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ABSTRACT

RESILIENT DYNAMIC STATE ESTIMATION IN THE PRESENCE OF FALSE

INFORMATION INJECTION ATTACKS

By Jingyang Lu

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Advisor: Ruixin Niu,

Assistant Professor, Department of Electrical and Computer Engineering

In this dissertation, the problem of resilient dynamic system state estimation

in the presence of false information injection attacks is investigated. First, it is

assumed that the system is unaware of the existence of false information and the

adversary tries to maximize the negative effect of the false information on Kalman

filter’s estimation performance under a power constraint. The false information attack

under different conditions is mathematically characterized. For the adversary, many

closed-form results for the optimal attack strategies that maximize Kalman filter’s

estimation error are theoretically derived. It is shown that by choosing the optimal

correlation coefficients among the false information and allocating power optimally

among sensors, the adversary could significantly increase Kalman filter’s estimation

errors.

In order to detect the false information injected by an adversary, we investigate

the strategies for the Bayesian estimator to detect the false information and defend

itself from such attacks. We assume that the adversary attacks the system with certain
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probability, and that he/she adopts the worst possible strategy that maximizes the

mean squared error (MSE) if the attack is undetected. An optimal Bayesian detector

is designed which minimizes the average system estimation error instead of minimizing

the probability of detection error, as a conventional Bayesian detector typically does.

The case where the adversary attacks the system continuously is also studied. In

this case, sparse attack strategies in multi-sensor dynamic systems are investigated

from the adversary’s point of view. It is assumed that the defender can perfectly

detect and remove the sensors once they are corrupted by false information injected

by an adversary. The adversary’s goal is to maximize the covariance matrix of the

system state estimate by the end of the attack period under the constraint that

the adversary can only attack the system a few times over the sensors and over the

time, which leads to an integer programming problem. In order to overcome the

prohibitive complexity of the exhaustive search, polynomial-time algorithms, such as

greedy search and dynamic programming, are proposed to find the suboptimal attack

strategies. As for greedy search, it starts with an empty set and one sensor is added at

each iteration, whose elimination will lead to the maximum system estimation error.

The process terminates when the cardinality of the active set reaches the sparsity

constraint. Greedy search based approaches such as sequential forward selection

(SFS), sequential backward selection (SBS), and simplex improved sequential forward

selection (SFS-SS) are discussed and corresponding attack strategies are provided.

Dynamic programming is also used in obtaining a sub-optimal attack strategy. The

validity of dynamic programming lies on a straightforward but important nature of

dynamic state estimation systems: the credibility of the state estimate at current step

is in accordance with that at previous step.

The problem of false information attack on and Kalman filter’s defense of state

estimation in dynamic multi-sensor systems is also investigated from a game theo-

x



retic perspective. The relationship between Kalman filter and the adversary can be

regarded as a two-person zero-sum game. The condition under which both sides of

the game will reach a Nash equilibrium is investigated.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Background

System state estimation aims at monitoring the system state and providing accu-

rate information for the controller to make reliable actuation decisions for the system.

For example, the control center of a power system conducts system state estimation to

distribute the power to different regions properly [1]. Self-driving vehicles have drawn

a lot of attentions which involve the vehicle state estimation [2]. Medical diagnosis

concerns the determination of the true physiological state of the patient by gathering

the test measurements. The system becomes more vulnerable to attacks as it gets

more complicated and the adversary finds more ways to access it. For example, ac-

cording to an inspector general’s report sent to the Federal Aviation Administration

(FAA) in 2009, hackers have broken into air traffic control mission-support systems

several times in recent years [3]. Some hackers were also able to hack wireless medical

devices implanted in human bodies [4].

As for the electric power system, it consists of apparatus, generators, electrical

transformers, and lines that can be damaged or destroyed as a result of short circuits,

thermal overload, weather, and even physical attacks. For example, in 2013, Pacific

Gas and Electric Company’s Metcalf Transmission Substation in San Jose, California

was broken by gunmen who fired on 17 electrical transformers resulting in over $15

million worth of damage. Certain detection mechanisms and corresponding defending

strategies are urgently needed in order to detect these types of abnormal conditions

and attacks and protect the system to ensure the safe and reliable operation of the
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whole electric power system. A protection system must be dependable and secure in

all its operations. The protection devices should properly respond when an abnormal

or dangerous condition is indicated.

An increasing demand for reliable energy has motivated the development of smart

electric grid. The U.S. Department of Energy (DOE) has identified seven properties

required for the smart grid to meet future demands including attack resistance, self-

healing, consumer motivation, power quality, generation and storage accommodation,

enabling markets, and asset optimization [5, 6]. The smart grid is applied for sensor

data reading and system control in two-way communications. The development of a

trustworthy smart grid system depends on a deeper understanding of the potential

effects of false information. A comprehensive approach to understand the security of

the system is to appropriately quantify the effect of the false information injection

attack. Studying the relation between the false information attack and the physical

system effect and designing the countermeasures to mitigate risks from the attack

will help increase the robustness of the smart grid system.

System state estimation of the power system is a key function in building real-

time models of electricity networks in the energy management centers (EMC). A real-

time model usually utilizes the data every few seconds from energy control center to

conduct the system state estimation. It is not practical and economical to measure

all the possible states in the network. System state estimation is a useful tool for

estimating the system state by using a limit set of measurements. Two kinds of

measurement information - analog and digital data are usually used in system state

estimation [7]. The control center of the system can take use of the measurement

to estimate the system state and make certain control decisions. Anomaly detection

turns to be essential when abnormal conditions like topology error or false information

injection by malicious attacks occur. Without knowing the existence of the false
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information, the system state estimation will mislead the control center in making

decisions. The traditional detector such as Chi-square detector works by comparing

the residue between the measurement and its prediction with a threshold. However,

this detector cannot detect the false information when the adversary has knowledge

of the system configuration and launch a carefully designed attack [8]. Therefore it is

very important to design the detection mechanisms and defending strategies to avoid

the case where false information is injected into the system incurring large system

state estimation error.

System state estimation is of importance in the area of driverless cars develop-

ment. Autonomous navigation is one of the most important technologies for driverless

cars. Accurate system state estimation is generally the basis of any other functions

such as path planning and environment perception. An accurate system state es-

timate ensures the safety of a driverless car. The control center of a driverless car

conducts system state estimation based on the Global Positioning System (GPS). An

enhanced differential GPS receiver with phase carrier signal measurements may run

in operating modes of real time kinematics, which has the highest absolute position

accuracy. In addition to the driverless cars, system state estimation and anomaly de-

tection also play a key role in the development of Unmanned Aerial Vehicles (UAVs).

The theoretical models sometimes may not work because the natural environment is

very complicated, and many abnormal conditions may happen. The control center

of the system has to be able to detect anomalies and improve the performance of

system state estimation. Different types of attacks may be launched by an adversary

to the UAV. Hardware attacks can happen when the adversary has direct access to

the UAV’s autopilot components. An adversary can corrupt the data stored on the

board or add extra data to mislead the whole control system. Wireless attacks can

also happen when the adversary has access to the communication channel so that
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they can change the data stored on-board in real time. In order to overcome this, a

more accurate and resilient state estimation system needs to be designed.

For the radar system, the false information is usually caused by jammers, which

can apply various techniques of misleading a radar system. It could be either mechan-

ical or electronic [9]. An electronic jammer misleads the radar system by injecting

jamming signals through the communication channels. The distributed MIMO radar

system consists of multiple of transmitters, receivers, and a fusion center where the

final system state estimate is made [10]. Even though it has been shown that the

distributed MIMO radar system can provide better performance than the traditional

radar system, it increases the vulnerability of the system itself as well. If the dis-

tributed MIMO radar system is built under the nominal condition that there are no

false information attacks, system state estimation is significantly affected even under

a low-level attack.

A lot of techniques have been utilized in developing system state estimation.

Reinforcement learning, a machine learning approach, is concerned with how the

control center makes corresponding actions by optimizing the cumulative reward.

It has been heavily used in advertising, robot design, deriving complex hierarchical

schemes, and learning non-ambiguous models. Reinforcement learning can be applied

to cases where a model of the environment is known, but an analytic solution is not

available. The way to get the information about the environment is by interacting

with it. Reinforcement learning uses samples to optimize the performance and uses

function approximation to deal with large environments. The reinforcement problems

are specified by a Markov Decision Process, which in some cases can be shown to be

equivalent to a shortest-path problem.

Another popular state estimation approach is Kalman filter, which uses series

of sensor measurements overtime to conduct system state estimation in the presence
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of random noise. At each recursion, the algorithm works in two steps: prediction

and update. In the prediction step, Kalman filter makes a prediction of the current

state. In the update step, the current state estimate is updated by the residue be-

tween the measurement and its prediction. Kalman filter estimates the system state

by recursively conducting Bayesian estimation. Kalman filter has been applied in

wide and diverse areas. Kalman filter is widely used in robotic motion planning and

control. It also works for characterizing the human’s central nervous system’s control

of movement, and supports the realistic model by making system state estimation

and issuing the updated commands [11].

System state estimation in the presence of an adversary that injects false informa-

tion into sensor readings has attracted much attention in wide application areas, such

as target tracking with compromised sensors, secure monitoring of dynamic electric

power systems, and radar tracking and detection in the presence of jammers. This

topic has been studied in [8, 12, 13, 14, 15, 16, 17, 18, 19, 20]. In [8], the problem

of taking advantage of the power system configuration to introduce arbitrary bias to

the system without being detected was investigated and inspired many researchers to

further study false information injection along this direction. In [12] the impact of

malicious attacks on real-time electricity market concerning the locational marginal

price was investigated and how the attackers can make profit by manipulating cer-

tain values of the measurements was shown. Some strategies are also provided to

find the optimal single attack vector. The relationship between the attackers and the

control center was discussed in [13], where both the adversary’s attack strategies and

the control center’s detection algorithms have been proposed. Readers are referred

to [14] and [15] for more about false information attacks on the electricity market.

Inspired by [8], in [16] it was shown that the data frame attack can be formulated as

a quadratically constrained quadratic program (QCQP) problem, in which deleting
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the comprised sensors which the defender system detects will make the system unob-

servable. In [17], the relation between a target and an MIMO radar was characterized

as a two-person zero-sum game. However, in the aforementioned publications, only

the problem of static system state estimation has been considered.

For a linear dynamic system, the impact of the injected false information on

Kalman filter’s state estimation performance over time has not got much attention

in the literature. In many problems with multiple target information variables [21],

one is interested in the mean squared error (MSE) matrix of the state estimate. As

the defender, the object is minimizing the system state estimation MSE matrix, i.e.

to achieve the smallest system estimation error. Here we introduce several measures

of the system state estimation MSE matrix and describe their physical meanings:

• The trace of the state estimation MSE matrix, that is the summation of the

diagonal entries, is mostly used to evaluate the performance for numerous esti-

mation tasks. The trace captures the total expected squared error in estimation

problems.

• The determinant of the state estimation MSE matrix, is also used in the system

state estimation problems, which captures the volume of the error ellipsoid

around the true state value. It also measures the mutual information between

the unknown state and observations in estimation problems.

• The MSE matrix itself can also be used in formulating the objective function.

From an adversary’s point of view, the optimal attack strategies under certain

constraints such as power constraints would be the optimal solutions leading

the state estimation MSE matrix to be the largest positive semidefinite matrix.

This guarantees the optimality in terms of trace or determinant of the MSE

matrix.
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Sensor management plays an important role in increasing the resilience of the system

state estimation. Some related publications exist on sensor management [22, 23],

where the problem of arranging the sensors to minimize the covariance of the state

estimation error so that a more accurate state estimate can be obtained, was inves-

tigated. In [24], the problem of sensor bias estimation and compensation for target

tracking has been addressed. Interested readers are referred to [24] and the references

therein for details.

The impact of the injected biases on a Kalman filter’s estimation performance

was presented in [18], showing that if the false information is injected at a single time,

its impact converges to zero as time goes on; if the false information is injected into

the system continuously, the estimation error tends to reach a steady state.

1.2 New Contributions

Based on [18], we have obtained some results regarding optimal false information

attacks. In [25], we have found that the best strategies for the adversary to attack

Kalman filter system from the perspective of the trace of the MSE matrix, and ob-

tained some closed-form results. In [26], a closed-form optimal attack strategy was

found for the adversary, which maximizes the impact of the false information injection

on Kalman filter’s state estimation from the determinant perspective. By adopting

the objective function as the determinant of the MSE matrix, we change the problem

significantly. The optimal attack strategy that maximizes the determinant of the

MSE matrix is a function of Kalman filter’s state estimation covariance and hence

“adaptive” to Kalman filter; whereas the optimal solution that maximizes the trace

of the MSE matrix is not a function of Kalman filter’s state estimation covariance.

In this dissertation, we also investigate the detection of false information injection

attacks [27]. More particularly, our goal is to design the optimal Bayesian detector
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minimizing the average system estimation error. For a Bayesian estimator whose

sensors could be attacked by false information injected by an adversary, we investigate

the strategies for the Bayesian estimator to detect the false information and defend

itself from such attacks. We assume that the adversary attacks the system with certain

probability, and that he/she adopts the worst possible strategy which maximizes the

MSE if the attack is undetected. The defender’s goal is to minimize the average system

estimation MSE instead of minimizing the probability of error, as a conventional

Bayesian detector typically does. The cost functions are based on the traces of the

MSE matrices of the estimation error. Numerical results show that the new detection-

estimation structure outperforms that based on the traditional detectors such as the

conventional Bayesian detector and the chi-square detector significantly in terms of

the average MSE. One proposed detection-estimation strategy, discarding sensor data

when the presence of attack is declared, is very robust even when the attacker uses

an attack strategy significantly different from the one assumed by the defender.

There are still a lot of problems left to be solved. In [28, 29], the optimal attack

strategies are studied when the adversary aims to maximize the state estimation

MSE matrix of the system state estimate by the end of the attack period under the

constraint that the adversary can only attack the system a few times over time and

over sensors and the defender has the perfect detection mechanism, which leads to

an integer programming problem. The exhaustive-search is intractable even when

the size of problem increases moderately. Greedy search based approaches such as

sequential forward selection (SFS), sequential backward selection (SBS), and simplex

improved sequential forward selection(SFS-SS) have been discussed in the dissertation

and corresponding attack strategies are provided. Considering the credibility of the

current estimate is in accordance with that of the previous estimate in dynamic state

estimation systems, dynamic programming (DP) is also used, which helps reduce the
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time complexity by memorizing the internal results during the process to obtain a

suboptimal attack strategy.

As for the case where the defender knows the existence of the false information,

game theory is utilized to find the Nash Equilibrium between the defender and adver-

sary [30]. The relationship between Kalman filter and the adversary can be regarded

as a two-person zero-sum game. Under which condition both sides of the game will

reach a Nash equilibrium is investigated. The multi-sensor Kalman filter system and

the adversary are supposed to be rational players. Kalman filter and the adversary

have to choose their respective subsets of sensors to perform system state estimation

and false information injection. It is shown how both sides pick their strategies in

order to gain more and lose less.

1.3 Dissertation Outline

The rest of dissertation is organized as follows. In Chapter 2, the discrete-time

linear dynamic system and Kalman filter system are introduced. The optimal attack

strategies which the adversary can adopt under a power constraint are investigated

and studied. An optimal Bayesian detector which minimizes the average system

estimation MSE is designed in Chapter 3. In Chapter 4, the sparse attack strategies

are analyzed under the assumption that Kalman filter has the perfect detection of

such attacks. The adversary aims to maximize the covariance matrix of the system

state estimate by the end of the attack period with the sparsity constraint. The

relation between the defender and the adversary is characterized and studied using

game theory in Chapter 5. Conclusion is drawn in Chapter 6.
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CHAPTER 2

ATTACK STRATEGY ANALYSIS

In this chapter, Kalman filter system is presented and the impact of false informa-

tion injection is investigated for linear dynamic systems with multiple sensors. It is

assumed that the system is unsuspecting the existence of false information and the

adversary is trying to maximize the negative effect of the false information on Kalman

filter’s estimation performance. The false information attack under different condi-

tions is mathematically characterized. For the adversary, many closed-form results

for the optimal attack strategies that maximize Kalman filter’s estimation error are

theoretically derived. It is shown that by choosing the optimal correlation coefficients

among the bias noises and allocating power optimally among sensors, the adversary

could significantly increase Kalman filter’s estimation errors.

2.1 Kalman Filter System

2.1.1 Linear Dynamic State Estimation

The discrete-time linear dynamic system [31] can be described as below,

xk+1 = Fkxk + Gkuk + vk (2.1)

where Fk is the system state transition matrix, xk is the system state vector at time k,

uk is a known input vector, Gk is the input gain matrix, and vk is a zero-mean white

Gaussian process noise with covariance matrix E[vkv
T
k ] = Qk. The measurement

equation is

zk = Hkxk + wk (2.2)
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where wk is zero-mean white Gaussian measurement noise, and

E[wkw
T
k ] = Rk (2.3)

The matrices Fk, Gk, Hk, Qk, and Rk are assumed to be known with proper di-

mensions and possibly time varying. The initial state x0 in general is unknown and

modeled as Gaussian distributed with known mean and covariance. The two noise

sequences and the initial state are mutually independent. Sometimes, vk is taken as

Γkvk with vk being an nv-dimensional vector and Γk a known nx × nv matrix. Then

the covariance matrix of the noise in the state equation can be written as

E
[
(Γkvk) (Γkvk)

T
]

= ΓkQkΓ
T
k (2.4)

The linearity of (2.1) and (2.2) ensures the preservation of the Gaussian property

of the state and measurements. The estimate of the system state xi based on the

observations up to time k can be written as,

x̂i|k = E
[
xi|Zk

]
(2.5)

where

Zk = {zj : j = 1, · · · , k} (2.6)

If i = k, the conditional mean is called the estimate of the system; if i < k, the

conditional mean is called the smoothed value of the state; if i > k, the conditional

mean is called predicted value of the state. The estimation error is defined as

x̃i|k = xi − x̂i|k (2.7)
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The conditional covariance matrix of xi given the data Zk or the covariance associated

with the estimate is

Pi|k = E
[(

xi − x̂i|k
) (

xi − x̂i|k
)T |Zk

]
(2.8)

2.1.2 The Recursive Estimation Algorithm

In terms of a linear and Gaussian observation z according to the minimum

mean squared error (MMSE) criterion, the estimate of x with prior information

x ∼ N(x̄,Pxx) is

x̂ = E [x|z] = x̄ + PxzP
−1
zz (z− z̄) (2.9)

and the corresponding MSE is

Pxx|z = E
[
(x− x̂)(x− x̂)T

]
= Pxx −PxzP

−1
zz Pzx (2.10)

Given the initial estimate x̂0|0 of x0 and the associated initial covariance P0|0, the

cycle of the dynamic estimation will consider mapping the estimate

x̂k|k = E
[
xk|Zk

]
(2.11)

which is the conditional mean of the state at the time k, and the covariance matrix

Pk|k = E
[
[xk − x̂k|k][xk − x̂k|k]

T |Zk
]

(2.12)

into the corresponding variables at the next stage, that is to say, x̂k+1|k+1 and Pk+1|k+1.

Since the process noise is white and Gaussian, the predicted state x̂k+1|k is

x̂k+1|k = E
[
xk+1|Zk

]
= E

[
Fkxk + Gkuk + vk|Zk

]
(2.13)

= Fkx̂k|k + Gkuk
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The state prediction error, namely the difference between the system state and its

prediction is

x̃k+1|k = xk+1 − x̂k+1|k = Fkx̃k|k + vk (2.14)

Using the equation above, we can get the state prediction covariance as

Pk+1|k = E
[
x̃k+1|kx̃

T
k+1|k|Zk

]
(2.15)

= FkE
[
x̃k|kx̃

T
k|k|Zk

]
FT
k + E

[
vkv

T
k

]
= FkPk|kF

T
k + Qk

The predicted measurement is the expectation of the measurement conditioned on

Zk,

zk+1|k = E
[
zk+1|Zk

]
(2.16)

= E
[
Hk+1xk+1 + wk+1|Zk

]
= Hk+1x̂k+1|k

The measurement prediction error is

z̃k+1|k = zk+1 − ẑk+1|k = Hk+1x̃k+1|k + wk+1 (2.17)

Thus the measurement prediction covariance, which is defined as Sk+1, is

Sk+1 = Hk+1Pk+1|kH
T
k+1 + Rk+1 (2.18)

The covariance between the state and measurement is

E
[
x̃k+1|kz̃

T
k+1|k|Zk

]
= E

[
x̃k+1|k

[
Hk+1x̃k+1|k + wk+1

]T |Zk
]

(2.19)

= Pk+1|kH
T
k+1
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The filter gain can be calculated as

Wk+1 = Pk+1|kH
T
k+1S

−1
k+1 (2.20)

Thus the updated state estimate can be written as

x̂k+1|k+1 = x̂k+1|k + Wk+1τk+1 (2.21)

where

τk+1 = zk+1 − ẑk+1|k = z̃k+1|k (2.22)

which is called innovation or measurement residual. Finally, the updated covariance

of the state at time k + 1 is,

Pk+1|k+1 = Pk+1|k −Pk+1|kH
T
k+1S

−1
k+1Hk+1Pk+1|k (2.23)

= Pk+1|k −Wk+1Sk+1W
T
k+1

An alternative form for the covariance update can be provided as

P−1
k+1|k+1 = P−1

k+1|k + HT
k+1R

−1
k+1Hk+1 (2.24)

2.1.3 Statistical Test for Filter Consistency

Under the linear-Gaussian assumption, the conditional probability density func-

tion of the state xk at the time k is

p(xk|Zk) = N (x̂k,Pk|k) (2.25)
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Based on (2.25), we can get the first two moments,

E
[
xk − x̂k|k

]
= E

[
x̃k|k

]
= 0 (2.26)

E
[[

xk − x̂k|k
] [

xk − x̂k|k
]T]

= E
[
x̃k|kx̃

T
k|k
]

= Pk|k

Define the normalized estimation error squared as

εk = x̃Tk|kP
−1
k|kx̃k|k (2.27)

Under hypothesis H0 that the filter is consistent and linear Gaussian assumption, εk

is Chi-square distributed with nx degrees of freedom, where nx is the dimension of

the system state x, and

E [εk] = nx (2.28)

Based on the Monte Carlo simulations with N independent samples εik, i = 1, ..., N ,

the sample average of εk can be obtained,

ε̄k =
1

N

N∑
i=1

εik (2.29)

It can be shown that Nε̄k follows a Chi-square distribution with Nnx degrees of

freedom. The hypothesis of H0 is accepted if

ε̄k ∈ [r1, r2] (2.30)

where the acceptance interval is determined such that

P{ε̄k ∈ [r1, r2]|H0} = 1− α (2.31)

and α is the power of the test.
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2.2 System Model

For a discrete-time linear dynamic system described in Section 2.1.1, let us as-

sume that M sensors are used by the system. The measurement at time k collected

by sensor i is

zk,i = Hk,ixk,i + wk,i (2.32)

with Hk,i being the measurement matrix, and wk,i a zero-mean white Gaussian mea-

surement noise with covariance matrix E[wk,iw
T
k,i] = Rk,i, for i = 1, · · · ,M . We

further assume that the measurement noises are independent across sensors. The

matrices Hk,i and Rk,i are assumed to be known with proper dimensions. In this

dissertation, we assume that a bias bk,i is injected by the adversary into the measure-

ment of the ith sensor at time k intentionally. Therefore, the measurement equation

(2.32) becomes

z′k,i = Hk,ixk + wk,i + bk,i = zk,i + bk,i (2.33)

where z′k,i is the corrupted measurement, bk,i is either an unknown constant or a

random variable independent of {vk,i} and {wk,i}. For compactness, let us denote the

system sensor observation as zk = [zTk1, · · · , zTkM ]T , which contains the observations

from all the M sensors. Similarly, let us denote the system bias vector as bk =

[bTk1, · · · ,bTkM ]T which includes the biases at all the M sensors. Correspondingly, the

measurement matrix becomes

Hk = [HT
k1, · · · ,HT

kM ]T (2.34)

With these notations, it is easy to convert (2.32) and (2.33) into the following equa-

tions respectively.

zk = Hkxk + wk (2.35)
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and

z′k = zk + bk (2.36)

Further, we have the measurement error covariance matrix corresponding to wk is

Rk =


Rk,1 · · · 0

...
. . .

...

0 · · · Rk,M

 (2.37)

which is obtained by using the assumption that measurement noises are independent

across sensors.

2.3 Impact of False Information Injection

Let us first assume that the adversary attacks the system by injecting false in-

formation into the sensors while Kalman filter is unaware of such attacks. We start

with the case where biases (bk) are continuously injected into the system starting

from a certain time K. Note that single injection is just a special case of continuous

injection when bk are set to be nonzero at time K and zero otherwise. In the contin-

uous injection case, Kalman filter’ extra mean square error (EMSE), which is caused

by the continuous bias injection alone, is derived in [32] and provided as follows.

Proposition 1 When the bias sequence {bk} is zero mean, random, and independent

over time, the EMSE at time K +N due to the biases injected at and after time K,

denoted as AK+N , is

AK+N =
N∑
m=0

DmΣK+N−mDT
m (2.38)

where Dm =
(∏m−1

i=0 BK+N−i
)
WK+N−m, and BK = (I−WKHK) FK−1.

∏−1
i=0 BK+N−i =

I is an identity matrix, WK is Kalman filter gain [31], and ΣK+N−m is the covariance

matrix of bK+N−m.
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2.4 Attack Strategies from Trace Perspective

Firstly, we investigate the optimal attack strategy that an adversary can adopt to

maximize the system estimator’s estimation error. This problem can be formulated as

a constrained optimization problem. Without loss of generality, let us consider that

the attacker is interested in maximizing the system state estimation error at time K

right after a single false bias is injected at time K. In this case, we are interested in

designing the injected random bias’ covariance matrix such that

max
ΣK

Tr
[
PK|K + AK(ΣK)

]
s.t. Tr(ΣK) = a2 (2.39)

where a is a constant, Tr(·) is the matrix trace operator, and PK|K is Kalman filter’s

state estimation error covariance matrix at time K in the absence of any false infor-

mation. Note that it is meaningful to have a constraint on the trace of ΣK , since it

can be deemed as the power of injected sensor bias bK , and a smaller power for bK

reduces the probability that the adversary is detected by the system estimator using

an innovation based detector. Note that the optimization problem is equivalent to

one that maximizes Tr (AK(ΣK)), since PK|K is not a function of ΣK , and trace is a

linear operator. If one is more interested in the determinant of the estimation MSE

matrix, a similar optimization problem can be easily formulated as follows.

max
ΣK

∣∣PK|K + AK(ΣK)
∣∣

s.t. Tr(ΣK) = a2 (2.40)

To simplify the mathematical analysis, it is helpful to derive the equivalent sensor

measurement, which is a linear combination of the observations from all the sensors,

and is a sufficient statistic containing all the information about the systems state.
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The equivalent sensor measurement vector and its corresponding covariance matrix

should have much smaller dimensionality than the original measurement vector and

its covariance, making the mathematical manipulation and derivation later in the

dissertation much simpler. In a information filter recursion [31], which is equivalent

to Kalman filter recursion, we have

ŷk|k = ŷk|k−1 + HT
kR−1

k zk (2.41)

where ŷk|k = P−1
k|kxk|k and ŷk|k−1 = P−1

k|k−1xk|k−1. It is clear that ŷk|k−1 represents the

prior knowledge about the system state based on past sensor data, and the second

term in (2.41) represents the new information from the new sensor data zk, which

can be expanded by using (2.34) and (2.37) as follows.

HT
kR−1

k zk

= [HT
k1, · · · ,HT

kM ]


R−1
k1 · · · 0

...
. . .

...

0 · · · R−1
kM




zk1

...

zkM


=

M∑
i=1

HT
kiR

−1
ki zki

(2.42)

In the following derivations, we skip the time index k for simplicity. Our purpose is

to find an equivalent measurement ze such that

ze = Hex + we (2.43)

where we ∼ N (0,Re), and

HT
e R−1

e ze =
M∑
i=1

HT
i R−1

i zi (2.44)

Let us consider two cases. First, suppose all the His are the same (Hi = H) , then it
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is natural to set He = H. Note that a sufficient condition for (2.44) to be true is

ze = Re

M∑
i=1

R−1
i zi (2.45)

Finding the covariance on the both sides of (2.45), we get

Re = Recov

(
M∑
i=1

R−1
i zi

)
RT
e

= Re

[
M∑
i=1

R−1
i Ri(R

−1
i )T

]
RT
e

(2.46)

This implies that

Re =

(
M∑
i=1

R−1
i

)−1

(2.47)

In the second case, let us assume that the system state x is observable based on

the observations from all the sensors, meaning that the Fisher information matrix∑M
i=1 HT

i R−1
i Hi is invertible. In this case, by setting He = I, using (2.44), and

following a similar procedure as in the first case, we have

ze = Re

M∑
i=1

HT
i R−1

i zi (2.48)

and

Re =

(
M∑
i=1

HT
i R−1

i Hi

)−1

(2.49)

We have derived the optimal strategies concerning position-sensor case to max-

imize the trace of the state estimation MSE matrix as provided in the following two

propositions [25].

Proposition 2 For a system with M sensors, if the adversary injects independent

random noises, the best strategy is to allocate all the power to the sensor with the
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smallest measurement noise variance.

Proposition 3 For a system with M sensors, the optimal strategy for the adversary

is to inject dependent random noises with a pairwise correlation coefficient of 1. The

noise power is allocated such that σbi = cia√∑M
j=1 c

2
j

, i ∈ {1, · · · ,M}, where σbi is the

standard deviation (s.d.) of the noise injected to the ith sensor, ci =
1/σ2

wi∑M
j=1

(
1/σ2

wj

) and

σwi
is the ith position-only sensor’s measurement noise s.d.

As for the case where sensors measure both position and velocity of the tar-

get, the best attack strategy for single sensor and multiple sensors are studied and

corresponding optimal attack strategies are shown as follow,

Proposition 4 For a system with one sensor observing position and velocity of the

target, the optimal strategy for the adversary is to inject random noise that has de-

pendent position and velocity components. If w11w12 + w21w22 > 0, the correlation

coefficient ρbp,bv should be set as 1, and the random bias power is allocated such that

σbp = a sin(θ∗) (2.50)

σbv =
a

T
cos(θ∗)

θ∗ =
π

4
− φ

2

φ = arctan

[
β2 − β1T

2

2T (α1 + α2)

]
w2

11 + w2
21 = β1

w2
12 + w2

22 = β2

w11w12 = α1

w21w22 = α2

When w11w12 + w21w22 < 0, we should set ρbp,bv = −1 and set α1 = −w11w12 and

α2 = −w21w22. The rest of the equations in formula (2.50) remains the same.
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As for attack strategy for multiple position and velocity sensors, equivalent sensor is

utilized to find the best attack strategy. Based on Proposition 1, we get the EMSE

matrix,

AK+N =
N∑
m=0

DmΣK+N−mDT
m

Suppose at time K, the adversary wants to attack the system continuously from time

K to K +N , the weight for different time is αm,m ∈ {1, · · · , N}, as shown below,

A
′

K = α0(D0ΣKDT
0 )

A
′

K+1 = α1(D0ΣK+1D
T
0 + D1ΣKDT

1 ) (2.51)

...

A
′

K+N = αN(D0ΣK+NDT
0 + ...+ DNΣKDT

N)

where
∑N

m=0 αm = 1. So the objective function in the multi-shot attack case is

the trace of the weighted sum of the EMSE matrices at different time points that

is
∑N

m=0 αmAK+m =
∑N

m=0 A
′
K+m. It is equivalent to maximize the trace of the

weighted sum of the MSE matrices of the state estimates, because once the sys-

tem reaches its steady state, PK+m|K+m becomes constant, and the weighted sum

of PK+m|K+m will remain the same. First we study the case where the system has

position sensors which are being attacked, so all the items above are scalars. Using
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lower case d, σ2
p to denote D,Σ, we can formulate the optimization problem below,

max
σpK ,··· ,σpK+N

N∑
m=0

αmAK+m =
N∑
m=0

A
′

K+m (2.52)

= σ2
pK

(α0d
2
0 + α1d

2
1 + ...+ αNd

2
N)

+σ2
pK+1

(α1d
2
0 + α2d

2
1 + ...+ αNd

2
N−1)

+σ2
pK+2

(α2d
2
0 + α3d

2
1 + ...+ αNd

2
N−2)

+...

+σ2
pK+N

(αNd
2
0)

s.t.
K+N∑
m=K

σ2
pm ≤ a2

N∑
m=0

αm = 1

The adversary can allocate the power based on the coefficients of the variance variables

at different time. For example, if the weights α′ms are all the same, the best strategy

is to allocate all the power to the sensors at the first beginning (at time K) because

the coefficient for σ2
pK

is the largest. Second, if the sensors measure both position and

velocity, and the attacker aims to attack the system with position and velocity false
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information, the optimization problem can be characterized as below,

max
ΣK ,··· ,ΣK+N

Tr

[
N∑
m=0

αmAK+m

]
= Tr

[
N∑
m=0

A
′

K+m

]
(2.53)

= Tr
[
ΣK(α0D

T
0 D0 + ...+ αNDT

NDN)
]

+Tr
[
ΣK+1(α1D

T
0 D0 + ...+ αNDT

N−1DN−1)
]

+Tr
[
ΣK+2(α2D

T
0 D0 + ...+ αNDT

N−2DN−2)
]

+...

+Tr
[
ΣK+N(αNDT

0 D0)
]

s.t.
K+N∑
m=K

σ2
pm + T 2σ2

vm ≤ a2

N∑
m=0

αm = 1

where Σm and DT
j Dj are positive semidefinite matrices, so Tr

[
Σm(DT

j Dj)
]
≥ 0

all the time. The trace function Tr(·) is a monotonically increasing function of the

positive semidefinite matrix. So the best strategy for the adversary to attack the

system is to put all the power at the time with the largest positive semidefinite

matrix.

2.5 Attack Strategies from Determinant Perspective

For the position-only sensors, we are interested in the effect of bias information

on Kalman filter’s MSE matrix from the determinant perspective as follows,

|PK|K + AK | = |PK|K + ΣeKD0D
T
0 |

= |PK|K ||I + ΣeKD0P
−1
K|KDT

0 |
(2.54)

where D0 is defined in Proposition 1. As PK|K is constant and positive definite,

D0P
−1
K|KDT

0 is positive semidefinite meaning that all the eigenvalues of D0P
−1
K|KDT

0
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are non-negative. First, let us denote C as a square matrix whose columns are the

eigenvectors of D0P
−1
K|KDT

0 . Then through eigendecomposition, (2.54) can be written

concisely as,

|PK|K ||CIC−1 + ΣeKCΛC−1|

= |PK|K ||I + ΣeKΛ|
(2.55)

where Λ is a diagonal matrix whose diagonal elements are the eigenvalues of the

D0P
−1
K|KDT

0 . So we just need to maximize ΣeK in order to maximize the determinant

of PK|K +AK . This is equivalent to maximizing the trace of PK|K +AK as discussed

in Section 2.4.

For the position-and-velocity sensors, we assume that the adversary knows the

system model and the prior information P0|0 at time zero, so that he/she can calculate

the offline Kalman filter gain matrix Wk recursively. The best attack strategy is the

solution to the following optimization problem.

max
ΣK

∣∣PK|K + WKΣKWT
K

∣∣
s.t. σ2

bp + T 2σ2
bv = a2 (2.56)

−1 ≤ ρbp,bv ≤ 1

σbp , σbv > 0

where WKΣKWT
K = AK , and

ΣK =

 σ2
bp

ρbp,bvσbpσbv

ρbp,bvσbpσbv σ2
bv

 (2.57)
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Using the properties of the determinant, we get the formula as follows.

|PK|K + WKΣKWT
K |

= |PK|K ||In + ΣKWT
KP−1

K|KWK | (2.58)

Since PK|K is independent of ΣK , the optimization problem can be further written

as:

max
ΣK

∣∣∣In + ΣKWT
KP−1

K|KWK

∣∣∣
s.t. σ2

bp + T 2σ2
bv = a2 (2.59)

−1 ≤ ρbp,bv ≤ 1

σbp , σbv > 0

By defining

WT
KP−1

K|KWK =

 m1 m2

m2 m3

 (2.60)

and after simplifying (2.59), the objective function becomes∣∣∣In + ΣKWT
KP−1

K|KWK

∣∣∣
= 1 + (1− ρ2

bp,bv)σ2
bpσ

2
bv(m1m3 −m2

2) (2.61)

+σ2
bpm1 + σ2

bvm3 + 2ρbp,bvσbpσbvm2

The optimal solution to the problem will be the best strategy to attack the system.
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We denote ΣK = RTR and since ΣK is invertible, we have∣∣∣In + ΣKWT
KP−1

K|KWK

∣∣∣
=

∣∣∣In + RTRWT
KP−1

K|KWK

∣∣∣ (2.62)

=
∣∣∣In + RWT

KP−1
K|KWKRT

∣∣∣
In order to obtain the optimal solution, two useful lemmas [33] are introduced

as follows,

Lemma 1 Suppose A and B are n × n positive semidefinite matrices with eigende-

composition A = ΨAΣAΨT
A and B = ΨBΣBΨT

B, the eigenvalues of A and B satisfy

that α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn, then

Πn
i=1(αi + βi) ≤ det(A + B) ≤ Πn

i=1(αi + βn+1−i) (2.63)

where the upper bound is achieved if and only if ΨA = ΨBΘ, the lower bound is

achieved if and only if ΨA = ΨB, and Θ is the matrix defined below,

0 0 · · · 1

0 · · · 1 0

...
...

...
...

1 0 · · · 0


(2.64)

Readers are referred to [33] for the proof of Lemma 1. The optimal solution to find

the upper bound is the best strategy to attack the system with the most effect on

Kalman filter system and the lower bound is the least attack effect the adversary can

get.

Lemma 2 Given a n×n matrix V1 and a n×n positive semidefinite matrix Ξ1 with

V1Ξ1V
T
1 being a diagonal matrix with diagonal elements in increasing order, it is
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always possible to find another n×n matrix V̄1 such that V̄1Ξ1V̄
T
1 = βV1Ξ1V

T
1 with

Tr(V1V
T
1 ) = Tr(V̄1V̄

T
1 ) where β ≥ 1. V̄1 can be written as ΣΞΨT

1 , where Ψ1 is the

unitary matrix whose columns are the eigenvectors corresponding to the eigenvalues

of Ξ1 in increasing order, and ΣΞ is a diagonal matrix.

By combining the two lemmas together, we can get the final optimal solution to the

optimization problem above. It is obvious that In and RWT
KP−1

K|KWKRT are both

positive semidefinite matrices, and their eigendecomposition can be written as follows,

In = Ψ1Σ1Ψ
T
1

RWT
KP−1

K|KWKRT = Ψ2Σ2Ψ
T
2 (2.65)

with identity matrix Σ1 = diag([σ1,1, · · · , σ1,n]) and Σ2 = diag([σ2,1, · · · , σ2,n]), where

σ2,i, i ∈ {1, · · · , n} is the diagonal element of the matrix Σ2. Based on Lemma 1, we

can get, ∣∣∣In + RWT
KP−1

K|KWKRT
∣∣∣ ≤ Πn

i=1(σ2,i + 1) (2.66)

where Ψ1 = Ψ2Θ.

|In + RWT
KP−1

K|KWKRT |

= |ΨT
1 ||In + RWT

KP−1
K|KWKRT ||Ψ1| (2.67)

= |In + ΨT
1 RWT

KP−1
K|KWKRTΨ1|

Set R1 = ΨT
1 R and Σ3 = ΘΣ2Θ

T with the eigenvalues of increasing order and

Tr(RRT ) = Tr(R1R
T
1 ). So the optimization problem can be written as below,

max |In + R1W
T
KP−1

K|KWKRT
1 |

s.t. T r(R1R
T
1 ) ≤ a2 (2.68)

R1W
T
KP−1

K|KWKRT
1 = Σ3
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Setting WT
KP−1

K|KWK = Ξ̃, we have R1Ξ̃RT
1 = Σ3. Based on Lemma 2, we can

surely find a matrix R̄ such that R̄1Ξ̃R̄T
1 = βR1Ξ̃RT

1 , with β ≥ 1. Note that det(·)

is a monotonic increasing function of the positive semidefinite matrix. So

|In + R1Ξ̃RT
1 | ≤ |In + R̄1Ξ̃R̄T

1 | (2.69)

So the optimal solution R̄ should be in the form of V̄. The eigendecompostion of Ξ̃

is as follows,

Ξ̃ = VΞΣΞVT
Ξ (2.70)

where ΣΞ = diag([σξ,1, σξ,2, · · · , σξ,n]) in increasing order. VΞ is a unitary matrix

whose column vectors corresponds to the eigenvalues of Ξ̃. The problem can be

written as

max
σ2
b,i

n∑
i=1

log(σ2
b,iσξ,i + 1) (2.71)

s.t.
n∑
i=1

(σ2
b,i) ≤ a2

The objective function above is a concave and increasing function. The optimal

solution is achieved through Lagrangian multipliers yielding the water-filling strategy,

σ2
b,i =

(
1

λ
− 1

σξ,i

)+

(2.72)

where the value of λ can be obtained by solving

n∑
i=1

(
1

λ
− 1

σξ,i

)+

= a2 (2.73)

The solution is

Ropt = Ψ1[Σ
1/2
b ]TVT

Ξ (2.74)
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Finally, the optimal solution of (2.59) is,

ΣK = VΞΣbV
T
Ξ (2.75)

2.6 Numerical Results

Some numerical results are presented in this section to illustrate the theoretical

results.

2.6.1 System with Position Sensors

The parameters used in the target tracking example are provided below. The

system sampling interval is T = 1. The adversary injects bias information to two

sensors with σ2
w1

= 3 and σ2
w2

= 4, respectively. The variance of the system process

noise is σ2
v = 0.25. The biases bis are zero-mean Gaussian random variables with

variances σ2
bi

s. For the power constraint we discussed earlier, we set the sum of σ2
bi

to

be 3000.

The effect of the bias injection on Kalman filter is measured by a Chi-squared

test. More specifically, we use the sum of the normalized MSE over Nm Monte-Carlo

runs

qk =
Nm∑
j=1

[
x̂′jk|k − xjk

]T
P−1
k|k

[
x̂′jk|k − xjk

]
(2.76)

where at time k, Pk|k is the nominal state covariance matrix calculated by Kalman

filter, x̂′jk|k is the state estimate, and xjk is the true state, during the jth Monte-Carlo

run. First, if the random biases injected to different sensors are independent, we

should allocate all the bias power to the sensor with the smallest measurement noise

variance. This is clearly true as demonstrated in Fig. 1, where allocating all the power

to sensor 1 causes the maximum mean squared estimation error. In Fig. 2, three

30



95 100 105 110
0

2

4

6

8

10

12
x 10

4

Iteration Number k

q
k

 

 

σ
b1

=0.8a; σ
b2

=0.6a; ρ=0

σ
b1

=0.7a; σ
b2

=0.7a; ρ=0

σ
b1

=a; σ
b2

=0; ρ=0

Fig. 1. The normalized MSE for independent biases. σ2
b1

+ σ2
b2

= a2 for each case.

dependent-noise attack strategies are compared, including the optimal one according

to Proposition 3, allocating the power equally among the sensors, and allocating all

the power to the sensor with smallest measurement error variance. It is clear that

the optimal solution has the largest impact on the estimation performance, and it

outperforms the best independent-noise attack strategy significantly.

2.6.2 Systems with Position and Velocity Sensors

We now consider the case where the adversary attacks Kalman filtering system

with a vector sensor observation containing both position and velocity measurements.

We first consider a single-sensor system, and the sensor has a position measurement

variance of 3 and a velocity measurement variance of 4. We set the sum of σ2
bp1

and

T 2σ2
bv1

to be 3000. In this particular case, w11w12 + w21w22 > 0, so the optimal

31



95 100 105 110
0

2

4

6

8

10

12

14
x 10

4

Iteration Number k

q
k

 

 

σ
b1

=0.8a; σ
b2

=0.6a; ρ=1

σ
b1

=0.7a; σ
b2

=0.7a; ρ=1

σ
b1

=a; σ
b2

=0; ρ=0

Fig. 2. The normalized MSE for dependent biases. σ2
b1

+ σ2
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= a2 for each case.

choice is ρbp,bv = 1. Based on Theorem 4, the best strategy is to set σbp = 52.3 and

σbv = 16.2. It is clear from Fig. 3 that the strategy provided in Theorem 4 maximizes

the MSE of Kalman filter system by injecting vector bias information.

Next we consider a system with two sensors. The first sensor is the same as

the one described above, and the second one is with position measurement vari-

ance 4 and velocity measurement variance 5. In this particular case, again we have

w11w12 + w21w22 > 0, so all the ρs in s1, s2, and s3 should be set as 1. We first

use a systematic grid search to find an approximate globally optimal solution and

then we use the FMINCON function in Matlab, a local search algorithm, to refine

this approximate globally optimal solution. The optimal solution we have obtained

is σ2
bp1

= 1826, σ2
bp2

= 1023, σ2
bv1

= 81, σ2
bv2

= 68. For comparison purposes, we also

implement an attack strategy that allocates power equally among the observation
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Fig. 3. The normalized MSE for a system with a single sensors. σ2
p1

+ T 2σ2
v1

= a2 for

each case.

components and among the two sensors, which is σ2
bp1

= σ2
bp2

= σ2
bv1

= σ2
bv2

= 750.

The simulation result is shown in Fig. 4. As we can see, the optimal attack strategy

has a much greater impact than the one that allocates power equally. Based on the

optimal solution, we can find that allocating more power to the measurement with

lower variance will have a greater effect on Kalman filter system.

2.6.3 Determinant Perspective

Numerical results are presented in this section to illustrate the effectiveness of

the proposed attack strategies. Assuming that the injected bias noise bk is zero-

mean and Gaussian distributed, we can show that the posterior probability density
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function (PDF) of the target state conditioned on the past observations and the

current corrupted observation is

p(xK |z1:K−1, z
′
K) = N (x̂K|K ,PK|K + AK) (2.77)

where x̂K|K is the updated state estimate calculated by Kalman filter, which is un-

aware of the presence of the injected false information. Then the target state xK will

be in the following confidence region (or error ellipse)

{
x : (x− x̂K|K)T (PK|K + AK)−1(x− x̂K|K) ≤ γ

}
(2.78)
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with probability determined by the threshold γ [34]. The volume of the confidence

region defined by (2.78) corresponding to the threshold γ is

V (K) = cnx|γ(PK|K + AK)|1/2 (2.79)

where nx is the dimension of the target state x,

cn =
πn/2

Γ(n/2 + 1)
(2.80)

and Γ(·) is the gamma function. First, let us consider a single-sensor case, where

the sensor has a position measurement with noise variance of 3, which is independent

of the velocity measurement with noise variance of 4. We set the bias noise power

constraint as σ2
bp

+ T 2σ2
bv

= 3000. We solve the optimization problem formulated

in Section 2.5 numerically, and the optimal solution to (2.56) is σ2
bp

= 1500, σ2
bv

=

1500, ρbp,v = 0.063. In Fig. 5, error ellipsis for different attack strategies are plotted.

For all the different attack strategies, we set ρbp,v = 0.063. As we can see, under
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Fig. 5. Error ellipsis for different power allocation strategies
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normal condition without false information injection, the error ellipse has the smallest

area, while the optimal attack strategy leads to an error ellipse with the largest area.

In Figs. 6 and 7, the volume (area) of the error ellipse is provided as a function of

ρbp,v and the ratio κ =
σbp
σbvT

. We can see that when the κ =
σbp
σbvT

= 1, the area of

the ellipse is maximized. Also from Figs. 6 and 7, it is clear that the area of ellipse

increases as the absolute value of ρ decreases. In Fig. 8, the trend of the error ellipsis

as the ρ changes from −1 to +1 is illustrated.

0 2 4 6 8 10
0

500

1000

1500

2000

2500

3000

κ

V
o
lu
m
e

 

 

ρ=0

ρ=0.2

ρ=0.4

ρ=0.6

ρ=0.8

ρ=1

Fig. 6. Error ellipse volume for the positive correlation case

In this particular case, since σ2
bp

+ T 2σ2
bv

= 3000, ΣK is large and in (2.56) the

second term (WKΣKWT
K) dominates. Therefore, in (2.61) the identity matrix in the

objective function is relatively small comparing to the second item, and approximately
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we have ∣∣∣In + ΣKWT
KP−1

K|KWK

∣∣∣
≈ |ΣK |

∣∣∣WT
KP−1

K|KWK

∣∣∣ (2.81)

The second term in the second line of the above equation is a constant. Hence,

in order to get the maximum determinant, we should set σ2
bp

= σ2
bv
T 2 and ρbp,bv =

0. This is almost the same solution as we have obtained numerically. Next we

consider a system with two sensors. The first sensor is the same as the one described

above, and the second one is with position measurement variance 4 and velocity

measurement variance 5. To solve the optimization problem formulated in (2.56), we

first use a systematic grid search to find an approximate globally optimal solution and

then we use the FMINCON function in Matlab, a local search algorithm, to refine
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this approximate globally optimal solution. The optimal solution we have obtained

is σ2
bp1

= 1100, σ2
bp2

= 600, σ2
bv1

= 750, σ2
bv2

= 550, ρbp1,p2 = 0.99, ρbp1,v1 =

−0.83, ρbp1,v2 = 0.75, ρbv1,p2 = 0.89, ρbp2,v2 = −0.23, ρbv1,v2 = 0.95. For comparison

purpose, we introduce three sub-optimal attack strategies: Strategy I with all the ρs

being 0s, and σ2
bp1

= 1100, σ2
bp2

= 600, σ2
bv1

= 750, σ2
bv2

= 550; Strategy II with all

the ρs being 1s, and σ2
bp1

= 1100, σ2
bp2

= 600, σ2
bv1

= 750, σ2
bv2

= 550; and Strategy

II with the ρs being the same as those for the optimal strategy, and σ2
bp1

= σ2
bp2

=

σ2
bv1

= σ2
bv2

= 750. The numerical results are shown in Fig. 9. As we can see, the

optimal attack strategy has a greater impact than those sub-optimal attack strategies,

resulting in the largest error ellipse.

2.7 Conclusion

In this chapter, we derived the EMSE due to the injected random biases for a

Kalman filter in a discrete-linear dynamic system. This allows us to find how to
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allocate the bias power among multiple sensors in order to maximize the effect of

the false information on Kalman filter from two perspectives: trace and determi-

nant. A concrete example of multi-sensor target tracking system has been provided.

In this example, we investigated both the case where the sensors provide position

measurements and the case where they collect both position and velocity measure-

ments. Further, many closed-form results have been provided for the optimal attack

strategies.
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CHAPTER 3

FALSE INFORMATION DETECTION WITH MINIMUM MEAN

SQUARED ERRORS

The problem of false information detection has not been discussed. In this chapter,

the optimal Bayesian detector minimizing the average system estimation error will

be investigated. For a Bayesian estimator whose sensors could be attacked by false

information injected by an adversary, we investigate the strategies for the Bayesian

estimator to detect the false information and defend itself from such attacks. We

assume that the adversary attacks the system with certain probability, and that

he/she adopts the worst possible strategy which maximizes the MSE if the attack is

undetected. The defender’s goal is to minimize the average system estimation MSE

instead of minimizing the probability of error, as a conventional Bayesian detector

typically does. The cost functions are based on the traces of the MSE matrices of the

estimation error. Numerical results show that the new detection-estimation structure

outperforms the traditional detectors such as the conventional Bayesian detector and

the chi-squared detector significantly in terms of the average MSE. One proposed

detection-estimation strategy, discarding sensor data when the presence of attack is

declared, is very robust even when the attacker uses an attack strategy significantly

different from the one assumed by the defender.

3.1 System Model

For a general linear and Gaussian system, the measurement z is supposed to be

z = Hx + w (3.1)

40



where H is the measurement matrix, x is the nx× 1 system state vector and w is the

measurement noise which is supposed to be white and Gaussian. In this dissertation,

we assume that a bias b is injected by the adversary into the sensor measurement

intentionally. Therefore, the measurement equation (3.1) becomes

z′ = Hx + w + b = z + b (3.2)

where z′ is the corrupted measurement, b is a random variable independent of w and

x. Therefore, the two hypotheses can be modeled as follows.

H0 : z = Hx + w (3.3)

H1 : z = Hx + w + b

where H0 denotes that there is no attack with prior probability P (H0) = p0, H1

denotes the alternative hypothesis with probability P (H1) = p1. Let us suppose

that the following prior information is known: x ∼ N (x; x̄,Pxx), x̄ = E(x), w ∼

N (w; 0,Pww), and b ∼ N (b; 0,Pbb). The cost function is defined as follows.

c = P (H1) [P (D1|H1)c1 + P (D0|H1)c2] (3.4)

+P (H0) [P (D1|H0)c3 + P (D0|H0)c4]

where c is the total cost and ci, i ∈ {1, 2, 3, 4} are the cost functions which are the

traces of the MSE matrices of the estimator in different scenarios: correct detection

of the attack, missed detection of the attack, false alarm, and correct rejection of

the attack hypothesis. Dj|Hi, i, j ∈ {0, 1} denotes that the detector decides Dj

when the true underlying hypothesis is Hi. It is easy to show that under H1, the
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probabilities of detection and miss are

P (D1|H1) =

∫
R1

p(z|H1)dz (3.5)

P (D0|H1) = 1− P (D1|H1) (3.6)

respectively. R1 is the decision region for D1, and

p(z|H1) = |2πPzz,H1|−1/2e−
1
2

(z−z̄)T P−1
zz,H1

(z−z̄) (3.7)

where z̄ = E(z) = Hx̄.

Pzz,H1 = E[(z− z̄)(z− z̄)T ] (3.8)

= HPxxH
T + Pww + Pbb

Similarly, under H0, the probabilities of false alarm and its complement are

P (D1|H0) =

∫
R1

p(z|H0)dz (3.9)

P (D0|H0) = 1− P (D1|H0) (3.10)

respectively.

p(z|H0) = |2πPzz,H0|−1/2e−
1
2

(z−z̄)T P−1
zz,H0

(z−z̄) (3.11)

and

Pzz,H0 = HPxxH
T + Pww

Therefore, (3.4) can be rewritten as:

c = p1c2 + p0c4 +

∫
R1

[p1(c1 − c2)p(z|H1)

+p0(c3 − c4)p(z|H0)]dz (3.12)
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Clearly, in order to minimize the cost function, we should include z in R1 if the

integrand is negative for that value of z.

Theorem 1 For the problem formulated above, the optimal Bayesian detector that

minimizes the average MSE, c, is

p1(c1 − c2)p(z|H1) + p0(c3 − c4)p(z|H0)
D0

≷
D1

0. (3.13)

where ci, i ∈ {1, 2, 3, 4} are the traces of the estimator MSE matrices in different

scenarios respectively.

In the following, we consider two defending strategies and derive the optimal

detector when the system adopts each strategy to defend itself.

3.1.1 Discarding Sensor Data after Detection

In this defense strategy, once the defender declares an attack either in the case

of D1|H1 or D1|H0, sensor data will be discarded. Hence, the estimator is left with

only the prior information about the state x, and the trace of the MSE matrix in

these two cases is

c1 = c3 = Tr(Pxx) (3.14)

Under D0|H1 when the system fails to detect the false information, the MSE has been

derived in [25] and provided below:

c2 = Tr[Pxx −Pxz,H0P
−1
zz,H0

Pzx,H0 (3.15)

+Pxz,H0P
−1
zz,H0

PbbP
−1
zz,H0

Pzx,H0 ]

= Tr
[
Pxx −Pxz,H0P

−1
zz,H0

(I−PbbP
−1
zz,H0

)Pzx,H0

]
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where Pxz,H0 = PT
zx,H0

= PxxH
T . When the defender declares no attack under H0,

which is the best case for the defender, we have

c4 = Tr(Pxx −Pxz,H0P
−1
zz,H0

Pzx,H0) (3.16)

It is easy to show that c3 > c4 always holds. In the case where c2 > c1, we get

c2 > c1 = c3 > c4, and the optimal detector is based on normalized distance squared,

which is provided in Corollary 1. In the case where c2 < c1, the term on the left hand

side of the inequality in (3.13) will always be positive leading the system to declare

no attack. This is a very interesting result, which basically means that since the cost

of missing the detection of the false information (c2) is smaller than that of correctly

detecting the false information (c1), the detector will always declare D0, even under

hypothesis H1. The derived optimal Bayesian detector for the strategy of discarding

sensor data once D1 is declared is provided in the following corollary. We name this

detection-estimation strategy optimal Bayesian Detection and Discarding corrupted

sensor data (OBDD).

Corollary 1 For the defending strategy of discarding sensor data after declaring the

presence of false information, under the condition c1 < c2, or equivalently

Tr
[
Pxz,H0P

−1
zz,H0

(I−PbbP
−1
zz,H0

)Pzx,H0

]
< 0, the optimal Bayesian detector that min-

imizes the average MSE is,

(z− z̄)T (P−1
zz,H0

−P−1
zz,H1

)(z− z̄)
D1

≷
D0

α (3.17)

where α is

α = 2 ln
p0(c3 − c4)|Pzz,H1|1/2

p1(c2 − c1)|Pzz,H0|1/2
(3.18)

When c1 > c2, the optimal Bayesian detector is to always declare no attack (D0).
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Clearly, when c2 < c1, the derived optimal detector is no longer a LRT based detector.

3.1.2 Incorporating Sensor Data after Detection

In this strategy, once the defender declares the presence of false information,

instead of discarding the sensor data, it will take advantage of the information from

the sensor for estimation by changing the sensor model from (3.1) to (3.2). In the

case of D1|H1, we have,

c1 = Tr(Pxx −Pxz,H1P
−1
zz,H1

Pzx,H1) (3.19)

where Pxz,H1 = PT
zx,H1

= PxxH
T = Pxz,H0 . But this strategy will also incur more

error when the system wrongly declares D1 when H0 is true (D1|H0), in which case

we have

x̂ = x̄ + Pxz,H1P
−1
zz,H1

(z− z̄) (3.20)

and the MSE is,

c3 = Tr
(
E[(x− x̂)(x− x̂)T ]

)
(3.21)

= Tr(Pxx + Pxz,H1P
−1
zz,H1

Pzz,H0P
−1
zz,H1

Pzx,H1

−2Pxz,H0P
−1
zz,H1

Pzx,H0)

The cost functions c2 and c4 will remain the same as in Subsection 3.1.1. Hence, we

have

c2 − c1 = (3.22)

Tr
[
Pxz,H0(P

−1
zz,H1

−P−1
zz,H0

+ P−1
zz,H0

PbbP
−1
zz,H0

)Pzx,H0

]
Because Pbb is a positive semidefinite matrix, there exists a matrix K such that

Pzz,H1 = Pzz,H0 + Pbb = Pzz,H0 + KKT (3.23)
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Based on (3.23), denoting A = P−1
zz,H1

, we have

A = (3.24)

P−1
zz,H0

−P−1
zz,H0

K(I + KTP−1
zz,H0

K)−1KTP−1
zz,H0

Denoting B = P−1
zz,H0

−P−1
zz,H0

KKTP−1
zz,H0

, then we have

A−B = P−1
zz,H0

K[I− (I + KTP−1
zz,H0

K)−1]KTP−1
zz,H0

(3.25)

Since KTP−1
zz,H0

K is a positive semidefinite matrix, according to the spectral theorem,

there exist an orthogonal matrix U and a real diagonal matrix Λ such that

A−B = P−1
zz,H0

K[I− (I + UΛUT )−1]KTP−1
zz,H0

= P−1
zz,H0

KU[I− (I + Λ)−1]UTKTP−1
zz,H0

(3.26)

where I− (I+Λ)−1 has positive diagonal entries. We can see from the formula above,

A−B is still a positive semidefinite matrix, so Tr(A−B) is positive, and c2−c1 > 0.

Now let us consider the sign of c3 − c4. It can be shown that

c3 − c4 (3.27)

= Tr(Pxz,H0P
−1
zz,H0

Pzx,H0

+Pxz,H1P
−1
zz,H1

Pzz,H0P
−1
zz,H1

Pzx,H1

−2Pxz,H0P
−1
zz,H1

Pzx,H0)

= Tr[Pxz,H0(P
−1
zz,H0

+ P−1
zz,H1

Pzz,H0P
−1
zz,H1

−2P−1
zz,H1

)Pzx,H0 ]

= Tr(Pxz,H0P
−1
zz,H1

PbbP
−1
zz,H0

PbbP
−1
zz,H1

Pzx,H0)
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Clearly, the matrix inside the trace operator in (3.27) is positive semidefinite,

and we have c3 > c4. The Optimal Bayesian Detector for the strategy of detection

and Incorporating sensor data (OBDI) is provided in the following corollary.

Corollary 2 For the defending strategy of incorporating sensor data after declaring

the presence of false information, knowing that c3 > c4 and c2 > c1, the optimal

Bayesian detector that minimizes the average MSE is,

(z− z̄)T (P−1
zz,H0

−P−1
zz,H1

)(z− z̄)
D1

≷
D0

α (3.28)

where α is

α = 2 ln
p0(c3 − c4)|Pzz,H1|1/2

p1(c2 − c1)|Pzz,H0|1/2
(3.29)

3.2 Minimum Mean Square Error (MMSE) Estimator

Given all the system information, we can also derive the MMSE estimator of the

system state. Using Bayes’ rule, it could be shown that the MMSE estimator, or the

conditional mean is

E(x|z) =

∫
xp(x|z)dx (3.30)

=
p0p(z|H0)

p(z)

[
x̄ + Pxz,H0P

−1
zz,H0

(z− z̄)
]

+
p1p(z|H1)

p(z)

[
x̄ + Pxz,H1P

−1
zz,H1

(z− z̄)
]

where

p(z) = p0p(z|H0) + p1p(z|H1) (3.31)

p(z|H0) = N (z; Hx̄,Pzz,H0), and p(z|H1) = N (z; Hx̄,Pzz,H1).

We show later in the chapter that even the MMSE estimator gives the best
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estimation performance in terms of MSE, it is not robust and does not perform very

well when the true system parameters deviate from the nominal parameters. On the

other hand, the OBDD approach provides robust performance even when there is a

mismatch between the nominal and the actual parameters.

3.3 Numerical Results

In this section, the optimal Bayesian detectors are applied both in a one-dimensional

tracking system and a static parameter estimation system to detect false information.

They are compared with other widely used detection/estimation strategies, such as

the CBD that minimizes the probability of error (Pe), the chi-square detector (CSD),

and the MMSE estimator.

3.3.1 Target Tracking Example

The state equation used in Kalman filter target tracking system is [31]:

xk+1 = Fkxk + vk (3.32)

where xk = [ξ ξ̇] is the system state vector at time k, and ξ and ξ̇ represent the

target’s position and velocity along the ξ-axis at time k respectively. The state

transition matrix is

F =

 1 T

0 1

 (3.33)

where T = 1 s is the time interval between measurements. The process noise is

vk = Γvk, where vk is a zero mean white acceleration noise, with variance σ2
v . In this

example, we set σ2
v = 0.25, and the vector gain multiplying the scalar process noise

is given by ΓT = [T 2/2 T ]. The covariance matrix of the process noise is therefore
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Q = σ2
vΓΓT . Under H1, the measurement equation is provided as follows.

zk = Hkxk + wk + bk (3.34)

where Hk is a 2× 2 identity matrix. Suppose that Kalman filter runs 200 iterations

and the false information bk is injected to Kalman filter system at time k = 100

with probability p1 = 0.85, and the total bias power for the position and velocity

takes different values in the following range: σ2
bp

+ T 2σ2
bv

= a2 ∈ [7.5, 120]. The false

information b is zero-mean Gaussian random noise. The optimal covariance matrix

Pbb for bk has been derived in [25], which maximizes c2, i.e.

Tr
[
Pxx −Pxz,H0P

−1
zz,H0

(I −PbbP
−1
zz,H0

)Pzx,H0

]
(3.35)

as given in (3.15). We assume that the adversary uses this Pbb to attack Kalman filter

system. The effect of the bias injection on Kalman filter is measured by the average

MSE over Nm = 10000 Monte-Carlo runs,∑Nm

j=1 [x− x̂]T [x− x̂]

Nm

(3.36)

The optimal Bayesian detectors either discarding or incorporating sensor data

after they make a decision of D1 are compared with the CSD and the CBD. The CSD

we use is

(z− ẑ)TP−1
zz,H0

(z− ẑ)
D1

≷
D0

5.99 (3.37)

with a false alarm rate of Pfa = 0.05, and the CBD, which minimizes the probability

of error, is

p(z|H1)

p(z|H0)

D1

≷
D0

p0

p1

(3.38)

Similar to the OBDD, in both the CBD and CSD, once a decision D1 is declared, the
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sensor data will be discarded,

It is clear from Figs. 10, 11, and 12, the OBDI leads to the smallest MSE. This

is because it takes advantage of all the sensor data even when D1 is declared.

When the false information power is low, the OBDD has a smaller MSE than

the CBD, even though the former has a larger Pe than the latter. The reason for the

OBDD’s larger Pe is because when the false information power is small, it will always

declare no attack (D0) to minimize the MSE instead of Pe. This is also clear from

Fig. 11, in which for small false information power, both Pfa and Pd (probability of

detection) for OBDD are zeros. The CSD gives the worst performance in terms of

the average MSE, when the false information power is large, this is because it does

not use the prior information of p0 and p1, or the information about Pbb, and it has

a poorer Pd than other detectors, when the false information power is large. With a

large prior probability p1 = 0.85 for hypothesis H1, to minimize Pe, the CBD always

declares the presence of an attack (D1) in this particular example.

3.3.2 Parameter Estimation Example

The second example involves a static parameter estimation system. The prior in-

formation about a parameter x is x̄ = [10, 5]T , Pxx =

100 0

0 100

, the measurement

matrix H = I is a 2 × 2 identity matrix, and Pww =

3 0

0 4

. The false information

b is injected to the system with p1 = 0.85, and Pbb =

σ2
b1

0

0 σ2
b2

. The false infor-

mation power is σ2
b1

+ σ2
b2

= a2 ∈ [0, 400]. It can be shown that the optimal attack

strategy that maximizes c2 in (3.15) is Pbb =

a2 0

0 0

, which is used by the adversary
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to attack the system. From Fig. 13, it is clear that the MMSE estimator leads to

the smallest MSE, the OBDI has a performance which is very close to the MMSE

estimator, the OBDD provides the third smallest MSE. Again, the OBDD scarifies

Pe performance to achieve a smaller MSE than the CBD when the false information

power is small. The CSD provides a better MSE performance than the CBD when

the false information power is small, but a larger MSE when the false information

power becomes larger.

3.3.3 Robustness Analysis

In this subsection, we assume that the setting is almost the same as that in

Subsection 3.3.2. Let us suppose that the defender uses the nominal Pbb to design

the various detectors or the MMSE estimator, assuming that the adversary puts all the

power to the measurement with the smaller variance. However, the adversary’s actual

power allocation strategy is just the opposite by injecting all the power to the other

measurement. The false information power is σ2
b1

+ σ2
b2

= a2 ∈ [0, 400]. Simulation

results show that the OBDD has the best performance in this case, as illustrated in

Fig. 14. This is because the OBDD will discard the sensor data once it declares D1,

which makes it less susceptible to the mismatch in the system model. As for the CBD

and CSD, since they will discard the sensor data once they declare the presence of an

attack, their performance will not affected much by the model mismatch either. Their

results are not provided in Fig. 14 for the ease of presentation. On the other hand,

since both the MMSE estimator and the OBDI try to incorporate the sensor data

even when D1 is declared, their performances are significantly degraded as shown in

Fig. 14.
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3.4 Conclusion

For a Bayesian estimation system whose sensors are attacked by false information

injected by an adversary, we have derived the optimal Bayesian detection strategies

which help the system achieve the smallest average estimation MSE. The proposed

Bayesian detectors minimize the average MSE instead of the probability of error, and

they may not be the LRT based detectors any more. Different defending scenarios

cases: either discarding or taking advantage of sensor data declared to be compro-

mised by the false information were investigated. Numerical results show that the

derived Bayesian detectors lead to significantly smaller average MSE than the tradi-

tional detectors, such as the conventional Bayesian detector and chi-squared detector.

In addition, the optimal Bayesian detector coupled with the defending strategy of

discarding sensor data once the presence of an attack is declared, proves to be very

robust to the mismatch between the model assumed by the defender and that actually

adopted by the attacker.
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Fig. 10. Performances of different detectors
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Fig. 12. MSEs under no attack (H0) and attack (H1)
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CHAPTER 4

SPARSE ATTACK STRATEGIES

So far we have discussed the optimal strategies the adversary can adopt to attack the

system under the assumption that the control center is unaware of the existence of

the false information. In this chapter, it is assumed that the system can perfectly

detect and remove sensors once they are corrupted by false information injected by

an adversary. The adversary aims to maximize the covariance matrix of the system

state estimate by the end of the attack period under the constraint that the adversary

can only attack the system a few times over time and over sensors, which leads to an

integer programming problem.

4.1 Problem Formulation

Based on notations introduced in Chapter 2 and using the information filter form

[31] for Kalman filter, the state prediction covariance at time k+1, denoted as Pk+1|k,

is shown below,

Pk+1|k = FkPk|kF
T
k + Qk (4.1)

and the updated state covariance matrix at time k + 1, denoted as Pk+1|k+1, can be

obtained as

P−1
k+1|k+1 = P−1

k+1|k +
M∑
i=1

HT
k+1,iR

−1
k+1,iHk+1,i (4.2)

It is assumed that the system has perfect detection of the existence of the false

information, that is to say, its false information detector’s probability of false alarm
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is 0 and probability of detection is 1. The adversary needs to decide when and which

sensors to attack under the sparsity constraint, which leads to an integer programming

problem. It is assumed that the system has M sensors and the adversary attacks the

system from time K + 1 to time K + N . The active sensor set, which includes the

sensors being attacked by the adversary at time k ∈ {K + 1, · · · , K +N}, is denoted

as Ak, where 0 ≤ |Ak| ≤M , and | · | is the cardinality of a set. A = ∪Ak is the sensor

set that includes the sensors attacked by the adversary over time. The active set

Ak is designed in order to maximize the system estimation error under the sparsity

constraint |A| = c. Base on the perfect detection assumption, if one sensor is attacked

at certain time, Kalman filter will not use the measurement from that sensor at that

time to perform system state estimation. Define the sensor set D = {s1, ..., sM},

where si denotes the ith sensor. For each time k ∈ {K + 1, · · · , K +N}, the inverse

of the updated state covariance matrix is provided as follows

P−1
k|k = P−1

k|k−1 +
∑

i∈D\Ak

HT
k,iR

−1
k,iHk,i (4.3)

The adversary aims to maximize the state estimation error covariance matrix

PK+N |K+N by the end of the attack period, and the problem can be formulated as

follows,

max
A

Φ
(
PK+N |K+N

)
(4.4)

s.t. |A| = c

where function Φ (·) could be either trace or determinant of a matrix and PK+N |K+N

is calculated iteratively using (4.1) and (4.3). That is to say, a subset is chosen

out of the whole option set so that the object function will be maximized, leading

to the largest estimation error. The optimal solution can be obtained by using the
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exhaustive search to check all the different sensor combinations. For each candidate

sensor combination, N iterations have to be performed to evaluate Kalman filter’s

covariance matrix over time, and for each iteration, there are roughly M matrix

additions as shown in (4.3), leading to a complexity of n = MN . The complexity for

the exhaustive search algorithm is therefore

ϕ1(n) = n
n!

(n− c)!c!
= n

c∏
i=1

n+ 1− i
i

(4.5)

4.1.1 Greedy Search Based Approaches

Concerning the high complexity of the exhaustive algorithm, it will be infeasible

to find the optimal solution as the size of problem increases. Some suboptimal al-

gorithms, including sequential forward selection (SFS), sequential backward selection

(SBS), and SFS improved by the simplex approach (SFS-SS) [35, 36] are proposed to

find the attack strategies. The SFS starts with an empty set for A, and one sensor

is added at each iteration, whose elimination from the system will lead to the maxi-

mum MSE. This process terminates when |A| reaches c. The pseudo code of the SFS

algorithm is provided in Algorithm 1. The complexity of the SFS is provided below

ϕ2(n) = n [n+ (n− 1) + ...+ (n− c+ 1)] (4.6)

=
2cn2 − c(c− 1)n

2

which has a complexity of O(n2).

SBS solves the problem in the opposite direction. The SBS starts with a set A

containing all the sensors over all the time steps, and one sensor is reduced at each

iteration, whose addition to the system will lead to the minimum reduction in the

state estimation’s MSE. This process terminates when |A| reaches c. The complexity
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of SBS is O(n3):

ϕ3(n) = n [n+ n− 1 + ...+ c+ 1] (4.7)

=
n3 + n2 − (c2 + c)n

2

Comparing (4.7) to (4.6), it is clear that the SFS is preferable in terms of com-

putational complexity.

Algorithm 1 Sequential Forward Selection

1: A0=∅; j = 0
2: ind+ = argmaxind/∈Aj Φ

(
Aj ∪ {ind}

)
3: update Aj+1 = Aj ∪ {ind+}
4: j = j + 1
5: if j < c, go to 2
6: end

As for SFS-SS, it tries to improve the suboptimal solution found by the SFS. SFS-

SS works by checking whether replacing a sensor in the active set with a sensor in the

inactive set will increase the system estimation error. The index of active set Ainitial

achieved from SFS is sorted in the order the sensors are selected by the SFS. The

SFS-SS starts from the (c−1)th sensor in the active set and checks whether replacing

this sensor with any sensor in the inactive set will increase the system estimation

error. If no improvement is found, the next sensor in the active set will be checked.

Otherwise, the sensor in Ainitial is replaced with the sensor found from the inactive

set and the cth sensor is to be checked in the next iteration. Once the first sensor in

Ainitial is checked and no more improvement is found, the algorithm terminates. The

pseudo code of the SFS-SS is provided in Algorithm 2.

4.1.2 Dynamic Programming

Another computationally tractable suboptimal solution to the formulated integer

programming problem is dynamic programming (DP). Consider the cases where once
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Algorithm 2 Simplex Improved SFS
1: A=Ainitial
2: i = c− 1
3: s+ = argmaxind/∈A Φ ((A\{i}) ∪ {ind})
4: if Φ ((A\{i}) ∪ {s+}) > Φ (A) then
5: Update A = (A\{i}) ∪ {s+}, i = c
6: else
7: i = i− 1

8: if i > 0, go to 3
9: end

Pk|k−1 and |Ak| are given, the optimal attack strategy at snapshot k is certain, i.e., Ak

can be determined without enumerating all the M -choosing- |Ak| combinations. Such

cases are common for systems with scalar-valued measurements, where the optimal

attack strategy is to attack the Ak sensors with the smallest measurement variances.

For such systems, we can develop a DP algorithm, which can also be performed in

polynomial time, and is optimal if the system state is scalar-valued.

First, note that the predicted state covariance matrix Pk|k−1 in (4.2) or (4.3)

satisfies

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Qk−1, (4.8)

which is only a function of Pk−1|k−1. Combining (4.8) and (4.3), we can see that Pk|k

is a function of Pk−1|k−1 and |Ak|, namely

Pk|k = KF(Pk−1|k−1, |Ak|). (4.9)

The validity of DP lies on a straightforward but important nature of dynamic

state estimation systems — the uncertainty Φ(Pk|k) of the current estimation, is

generally increasing with that of previous estimation, Φ(Pk−1|k−1). It indicates that

when Ak is fixed, in order to maximize Φ(Pk|k) subject to |AK+1| + |AK+2| + · · · +

|Ak| = s, one first needs to solve a subproblem that maximizes Φ(Pk−1|k−1) subject

to |AK+1|+ |AK+2|+ · · ·+ |Ak−1| = s− |Ak|. Then among all the feasible choices of
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|Ak|, we choose the one that corresponds to the largest Φ(Pk|k), i.e.,

max
k∑

j=K+1
|Aj |=s

Φ(Pk|k) =

max
|Ak|
KF

 max
k−1∑

j=K+1
|Aj |=s−|Ak|

Φ(Pk−1|k−1), |Ak|

 .

(4.10)

Denote

ΦDP (s, k) = max
k∑

j=K+1
|Aj |=s

Φ(Pk|k),

∀s ∈ {0, 1, · · · , c}, k ∈ {K + 1, · · · , K +N},

(4.11)

equation (4.10) becomes

ΦDP (s, k) = max
0≤r≤s

KF (ΦDP (s− r, k − 1), r) ,

∀s ∈ {0, 1, · · · , c}, k ∈ {K + 1, · · · , K +N}.
(4.12)

By definition, the optimal solution of (4.4) is ΦDP (c,K + N). From (4.12) we can

see that in order to obtain ΦDP (c,K + N), we need to compute and store all the

(c + 1) × N values of ΦDP (s, k). Furthermore, in order to trace back the optimal

attack strategy, we also need to store another (c+ 1)×N numbers, which are given

by

C(s, k) = arg max
0≤r≤s

KF (ΦDP (s− r, k − 1), r) ,

∀s ∈ {0, 1, · · · , c}, k ∈ {K + 1, · · · , K +N}.
(4.13)

In this way, once ΦDP (c,K + N) is obtained, the best attack strategy can be found

by

|Ak| = C(c− |Ak+1|, k),∀k ∈ {K + 1, · · · , K +N − 1}, (4.14)
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where

|AK+N | = C(c,K +N). (4.15)

Therefore, the memory cost of DP is proportional to 2N(c+ 1) = O(Nc).

Run-time Complexity: It is clear that calculating the first column in ΦDP , i.e.,

ΦDP (s,K + 1), ∀s ∈ {0, 1, · · · , c}, has complexity on the order of M(c + 1). This is

because given the steady state PK|K , it only takes c+ 1 repetitions of (4.8) and (4.3)

to calculate the first column of ΦDP . When k > K+1, there are s+1 possible values of

|Ak| for determining ΦDP (s, k), which needs totally 1+2+· · ·+(c+1) = (c+1)(c+2)/2

repetitions of (4.8) and (4.3). Therefore, the run-time complexity of DP is

φ4(n)=M(c+ 1)+(N − 1)M
(c+ 1)(c+ 2)

2
= O(nc2). (4.16)

As we can see, if c keeps constant, then DP is a linear-time algorithm and has smaller

complexity than greedy algorithms.

4.2 Numerical Results

Numerical results for a target tracking example are presented in this section to

illustrate the effectiveness of the proposed suboptimal solutions. Two cases involv-

ing position sensors and position-velocity sensors are presented to show the attack

strategies of the adversary under different sensor configurations.

4.2.1 System with Position Sensors

For the system with position sensors, the parameters used in the target tracking

example are provided below. The system has M = 3 position sensors with sampling
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interval T = 1. The system input uk = 0. The system state transition matrix is

F =

 1 T

0 1

 (4.17)

The measurement matrix for each sensor is

H =

[
1 0

]
(4.18)

The standard deviation (s.d.) of the system process noise is σv = 0.02. The s.d.s of

the measurement noise for the three sensors are σw1 = 0.2, σw2 = 0.4, and σw3 = 0.5,

respectively. The sparsity constraint for the adversary is c = 5, meaning that the

adversary has to choose 5 spots to attack the system over M = 3 sensors and over

N = 6 time steps in order to maximize the trace of the state covariance matrix by

the end of the attack period.

To begin with, SFS is used to find the suboptimal solution. Table 1 shows the

found attack strategy. The numbers shown in the table denote the order of sensors

for the adversary to attack. The reason why the adversary attacks the first sensor is

Sensor 1 has the smallest measurement variance. Examing (4.3), the second item is

a diagonal matrix, with only position variance on the diagonal. In order to maximize

the trace of PK+6|K+6, in each iteration, it is better to minimize the matrix P−1
k|k. The

result shows that the adversary attacks Sensor 1 from time K+ 3 to time K+ 6. The

interesting thing for this method is that it also provides the adversary with an attack

strategy if he/she wants to attack the system less than c times because of the greedy

nature of the SFS. Another observation is that the attacker tends to attack sensors

in the times near the end, which is due to the “forgetting” property of Kalman filter,

implying that the sensor data in the past will become less and less important as time

goes on.
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Table 1. Attack Strategy for Position Sensors

Time/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 5 3 2 1

Sensor 2 4

Sensor 3

For the same parameter setup, different optimization algorithms including DP

and exhaustive search (EXS) are tested, and the simulation results are shown in Table

2. Tr(·) denotes the trace operator for a matrix. The number of sensors is 3, the

problem size (MN) is enlarged by increasing the attack time period from 6 to 20.

From Table 2, it is clear that SFS and SFS-SS have a lower complexity than the

SBS and the EXS. DP is a linear-time algorithm, which has the least computational

complexity. As the size of the problem increases, it will be not feasible to get the

optimal solution using EXS. In this example, all the approaches can find the global

optimum at least when the EXS is still feasible.

For the case the adversary attacks the system from K + 1 to K + 10, the system

parameters are set the same as above. The results for the optimal attack strat-

egy (10, 1), (9, 1), (8, 1), (10, 2), (7, 1), the strategy to attack backwards (9, 1), (9, 2),

(10, 1), (10, 2), (10, 3), and the strategy to attack the best sensor (10, 1), (9, 1), (8, 1),

(7, 1), (6, 1) are shown in Fig. 17, where (k, i) denotes that the adversary attacks

sensor i at time k. It is clear that the maximal system estimation error is achieved

by using the optimal attack strategy.

4.2.2 System with Position and Velocity Sensors

For the system with position and velocity sensors, transition matrix F and input

uk are set the same as in Section 4.2.1. The measurement matrix H for each sensor
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Table 2. Performance of Different Algorithms

Alg. Size Time (s) Tr(PK+N |K+N)

18 0.025 0.033

SFS 30 0.064 0.033

60 0.249 0.033

18 0.045 0.033

SBS 30 0.239 0.033

60 1.982 0.033

18 0.047 0.033

SFS-SS 30 0.128 0.033

60 0.495 0.033

18 0.015 0.033

DP 30 0.025 0.033

60 0.049 0.033

18 2.269 0.033

EXS 30 79.383 0.033

60 − −
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Fig. 17. Trace of MSE for the system with three sensors

is a 2× 2 identity matrix. In this subsection, the determinant of the state covariance

matrix is used as the objective function. Here we investigate three cases with different

system parameters. In Case I, we set σv = 0.02, and the correlation coefficients

between position and velocity measurements for the 3 sensors are ρ1 = 0.5, ρ2 =

0, ρ3 = −0.5, σw1p
= σw1v

= 0.5, σw2p
= σw2v

= 0.5, and σw3p
= σw3v

= 0.5. Using

SFS, the optimal attack strategy is shown in Table 3. The first item in (4.3) is a

positive semidefinte matrix with negative off-diagonal elements. The information from

Sensor 3 R−1
3 will enlarge the diagonal elements and lower the off-diagonal elements,

leading to smaller determinant of Pk|k, so the adversary will attack Sensor 3 first. For

Sensors 1 and 2, the inverse of covariance matrices are R−1
1 =

 5.3 −2.7

−2.7 5.3

 and
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Table 3. Attack Strategy for Case I

Time/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 5 2

Sensor 2 4

Sensor 3 3 1

Table 4. Attack Strategy for Case II

Time/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1 4 2

Sensor 2

Sensor 3 5 3 1

R−1
2 =

 4 0

0 4

. Comparing with Sensor 2, Sensor 1 will make P−1
k|k larger. Thus the

adversary will attack Sensor 1 next instead of Sensor 2. In Case II, we set σv = 0.001,

all the other parameters are set the same as in Case I, and the attack strategy is

shown in Table 4. From Table 4, it is clear that as the variance of the state process

noise decreases, the adversary will attack the sensors with correlated measurements.

In Case III, we set σw2p
= σw2v

= 0.2, all the other parameters are set the same as

in Case II, and the optimal attack strategy is shown in Table 5. In this case, instead

of attacking the sensors with correlated measurements, the adversary will attack the

sensor with the smallest covariance.

To compare the greedy approach and DP, we consider the case that only involves

position sensors under different configurations. The standard deviation σv of the

system process noise varies from 0.01 to 1. The sparsity constraint for the adversary

is c = 10, meaning that the adversary has to choose 10 spots to attack the system
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Table 5. Attack Strategy for Case III

Time/Sensor K+1 K+2 K+3 K+4 K+5 K+6

Sensor 1

Sensor 2 5 4 3 2 1

Sensor 3

over M = 10 sensors and over N = 6 time steps in order to maximize the trace of the

state covariance matrix by the end of the attack period. Furthermore, the attacker

uses the trace of covariance matrix as the uncertainty measure. For each value of σv,

we run 100 Monte-Carlo trials, and in each trial we set the standard deviations σw of

the measurement noise for the ten sensors by drawing ten values from uniform (0, 1)

distribution. Then, we count the number of simulations where DP gives the same,

larger, and smaller Tr(PK+N |K+N) compared with the greedy approach SFS.

In Fig. 18, we compare the attack performance of greedy approach and DP under

different σv’s. It can be shown that for a small σv, the two algorithms mostly give

the same results, and greedy approach is performing better; however, as σv increases

up to 0.1, DP begins to outperform greedy approach significantly. The underlying

reason comes from the different frameworks of SFS and DP. In each round of SFS,

attacker chooses one sensor-time pair to attack by running Kalman filter through all

the snap shots K + 1 up to K + N . On the other hand, DP determines ΦDP (s, k)

only based on the previous c + 1 states at snap shot k − 1. Therefore, when σv is

small, or the system state evolves smoothly, SFS will have a better sense of “global

view” than DP; however, for a large σv where the prediction gives little information,

DP gives more credit for the current measurement which is more informative, and

hence outperforms SFS significantly.
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Fig. 18. Comparison between greedy approach (SFS) and DP.

4.3 Conclusion

In this chapter, sparse attack strategies in multi-sensor dynamic systems have

been studied from the adversary’s point of view. By assuming that the system de-

fender can perfectly detect and remove the sensors attacked by the adversary, this

becomes an integer programming problem. As the size of the problem increases, it

will be infeasible to find the optimal solution. Different suboptimal algorithms: SFS,

SBS, SFS-SS, and DP have been studied and corresponding attack strategies were

developed. Their computational complexities have been analyzed and their perfor-

mances have been evaluated and compared based on simulations. All the proposed

suboptimal solutions can provide very good performance (in some examples they lead

to the optimal solution) with significantly lower complexities. It has been shown that
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the greedy approach outperforms DP when the system process noise is small, since it

has a more long-term view of the problem. On the other hand, DP performs better

when the process noise is large and the state is more unpredictable.
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CHAPTER 5

A GAME BETWEEN STATE ESTIMATION AND MALICIOUS

ATTACKS

We have studied attack strategies from the adversary perspective. In this chapter, the

problem of false information attack on and Kalman filter’s defense of state estimation

in dynamic multi-sensor systems is investigated from a game theoretic perspective.

The relationship between Kalman filter and the adversary can be regarded as a two-

person zero-sum game. Under which condition both sides of the game will reach

the Nash equilibrium is investigated in this chapter. The multi-sensor Kalman filter

system and the adversary are supposed to be rational players. Kalman filter and

the adversary have to choose their respective subsets of sensors to perform system

state estimation and false information injection. It is shown how both sides pick their

strategies in order to gain more and lose less.

5.1 A Target Tracking Example

In this section, we give a concrete target tracking example, which is also discussed

in [37]. Assume that the target moves in a one-dimensional space according to a

discrete white noise acceleration model [31], which can still be described by the plant

and measurement equations provided in (2.1) and (2.2). In such a system, the state

is defined as xk = [ξk ξ̇k]
T , where ξk and ξ̇k denote the target’s position and velocity

at time k respectively. The input uk is a zero sequence. The state transition matrix
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is

Fk =

 1 T

0 1

 , ∀k (5.1)

where T is the sensor sampling interval. The process noise is vk = Γvk, where vk is a

zero mean white acceleration noise, with variance σ2
v , and the vector gain multiplying

the scalar process noise is given by Γ = [T 2/2 T ]
T

. The covariance matrix of the

process noise is therefore Q = σ2
vΓΓT . The observation matrix is given as

Hk,i = [1 0], ∀k, i (5.2)

Once the system model is known, it is straightforward for both Kalman filter and the

adversary to calculate Kalman filter’s state covariance matrix PK|K as in [31]. Using

Proposition 1, we can obtain the trace of the total state estimation MSE matrix:

Tr(MSE) = Tr(PK|K + WKΣKWT
K) (5.3)

5.2 Noncooperative Two-Person Zero-Sum Game

In a noncooperative two-person zero-sum game [38], we assume that there are

two players, referred to as Players 1 and 2, and an m × n payoff matrix L = {lij}.

Each entry of the matrix is an outcome of the game corresponding to a particular

pair of decisions made by both players. Player 1 gets m rows of the matrix as his/her

strategy set, while for Player 2, the strategy set is the corresponding n columns of

the same matrix.

In our problem, suppose there are totally M sensors, Kalman filter and the

adversary can choose any non-empty subsets of sensors to perform state estimation

and attack respectively, which means m = n = 2M − 1. L is a square matrix of

the size (2M − 1)× (2M − 1). The payoff in the game between Kalman filter system
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and the adversary will be the trace of the state estimation MSE matrix. For each

set of sensors he/she chooses to attack, the adversary is under a total injected noise

power constraint. The Nash equilibrium between Kalman filter and the adversary is

achieved by solving the minimax optimization problem.

Let {row i, column j} be a pair of strategies adopted by the players, and the

corresponding outcome (payoff) be lij, which means that Player 1 should pay Player

2 the amount of lij. If li∗j ≤ li∗j∗ ≤ lij∗ , for all i = 1, . . . ,m and all j = 1, . . . , n, the

pair {i∗, j∗} is said to constitute a saddle-point equilibrium, and the game is said to

have a saddle point in pure strategy. On the other hand, if the pair of inequalities

does not exist, one can derive the mixed strategy to obtain the equilibrium. A mixed

strategy is a probability distribution on the space of the player’s pure strategies. A

mixed strategy allows for a player to select a pure strategy randomly with a certain

probability. In this case, the utility function u is defined as

u(x,y) =
m∑
i=1

n∑
j=1

xilijyj = xTLy (5.4)

where x and y are the probability distribution vectors for the mixed strategies. Also,

x ∈ X, y ∈ Y , where the set X = {x ∈ Rm : x ≥ 0,
∑m

i=1 xi = 1}, and Y is defined

in the same way. Kalman filter playing as defender is trying to minimize the utility

function u(x,y) by choosing the best defending strategy, while the attacker wants to

maximize the utility function by choosing the best attack strategy. For the payoff

matrix L of size m× n, a vector of x∗ is the best mixed strategy for Kalman filter if

Um(L) = max
y∈Y

(x∗)TLy ≤ max
y∈Y

xTLy,x ∈ X (5.5)

The Um(L) is known as the average security level (loss ceiling) of the defender, the
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average security level (gain-floor) of the attacker Um can also be defined as below,

Um(L) = min
x∈X

xTLy∗ ≥ min
x∈X

xTLy,y ∈ Y (5.6)

It always holds that Um(L) = Um(L) for mixed strategies in noncooperative

two-person zero-sum game. The saddle point in the mixed strategies is defined when

the two bounds are equal to each other, which can be found by solving the following

linear programming problem [38]:

min
x∈X

bu (5.7)

s.t. LTx ≤ bu1

xT1 = 1

x ≥ 0

where bu denotes a constant upper bound. For the attacker, the formula is the other

way around,

max
y∈Y

bl (5.8)

s.t. Ly ≥ bl1

yT1 = 1

y ≥ 0

where bl denotes a constant lower bound. From the formulation above, it is easy

to see that (5.8) is the dual form of the optimization problem (5.7). The optimal

function for the two problems are the same. Interested readers are referred to [38] for

more details.
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5.3 Game With Incomplete Information

So far, it has been assumed that the defender has the knowledge on what type

of false information has been injected by the adversary to the sensors. In practice,

this knowledge may not be readily available to the defender. So let us suppose that

Kalman filter does not know the type of false information the adversary uses to

attack the system. If the adversary has S types of false information like independent

or dependent false information as discussed earlier in the chapter, there should be

S (m × n) payoff matrices Lk = {lkij}, and
S∑
k=1

pk = 1, k ∈ S. Based on pk, the

prior probability of the kth false information type, the Bayesian equilibrium can be

achieved by solving the following linear optimization problem.

min
x∈X

bu (5.9)

s.t.
S∑
k=1

pkLk
Tx ≤ bu1

xT1 = 1

x ≥ 0

where bu denotes a constant upper bound.

5.4 Numerical Results

In the example, for simplicity and ease of presentation, we assume that there are

three sensors denoted as {z1, z2, z3} in the system having independent measurement

noises with noise standard deviations σw1 = 3, σw2 = 4, σw3 = 5. The system process

noise s.d. is σv = 0.5, sensors’ sampling interval is T = 1s, and the system initial

77



Table 6. Payoff Matrix (Independent Case)

KF/At z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3

z1 25.4 4.7 4.7 25.4 25.4 4.7 25.4
z2 7.2 23.5 7.2 7.2 7.2 23.5 7.2
z3 10 10 23.6 10 10 10 10
z1z2 13.5 6.6 3.4 13.5 13.5 6.6 13.5
z1z3 16.4 3.8 5.4 16.4 16.4 3.8 16.4
z2z3 5.0 12.4 8.0 5.0 5.0 12.4 5.0
z1z2z3 10.2 5.2 3.9 10.2 10.2 5.2 10.2

state x0 is assumed to follow a N (x̂0|0, P0|0) distribution, where x̂0|0 = [1 1]T and

P0|0 =

 0.25 0.25

0.25 0.5

 .
The adversary can choose any combination of sensors from the set P1 = {z1, z2, z3,

z1z2, z1z3, z2z3, z1z2z3} to attack with the power constraint of
∑3

1 σbi
2 = 100, where

σbi is the s.d. of the random noise injected to Sensor i. Likewise, the defender can

choose any combination of sensors to perform state estimation, and its strategy set

is the same: P2 = P1. The game is played as below: if the defender uses data from

Sensors i and j for state estimation, while the adversary attacks Sensors i and k, then

system state estimation is affected by the false information from the ith sensor only.

In this game, the trace of the state estimation MSE matrix is regarded as the

payoff of the game. In the games of the independent and dependent attacks, the

system is attacked according to the strategies provided in Propositions 2 and 3 re-

spectively. Let us assume that the adversary attacks the sensors at time k = 100, and

the payoff matrix is given in Tables 6 and 7. From Tables 6 and 7, we can see that

there is no pure strategy Nash Equilibrium. Instead, we use mixed strategies to find

the Nash Equilibrium. In order to obtain the optimal probability vector, we solve the

optimization problem formulated in (5.7). The solution to (5.7) is the optimal prob-

ability vector for the defender, and the dual solution is the optimal mixed strategy
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Table 7. Payoff Matrix (Dependent Case)

KF/At z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3

z1 25.4 4.7 4.7 13.2 15.9 4.7 10.3
z2 7.2 23.5 7.2 9.3 7.2 13.3 8.6
z3 10 10 23.6 10 11.0 12.1 10.5
z1z2 13.5 6.6 3.4 16.7 12.4 5.6 15.6
z1z3 16.4 3.8 5.4 15.0 18.1 4.2 15.0
z2z3 5.0 12.4 8.0 6.8 5.3 15.5 8.2
z1z2z3 10.2 5.2 3.9 12.5 11.1 6.2 13.4

for the attacker. The optimal solutions for independent- and dependent-attack cases

are shown in Tables 8 and 9 respectively.

For the independent case, we can see from Table 6 that (6, 6) and (7, 7) elements

of the payoff matrix (L) are the smallest among the seven diagonal elements. This

means that in the worst cases for the KF when its chosen sensor combination happens

to be the same as that being attacked by the adversary, the strategies z2z3 and z1z2z3

will lead to the smallest state estimation MSEs. In addition, for the KF, the values

of last two rows are relatively small. As a result, for the KF, the probabilities of the

last two strategies (z2z3 and z1z2z3) are much larger than those of other strategies,

which are shown in Table 8.

In the dependent case, for the KF, the probabilities for the last two pure strategies

(z2z3 and z1z2z3) are relatively large as shown in Table 9. This can be explained

similarly as in the independent case. In L, the entries of the rows corresponding to

z3, z1z2, and z1z3 are relatively large, so the KF assigns nearly zero probabilities to

these three strategies. In the first two rows of L, even though the diagonal elements

are large, the rest of the elements are relatively small, so strategies z1 and z2 are

assigned significant probabilities for the KF as shown in Table 9.

When the information is incomplete, the defender is not sure whether indepen-

dent or dependent false information will be injected by the adversary. Table 10 shows
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Table 8. Optimal Strategy Probabilities (Independent Case)
Player z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3

KF 0.00 0.00 0.00 0.00 0.00 0.40 0.60
Attacker 0.14 0.22 0.00 0.14 0.14 0.22 0.24

Table 9. Optimal Strategy Probabilities (Dependent Case)

Player z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3

KF 0.16 0.14 0.00 0.00 0.00 0.37 0.33
Attacker 0.14 0.02 0.00 0.00 0.00 0.34 0.50

Kalman filter’s best defending strategy under the condition that Kalman filter can

be attacked by the two types of false information equally probably. This result could

be explained by the results for the case with complete information about the type of

attacks. Clearly from Tables 8 and 9, the defender assigns significant probabilities

to the last two strategies (z2z3 and z1z2z3). As a result, the optimal strategy for the

case with incomplete knowledge of the type of the false information also assigns most

probabilities to the last two strategies.

We also provide a simulation result to demonstrate the optimality of the derived

strategy for the independent case. In this example, four different scenarios are ex-

plored: 1) there is no attack and the KF uses all the sensors’ data; 2) the KF uses the

optimal mixed strategy; 3) the KF uses a mixed strategy to pick each pure strategy

with an equal probability 1/7; 4) the KF always chooses the first sensor to do the sys-

tem estimation. In Scenarios 2)-4), the attacker injects false information according to

his/her optimal mixed strategy to the sensors at time k = 100. The resulting position

estimation MSEs are plotted in Fig. 19. It is clear that the optimal mixed strategy

provides the best defense against the attacker, with the minimum increase in the

Table 10. Optimal Strategy Probabilities (Incomplete Information Case)

Player z1 z2 z3 z1z2 z1z3 z2z3 z1z2z3

KF 0.00 0.00 0.00 0.00 0.00 0.45 0.55

80



MSE after the attack. Fig. 20 shows the case when the defender’s knowledge about

the attack false information is incomplete. Let us suppose that Kalman filter can

be attacked by independent and dependent false information with equal probability.

The results corresponding to three different defending strategies, the best defending

strategy for independent attacks, the best defending strategy for dependent attacks,

and the best defending strategy for incomplete information case, are shown in Fig.

20. It is clear that the optimal defending strategy derived from (5.9) leads to smaller

MSE after the attack than the other two defending strategies corresponding to the

independent and dependent attacks respectively.
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5.5 Conclusion

The relationship between Kalman filter and the adversary has been investigated

in a two-person zero-sum game. Kalman filter (defender) tries to achieve more accu-
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Fig. 20. Optimal Mixed Strategy vs. Other Options with Incomplete Information

about Attacks

rate system state estimation and avoid being attacked by the adversary. The adver-

sary tries to mislead Kalman filter as much as possible. Both sides of the game will

reach a Nash Equilibrium through the mixed strategies. Using minimax techniques,

we found the mixed strategy saddle point in the game.
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CHAPTER 6

CONCLUSION

Overall, resilient dynamic state estimation in the presence of false information in-

jection attacks has been studied from different aspects. Under the assumption that

Kalman filter is not aware of the existence of false information, many optimal attack

strategies that maximize the system estimation error were derived from either trace

or determinant perspective. For the case where the sensors only measure the position,

the adversary could either inject independent or dependent false information into the

sensor readings, it was proved that under the same power constraint, the dependent

false information will incur more system estimation error than the independent one

does in terms of the trace of the state estimation MSE matrix. For the case where

the sensors measure both the position and velocity, the optimal attack strategies

were derived and demonstrated via simulations. The optimal attack strategy, which

maximizes the determinant of Kalman filter’s MSE matrix, has been studied and the

closed-form optimal solution was provided. The impact of the correlation coefficients

between different components of the injected bias noise on the volume of the error

ellipse for Kalman filter’s state estimation was also studied through simulations. As

for the multi-sensor case, an equivalent sensor was utilized in order to simplify the

problem.

In order to detect the false information injected by the adversary, an optimal

Bayesian detector that minimizes the average state estimation MSE was derived.

This detector can be coupled with different defending strategies. In this disserta-

tion, defending strategies of discarding data after detection and incorporating data
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after detection were studied. The Minimum mean square error estimator was also

investigated given all the system information. But the minimum mean square error

estimator is not robust when there is a mismatch between the attack strategy assumed

by the defender and the actual one adopted by the attacker. The optimal Bayesian

detector coupled with defending strategy of discarding data after detection proved to

be robust through simulations.

Sparse attack strategies were also investigated under the assumption that the

defender can perfectly detect the false information and remove the sensors once they

are corrupted by the false information injected by the adversary. The adversary aims

to maximize the MSE matrix of the system state estimate by the end of the at-

tack period under the constraint that he/she can only attack the system a few times

over the sensors and over the time. Greedy search and dynamic programming based

approaches were utilized to obtain suboptimal attack strategies since the optimal ex-

haustive search becomes intractable even when the problem size increases moderately.

As for the greedy search, SFS, SBS, and SFS-SS were studied and evaluated via sim-

ulations. The performances of greedy search and dynamic programming were also

compared. The greedy search outperforms dynamic programming when the system

process noise is small. Meanwhile, dynamic programming outperforms the greedy

search when the system process noise is larger. This is because the greedy search has

a better global view than dynamic programming regarding the system estimation.

The relation between the defender and the adversary was further studied using

the game theory. It was supposed that the defender and the adversary are both ratio-

nal player. It was shown how both sides choose strategies in order to gain more and

lose less. Two cases where the defender either has complete information or incomplete

information about attack strategies, which the adversary adopts, were both studied

in a two-person-zero-sum game. A Nash equilibrium was finally achieved by solv-
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ing a linear programming problem. For the defender, different defending strategies

were compared in the simulations. The defending strategies obtained via the Nash

equilibrium help the system maintain a much better estimation performance.
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ABBREVIATIONS

CBD Conventional Bayesian Detection

CSD Chi-Square Detection

DOE Department of Energy

DP Dynamic Programming

EMC Energy Management Centers

EMSE Extra Mean Square Error

EXS Exhaustive Search

FAA Federal Aviation Administration

GPS Global Positioning System

KF Kalman Filter

LRT Likelihood Ratio Test

MIMO Multiple Input Multiple Output

MSE Mean Square Error

OBDD Optimal Bayesian Detection and Discarding Sensor Data

OBDI Optimal Bayesian Detection and Incorporating Sensor Data

PDF Probability Density Function

QCQP Quadratically Constrained Quadratic Program

RVA Richmond Virginia

SBS Sequential Backward Selection

SFS Sequential Forward Selection

SFS-SS Simplex Improved Sequential Forward Selection

UAV Unmanned Aerial Vehicle

VCU Virginia Commonwealth University
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