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RÉSUMÉ

Chaque année, le piratage mondial de la musique coûte plusieurs milliards de dollars en
pertes économiques, pertes d’emplois et pertes de gains des travailleurs ainsi que la perte
de millions de dollars en recettes fiscales. La plupart du piratage de la musique est dû
à la croissance rapide et à la facilité des technologies actuelles pour la copie, le partage,
la manipulation et la distribution de données musicales [Domingo, 2015], [Siwek, 2007].
Le tatouage des signaux sonores a été proposé pour protéger les droit des auteurs et
pour permettre la localisation des instants où le signal sonore a été falsifié. Dans cette
thèse, nous proposons d’utiliser la représentation parcimonieuse bio-inspirée par graphe de
décharges (spikegramme), pour concevoir une nouvelle méthode permettant la localisation
de la falsification dans les signaux sonores. Aussi, une nouvelle méthode de protection du
droit d’auteur. Finalement, une nouvelle attaque perceptuelle, en utilisant le spikegramme,
pour attaquer des systèmes de tatouage sonore.

Nous proposons tout d’abord une technique de localisation des falsifications (‘tampering’)
des signaux sonores. Pour cela nous combinons une méthode à spectre étendu modifié
(‘modified spread spectrum’, MSS) avec une représentation parcimonieuse. Nous utilisons
une technique de poursuite perceptive adaptée (perceptual marching pursuit, PMP [Hossein
Najaf-Zadeh, 2008]) pour générer une représentation parcimonieuse (spikegramme) du
signal sonore d’entrée qui est invariante au décalage temporel [E. C. Smith, 2006] et qui
prend en compte les phénomènes de masquage tels qu’ils sont observés en audition. Un code
d’authentification est inséré à l’intérieur des coefficients de la représentation en spikegramme.
Puis ceux-ci sont combinés aux seuils de masquage. Le signal tatoué est resynthétisé à
partir des coefficients modifiés, et le signal ainsi obtenu est transmis au décodeur. Au
décodeur, pour identifier un segment falsifié du signal sonore, les codes d’authentification de
tous les segments intacts sont analysés. Si les codes ne peuvent être détectés correctement,
on sait qu’alors le segment aura été falsifié. Nous proposons de tatouer selon le principe
à spectre étendu (appelé MSS) afin d’obtenir une grande capacité en nombre de bits de
tatouage introduits. Dans les situations où il y a désynchronisation entre le codeur et le
décodeur, notre méthode permet quand même de détecter des pièces falsifiées. Par rapport
à l’état de l’art, notre approche a le taux d’erreur le plus bas pour ce qui est de détecter
les pièces falsifiées. Nous avons utilisé le test de l’opinion moyenne (‘MOS’) pour mesurer
la qualité des systèmes tatoués. Nous évaluons la méthode de tatouage semi-fragile par
le taux d’erreur (nombre de bits erronés divisé par tous les bits soumis) suite à plusieurs
attaques. Les résultats confirment la supériorité de notre approche pour la localisation des
pièces falsifiées dans les signaux sonores tout en préservant la qualité des signaux.

Ensuite nous proposons une nouvelle technique pour la protection des signaux sonores.
Cette technique est basée sur la représentation par spikegrammes des signaux sonores
et utilise deux dictionnaires (TDA pour Two-Dictionary Approach). Le spikegramme est
utilisé pour coder le signal hôte en utilisant un dictionnaire de filtres gammatones. Pour
le tatouage, nous utilisons deux dictionnaires différents qui sont sélectionnés en fonction
du bit d’entrée à tatouer et du contenu du signal. Notre approche trouve les gammatones
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appropriés (appelés noyaux de tatouage) sur la base de la valeur du bit à tatouer, et
incorpore les bits de tatouage dans la phase des gammatones du tatouage. De plus, il
est montré que la TDA est libre d’erreur dans le cas d’aucune situation d’attaque. Il est
démontré que la décorrélation des noyaux de tatouage permet la conception d’une méthode
de tatouage sonore très robuste.
Les expériences ont montré la meilleure robustesse pour la méthode proposée lorsque le
signal tatoué est corrompu par une compression MP3 à 32 kbits par seconde avec une
charge utile de 56.5 bps par rapport à plusieurs techniques récentes. De plus nous avons
étudié la robustesse du tatouage lorsque les nouveaux codec USAC (Unified Audion and
Speech Coding) à 24kbps sont utilisés. La charge utile est alors comprise entre 5 et 15 bps.

Finalement, nous utilisons les spikegrammes pour proposer trois nouvelles méthodes
d’attaques. Nous les comparons aux méthodes récentes d’attaques telles que 32 kbps MP3
et 24 kbps USAC. Ces attaques comprennent l’attaque par PMP, l’attaque par bruit
inaudible et l’attaque de remplacement parcimonieuse. Dans le cas de l’attaque par PMP,
le signal de tatouage est représenté et resynthétisé avec un spikegramme. Dans le cas de
l’attaque par bruit inaudible, celui-ci est généré et ajouté aux coefficients du spikegramme.
Dans le cas de l’attaque de remplacement parcimonieuse, dans chaque segment du signal,
les caractéristiques spectro-temporelles du signal (les décharges temporelles ;‘time spikes’)
se trouvent en utilisant le spikegramme et les spikes temporelles et similaires sont remplacés
par une autre.

Pour comparer l’efficacité des attaques proposées, nous les comparons au décodeur du
tatouage à spectre étendu. Il est démontré que l’attaque par remplacement parcimonieux
réduit la corrélation normalisée du décodeur de spectre étendu avec un plus grand facteur
par rapport à la situation où le décodeur de spectre étendu est attaqué par la transformation
MP3 (32 kbps) et 24 kbps USAC.

Mots-clés : Tatouage, Représentation parcimonieuse, Banc de filtres gammatones,
Localisation d’attaque, Dissimulation de données, Masquage auditif, Attaque de
remplacement.



ABSTRACT

Every year global music piracy is making billion dollars of economic, job, workers’ earnings
losses and also million dollars loss in tax revenues. Most of the music piracy is because of
rapid growth and easiness of current technologies for copying, sharing, manipulating and
distributing musical data [Domingo, 2015], [Siwek, 2007]. Audio watermarking has been
proposed as one approach for copyright protection and tamper localization of audio signals
to prevent music piracy. In this thesis, we use the spikegram- which is a bio-inspired sparse
representation- to propose a novel approach to design an audio tamper localization method
as well as an audio copyright protection method and also a new perceptual attack against
any audio watermarking system.

First, we propose a tampering localization method for audio signal, based on a Modified
Spread Spectrum (MSS) approach. Perceptual Matching Pursuit (PMP) is used to compute
the spikegram (which is a sparse and time-shift invariant representation of audio signals) as
well as 2-D masking thresholds. Then, an authentication code (which includes an Identity
Number, ID) is inserted inside the sparse coefficients. For high quality watermarking, the
watermark data are multiplied with masking thresholds. The time domain watermarked
signal is re-synthesized from the modified coefficients and the signal is sent to the decoder.
To localize a tampered segment of the audio signal, at the decoder, the ID’s associated to
intact segments are detected correctly, while the ID associated to a tampered segment is
mis-detected or not detected. To achieve high capacity, we propose a modified version of
the improved spread spectrum watermarking called MSS (Modified Spread Spectrum). We
performed a mean opinion test to measure the quality of the proposed watermarking system.
Also, the bit error rates for the presented tamper localization method are computed under
several attacks. In comparison to conventional methods, the proposed tamper localization
method has the smallest number of mis-detected tampered frames, when only one frame
is tampered. In addition, the mean opinion test experiments confirms that the proposed
method preserves the high quality of input audio signals.

Moreover, we introduce a new audio watermarking technique based on a kernel-based
representation of audio signals. A perceptive sparse representation (spikegram) is combined
with a dictionary of gammatone kernels to construct a robust representation of sounds.
Compared to traditional phase embedding methods where the phase of signal’s Fourier
coefficients are modified, in this method, the watermark bit stream is inserted by modifying
the phase of gammatone kernels. Moreover, the watermark is automatically embedded only
into kernels with high amplitudes where all masked (non-meaningful) gammatones have
been already removed. Two embedding methods are proposed, one based on the watermark
embedding into the sign of gammatones (one dictionary method) and another one based
on watermark embedding into both sign and phase of gammatone kernels (two-dictionary
method). The robustness of the proposed method is shown against 32 kbps MP3 with
an embedding rate of 56.5 bps while the state of the art payload for 32 kbps MP3 robust
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watermarking is lower than 50.3 bps. Also, we showed that the proposed method is robust
against unified speech and audio codec (24 kbps USAC, Linear predictive and Fourier
domain modes) with an average payload of 5 − 15 bps. Moreover, it is shown that the
proposed method is robust against a variety of signal processing transforms while preserving
quality.

Finally, three perceptual attacks are proposed in the perceptual sparse domain using
spikegram. These attacks are called PMP, inaudible noise adding and the sparse replace-
ment attacks. In PMP attack, the host signals are represented and re-synthesized with
spikegram. In inaudible noise attack, the inaudible noise is generated and added to the
spikegram coefficients. In sparse replacement attack, each specific frame of the spikegram
representation - when possible - is replaced with a combination of similar frames located
in other parts of the spikegram. It is shown than the PMP and inaudible noise attacks
have roughly the same efficiency as the 32 kbps MP3 attack, while the replacement attack
reduces the normalized correlation of the spread spectrum decoder with a greater factor
than when attacking with 32 kbps MP3 or 24 kbps unified speech and audio coding (USAC).

Keywords: Watermarking, Sparse representation, Gammatone filter bank, Tamper
localization, Data hiding, Auditory masking, Replacement attack.
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CHAPTER 1

INTRODUCTION

With the Internet growth, unauthorized copying and distribution of digital media (audio,

image, video) has never been easier. Consequently, the music industry claims a multi-billion

dollar annual revenue loss due to piracy [Domingo, 2015],[Siwek, 2007] which is likely to

increase due to cloud and peer-to-peer file sharing Web communities. This includes 58.0

billion dollars of economic loss, 373,375 jobs loss, 16.3 billion dollars in workers earning

loss and 2.6 billion dollars in tax revenues annually.

Technological advances on data processing can help providing ways of enforcing copyright

on the Internet. For copyright protection, traditional data protection methods such as

scrambling or cryptography cannot be used. The reason is that only the authorized key

holders can decrypt the encrypted data and once the data is decrypted to the original form,

they can always be re-recorded and then freely distributed since there is no way to track

their reproduction or retransmission [Yiqing Lin, 2014].

A promising solution to this problem is to insert a mark into the media signal with a secret,

robust and imperceptible watermark. The media player at the client side can detect this

mark and consequently enforce a corresponding E-commerce policy.

Generally, embedding of a secure mark into a media (so that it can not be removed easily

while preserving the media quality) is called watermarking. Since, copyright protection of

multimedia signals is still in demand for many applications from industry and governments,

it can be a promising research direction.

1.1 Audio watermarking

Digital watermarking has been proposed as a method to enforce the intellectual property

rights and protect digital media from tampering. It involves a process of embedding into

a host signal a visible (only in the case of image and video) or perceptually invisible

(transparent) digital signature. This digital signature might carry a message about the

host signal to mark its ownership or may contain the identity information of the purchaser

of the host signal. An authorized receiver (detector) which has a key should be able

to extract the watermark with high accuracy. Digital watermarking can be used in

various applications, including digital rights management and tamper proofing. Although

1
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perceptually transparent, the existence of the watermark is indicated when watermarked

media is passed through an appropriate watermark detector [Yiqing Lin, 2014]. Figure 1.1

gives an overview to the general audio watermarking system which comprises the following

blocks [Wu, 2015]:

Watermark bits

Symmetric / Asymmetric
key

Watermark bits

Embedding

Blind / Non-blind

Insecure
channel

Watermarked signalHost signal

Detection

key

Figure 1.1 Representing a watermarking system via a communication channel.
At the embedding block, the watermark bits are inserted into the signal by
using a key stream and the watermarked signal is passed through an insecure
channel before reception at the detector. The detector block uses a key stream
again to confirm the presence of a watermark or extract the inserted watermark
bits. When the decoder and the encoder use the same key, the watermarking
is of symmetric type otherwise it is of asymmetric type. If the original non
watermarked signal is not required for the decoding process, the watermarking
is blind, otherwise it is non-blind.

1. The watermark embedder: The watermark embedder has three inputs: one

is the watermark message which usually consists of a binary data sequence,

inserted into the host signal. The second input is a secret key which can be shared

with the decoder. The third input is the host signal (image, video clip, audio

sequence). The output of the watermark embedder is the watermarked signal, in

which the watermark message is hidden, and (hopefully) should not be perceptually

discriminated from the host signal.

2. The insecure channel: The watermarked signal passes an insecure channel before

arriving at the receiver. The name insecure indicates the presence of either intentional

or unintentional attacks-transforms which may result in removing the watermark

from the signal or destroying it.

3. The watermark decoder: There are two types of decoders for the watermarking

systems: zero-bit and multi-bit watermarking. In zero-bit watermarking, the decoder
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should confirm whether there is a mark in the host signal or not. While in multi-bit

watermarking, the decoder should extract a bit stream from the watermarked signal

[Cox et al., 2007]. In both cases, the decoder inputs include the watermarked signal

(which has passed the insecure channel) and a key stream.

It is good to mention that for the watermarking system of Figure 1.1, the host signal

acts as a carrier of the watermark. However, as the goal is to extract the watermark

from the watermarked host signal, sometimes, the host signal can be the main cause

of erroneous detection at the detector.

1.2 Research motivations

Audio watermarking systems are in great demand for the goal of copyright protection and

ownership authentication [Domingo, 2015].

Although there have been many researches on audio watermarking methods and attacks,

there are still difficulties in designing high quality- high payload watermarking systems for

copyright and tampering localization applications. The main reasons are as follows:

— The quality of audio systems changes with even very small additional watermark.

The human auditory system (HAS) perceives over a range of power greater than

one billion to one and a range of frequencies greater than one thousand to one [Kale

et al., 2010]. Sensitivity to additive random noise is also acute. Thus this sensitivity

to additional noise is a big challenge against designing high payload watermarking

systems for copyright protection and tamper localization applications. Hence, there

is a need for examining novel high resolution time-frequency representations for

audio signals that find the best positions in the time-frequency domain to insert

inaudible watermarks. Also, better time-frequency representations help to shape

the inaudible watermark noise under better masking curves.

— The amount of data that can be embedded transparently into an audio sequence is

considerably lower than the amount of data that can be hidden in video sequences.

On the other hand, audio signals have perceptual properties that are specific. How-

ever, most current audio watermarking systems for copyright protection and tamper

localization use the same old methodologies borrowed from image watermarking.

Hence there is a need to propose new frameworks specific to audio watermarking

based on state of the art tools and representations.

— One important application of audio watermarking is tamper verification in which

the whole signal is classified as tampered or not [Hua et al., 2016],[Ho and Li, 2015].
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There are methods that find the position of the tampering in the audio signals based

on block-based representations. However, still there is no efficient methods to find

the location of short-time tampering while smallest modifications (shorter than half

a second) on a speech signal might drastically change the meaning of the signal.

— Another challenge for audio watermarking is that benchmarks to asses the robust-

ness are based on conventional attacks that do not reflect the attack efficiency of

more recent coding techniques. Hence there is a need to verify the efficiency of

watermarking systems against new attacks and propose new attack benchmarks

against audio watermarking systems.

1.3 Applications and Research objectives

The general applications for this project include:

— audio tamper localization: where any modifications on the signal by attackers are

recognized and localized.

— audio fingerprinting: where each audio signal (e.g. music) is characterized with a

specific ID (e.g. an ASCII code), and this ID can be embedded into the signal using

the proposed methods.

— copyright protection: where the information of the owner of the audio signal is

embedded into and extracted from the signal.

— designing a covert channel: where the hidden information can be transferred using

the proposed watermarking methods.

— recently emerged second screen applications [Arnold et al., 2014]: where the water-

mark is inserted into the audio section of the video being played on a TV screen. This

watermark can be extracted by cell phone devices for advertisement applications

— designing new attacks on audio watermarking using perceptual sparse representation

and comparing them with the state of the art attacks and coding transforms.

There are also some specific research goals including

— investigating the efficiency of masking thresholds obtained from sparse representation

[Pichevar et al., 2011], for audio watermarking.

— proposing strategies to embed watermark into the phase of kernels representing the

audio signals.

— investigating the efficiency of gammatone kernels for phase modulation watermark-

ing.
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— designing a fast projection based decoder for audio watermarking based on a non-

linear, non-orthogonal sparse representation (with matching pursuit and a highly

correlated gammatone dictionary).

— improving the spread spectrum technique [Xu et al., 2016] for watermarking appli-

cations.

1.4 Evaluation and experimental setup

For each audio watermarking application, there are different sets of measures. In this

thesis, we focus on the watermarking methods with the following properties:

1. Symmetric: where the decoder shares the same key as the embedder for extracting

the watermark bits from the signal, otherwise the method is called asymmetric-key

watermarking.

2. Blind: where the decoder does not require the presence of the original signal for

watermark extraction. Otherwise the system is called non-blind. In non-blind

watermarking, the presence of the original signal is also required at the decoder,

thus the required bandwidth is higher than the required bandwidth with blind

watermarking.

3. Transform Domain: where the watermark insertion is performed on the time-

frequency representation of the signal. In this thesis, we insert watermarks in the

spikegram which is a perceptual sparse representation of signal.

4. Robust and semi-fragile: There can be three different definitions for the security

of a watermarking system: If the goal is to protect the watermark inside the signal

against any intentional or unintentional task, the watermarking system is called

robust. If the goal is to design a watermarking system which is very sensitive to

small changes on the watermarked signal (so that the watermark is removed or un-

detectable after the watermarked signal passes any little intentional or unintentional

changes), then the watermarking system is called fragile. Fragile watermarks are

commonly used for tamper detection (integrity proof).

A watermark is called semi-fragile, if it resists benign transformations but fails

detection after malignant transformations. Semi-fragile watermarks are commonly
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used to detect malignant transformations. In this thesis, both semi-fragile (in

chapter 3) and robust (in chapter 4) watermarking systems are designed.

5. Irreversible: If the decoder is able to find both watermark and the original signal,

then the watermarking is called reversible watermarking. While if the detector is

only able to verify the presence of watermark or the value of watermark stream,

then the watermarking is of irreversible type.

One application of reversible watermarking is for telemedicine [Singh et al., 2015],

where the patient is at home and the information regarding his health is watermarked

and sent to the hospital. In this case, the decoder is able to remove the mark and

find the original signal. In this thesis, only irreversible watermarking methods are

designed.

Specifically, to evaluate the proposed watermarking methods, we use the following criteria

and experimental setups.

1. Bit Error Rate (BER): It is computed as the number of erroneous detected bits

at the decoder divided by the total number of detected bits. This is done for all

signals used in the experiments and the average BER is calculated for each specific

application and under different attacks.

2. Unobtrusiveness: The watermark should be perceptually invisible, or its presence

should not interfere with the multimedia data being protected. In this thesis, we

use MOS [ITU, 1996] and ABC/HR [ITU, 1997] tests for the quality evaluation of

the audio signals before and after the watermark insertion.

3. Payload: In the case of multi-bit watermarking, the watermarking system should

have a high embedding bit rate. For the case of zero-bit watermarking, the decoder

verifies the presence of a watermark and does not extract a bit stream.

There is a trade off between the payload, quality and robustness. Usually, the larger

the insertion, the greater is the degradation of the signal’s quality and and the lower

is the robustness.

Experimentally, the payload is calculated as the number of inserted bits in each

second of the audio signal.

4. Robustness tests: To test the robustness of the proposed methods, we perform

the following attacks on the watermarked signals:

(a) Common signal processing attacks: These attacks include re-sampling (44.1

kHz, 22 kHz, 11.025 kHz), re-quantization (12 bits, 8 bits) and MP3 compression
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(64 kHz, 32 kHz);

(b) Common Synchronization attacks (for audio): There are two kinds of

synchronization attacks: In the first type the goal is to misalign the starting

points of watermarked blocks in the decoder in relation to watermarking blocks

in the encoder. In this thesis, for evaluating the robustness of the proposed

methods against this type of attack, we insert samples into or remove random

samples from watermarked audio segments. For example, a garbage clip can be

added to the beginning of the audio signal. The second type of synchronization

attack is time-scaling or pitch-scaling, which can done by malicious attackers.

In this thesis, the time and pitch scaling attacks are performed on the water-

marked signals for the scaling range between 90-110 percent. Note that, based on

International Federation of Phonographic Industry [Katzenbeisser and Petitcolas,

2000], to consider time rescaling as an attack, the acceptable scaling factor range

is between 90% and 110%.

(c) Subterfuge attacks; collusion and forgery: The watermark should be

robust to collusion by multiple individuals, who each of which possess a water-

marked copy of the data. It must be impossible for colluders to combine their

signals to generate a different valid watermark with the intention of framing a

third party. For this goal, in this project, we design key based watermarking

systems. The linear feedback shift register (LFSR)[Klein, 2013a] is used to

generate keys. In this case, every watermark is recognized by its own key. Thus

the new manipulated watermark by colluders is not assigned with a key, hence

is not detected at the decoder. Note that the whole algorithm is known to the

attackers and the watermarking key is only shared between the encoder and the

decoder.

1.5 Contribution

In this work, three applications are developed based on the proposed designs of audio

watermarking in sparse domain. First, an audio tamper localization method is developed

based on a semi-fragile audio watermarking. A new version of spread spectrum watermark-

ing is proposed, the sparse auditory masking is applied, and an encoding-decoding method

for tamper localization is proposed.

Second, a robust audio watermarking is proposed in the sparse domain based on the phase
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modulation of the gammatone kernels in the sparse representation. This method uses two

dictionaries, based on the input watermark bit and the signal content.

Lastly, a perceptual attack is developed in the sparse domain. This attack is based on

the substitution of the perceptually similar content of the audio signal obtained using the

sparse representation.

1.6 Originality of the research

In this thesis, we use the spikegram which is a perceptual sparse representation for designing

audio watermarking algorithms and attacks. In the field of sparse representation, one

method has been proposed for image watermarking [Sheikh and Baraniuk, 2007], in which

the input signal is represented with sparse coefficients and the watermark is whitened by a

whitening matrix. The obtained watermark is added to the sparse coefficients of the signal.

At the receiver side, the watermark and the host signal are found using the compressive

sensing L1 algorithm [Candes and Tao, 2005]. Because of the instability of compressive

sensing algorithm [Candes and Tao, 2005] against noise, the mentioned algorithm lacks

robustness against noise adding attacks.

Another method has been proposed in [Parvaix et al., 2008], in which they used the concept

of molecular matching pursuit [Daudet, 2006] to represent the signal sparsely. They find

the masking thresholds using the psychoacoustic model for the resulting spikes and add

the mark as a shaped spread spectrum random noise based on the masking threshold. The

main inefficiency of their algorithm is that it is a non-blind watermarking system and

the original signal is also required at the decoder. This method requires a channel with

higher capacity compared to blind watermarking methods.

1.7 Scientific publications

The major findings of this thesis are included in the following scientific papers:

— Y. Erfani, R. Pichevar, J. Rouat, “Audio watermarking using spikegram and a

two-dictionary approach”, submitted to IEEE Transactions on Forensics, March

2016.

— Y. Erfani, R. Pichevar, J. Rouat, “Audio tampering localization using masking-aware

ISS watermarking in the sparse domain”, submitted to IEEE Transactions on Audio,

Speech and Language Processing, April 2016.
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— Y. Erfani, R. Pichevar and J. Rouat, “Audio tampering localization using modified

ISS watermarking in sparse-domain,” Global Conference on Signal and Information

Processing (GlobalSIP), 2013 IEEE, Austin, TX, 2013, pp. 249-252.

1.8 Outline of the thesis

The outline of the thesis is as follows:

Chapter 2 introduces the spikegram which is a perceptual sparse time frequency representa-

tion. The spikegram is created using the perceptual matching pursuit [Pichevar et al., 2011]

by applying the gammatone dictionary (obtained from gammatone filter bank [Slaney,

1998a]). Finally, interesting characteristics of spikegram sparse representations for audio

watermarking are shown via experimental results.

In chapter 3, a novel audio tampering localization is proposed in the sparse domain. The

perceptual matching pursuit is explored as a tool for sparse representation and an embed-

ding method called modified spread spectrum is introduced. The experimental results show

the efficiency of the proposed tamper localization against traditional methods of tamper

localization.

Chapter 4 presents a new framework for audio watermarking called two-dictionary method

(TDA). The designs of the encoder and the decoder are presented. The efficiency of

the method is shown compared to the most recent methods in audio watermarking via

experimental results.

Chapter 5 demonstrates a new attack called perceptual sparse replacement attack on audio

watermarking systems. The strength of this attack is evaluated against 32 kbps MP3 and

24 kbps USAC (unified speech and audio coding) on the signals watermarked using the

spread spectrum method.

The thesis is concluded in chapter 6.
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CHAPTER 2

RESEARCH BACKGROUND

2.1 Introduction

In this chapter, we briefly discuss the state of the art of spectro-temporal representations

used for audio watermarking. Then, a sparse representation is introduced and the spikegram

is generated from the sparse representation. Finally, a list of desirable characteristics of

the spikegram for audio watermarking are mentioned.

2.2 State of the art of spectro-temporal representa-

tions for audio watermarking

So far, several methods have been presented on audio watermarking in time, spectral

or spectro-temporal domains including spread spectrum watermarking [Xiang et al.,

2015], [Kuribayashi, 2014], echo hiding [Hua et al., 2015], quantized index modulation

(QIM) watermarking [Wang et al., 2014] and patchwork algorithm [Xiang et al., 2014b].

Time domain methods are easy to implement, have less computational cost but they are

less robust against signal processing transforms performed in the spectral domain.

So far the following methods have been used to transform the signal into the spectro-

temporal domain for the goal of audio watermarking:

1. Block-based methods:

There are block-based spectro-temporal domain algorithms which segment the signal

and find the spectral coefficients using the fast Fourier transform (FFT) or discrete

cosine transform (DCT) for each block and then add watermark bits into each block.

In one work, FFT transform of the signal has been used to compute time and

frequency masking thresholds. These masking thresholds are used to shape a spread

spectrum stream for audio watermarking [Xiang et al., 2014a].

2. Wavelet-based methods: Many spectro-temporal domain audio watermarking

systems have been proposed recently especially in the wavelet domain. These sys-

11
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tems benefit from the multi resolution property of the wavelet representation. These

systems usually embed the mark in the low frequency wavelet levels of the signal,

where the mark can not be removed easily [Ratanasanya et al., 2005], [Fallahpour

and Megías, 2010], [Chen et al., 2015], [Lei et al., 2013].

2.3 Sparse representation

Sparse representation is a bio-inspired method that mimics the way the neurons transfer

the information from sensory systems of mammals to the cortex [Pichevar et al., 2011],

[Smith and Lewicki, 2006]. It is shown that although in the mammalian brain, there are

many neurons available to carry information from the sensory inputs, only a very few sparse

number of neurons are selected to characterize the stimulus [Hromádka et al., 2008], [Smith

and Lewicki, 2006]. In sparse coding, the audio signal is represented with a dictionary of

bases while small number of these bases have high value coefficients. This is similar to the

transmission of a stimulus when only a small number of neurons fire among a huge pool of

neurons, to transmit (or encode) a stimulus. [Chui and Montefusco, 2014], [Pichevar et al.,

2010b], [Smith and Lewicki, 2006], [Rozell et al., 2008] [Blumensath and Davies, 2008].

In sparse representation, an efficient dictionary of bases has to be built where each base is

localized around a center frequency and a time sample. Then, the acoustical signal x[n]

can be represented as a weighted sum of these bases as below:

x[n] =
M
∑

i=1

αigci
[n − li] (2.1)

where αi is a sparse coefficient, gci
[n − li] is a base located at time sample li and channel

number ci. To have high sparsity, a large percentage of coefficients in (2.1) have to be zero.

One challenge is to learn the dictionary (find the basis) that maximize the sparsity of the

coefficients.

The amount of sparsity depends on the type of dictionary and the optimization algorithm

we use to find the coefficients. The dictionary matrix Φ includes all bases of the dictionary

as it columns. We can associate all bases in the dictionary to specific points in the

time-channel plane. Thus, the sparse representation algorithm takes the original signal

x[n] (x in vector format) and the dictionary matrix Φ as the input and gives the sparse

coefficient vector α as the output. The re-synthesized input signal is the multiplication of

the dictionary matrix by the sparse coefficient vector, i.e x = Φ × α (see Fig.2.1).
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�

1×N
x

MN×
Φ

1×M
α

Figure 2.1 The sparse representation of a signal x over a dictionary Φ ∈ RN×M

to achieve a sparse coefficient vector α. The dictionary Φ can be undercomplete
(M < N), complete (M = N) or overcomplete (M > N). The sparsity of the
coefficient vector α varies based on the selection of the dictionary.

The kernel based representation in (2.1), can be modeled as the signal is transfered by

some neurons (kernels). In this case, the neuron’s receptive field is the kernel wave and

when the amplitude is zero, the neuron is not spiking. The main difference between the

representation in (2.1) and traditional ones, is that first it is a kernel based representation

and also we use a non linear optimization method along with a bio-inspired dictionary of

kernels to find a sparse coefficient vector. Thus, we have highest energy for small number

of kernels [Smith and Lewicki, 2006]. After finding the sparse coefficients, we will have

a few bases (similar to the receptive filed of neurons) from the dictionary matrix with

high value coefficients (or equivalently firing neurons), while so many other coefficients are

around zero (not firing). Therefore, we can show their amplitude in color, in a time-channel

representation, based on the position of the bases in the sampled dictionary and consider

the result as a spikegram representation. The obtained representation is called spikegram

because it shows whether a base (similar to the characteristic of the receptive filed on a

neuron) is active (spiking) or not. Thus, the position of non zero kernels in the spikegram

visualizes the active and inactive spikes (neurons) (see Fig.2.2).

This representation can have its own specific characteristics which might make it superior

to other representation methods for audio watermarking applications. It is time shift

invariant, has high resolution and is compact.

To design spikegram for audio and speech signals, the gammatone/gammachirp dictionary

has been suggested as the dictionary which mimics at best the auditory filter bank

of mammals [Strahl and Mertins, 2009]. Also, the gammatone/gammachirp has been
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Figure 2.2 A simple model which shows the place of spikes in the spikegram.
The signal in (A) is represented by spikegram in (B). Each spike is a gammatone
kernel with a specific center frequency located at a specific time (time sample).
High amplitude spikes have more contributions in generating the audio signal.

confirmed as a dictionary which is adapted to the content of natural sounds. This means that

the best learned kernels, which represent the natural sound sparsely, are gammatones [Smith

and Lewicki, 2006].

For sparse representation of audio signals, several methods are proposed in the literature

including matching pursuit [Mallat and Zhang, 1993], [Chui and Montefusco, 2014],

perceptual matching pursuit (PMP) [Pichevar et al., 2011], [Najaf-Zadeh et al., 2008], a

bio-inspired algorithm called locally competitive algorithm between neurons of the receptive

field (LCA) [Rozell et al., 2008], [Pichevar et al., 2011] and also iterative hard thresholding

algorithm (ITH) [Blumensath and Davies, 2008].

In [Siahpoush et al., 2015], the efficiency of spikegram, as a bio-inspired representation

of acoustical signals has been shown when performing neural decoding. In that work, an

approximate spikegram representation of the auditory stimuli is reconstructed from the

neural activity recorded from the inferior colliculus of the Guinea pig.
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2.4 Building a sample spikegram from an overcom-

plete sparse representation

In this chapter, to explain the reasons of choosing sparse representation for audio, we

design a sample sparse representation for audio signals using the gammatone dictionary

and perceptual matching pursuit as the optimization algorithm. Firstly, we briefly explain

the gammatone dictionary and the PMP to show, how a spikegram can be generated and

then we explain its characteristics.

2.5 Building a gammatone dictionary

A gammatone filter equation [Slaney, 1998a] has a gamma part and a tone part as

g[n] = anm−1e−2πlncos[2π(fc/fs)n + θ] (2.2)

in which, anm−1e−2πln is the gamma part and the rest of the equation is the tone part. The

gamma part controls the time envelope of the kernel. Also, n is the time index, m and l

are used for tuning the gamma part of the equation. fs is the sampling frequency, θ is the

phase, fc is the center frequency of the gammatone. The term a is the normalization factor

to set the energy of each gamatone to one. A gammatone filterbank includes a set of M

gammatone kernels with different center frequencies where their bandwidth altogether cover

the hearing frequency range of human. Gammatone filterbank is bio-inspired and has been

shown to be adapted to the natural sounds [Smith and Lewicki, 2005]. Gammatone kernels

are shown to be efficient for sparse representation [Pichevar et al., 2010b]. In this thesis,

each gammatone filter is considered as a spectro-temporal kernel for sparse representation.

To represent an audio signal with a spikegram, we generate Nc gammatone channels with

different center frequencies [Slaney, 1998a]. These gammatone atoms overlap in frequency

and cover the frequency range from 20 Hz up to the half of the sampling rate of the input

signal (Fig.2.3).

The gammatone dictionary includes the repetition of the gammatone filter bank along

the time axis. Hence the gammatone dictionary includes gammatone bases at different

time samples and channel numbers (center frequencies). To generate the 2-D dictionary

(time-channel plane) Φ, a base g (here gammatone [Slaney, 1998a]) is modulated to be

located at Nc center frequencies (channels) ci and Ts time shifts τi. (M = NcTs). In this

case, the spikegram is represented with a 2-D image which shows the sparse coefficients
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Figure 2.3 Top: An N channel gammatone filter bank which covers the hearing
frequency range of the human. Bottom: A gammatone kernel in time: It has a
time delay, an attack and a decay slope [Pichevar et al., 2010b].

associated to the gammatone bases at each time sample-channel point (Fig.2.2).

Each point of the spikegram plane represents a specific center frequency and a specific

time delay for a gammatone kernel (atom) (Fig.2.2). At each point, the amplitude of each

gammatone indicates the contribution of each atom of the spikegram in generating the

audio signal. For coefficients with greater values, we have greater amplitudes for their

associated gammatone kernels. Here, as the number of bases is greater than the signal’s

length, thus we have an over-complete dictionary.

2.6 Perceptual matching pursuit (PMP) algorithm

Perceptual matching pursuit (PMP) [Pichevar et al., 2011], [Najaf-Zadeh et al., 2008] is a

perceptual sparse representation method. In PMP, the gammatone dictionary is generated

as described in section 2.5. PMP is an iterative method similar to Matching Pursuit (MP)

[Mallat and Zhang, 1993; Chui and Montefusco, 2014]. At each iteration i, PMP finds a

coefficient αi and a masking threshold mi for a gammatone basis gci
[n − li] at time position
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li, channel number ci in the 2-D time-channel plane. Hence the signal x[n] is represented as

x[n] =
M
∑

i=1

αigci
[n − li] (2.3)

Compared to MP, in PMP masking thresholds {mi, i=1:M} are progressively generated and

updated along the signal decomposition. At each iteration i of PMP, the projections of the

signal onto the dictionary are computed and a kernel gci
[n−li] with the maximum projection

is selected as the basis for the current iteration (see Fig.2.4). The sparse coefficient αi is

set to the maximum projection. Also, a masking threshold mi is computed for the current

kernel and all other projections are compared against that masking threshold (the right

part of (2.4)) and those values below that masking threshold are set to zero. In PMP, at

each iteration i, a sensation level (SLk(i) in dB) is computed, where,

SLk(i) = 10Log10(
(αiGk)2

QTk

) (2.4)

k is the critical band number (the channel number ci) for the gammatone kernel found at

iteration i. Gk is the peak value of the Fourier transform of the normalized base in critical

band k and QTk is the elevated threshold in quiet for the same critical band [Najaf-Zadeh

et al., 2008]. A selected base is considered audible (audible kernel) if it induces a sensation

level (SLk(i) in dB) greater than its associated masking threshold mi.

Finally, PMP generates a residual signal r[n] to be considered as the input signal for

the next iteration. By setting the residual signal at the first iteration equal to the input

signal x[n], then the residual signal at iteration i equals the residual signal of the previous

iteration minus αigci
[n − li].

Thus, the PMP finds only audible bases that their sensation levels are above their masking

thresholds and neglects the rest. Hence, PMP algorithm finds a progressive masking

thresholds for all gammatones in the representation which can be used for watermarking

applications.
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Figure 2.4 The block diagram of the perceptual matching pursuit. First, it
receives the input signal x[n]. It generates a dictionary G of M gammatone
kernels. G is a matrix, in which each column j includes a gammatone gcj

[n − lj]
located at the time sample lj and channel number cj. D= {1, ..M} is a set
incluing all the gammatone indices in the dictionary. Also, a matrix MASK
with the size of the dictionary G is initialized to zero elements and is called
the masking matrix. At the first iteration iter = 1, the residual signal r[n]
is set to the input audio signal x[n]. Then, correlations between the residual
signal and all gammatones in the dictionary are computed and the gammatone
with the maximum correlation with the residual signal is chosen as the selected
gammatone of the current iteration. The sparse coefficient of the current iteration
αiter is set to the maximum correlation. Then the residual signal is updated.
The masking matrix is updated and any gammatone in G under its associated
masking threshold in MASK is ignored (set to zero) for the upcomming iteration.
The algorithm continues until reaching the maximun number of iterations.
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2.7 Representing a speech signal using the spikegram

The spikegram is defined as the image plot of the module of the sparse coefficients in the

2-D time-channel domain. In this section, the PMP is used to generate the spikegram of a

sample speech signal. For having a better insight about the PMP, the PMP spikegram is

compared with the spectrogram and also with a spikegram obtained from another sparse

representation algorithm called locally competitive algorithm (LCA). LCA is a bio-inspired

algorithm which applies biological neuron models for the sparse representation [Rozell

et al., 2008]. In the rest of the thesis, as PMP can be used to compute masking thresholds,

only this algorithm is used for making spikegrams.

In Fig.2.5, the plot at the top of figure shows the color bar for displaying the spectrogram

and spikegram. The second plot from the top shows the original time domain speech signal

of the excerpt “Une Fourchette” sampled at 44.1 kHz. This signal is uttered by a female

speaking in French. The third plot from the top shows the spectrogram of the signal using

Hamming window with 128 samples length and 50% overlapping. The third and the fourth

plots from the top are respectively the spikegram of the signal using LCA and PMP. For

the LCA, the algorithm is run for 100 iterations. For both PMP and LCA, a 25-channel

gammatone filter bank is used and the number of time shifts equal as 1/10 of the length of

signal.

To compute the STFT, we tried different window lengths. The spikegram is a multi-

resolution representation, it can show the time-frequency contents of the signal with high

resolutions. The spikegram uses a filter bank of gammatone kernels which are adapted to

the signal content. Also, the sparse representation algorithm is adaptive and find the best

coefficients and kernels for representing the signal.

As is seen in Fig.2.5, the spikegram obtained by LCA is sparse and clearly demonstrates

the spectro-temporal content of the signal. This is because in the cost function of the

LCA, the regularization term is the l1 norm which is similar to coefficient estimation using

maximum a posteriori (MAP) with Laplacian prior. This is because Laplacian prior on the

coefficients, compared to no prior or Gaussian prior, will results in a sparser coefficient

estimation [Fevotte et al., 2006].
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Figure 2.5 Top: the color bar for the spectrogram and spikegram. Second
from the top: the original time domain signal for the speech utterance “une
fourchette” sampled at 44.1 kHz. Third from the top: the spectrogram using
Hamming window with 128 bits length with 25 frequency bins. Fourth from
the top: the spikegram using LCA when running 100 iterations, Bottom: the
spikegram when using PMP with non-zero coefficients as much as 20% of the
signal’s length. For both LCA and PMP, the dictionary includes 25 channels
of gammatone kernel and the number of time shifts equals 10% of the signal’s
length. The variable CF denotes the center frequency of the gammatone channel.
The high quality of LCA and PMP spikegram representations with the mentioned
parameters are shown in [Pichevar et al., 2010a], [Najaf-Zadeh et al., 2008]
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Moreover, the spikegram obtained by PMP is sparser and the absolute value of sparse

coefficients are greater compared to the spikegram obtained by LCA. One reason is because

of the efficiency of PMP in sparse representation and in removing the coefficients under

the masking thresholds. The sparse representation property of PMP can be very essential

for robust audio watermarking, where we want to insert watermark into the value or the

phase of the most reliable and meaningful coefficients which contribute to the quality of

audio signal and are not removed by watermarking attacks. In Fig.2.6, the histograms

of coefficients obtained by PMP and LCA are plotted. As is seen, PMP generates more

sparse high value coefficients than LCA. These high value coefficients are reliable for robust

watermark insertion.
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Figure 2.6 The histogram of spikegram coefficients obtained using LCA and
PMP for the speech utterance “une fourchette” sampled at 44.1 kHz. As is
seen, PMP bears more sparse and high values coefficients. These coefficients are
suitable for watermark insertion. Note that to better compare the two histograms,
the histogram of LCA coefficients is plotted with narrower bar widths.
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2.8 Why exploring PMP spikegram for watermark-

ing?

Briefly speaking, the reasons of choosing spikegram as a sparse representation for water-

marking, include:

1. Spikegram is a high resolution representation: The spikegram represents the

signal sparsely. Hence for preserving the energy equality between the representation

and the original signal, the representation should include a few large coefficients.

As mentioned previously, the sparse representation property of spikegram is similar

to sparse activities of neurons in the auditory system. Also, the spikegram uses the

gammatone which is a bio-inspired kernel which results in a representation that is

bio-inspired and auditory based. As an example, in Fig. 2.5, the vowels are shown

as horizontal colorful features and the transients as vertical colorful features. As is

seen, a spikegram can specify the features of a signal with a great resolution, this is

because of the high value sparse coefficients associated to these features.

2. Spikegram is time-shift invariant and the whole signal is represented at

once. In spikegram representation, as time-shifting the signal causes the same

amount of time-shifts on the underlying kernels, hence the representation is time

shift invariant [Smith and Lewicki, 2005], [Smith and Lewicki, 2006]. This is because

we use kernel based representation and at each time sample we have one kernel

per channel. This property can be useful for audio watermarking to make the

representation robust against de-synchronization attack which is one of the most

powerful attacks against audio watermarking systems.

3. A more robust watermarking can be achieved: One traditional problem in

audio watermarking is the insertion of watermark into non-meaningful spectro-

temporal content of the audio signal. This means that many coefficients in the

representation might be fragile against signal processing modifications and water-

marking attacks where spectro-temporal content of the signal might be removed

by masking thresholds, filtering or denoising. Using the spikegram obtained by

PMP, firstly auditory based masking thresholds for all spectro-temporal coefficients

in the representation are generated. Then all the spectro-temporal content of the

signal under the masking thresholds are removed. Also, the remained coefficients

are sparse (with high values) and are reliable for robust watermark insertion.



2.8. WHY EXPLORING PMP SPIKEGRAM FOR WATERMARKING? 23

4. Spikegram as a perceptual attack: It is shown that the gammatone atoms

are the building blocks of the natural sound [Smith and Lewicki, 2006]. Hence by

sparse representation, an additive white Gaussian noise (AWGN) is not represented

well and with high value coefficients on gammatone bases, as there are weak correla-

tions between gammatone bases and white Gaussian noise. Thus spikegram with

gammatone dictionary, for an audio signal contaminated with AWGN, generates few

coefficients with large values associated to the signal and many low value coefficients

associated to the noise. This means that the low value coefficients associated to the

additive white Gaussian noise are spread on the whole spikegram [Razaviyayn et al.,

2014]. Hence this makes the spikegram suitable for thresholding denoising.

In Fig.2.7, the time domain signal with the sampling frequency of 44.1 kHz, con-

taminated with a white Gaussian noise with SNR =15 dB has been plotted along

with its spikegram, the denoised spikegram and the denoised time domain signal.

Denoising is performed by hard thresholding the spikegram coefficients. As is seen,

the spikegram representation itself has a denoising property and removes noise

contents from the signal. This is because the spikegram uses PMP for the signal

representation where many small value coefficients (associated to the noise) under

the masking thresholds are removed. In this example, a coefficient, for which the ab-

stract value is under the threshold of 0.002 is set to zero (This threshold is obtained

empirically and by trial and error to have the highest SNR after denoising.). Note

that, by denoising using the spikegram, many small value coefficients are removed

[Donoho, 1995]. This is mainly because the gammatone kernels are matched more to

the natural sound than noise [Smith and Lewicki, 2006], and the PMP removes many

coefficients associated to the noise which are located under the perceptual masks

[Pichevar et al., 2010a]. Hence, to design a robust audio watermarking system, it is

necessary to insert watermark bits into sparse high value coefficients. Therefore, this

again shows the efficiency of sparse representation for robust audio watermarking.

Furthermore, in Fig.2.7, the Gaussian noise is appears more on the small value

coefficients and not too much on the high value coefficients. In many additive

watermarking systems such as spread spectrum and quantization index modulation,

the watermark is inserted as a small amplitude noise into several coefficients. This

means that spikegram as an attack is able to remove this additional noise created

by watermarking.

In chapter 5, spikegram is used to design an audio watermarking attack called

perceptual replacement attack.
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Figure 2.7 Top: the color bar for spikegram. Second from the top: the
noisy signals for the speech excerpt “a huge tapestry” sampled at 44.1 kHz,
contaminated with a white Gaussian noise with SNR =15 dB. Third from the
top: spikegram of the noisy signal. Fourth from the top: denoised spikegram,
by thresholding the coefficients below 0.002. Bottom: re-synthesized denoised
signal using the spikegram thresholding. The signal representation is performed
by running the perceptual matching pursuit with the number of iterations equal
to 20 percent of the signal’s length using 25 channels of gammatone dictionary.
The number of time shifts equals 1/10 of signal’s length. CF denotes the center
frequency of the gammatone channel.
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2.9 Summary

In this chapter, we explained the spikegram using the perceptual matching pursuit (PMP).

The PMP generates the masking thresholds for all the gammatones in the representation.

As the masking thresholds obtained by PMP can be used for audio watermarking, in the

rest of the thesis, PMP is used for making spikegrams.

In the next chapter, we design a tamper localization method using a novel audio water-

marking method in the spikegram domain.
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Titre français: Localisation des falsifications dans les signaux sonores en utilisant le

tatouage de spectre étendu modifié basé sur masquage auditif dans le domaine parcimonieux

Résumé français:

L’une des principales applications de tatouage sonore est la vérification de l’authentification

et la détection de l’altération des signaux sonores. La Localisation des plus petits change-

ments dans les signaux sonores est essentielle pour l’authentification de ces signaux. Les

méthodes actuelles d’authentification sonore ne sont pas capables de localiser les segments

de courte taille des signaux sonores (plus petit que 250 msec) en présence d’attaques

malveillantes telles que la suppression, le remplacement et la compression. Dans cet article,

une méthode de localisation d’altération pour les signaux sonores est présentée dans le

domaine parcimonieux perceptif en utilisant une version modifiée de spectre étalé (MSS).

La méthode proposée a la capacité de localiser un court segment du signal sonore altéré par

le remplacement, la suppression ou mise à l’échelle avec une taille plus petite que 250 msec.

Pour atteindre cet objectif, le PMP (perceptual matching pursuit) est utilisé pour calculer

une représentation invariante dans le temps, et parcimoneuse des signaux sonores ainsi que

des seuils de masquage 2-D. Ensuite, le code d’authentification est inséré comme étant un

27
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tatouage caché à l’intérieur des coefficients parcimoneux. Pour localiser un segment falsifié

du signal sonore hôte, les codes d’authentification de tous les segments intacts sont reconnus

correctement tandis que lorsque le segment est falsifié, le code d’authentification ne peut

pas être reconnu, indiquant une tentative d’attaque. Pour garantir la qualité du tatouage

sonore, les données de tatouage sont façonnées par seuils de masquage. Nous montrons

expérimentalement l’efficacité de notre approche en localisant les segments malicieusement

attaqués des signaux sonores et nous testons aussi pour les signaux compressés en utilisant

soit 32-64 kbps MP3 ou USAC (unified speech and audio coding).

3.2 Audio tampering localization using masking-aware

MSS watermarking in the sparse domain

3.2.1 Abstract

One of the main applications of audio watermarking is the authentication verification

and tampering detection from the audio signals. Localization of the smallest changes in

audio and speech signals is essential for authentication of such signals. Current methods

of audio authentication lack the ability to localize the short-size tampered segments in

audio-speech signals (smaller than 250 ms) in the presence of malicious attacks such as

removing, replacing and compression techniques. In this chapter, a blind audio tampering

localization method is presented in the perceptual sparse domain using a modified spread

spectrum (MSS) watermarking approach. The proposed method has the ability to localize

a short segment of the audio signal tampered by replacing, removing or re-scaling with

a size smaller than 250 ms. To achieve this goal, perceptual matching pursuit is used to

compute a sparse and time-shift invariant representation of audio signals as well as 2-D

masking thresholds. Then authentication code (which includes an Identity Number, ID)

is inserted as a hidden watermark inside the sparse coefficients. To localize a tampered

segment of the audio signal at the decoder, the IDs associated to intact segments are

detected correctly, while the ID associated to a tampered segment is misdetected or not

detected. To guarantee the high quality of watermarked audio, the watermark data is

shaped by masking thresholds found by perceptual matching pursuit. We experimentally

show the efficiency of our approach in localizing the tampered segments of the audio signals

and in determining whether the signal has been compressed using either 32-64 kbps MP3

or USAC (unified speech and audio coding) compression.
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3.3 Introduction

Audio signals might experience modifications (e.g., replacement, time shifting) intentionally

by attackers or unintentionally by signal processing transforms. The high- quality audio-

speech modifications can be performed using speech analysis-synthesis methods [Bordel

et al., 2016], voice conversion [Percybrooks and Moore, 2015] and audio morphing [Caetano

and Rodet, 2013]. This high quality modifications might result in erroneous authentication

of those signals [Hua et al., 2016] (see Fig.3.1). Audio watermarking (AW ) has been

offered for audio authentication by the insertion of hidden, transparent and irremovable

watermarks inside the signal [Cox et al., 2007]. For audio authentication, current methods

classify the whole signal as tampered or untampered [Gulbis et al., 2008]. Some other

approaches are able to localize the position of tampering based on fragile watermarking

[Chen and Liu, 2007]. In fragile watermarking, the watermark itself is not robust against

attacks. Thus by performing mild signal processing transforms on the whole signal such as

time shifting, re-sampling, re-quantization, the whole watermark is removed and no tamper

localization is performed afterwards. However, for authentication applications such as

forensic or voice over IP, audio watermarking should be robust against mild modifications.

Furthermore, it should be able to localize the position of tampered segments such as

segments added, replaced, removed or compressed.

In this paper, a tamper localization method is presented based on a semi-fragile audio

watermarking. The watermark is robust against mild signal processing modifications such

as re-quantization, re-sampling and 20 dB additive white Gaussian noise while it is able to

localize the short time malicious tamperings (in 250 ms frames) such as frame replacing

and removing. The proposed method is able to determine if a segment has been compressed

by 32-64 kbps MP3 and 24 kbps USAC [Neuendorf et al., 2009] transforms.

In the proposed method, the kernel based sparse representation [Smith and Lewicki, 2005]

(for self-synchronization and robust tamper localization) is combined with a modified spread

spectrum watermarking method (MSS) and perceptual matching pursuit [Najaf-Zadeh

et al., 2008], [Pichevar et al., 2010a]. A watermark stream is inserted into audio frames.

This watermark stream includes a synchronization code and an ID (which is an incremental

frame number), so that in the case of tampering attack in one segment of the signal,

this watermark is misdetected at the decoder. To do so, we use perceptual matching

pursuit (PMP) [Najaf-Zadeh et al., 2008] to obtain a kernel based representation of the

host signal and the watermark is inserted into the sparse coefficients. In this way, the

re-synchronization of the tampered audio with the input untampered audio is performed

in the spikegrarm domain.
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Figure 3.1 The concept of audio tampering. In this example, the utterance
“NOT” is clipped from the speech signal by an attacker. Using the proposed
tamper localization method, the location of the tampering can be identified.

For watermark insertion and extraction, the MSS method is proposed which guarantees a

payload between 20-25 bps and also a high quality embedding (with average mean opinion

score above 4.7). To design an efficient blind decoder we investigate the use of a cascade of

projections computing block and a correlation decoder.

Finally, we show that our approach is able to discover the watermark associated to each

frame and localize the de-synchronized tampered segments of the signal. Also, it is shown

that the presented watermarking method preserves the transparency of the input signal and

the watermark is not removed under common signal modifications such as re-quantization,

down-sampling and 20 dB additive white Gaussian noise.

The paper is organized as follows. The kernel based sparse representation is introduced in

section 3.4. The proposed perceptual sparse domain audio watermarking is represented in

section 3.5. In section 3.6, it is explained how to control the distortion of the watermarking

method. The multi-bit embedding using the concept of friend gammatones is described

in section 3.7. Experimental results are presented in section 3.8. The section 3.9 is the

conclusion.

3.4 Kernel based spikegram representation

In sparse representation, the signal x[n], n = 1 : N (or x in vector format) is decomposed

over a dictionary Φ = {gcj
[n − lj]; n = 1 : N, j = 1 : M} where gcj

[n − lj] indicates a

gammatone at channel (center frequency) cj shifted lj samples along the time axis. The

goal of sparse representation is to render a sparse vector α = {αj; j = 1 : M} which

includes only a few non-zero coefficients with the smallest error of reconstruction for the
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Figure 3.2 The channel-8 gammatone with the center frequency of 840 Hz and
the effective length of 13.9 ms. Gammatones with odd channel numbers between
1-19 are selected for watermark insertion. The sampling frequency is 44.1 kHz.

host signal x [Smith and Lewicki, 2005], [Pichevar et al., 2010a]. Hence,

x[n] =
M
∑

j=1

αjgcj
[n − lj], n = 1, 2, .., N (3.1)

where αj is a sparse coefficient. The dictionary Φ is represented by a 2D time-channel plane

that comprises Nc channels of a gammatone filter bank along the channel axis repeated

each q (time quantization) samples along the time axis (hence, M = Nc × N/q). Thus

gcj
[n − lj ] is one base of the dictionary which is located at a point corresponding to channel

cj ∈ {1, .., Nc}, and time sample łj ∈ {1, q, .., N} inside the 2D time-channel plane. The

spikegram is the 2D plot of the coefficients multiplied by their associated gammatones at

different instances and channels (center frequencies). The number of non-zero coefficients

per signal’s length is defined as the sparsity of the representation.

Perceptual matching pursuit (PMP) is a recent approach which solves the problem in (3.1)

for audio and speech. PMP uses a gammatone dictionary (equation (3.2)) in combination

with masking [Najaf-Zadeh et al., 2008]. PMP is a greedy method and is an improvement

over matching pursuit [Mallat and Zhang, 1993] and generates masking thresholds for all

gammatones in the dictionary. It selects only audible gammatones for which the sensation

level is above an updated masking threshold and neglects the rest. The efficiency of

PMP for signal representation is confirmed in [Najaf-Zadeh et al., 2008]. The gammatone

dictionary is bio-inspired and adapted to the natural sounds [Patterson et al., 1988], [Smith

and Lewicki, 2005] and is shown to be efficient for sparse representation [Pichevar et al.,

2010a]. A gammatone filter equation [Slaney, 1998b] has a gamma part and a tone part as

below

g[n] = anm−1e−2πlncos[2π(fc/fs)n + θ] (3.2)

where, n is the time index, m and l are used to tune the gamma part of the equation. Also,

fs is the sampling frequency, θ is the phase, fc is the center frequency of the gammatone.
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Table 3.1 Effective lengths, center frequencies and roll-off regions for gamma-
tones used in this work.

Channel number 1 2 3 4 5 6 7 8 9 10 ...

Effective length (ms) 55.2 39.1 31.0 25.8 22.0 18.7 16.1 14.0 12.1 10.7 ...

Center frequency (Hz) 50 150 250 350 450 570 700 840 1k 1.2k ...

Roll-off region (ms) 5.54 3.32 1.13 0.68 0.56 0.43 0.36 0.31 0.25 0.2 ...

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

9.3 8.1 7.2 6.3 5.4 4.7 4.1 3.5 2.9 2.4 2.0 1.7 1.4 1.0 0.8

1.4k 1.6k 1.9k 2.2k 2.5k 2.9k 3.4k 4k 4.8k 5.8k 7k 8.5k 10.5k 13.5k 18.8k

0.20 0.18 0.13 0.11 0.09 0.07 0.06 0.04 0.03 0.03 0.03 0.02 0.02 0.00 0.00

The term a is the normalization factor to set the energy of each gammatone to one.

In this paper, a 25-channel gammatone filter bank is used (each channel corresponds to

one center frequency) and covers the frequency range of 20 Hz-20 kHz. Also, the effective

length of a gammatone at channel cj is symbolized with leffj and is defined as the time

duration of the gammatone where the gammatone’s envelope is greater than one percent of

its maximum value. Moreover, the time duration between the peak of the auto-correlation

function of a gammatone at channel cj and the nearest zero to the peak is called the roll-off

region Rj. In Table 3.1, center frequencies, effective lengths and roll-off lengths for the 25

gammatones, used in this work, are given. In Fig.3.2, the channel-8 gammatone is plotted

for a sampling frequency of 44.1 kHz. The sparse kernel-based representation is shown to

be time-shift-invariant and compact and high resolution [Smith and Lewicki, 2005]. These

properties are attractive for watermarking [Wang Yong and Jiwu, 2010].

3.5 Perceptual sparse domain audio watermarking

3.5.1 Proposed modified SS-watermarking 1-bit embedder

As a preprocessing, PMP is run on the gammatone dictionary as described in [Najaf-Zadeh

et al., 2008] to find sparse coefficients αj and their associated masking thresholds mj

at iterations j ∈ {1, 2..M}. The watermark embedder is shown in Fig.3.3. First, the

watermark bit stream is generated as a cascade of synchronization code and frame ID.

Then a pseudo noise (PN) sequence pjε{−1, 1} is generated using a key and the pseudo

random noise generator (PRNG) [Klein, 2013b]. The auto-correlation function of PN is

similar to Dirac delta function hence suitable for correlation detector [Cox et al., 2007].

For watermark embedding, we propose a modified spread spectrum (MSS) in the sparse
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Figure 3.3 The proposed encoder. The audio signal is represented by spikegram
from PMP coefficients. At each iteration, a sparse coefficient αj and a masking
threshold mj is found. The watermark bit b is shaped via the masking threshold
mj and the robustness-quality trade-off factor β. The result is centred via γ and
λ robustness tuning parameters and is added via MSS encoder to the sparse PMP
coefficients. Finally, the watermarked signal is re-synthesized from the modified
sparse coefficients. The PRNG [Klein, 2013b] is the pseudo noise generator which
generates PN sequence pj needed in MSS method.

domain. In MSS, each watermark bit bε{−1, 1} is inserted into L coefficients αj (randomly

selected from M coefficients) to bear L watermarked coefficients wj (for single bit water-

marking L = M). Thus for one bit embedding, the embedding equations are as follows.

wj = αj + (βbmj − γλ)pj, j = 1, .., L (3.3a)

λ =
1

L

L
∑

j=1

Pjpj (3.3b)

Pj =
N

∑

n=1

x[n]gcj
[n − lj] (3.3c)

xw[n] =
L

∑

j=1

wigcj
[n − lj] (3.3d)

where β is an additional quality control parameter to modify the masking threshold values

mj. The parameter Pj denotes the projection of the host signal x[n] on the gammatone

gcj
[n−lj]. The parameter λ is associated with the improved spread spectrum (ISS) algorithm

[Malvar and Florencio, 2003] and here is called the projection annihilator parameter. Having

the term λ at the encoder is essential to reduce the bit error rate of the correlation decoder

[Malvar and Florencio, 2003]. The term γ is the proposed distortion-robustness control
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Figure 3.4 At iteration j of PMP, first a gammatone kernel is selected from
the dictioanry of gammatone kernels and is called the original gammatone. Also,
a sparse coefficient αj and a masking threshold mj associated to that original
gammatone are computed (upper left plot). Then a gammatone with the same
time-channel location as the original gammatone kernel with the amplitude of
mj is generated and called watermark gammatone (lower left plot). Finally, the
watermark gammatone is embedded into the original gammatone using (right
plot) (3.3). This procedure is continued at next iterations.

parameter. Note that the watermark embedder of spread spectrum (SS) [Malvar and

Florencio, 2003] and improved spread spectrum (ISS) watermarking methods are governed

by the same equation (3.3a), except that for SS and ISS watermarking, the innovative

term γ is always equal to zero and one respectively [Malvar and Florencio, 2003]. However,

in the proposed method, γ is set to zero when λ has the same sign as the inserted bit b,

otherwise is set to one. The combination of (3.3a) with (3.3d), gives the watermarked

signal xw[n]. Thus the watermarked signal is xw[n] = x[n] + w[n] where

w[n] =
L

∑

j=1

(βbmj − γλ)pjgcj
[n − lj] (3.4)

Hence, at each point of the time-channel plane associated to xw[n], two similar gammatones

with different amplitudes are added together. The first one is the signal gammatone

with amplitude αj and the second one is the watermark gammatone with amplitude

(βbmj − γλ)pj (Fig.3.4).

The masking term mj attenuates the amplitude of watermark gammatone to be inaudible

in the presence of the original signal gammatone (Fig.3.4).
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Figure 3.5 The proposed blind watermark decoder. The projection of the water-
marked signal over each watermark gammatone is computed. Each watermark bit
is found via correlation between the projections and the PN sequence associated
to that watermark bit. If the input signal is shifted, then the decoding is done
on the shifted versions of the signals until the acquisition of the synchronization
code. PRNG: pseudo random noise generator.

3.5.2 Proposed 1-bit blind decoder

The decoder (Fig.3.5) receives the watermarked signal, shares the key, the synchronization

code and dictionary parameters (g, Nc and q) with the encoder. Thus the positions of

gammatones in the spikegram are identified using the dictionary parameters. The inserted

watermark bit b is decoded from the watermarked signal’s projections overs the watermark

gammatones (with odd channel numbers between 1-19) in the spikegram. Firstly, we

compute the projection of the watermarked signal on a watermark gammatone gcj
[n − lj]

as follows.

Pwj =
〈

xw[n], gcj
[n − lj]

〉

=
N

∑

n=1

xw[n]gcj
[n − lj] (3.5)

Then, by combining (3.5) and (3.4), we have

Pwj = Pj +
(

βbmj − γλ
)

pj

+
L

∑

i=1,i6=j

pi

(

βbmi − γλ
)〈

gci
[n − li], gcj

[n − lj]
〉 (3.6)

The right term of the right side of equation (3.6), is the interference that the decoder

receives from other watermark insertions. To get rid of this term, the watermark carrying

gammatones, gci
[n − li] and gcj

[n − lj] should be uncorrelated. For this goal, firstly two

watermark gammatones, should be at least one channel apart in the spectral domain and

at least one gammatone effective length apart in the time domain. With these conditions
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complied, the correlation between two gammatones will be lower than 3 % (the maximum

correlation between two gammatones equals one) and can be ignored. In this case, (3.6)

becomes

Pwj = Pj +
(

βbmj − γλ
)

pj (3.7)

After finding the total L watermark projections using (3.7), the decoding is performed by

computing the correlation between L projections associated to watermark bit b [Malvar

and Florencio, 2003], and the binary pseudo noise p, as below

r =
1

L

L
∑

j=1

Pwjpj (3.8)

Combining (3.3a) with (3.6) and (3.8), we have

r =
b

L

L
∑

j=1

βmj + λ(1 − γ) (3.9)

The parameter r is called the watermark strength factor (when b = 1) and should have a

high value with the same sign as the watermark bit b. By applying maximum likelihood

(ML) estimation, the watermark bit is decoded as b́ = sign(r) [Malvar and Florencio, 2003].

The right term in the right side of equation (3.9), is an interference term which we call

signal contribution and is controlled by the proposed term γ at the encoder.

In this work, SS and ISS watermarking have the same decoding equations as in (3.9)

[Malvar and Florencio, 2003], except that in SS, always the signal contribution is equal

to λ and in ISS, it is zero. However in MSS, γ = 1
2

(

1 − sign(b)sign(λ)
)

. Thus, the

signal contribution changes between λ and zero based on the value of γ. The efficiency of

the proposed method relies on the fact that in (3.9), the signal contribution weakens the

process of ML estimation of b from r, only when it has not the same sign of b (see (3.9) ).

Otherwise, it improves the ML estimation. Thus, the role of the innovative term γ is to

nullify the signal contribution (γ=1) when it has negative effect on the decoder, otherwise

it keeps it (γ=0). In comparison to ISS method, by keeping the signal contribution (γ = 0),

we do not add the noise term λ to the encoder in (3.3a) and this results in the improvement

of the quality of MSS compared to ISS watermarking. Also, by supposing that in half

times watermark bits and signal coefficients are positive or negative, then all the time with

probability of 50%, γ is zero, hence improving the robustness of the decoder.

In Fig.3.6, experiments are done on several audio signals and the average watermark

strength factor (r when b = 1) obtained from (3.9) is plotted versus different embedding

channels for the two cases of ISS (γ = 1 all the time) and MSS (γ is selected adaptively)
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Figure 3.6 Comparison between the average robustness factor (r in (3.9) when
b = 1) of ISS and MSS versus the embedding channel. As is seen, the robustness
factor of MSS is always greater than the robustness factor of ISS for all cases.
The experiments are performed on 100 audio signals including different music
genres and English speech signals . Each signal is 3-minute long and is sampled
at 44.1 kHz. All signals are normalized to have unit variance and zero mean.

where the parameter β is set to one and the embedding bit is b = 1. As is seen, all the

time, the strength factor γ for the proposed MSS method is greater than the one for the

ISS method. Moreover, greater improvements of strength factor occurs for lower channels

(gammatones with lower center frequencies).

After all, for authentication of the found watermark bits, the decoder should verify the

presence of the synchronization code for each frame of the watermarked signal. otherwise

the decoder shifts the watermarked signal and performs the decoding and do this task

several times until the acquisition of the synchronization code.

3.6 Distortion of the proposed method

In this section, we mention how to have high quality for the proposed method. This is done

by computing the distortion of the watermarking method and controlling it to be masked

under the masking thresholds of the input signal in the spikegram. Thus, we explain how

to set the distortion controlling parameter β in the embedding equation (3.3a).

The distortion signal equals the difference between the watermarked and the original signal

and is computed as

d[n] = xw[n] − x[n] =
M
∑

j=1

(

βbmj − γλ
)

pjgcj
[n − lj] (3.10)
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The distortion signal d[n] in (3.10) should be inaudible in the presence of the original

signal x[n]. The variable pj ∈ {−1, 1} can be ignored since it only modifies the sign of the

distortion. As in the proposed method the term γ takes only two values, either zero or one,

thus we compute the distortion signal for these two cases. For the case of γ = 0 (meaning

that λ and b have the same signs), (3.10) is changed to

d[n] =
M
∑

j=1

βbmjgcj
[n − lj] (3.11)

Thus, to have an inaudible distortion, for each gammatone gcj
[n − lj] in d[n], its amplitude

should be lower than its associated masking threshold mj. Hence, if β ≤ 1, all gammatones

in the right side of equation (3.11) are masked under the gammatones associated to the

signal representation (see Fig.3.4). Hence, in order to have inaudible distortion for the case

of γ = 0, we freeze the term β to one.

Furthermore, for the case of γ = 1, as mentioned in section 3.5.1, the term λ and the

watermark bit b ∈ {−1, 1} have different signs. Hence, the term λ can be considered as

λ = −bC where C is a positive constant C > 0. Thus, in this case (3.10) can be written as

d[n] =
M
∑

j=1

(βbmj + bC)gcj
[n − lj] =

b
M
∑

j=1

(βmj + C)gcj
[n − lj]

(3.12)

The watermark gammatones in the right side of equation (3.12) should be masked under

the masking thresholds of the PMP representation. Hence, the term (βmj + C) should be

at most equal to mj. For having the greatest strength for the watermark gammatone, we

set the amplitude of watermark gammatones to its associated masking threshold mj. Thus

for the case of γ = 1, the strength term β is obtained using (3.13) as below.

β =
mj − C

mj

(3.13)

Hence, for the proposed method, the distortion is controlled by using the auditory based

masking obtained from PMP (see Fig.3.4).
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3.7 Multi-bit embedding and payload

3.7.1 Payload

Each watermark bit is embedded into L coefficients (L is called the repetition factor). The

gammatones associated to these coefficients are called watermark gammatones. Thus, by

having Mw watermark gammatones, the payload will be Mw/L. To achieve robustness

against low-pass filtering, insertion is done into the low frequency content of the signal.

Hence, watermark is not embedded into the 5 channels with the greatest center frequencies.

Furthermore, to reduce correlation between watermark gammatones, every odd channel

between 1-19 is selected. Therefore, a larger number of watermark gammatones means a

greater payload.

3.7.2 Multi-bit watermarking using friend gammatones

In this section, we mention how to increase the number of watermark gammatones in order

to have a greater payload using the principle of friend gammatones. So far, the watermark

gammatones had the strict constraint of being uncorrelated. In this section, we show that

even if the watermark gammatones are positively correlated, they can improve the effi-

ciency of the watermarking decoder. In this chapter, watermark gammatones with positive

correlations and the same channel number and located in the same time frame are called

friend gammatones (Fig.3.7)). Also, for a given channel in the spikegram, and starting

from sample one, a gammatone located at time samples equal to the multiples of effective

length plus roll-off length is called a principle gammatone (Fig.3.7). Also, gammatones

in the spikegram which have the same channel number as a principle gammatone and

have positive cross correlations with it are friend gammatones, or friend group (see Fig.3.7).

How to find friends of a given gammatone?

For a given principle gammatone gcj
[n−lj] in Fig.3.7, the auto-correlation of the gammatone,

its peak and its zeros are computed. Gammatones in the roll-off region of the principle

gammatone gcj
[n − lj], i.e between lj and lj + Rj × Fs (Fs is the sampling frequency) are

considered as its friend gammatones since their correlations with gcj
[n − lj] are positive

and have the same channel number (see Fig.3.8). Note that, with this definition, the friend
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A principle gammatone

Friends group 1 Friends group  2 Friends  group 3

Figure 3.7 The position of principle gammatones and their friend groups for
channel i in the spikegram of Fig.3.9. The friend gammatones of different
principle gammatones are uncorrelated. Li equals the effective length plus the
roll-off length for channel i gammatone.

gammatones of a principle gammatone are also friends of each others.

For the principle gammatone gcj
[n− lj], and the sampling frequency of Fs, there are Rj ×Fs

friend gammatones located between the two time samples lj and lj + Rj × Fs. For a given

channel, two principle gammatones with all their associated friends should be apart with

as many as (leffj + Rj) × Fs samples. In this case, friend kernels of two different principle

gammatones have zero correlations.

Here, we show that for a given channel, insertion of one watermark bit b with the same

pseudo noise value into friend gammatones increases the payload of the method. Hence, for

the sake of simplification, we suppose that the same watermark bits have been inserted into

the friend gammatones of a given gammatone. Thus for the detection of the watermark

bit b, the rightmost side of (3.6), should not be obtrusive. By considering cij =
〈

gci
[n −

li], gcj
[n − lj]

〉

and cjj = 1, then (3.6) becomes

Pwj = Pj +
L

∑

i=1

pi

(

βbmi − γλ
)

cij (3.14)

Thus, the decoding equation (3.9) becomes

r =
b

L

L
∑

j=1

βmjcijpipj + λ(1 − γ
L

∑

i=1

cijpipj) (3.15)

As the same watermark bits are inserted into friend kernels, they can be assigned with the

same PN values. Hence in (3.15), pi = pj. Thus we have

r =
b

L

L
∑

j=1

βmjcij + λ(1 − γ
L

∑

i=1

cij) (3.16)
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Note that, friend gammatones have positive correlation, i.e cij > 0, thus
∑L

i=1 cij is greater

than one. In the proposed method, the term γ equals to either zero or one. Here we show

that for both cases of γ = 0 and γ = 1, the strength factor r in (3.16) is greater compared

to when friend gammatones are not used in (3.9). First, when γ = 0, the left term of the

right side of (3.16) is greater compared to (3.9) since (
∑L

i=1 cij > 1) while the right terms

in the right sides of both equations are the same. Thus in this case, the strength factor

in (3.16) is higher compared to one in (3.9). Also, when γ = 1 this means that b and

λ do not have the same signs. Then as (1 − γ
∑L

i=1 cij) < 0, therefore the two terms in

the right side of (3.16) will have the same signs. In this case, the watermark strength is

increased compared to the one obtained from (3.9) in which all the time, the rightmost

side of equation (3.9) is zero.

3.7.3 Multibit embedding using friend gammatones

Hence the procedure for multi-bit watermarking is as follows (see Fig.3.9).

1. Signal representation: Represent the signal with PMP using 25-channel gammatones

located at each time sample (q = 1), generate the spikegram, find the masking

thresholds for any gammatone in the spikegram.

2. Finding friend gammatones: For odd channel numbers j between 1-19, the gamma-

tones located at the time samples equal to the multiples of the sum of gammatone’s

effective length and roll-off region length (leffj + Rj) are considered as principle

gammatones. We find all associated friend gammatones of these principle gamma-

tones. Consider the same pseudo random value pj for each set of friend gammatones

(see Fig. 3.9). All principle gammatones and their friends form a dictionary of

watermark gammatones.

3. Watermark insertion: Insert one watermark bit into the gammatones located at

each time frame (all of them are friends). This results in the watermark insertion

into Rj × Fs gammatones per one time frame of the channel j.

4. Signal reconstruction: Reconstruct the watermarked signal from the modified

coefficients.

3.7.4 The new improved payload using friend gammatones

For the mentioned multi-bit watermarking, the same decoding equation (3.16) is used.

See Table 3.1 for the center frequency, roll-off region and effective length of gammatones
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Figure 3.8 An example of roll-off region for channel-3 gammatone. For the
channel number 3, 50 gammatones located at the beginning of each time frame
in Fig.3.9 are selected as friend kernels for the watermark insertion.
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Figure 3.9 Multi-bit MSS watermarking. Each watermark bit is inserted into
friend kernels located at an odd channel number between 1-19 and also in a time
frame as long as the watermark effective length plus the roll-of region length.
At the starting point of each time frame (between two red bars), Rj × Fs friend
gammatones (which have positive correlation with one anohter) are chosen for
watermark insertions (where Fs is the sampling rate and Rj is roll-off for a
given channel in second). The watermark insertions are conducted using (3.3).
Gammatones with greater channel numbers (center frequencies) have shorter
effective lengths and roll-off region. This results in less watermark insertions
into high channel numbers.
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Figure 3.10 The average masking threshold (blue) and the average projection
annihilator factor λ (red) for the proposed watermarking system versus payload
(Mw/L). The average results are reported for 100 signals including audio and
speech signals, 3 minutes each, sampled at 44.1 kHz. As is seen, the greatest
achievable payload is between 20-25 where the average masking threshold is all
the time greater than the average projection annihilator factor. The vertical
bars indicate the 95% confidence intervals.

used in this work. By using the idea of friend gammatones, the number of watermark

gammatones will be Mw = [R1/L1 + R3/L3 + .. + R19/L19] × Fs in which Li indicated the

effective length plus the roll-off region for channel i. Based on Table 3.1, the watermark

insertion is done on Mw = 12950 gammatoness.

3.7.5 The maximum achievable payload of the proposed method

for the average audio-speech signals

Based on (3.9) and (3.13), it is necessary to have a positive β. Otherwise, the sign of

the strength factor might change and the watermark bit might be misdetected. To have

a positive β, based on (3.13), for each watermark gammatone gcj
[n − lj], the masking

threshold mj should be greater than the term λ.

In Fig.3.10, the average masking term mj and the term λ are plotted for 100 audio signals

including audio and English speech signals, 3 minutes each (5 hours in total). As is seen,

with a payload between 20 bps and 25 bps, the projections remain lower than the masking

threshold for more than 95% of the times. Thus the acceptable payload for the proposed

method is between 20 bps-25 bps (which is associated to a repetition factor between 518

and 647).
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3.8 Experimental results

3.8.1 Experimental setup

For the quality test, 6 types of audio signals have been selected to generate a dataset

for our implementations including speech (male female in French), Castanet, Percussion,

Harmonics and song. Objective and subjective difference grade tests are done on the pieces

of 4.5-7.5 seconds of the mentioned signals. For the robustness test, 100 audio signals (of

different music genres and English speech, in total 5 hours), 3 minutes each are used. All

signals are sampled at 44.1 kHz and have 16 bits wave format. The PMP representation

[Najaf-Zadeh et al., 2008] is used with a gammatone filter bank to represent the audio

signals in the dataset by coefficients with a maximum density of 0.5 (density equals the

number of non-zero coefficients divided by the number of signal samples). A 25 channel

gammatone filter bank is repeated at each sample along the time axis to build the 2-D

dictionary matrix Φ. Note that, in all our experiments, the PMP automatically stops

with a density between 15% and 30%. For robustness against high frequency degradation

attacks, the watermark is not inserted into coefficients associated to the greatest 5 frequency

channels. A 13-bit Barker sequence [Borwein and Mossinghoff, 2008] including -1 and 1 is

the synchronization code. The watermark signature includes a 13-bit synchronization code

and a 10-bits ID (the frame number) and is embedded in every second of the signal. This

means an insertion of a total of 23 bits per second.

For the subjective difference grade (SDG) listening test, we followed the protocol mentioned

in [ITU, 1996]. Fifteen subjects (varying from experts to people with no experience in

audio processing, including male and female speakers, aged between 20-50 including, a

mix of English speaking, French speaking and Persian speaking) participated in an 5-scale

(minimum 1, maximum 5) MOS test by listening to signals via Bayerdynamic DT250

headsets. For the objective difference grade (ODG), an open source method was used

[Kabal, 2002]. ODG is also a 5-scale test with minimum -5 for lowest quality and maximum

0 for the highest quality. ODG experiments are done on the excerpts of 5 seconds (in total

2 minutes of the audio signals, in Fig.3.11).

The SDG and ODG quality test results are shown in Fig.3.11. Overall, the average SDG

and ODG results are equal to 4.7 and −0.3 respectively. A sample original signal and

the difference between the original and the watermarked is shown in Fig. 3.12. The

audio files including original and watermarked can be found at the following website:

“http://www.gel.usherbrooke.ca/necotis/necotis-old/erfani.html”
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Figure 3.11 The average objective difference grade (blue) and subjective differ-
ence grade (red) results for the proposed method. The bar lines indicates 95%
confidence interval. An average ODG higher than −0.5 or a SDG lower than
4.5 indicates that the quality change is imperceptible.
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Figure 3.12 A sample original signal (blue), and the difference between the orig-
inal and the watermarked one using the proposed method (red). The difference
signal includes watermark gammatones which are masked under the masking
thresholds of the original signal.
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3.8.2 Bit allocation and Resynchronization

The watermark signature includes the synchronization code and the 1-second frame ID

(in total 23 bits per second). This means that each watermark bit is inserted into L =

12950/23 = 563 watermark gammatones. The watermark gammatones are selected as

in Fig.3.9. To have similar strength for all watermark bits, each bit is inserted into 563

randomly chosen gammatones from all watermark gammatones (in one second frame) using

the Fisher-Yates shuffle permutation generator [Knuth, 1998]. The key that should be

shared between the encoder and the decoder includes the initial states of the linear feedback

shift register and the initial state for generating the permutation generator.

At the decoder, projections of thewatermarked signal on all gammatones in the 2D plane

(dictionary) with odd channel numbers between 1-19, are computed. The watermarked

gammatones are pinpointed as in Fig.3.9. The permutation and PN sequence generators

are generated. All synchronization Barker codes (one for each second) should be detected

(with less than 10% error rate). If one synchronization code is not detected, the tampering

is alarmed for the 1-second frame associated to that synchronization code.

3.8.3 Experiments on attacks against proposed tampering local-

ization method

The proposed tamper localization method is robust against ordinary transforms, and have

erroneous detection of watermark bits under severe attacks. We insert the watermark

signature (which includes a sequential ID number) into 1-second frames and evaluate the

robustness of the method for each frame under the state of the art transforms on audio

watermarking methods [Nikolaidis and Pitas, 2004] and strong tampering [Hua et al., 2016].

— No attack: the same intact signal as at the encoder is received at the decoder.

— Downsampling: the watermarked signals are down-sampled from 44.1 kHz to 22.05

kHz.

— Gaussian noise attack: the watermarked signal is contaminated with additive white

Gaussian noise so that the signal to noise ratio reaches 20 dB.

— MP3 attack: the raw wave files of the watermarked signals are compressed using

32 kbps and 64 kbps MP3 compression and then returned back to the raw wave

format.

— 24 kbps Unified speech and audio coding (USAC) [Neuendorf et al., 2009] which is a

novel standard for low bit-rate speech and audio coding. USAC include two modes,
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the linear predictive (LPD) mode for speech signals and Fourier domain (FD) mode

for audio signals.

— Low-pass filtering attack (LPF): watermarked signals are low pass filtered using the

Butterworth filter with the cut off frequency of 11025 Hz.

— Re-quantization attack: the number of quantization bits is reduced from 16 bits to

8 bits and then again is returned to 16 bits.

— Cropping: segments of 500 samples of the watermarked signals are removed from

the watermarked signal at five positions and subsequently replaced by segments of

the watermarked signal contaminated with white Gaussian noise with a signal to

noise ratio of 15 dB.

— Removing frames: 250 ms at the beginning of the frame number 4 (a quarter of the

frame) is removed.

— Replacement attack: we replace the first quarter of frame number 4 (250 ms) of the

watermarked signal with the first quarter of the associated frame in the original

signal.

— Adding silent: 250 ms of the beginning of the frame number 4 (a quarter of the

frame) is silenced (is set to zero).

— Time scaling: the watermarked signals are time scaled with the scale ratio of of 90

percent.

— Time shifting: the whole watermarked signal is time shifted as many as 100 samples.

— Large cropping: 10000 samples at 5 positions of the watermarked signal are cropped.

— Large Gaussian noise: the watermarked signals is contaminated with additive white

Gaussian noise so that the signal to noise ratio reaches 10 dB.

The bit error rate (BER) is used as the mean of robustness-fragility evaluation. The BER

is defined as the number of erroneously detected bits per all embedded bits as follows.

BER =
Σ

N/L
i=1 (bi ⊕ bí)

Σ
N/L
i=1 (bibi)

(3.17)

where bi and bí are the ith transmitted bit and its associated received bit respectively.

When the sent bit at the encoder and its associated detected bit at the decoder have not

the same signs, then the detected bit is called an erroneously detected bit. When the BER

of watermark detection of the 13-bit synchronization code for one frame is more than 25%,

it is classified as unauthenticated (tampered). As is seen from Table 3.2, the algorithm

is robust against common signal modifications that can happen during the mobile and

Internet transmissions. Furthermore, it is able to localize the place of maliciously-attacked

frames. To evaluate the efficiency of the decoder, we made all attacks on the frame number
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Table 3.2 Localization of tampered frames inside 100 audio signals including
music and English speech 3 minutes each (5 hours). PMP is run to find sparse
coefficients where the number of non-zero coefficients equals 50% of the signal’s
length. At iteration j of PMP, either β = 1 when γ = 0 or β = mj−C

mj
when

γ = 1. All attacks are performed on frame number 4. In the case of (removing,
replacing, adding) attacks, the process is done on a quarter of frame (250 ms).
The results are shown for common signal modifications and severe attacks, NA:
Not Applicable, NF: Not Found

Attack Name Condition BER (%)
Frame

No.
No Attack NA 1.5 NF

Down-sampling to 22.05 kHz 3.6 NF

Gaussian noise additive, 20 dB 5.1 NF

MP3 64 kbps 13.5 4

MP3 32 kbps 35 4

USAC LPD,FD 37 4

LPF
Butterworh

cutoff 11025 Hz 7.5 NF

Re-quantization 16 bits to 8 bits 2.3 NF

Cropping
500 samples
5 positions 6.7 NF

Removing a frame 250 ms long 51 4

Replace a frame 250 ms long 45 4

Adding silent frame 250 ms long 47 4

Time scaling .90 scaling 45 4, 5

Time shifting 100 bits shifts 49 4

Big cropping
10000 samples

5 positions 43 4

Gaussian Noise additive, 10 dB 39 4

4 (4th second).

Table 3.2 shows the average results of our method to localize the tampered segments of

audio signals for different attacks and conditions. Based on the results of Table 3.2, the

average BER is very high where audio data is counterfeited via replacement, insertion, or

deletion. Note that the proposed method classifies 24 kbps USAC, 64 kbps MP3 and 32

kbps MP3 attacked frames as tampered frames. This means that by using this method, we

can determine whether the audio signal has been compressed. For the case of time scaling

attack, the adjacent frame (here frame number 5) is wrongly considered as unauthenticated.

This is because time scaling of one frame also destroys the authentication word of the

neighbour frame. From Table 3.2 our method has robustness against signal modifications

such as 64 kbps MP3, time shifting. Also, our method is able to extract the watermark

“SYNCH” code from each 1-second frame of the watermarked audio (and then labeled the
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frame as untampered) for mild transforms such as re-sampling and re-quantization (see

Table 3.2).

3.8.4 Comparison with state of the art works in audio authenti-

cation

Table 3.3 shows a comparison between our method and the state of the art methods in

audio authentication. Here, the efficiency of the proposed method is only evaluated in

terms of localizing the most malicious tampering on audio signals. Hence, the comparison

is performed according to the ability of methods to localize the malicious changes in signal

including replacing, adding, removing, time shifting (and scaling) frames of watermarked

signal (corresponding to columns 1-4 of Table 3.3 respectively). Column 5 shows the

number of frames mistakenly unauthenticated when one frame is attacked and column

number 6 indicates the ability of the decoder to re-synchronize (the ability to find the

synchronization code for re-synchronizing other intact frames). The average results of our

experiments over 6 audio signals are compared to the reported results of four different

states of the art methods for tamper localization.

In the first method [Unoki and Miyauchi, 2012] in Table 3.3, the audio tampering detection

is based on a fragile watermarking where the watermark insertion is based on cochlear

delay. Two different IIR filters which models two different cochlear delays are designed for

zero-bit and one-bit embedding. At the decoder, the chirp-Z transform is used to detect

the group delays corresponding to one and zero embedding.

In the second method [Steinebach and Dittmann, 2003], the basic features of audio signal

for each processing frame are extracted including zero crossing rate, RMS and spectral

features in the Fourier domain. The mentioned features are combined and hashed to create

a signature of the original signal and this signature is embedded to the signal.

In the third method [Yuan and Huss, 2004], a fragile watermarking system is proposed

based on the GSM encoder for the real time speech authentication. The audio watermarking

is of zero-bit type and is based on GSM vocoder.

In the fourth method [Hua et al., 2016], the audio authentication is done by exploring

the absolute error-map of ENF (electronic network frequency) signals. They introduce

the absolute-error-map (AEM) between the ENF signals obtained from the testing audio

recording and the database. The AEM serves as an ensemble of the raw data associated

with the ENF matching process.

In the fifth method, [Chen and Liu, 2007], the watermark is embedded in each time frame
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Table 3.3 Comparison between the average results of the proposed method and
those of recent methods in audio authentication. Ability of methods to locate: 1.
the replaced, 2. the added, 3. the removed parts of the signal. 4. the length of
the shortest tampered segment localized (in second). 5. the maximum number of
falsely unauthenticated frames, 6. ability to determine the 32-64 kbps MP3 or 24
kbps USAC [Neuendorf et al., 2009] compressed segments (NM: Not Mentioned).

Method 1 2 3 4 5 6
Unoki [Unoki and Miyauchi, 2012] Yes No No >1 NM No

Stein [Steinebach and Dittmann, 2003] No No No many Many No

Yuan [Yuan and Huss, 2004] Yes Yes Yes > 1 1 No

Hua [Hua et al., 2016] Yes Yes Yes > 1 Many No

Chen [Chen and Liu, 2007] Yes Yes Yes > 1 2 No

Our Method Yes Yes Yes 0.25 1 Yes

of the speech signal based on the line spectrum frequency (LSF) feature in the current

frame, the pitch extracted from the succeeding frame, the watermark embedded in the

preceding frame and the group index which is determined by the location of the current

frame.

Due to the use of a kernel based representation and the insertion of the synchronization

code and ID, our method has the ability to find the time-shifted and time-scaled frames of

the audio signal. Also, our method is able to detect tampering for each 250 ms tampered

frame which is the smallest length compared to other methods. In this case, when one frame

is maliciously tampered, at most one additional frame is mis-classified as unauthorized.

Thus the proposed method has the minimum number of mis-classified frames (only one

frame) when only one frame is tampered compared to other methods. Moreover, through

the insertion of an incremental ID number with the authentication mark, the ID of the

tampered frame can be found.

3.9 Conclusion

In this paper, a blind, perceptual sparse-domain audio authentication method was presented

using a proposed modified spread spectrum (MSS) watermarking. Using a perceptual

kernel based representation method (PMP), our method inserts a watermark stream inside

audio frames. We showed that the watermark is irremovable under signal processing

modifications such as low-pass filtering. We also showed that compared to state of the art,

not only our method does efficiently localize the shortest maliciously attacked segments

of the signal (e.g., removed, replaced, and added, time-shifted segments), but it also has
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the ability to determine if the signal has been compressed by 32-64 kbps MP3 or 24 kbps

USAC transforms. Our listening test shows the high quality of the watermarked signals.

Our results confirm the suitability of the proposed method for authentication applications

such as audio forensic.
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Résumé français:

Cet article présente une nouvelle technique de tatouage sonore en utilisant une représen-

tation basé sur les noyaux gammatones. Une représentation parcimonieuse perceptive

(spike gramme) est combiné avec un dictionnaire de gammatones pour construire une

représentation robuste des sons. Par rapport aux méthodes traditionnelles du tatouage

de phase où la phase des coefficients de Fourier sont modifiés, dans le présent document,

les bits de tatouage est inséré en modifiant la phase des noyaux gammatones. En outre,

les bits de tatouage sont automatiquement intégrés uniquement dans les noyaux avec des

amplitudes élevées où toutes les coefficients non significatives ont déjà été retirés. Deux

méthodes de tatouage sont proposées, l’une est basée sur l’insertions dans le signe de

gammatones (une dictionnaire méthode). Un autre est basé sur l’insertions dans le signe

et la phase de noyaux de gammatones (deux dictionnaire méthode). La robustesse de la

méthode proposée est illustrée contre 32 kbps MP3 avec un taux d’insertion de 56,5 bps

alors que l’état de l’art de charge utile pour le tatouage sonore, robuste contre 32 kbps

53
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MP3, est plus bas que 50, 3 bps. En outre, nous avons montré que la méthode proposée

est robuste contre le 24 kbps USAC (Unified speech and audio coding, modes prédictifs

linéaires et Fourier) avec une charge utile moyenne de 5 − 15 bps. En outre, il est démontré

que la méthode proposée est robuste contre une variété des transformes tout en préservant

la qualité.

4.2 Audio watermarking using spikegram and a two-

dictionary approach

4.2.1 Abstract

This paper introduces a new audio watermarking technique based on a perceptual kernel

representation of audio signals (spikegram). Spikegram is a recent method to represent

audio signals. It is combined with a dictionary of gammatones to construct a robust

representation of sounds. In traditional phase embedding methods, the phase of coefficients

of a given signal in a specific domain (such as Fourier domain) is modified. In this paper,

the watermark bit stream is inserted by modifying the phase and sign of gammatones.

Moreover, the watermark is adaptively embedded only into kernels with high amplitudes

where all masked gammatones have been already removed. Two embedding methods

are proposed, one includes the watermark embedding into the sign of gammatones (one

dictionary method) and the other one is based on watermark embedding into both sign

and phase of gammatone kernels (two-dictionary method). The efficiency of the proposed

spikegram watermarking is shown via several experimental results. First, robustness of

the proposed method is shown against 32 kbps MP3 with an embedding rate of 56.5 bps.

Second, we showed that the proposed method is robust against unified speech and audio

codec (24 kbps USAC, Linear predictive and Fourier domain modes) with an average

payload of 5-15 bps. Third, it is robust against simulated small real room attacks with a

payload of roughly 1 bps. Lastly, it is shown that the proposed method is robust against a

variety of signal processing transforms while preserving quality.

4.3 Introduction

An analysis by the Institute for Policy Innovation concludes that every year global music

piracy is making 12.5 billion of economic losses, 71060 U.S. jobs lost, a loss of 2.7 billion in
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workers’ earnings and a loss of 422 million in tax revenues, 291 million in personal income

tax and 131 million in lost corporate income and production taxes. Most of the music

piracy is because of rapid growth and easiness of current technologies for copying, sharing,

manipulating and distributing musical data [Siwek, 2007].

As one promising solution, audio watermarking has been proposed for post-delivery pro-

tection of audio data. Digital watermarking works by embedding a hidden, inaudible

watermark stream into the host audio signal. Generally, when the embedded data is easily

removed by manipulation, the watermarking is said to be fragile which is suitable for

authentication applications, whereas for copyright applications, the watermark needs to

be robust against manipulations [Cox et al., 2007]. Watermarking has also many other

applications such as copy control, broadcast monitoring and data annotation [Steinebach

and Dittmann, 2003; Boho and Wallendael, 2013; Majumder1 et al., 2013]. For audio

watermarking, several approaches have been recently proposed in the literature. These

approaches include audio watermarking using phase embedding techniques [Arnold et al.,

2014], cochlear delay [M. Unoki, 2015], spatial masking and ambisonics [Nishimura, 2012],

echo hiding [G. Hua and Thing, 2015a], [G. Hua and Thing, 2015b; Y. Xiang, 2015], patch-

work algorithm [Xiang et al., 2014b], wavelet transform [Pun and Yuan, 2013], singular

value decomposition [Lei et al., 2013] and FFT amplitude modification [D. Megas, 2010].

State of the art methods introduce phase changes in the signal representation (i.e., from

the phase of the Fourier representation) [Arnold et al., 2014], [Ngo and Unoki, 2015], while

we adopt a more original strategy by using two dictionary of kernels and by shifting the

sinusoidal term of the gammatones [Strahl and Mertins, 2009], [Slaney, 1998a].

There are two types of watermarking systems: zero-bit and multi-bit [Nikolaidis and Pitas,

2004]. For the former the goal is to verify the presence of the watermark stream while for

the latter the goal is to decode watermark bits out of watermarked signals. In this paper,

the watermarking is of multi-bit type and could be used for data annotation.

Multiple dictionaries for sparse representation applications has already drawn the attention

of researchers in signal processing [Valiollahzadeh et al., 2009], [Son and Choo, 2014], [Adler

and Emiya, 2012], [Fevotte et al., 2006]. For example, in [Valiollahzadeh et al., 2009],

authors propose a two-dictionary method for image inpainting where one decomposed image

serves as the cartoon and the other as the texture image. Also, a watermark detection

algorithm was proposed by Son et al. [Son and Choo, 2014] for image watermarking where

two dictionaries are learned for horizontally and vertically clustered dots in the half tone

cells of images. In [Fevotte et al., 2006], authors propose an audio denoising algorithm

using a sparse audio signal regression with a union of two dictionaries of modified discrete
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cosine transform (MDCT) bases. They use long window MDCT bases to model the tonal

parts and short window MDCT bases to model the transient parts of the audio signals.

In all mentioned methods, the goal is to have an efficient representation of the signal.

However for audio watermarking, one goal is to manipulate the signal representation in a

way to find adaptively the spectro-temporal content of the signal for efficient transmission

of watermark bits.

In this paper, for the first time, we propose an embedding and decoding method for audio

watermarking which jointly uses multiple dictionaries (including gammatones and their

phase-shifted versions) and a spikegram of the audio signal. It has been shown in [Smith

and Lewicki, 2005] that spikegram is time-shift invariant where the signal is decomposed

over a dictionary of gammatones. To do so, we use the Perceptual Matching Pursuit

(PMP) [Pichevar et al., 2010a]. PMP is a bio-inspired approach that generates a sparse

representation and takes into account the auditory masking at the output of a gammatone

filter bank (the gammatone dictionary is obtained by duplicating the gammatone filter

bank at different time samples).

The proposed method is blind, as the original signal is not required for decoding. Also,

the only information needed to be shared between the encoder and the decoder include

the key, which is used as the initial state for a Pseudo Noise (PN) sequence, the type and

parameters for dictionary generation. To evaluate the performance of the proposed method,

extensive experimental results are done with a variety of attacks.

Robustness against lossy perceptual codecs is a major requirement for a robust audio

watermarking, thus we decided to evaluate the robustness of the method against 32 kps

MP3 (although not used that often anymore, it is still a powerful attack which can be used

as an evaluation tool). The proposed method is robust against 32 kbps MP3 compression

with the average payload of 56.5 bps while the state of the art robust payload against this

attack is lower than 50.3 bps [Khaldi and Boudraa, 2013]. In this paper, for the first time,

we evaluate the robustness of the proposed method against USAC (Unified Speech and

Audio Coding) [Quackenbush, 2013; Yamamoto et al., 2013; Neuendorf et al., 2009]. USAC

is a strong contemporary codec (high quality, low bit rate), with dual options both for

audio and speech. USAC applies technologies such as spectral band replication, CELP

codec and LPC. Experiments show that the proposed method is robust against USAC for

the two modes of linear predictive domain (executed only for speech signals) and frequency

domain (executed only for audio signals), with an average payload of 5-15 bps. The

proposed method is also robust against simulated small real room attacks [Lehman, 2016],

[E. Lehmann and Nordholm, 2007] for the payload of roughly 1 bps. Lastly, the robustness
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against signal processing transforms such as re-sampling, re-quantization, low-pass filtering

is evaluated and we observed that the quality of signals can be preserved.

In this paper, the sampled version of any time domain signal is considered as a column

vector with a bold face notation.

4.4 Spikegram kernel based representation

4.4.1 Definitions

With a sparse representation, a signal x[n], n = 1 : N (or x in vector format) is decomposed

over a dictionary Φ = {gi[n]; n = 1 : N, i = 1 : M} to render a sparse vector α = {αi; i =

1 : M} which includes only a few non-zero coefficients, having the smallest reconstruction

error for the host signal x [Smith and Lewicki, 2005], [Pichevar et al., 2010a]. Hence,

x[n] ≈
M
∑

i=1

αigi[n], n = 1, 2, .., N (4.1)

where αi is a sparse coefficient. A 2D time-channel plane is generated by duplicating a

bank of Nc gammatone filters (having respectively different center frequencies) on each

time sample of the signal. Also, all the gammatone kernels in the mentioned 2D plane

form the columns of the dictionary Φ (Hence, M = Nc × N). Thus gi[n] is one base of

the dictionary which is located at a point corresponding to channel ci ∈ {1, .., Nc}, and

time sample τi ∈ {1, 2, .., N} inside the 2D time-channel plane (Fig.4.1). The spikegram is

the 2D plot of the coefficients at different instants and channels (center frequencies). The

number of non-zero coefficients in αi per signal’s length N is defined as the density of the

representation (note that sparsity = 1-density).

To compute the sparse representation in (4.1), many solutions have been presented in the

literature including Iterative Thresholding [Blumensath and Davies, 2008], Orthogonal

Matching Pursuit (OMP) [Joel A. Tropp, 2007], Alternating Direction Method (ADM)

[S. Boyd, 2011], Perceptual Matching Pursuit (PMP) [Pichevar et al., 2010a]. Here, we

use the perceptual matching pursuit, because it is not computationally expensive, is a

high resolution representation for audio signals, and generates auditory masking thresholds

and removes the inaudible content under the masks [Pichevar et al., 2010a]. Perceptual

Matching Pursuit (PMP) is a recent approach which solves the problem in (4.1) for audio

and speech using a gammatone dictionary [Pichevar et al., 2010a] , [Najaf-Zadeh et al.,
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Table 4.1 The effective lengths and center frequencies for gammatone kernels
used in this work.

Channel number 1 2 3 4 5 6 7 8 9 10 ...

Effective length (ms) 55.2 39.1 31.0 25.8 22.0 18.7 16.1 14.0 12.1 10.7 ...

Center frequency (Hz) 50 150 250 350 450 570 700 840 1k 1.2k ...

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

9.3 8.1 7.2 6.3 5.4 4.7 4.1 3.5 2.9 2.4 2.0 1.7 1.4 1.0 0.8

1.4k 1.6k 1.9k 2.2k 2.5k 2.9k 3.4k 4k 4.8k 5.8k 7k 8.5k 10.5k 13.5k 18.8k
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Figure 4.1 A 2D plane of gammatone kernels of a spikegram generated from
PMP [Pichevar et al., 2010a], [Najaf-Zadeh et al., 2008] coefficients. The 2D
plane is generated by repeating Nc = 4 gammatones at different channels (center
frequencies) and at each time samples. A gammatone with non-zero coefficient
is called a spike.

2008]. PMP is a greedy method and an improvement over Matching Pursuit [Mallat and

Zhang, 1993]. PMP finds only audible kernels for which the sensation level is above an

iteratively updated masking threshold and neglects the rest. A kernel is considered as a

masked kernel if it is under the masking of (or close enough in time or channel to) another

masker kernel with larger amplitude. The efficiency of PMP for signal representation is

confirmed in [Pichevar et al., 2010a] and [Najaf-Zadeh et al., 2008]. The gammatone filter

bank (used to generate the gammatone dictionary) is adapted to the natural sounds [Smith

and Lewicki, 2005] and is shown to be efficient for sparse representation [Pichevar et al.,

2010a]. A gammatone kernel equation [Strahl and Mertins, 2009] has a gamma part and a

tone part as below

g[n] = anm−1e−2πlncos[2π(fc/fs)n + θ], n = 1, .., ∞ (4.2)
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Figure 4.2 A sample gammacosine (blue) and gammasine(red) (for channel-
8) with a center frequency of 840 Hz and an effective length of 13.9 msec.
Gammasines and gammacosines are chosen in the watermark embedding proceess
based on their correlation with the host signal and the input watermark bit. The
sampling frequency is 44.1 kHz.

in which, n is the time index, m and l are used for tuning the gamma part of the equation.

fs is the sampling frequency, θ is the phase, fc is the center frequency of the gammatone.

The term a is the normalization factor to set the energy of each gamatone to one. Also, the

effective length of a gammatone is defined as the duration where the envelope is greater

than one percent of the maximum value of the gammatone. In this paper, a 25-channel

gammatone filter bank is used (Table 4.1). Their bandwidths and center frequencies are

fixed and chosen to correspond to 25 critical bands of hearing. They are implemented

at the encoder and the decoder using (4.2). Also, a gammatone is called a gammacosine

when θ = 0 or a gammasine when θ = π/2. In Table 4.1, center frequencies and effective

lengths for some gammatones, versus their channel numbers are given. In Fig. 4.2, channel

8 gammasine and gammacosine are plotted.

4.4.2 Good characteristics of spikegram for audio watermarking

— Time shift invariance:

The spikegram representation in (4.1) is time shift invariant (see [Smith and Lewicki,

2005] for the proof). Therefore, it is suitable for robust watermarking against time

shifting de-synchronization attack.

— Low host interference when using spikegram:

In (4.1), many gammatones have either zero coefficients or masked, thanks to

PMP. Therefore, compared to traditional transforms such as STFT and Wavelet

transforms, spikegram is expected to yield less host interference at the decoder (see

Fig.13 and Fig.14 for experiments regarding the dependence of the error rate and

the quality with the sparsity of the spikegrams).
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— Efficient embedding into robust coefficients:

The watermark bits are inserted only into large amplitude coefficients obtained

by PMP, where all inaudible gammatones have been a priori removed from the

representation.

4.5 Two-Dictionary Approach

The watermark bit stream is symbolized by b which is an M2 × 1 vector (M2 < M). The

goal is to embed the watermark bit stream into the host signal. K, a P ×1 vector (P < M2),

is the key which is shared between the encoder and the decoder of the watermarking system.

Also, the sparse representation of the host signal x on the gammacosine dictionary (i.e.,

αi) is assumed to be known.

The proposed method relies on the fact that the change in signal quality should not be

perceived when changing the phase of specific gammatone kernels. Moreover, it is called a

two dictionary approach, as a candidate kernel for watermark insertion, is adaptively selected

from a gammacosine or gammasine dictionary. Note that compared to traditional phase

modulation techniques which impose phase modulation on the block based representation

of signal on tones, here we make phase modification on gammatones in the sparse kernel

based representation of signal.

4.5.1 Multi-bit watermarking using the spikegram

For multi-bit watermarking, the host signal x[n] (x in vector format) is first represented

using the kernel based representation in (4.1). First, M2 gammatones gk[n] from the

representation in (4.1) are selected (the selection of watermark kernels is explained in

section 4.5.5). These gammatones form the watermark dictionary D1 and carry the

watermark bit stream bk, k = 1, 2, .., M2. Other M1 = M − M2 kernels form the signal

dictionary D2. The signal and watermark dictionaries are disjoint subsets of the gammatone

dictionary used for sparse representation in (4.1), thus D1 ∩ D2 = ∅. Each watermark bit

bk serves as the sign of a watermark kernel. Hence (4.1) becomes

y[n] =
M1
∑

i=1

αigi[n] +
M2
∑

k=1

bk |αk| gk[n] (4.3)
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Figure 4.3 Watermark insertion using the two-dictionary method. First, the
spikegram of the host signal is found using PMP with a dictionary of 25-channel
gammacosines, located at each time sample along the time axis. Then for each
processing window and each channel and based on the embedding bit b, the
gammacosine, or gammasine (located at a blue circle) with maximum strength
factor (mc or ms) is chosen for the watermark insertion. In this work, gammatone
channels Ch′s are selected in the range of 1-4 and 9-19 (odd channels only) for
the watermark insertion. Also, to get the same embedding strength for different
embedding channels, processing windows of different channels have the same
length.

where y[n] is the watermarked signal. In (4.3), if the watermark and signal dictionaries use

the same gammatone kernels, the watermarking becomes a one dictionary method. In one

dictionary method, the watermark bits are inserted as the sign of gammatone kernels. In two

dictionary method, in addition to the manipulation of the sign of gammatone kernels, their

phase also might be shifted as much as π/2, based on the strength of the decoder. Hence,

for the two-dictionary approach, each watermark kernel is chosen adaptively from a union

of two dictionaries, one dictionary of gammacosines and one dictionary of gammasines.

The pth watermark kernel in the watermark dictionary is found adaptively and symbolized

with f p which is either a gammasine or a gammacosine.

Thus for the two dictionary method, the embedding equation in (4.3) becomes

y[n] =
M1
∑

i=1

αigi[n] +
M2
∑

k=1

bk |αk| fk[n] (4.4)



62 CHAPTER 4. COPYRIGHT PROTECTION IN SPARSE DOMAIN

and for the decoding of the pth watermark bit, we compute the projections of the water-

marked signal on the pth watermark kernel as follows

< y, f p >=
M1
∑

i=1,i6=p

αi < gi, f p > +

bp |αp| +
M2
∑

k=1,k 6=p

bk |αk| < fk, f p >

(4.5)

The number of samples used to compute the projection in (4.5) is equal to the gammatone

effective length. The goal is to decode the watermark bit as the sign of the projection

< y, f p >. We later show how to find the best watermark kernels so that the first two

terms in the right side of (4.5) have the same signs as the watermark bit bp. The right

term in the right side of (4.5) is the interference the decoder receives from other watermark

bit insertions. To remove this interference term, the watermark gammatones should be

uncorrelated. In fact, to design the watermark dictionary, we choose a subset of the full

overcomplete dictionary in such a way that the watermark kernels are spectro-temporally

far enough and hence uncorrelated. Thus the watermark bits will be decoded independently

even if there are correlations between watermark and signal gammatones, that are shown

in (4.7). Hence, in Fig. 4.3, for each channel and time sample, two neighbor watermark

kernels should be separated with at least one effective length and at least one channel.

Note that with this assumption, the correlation between watermark gammatones will be

less than 0.02. As embedding of multiple watermark bits are performed independently,

thus in next, only the single bit watermarking using the two dictionary method is explained

in next sections.

4.5.2 The proposed one-bit embedder

Equation (4.1) is used to resynthesize the host signal x from sparse coefficients and

gammacosines.

Now, we want to embed one bit b ∈ {−1, 1} from the watermark bit stream b by changing

the sign and/or the phase of a gammacosine kernel gp (the pth kernel found by PMP, still

to be determined later in this section) with amplitude αp (to be determined) located at a

given channel and processing window (each processing window is a time frame including

several effective lengths of a gammatone, Fig.4.3).

To find an efficient watermark kernel f p which bears the greatest decoding performance

for the watermark b, we write the 1-bit embedding equation as follows
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y[n] =
M
∑

i=1,i6=p

αigi[n] + b |αp| fp[n] (4.6)

where the watermarked kernel f p for a given channel number can be a gammacosine

(gc) or a gammasine (gs) which are zero and π/2 phase-shifted versions of the original

gammatone kernel gp, respectively. The correlation between the watermarked signal y and

the watermarked kernel f p, is found as below

< y, f p >=
M
∑

i=1,i6=p

αi < gi, f p > +b |αp| (4.7)

Hence, to design a simple correlation-based decoder, the sign of the correlation in the left

side of (4.7) is considered as decoded the watermark bit. In this case, for correct detection

of the watermark bit b, the interference term should not change the desired sign at the

right hand side of (4.7). Moreover, the gammatone dictionary is not orthogonal, hence the

left term in the right side of (4.7) may cause erroneous detection of b. For a strong decoder,

two terms on the right side of (4.7), should have the same sign with large values. We later

show that by finding an appropriate gammacosine or gammasine in the spikegram, the

right side of (4.7) can have the same sign as the watermark bit b. In this case, the module

of correlation in (4.7) is called watermark strength factor mp for the bit b and a greater

strength factor means a stronger watermark bit against attacks. In this case, (4.7) becomes

< y, f p >= bmp (4.8)

For a large value strength factor (and with the same sign of the watermark bit), we

search the peak value of the projections when a gammatone candidate (gammacosine or

gammasine) is projected to each column of the dictionary. Thus, for a given channel, a

processing window and watermark bit b, we do the following procedure to find the phase,

position and the amplitude of the watermarked kernel f p (Fig. 4.4). For a given channel,

we consider the watermark gammatone candidate f p (the pth gammatone kernel in the

signal representation of (4.1)) to be a gammacosine gc or a gammasine gs. Then, do the

following steps for both gammasine and gammacosine candidates:

— Shift the watermark gammatone candidate f p alongside all processing windows,

at time shifts equal to multiples of the gammatones’ effective length. For each

shift compute the correlation of the watermarked signal with the sliding watermark

candidate kernel. Then, find the absolute maximum of the correlation (watermark

strength factor)
∣

∣

∣< y, f p >
∣

∣

∣ using (4.7) (Fig.4.3). The result is a strength factor,
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Figure 4.4 The proposed embedder for a given channel and processing window.
The gammasine or gammacosine with maximum strength factor is chosen as the
watermark kernel and its amplitude is set to its associated sparse coefficient in
the spikegram. Finally (4.6) is used to resynthesize the watermarked signal y (in
vector format). ms and mc are respectively the strength factors for gammasine
candidate and gammacosine candidate.

symbolized as mc for gammacosine, located at time sample kc with amplitude αc and

also another strength factor, symbolized as ms for a gammasine kernel located at ks

with the amplitude αs. Thus mc = |< y, gc[n − kc] >|, ms = |< y, gs[n − ks] >|.
— Afterwards, the gammacosine or gammasine with greater strength factor is chosen

as the final watermark gammatone f p and its time shift (sample), amplitude and

phase are registered. Gammatone or gammasine with greater strength factor is

chosen as the final watermark gammatone f p with the final watermark strength

factor being mt = max(mc, ms). The respective kc or ks, amplitude αc or αs and

phases are kept. Therefore, the algorithm finds the optimal watermark gamatone

from two dictionaries including one dictionary of gammacosines and one dictionary

of gammasines.

— After all, the watermarked signal is synthesized using (4.6), f p with its amplitude

set to b |αp|. This is equivalent to finding a time-channel point in the spikegram (

Fig.4.3) where the optimal position for embedding is found. Then, gp is replaced

with the watermark gammatone f p.

4.5.3 The proposed one-bit decoder

At the decoder, the same search procedure, used in the embedder to find the watermarked

kernel candidate, is applied. Therefore for a given channel and processing window, the

decoding procedure is shown Fig. 4.5.

For a given channel, suppose the watermark gammatone candidate f p to be a gammacosine

gc or a gammasine gs. Then do the following steps:
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Figure 4.5 The proposed one-bit decoder. The projections with maximum
absolute value for gammacosines and gammasines are found as Pc[kc] and Ps[ks]

and at time sampes kc and ks respectively. The watermark bit b̂ is considered as
the sign of the projection with the largest absolute value.

— Shift the watermark kernels gc and gs alongside the processing window at time

shifts (respectively kc or ks) equal to multiples of the gammatone’s effective length.

For each k (either kc or ks), compute the correlation of the watermarked signal with

the sliding watermark kernel candidate.

— Then, find the absolute maximum of the correlation Pc[k] = |< y, gc[n − k] >|
and Ps[k] = |< y, gs[n − k] >| (Fig.4.5). The result is one absolute maximum

correlation mc = max(|Pc[k]|) for a gammacosine located at the time sample kc with

the amplitude αc and also another absolute maximum correlation ms = max(|Ps[k]|)
for a gammasine kernel located at ks with the amplitude αs.

— Finally, if |mc| > |ms| then b = sign(Pc[kc]) otherwise b = sign(Ps[ks]).

In Fig.4.6, the watermark strength factor is plotted versus the embedding channel ranges

for the cases of one dictionary (when using only gammacosine kernels) and two dictionaries

(when both gammasine and gammacosine kernels are used). As expected, the strength

factors for the two-dictionary method is all the time greater than the one for one dictionary

method. The maximum improvement occurs for middle channels between 5 and 16. Also,

towards greater embedding channel ranges, the strength factor becomes smaller. This is

because, for the outside of this channel range, we have usually small coefficient values,

which do not contribute too much to the strength of the watermarking systems.

For an insight about the robustness of the methods against 20 dB additive white Gaussian

noise (AWGN), the average maximum peaks of the noise signal is plotted as a horizontal

line. As is seen, the embedding channel ranges which are robust against 20 dB white

Gaussian noise are wider for two dictionary method compared to one dictionary method

(for one dictionary method it is below channel number 16 while for the two-dictionary

method, it spans 1-24 channel range.)

As illustrated in Fig.4.3, for channel j, each processing window includes several effective

lengths of the gammatone, lj. Thus, for each channel j, the algorithm searches for a
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Figure 4.6 The average watermark strength factor for one-dictionary (only
gammacosine used) and two-dictionary (gammacosine and gammasine used)
methods versus embedding channel range. Simulations are done on 5 hours (100
signals, 3 minutes each) of different music genres and English voices. In each
embedding /decoding experiment, watermark is inserted in a specific channel
range with a 45 msec processing windows. The maximum peak of the noise
with 20 dB AWGN is also plotted as a horizontal dashed line in black. The
95% confidence intervals are plotted as vertical lines at the center of the average
results for three consequensive channels. Input signals are normalized to unit l2

norm.

watermark gammatone candidate among dLP

lj
e gammatones (Fig. 4.3, vertical red lines in

each processing window).

Thanks to the content-based aspect of the approach, phase shifts and sign changes occur

adaptively. Therefore, depending on the signal, change in the sign and phase of the

gammatone is not necessary when generating the watermark. In that situation, some

watermark gammatones are similar in shape and phase to signal gammatones. This is

one of the good features of the proposed method which contributes to the quality of the

watermarked signals.

4.5.4 Robustness of the proposed method against additive white

Gaussian noise

We consider the robustness of the proposed method against additive white Gaussian

noise (AWGN) as the basic criterion for robust watermarking. For robust watermarking

evaluation, we suppose that an AWGN z[n] is added to the watermarked signal y of (4.6).
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Therefore, (4.8) becomes

r =< y, f p >= mpb+ < z, f p > (4.9)

in which, r is the correlation computed for the decoding of bit b, z is the AWGN, with

mean zero and variance σ2
n. As the gammatone kernel f p has zero mean and unit variance,

mean and variance of < z, f p > are respectively 0 and σ2
n. It is assumed that for each

channel number c, the strength factor mp are samples from a white Gaussian random

process with a specific mean λ and variance σ2 (Fig.4.6). Assuming that the decorrelation

between the watermark strength factor for channel k and noise zn, the mean mrb and

variance for the correlation term r in (4.9) are, mr = mpb and σ2
r = σ2

n + σ2. Therefore, by

considering the decoded watermark bit b̂ = sign(< y, f p >), the error probability of the

decoder for channel c is as below

pk = Pr{b̂ < 0 | b = 1} = 1
2
erfc( mr

σr

√
2
)

= 1
2
erfc( λk√

2(σ2
n+σ2)

)

(4.10)

Where erfc(.) is the complementary error function. In (4.10), the probability of error is

low when we have larger mean and smaller variance for each channel’s strength factor.

In Fig.4.7, the estimated error probability of the decoder in (4.10) is plotted versus the

embedding channel number and different levels of signal to noise ratio (SNR). As is seen,

for 20 dB SNR, the error probability of the first 20 channels stay below .04. Moreover, an

additive noise with lower SNR has a more destroying effect on channels with higher center

frequencies.

4.5.5 Designing efficient dictionaries for high quality robust wa-

termarking

To design the watermark dictionary, we consider three conditions. First, embedding into

low frequency channels (1-4) and high frequency channels (greater than 9) is preferred.

Based on our empirical results, we do not add watermarks in channels 5 to 8, because of

the energy greater sensitivity of the ear in this channel range.

Second, embedding into lower channels bears more robustness against AWGN attack

(Fig.4.6). Lastly, watermark gammatone kernels should be uncorrelated. They should be

separated at least by one channel (along the channel axis) and one effective length (along
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Figure 4.7 The error probability of the decoder under additive white Gaussian
noise with different signal to noise ratios. The mean and variance of the watermark
strength factor are estimated from 100 signals including music and English voices,
3 minutes each.

the time axis). The final implementation uses channels 2, 4, 9, 11, 13, 15, 17 and 19 for

watermark insertion.
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Figure 4.8 The time domain waveforms for the original signal (blue) and
the difference between the watermarked and the original signal (red). The
original signal includes a solo harpsichord instrument sampled at 44.1 kHz. Each
gammatone (a spike) in the difference signal (red) indicates the insertion of one
watermark bit.

4.6 Experimental Setup

Table 4.2 lists the simulation conditions.

Test signals

For the quality test, ABC/HR tests [ITU, 1997] are done on pieces of 10 seconds of 6 types

of audio signals: Pop, Jazz, Rock, Blues, Speech (in French) and Classic. Titles of the
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musical pieces are listed in Table 4.3. For the robustness test, simulations are done on

100 audio signals, 3 minutes each (5 hours in total) including different music genres and

English voices. Each signal is sampled at 44.1 kHz and has 16-bit wave format. A sample

original signal and the original signal minus the watermarked one are plotted in Fig.4.8.

Sparse signal representation using PMP and gammatone dictionary

In all experiments, the sparsity of PMP representation is 0.5. A bank of 25 gammacosine

kernels distributed from 20 Hz to 20 kHz is implemented to generate spikegrams according

to the conditions given in Table 4.2.

Resynchonization and Watermark stream generation

The first 13 bits of the embedded bit stream per each second is devoted to the synchroniza-

tion Barker sequence +1+1+1+1+1-1-1+1+1-1+1-1+1 [Borwein and Mossinghoff, 2008].

This allows synchronization between the decoder and encoder. The other bits in each second

are devoted to the watermark bit stream b. For robustness against cryptographic attacks

[Voloshynovskiy et al., 2001], at each frame, the watermark bit stream b is multiplied by a

Pseudo Noise (PN) sequence [Klein, 2013b] p in which pi ∈ {−1, 1}. Thus each embedded

bit in the watermark stream will be bipi.

For synchronization between the encoder and the decoder, we define a 1000 ms rectangular

sliding window, multiply it to the watermarked signal at the decoder and decode the

watermark bits from all 22 successive processing windows in the sliding window. Note that

each 1 second sliding window includes 22 processing windows. Then, if the Barker code

is decoded with more than 75 % accuracy, then the rest of decoding is performed. If the

synchronization Barker code is not acquired, the sliding window is shifted and the same

mentioned procedure is continued. Note that the signal is not shifted for synchronization,

thanks to the time shift invariance property of spikegram representation [Smith and Lewicki,

2005]. Moreover, using the mentioned synchronization approach, all 45 ms processing

windows inside each 1000 ms sliding window are also synchronized. A corruption in one

processing window, might result in at most 45ms×44100 = 1984 corrupted samples. In

this case, to resynchronize the decoder with the embedder, there might be a need to

search for the barker code with 1984 shifting of the sliding window. As the decoding is

done in real time, the resynchronization procedure is not computationally expensive. For

resynchronization of critically time rescaled watermarked signals, a search approach to find

the best time rescaling ratio, could be applied as in [Arnold et al., 2014].
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Table 4.2 The default computer simulation conditions

Quality test Audio signals of Table 4.3, 10 seconds each
Quality measure Subjective difference grade [ITU, 1997]
Robustness test 100 audio signals, 3 minutes each

50 speech signals [VOA, 2015], 50 music signals [Bensound, 2015]
Signal characteristics sampled at 44.1 kHz, quantized at 16 bits
Processing window 45 msec

2D spikegram 25-channel gammatone filter bank [Strahl and Mertins, 2009]
repeated each time sample

Sparse representation PMP on 10- second frames, with, 50% sparsity
Synchronization code 13-bit Barker sequence [Borwein and Mossinghoff, 2008]
Robustness measure Bit Error Rate (BER)

Table 4.3 Excerpts of 10 seconds from these audio files are chosen for the
ABC/HR [ITU, 1997] listening test, and the ODG results after watermarked
(γ = .01)

Audio Type Title (author or group Name) ODG
POP Power of love (Celine Dion) -.41

Classical Symphony No. 5 (Beethoven) -.85
Jazz We’ve got (A tribe Called Quest) -.37

Blues Bent Rules (Kiosk) -.23
Rock Enter Sad man (Metallica) -.69

Speech French Voice (A Female) -.1

Finally, for the extraction of the watermark bits, the decoder uses the key (K) to generate

a PN sequence p. Then each pi multiplies with its bit stream bipi to find the watermark bit

bi (hint: bipipi = bi ). If the watermarked signal is shifted one sample along the time axis,

then the required time for the resynchronization equals the decoding time of one input

frame (1 second) minus the preprocessing time.

4.7 Experimental Evaluation

As a preprocessing task both for the encoder and the decoder, a linear feedback shift register

(LFSR) should be designed to generate a PN sequence. The key K includes log2(M2)

bits as the initial state of the LFSR. It also comprises two decimal digits associated to

the spikegram generation, including, number of channels Nc and time shifts q (in this

work, Nc = 25, q = 1) meaning two “7-bit” ASCII codes. Thus 14 bits are devoted to

the spikegram parameters. In total, the key includes 14+log2(M2) bits. The spikegram
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Figure 4.9 Generation of the embedded watermark stream from the watermark
bits and synchronization code. A 13-bit synchronization Barker code is inserted
into each second of the signal. The watermark bits in each frame are multiplied
by a PN sequence.

parameters and the initial state of the LFSR are part of the key which increases the

robustness of the proposed method against cryptographic attacks.

4.7.1 Quality

The embedding channels 2, 4, 9, 11, 13, 15, 17, 19 are selected for watermark insertion.

In the embedding channels from 9 to 19, each watermark bit is inserted through three

watermark kernels with the highest strength factors. However, for the first two channels

(2 and 4), one watermark bit is inserted in each processing window. Therefore, the total

number of watermark insertions in each processing window LP (in second) is 2 + 6 × 3 bits,

and we have 1/LP processing windows per second. Hence, the total number of embedded

bits per second is M2 = 20/LP , while the number of distinct embedded watermark bits per

second is 8/LP .

Moreover, the total distortion depends on the quality of PMP representation. As the

PMP coefficients for the silent parts are zero, the proposed method also does not insert

watermark into the silent parts of the signal. Thus the watermarking payload is calculated

for the non-silent parts of the signal. As the PMP coefficients change from signal to signal,

the robustness and the quality of the algorithm is also content dependent.

To assess the quality of the watermark signals, ABC/HR listening tests were conducted

based on ITU-R BS.1116 [ITU, 1997] on segments of 10 seconds of audio signals given

in Table 4.3. Experiments are conducted for different embedding percentage γ (γ is the

percentage of embeddings per one second frames and equals M2/44100. Note that, γ is

different from payload). For the quality measurement, fifteen random subjects (varying from
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experts to people with no experience in audio processing, aged between 20-50 including

male and female) participated in 5-scale ABC/HR tests by listening to signals using

bayerdynamic DT250 headsets in a soundproof listening room. In Fig.4.10, the average
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Figure 4.10 Subjective difference grade (SDG) as a function of embedding
percentage factor γ for 4 minutes of each audio clip, described in Table 4.3,
including POP (a), Classical (b), Jazz (c), Blues (d), Rock (e), Speech (f). The
bottom ends of the bars indicate SDG means and the vertical red line segments
represent the 95% confidence intervals surrounding them. γ = 0 indicates the
original signals and γ = .01 is also used to generate watermarked signals for the
robustness test.

subjective difference grade (SDG) [ITU, 1997] for several types of test signals in respect

with the embedding percentage factor γ is plotted. The tips of the bar charts and the

vertical red line segments on them indicate the mean SDG values and their associated 95

% confidence intervals respectively. The SDG indicates the difference between the average

quality grade of the watermarked signal (given by listeners) minus the quality grade of the

original signal (which is zero). The SDG is a quality difference grade between zero and -5

and a SDG strictly smaller than -1 means low quality.

As is seen from Fig.4.10, by increasing the embedding percentage factor γ, the quality

of watermark signals, except for the classical audio, degrades and the confidence interval
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widens. For the classical audio, by increasing the embedding percentage γ from .05 to .1,

the average SDG, rated by listeners, improves. One reason for this is because the selected

classical signal in our test includes no silent and has a noise like spectrum. Thus adding a

small amount of watermark noise (by increasing γ) might not be exactly perceived by the

listeners.

In all results of Fig.4.10, when γ is not higher than .01, the SDG is greater than −0.5 and

confidence intervals are smaller than 0.5 (vertical red lines) and cross the line SDG = 0.

Thus for the robustness test, to ensure high quality for the watermark signals, γ is set to

.01.

A sample of 10 seconds of each original signal type and its associated watermarked signal

can be downloaded at the link: http://alum.sharif.ir/~yousof_erfani/

The signals in Table 4.3 are watermarked with γ = .01, their objective difference grade

(ODG) results are computed using the open source PEAQ [Kabal, 2002] test and reported

in Table 4.3.

4.7.2 Payload and Robustness

The payload (bit rate) of the method is defined as the number of watermark bits embedded

inside each second of the host signal while these bits are decoded accurately at the decoder.

For the case of γ = .01, the number of watermark kernels is M2 = .01 ∗ 44100 = 441.

Hence, the processing window length equals LP = 20/441 = 45msec and the maximum

attainable payload for the proposed method is 8/45msec = 177 bps. Fig.4.11 shows how

many embedded watermark bits are perfectly recoverable under different types of attacks.

Table 4.4 Parameters used for the attack simulations

Attack Condition set up values
No Attack - -

Resampling Frequency (KHz) 22, 16
Requantization bits 8, 12

Low-pass filtering 2th Butterworth, Cut-off 0.5, 0.7× 22.05Hz
Additive white noise SNR (dB) 20, 25, 30

MP3 compression Bit rate (kbps) 64, 32
Random cropping Cropping per total length 0.125%, 0.250%
Amplitude Scaling Scale ratio 0.5, 2

Pitch scaling Scale ratio 0.95, 1.05
Time scaling Scale ratio 0.95, 1.05
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We use the same number of watermark kernels both for higher and lower bit rates for the

results reported on Fig.4.11. Hence, in the case of lower bit rates, we use larger repetitive

coding factor. Therefore, the watermark decoder for lower bit rates is stronger compared

to the case of higher bit rate embeddings. The high quality of the average watermarked

signals are confirmed for a payload of 177 bps (γ = .01) in Fig.4.10 and therefore for other

bit rates in Fig.4.11.

The Bit Error Rate (BER) of the decoder is defined as the number of erroneously detected

bits at the decoder per all embedded bits. In Fig. 4.11, to test the robustness of the

proposed method, the BER was computed for a variety of attacks including: noise addition,

MP3 compression, re-sampling, low-pass filtering and re-quantization. The parameter

setting for each attack is given in Table 4.4.

The audio editing tools used in the experiment are CoolEdit 2.1 [CoolEdit, 2013] (for

re-sampling and re-quantization) and Wavepad [WavePad, 2013] Sound Editor for MP3

compression. Other attacks of Table 4.4 are written in MATLAB [Matlab, 2014]. In

addition, for all attacks, frame synchronization is performed using the resynchronization

approach mentioned in section IV.3. In Fig.4.11, the most powerful attacks are the MP3

32 kbps (with average robust payload of 56.5 bps) and the MP3 64 kbps (with average

robust payload of 77 bps). The proposed method has robustness against low-pass filtering,

with a robust payload greater than 89 bps. Also, the robust payload for all other attacks is

around 95 bps.

Moreover, random cropping is done by setting to zero, 0.125 or 0.250 percent of the signal’s

samples, at random places, and in every 1-second frame. By random cropping, we have

55 or 100 corrupted samples per second. Hence, random cropping changes the spikegram

coefficients obtained by PMP at the decoder. However, the decoder searches for high peaks

in the spikegram which are robust to mild modifications (i.e., very low value coefficients

are very prone to cropping). As we increase the percentage of cropped samples, we expect

more degradation on high value coefficients and hence more BER.

As an interesting observation, when a 10 dB additive white Gaussian noise was added

to the signal, we observed that more than 90 percent of the error occurs because of

the misdetection of the location and type of correct gammatone (gammacosine versus

gammasine) at the decoder. This is because under attacks, many peak amplitudes in the

projection search space might be very close to the true peak that might be misdetected.

Under moderate attacks, it is less probable that the sign of the high amplitude peaks be

changed.
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Figure 4.11 Robustness test results. 5 hours of different music genres and
English speech (100 signals, 3 minutes each) with conditions presented in Table
4.2 are watermarked. The average BER versus the payload (bps) is plotted
when the watermarked signals are exposed to the attacks (with conditions listed
in Table 4.4) including (a) No attack (b) AWGN (c) Re-quanitization (d) Re-
sampling (e) MP3 compression (f) Pitch scaling (g) Amplitude scaling (h) LPF(i)
Time scaling (j) Random cropping. γ = .01, sparsity of the signal coefficient
vector is forced to 0.5. The robust payload for the no-attack, and amplitude
scaling conditions is 177 bps.

In Fig.4.12, the average bit error rate of the decoder is plotted versus the attack strength

level for important attacks including time rescaling (with rescaling factors between 1.05 and

1.13), cropping (with corruption between 0.64% and 0.32%) and LPF (low pass filtering,

2th order Butterworth with cut-off frequency between 4 kHz and 22 kHz). The payload in

these experiments equals 100 bps. The experimental conditions are the same as in Table

4.4. As is seen, even for low pass filtering (cut-off frequency greater than 6 kHz), the bit

error rate remains smaller than 10 %. For cropping attack, (0.250 percent of samples are

randomly put to zero), the bit error rate is small. The strongest attack is time rescaling.

With a factor of 1.10, we still have more than 10 percent of bit error rate.
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Figure 4.12 The average BER of the decoder under different attack strengths.

Note that our approach does not embed watermark into the 5 most high frequency channels

leading to a robust audio watermarking method against low pass filtering.

Moreover, there is a trade-off between the quality of the signal in (4.1) and the BER of the

decoder. In Fig.4.13 and Fig. 4.14, respectively, the average (ODG) of the watermarked

signals and BER of the decoder are plotted versus the number of gammatone channels

and the density of the coefficients (when the payload is 100 bps, and there is no attacks).

Results are obtained for 5 hours of different music genres and English speech (100 signals, 3

minutes each). Increasing the number of gammatone channels and density means using more

coefficients in the sparse representation. Hence, sparsity imposes a trade-off between quality

and bit error rate of the decoder. Using more coefficients for the sparse representation

results in more average ODG in Fig. 4.13 for the watermarked signals and at the same

time, it results in more average BER in Fig.4.14.

When density increases (sparsity is reduced), the BER and ODG becomes closer. This is

because, for a greater density, we use more PMP iterations. New gammatones found with

the last iterations have smaller coefficients and therefore have less impact on the quality

and the BER of the decoder.
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Figure 4.13 Average objective difference grade versus the number of gammatone
channels in the spikegram and density (density=1-sparsity).
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Figure 4.14 Average BER of the decoder versus the number of gammatone
channels in the spikegram and density.

4.7.3 Robustness of the proposed method against a new genera-

tion codec, USAC

In this section, the robustness of the proposed method is evaluated against a new generation

codec called unified speech and audio coding (USAC) [Neuendorf et al., 2009]. USAC

applies linear prediction in time domain (LPD) along with residual coding for speech signal

segments and frequency domain (FD) algorithms for music segments. Also it is able to

switch between the two modes dynamically in a signal-responsive manner. In Fig.4.15, the

bit error rate results of the proposed decoder under the USAC attack are plotted. As is

seen, for channels 2,4 and 8, the bit error rate is smaller than .03. As the processing window
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length for the USAC experiments is 200 msec, hence 5 bits per channel is embedded in

each second. Thus the robust payload against USAC is between 5 bps-15 bps.
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Figure 4.15 The BER of the proposed decoder under the unified speech and
audio coding (USAC) [Neuendorf et al., 2009] for different bitrates (24 kps
and 20kps) and different modes (linear prediction (LPD) and Fourier domain
(FD)). The horizontal axis indicates the embedding channel. As is seen, only for
embedding channels 2, 4 and 8, the BER is smaller than .02. The processing
window length is 200 msec. Also, the BER for LPD mode is slightly larger than
the BER for FD mode. The experiments are done on 100 audio signals, including
different music genres and English voices, 3 minutes each.

4.7.4 Real-time watermark decoding using the proposed method

The computational complexity of the proposed scheme was analysed on a personal computer

with an Intel CPU at a frequency of 2.5 GHz and DDR memory of 512 MB using a MATLAB

7 compiler. The decoding procedure includes computing projections and finding a maximum

value between several projections. Our experiments show that the required time for the

decoding of one second of the watermarked signal is 780 msec. Also the preprocessing

time that includes creating the gammacosine and gammasine kernels, the pseudo noise, is

around 2.3 second. This indicates that, after the initial preprocessing stage, the proposed

method can be used for real-time decoding of the watermark bits.

4.7.5 Comparison to recent audio watermarking techniques

Table 4.5 compares the proposed method for robust audio watermarking and several recent

methods in terms of robustness against 32 kbps MP3 attacks. As is seen, the proposed
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method has a greater robust payload against 32 kbps MP3 compression compared to

the mentioned recent methods. In the proposed method, PMP removes the coefficients

associated with inaudible content of the signal which are under the masking thresholds and

the watermark bits are inserted into high value coefficients. Therefore, this helps having

more robustness against MP3 attack in which the perceptual masking is also used. Note

that, the conditions of attacks in the caption of Table 4.5 are comparable to the conditions

described in these references. Also, to the author’s knowledge, this is the first report on

the robustness of an audio watermarking system against next generation codec USAC. A

bit error rate smaller than 5% is achieved with an averaged payload comprised between 5

to 15 bps.

4.7.6 Discussion: prior works based on non-sparse decomposi-

tion and perceptual representation of signals

There are several methods which might have similarities to the proposed approach. In

[Coumou and Sharma, 2008], a speech watermarking method is proposed that uses pitch

modifications and quantization index modulation (QIM) for watermark embedding and

is robust against de-synchronizaion attacks. Although [Coumou and Sharma, 2008] is

robust against low bit rates speech codecs such as AMR codec, no payload results are

given for audio signals. In [Khaldi and Boudraa, 2013], after empirical mode decomposition

of the audio signals, the watermarking embedding is done on the extrema of last IMF

(intrinsic mode function) using QIM. Table 4.5 confirms that our approach outperforms

this method in terms of robustness against 32 kbps Mp3 compression. In [Wu et al.,

2005], the watermark is inserted into the wavelet coefficients using QIM. Also, in [Kirovski

and Hagai, 2003], the spread spectrum (SS) is applied on MDCT coefficients along with

psychoacoustic masking for single-bit watermarking. Long duration audio frames are used

along with cepstral filtering at the decoder. There are several differences between our

approach and the above-mentioned transform domain methods. First, we evaluate the

efficiency of a new transform, called spikegram, for robust watermarking. We introduce a

new framework for audio watermarking called two-dictionary approach. The encoder and

the decoder search in a correlation space to find the maximum projection (minimum signal

interference). Second, the proposed approach is a phase embedding method on gammatone

kernels with uses of masking. Gammatone kernels are the building blocks to represent

the audio signal. Watermark bits are inserted into the kernels that are most efficient for

decoding. Third, the proposed method takes care of efficient embedding into non masked
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Table 4.5 Comparison to recent methods. The average results for 5 hours of
different music genres and English voices have been compared to the average
reported results. During the attacks, the watermarked signals are modified as
follows: for the random cropping (Crop), the number of cropping per total length
equals 0.125%. For re-sampling, the signals are re-sampled at 22.05 kHz. For
re-quantization, the signals are re-quantized at 8 bits. For AWGN, 20dB additive
white Gaussian noise is added to the signal. For pitch and amplitude scaling, the
pitch and the amplitude of the signals are scaled with the .95 and 0.5-2 scaling
ratios, respectively. For LPF, signals are low pass filtered with cut-off frequency
equals to 11.025 kHz. NM means “not mentioned”.

Method Payload(bps) MP3(kbps),BER Crop AWGN Resample ...

Bhat [Bhat et al., 2010] 45.9 32, .00 .00 .00 .00 ...

Khaldi [Khaldi and Boudraa, 2013] 50.3 32, 1.00 .00 .00 1.00 ...

Yeo [Yeo and Kim, 2003] 10 96, ≈.20 NM NM .00 ...

Shaoquan [Wu et al., 2005] 172 96, ≈.07 .00 <3.00 .00 ...

Zhang [Zhang et al., 2012] 43.07 64, .22 NM 8.64 .63 ...

Nishimura [Nishimura, 2012] 100 64, .00 NM ≈1.0 .00 ...

Our Method ≈56.5 32, .00 .00 .00 .00 ...

Requantization, 8 bits Pitch Scaling Amplitude Scaling LPF

.00 NM NM .00

.00 NM NM .00

.00 NM .00 NM

.00 NM NM NM

1.39 NM .04 .46

.00 .00 .00 .00

.00 .00 .00 .00

coefficients which make it robust against attacks such as universal speech and audio codec

(24 kbps USAC) [Neuendorf et al., 2009] and 32 kbps MP3 compression. It finds the sparse

high amplitude coefficients, removes inaudible gammatones which are located under other

gammatones’ perceptual masks. Then, in each processing window, the proposed method

adaptively finds the greater coefficient. Also, thanks to the PMP sparse representation,

many coefficients are removed from the representation which fall under masks. Hence,

again the signal interference is reduced at the decoder.

4.7.7 Robustness against analogue hole experiments

Although it is not the main goal of the proposed watermarking system to be robust to the

analogue hole, its robustness is evaluated in a preliminary experiment. In Fig. 4.16, the bit

error rate of the proposed method against a simulated real room are given using the image
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source method for modeling the room impulse response (RIR) [All, 1979], [E. Lehmann

and Nordholm, 2007]. We embed one bit of watermark in each second of the host signal

(1 bps payload). We use an open source MATLAB code [Lehman, 2016], [E. Lehmann

and Nordholm, 2007] to simulate the room impulse responses. A cascade of RIR of a

4m × 4m × 4m room with a 20 dB additive white Gaussian noise is considered as the

simulated room impulse response. Also, only one microphone and loud speaker are modeled.

The experiments are done for three distances d between the loudspeaker and the microphone

including d = 1, 2 and 3 meters (d denotes the distance between the microphone and the

speaker). For watermark embedding, all the bits in each 1-second frames are generated

using a pseudo random number generator. A spread spectrum (SS) correlation decoder is

used. Hence, the 1-second sliding window is shifted sample by sample until the correlation

of the SS decoder is above 0.75. Then, the watermark bit is decoded as the sign of the SS

correlation. Results are reported in Fig.4.16. From Fig.4.16, the decoder can be robust

against the analogue hole, when d = 1 meter, with a BER lower than 5 %. While for

d = 2 or 3 meters, the BER increases sharply. The experiments are done on the 5 signals

presented in Table 4.3.

4.7.8 Robustness against time rescaling attack

In the context of 1-bit watermark decoding, we first compute the correlation between the

watermarked signal with a sliding gammasine or gammacosine candidate for the given

channel j and different time samples k = 1, 2, .., NP where NP is the number of time

samples in the processing window. Then, the decoded watermark bit is the sign of the

peak correlation, i.e, gopt = argmaxgj,k
(|< y[αn], gj,k >|), b̂ = sign(< y[αn], gopt >), where

< y[αn], gj,k[n] >=< y[n], gj,k[
n

α
] >, k = 1, 2, .., NP

(4.11)

When α is close to one, the position of peaks in (4.11) do not change compared to the

no-attack situation. This results in robustness against mild time rescaling for single bit

watermarking. In multibit watermarking, the watermark gammatone is inserted in odd

channel numbers. Thus, when α is close to one, odd channel numbers have weak correlations.

This means that time rescaling, with small rescaling factor, do not affect the decoder of the

multi-bit watermarking. Figure 4.12 reports the bit error rate for α between 1.05 and 1.13.
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Figure 4.16 The bit error rate of the proposed method against a simulated
analogue hole in combination with a 20 dB additive noise.

4.8 Conclusion

A new technique based on a spikegram representation of the acoustical signal and on the

use of two dictionaries was proposed. Gammatone kernels along with perceptual matching

pursuit are used for spikegram representation. To achieve the highest robustness, the

encoder selects the best kernels that will provide the maximum strength factors at the

decoder and embeds the watermark bits into the phase of the found kernels. Results show

better performance of the proposed method against 32 kbps MP3 compression with a robust

payload of 56.5 bps compared to several recent techniques. Furthermore, for the first time,

we report robustness result against USAC (unified speech and audio coding) which uses a

new standard for speech and audio coding. It is observed that the bit error rate is still

smaller than 5% for a payload comprised between 5 and 15 bps. The approach is versatile

for a large range of applications thanks to the adaptive nature of the algorithm (adaptive

perceptive masking and adaptive selection of the kernels) and to the combination with well

established algorithms coming from the watermarking community. It has fair performance

when compared with the state of the art. The research in this area is still in its infancy

(spikegrams for watermarking) and there is plenty of room for improvements in future works.

Moreover, we showed that the approach can be used for real-time watermark decoding

thanks to the use of a projection-correlation based decoder. In addition, two-dictionary

method could be investigated for image watermarking.
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CHAPTER 5

PERCEPTUAL ATTACKS IN SPARSE DOMAIN

5.1 Introduction

In robust audio watermarking (AW), a watermark bit stream is transformed into a hidden

noise. This hidden noise is then inserted into the signal and should remain intact even in

the presence of moderate to strong attacks such as re-sampling, re-quantization, MP3 and

de-synchronization. Therefore, proposing strong attacks that challenge the irremovability

of watermarks may introduce essential preconditions for robust AW design. In this chapter,

we establish three perceptual attacks that can be used by the watermarking community

to assess the performance of a robust watermarking algorithm. We define the perceptual

attack as an attack which aims at removing the watermark by corrupting inaudible regions

in the spectro-temporal representation of the signal. For instance, MP3 compression is a

perceptual attack. However, spikegram using PMP [Pichevar et al., 2011], [Najaf-Zadeh

et al., 2008], while preserving the quality, might highly manipulate the inaudible content of

the signal, even more than MP3. Hence, they deserve to be analysed as possible attacks.

In this chapter, first we present the spikegram representation that we use to design percep-

tual attacks. Then the spread spectrum (SS) [Malvar and Florencio, 2003] watermarking is

explained as one of the basic watermarking systems. Afterwards, three perceptual attacks

based on the spikegram are presented to attack the spread spectrum watermarking.

These three perceptual attacks are PMP attack, inaudible noise adding and the sparse

replacement attack. For measuring the efficiency of these attacks, they are implemented

against the spread spectrum AW. It is shown that under the sparse replacement attack, the

spread spectrum decoder is degraded, with a greater factor than when attacking with 32

kbps MP3 and 24 kbps USAC (unified speech and audio coding [Neuendorf et al., 2009]).

Hence, the proposed sparse replacement attack can be considered as a strong attack on

AW systems.

85
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5.2 Using spikegram to attack spread Spectrum wa-

termarking

Throughout this chapter, we evaluate the efficiency of the spikegram as a perceptual sparse

attack compared to 32 kbps MP3 compression which is a well known state of the art

perceptual attack, and 24 kbps unified speech and audio coding (USAC). The spikegram is

found for audio signals using PMP along with gammatone dictionary [Smith and Lewicki,

2005].

5.3 Spread spectrum watermarking

To show the applicability of the proposed attacks, we consider the watermarking method

to be additive spread spectrum (SS) with a normalized correlation detector [Malvar and

Florencio, 2003]. The embedding equation in SS watermarking is as below,

x[n] = s[n] + αbp[n], n = 1, .., L (5.1)

where s[n] and x[n] are the original and the watermarked signals respectively. b ∈ {1, −1}
is the inserted watermark bit, α is the watermark strength factor and p[n] ∈ {−1, 1} is the

values of the pseudo random sequence (PN) [Klein, 2013a] obtained using a linear feedback

shift register [Malvar and Florencio, 2003], [Klein, 2013a].

Equation (5.1) indicates that in SS watermarking, watermark is an additive noise and

comprises a pseudo noise (PN) sequence with two-level amplitudes α and −α. Also the

correlation decoder is used. In other words, the decoded watermark bit b̃ is equal to the

sign of the normalized correlation between the watermarked signal and the PN sequence as

below

b̃ =
1

αL
sign(

L
∑

i=1

x[n]p[n]) = sign(b +
1

αL

L
∑

i=1

s[n]p[n]) (5.2)

Thus, the normalized correlation equals b ∈ {1, −1} plus an interference term related to

the host signal s[n].

The goal of sparse attacks based on spikegram is to modify the audio signal, without

changing its quality, in order to increase the error rate of the watermark decoder. For SS

watermarking, the goal is to reduce the normalized correlation from one to zero (when

b = 1). For stronger attacks, the normalized correlation of the SS decoder is reduced more.
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5.4 The proposed perceptual attacks

5.4.1 The spikegram attack using the PMP

First, through the spikegram representation of the watermarked signal, the sparse PMP

coefficients and their associated masking thresholds are obtained. Those coefficients which

are smaller than 0.1 percent of the windowed signal norm and fall below the masking

thresholds are ignored and the attacked signal is reconstructed from remaining coefficients.

As mentioned in chapter 2, in the spikegram found by PMP representation, a masking

threshold is computed for each gammatone. Each gammatone kernel with sensation

level below its associated masking theshold is removed from the spikegram. Hence, the

spikegram representation using PMP modifies the frequency content of the signal. Usually

in watermarking systems, watermark bits are inserted into low frequency content of the

signal. By spikegram representation, the watermarking bits which are hidden in the low

frequency spikes might change. Hence, spikegram representation can interfere with the

decoding of watermarking bits while preserving the audio quality.

5.4.2 The inaudible noise attack using the spikegram

In inaudible noise attack, the goal is to shape an inaudible noise to be added to the signal.

As this additional noise modifies the spectro-temporal content of the signal, the watermark

is expected to be modified under this attack.

The steps of this attack are as follows,

1. A spikegram representation of the watermarked signal is obtained using PMP

representation and masking thresholds of the kernels are determined. Hence the

masking obtained for time-channel i, j is mi,j.

2. Using a linear feedback shift register [Klein, 2013a], a pseudo random sequence

(PN) is created including only -1 and +1, with the length equal to the number of

gammatone kernels. Hence for the time-channel i, j, the corresponding PN value is

pi,j.

3. Each coefficient (point) in the spikegram is modified using the PN sequence and the

masking thresholds obtained by PMP as below,

c̃i,j = ci,j + pi,jmi,j (5.3)
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where ci,j and c̃i,j are the original and modified coefficients associated to the time

sample i and the channel number j.

4. A new spikegram is reconstructed using the modified coefficients c̃i,j and the attacked

watermarked signal is re-synthesized from the modified spikegram.

The efficiency of the inaudible noise shaping attack comes from (5.3). The right term in

(5.3) is the masking threshold associated to the time-channel point i, j in the spikegram

with the amplitude one or negative one. When re-synthesizing the signal from the modified

spikegram coefficients, we will have two coefficients for each time-channel sample i, j,

one is ci,j for the original gammatone and another is pi,jmi,j for the masked gammatone.

Hence, we expect the quality of the re-synthesized watermarked signal using the modified

spikegram to be similar to the quality of the original watermarked signal.

5.4.3 The sparse replacement attack using the spikegram

Audio signals include frames in the time domain that either their perception is similar to

average ear or their time domain waveforms are similar. For example, for the music signals

similar notes are played several times. These notes might have very close time domain

waveforms or evoke the same perception for the average ear. As another example, in a

speech signal (spoken by one person) in many time frames, perceptually similar vowels and

fricatives are available. This brings upon the idea of replacement attack where different

watermark bits are placed in similar contents of the audio signal. The watermarking

is inserted usually as an additional noise into the signal, hence this noise might change

slightly the perceptually similar frames of the audio signal. In this case, by exchanging the

approximate perceptually similar contents of the signal together, watermark bits associated

to these contents will be mis-detected at the decoder while the quality does not change too

much [Kirovski and Petitcolas, 2007].

Here, we propose a replacement attack using the spikegram representation of audio signals.

This attack is based on the replacement of perceptually similar features (time spikes) of

the signal obtained using the spikegram.
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5.4.4 A new replacement signal manipulation for audio signals

In this section, we define a new perceptual signal manipulation based on replacement of

signal contents. Then we describe the sparse replacement attack based on that. The steps

of the replacement signal manipulation are as below,

1. First, the spikegram coefficients and their associated masking thresholds are obtained

by representing the signal on gammatone filter bank using PMP. Then the coefficients

under their associated masking thresholds are suppressed and a 2-D time-channel

spikegram represents the remaining coefficients.

2. Second, each coefficient in the spikegram is multiplied to its associated gammatone

kernel. The resulted wave is called a spike (See Figure 5.1).

3. Then, at each time sample, we add together all the spikes across the vertical axis

(channel axis) and name the resulted wave, a time spike.

4. Afterwards, we make a dataset of all time spikes of the input signal. As for each

time sample there is one time spike, the number of time spikes equals as many as

the input signal’s samples. We start from the beginning sample of the signal, find

its associated time spike, consider it as the current time spike. We find the K time

spikes in the dataset of time spikes which have a short time distance to the current

time spike and are perceptually similar to it (the current time spike and these K

time spikes should have roughly similar energies and shapes). Then, we replace the

current time spike with the average of the K found time spikes. We continue this

procedure for the next sample of the input signal.

5. Finally, the resynthesized attacked watermarked signal is calculated by adding up

all time spikes in the modified spikegram.

As can be seen in Figure 5.1, the time spikes TS1, TS5 and TS7 have similar shapes and

amplitude. Also the time spikes TS3 and TS8 are similar. As the watermarked signal is the

summation of all these time spikes, if we replace TS1 with TS5 or TS7 or a combination of

the two and TS3 with TS8, the quality change of the audio signal might not be perceptible.

However, if there are different watermark bits in different time spikes, the watermark bits

will be mis-detected because of the de-synchronization.

If we define the l2 norm of the vector x = {x1, x2, ..., xM} as, ‖x‖ =
√

∑M
i=1 x2

i , then the

similarity di,j between time spike TSi and TSj is defined, between two time spikes as below

di,j =
< TSi, TSj >

(

max(‖TSi‖, ‖TSj‖)
)2 (5.4)
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Figure 5.1 In sparse replacement attack, an audio signal is represented by
spikegram using the perceptual matching pursuit. Then masked coefficients and
gammatones are removed from the representation. Each gammatone in a specific
time-channel point is multiplied to its associated coefficient obtained by PMP,
and it is called a spike (in the time-channel plane, the upper figure). A time
spike (time spikes are shown in the lower part of Figure 5.1) is computed at each
time sample as the summation of all spikes along the channel axis on that time
sample. When time-spikes have roughly similar shapes, we merge them and this
is the case for TS1, TS5 and TS7.

where < TSi, TSj > indicates the dot product between the two time spikes. The normal-

ization term in the denominator of (5.4) helps having the same similarity for different pairs

of time spikes, with similar waveforms, but with different energies (amplitudes).

Note that the similarity cost function dij is not computed for the time spikes with zero

norms. If we consider < TSi, TSj >= ‖TSi‖‖TSj‖cos(θij), where θi,j is the angle be-

tween the two time spike vectors TSi and TSj, then (5.4) can be rewritten as either

dij = ‖T Si‖
‖T Sj‖cos(θij) or dij = ‖T Sj‖

‖T Si‖ cos(θij). Hence, the similarity cost function di,j is a value

between −1 and 1, since all the time in (5.4), the module of the denominator is higher than

the module of the numerator. For two similar time spikes, the angle θij is close to zero and

their norms are roughly equal, hence the similarity function dij is approximately one.

In Figure 5.2, two time spikes from the SS watermarked POP signal “The power of love”

are plotted. The two time spikes include different watermark bits. Here, the similarity cost
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function dij is equal to 0.97.
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Figure 5.2 The comparison between two roughly similar time spikes from the
audio signal “The power of love”, sampled at 44.1 kHz. The similarity cost
function is equal to .97.

In Figure 5.3, for each time spike in the time axis, the number of similar time spikes in one

second of the watermarked signal is plotted. The test signal used in this experiment is

the watermarked POP audio file “The power of love”, sampled at 44.1 kHz. As is seen,

for each time spike, there is on average 5.64 similar time spikes per second. Therefore,

in sparse replacement attack for each second of this audio signal, each time spike can be

replaced with 5.6 similar time spikes (or their averages).

5.5 The dataset and description of experiments

The dataset includes 5 raw audio signals presented in Table 5.1, each quantized at 16 bit

and sampled at 44.1 kHz (Classic, Jazz, Vocal, POP, Blues), with a duration of 5 minutes.

The processing window duration for the SS watermarking is 22.7 ms, meaning that the

parameters L is 22.7 ∗ 44100 ≈ 1000 samples. The SS amplitude α equals 0.1 percent of

the windowed signal norm. To generate the 2-D time-channel plane for the spikegram, 25

channel gammatone filters are sampled at each one time sample. Also, PMP is run on the

4 − 5 second segments of the audio signals in Table 5.1, for the number of iterations as
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Figure 5.3 For each time spike (on the horizontal axis) inside the first 0.25
second of the watermarked audio signal “The power of love”, the number of
similar time spikes is shown on the vertical axis. For a given time spike, only
similar time spikes located at the following one second time frame are measured.
To be considered as perceptually similar, two time spikes should have a similarity
cost function dij between 0.95 and .99. As is seen, for each time spike, there
are on average 5 − 6 similar time spikes per second. The red line indicates the
average number of similar time spikes for spikes in the first 0.25 second of the
signal.

many as 20% of the segment length.

We consider two time spikes as similar if their similarity cost function is between .95 and

.99 (these values are found empirically, so that the attack is effective and the quality of the

signals in the dataset is not affected too much). Moreover, we replace the current time

spike with similar time spikes located at most, 0.5 second prior or after the current time

spike.
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Table 5.1 The audio files chosen for the perceptual sparse attack test

Audio Type Title (Author or Group Name)
POP Power of love (Celine Dion)

Classical Symphony No. 5 (Beethoven)
Jazz We’ve got (A tribe Called Quest )

Blues Bent Rules (Kiosk)
Speech French Voice (A Female)

5.6 Results

The three mentioned attacks are performed on the audio signals in Table 5.1. In all attacks,

a 25 channel gammatone filter bank is repeated at each time sample to generate a 2D

dictionary for the PMP representation. For the PMP noise adding attack, the number

of taps for the linear feed back shift register equals the log2N , where N is the number

of signal’s samples. The MATLAB software was used for implementing the attacks. For

the SS correlation decoder, the correlation PN sequence and the watermarked signal is

computed where we consider the exact synchronization between the watermarked signal

and the PN sequence is assumed. The original signals and the attacked ones can be found

at the link below,

http://www.gel.usherbrooke.ca/necotis/necotis-old/yerfani.html

In Figure 5.4, the average results are shown for the three proposed perceptual attacks in

the spikegram domain compared to the 32 kbps MP3 attack and 24 kbps USAC coding

(FD mode and LPD modes) on the same test signals mentioned in Table 5.1). As is seen

in Figure 5.4, the normalized decoder correlation for the SS decoder is around one. This

means that the signal interference at the decoder of SS in (5.2) is very small since the

length of the windowed signal (L) for the SS watermarking is sufficiently high. Figure

5.4 shows that the PMP attack efficiency is roughly similar to the efficiency of the MP3

attack as in our experiments the average normalized correlation decoder for both attacks

are reduced around 0.17-0.22. For the PMP noise adding attack, the average correlation

at the decoder even reduces around 0.13 which shows the efficiency of perceptual noise

adding attack is in the range of MP3 attack.

Moreover, the efficiency of 24 kbps USAC coding as an attack in both FD and LPD modes,

is roughly between the MP3 attack and the replacement attack. Also, USAC in LPD mode

is stronger in attacking the spread spectrum decoder than in its FD mode.

It is clear from Figure 5.4, that the sparse replacement attack reduces the average correla-

tion of the SS decoder to around 0.83. This means that sparse replacement attack is a very

strong attack compared to other attacks mentioned in this chapter. One reason is that in
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Figure 5.4 The comparison between the average correlation amount of the SS
watermarking decoder for different perceptual attack situations and different
audio types. Experiments are done on 5- minute long audio signals chosen from
Table 5.1. The MP3 compression has the 32 kbps bit rate. The parameter
L for SS watermarking equals 1000 (for a 23 msec processing window). The
parameter α is equal to 0.1 percent of the windowed signal norm. Having smaller
normalized correlation values for the SS decoder, means the attack is stronger.
As is seen, the 32 kbps MP3 compression, PMP and inaudible noise attacks have
roughly the same strength. As a perceptual attack, 24 kbps USAC in LPD mode
is stronger than in FD mode (both modes were run for all signals), while in both
modes USAC is on average stronger than MP3 attack. Moreover, the efficiency
of sparse replacement attack is much greater than other attacks.

the replacement attack, we have already considered the effect of the PMP attack. Moreover,

by replacing the time spikes, we are benefiting from the strong de-synchronization attack.

5.6.1 Robustness of the two-dictionary method against the per-

ceptual attacks mentioned in this chapter

Here, we measure the robustness (in terms of BER) of the two-dictionary method (TDA)

mentioned in chapter 4 against the three proposed perceptual attacks. In all attacks, the

same experimental setup is used. The same gammatone dictionary is used, the sampling

frequency is 44.1 kHz, and the input signals are given in Table 4.3. For more on experimental
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Figure 5.5 The average bit error rate of the TDA decoder under the following
attacks: sparse replacement attack (green line), PMP noise attack (red line), 32
kbps MP3 attack (blue line), the PMP attack (black line), 24 kbps USAC FD
mode (violet line) and 24 kbps USAC LPD mode (light blue line). The signal
used for performing attacks are given in Table 4.3. For the TDA method, 25
gammatone kernels are repeated each time sampel to generate the spikegram
with the sampling rate of 44100 Hz and the number of iterations in PMP equals
20 % of the number of signal’s samples.

setup, see the caption of Fig. 5.5. The results of perceptual attacks on the two-dictionary

method is given in Figure 5.5. In Figure 5.5, for a better comparison, the robustness of

two-dictionary method is also shown against 32 kbps MP3 attack and 24 kbps USAC

(FD and LPD modes). As is seen in Figure 5.5, still the sparse replacement attack is the

strongest compared to all other mentioned attacks. Also, PMP causes a very low bit error

rate at the decoder of TDA. This is reasonable, as in the encoder of TDA, the signals are

already re-synthesized by PMP, thus they are robust against PMP attack. Also, the decoder

of TDA has roughly the same bit error rate against 32 kbps MP3 attack and PMP noise

attack. The efficiency of 24 kbps USAC for attacking the two-dictionary method (results

are shown in Figure 5.5) is lower than when attacking spread spectrum watermarking

(results are shown in Figure 5.4). One reason is that, in SS watermarking, the watermark

is a spread spectrum, wide band noise which is spread on the whole spectrum of the signal.

Hence, the spectrum of the signal in SS watermarking can be extensively modified by the

24 kbps USAC encoder. In the proposed TDA method, the watermark bits are inserted
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only in the phase (sign) of high value coefficients and low frequency kernels which are more

robust against transforms and attacks.

For the TDA experiments in this chapter, the simulation conditions are given in Table 4.2.

5.7 Summary

In this chapter, three perceptual attacks in the sparse domain were presented. These

attacks were tested for a simple spread spectrum watermarking system. However without

loss of generality they can be performed on all other watermarking methods. We showed

that these attacks can outperform the 32 kbps MP3 attack. Based on the experiments of

this chapter, perceptual sparse replacement manipulation is a very strong attack compared

to 32 kbps MP3 compression. Also, we showed that 24 kbps USAC, as an attack, is stronger

than 32 kbps MP3 attack (the strength of 24 kbps USAC is greater in the LPD than in

FD mode) but still weaker than the proposed sparse replacement attack. Also, we showed

that the proposed TDA method has more than 50-60 bps robust payload (where the bit

error rate of the decoder is smaller than 5%) under the perceptual attacks such as PMP

attack, PMP noise attack. Also TDA has a robust payload in the range of 5-15 bps with

24 kbps USAC coding and lower than 5 bps under the sparse replacement attack.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, three applications of spikegram, for the copyright protection of audio signals

are proposed and developed. For the spikegram, the bio-inspired gammatone dictionary

is used and perceptual matching pursuit (PMP) is applied as the optimization algorithm.

The PMP is chosen to generate sparse representation in the spikegram, since it generates

the masking thresholds for the gammatone kernels used in this research. Moreover, the

efficiency of PMP for signal representation is confirmed in the literature [Pichevar et al.,

2010a; Najaf-Zadeh et al., 2008].

6.1 Conclusion

First, a novel, blind, perceptual sparse-domain audio authentication method was presented

using a proposed modified spread spectrum (MSS) watermarking. Using the time-shift-

invariant spikegram based on PMP, our method inserts a semi-fragile watermark stream

inside audio frames. We showed that the watermark is robust against ordinary signal pro-

cessing modifications such as low-pass filtering while it considers the maliciously attacked

segments (such as removed segments) of the signal as tampered. The malicious attacks in our

experiments include the time rescaling, the frame replacement and the de-synchronization

attacks. We also showed that compared to state of the art, our method does efficiently

localize the maliciously attacked frames of the signal (e.g., removed, replaced, added and

time-shifted frames) with a segment size smaller than 250 msec. Our listening test confirms

the high quality of the watermarked signals where the mean opinion test (MOS) results, for

the proposed method, are above 4.5. Our results confirm the suitability of our method for

authentication applications such as audio forensics. Moreover, the MISS method presented

in chapter 3, can be used as a general embedding method for watermarking and stenography.

Second, a new technique namely two-dictionary method, was proposed for audio water-

marking applications. The proposed method uses the spikegram model of audio signals

using gammatone kernels. It finds the appropriate watermark kernels among gammatone

filters in the spikegram based on the decoding strength of the input watermark bit and

97
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embeds the watermark bits into the phase of found gammatones. It is shown that the

TDA is error free in the case of no-attack situation. Moreover, in comparison to Improved

Spread Spectrum watermarking (ISS), TDA does not introduce additional distortion to the

encoder. It is shown that the uncorrelatedness of watermark bases helps designing a very

robust audio watermarking method. Our experiments show high robustness against 32 kbps

MP3 compression with a robust payload of 56.5 bps compared to several recent techniques.

The proposed method has robustness against the new generation codec USAC (unified

audio and speech coding) with a payload of (5 bps-15 bps). Robustness against USAC

makes the proposed method suitable for copyright protection applications on cellphone

devices.

Finally, three perceptual attacks were presented using the spikegram including the spikegram

attack, the inaudible noise attack and the sparse replacement attack. In the spikegram

attack, the audio signal is represented and reconstructed using the spikegram. In the

inaudible noise attack, a pseudo random noise is generated using a linear feedback shift

register (LFSR), shaped using the masking thresholds of PMP and added to the signal.

In the sparse replacement attack, the perceptually similar time spikes are found in the

spikegram domain and replaced together. These attacks were tested on a simple spread

spectrum watermarking system. However without loss of generality they can be performed

on all other watermarking methods. We showed that the PMP and the inaudible noise

attack can be as strong as 32 kbps MP3 attack. While the perceptual sparse replacement

attack is stronger than 32 kbps MP3 compression.

Also, two recommendations are proposed to make watermarking systems robust against

sparse replacement attack. The first recommendation is to shape the watermark noise in

the perceptual sparse (PMP) domain prior to watermark insertion. Thus when perceptually

inaudible content of the signal is removed under the proposed attacks, the watermarks are

not affected. The second recommendation is to insert the same watermark bits, into the

perceptually similar time spikes of the signal so as to gain robustness against replacement

attack.

6.2 Future work

In this section, we give perspectives for the future work as below,
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— There is a need for real time sparse representation. One suggestion is to increase

the speed of perceptual matching pursuit. One approach can be the investigation of

parallel computing architectures on the input signals using GPU.

— The audio tamper localization approach, in chapter 3, can be further developed

to be used for image tampering detection. In this case, the MISS method can be

used but still there is a need to discover the characteristics of the vision system (e.g

characteristics similar to the spectro-temporal masking of the auditory system) to

have a high quality watermark embedding.

— Reversible watermarking can not be done in real time using TDA and can be further

explored as a future work. In reversible watermarking in addition to the watermark

bit stream, the original signal is also obtained at the decoder.

— Designing audio watermarking with high robustness against sparse replacement

attack can be explored as a future work. In this case, during the insertion of

watermark bits, we should take care of similarities in the representation. Also the

efficiency of sparse replacement attack can be further explored for other watermarking

methods such as quantization index modulation [Vasic and Vasic, 2013] and patch

work method [Xiang et al., 2014a].

— We showed that, USAC as a next generation codec, can also be considered as a

novel attack on audio watermarking systems. Making the proposed TDA method in

chapter 4, even more robust against USAC, can be further explored as a future work.

In this case, we should investigate how the USAC manipulates the spectro-temporal

content of the signal and insert watermark bits into the spectro-temporal contents

which are not affected by the USAC coding.
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CHAPTER 7

CONCLUSIONS ET TRAVAUX FUTURS

Dans cette thèse, trois applications de spikegrammes, pour la protection des signaux sonores

sont proposées et développées. Pour le spikegramme, le dictionnaire gammatone bio-inspiré

est utilisé et le perceptual matching pursuit (PMP) est appliqué comme algorithme

d’optimisation. PMP est utilisé pour obtenir la représentation parcimonieuse, car il

génère des seuils de masquage pour les noyaux de gammatone et son efficacité pour la

représentation du signal est confirmée dans la littérature.

7.1 Conclusions

Tout d’abord, un nouvelle méthode d’authentification sonore est présentée dans le domaine

parcimonieux en utilisant une version modifiée du système de tatouage à spectre étendu

appelé MSS (Modified Spread Spectrum). En utilisant le spikegramme basé sur PMP, notre

méthode insère les bits de tatouage semi-fragile à l’intérieur des trames de signal. Nous

avons montré que le tatouage est robuste contre les modifications ordinaires de traitement

de signaux tels que filtrage passe-bas alors qu’il considère les segments malicieusement

attaqués du signal comme falsifiés. Nous avons également montré que, par rapport à l’état de

l’art, notre méthode permet de localiser efficacement les segments qui sont malicieusement

attaqués (par exemple, supprimé, remplacé, ajouté, décalé). Notre test d’écoute montre

la grande qualité des signaux tatouée. Nos résultats confirment la pertinence de notre

méthode pour les applications d’authentification tels que VoIP. La méthode MSS présentée

ici, peut être utilisée comme méthode générale pour le tatouage.

Deuxièmement, une nouvelle technique qui est appelée la méthode à deux dictionnaires

(TDA, Two Dictionaries Method), a été proposée pour les applications de tatouage. La

méthode proposée utilise le modèle de spikegramme des signaux sonores à l’aide filtres

gammatones. Elle utilise deux dictionnaires différents qui sont sélectionnés en fonction du

bit d’entrée et du contenu du signal. Elle trouve les filtres gammatones appropriés (appelés

les gammatones de tatouage) sur la base de la connaissance du bit de tatouage d’entrée,

et incorpore les bits de tatouage dans la phase des filtres gammatones de tatouage. Il

est montré que la TDA est libre d’erreurs dans le cas d’aucune situation d’attaque. En
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outre, TDA ne crée pas de distorsion supplémentaire au décodeur, parce que le signal

original ne se comporte pas comme une interférence dans le décodeur. Il est démontré que

la décorrélation des noyaux de tatouage permet la conception d’une méthode de tatouage

sonore très robuste.

Nos expériences ont montré la meilleure performance de la méthode proposée contre

32 kbps compression MP3 avec une charge utile de 56.5 bps par rapport à plusieurs

techniques récentes. Nos expériences montrent que la méthode proposée est robuste contre

la compression MP3 à 32kbps avec une capacité de 56.5 bps qui est plus élevé par rapport

à l’état de l’art. Aussi, La méthode proposée est robuste vis-à-vis du nouveau codec USAC

(unified audio and speech coding) avec une charge utile de 5-15 bps.

Enfin, trois attaques perceptuelles ont été présentées en utilisant le spikegramme y compris

l’attaque du spikegramme, l’attaque du bruit inaudible et l’attaque par remplacement

parcimoneux. Ces attaques ont été testées pour une méthode de spectre étendu simple.

Toutefois, sans perte de généralité, elles peuvent être effectuées sur toutes les autres

méthodes de tatouage. Nous avons montré que PMP et l’attaque par bruit inaudible

sont aussi forts que l’attaque 32 kbps MP3. Sur la base de ces expériences, l’attaque

de remplacement parcimoneuse perceptive est une attaque très forte par rapport à la

compression MP3 à 32kbps.

En outre, deux recommandations sont proposées pour rendre les systèmes de tatouage

robustes contre les attaques de remplacement. La première recommandation est de façonner

le tatouage dans le domaine de la perception parcimoneuse avant l’insertion. Ainsi, lorsque

le contenu perceptuel inaudible du signal est éliminé sous les attaques proposées, le tatouage

n’est pas affecté. La deuxième recommandation est l’insertion du même filigrane, dans

les trames perceptuellement similaires du signal afin de gagner de la robustesse contre les

attaques de remplacement.

7.2 Les travaux futurs

Nous présentons ci-dessous quelques perspectives pour le travail futur,

— Pour un traitement en temps réel qui utilise les spikegrammes„ une suggestion est

d’augmentation la vitesse de PMP en utilisant l’idée de calcul parallèle avec GPU.

— L’approche par localisation des attaques telle que proposée dans cette thèse pourrait

être appliquée aux images. Dans ce cas, la méthode MSS peut être utilisée. Toutefois

pour pouvoir bien l’appliquer aux images, il est nécessaire de connaître les seuils
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de masquage visuels (selon le même principe que les seuils de masquage dans le

système auditif) afin de mieux insérer les bits de tatouage.

— Un travail futur serait d’amélioration de la robustesse de la méthode à deux diction-

naires contre les attaques de remplacement. Lors de l’insertion de bits de tatouage,

nous devrons prendre soin de similitudes de représentation entre les différents seg-

ments du signal acoustique. En outre, l’efficacité de l’attaque de remplacement

parcimonieuse peut être explorée plus pour d’autres méthodes de tatouage telle que

QIM (‘quantization index modulation’) [Vasic and Vasic, 2013] et la méthode ‘patch

working’ [Xiang et al., 2014a].

— Nous avons montré que le 24 kbps USAC qui est un nouveau codec peut également

être considéré comme une attaque. Un travail futur intéressant serait d’étudier la

méthode TDA proposée pour le contexte d’attaques par CODEC USAC afin de

la rendre plus robuste. Pour cela, nous devrions améliorer notre compréhension

de l’impact de l’USAC sur les caractéristiques spectro-temporelles du signal pour

pouvoir insérer les bits de tatouage dans le contenu spectro-temporel non affecté

par le CODEC USAC.
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