest 25 ps iterations 

was finally optimized by energy minimization. All of the molecular operations, including 

molecular dynamics simulation, were performed using a package for molecular structural 

analyses, MOE 2012 (Molecular Operating Environment, Chemical Computing Group Inc., 

Montréal, QC, CA). 

 

2.12. Data analysis  

All data are presented as the means ± the standard error of the means (SEM) unless otherwise 

stated. Statistical analysis was performed using GraphPad Prism 6.0 (GraphPad Software Inc, La 

Jolla, CA, USA). Statistical significance was assessed using Student’s t-test and assumed when 

the p value was lower than 0.05. 
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3. Results  

 

3.1. Enzyme kinetics of recombinant mMCP-4 and CMA1  

In this first series of experiments, the comparative kinetics of recombinant mMCP-4 and CMA1 

were established via the hydrolysis of the fluorogenic substrate Suc-Ala-Ala-Pro-Phe-AMC (Fig. 

1A and C) or production of ET-1 (1–31) from Big ET-1 quantified by LC–MS/MS (Fig. 2A and 

C). All measured parameters are summarized in Table 1 which also includes parameters for Ang- 

I to Ang-II conversion. 

Albeit both enzymes possess equivalent affinities against both substrates, mMCP-4 shows higher 

efficacy (in terms of kcat/KM) than CMA1 to hydrolyse the fluorogenic peptide or the precursor of 

ET-1 (1–31) (Table 1). In addition, TY-51469 (10 µM) abolished the activity of both enzymes 

(Figs. 1B, D and 2B, D) (** p < 0.01, n = 6). Lower concentrations of TY-51469 (0.5 and 1 µM) 

partially inhibited the hydrolysis of the fluorogenic peptide (results not shown). In addition, 

neither recombinant mMCP-4 nor CMA1 degraded ET-1 (1–31) (Fig. 2E). As a last series of 

controls, the kinetics of both enzymes were experimentally determined against the hydrolysis of 

angiotensin I to angiotensin II with similar Vmax and KM to those observed with both enzymes 

against the production of ET-1 (1–31) (Table 1). Michaelis–Menten curves for both recombinant 

enzymes against Ang-I are shown in supplementary figure S1. The activity of in-house produced 

rCMA1 was similar to the activity of commercially available rCMA1 on Ang-II production from 

Ang-I (data not shown). 
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Figure 1: Fluorescence production by recombinant enzymes. The fluorescence-production rate of 

recombinant mMCP-4 (A; n = 7) and CMA1 (C; n = 6) was measured at different fluorogenic 

substrate concentrations of 5, 10, 15, 25, 50, 100 or 250 µM. Data points are expressed as means 

± SEM. Time-course of the fluorescence production of typical experiments with mMCP-4 (B) 

and CMA1 (D) with 10 µM of Suc-Ala-Ala-Pro-Phe-AMC which was inhibited in the presence 

of TY-51469 (10 µM). 
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Figure 2: Big ET-1 is converted to ET-1 (1–31) by recombinant enzymes. The rate of 

reactions at different concentrations of Big ET-1 of 0.15, 0.75, 1.5, 4.5, 7.5, 15 or 26 µM for 

recombinant mMCP-4 (A; n = 6) and recombinant CMA1 (C; n = 7) is shown. (B and D) 

Quantification of the in vitro conversion of 16.7 µM of Big ET-1 to ET-1 (1–31) by mMCP- 4 

(B) and CMA-1 (D) in the absence (n = 3) or presence (n = 6) of TY-51469 (10 µM) shows that 

chymase inhibition abolishes the conversion of Big ET-1 to ET-1 (1–31). (E) Reverse-phase 

HPLC quantification of ET-1 (1–31) (3.2 µM) degradation by mMCP-4 and CMA1 shows no 

activity of the recombinant enzymes on ET-1 (1–31) (n = 4). Data points are expressed as means 

± SEM. 
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Table 1 Enzyme kinetics of rmMCP-4 and rCMA 1 against a fluorogenic substrate, Big 

ET-1 (1–38) or Angiotensin I. 
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3.2. TY-51469-sensitive chymase activity and conversion of Big ET-1 to ET-1 (1–31) in mouse 

and human-like mast cells  

Fig. 3A shows that WT mouse peritoneal mast cell extracts exhibit a TY-51469-sensitive 

chymase-like activity that is abolished in extracts from mMCP-4-/- mast cells. Soluble extracts 

from LUVA cells also exhibited chymase-like activity, with higher concentrations of TY-51469 

required to significantly inhibit the production of ET-1 (1–31) (Fig. 3C). Conversion of Big ET-1 

to ET-1 (1–31) occurred in whole cell extracts of peritoneal mast cells derived from WT, but not 

in those derived from mMCP-4-/- mice. In addition, TY-51469 (10 µM) reduced by more than 

80% the production of ET-1 (1–31) in fractions derived from wild type mice (** p < 0.01, n = 7, 

Fig. 3B). Fig. 3D shows the conversion of Big ET-1 to ET-1 (1–31) in whole cell extracts of 

LUVA cells, which was inhibited by 50% by the specific chymase inhibitor. 
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Figure 3: Chymase activity by mast cell extracts. The fluorescence production using Suc-Leu-

Leu-Val-Tyr-AMC (10 µM) by mouse peritoneal mast cell extracts from WT and mMCP-4-/- 

mice (A) and LUVA cells (C) was inhibited by TY-51469 (10 µM). Big ET-1 (15 µM) was 

converted in vitro to ET-1 (1–31) by homogenates of WT or mMCP-4-/-peritoneal mast cells (B) 

and human LUVA cells (D), and this activity was inhibited by TY-51469 (10 µM) (n = 8). Data 

points are expressed as means ± SEM. 
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3.3. Hemodynamics responses to Big ET-1 and Ang-I in conscious WT or mMCP-4_/_ mice 

In Fig. 4, panels A–C show the variation in the mean (A), systolic (B) and diastolic (C) arterial 

pressures, respectively, following caudal vein administration of Big ET-1 (1 pmol/kg). Big ET-1 

increased mean arterial pressure by 56.6 ± 7.7 mmHg in WT mice (n = 11) whereas the same 

response was reduced in mMCP-4-/-(34.3 ± 4.2, n = 9, *: p < 0.05) by 43%, similarly to systolic 

and diastolic blood pressure responses in both mouse strains. 

In contrast, intravenous (i.v.) administration of ET-1 prompted similar increases of mean arterial 

blood pressure in WT or mMCP-4-/-mice (WT: 42.70 ± 1.89; mMCP-4-/-: 43.92 ± 6.39 mmHg, n 

= 5). 

Finally Ang-I (1 pmol/kg, i.v.) (WT: 38.34 ± 1.91;mMCP-4-/-: 44.07 ± 3.87 mmHg) or Ang-II 

(0.1 pmol/kg) (WT: 37.00 ± 3.61; mMCP-4-/-: 42.09 ± 3.33 mmHg) also induced similar 

increases ofMAP in WT and mMCP-4-/-mice (n = 5 for each series of experiments). 

Basal mean arterial pressure in all telemetry-instrumented mice was averaged at 107.56 ± 5.61 

(WT) or 110.70 ±4.17 mmHg (mMCP-4-/-) and basal heart rate at 571.65 ± 31.55 bpm (WT) or 

615.46 ± 42.00 bpm (mMCP-4-/-). 
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Figure 4: Hemodynamic response to Big ET-1 in instrumented conscious WT or mMCP-4-/- 

mice. All mice were instrumented with a catheter in the aortic sinus connected with a wireless 

pressure transducer. Panels A, B and C show the variation in the mean (A), systolic (B) and 

diastolic (C) arterial pressure measurements, respectively, following caudal vein Big ET-1 

administration (1 pmol/kg). Big ET-1 increased mean arterial pressure by 56.6 ± 7.7 mmHg in 

WT mice (n = 11), and this response was diminished in mMCP-4-/- (34.3 ± 4.2, n = 9, *: p < 

0.05) by 43%, similarly to systolic and diastolic blood pressures. Big ET-1, on the other hand, 

did not induce changes in the heart rate (D) in both WT and mMCP-4 KO mice (measures taken 

at the time of maximal variation of mean arterial blood pressure following saline or Big ET-1 

administration). Each data point is expressed as mean ± SEM. 
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3.4. Human aortic homogenates generate ET-1 (1–31) in a TY-51469- sensitive fashion  

Fig. 5 shows the conversion of Big ET-1 to ET-1 (1–31) in soluble fractions of human aorta. 

Addition of TY-51469 at a concentration of 10 µM resulted in the suppression of ET-1 (1–31) 

production in aortic extracts. Fig. 5A and B shows representatives spectra of the peptide products 

detected by LC–MS after incubation of Big ET-1 (13 µM) with aortic extracts in absence (A) or 

presence of the chymase inhibitor TY-51469 (B). Two major ionization species are detected for 

Big ET-1 and ET-1 (1–31) (z = 5 and z = 4 for Big ET-1, z = 4 and z = 3 for ET-1 (1–31). Co-

treatment with the chymase inhibitor TY-51469 abolished the ET-1 (1–31) signal (Fig. 5B). Fig. 

5B insert illustrates the quantification of ET-1 (1–31) production over 6 experiments in human 

aortic homogenates, inhibited by over 90% by TY-51469. 
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Figure 5: Representative LC/MS/MS mass spectra of the conversion of Big ET-1 to ET-1 

(1–31) by human aortic homogenates. Incubation of homogenates of human aortas with Big 

ET-1 (13 µM) (#) resulted in the production of ET-1 (1–31) (y) specific peaks, in the absence 

(A) but not in the presence of TY-51469 (10 µM; B). For both peptides, major both ionization 

species are labeled (from left to right, z = 5 and z = 4 for Big ET-1, z = 4 and z = 3 for ET-1 (1–

31)). In the insert is the quantification of the in vitro conversion of Big ET-1 (13 µM) to ET-1 

(1–31) in homogenates from human aortas (n = 6). Data points are expressed as means ± SEM. 
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3.5. In silico analysis  

As shown in Fig. 6A, the Tyr31 (P1) side-chain of Big ET-1 (28-35) was able to fit the S1 hole of 

mMCP-4, and the Leu33 (P20) side-chain of Big ET-1 interacted with the hydrophobic moiety of 

Lys192 of mMCP-4. By these interactions, the carboxyl group of Tyr31 could be fixed by 

hydrogen bonds to both Gly193 and Ser195 amine groups in the ‘anion hole’ of mMCP4. However 

the part of P30 and P40 (Big ET-1 Gly34 and Ser35) being highly flexible, a hydrogen bond was 

formed between Ser35 (of Big ET-1) and Thr41 (on mMCP-4) in this structure. On the other hand, 

Leu33 of Big ET-1 (28-35) was stabilized with Phe41 in CMA1 by hydrophobic interaction 

between side chains and hydrogen bonds between main chains (B). Compared with the above 

model of mMCP-4, these tight interactions of Leu33 (of Big ET-1) with Ph41 in CMA1 appear to 

restrict the access of the CMA1 Lys192 moiety to the octapeptide,and the carboxyl group of Tyr31 

of Big ET-1 (28-35) can then only interact with the amine of Gly193 in the ‘anion hole’ of CMA1. 
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Figure 6: Predicted molecular structures of the complex of Big ET-1 with mMCP-4 or 

CMA1. Predicted molecular structures around the active sites of mMCP-4 and CMA1 

interacting with Big ET-1 (28-35), CH3CO-Val-Val-Pro-Tyr-Gly-Leu-Gly-Ser-NHCH3, are 

shown in (A) and (B), respectively. Each chymase and its active center residues are described by 

a white and light-green stick model, and the Big ET-1 fragment is colored in light blue. Oxygen, 

nitrogen and sulfur atoms are colored in red, blue and yellow, and hydrogen atoms were omitted. 

Hydrogen bond distance between chymases and Big ET-1 is colored in green. The molecular 

surface of atoms related to the interaction of ‘anion hole’ is shown transparently. In the active 

site of CMA1 (B), the hydrogen bond between Ser195 –NH and Big ET-1– Tyr31(P1) >C5O was 

lost (interatomic distance = 4.79 A˚). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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4. Discussion  

 

Our main results support the concept that both recombinant murine and human chymases are 

able to generate ET-1 (1–31) from its precursor Big ET-1 and that a specific chymase inhibitor, 

TY-51469, abolishes this process. The kinetics of either recombinant enzymes to produce ET-1 

(1–31) or Ang-II from Ang-I, in terms of KM and Vmax are similar. In addition, the ET-1 (1–31) 

producing capacities of recombinant mMCP-4 and CMA1 are extended to chymase-like activity 

derived from mouse or humanmast cells as well as from human blood vessels. The results shown 

in the present study with recombinant mMCP-4 support our previous report identifying mMCP-4 

as the sole murine chymase isoform involved in the genesis of exogenous and endogenous ET- 1 

in vivo [16]. Our results for the conversion of Ang-I to Ang-II by rCMA1 and rmMCP-4 in vitro 

are also in accord with the literature [5,9]. 

In our experimental conditions, mMCP-4 was found to be more efficient than CMA1 to generate 

ET-1 (1–31) from its precursor, based on the Kcat/KM of each enzyme. The in silico analyses 

presented in this study suggest that the peptide link between Tyr31(P1) and Gly32(P10) of Big 

ET-1 would be closer to the active center of mMCP-4 than that of CMA1, thus explaining the 

higherefficiency of the murine chymase when compared to its human counterpart. Worthy of 

mention, in silico analysis were performed with the octapeptide chain susceptible to chymase 

hydrolytic activity rather than the entire 38 amino acid sequence of Big ET-1. 

Interactions of either mMCP-4 or CMA1 binding and/or catalytic sites with N- and C-terminal 

chains and to the two disulfide bridges of the 38 amino acid precursor are unaccounted for in the 

present computer assisted modeling. 

Our group has previously shown that soluble extracts derived from mouse organs such as the 

heart, lungs, kidney and aorta hydrolyze the fluorogenic peptide Suc-Leu-Leu-Val-Tyr-7-amino- 

4-methylcoumarin (AMC), a chymotryptic activity which is only partly inhibited by TY-51469 

or in tissues derived from mMCP-4-/- mice, thus suggesting that other proteases are involved in 

the process [16]. In contrast, we show in the present study that the TY- 51469-sensitive 

hydrolysis of a fluorogenic peptide by extracts from mouse mast cells is totally dependent on the 

presence of mMCP-4. Furthermore, the extracts derived from mouse mast cells show the 



55 
 

exclusive contribution of mMCP-4 in the processing of Big ET-1 to ET-1 (1–31). Our data 

further suggest that mMCP-4 isthe predominant isoform involved in the conversion of Big ET-1 

to ET-1 (1–31) in these cells since no more than 20% of the latter peptide were found in soluble 

extracts derived from mMCP-4-/- mice or from WT extracts pre-treated with TY-51469. Whether 

the mMCP-4-dependent hydrolysis of Big ET-1 reported in our study in peritoneal mast cells can 

be reproduced in bone marrow derived mastocytes, remains to be investigated. 

We previously reported lower endogenous ET-1 levels in the lungs of mMCP-4-/-mice [16], in 

concordance with results from ECE-1-/-ECE-2-/- mouse embryos which show only a 45% 

reduction in whole body ET-1 levels [28]. Furthermore, anesthetized mMCP-4-/-mice, when 

compared to WT mice, produced half the plasma ET-1 and ET-1 (1–31) levels as well as pressor 

responses, when challenged with intravenous Big ET-1 [16]. In concordance with those results, 

we show here for the first time in freely moving, conscious mice that Big ET-1 is less potent as a 

vasoconstrictor in mMCP-4-/- mice than in their WT congeners whereas in contrast, both murine 

strains respond equally to Ang-I and Ang-II. This suggests that albeit purified or recombinant 

chymases (of mouse or human origins) can convert Ang-I to Ang-II in vitro as previously 

reported [8,9,27], it is not as biologically significant as for Big ET-1 in the murine systemic 

circulation given the abundance of angiotensin converting enzyme in vivo. This study also 

addressed the capacity of human tissues to generate ET- 1 (1–31) in a chymase inhibitor-

sensitive fashion. The LUVA cells used in the present study originate from the first human mast 

cell line derived from an individual without a clonal mast cell disorder, as indicated by normal 

serum tryptase levels in the patient and on the presence of metachromatic granules in those 

mastocytes [20,29]. This is also the first human mast cell line expressing a functional chymase 

[29]. Similarly to the recombinant enzymes and the extracts derived from mouse peritoneal mast 

cells, a TY- 51469-sensitive and chymase-dependent conversion of Big ET-1 to ET-1 (1–31) was 

observed in LUVA cells albeit less efficiently than with pure enzymes or mouse cells. The latter 

characteristic of LUVA cells may be explained by the heterogeneous expression of chymase in 

this particular cell line as reported initially by Laidlaw and colleagues [29]. Interestingly, in stark 

contrast to mouse peritoneal mast cell granular extracts, significant quantities of fluorescence 

and ET-1 (1–31) produced from Big ET-1 in LUVA granular extracts were TY-51469 

insensitive, suggesting that yet to be identified enzymes other than chymase, perhaps such as 
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cathepsin G [30], have chymotrypsin-like activity and generate the 31 amino acid intermediate in 

this particular cell model. 

Finally, similarly to pulmonary tissue investigated previously [14,16], soluble extracts of human 

aortic biopsies were found to generate ET-1 (1–31) with no further conversion to ET-1 in a TY- 

51469-sensitive fashion. In contrast to experiments with LUVA cells, conversion of Big ET-1 to 

ET-1 (1–31) by human aortic homogenates was fully inhibited by TY-51469 at 10 µM, in 

agreement with our results from the murine system and when using human recombinant CMA1. 

Thus, the present study suggests for the first time that the production of ET-1 (1–31) requires a 

chymase-like activity in human blood vessels. Interestingly, Mawatari and colleagues [31] 

reported ET-1 (1–31) reactivity in all vascular layers in the hamster aortic arch, which is 

increased in the intimal lesions of hypercholesterolemic animals. However, chymase-dependent 

generation of ET-1 (1–31) remains to be confirmed as a relevant factor in human atherosclerosis. 

The present study did not address the ECE/chymase conversion ratio in murine and human tissue 

extracts. However, it is of interest to note that no ECE-dependent synthesis of ET-1 from 

exogenous Big ET-1 was detected by the LC–MS/MS approach. This could perhaps be due to the 

experimental conditions imposed throughout the present study, such as the removal of non-

soluble proteins. It is possible that the ECE-dependent production of ET-1 would have been 

measurable in intact tissues or organs, particularly in conditions where the vascular endothelium 

would have been maintained intact. We suggest that, similarly to the angiotensin converting 

enzyme/chymase paradigm in the production of angiotensin-II from angiotensin-I [32], the ECE 

plays an important role in the production of the circulating levels of ET-1 whereas chymase-like 

activity may be predominantly involved in perivascular and tissue-derived genesis of the latter 

vasoactive peptide. 

Taken together, the present study supports an important role for both murine and human 

chymase in the production of the intermediate ET-1 (1–31). Our results further suggest that the 

use of chymase inhibitors in clinical settings may be proven useful not only for inhibiting 

intramural angiotensin II but also by reducing tissue levels of endothelin-1, particularly in 

cardiovascular diseases of fibrotic origin in which infiltration of activated mast cells is well 

documented [1]. 
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Discussion  

The main conclusion of this work is that the human chymase CMA1 and its murine homolog 

mMCP-4 be it recombinant, extracted from mast cells or from the soluble fractions of the human 

aorta (in the case of CMA1 only) convert Big ET-1 into ET-1 (1-31) in a TY-51469 sensitive 

fashion in vitro. Moreover, the importance of the chymase pathway in the conversion of Big ET-

1 into ET-1 and its paramount role in hypertensive responses was confirmed in conscious mice in 

vivo. 

The initiation of our experiments was based on the fact that our group has demonstrated that the 

mMCP-4 has the capacity to cleave Big ET-1 into ET-1 (1-31) in vivo and in vitro (Houde et al., 

2013). In the mouse model, there are 4 isoforms of chymase, 1 α-chymase and 3 β-chymases 

whereas in humans there is only 1 α-chymase identified. Several studies have been performed to 

identify the murine homolog of the human chymase and its implication in the endothelin system. 

The murine mMCP-5 is the only α-chymase; however it does not have chymase properties but 

elastase ones (Kunori et al., 2002) which indicate that it is less likely to be involved in the 

genesis of the endothelin system. Of the 3 β-chymases, the mMCP-4 was demonstrated to be the 

homolog of human chymase since both enzymes are activated by heparin in a similar way and 

they are both able to generate Ang II from its precursor Ang I (Caughey et al., 2000; 

Tchougounova et al., 2003; Wu et al., 2005). 

Very few studies have attempted to characterize recombinant chymases (murine or human) vis-à-

vis the Big ET-1. The literature shows a chymostatin, a non-specific chymase inhibitor, 

dependent characterization of CMA1 in regards to generation of Ang II from Ang I (Murakami 

et al., 1995) and different characteristics (regarding enzyme kinetics) of mMCP-4 and CMA1 

with Ang I or Big ET-1 as substrates (Takai et al., 1997, 1999; Caughey et al., 2000; Kunori et 

al., 2005). Regarding mMCP-4, Kinetic constants were established for the tissue purified enzyme 

using Ang I as a substrate (Caughey et al., 2000; Kunori et al., 2005). However no study to date 

was found to have used Big ET-1 as a substrate to characterize the enzyme; moreover, 

recombinant mMCP-4 was never tested in the literature. On the other hand, more studies 

involving CMA1 were published. In 1997, the group of Takai has characterized CMA1 purified 

from gastroepiploic arteries of donors suffering either from gastric cancer or gastric ulcers; 

although the donors did not have hypertension or diabetes mellitus, they were not healthy donors. 
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In this study, the authors have used Ang I as a substrate. In 1999, the group of Takao has used 

purified vascular CMA1 and has characterized the enzyme using Ang I and Big ET-1 (Takao et 

al., 1999). In that study the effect of deglycosylation of Asn-89 of CMA1 on its affinity and 

efficiency in processing Ang I and Big ET-1 were tested. Takao and colleagues have established 

in 1999 a KM and a Kcat/KM for the purified CMA1. It is important to note that in the two above 

mentioned studies, a purified enzyme was experimented. This purified enzyme was identified as 

chymase since it was inhibited by SBTI, PMSF and chymostatin but not inhibited by EDTA, 

pepstatin and aprotinin. As previously mentioned in the introduction, chymostatin is not a 

specific chymase inhibitor and it has shown to inhibit elastase II, an enzyme involved as well in 

the production of Ang II from its precursor Ang I (Becari et al., 2005). This drives us to the 

conclusion that the purified enzyme utilized in the studies might contain other enzymes or 

impurities able to cleave Ang I. This pushed us to use a more specific enzyme that will inhibit 

chymase solely. 

In 1999, the group of Takai has published another study comparing enzyme kinetics of the 

purified CMA1 to the recombinant CMA1. The authors have used Ang I and Big ET-1 as 

substrates. The authors have established a KM value for CMA1 (purified and recombinant), 

showing their affinities to Ang I and Big ET-1. In addition they have established a Kcat/KM value 

for both enzymes using Ang I as a substrate; however the Kcat/KM value for CMA1 with Big ET-

1 as a substrate was not published.  

To date, there is no study comparing the human and murine enzymes in the same paper, using 

the same experimental conditions. Furthermore, the efficiency of recombinant CMA1 in regards 

to cleaving Big ET-1 was not characterized in the literature, hence the important and innovative 

aspect of our study that compares CMA1 and mMCP-4 and establishes an affinity and efficiency 

of both enzymes. This comparison is valuable since mMCP-4 was shown to be the murine 

homolog of CMA1. Thus understanding its relative characteristics in vitro and in vivo can help 

with testing inhibitors (at different concentrations) in mice which can give an idea about the 

inhibitor’s concentrations needed in humans for an adequate response specially when developing 

new drugs targeting CMA1.  

In a first series of experiments, we have used a fluorogenic substrate that is cleaved by 

chymotypsin-like enzymes and verified the effect of TY-51469, a specific chymase inhibitor, on 
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CMA1 and mMCP-4 cleavage activity of the substrate. The inhibition of the fluorogenic activity 

was complete, confirming that our recombinant chymases (CMA1 and mMCP-4) are pure. This 

total inhibition was not noted in the work of Houde and colleagues in 2013, there was an 

important however partial inhibition of the murine chymase activity. The incomplete inhibition 

of the cleavage of the fluorogenic substrate was because our laboratory has used the soluble 

fractions of tissues of different organs which contain mMCP-4 among other proteases that have 

chymotrypsin-like activity and might have cleaved the fluorogenic substrate (Houde et al., 2013) 

whereas in the current study we have used recombinant enzymes. 

 The same activity of cleavage of the fluorogenic substrate observed with the soluble fractions of 

organs of WT mice pre-incubated with TY-51469, was seen in the soluble fractions of organs of 

mice mMCP-4 KO in the study of Houde and colleagues explaining that this remaining activity 

of cleavage is not due to chymase.  

However this partial inhibition was not noted in the generation of ET-1 (1-31) from Big ET-1 

incubated with soluble fractions of organs of WT mice, detected by HPLC; the inhibition was 

total. This suggests that the enzymes that have chymotrypsin-like activity and have the ability to 

cleave the fluorogenic substrate do not have any role in the cleavage of Big ET-1 into ET-1 (1-

31). Moreover, both recombinant chymase incubated with ET-1 (1-31) and/or ET-1 did not 

cleave these peptides.  

In another series of experiments, we have demonstrated that TY-51469 can inhibit the production 

of ET-1 (1-31) when pre-incubated with the recombinant enzymes mMCP-4 and CMA1; 

confirming once more that the recombinant enzymes are pure up to 99%. The concentrations of 

ET-1 (1-31) generated with mMCP-4 seemed to be more elevated than the ones generated by 

CMA1 indicating that mMCP-4 might be more efficient in cleaving Big ET-1. 

Furthermore, mMCP-4 extracted from murine peritoneal mast cells was able to cleave the 

fluorogenic substrate. An action totally inhibited by TY-51469 demonstrating that in the mast 

cells mMCP-4 are the only enzymes that have a chymotrypsin-like activity. 

The ability of mMCP-4 extracted from murine peritoneal mast cells to generate ET-1 (1-31) was 

also confirmed. The total inhibition of the formation of ET-1 (1-31) by TY-51469 proves that the 
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only chymase able to generate ET-1 (1-31) from Big ET-1 in mast cells is the mMCP-4. Similar 

reinforcing results were seen with peritoneal mast cells of mice mMCP-4 KO. 

Studies on human mast cells, on the other hand, have been limited by the rarity of functional 

human cell lines. In our experiments, we have used the LUVA cells which are an immortalized 

human mast cell line. The cells were derived from mononuclear cells of a donor with Aspirin 

exacerbated respiratory disease. The importance of these cells is that they are the first human 

mast cell line derived from a donor without a clonal mast cell disorder, as indicated by normal 

serum tryptase levels in the donor and the presence of metachromatic granules in those cells. In 

addition, they are the first human mast cell line expressing a functional chymase and they are 

maintained without stem cell factor and present high levels of c-kit and FcεRI (Laidlaw et al., 

2011). 

LUVA cells were utilized as a human model of mast cells. The human chymase extracted from 

these cells was able to cleave the fluorogenic substrate indicating that a chymotrypsin-like 

activity is present in this enzyme. Pre-incubation with TY-51469 was not sufficient to totally 

inhibit the chymotrypsin-like activity of the extract of LUVA cells. However the percentage 

inhibition was proportional to the concentration of TY-51469. The experiment was performed 

with concentrations of 10, 25 and 50 µM of TY-51469; an inhibition of around 60% was 

observed with the highest concentration of the inhibitor; indicating the possibility of the presence 

of other enzymes in the extract of LUVA cells that have a chymotrypsin-like activity. 

The human chymase extracted from LUVA cells was able to generate ET-1 (1-31) from its 

precursor. As we would have expected, pre-incubation with TY-51469 did not inhibit totally the 

production of ET-1 (1-31).  A concentration of 10 µM of the specific chymase inhibitor 

decreased the generation of ET-1 (1-31) by about 60%. This incomplete inhibition suggests the 

presence of other enzymes in LUVA cells responsible for the conversion of Big ET-1 into ET-1 

(1-31) such as cathepsin G (Caughey, 2007). 

Although the cleavage of the fluorogenic substrate and the conversion of Big ET-1 into ET-1 (1-

31) occurred with chymase extracted from LUVA cells, this enzymatic activity however was less 

efficient when compared to chymase extracted from murine peritoneal mast cells (Laidlaw et al., 

2011). 
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Our group has shown that the soluble fractions of organs (lungs, heart, aorta and kidneys) of WT 

mice were able to generate ET-1 (1-31) from its precursor. Pre-incubation with TY-51469 

inhibited totally the formation of ET-1 (1-31). This response was also seen in the soluble 

fractions of organs of mMCP-4 KO mice (Houde et al., 2013). These results indicate that 

although several enzymes with chymotrypsin-like activity are present in the soluble fractions of 

organs (as shown with the partial inhibition of cleavage of the fluorogenic substrate by TY-

51469 and/or with mMCP-4 mice), mMCP-4 is the only enzyme present in these fractions 

capable of processing Big ET-1 into ET-1 (1-31). Of note, no conversion to ET-1 was detected 

which can be explained by the fact that ECE and NEP are both membrane bound enzymes, 

contrary to mMCP-4 (Houde et al., 2013). 

With the same thought process, the soluble fractions of human aorta, taken from middle-aged 

brain-dead individuals with no histological signs of atherosclerosis, were able to generate ET-1 

(1-31) from Big ET-1; a process, contrarily to LUVA cells, totally abolished by TY-51469. This 

finding came in concurrence with the murine results of our laboratory and with the results of 

recombinant CMA1. Therefore these results demonstrate for the first time that ET-1 (1-31) 

production in the human blood vessels is chymase dependent. Recent studies have shown an 

increase in ET-1 (1-31) levels in atherosclerotic lesions in the aortic arch of hamsters which 

could indicate a yet to be determined role of chymase in human atherosclerosis hence a possible 

preventative method in arterial diseases (Mawatari et al., 2004). 

In another series of experiments, a characterization of the recombinant enzymes, rmMCP-4 and 

rCMA1 was done. The kinetic constants were determined for both enzymes using a fluorogenic 

substrate, Big ET-1 and Ang I as substrates.  

In the literature, the kinetic constants were determined for mMCP-4 purified from tissue 

extraction, using Ang I as a substrate and for recombinant human chymase using Ang I and Big 

ET-1 as a substrate. We wanted to compare our enzymes to the ones found in the literature. The 

hypothesis was that our recombinant enzymes have a chymotrypsin-like activity and is as 

efficacious in producing ET-1 (1-31) from Big ET-1 as Ang II from Ang I. 

Our results showed that the rmMCP-4 has similar affinities to Ang I and Big ET-1, with a 

slightly higher affinity for Ang I; a KM of 19.31 µM for Ang I versus a KM of 23.43 µM for Big 
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ET-1. These results did not concur with the literature, where it was shown that the affinity of the 

murine enzyme is about 34 times less (Caughey et al., 2000; Kunori et al., 2005). In addition the 

cleavage efficacy of the substrates was different. Our enzyme (rmMCP-4) has shown a higher 

efficacy in cleaving Ang I than Big ET-1. This was determined by the higher value of Kcat/KM 

7.7 x 10-3 µM-1.s-1 (for Ang I) compared to 2.189 x 10-3 µM-1.s-1 (for Big ET-1). The efficacy of 

our enzyme was higher than that reported in the literature for Ang I, as shown in table V.  

 

The difference observed when comparing our results to the literature may be attributed grossly to 

the nature of the enzymes utilized. The groups of Kumori and Caughey have used a chymase 

extracted and purified from Connective tissue Mast cells isolated from the skin of mice. This 

method compared to our recombinant method leads to a much less pure enzyme. The lack of 

purity of the enzymes implies that there are other enzymes or co-enzymes present in the purified 

extract that may affect the affinity of the enzyme to its substrate and/or affect the efficacy of the 

enzyme, rendering it either more or less efficacious. 

In addition, considering that some β-chymases are known to degrade Ang II by cleaving the Tyr 

4-Ile 5 bond and that mMCP-4 is able to generate and to degrade Ang II, the group of Caughey 

established the kinetic constants using the rate of degradation of Ang I rather than measuring the 

formation of the product Ang II (Lundequist et al., 2004) . Moreover the group of Kumori used 

Ang (5-10) instead of using Ang I as a substrate which may alter the results by either increasing 

or decreasing the affinity and the efficacy of the enzyme.  

 

Regarding CMA1, our results have shown a higher affinity to Big ET-1 than to Ang I; KM of 

12.55 µM and 37.53 µM respectively. These results show that our enzymes had a greater affinity 

for both substrates than what has been published in the literature. In addition, the affinity of 

CMA1 to the fluorogenic substrate was higher in our study than what has been published 

(Nakakubo et al., 2000). The group of Takai has published in 1999 a study characterizing the 

recombinant human chymase. The recombinant human chymase showed an affinity of 23.5 µM 

for Big ET-1 and 62.5 µM Ang I. Regarding the efficacy of the enzyme, the recombinant enzyme 

in Takai’s paper was more efficacious in cleaving Ang I, with a Kcat/KM of 0.86 µM-1.s-1 whereas 

it was 1.8 x 10-4 µM-1.s-1 with our CMA1. This difference in affinity and efficacy can be 

attributed to the possible difference in the   purity of the enzymes or the experimental conditions 
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in which the experiments were done. Other studies have published kinetics constants of CMA1 

which were different than ours. However these studies (Takai et al., 1997; Nakakubo et al., 

2000) have used a purified chymase from tissues rather than a recombinant enzyme which 

explains the difference. 

In a comparison of the murine and human enzyme, we noticed that mMCP-4 is more efficient 

than CMA1 in processing Big ET-1 into ET-1 (1-31), as shown in table IV. In an attempt to 

explain this particular result, we performed in-silico studies using the X-ray structure of CMA1 

and a substrate analog as the template homology modeling of mMCP-4. Big ET-1 (28-35) was 

used as a substrate model. This analysis, as mentioned in our study (Semaan et al., 2015), 

suggested that the Tyr 31-Gly 32 (P1-P1’) bond of Big ET-1 would be closer to the active center 

of mMCP-4 then CMA1 which can explain the higher Kcat/Km value of the murine enzyme 

compares to the human one. It is important to mention, however, that the in-silico studies were 

performed using an octapeptide as a substrate whereas Big ET-1 is a peptide constituted of 38 

peptides. 
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Table IV. Enzyme Kinetics of rmMCP-4 and rCMA1 against Big ET-1 and Ang I 

 

  

 mMCP-4 CMA1 

 

Big ET-1 Ang I Big ET-1 Ang I 

KM (μM) 23.43 19.31 12.55 37.53 

Kcat (s
-1) 5.13 x 10-2 0.149 8.25 x 10-4 6.75 x 10-3 

Kcat/KM (μM-1.s-1) 2.19 x 10-3 7.7 x 10-3 6.57 x 10-5 1.8 x 10-4 
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Table V. Enzyme Kinetics of mMCP-4 against Big ET-1 and Ang I compared to the 

literature 

 mMCP-4 

 

Big ET-1 Ang I Ang I 

 Caughey et al., 

2000 

Kumori et al., 

2005 

KM (μM) 23.43 19.31 698 673 

Kcat(s
-1) 5.13 x 10-2 0.149 3.1 0.33 

Kcat/KM(μM-1.s-1) 2.19 x 10-3 7.7 x 10-3 4.4 x 10-3 4.9 x 10-4 
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In the third part of experiments, we wanted to confirm the role of chymase in the hypertensive 

response induced by administration of exogenous Big ET-1 in vivo. In the literature, several 

hemodynamic studies were performed on anesthetized mice. It is known that anesthetics can 

have different impacts on the heart rate and blood pressure. In the present study we have 

measured hemodynamic changes in conscious, freely moving, anesthesia-free mice. 

Several techniques are used to measure hemodynamic parameters in conscious mice: The fluid 

filled catheter system, the tail cuff, the millar probe and the telemetry probe implantation. Each 

technique has its pros and cons; we have used the telemetry probe implantation technique since it 

is less cumbersome on mice without jeopardizing results. After the implantation of the probe, the 

mice would feel some discomfort since they will be in a post-operative phase. On the other hand, 

once the post operative phase is over, the mice can move freely while their blood pressure is 

being measured in a highly sensitive manner over a long period of time, which is a big advantage 

of this technique. In addition, this technique can detect small variations in the blood pressure 

(Van Vliet et al., 2000; 2006). In order to help minimize the variation of blood pressure and heart 

rate related to pain or post operative discomfort, we have used Buprenorphine to control post-op 

pain in the first 24 hours and we started recording blood pressure and heart rate values 10 days 

after the surgery. Our group has shown that chymase (mMCP-4 specifically) is implicated in the 

hypertensive response induced by the administration of exogenous Big ET-1 in anesthetized 

mice (Simard et al,. 2009; Houde et al., 2013). As mentioned earlier, anesthetic agents have 

several effects on the heart rate and blood pressure which may be a confounding variable. In the 

present study we have started recording blood pressure and heart rate measurements in 

conscious, free moving mice, 10 days after the surgical implantation of the telemetry probe, 

allowing the mice to recover from surgical stress and for the anesthetic agent to be metabolized 

from the body. We have shown that exogenous Big ET-1 could increase MAP by 56.6 mmHg in 

WT mice; whereas its administration in mMCP-4 KO mice has increased MAP by 34.4 mmHg. 

This 40% difference in the increase in MAP can be attributed to the conversion of Big ET-1 to 

ET-1 (1-31) by mMCP-4 and subsequently to ET-1 by the ubiquitous NEP. This attribution was 

supported by the results of our group in 2013, when plasma levels of ET-1 (1-31) and  ET-1 

where shown to be higher in WT mice compared to mMCP-4 KO after administration of 

exogenous Big ET-1 (Houde et al., 2013). Furthermore ET-1 levels in plasma were similar in 

WT and mMCP-4 KO mice after administration of exogenous ET-1 (1-31) (Houde et al., 2013). 
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The effect of exogenous Big ET-1 on MAP was not observed with Ang I or Ang II. WT and 

mMCP-4 mice had the same increase in MAP with administration of exogenous Ang I or Ang II. 

This may be due to the abundance of ACE in vivo. 

There are few limitations to the present study. First regarding the recombinant enzymes, they 

were cloned as prochymases requiring activation by Cathepsin C and Heparin. We did not verify 

whether the solution that stops the activation process is able to inhibit/or enhance the activity of 

cathepsin C. Despite the fact that Cathepsin C is a DPPI, it might not be the ideal enzyme to 

activate our prochymases. Furthermore, the cathepsin C used was a murine one; so when it came 

to CMA1 activation, interspecies variations might have interfered in this activation. 

Second regarding MC, LUVA cells were not as efficacious as murine MC in the conversion of 

Big ET-1 into ET-1 (1-31) and this conversion was not completely inhibited TY-51469. These 

cells do not necessarily represent the ideal human MC but they are the best available model. 

Third, the in silico analysis was performed on an octapeptide rather than the whole Big ET-1 (38 

aa) not taking into account a possible interaction between the N or C terminal and/or the 

disulfide bridges of Big ET-1 with both chymases binding and/or catalytic sites. 

Fourth, regarding in vivo studies of MAP, external stimuli might have led to fluctuations in the 

blood pressure, however these external stimuli would exist in both groups studied (WT and 

mMCP-4 KO). To take into account these minimal stress related fluctuations, we have calculated 

areas under the curve to determine MAP. 
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Conclusion 

In conclusion, this work has shown an ability of mMCP-4 and CMA1 to generate ET-1 (1-31) 

from its precursor Big ET-1 in vitro. CMA1 extracted from healthy human aortas had a role in 

the production of ET-1 (1-31). Further studies are needed to establish its role in cardiovascular 

pathologies. For example, the use of aortas of hypertensive patients or atherosclerotic aortas with 

the comparison of the production of ET-1 (1-31) in these models is of high value.  

Chymase inhibitors are still in the preclinical level regarding cardiovascular diseases. Promising 

studies and results have shown a role for TY-51469 in preventing the development of 

hypertension, heart failure and bowel disease in rats (Palaniyandi et al., 2007; Takai et al., 2014; 

Liu et al., 2016). On the other hand, some chymase inhibitors are currently in clinical trials such 

as SUN 13834 for atopic dermatitis (Ogata et al., 2011) and BAY 1142524 for heart failure 

(phase II) (Zarin and Tse, 2016) . The success of BAY 1142524 can open the doors to clinical 

trials involving other cardiovascular diseases targeting both the angiotensin and the endothelin 

system.  

The hemodynamic studies suggested that although chymase is able to convert Ang I to Ang II in 

vitro, its significance is of less importance intravascularly in vivo which is not the case with the 

endothelin system where a KO of the chymase gene was associated with a lower increase in 

MAP after Big ET-1 administration. 
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