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Abstract	
 

CRYSTALLOGRAPHIC STUDY OF MUTANT INFLUENZA MATRIX (M1) PROTEIN 
AND AFFINITY STUDY OF SMALL MOLECULE INHIBITORS TOWARD M1 AND 

GROWTH FACTORS. 
 
 

By Bashayer Althufairi, MS 
 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 
Science at Virginia Commonwealth University 

 
 

Virginia Commonwealth University, 2011 
 

Major Director: Umesh R. Desai  
Professor, Department of Medicinal Chemistry 

 
Influenza A virus (IAV) is a seasonal infectious agent that could cause a major 
worldwide catastrophe. Due to its genetic properties, IAV generates new viral particles 
that resist the body’s immune defense and antiviral drug therapy. This occurs when a 
host cell has been co-infected by different IAV strains leading to the generation of hybrid 
viruses. This process is called reassortment. The majority of these new IAVs contain 
genetically altered hemagglutinin (HA) and neuraminidase (NA). Unfortunately, all 
current IAV drug therapies target the highly mutated proteins, HA and NA, which is not 
very useful.  

 
Influenza matrix protein 1 (M1) is a structural protein that accounts for a number of 
critical viral events. It displays a highly conserved sequence compared to other proteins, 
HA and NA. It is the most abundant structural viral protein. M1 has a key role in viral 
replication and viral assembly. During all viral steps of cellular invasion, not a single 
step appears to occur without the contribution of M1 in one way or another. M1 protein 
forms a layer underneath the lipid bilayer membrane, which contributes to vital integrity 
and provides an intact viral entity. Upon cellular viral entry, the M1 layer dissociates to 
release an RNA genome that migrates to the nucleus to utilize the host’s cellular 
machinery for synthesizing viral proteins. More interestingly, M1 protein exhibits 
different structural conformations that correlate with its physiological activity. These 
conformational changes come with a variety of M1-M1 interactions. Crystallographic 
structures have revealed a tremendous amount of information regarding the M1 
mechanism in self-oligomerization and depolymerization.  



xi 
	

	

Various crystal structures of M1 are available. Our collaborator at the FDA identified an 
M1 mutant with G88E substitution, which is unable to form an intact M1 layer as wt-M1. 

In order to understand the role of a single mutated residue, M1 protein (G88E-M1) has 
been crystallized and its crystal structure was resolved by the groups of Desai and Safo. 

This crystal forms three monomers in an asymmetric unit. G88E-M1 concentration was 
15 mg/mL in a buffer of 55 mM KH2PO4/K2HPO4/H3PO4, 0.2 M NaCl, pH 3.4. The 
condition of the reservoir was 0.1 M Tris, pH 8.5, 8% PEG (8K). The estimated pH of 
the crystallization drop was 6.2. In combination with the literature, significant structural 
manifestations were observed in different pH conditions. Under acidic conditions, this 
M1 mutant forms a face-to-face dimer, which is stabilized by hydrophobic interactions 
as well as hydrogen bond interactions. Although the monomers have less hydrophobic 
interactions at the monomer-monomer interface due to mutation of Gly88 into a 
polar amino acid, Glu88, it forms a stable dimer. That is because Glu88 generates 
at the interface a number of hydrogen bond interactions with Tyr100, Lys104 and 
Arg134.  

M1 is an attractive a therapeutic target protein. Recently, the Desai’s group has 
identified through computer-based drug design a promising anti-IAV drug candidate, 
called PHE that interferes with M1 layer formation leading to defects in cellular 
production of new viral particles. However, PHE binding affinity to M1 was unknown. 
Experiment of PHE-M1 binding affinity was performed using surface plasmon 
resonance with NeutrAvidin gold chip on which biotinylated M1 was immobilized under 
neutral pH. An affinity constant (Kd) of ~ 1 µM was determined. Likewise, PHE-M1 
affinity was studied using microscale thermophoresis (MST), which yielded an affinity 
constant (Kd) of ~ 1.5 µM.  

Another project undertaken in this study is to evaluate the affinity of small-molecule 
inhibitors that bind to signaling proteins. Small-molecules that could interfere with 
signaling pathways are highly valued in cancer therapy. G2.2, which is a highly sulfated 
molecule, has previously shown anticancer activity. It seems to be safe, potent, and 
selective toward colorectal cancer. The mechanism of action of G2.2 mainly triggers 
multiple important signaling pathways of cancer stem cells including fibroblast growth 
factor, epidermal growth factor (EGF), bone morphogenetic protein 4, wingless-int, and 
transforming growth factor-β (TGFβ). EGF and TGFβ were labeled with reactive dye 
NT-647 on the free thiol group of cysteine residues. MST experiments were performed 
using phosphate buffer (pH 7.4) and serial dilution of G2.2 (1 mM as the highest 
concentration). MST binding studies have revealed Kd of 80 µM and 54 µM for EGF and 
TGFβ, respectively.  
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In conclusion, this project has elucidated the crystal structure of G88E-M1 protein with 
valuable structural manifestations. PHE has high affinity for M1, which was confirmed 
using two different biophysical techniques. Moreover, G2.2 seems to be a promising 
drug therapy that targets cancer stem cells through inhibition of growth factors and 
cytokines associated with their survival and activity. However, G2.2 has low affinity for 
EGF and TGFβ.  
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Literature Survey 	
 

Chapter 1. Influenza A virus (IAV) 
	

1.1 Overview 

Viral infections could be more disastrous and problematic than any war because they 

can deceive medical preparation from health organizations around the world and resist 

available antiviral agents. Thus, critical understanding of virus epidemiology, function of 

its structural components, pathogenesis, and its types is of great importance to prevent, 

control and treat any outbreak of the disease. Historically, influenza pandemic in 1918 is 

considered the worst devastating event, taking 40 million lives around the world.1, 2 

Following that, another two influenza A virus (IAV) pandemics took place in 1957 and 

1968 arising from H2N2 subtype and H3N2 subtype, respectively. Four decades later, 

another pandemic of influenza virus of H1N1 subtype took place.3  

 

Viruses simply comprise of genetic material coated with capsid that collectively are 

called nucleocapsid. Some viruses could have additional lipid bilayer membrane. They 

could cause curable and incurable infectious, such as Herpes and HIV respectively. 

Viral transmission among people commonly takes place through many ways: in food 

and water, e.g. hepatitis A virus, via inhaled droplet, e.g. influenza viruses, by direct 

transfer from infected human, e.g. HIV, and from bites of vector arthropods, e.g. yellow 

fever virus.4  
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Despite the fact that viruses share key component, nucleocapsid, they are significantly 

different in terms of shape, structural composition, and complexity. Viruses could be 

classified into enveloped viruses and non-enveloped viruses according to the absence 

and presence of lipid bilayer, which is derived from host cell membrane. In Figure 1.1, 

non-enveloped virus, e.g. parvovirus, has a simplest virus structural entity of 

nucleocapsid.5 Additionally, non-enveloped virus can be more structural complex by 

having extra proteins embedded in capsid shell, e.g. bacteriophage Φ29. Lastly, 

enveloped viruses are more advanced with lipid bilayer, called envelope, which contains 

multilayer of lipid and proteins, e.g. influenza virus. 

 

 

Figure 1.1. On left, parvovirus virus (MVM), having nucleocapsid. In the middle, 

bacteriophage Φ29, having nucleocapsid with more protein in the shell. In the 

right, influenza virus with extra lipid bilayer and structural proteins.5 Taken from 

Goering et al. Mim’s medical microbiology; 2013. 
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Remarkably, viruses are infectious organisms considered unique from other 

microorganisms in some characteristics, namely their reproduction. They are inert 

although they own DNA or RNA carrying genetic information. Instead, they exploit host’s 

cellular synthetic machinery to process their genetic information and eventually 

replicate. The process of viral replication is quite complex and varied depending on the 

nature of the viral genetics material, either RNA or DNA but never both. More 

interesting, genome could be single stranded (ss), or double-stranded (ds), linear or 

circular RNA or DNA.  

 

The principal step in viral gene expression is the production of messenger RNA 

(mRNA). Viruses containing RNA genome have diverse pathways in their gene 

replication. Positive sense single strand RNA ((+) ssRNA), for example coronaviruses, 

is first transcribed by viral RNA ploymerase to corresponding negative sense single 

strand RNA ((-)ssRNA), which undergoes transcription to produce complementary 

(+)ssRNA acting as mRNA or viral genome, while, (-)ssRNA, such as influenza virus is 

transcribed by viral RNA polymerase into corresponding (+)ssRNA, which can act as 

mRNA or is replicated to yield complementary (-)ssRNA as viral genome for new viral 

particles. On the other hand, retroviruses, e.g. human immunodeficiency virus (HIV), 

follow totally different route of replication, in which (+)ssRNA is transcribed into 

corresponding (-)ssDNA by viral reverse transcriptase. Then, (-)dsDNA is integrated into 

host’s DNA and transcribed by host polymerase into mRNA. In dsRNA viruses, genome 

first is transcribed by viral polymerase into mRNA and one (+)ssRNA strand can act as 

a template for the synthesis of (-)ssRNA to form new dsRNA. Lastly, viruses containing 
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dsDNA, their replication occurs by utilizing host’s RNA polymerase to produce mRNA.  

Although it seems to be simple and conventional process, replication process of viral 

mRNA is highly organized, in which genome and its related proteins are first 

synthesized, and then, structural proteins are synthesized for final viral particle 

formation and release.5, 6 

1.2 Influenza Virus 

	
Influenza virus belongs to orthmyxoviridae genus, which is characterized by outer 

envelope or lipid bilayer containing eight segments (-)ssRNA genome. There are three 

types of seasonal influenza viruses, A, B, and C according to antigenic variation that is 

caused by Nucleoproteins (NP). The most common causative agents of respiratory 

infection or seasonal flu are influenza A and B viruses, while influenza type C causes 

local outbreaks with mild illness. They are transmitted mainly through droplet released 

by sneezing or coughing. The primary site of infection is tracheobronchial tree, although 

the nasopharynx is also involved. Typically, influenza virus results in destruction and 

desquamation of the superficial mucosa, giving rise to signs and symptoms including 

sudden onset of high fever, cough, headache, muscles and joint pain, vomiting, sore 

throat, and runny noise. Although signs and symptoms seem to be controllable and 

manageable and hardly no one has experienced flu symptoms in his/her life, influenza 

infection is inherently contagious and could sometimes be life-threatening infection, 

especially patients with heart or lung disease. Seasonal flu occurs often in winter, yet it 

can lead to influenza outbreaks around the world resulting in a major health concern. 

Influenza type A is also divided into subtypes according to surface proteins existing on 

the envelope. This classification also contributes to the nomenclature of influenza 
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strains. The name of influenza virus is written as X/Y/Z/K/L/M, of which X is the 

antigenic type (e.g. A, B, C), Y is host of origin (e.g. swine, chicken, if human origin 

virus, there is no need to write it), Z is the geographical origin (e.g. Denver), K is strain 

number, L is the year of isolation and lastly M describes IAV strain, particularly 

hemagglutinin (HA) and neuraminidase (NA) (e.g. H1N1).1-4      

 

Global Influenza Surveillance and Response System (GISRS) at World Health 

Organization (WHO) has collected more than 61285 specimens from national influenza 

centers or laboratories in 84 countries across the world during time period from 16 May 

2016 to 29 May 2016. Among these samples, 4320 specimens were positive for 

influenza viruses, of which 1276 (29.5%) was IAV positive and the remained major 

cases, 3044 (70.5%), were influenza B positive.4 

 

Figure 1.2. 29.5% (1276) of cases were for influenza A (71% for H1N1 and 29% for 

H3N2), 70.5% (3044) of cases were for influenza B (30.4% were for B-Yamagata 

lineage and 69.6% for B-Victoria lineage).3 Taken from World Health Organization.  
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The structure of influenza virus A is quite simple, but could be complex at molecular 

level due to mutations. As shown in Figure 1.3, influenza virus A basically consists of 

structural proteins, including HA, NA, matrix protein 2 (M2) and matrix protein 1 (M1). 

They all exist on the envelope except for the latter lies just underneath the envelope. 

Genome is consists of ribonucleoprotein (RNP) complex, which comprise of viral RNA 

segments and NP. Moreover, polymerases are proteins associated with RNA segments, 

such as polymerase basic 1 (PB1), polymerase basic 2 (PB2), and polymerase acid 

(PA). Another protein is nuclear export protein (NEP), also called as nonstructural 

protein 2 (NS2). The eight segments RNA can encode up to 11 viral proteins.1, 6  

 

 

	

Figure 1.3. Structure of influenza virus.1 Taken from Reid et al. Nature Rev. 

Microbiol. 2004, 2, 909-914.     
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IAV attacks any vital cell you would think of on this earth. As Figure 1.4 depicts, the life 

cycle of IAV starts when HA protein binds to host cell receptor molecule on plasma 

membrane, sialic acid. Following this binding, entire viral particle enters the cell by 

endocytosis (step 1). Inside endosome, acidity of the medium causes HA molecule to 

change conformations, which lead to fusion between virion and endosomal membrane. 

Afterward, M2 ion channel acidifies the interior of viral particle, thereby, causing vRNPs 

to dissociate from M1 layer matrix leading to the release of the former into the 

cytoplasm. As a result, vRNPs are ready for transportation into genome expression 

machinery, nucleus, by nuclear pore complex (NPC) (step 2). Inside the nucleus, the 

most important molecule to produce is mRNA, which is then transported to the 

cytoplasm, particularly host ribosome, as being translated into viral proteins. After being 

synthesized in the cytoplasm, those proteins involving PB1, PB2, PA, nucleoprotein 

(NP), M1, M2, NA, HA, and (NEP), are transported into the nucleus (step 3). What 

remains for full viral physical entity is the genome replication as in step 4 with the 

association of NP, PB1, PB2, and PA to form final eight segments of vRNPs. 

Additionally, M1 and NEP aid the transportation of progeny vRNPs from nucleus into 

cytoplasm as in step 5. In step 6, RAB11 vesicles, which are microtubule cargo in 

eukaryotic cells, bind and act as a carrier of vRNPs through the cytoplasm to plasma 

membrane.21 Viral proteins and vRNPs are converged near plasma membrane for 

budding and new virions release to the surrounding environment and neighboring cells 

for more replication.7, 8  



8 
	

	

 

Figure 1.4. IAV life cycle: cell entry, release into cytoplasm and viral genome entry into 

nucleus, mRNA transcription and translation into viral proteins, genome replication, 

and vRNPs cytoplasmic transportation, and finally viral particle formation.7 Taken from 

Eisfeld, et al. Nature Rev. Microbiol. 2015, 13, 28-41. 
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 1.3 Structural Viral Proteins Other than Matrix M1 Protein 

1.3.1 Hemagglutinin (HA) 

	
Hemagglutinin (HA) is an integral membrane protein, which is a glycoprotein having 

trimeric rod-shaped molecule. The viral particle remains inactive until HA is cleaved into 

HA1 and HA2 subunits by trypsin-like proteolytic enzyme found at the respiratory tract. 

Each subunit has a distinctive function.9 The function of HA1 is the attachment to 

specific sialyl sugar chain on host plasma membrane, whereas, HA2 is responsible for 

pH-dependent fusion between viral envelope and host endosomal membrane.10 Once 

acidity is built up inside the endosome, conformational changes of both subunits take 

place leading to exposure of a fusogenic domain at the N-terminus of HA2 allowing 

fusion of the host endosomal membrane with the viral envelope to eventually release 

vRNPs into the cytoplasm.  Moreover, HA is a primary viral antigen introducing new 

antigenic properties to the virus, thus, allowing viral reinfection of human population.9, 10 

There are 18 different HA subtypes up to date (H1 through H18).11   

1.3.2 Neuraminidase (NA) 

	
Neuraminidase (NA) is another major integral membrane protein. It is tetramer of 

identical subunits. NA can facilitate the final step of viral replication, the liberating of 

newly made virions from host cell membrane. It does that through removing sialic acid 

from cellular glycoproteins and glycolipids on host plasma membrane.12 This is 

extremely important, otherwise, HA would bind to sialic acid on cellular membrane 

during budding, resulting in aggregation of new viral particles close to the interior side of 

host membrane preventing their release. Tamiflu is an NA inhibitor approved as a 
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prophylactic drug, but viral resistant unfortunately has been developed.13 Like HA, NA is 

a glycoprotein and could contribute to antigenic activity.8, 14 There are 11 different NA 

subtypes up to date (N1 through N11).11   

1.3.3 M2 Protein 

	
M2 protein is an integral transmembrane protein embedded in the lipid bilayer 

membrane. It has been found that M2 possesses ion channel activity. Its major role is to 

conduct proton ions from acidified endosome into the interior of the viral particle, 

promoting pH-based conformations of some proteins, such as M1, and efficient release 

of vRNP from the rest components of the virus. M2 protein is tetrameric molecule, in 

which four helices are shaped in lipid bilayer membrane to form a pore like ion channel 

proteins. Furthermore, M2 protein protects some highly acid-sensitive HA, e.g. H5 and 

H7, from degrading by maintaining stable pH.15-17 

 

IAV has phenomenal genome characteristics, by which it can generate unique surface 

proteins acting as antigens against existing antibodies in a process called antigenic 

shift.18 This biological process can lead to an explosive global pandemic of 

approximately one-third of the population. It can infect many animals, such as pigs and 

poultry. Upon viral transmission, IAV also has the propensity to arrange and reassort its 

genome across different species, such as pigs and poultry, leading to novel combination 

of viral genome producing new influenza strain. Another way that IAV can rearrange its 

genome is through reassortment as shown in Figure 1.5, which takes place when co-

infection of a cell with two different IAV strains leads to generation of hybrid viruses that 

encompass some segments from parent viruses. For example, a major H1N1 pandemic 
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occurred in 2009 as a result of the reassortment of North American avian-like PB2 and 

PA segments, Eurasian avian-like swine NA and M segments, a human H3N2–like PB1 

segment, and classic swine H1N1-like HA, NP, and NS segments, producing a new 

rapid transmitted virus that has never been seen by human population. Furthermore, 

IAV has the ability to rapidly mutate two or three amino acids of surface proteins, such 

as HA and NA. This type of mutation is known as antigenic drift, causing body immune 

system unable to recognize surface antigens by the corresponding circulating 

antibodies from previous influenza infection.7-11   

 

 

	

	
	 	

	
		

	
		 	

	 	

	
	

	
	 		

	

	

	
	 	

	
		

	
		 	

	 	

	
	

	
	 		

	

	
	 	

	
		

	
		 	

	 	

	
	

	
	 		

Cell	 New virus 

Figure 1.5. Reassortment of the genetic material from two different influenza 

particles within an infected cell to produce a new virus.8 Taken from Greber et al. 

Biophys. J. 2014, 106, 2317–2321. 
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Owing to mutations and reassortment with different subtypes of viruses, it’s hard to 

maintain complete intervention of IAV, including drug therapy or preventing vaccine. 

The current medications target the most commonly mutated surface proteins, HA and 

NA, thereby drug resistant can be easily developed and hinder recovery from the 

infection. Amantadine and Rimantadine are M2 ion channel blockers and they are 

specific to IAV not B. Most of antiviral drugs are used as prophylaxis, which means 

that they ideally should be administered early in the course of the disease. Vaccines 

are solely effective when they well matched circulating viruses. Viruses keep instantly 

changing its structural components by the advantage of mutations; thus, necessitate 

the replacement of the vaccine every one to three years.19 

1.4 Matrix M1 Protein 

	

Type A influenza matrix protein M1 is encoded by RNA seventh segment. It’s the most 

abundant viral protein accounting for 40% of all viral proteins content. Virus generally 

consists of two components: transport and replication components. Electron microscopy 

of influenza virus has shown that M1 protein is a 6 nm long, thin rod of which one end 

touches the lipid membrane.1-3  

 

It has been found that HA, NA, and M2 found on the lipid membrane are extremely 

important for viral transportation, namely viral entry and release; on the other hand, 

vRNP and its components represent viral replication part. Both components are linked 

by M1 protein.20 M1 protein forms a layer underneath lipid membrane forming a bridge 

between viral inner core and membrane glycoproteins. Unlike HA and NA, M1 protein 
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has the most conserved primary structure of influenza virus proteins when its 

membrane (M) gene was com pared to other genes among antigenic shifts in human 

pandemics.21 Our body forms immunity through synthesizing particular antibodies 

directed against surface glycoproteins, HA and NA, of a particular viral strain. Due to the 

fact that HA and NA are highly mutated surface proteins, thereby, one may have 

multiple influenza infections within short period of time. Taken all together, these could 

be strong reasons to consider M1 protein as novel drug target, since M1 has been also 

shown to have a great contribution to different aspect of viral life cycle and essential role 

in virus survival.14     

1.5 Structure and Functions 

	
M1 protein consists of 252 amino acids having molecular weight of approximately 28 

kDa, forming basically two helical domains, N-terminal domain (1-164) and C-terminal 

domain (165-252) linked by protease sensitive region. Only the N-terminal domain had 

intensively been studied and the crystal structure has revealed that N-terminal domain 

is divided further into two domains: N-domain and M-domain. Each domain consists of 

four helical bundles that are joined by short helix (H5). N-domain is mapped from H1 to 

H4, while M-domain encompasses H6-H9.22 

 

M1 generates a multiple network of lipid and protein interactions: lipid-M1, HA-M1, NA-

M1, RNPs-M1 and M1-M1.16 Remarkably, each domain has distinguishable interactions 

with other viral components. N-terminal domain significantly contributes to most of M1 

interactions. Each viral protein has nuclear localization sequence (NLS) motif, which 

enables viral proteins to interact with transporters and enter the nucleus after being 
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synthesized in the host’s ribosomes. For M1 protein, NLS, located at N-terminal domain, 

first was identified as Arg 101, Lys 102, Leu 103, Lys 104, Arg 105.23 Later, this motif 

was found to be part of an important interactive positive patch of certain amino acids 

including Lys 95, Ala 96, Val 97, Lys 98, Leu 99, Tyr 100, Arg 101, Lys 102, Leu 103, 

Lys 104, and Arg 105.22 Owing to positively charged region of N-terminal domain, M1 

protein makes contact with negatively charged regions of NP and RNA through 

electrostatic interaction. These positively charge residues on M1 protein indeed play a 

principal role in M1-M1 interaction or M1 oligomer state. 

 

H5	

H3	

H2	

H4	

H6	

H1	

H7	

H8	

H9	

N-domain	
M-domain	

Figure 1.6. There are no β-strands in N-terminal domain of M1. Typically, N and M 

domains are main domains in N-terminal of M1. N-domain (2-67 aa) contains helices 

(H1-H4), separated by loops L1-L3. M-domain (91-158 aa) has H6-H9, separated by 

loops L6-L8. A short helix joins N and M domains and attaches through L4 and L5 to 

each domain respectively.22 Taken from Sha, et al. Nat. Struct. Mol. Biol. 1997, 4, 

239–244. 
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In addition to that, M1 protein also mediates RNPs exit from the nucleus and hinders 

their reentering into the nucleus.24 During the step of releasing vRNPs upon viral cellular 

entry, dissociated M1 and vRNPs migrate independently into the nucleus, where 

mRNAs and new replicated vRNPs are synthesized. M1 and NEP are needed for 

vRNPs export from the nucleus. This occurs through the binding of N-terminal domain 

of M1 protein, particularly Nuclear localization sequence (NLS) region, with negative 

charge region in the C-terminal domain of NEP, while vRNPs attach along with this 

complex by M1 protein C-terminal domain.20 Of NEP, N-terminal binds to chromosome 

region maintenance protein 1 (CRM1) which facilitate the export of the whole complex 

through nuclear pores.15, 25   

 

Furthermore, M1 also has multiple roles in viral assembly, viral budding and release. M1 

binds to cytoplasmic tails of transmembrane proteins, HA, NA, and M2, on the outer 

side of the virus and core vRNP on the inner side, which collectively brings these parts 

in one structurally intact influenza virus during preparation for viral budding.26-28 Not only 

that but also M1 causes membrane bending in the very beginning of budding through 

binding to itself leading to asymmetry in the lipid bilayer. It has been found that M1 is 

important for bud closing and release. There is a correlation between low levels of M1 

with reduction in virus release.29 Moreover, mutations in M1 protein may lead to 

elongated virus particle as well as budding defects.30 Another distinct charge-charge 

interaction was found to take place between Arg 77 and Arg 78 of M1 and phosphate 

head groups of phospholipid membrane.31, 32 It should be pointed out that the primary 

interaction between M1 protein and the membrane is hydrophobic binding, which further 
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strengthens M1-membrane contact.31 Taken all together, it’s obvious that M1 has a 

critical structural function in that it acts as a basement and anchor for surface 

glycoproteins and primarily provides integrity of virus to be functionally active.33 

1.6 Mutation Studies on M1 Protein 

	

There is no doubt that certain regions of amino acids are critical for a variety of M1 

interactions and functionality. In order to outline various functions of M1, series of M1 

mutants were produced using reverse genetic approaches. For example, one study 

found that deletion of RKLKR or substitution of Lys 102 or 104 with Asn (K102N or 

K104N) causes virus replication to fail.34 In the same study, mutation of Arg at position 

101 or 105, but not both, in RKLKR motif didn’t significantly affect nuclear export of 

vRNP.23, 34 In another study, double mutations of R101S and R105S, designated as 

SKLKS-mutant, showed a major impairment of viral replication.35-37 Mutation of both 

R101S and R105S in NLS region of A/WSN/33 results in viral generation of an 

additional third mutation in neighboring region, G88R in SKLKS-mutant leading to more 

stable triple mutant, designated as NLS-88R. The latter has similar characteristics as 

wt-M1.38 Figure 1.7 summarizes different experiments of comparing NLS-88R and wt-

M1, for example both showed similar temperature sensitivity at 33 °C, 37 °C, 39 °C, 

whereas double mutant, SKLKS, showed instability at highest temperature. Thus, NLS-

88R possesses comparable functionality and stability with those of wt-M1 (Figure 1.7-

A). As expected, NLS-88R maintained viral replication close to the level of wt-M1 in vitro 

(Figure 1.7-B). From pathogenesis standpoint, NLS-88R was attenuated in mice with 

100% survival, while wt-M1 infection resulted in a decrease in body weight prior to 
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causing mortality of all mice group (Figure 1.7-C). Further proof of this finding, in vivo 

lung test revealed that NLS-88R virus was cleared by the seventh day of the infection, 

while wt-M1 virus persisted to grow and replicate in respiratory tract at the same time.36 

These results support the notion of considering NLS-88R mutant a live attenuated 

vaccine.38  
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Figure 1.7. In vitro characterization of NLS-88R: (A) The temperature-sensitive (ts) 

phenotype. (B) Replication assay was determined by plaque assay at plaque-

forming units (pfu)/mL. In vivo characterization of NLS-88R: (C) Four-week-old mice 

were infected intranasally with wt-WSN (wt-M1) or NLS-88R at 5×104 pfu/50 µL of 

phosphate-buffered saline/mouse. Body weight (BW) was monitored for two weeks 

post-infection. Survival is expressed in parentheses as the no. of survivors/total no. 

of mice weighed. (D) Entire lungs from groups of 3 mice were collected on days 2, 

4, and 7 post-infection. Pulmonary viral replication was determined as (B) and 

expressed as the mean number of plaque-forming units per gram. *P<0.05 and 

***P<0.001, by unpaired Student’s t test performed on log-transformed data. The 

lower detection limit is denoted by the dashed horizontal line.36 Taken from Xie et 

al. J. Infect. Dis. 2009, 200, 1874–1883.   
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Other triple mutants were produced keeping the same mutation pattern of having Ser 

substitutions at 101 and 105 positions instead of Arg in NLS region, but substituting 

different AA with different polarity at position 88 instead of Gly in order to approve that 

NLS-88R mutant exclusively is as active as wt-M1. Under transmission electron 

microscope (TEM), viruses of NLS-88V and NLS-88E mutants, substitution of Gly 88 

with Val and Glu respectively, displayed irregular thickness of M1 single layer, while 

viruses of NLS-88R resembled wt-M1 viruses in forming uniform thickness of M1 

bilayer. Despite that, all mutants except NLS-88R showing low viral replication, NLS-

88E was the least efficient mutant to replicate in mouse lung. Since M1 self-association 

is facilitated by charge-charge interaction, computational studies suggested that NLS-

88R mutant may form salt bridge during M1-M1 binding that contributes to its efficient 

viral activity and overcomes the loss of electrostatic interactions of NLS region resulted 

from double mutation of Arg at 101 and 105 positions.38, 39  

 

1.7 Crystallographic Studies on M1 Protein 

	

M1 protein has the ability to adapt number of various structural conformations 

depending on the pH of the surrounding environment. Beside the standard research 

conducted for all proteins relating to pH effect on their conformational structures, 

changing in pH is in fact a crucial factor that efficiently effects launching viral replication. 

Prior to the release of vRNP from M1 oligomer, an increase in the acidity of M1 layer 

surrounding initiates and facilitates M1 structural changes required for vRNP liberation. 

It’s noteworthy to direct research investigations of IAV pathogenesis into pH effect on 
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conformational changes of viral proteins during viral replication. Definitely, M1 protein 

displays plenty of structural conformations that can be visualized by crystallographic 

structures.22-27     

 

Many crystals of M1 protein have been deposited in protein data bank (PDB) with 

different crystallization conditions, particularly pH structural changes. However, none of 

them provides the full length structure of M1 protein rather they have revealed N-

terminal domain (1-164) with molecular weight of 18 kDa, because C-terminal domain 

(165-252) underwent proteolysis during purification step.22, 31 The first crystal structure 

of the wild type (wt) M1 protein was for N-terminal domain, which remains stable in 

solutions as well as crystal preparations, making it an independent domain. The crystal 

of N-terminal domain was obtained in acidic pH, similar to the physiological condition in 

which M1 protein dissociates from lipid membrane liberating RNPs for genome 

replication in the host’s nucleus after host’s endocytosis. Asymmetric unit contains a 

dimer in which each monomer interacts in face-to-face fashion, meaning that amino 

acids in one side of a monomer is facing their counterparts in the other monomer as in 

Figure 1.8.22   
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Another crystal was revealed in neural pH, a condition in which the M1 forms an intact 

layer underneath lipid bilayer surrounding genetic core of the virus. Similar to pH 4, 

asymmetric unit contains a two monomers, however, they are stacked into face-to-back 

fashion as in Figure 1.9.39   

 

Safo et al. revealed another crystal structure of M1 in acidic condition with different 

dimer interface when compared to the acidic M1 crystal structure by Sha et al. Although 

the two crystals structures dimerize in a face-to-face fashion, the relative arrangements 

C-terminal  

N-terminal  

Figure 1.8. Dimer structure of wt-M1 in acidic pH (PDB: 1AA7). N-terminal and C-

terminal are shown as well as positive aa of each monomers (Arg 101, Arg 105, Lys 

102, and Lys 104) which are important for electrostatic interactions of M1. Two 

monomers are packed face-to-face pattern.22 Taken from Sha, et al. Nat. Struct. Mol. 

Biol. 1997, 4, 239–244. 
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between monomers are different. The fact that M1 can adopt a monomeric structure or 

dimer structure but with different dimer interface indicates that M1 adopts several 

conformations during viral life cycle enabling other viral proteins movement and function 

as well as supporting overall viral geometry.40   

 

 

C-terminal 

N-terminal 

Figure 1.9. Dimer of wt-M1 in neutral pH (PDB: 1EA3). N-terminal and C-terminal are 

shown. Two monomers are packed face to back pattern and dimerize by electrostatic 

interaction. One side mainly carrying positive aa, such as Lys98, Arg105 (shown with 

cyan colored carbons), and the other side mainly carrying negative aa, such as Glu8 

and Glu29 (shown with white colored carbon).39 Taken from Arzt, et al. Virology 

2001, 279, 439–446.         
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Chapter 2. Fundamentals of Protein X-ray Crystallography  

2.1 Overview  

	
Proteins are biological macromolecules of interest for most scientists in different fields. 

It is of great importance to study the structure of proteins since they are different in their 

structure geometry, which controls protein’s activity and function and also varies 

according to different disease states for the same protein. Over a century, 

crystallography, a technique simply used to elucidate macromolecular structures, has 

been considered the most powerful technique in structural biology. Utilizing such a 

technique can reveal protein structure and in conditions mimicking physiological or 

pathological states that tailored by crystallographers. Typically, an experiment 

conducted to study protein structure involves different steps such as, crystallization, 

data collection, and solving phase problem and structural data.  

 

2.2 Principles of X-ray Structure Determination 

	

The process of revealing the three-dimensional (3D) structure of a protein has 

historically been an issue because the structure of protein carries crucial information 

including, but not limited to its function, folding, shape, and stability. Over a century, 

many of discoveries have beneficially impacted the development of crystallography 

making biologically important macromolecules visible. One of great accomplishments is 

the discovery of x-rays, by Wilhelm Röntgen who won Nobel Prize in physics 1901.41, 42 

In 1914, Max von Laue won Noble prize in physics for discovery of diffraction of x-rays 
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from a crystal.43 One problem that scientists faced at that time was “how to process x-

rays diffraction pattern to yield chemical structure”. Max Laue had also discovered that 

x-rays are electromagnetic in nature, which opened the door later to William Henry 

Bragg and William Lawrence Bragg to develop Braggs law (see section 2.3.). After that, 

number of experiments on salts crystal was conducted successfully to determine the 

chemical structures. At that time, none of biological macromolecules structure was 

determined until 1957 when John Kendrew has resolved for the first time the atomic 

structure of myoglobin, a globular protein storing oxygen in muscles.44, 45  

 

For studying molecules, X-ray structure is of great importance. It can provide 

explanation of chemical or physical properties, for example, hardness of the diamond 

and softness of graphite.46 By resolving a crystal structure, one could see the 

arrangements of atoms in molecules according to the crystallization conditions. 

Additionally, knowledge obtained from x-ray crystal structure of protein about its 

structure and careful study of its folding, cavities and amino acids (AA) sequences and 

orientation, exclusively answers questions regarding protein function, protein behavioral 

changes in both disease and normal states.47-49 Furthermore, x-ray crystallography has 

amenably been used in accordance with fragment-based drug design approach for the 

purpose of finding potential inhibitor for a target protein.50, 51 Potential binding pocket 

can be visualized and utilized in a co-crystallized complex of protein and ligand to 

design a lead compound under an approach called structure-based drug design.52, 53  
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Five important milestones steps for the determination of x-ray crystal structure of a 

macromolecule include: 54 

1. Suitable expression system produced enough large quantity of a protein. 

2.  Efficient purification protocol to ensure homogenous protein sample. 

3. Crystallization, screening and optimization of conditions to get high-quality 

diffracted crystal  

4. Collection and processing of considerably diffraction data for building a good 

density map.  

5. Finally, model building, refinement, and quality assessment. 

 

Figure 2.1 summarizes the overall process of x-ray crystallography. High-throughput 

crystallography has been recently emerged to accelerate determination of atomic 

structure of a protein because in old days one could spend approximately three years 

only to calculate electron density.55 Nevertheless, the growth of diffraction-quality crystal 

is still a major bottleneck despite the advent in studying proteins properties. There isn’t 

yet a possible way to predict the appropriate condition for a protein of interest to 

produce crystal.56 As medicinal chemists, we are interested more in the last three 

events of crystallography technique, where we could apply chemical knowledge.57, 58 
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Figure 2.1. From top to bottom a diagram 

depicting macromolecular structure solution.58 

Taken from German et al. Science 2014, 343, 

1102-1108.  
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Nowadays, sources of x-ray radiations are more powerful with a variety of intensities 

and uses comparing to decades ago. Many types of X-ray generators have been 

developed including in-house x-ray generator (rotating anode) and synchrotron 

radiation.  Laboratory x-ray device is basically equipped with hard x-ray source, x-ray 

optics, a goniostat to position and rotate, and x-ray detector. In addition, other important 

components are added for specific practical purpose, such as cryo-cooler (cold nitrogen 

gas) to reduce radiation damage on the crystal, and a microscope focused onto center 

of the instrument to align and center the crystal on the x-ray beam path. For protein 

crystallography, copper is usually used as an anode material that emits x-ray radiation 

of a wavelength of 1.54 Å.59 Other metals, such as chromium, iron, and molybdenum, 

with various characteristic wavelengths can also be used. For example, molybdenum 

(0.71 Å) is used for small molecule x-ray crystallography because the crystal has small 

unit cell and the diffraction spots are closer together, which makes molybdenum 

convenient to use with area detectors of small molecules. In parallel, advancements in 

detectors have also taken place. Two-dimensional (2D) detectors, such as charge-

coupled device or pixel array detector, replace photographic film detector due to their 

good detection efficiency and spatial resolution.60, 61 

 

Synchrotron (Figure 2.1) radiations are very high intensity x-ray beams. In this case, 

electrons are injected into a storage ring, which is a circular arrangement of bending 

magnets causing change in electrons direction. This leads to generation of x-ray 

radiations. Unlike x-ray tube, synchrotron reveals useful and high resolution data from 

very small crystals due its high energy beam and brilliance, which show extensive 
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details of the crystal in short time compared to traditional in-house x-ray generator.  It’s 

also a sophisticated facility to detect very short-lived crystal structures.59-63 

 

 

 

2.3 Crystallization Techniques  

	
Before setting up crystallization experiments, it’s important to ensure certain 

considerations. First, it’s essential to ensure the crystallizability of the target protein; 

some proteins are hardly crystallized, e.g. membrane proteins.64 A protein of interest 

has to be expressed in a biological system that guarantees the correct folding, AA 

sequence, and functionality of the protein as if it is expressed in its original biological 

system. Another significant factor is protein purification. Highly purified protein sample is 

required due to the fact that impurities could interfere with the growth of the crystal, 

which is a highly ordered 3D array of molecules.54, 65 

 

Figure 2.2. The European Synchrotron Research 

Facility (ESRF), Grenoble, France.58 Taken from 

German et al. Science 2014, 343, 1102-1108. 
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Obtaining a crystal of protein is a matter of trial and error, because each protein has its 

own structural and biological characteristics making it’s hard to establish defined 

universal protocol for protein crystallization. Multiple parameters, however, could govern 

the growth and formation of the crystal.54 Physical properties, such as temperature, 

chemical properties, like precipitant type, and biochemical properties, such as sample 

purity, can considerably affect crystal formation. More interestingly, a change of pH 

values by 0.5, or sometimes even by 0.1, can lead to dramatic change in protein 

solubility, which in turn affects nucleation formation and crystal growth. There are 

numerous conditions of crystallization screening commercially available. They are 

available with multiple combinations of typical components of crystal screening, such as 

precipitant, buffer, salt, or different pH units.65  

 

Three main steps in the protein crystallization, which are nucleation, crystal growth, 

and cessation growth, take place to produce final crystal as in Figure 2.3. In nucleation, 

protein molecules aggregate to form thermodynamically stable particle, which is called 

“critical nucleus” stabilized by specific interactions. Then, protein molecules diffuse and 

orderly assemble on the critical nucleus into a bigger particle. This step represents the 

stage of crystal growth, which is a characteristic of well-ordered 3D array lattice of the 

protein crystal. Finally, the crystal growth ends when protein concentration efficiently 

drops in the solution.66 
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Experimentally, crystallization is performed by number of techniques: vapor diffusion, 

microbatch in oil, and dialysis. Vapor diffusion is a common technique in which a drop of 

protein is mixed with a drop of reservoir solution (buffer, precipitant, salts, and other 

additives).67 The drops mixture is placed in different positions in the reservoir solution 

wells either by sitting drop, or hanging drop or sandwich drop as in Figure 2.4 (a-c). 

Microbatch in oil is another method (Figure 2.4 (d)), in which a protein is mixed with the 

reservoir components and allowed to be placed under oil, which controls the 

evaporation rate of the reservoir solution from protein/reservoir mixture. Lastly, dialysis 

Figure 2.3. Process of crystal formation, (a) protein molecules disorderly 

aggregate, (b) critical nucleus formation, (c) development of the true crystal, (d) 

free protein molecules adsorb on the lattice to increase crystal volume.66
 Taken 

from Krauss et al. Int. J. Mol. Sci. 2013, 14, 11643-11691. 
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is mainly based on diffusion of contents of the reservoir through semipermeable 

membrane as in Figure 2.4 (e, f).65  

               

Since crystallization step depends on trials and errors, it’s essential to find a mean to 

automate this step to expedite the process of obtaining high quality crystal.65 Number of 

robots has been developed, by which an experiment of crystallization with 96-well plate 

could be done in less than a minute.68 Moreover, robot could help in resolve one of 

unavoidable problems with human-performed experiment of crystallization, in which 

crystallographer could draw variable volumes affecting overall mixing ratio. Usually, 

protein and reservoir solution of a condition is mixed as a ratio of 1:1. 69, 70 In order to 

get a faster growth of the crystal, it’s recommended to mix volumes in a nano-scale, 

however; this could be accurately achieved by robotic crystallization.71 
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2.4 Crystal Symmetry 

	
As mentioned before, crystal is geometrically composed of organized 3D array of 

protein molecules. Each protein molecule is placed at precise position relative to each 

other. The basic building block of a crystal is called unit cell, which is characterized by 

three vectors (a, b, and c) and three angles between them (α, β, and γ) as in Figure 

2.5.72 Moreover, unit cell can be further simplified into two or more asymmetric units that 

are related by symmetry element.73  

 

Figure 2.4. Crystallization techniques, (a-c) Vapor diffusion (Hanging drop, 

Setting drop, Sandwich drop, respectively). (d) Microbatch in oil, (e,f) Dialysis.67 

Taken from Benvenuti et al. Nat. Protoc. 2007, 2, 1633-1651.   
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There are seven geometrical crystal systems (Table 2.1). Applying translational 

symmetry to the seven crystal systems gives rise to 14 Bravais lattices, which are 

described by four different ways of lattice points (Figure 2.6).74 

 

1. Primitive (P): lattice points are placed solely at the corners of the unit cell.  

2. Faced-centered (F): lattice points are placed at the corners and one lattice point 

is placed in the middle of every face of the unit cell.  

3. Base-centered (C): lattice points are placed at the corners and one lattice point is 

placed at each of the two relevant faces in the unit cell 

4. Body-centered (I): lattice points are placed at the corners and one lattice point is 

placed in the middle of the unit cell.   

 

 

 

Figure 2.5. Unit cell with vectors and angles between them.73 Taken from 

Hammond, C. The basics of crystallography and diffraction, 2009.  
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Translational symmetry is defined by a translation, while point symmetry elements 

consist of four symmetry operations: 75  

1. Inverse center: when applied, the resulting object is a mirror image of the 

original, rotated upside-down.   

2. Reflection: when applied, the resulting object is a mirror image of the original; 

both lie in opposite sides with equal distance from the mirror plane.    

3. Rotation: rotation takes place counterclockwise by an angle of 360/n (n could be 

1, 2, 3, 4, 6).  

4. Rotation-inversion: it consists of two-symmetry elements rotation (360/n), 

followed by an inversion. 
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Table 2.1. The seven crystal systems with crystal symmetry elements and parameters 

of cell dimension.73, 76   

Crystal system Essential symmetry of crystal Cell parameters 

Triclinic None 

 

None 

Monoclinic One diad axis (2-fold rotation) or mirror 

plane (inverse diad axis) 

α = γ = 90° 

Orthorhombic Three orthogonal diad axes or inverse 

diad axes 

α = β = γ = 90° 

Tetragonal One tetra axis (4-fold rotation) or inverse 

tetrad axes 

a = b; α = β = γ = 90° 

Trigonal One triad (3-fold rotation) axis or inverse 

triad axis 

a = b; α = β = 90°; γ = 

120° 

Hexagonal One hexad (5-fold rotation) axis or 

inverse hexad axis 

a = b; α = β = 90°; γ = 

120° 

Cubic Four triad axes or inverse triad axes a = b = c; α = β = γ = 

90° 

 

 

 

 

 



36 
	

	

 When point symmetry and translations are combined, they generate two symmetry 

operations: 75 

1. Glide plane: it’s combination of two symmetry operations, reflection in a mirror 

plane followed by translation.   

2. Screw axis: it’s combination of two symmetry operations, rotations followed by 

translation.  

 

 

 

 

Figure 2.6. Bravais lattices composed of the seven crystal systems with 

translational symmetry.73 Taken from Hammond, C. The basics of 

crystallography and diffraction, 2009.  
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There are 230 crystallographic space groups as a result of combining the Bravais 

lattices and the point, translational and space symmetry. Proteins are chiral 

macromolecules most composed of chiral amino acids as building blocks, therefore; 

mirror plane or an inversion center can’t be applied into protein crystal. As a result, 

proteins generally crystallize into 65 chiral space groups.73-76 

 

To be able to solve the crystal lattice and subsequently unit cell, imaginary planes have 

to be devised. These planes are designated by Miller indices, h, k, and l. These are 

integers of the inverse ratio of the intercepts on a, b, and c axes of the unit cell (Figure 

2.7). 73-76  

 

 

2.5 X-ray Diffraction of a Crystal 

	
As mentioned, crystal contains many protein molecules aligned with high degree of 

order. Upon x-ray scattering from a crystal, many diffraction pattern images are 

Figure 2.7. Example of Miller indices.73 Taken from Hammond, C. The basics 

of crystallography and diffraction, 2009.  

			h								k								l		

			 				 	=	(2,0,0)		
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generated, in which each point characterizes one reflection. X-ray diffraction patterns 

represent 2D array of reflections, which is a cross section of 3D array lattice of 

reflections.7 It’s important to collect as much diffraction patterns as possible through 

different crystal orientations with regard to x-ray beam eventually for the purpose of 

measuring directions and intensities of reflections as in Figure 2.8.59, 77 

                

 

Two major parameters that crystallographers seek from x-ray diffraction pattern, are the 

position of h, k, l and intensity of each reflection.75  These are essential data in order to 

proceed into the electron density of the macromolecular structure. Not all x-ray 

reflections are recorded, they have to be instead resulted from waves that are 

constructive interfered or obey Braggs law (equation 2.1).74    

 

 

Where n is an integer, λ is the wavelength of the x-rays, d is the spacing distance 

between the planes of the unit cell, and θ is the angle at which x-rays are reflected. 

Figure 2.9 displays the fact that atoms with symmetry-equivalent position in each 

nλ = 2dhklsinθ

Figure 2.8.  Elucidating of intensities from diffraction of crystal geometry.77 Taken 

rom Andrew, B. Resonance 2014, 19, 1087-1092 

Equation 2.1  
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imaginary plane within the lattice are separated by d distance, which is vertical distance 

between the two planes. The path difference between x-rays reflected at the same 

atoms existing between two planes has to equal an integer multiple of the 

wavelength.59-62, 74 

 It is impossible to correctly arrange spots which one is presenting which plane in the 

diffraction pattern. Instead, reciprocal lattice is an abstract of unit cell lattice providing a 

mean to view crystal structure. Reciprocal lattice is a grid of points in which each point 

represents a family of planes and is labeled with Miller indices.76 For diffraction to occur, 

number of reciprocal lattice points have to comes into contact with Ewald Sphere as in 

Figure 2.10 Experimentally, this could happen upon rotation of the crystal during x-ray 

irradiation, as a result, reciprocal lattice will rotate with it, and eventually reciprocal 

lattice points will touch Ewald Sphere.73-76  

              

Ewald Sphere is a sphere with a radius 1/λ, where λ is the wavelength of the x-rays. In 

Figure 2.10, when a crystal scatters the incident x-ray (shown in blue), a vector joining 

the reciprocal lattice point on Ewald Sphere to the scattered x-ray is called reciprocal 

lattice spacing, which is exactly equal to 1/d. That’s why it’s called reciprocal lattice.59  
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Figure 2.9. The paths of x-rays reflected by consecutive planes of same atoms. 60   

Figure 2.10. Ewald Sphere with reciprocal lattice. Incident x-ray beam (red 

line) hits a crystal in the origin of the sphere and gets diffracted on a reciprocal 

lattice point that lies on the sphere. Reciprocal lattice spacing (1/d) extends 

from edge of sphere in the direction of incident beam to the reciprocal lattice 

point.60 Taken from González et al. Comprehensive Biophysics, 2012. 
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2.6    Electron Density and Phase Problem 

	

When a crystal diffracts x-rays, a diffraction pattern is subsequently generated, which 

encompasses information about the amplitude and the direction of the incident x-ray, 

however, the phase is lost. Structure factor, Fhkl, is the sum of each atomic structural 

factor, fhkl, corresponding to certain reflection h k l and described by Fourier series 

shown in equation 2.2. Structural factor equation is consistent with Bragg’s law, in which 

atoms located on a set of equivalent parallel lattice planes diffract in phase with each 

other.75  

                                 𝐹ℎ𝑘𝑙 =  𝑓𝑗!
!!!  exp 2πi (ℎ𝑥𝑗 + 𝑘𝑦𝑗 + 𝑙𝑧𝑗) 

 
 
Where fj is scattering factor of “j” atom, h, k, and l are unit cell axes and (xj, yj, zj) is the 

atomic coordinate of atom “j”. Additionally, Fourier transformation of structural factors, 

amplitudes, and phases express electron density as in equation 2.3. Intensities of 

diffraction spots are easily obtained, however, phases have failed to be determined 

during x-ray data collection.59, 74  

 
            𝜌 𝑥,𝑦, 𝑧 = !

!
𝐹ℎ𝑘𝑙!!! .  exp [−2πi hx+ ky+ lz− αhkl ]  

 
 
Where V is the volume of the unit cell, ρ is the electron density of an atom located at 

(x,y,z), h, k, and l are indices of reflection hkl, Fhkl is the structural factors defining 

reflection, and α is phase angle. Phase is determined based on phase angle, at which 

incident x-ray reaches the crystal. In order to resolve phases, a number of methods has 

been developed, like heavy atom method, anomalous scattering, and molecular 

replacement.76 

Equation 2.2  

Equation 2.3  
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2.6.1 Heavy Atom Method 
	

Based on the knowledge that each atom in the unit cell contributes to each reflection in 

the diffraction pattern.  Heavy atom method or isomorphous replacement is a method 

used often for structure solution of unknown protein. Technically, protein crystal is 

immersed in a solution of heavy atom, such as mercuric (II) chloride, selenomethionine, 

and platinum potassium chloride. Then, heavy atom position is determined and located 

by Patterson method, in which a vector between two atoms can be calculated and 

located; accordingly, other atoms’ position is also defined. In this technique, heavy atom 

derivative crystals should have the same unit cell and symmetry as that of native protein 

crystal so that difference in electron density can be calculated and phases of the new 

protein might be determined.59, 74 

2.6.2 Anomalous Scattering 

	
Like isomorphous replacement, heavy atoms are also utilized to create difference in 

electron density resulting in anomalous signal. Conveniently, anomalous scattering 

requires one crystal, which can serve as both heavy atom derivative crystal and native 

protein crystal. This crystal is often exposed to x-rays of multiple wavelengths; this is 

why is often called multiwavelength anomalous diffraction (MAD). Expectedly, the 

likelihood of being radiologically damaged is quite high.78 In fact, heavy atoms have the 

characteristic of behaving distinctively from light atoms, e.g. carbon, oxygen, and 

nitrogen, in that x-ray absorption drops severely at wavelengths just below their 

characteristic emission wavelength. This abrupt change in absorption resulting from 

change in λ called absorption edge, thus heavy atoms display anomalous scattering.74       
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2.6.3 Molecular Replacement  

	
Isomorphous replacement and anomalous scattering are experimental methods for 

phasing, whereas, molecular replacement is a method of solving the atomic structure 

utilizing computer software, like Phaser.79 It’s the most common technique in resolving a 

protein structure given that a known protein crystal structure has to be already revealed 

and sharing nearly 40% of identical AA with a protein of interest. In other words, 

crystallographers often use the phases of a known protein structure to calculate initial 

phases of the new protein using six variables, three rotational and three translational. 

These variables transform coordinates of known protein by first rotating and then 

translating into new orientation.59 This could be carried out by either Patterson method 

or maximum likelihood method. The latter is most commonly used, which predicts the 

best model; the one is most in keeping with findings.76      

 2.7    Structure Refinement and Validation 

	

Electron density map is created once phases are determined using Fourier 

transformations and electron density equation (equation 1.3) to decipher atomic 

positions in protein structure.76 The quality of the electron density and subsequent 

structural details rely significantly on resolution. Crystallographers are familiar with 

molecular graphics programs, such as crystallographic object-oriented toolkit (COOT) to 

fit protein’s chain into the electron density map.80, 81 The electron density maps that I’ve 

used in this thesis are 2Fo-Fc map and Fo-Fc map, which is the difference between the 

observed structure factor and the calculated structure factor of the model. One of the 
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most important markers for refinement and prediction of a good quality 3D model for an 

atomic structure is R-factor, which is mathematically determined as in equation 2.4.  

                                                 𝑅 = !"#$ ! !"#$"
!"#$

      

 
R factor is a fraction computed by the sum of all difference between the observed and 

calculated structure factors divided by all observed structure factors.75 During 

refinement, the main goal is to minimize the difference between the observed and 

calculated structure factors, which indicates that the model is in a great agreement with 

the experimental observation. Another independent factor that is calculated 

spontaneously with R factor is Rfree, which is derived from the calculation of 5% of the 

reflections that are excluded from refinement. This is unbiased marker for the accuracy 

of the refined structure.82, 83  

2.7.1 Ramachandran Plot 
 

It is a method of validating protein structure, which examines protein structure based on 

angular parameters phi and psi, which are torsion angles between free rotatory αC-N 

and αC-C of the main chain, respectively. Amino acids of protein tend to cluster in 

certain regions in the plot, such as favored, allowed, and outlier regions.84 In order to 

consider a valid structure, most of AA should fit the allowed or favored regions.59 Figure 

2.11 demonstrates Ramachandran plot layout.  

Equation 2.4  
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Figure 2.11. Ramachandran plot utilized for validating atomic structure of a protein. 

Pink colored regions are favored regions, yellow colored regions are allowed 

regions, and grey colored regions are disallowed or outlier regions. Blue triangles 

are glycine residue, and red squares represent aa that need to refine their 

backbone polypeptide to fit allowed and favored regions as aa represented by blue 

squares. Taken from initial COOT modeling of influenza virus Matrix (M1) protein.    
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Chapter 3. Biophysical techniques: Microscale 
Thermophoresis (MST) and Surface Plasmon Resonance 
(SPR). 
	

3.1 Overview 

 
Binding of biological molecules with vital endogenous ligands or drugs is of great 

importance for understanding physiological events at molecular level in different medical 

fields related to human health, including structural biology, pathology, pharmacology, 

and diagnostics. Binding affinity has also crucial rule in drug design process, readily 

filtering libraries of lead compounds. Predication of, for example, small molecules and 

protein target affinity would give an insight of which molecule could be further qualified 

for biological investigations. Also, affinity studies could answer biological phenomena, 

cellular networks and communications or explain disease state, and thus, guide 

researcher towards the appropriate disease treatment. 

 3.2 Principles of Thermophoresis 

Thermophoresis is defined as directed movement of molecules under temperature 

gradient effect.85 German Ludwig first described this phenomenon in 1858, yet its 

theoretical concept is still under debate. Thermophoresis can be expressed physically 

by the following equation 33.1.86  

𝐽 = 𝑐 𝐷𝑇 𝑔𝑟𝑎𝑑 𝑇 

Where J is the molecular flow, c molecule concentration, DT is the thermal diffusion 

coefficient, and T is the temperature. Molecular flow proportionally correlates to 

Equation 3.1.  
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temperature gradient with proportionality constant DT. Once heat is generated in one 

spot of solution, molecules concentrate either at cold or hot region until steady state is 

reached where steady state concentration ratio is calculated as in equation 3.2.87  

𝑐 ℎ𝑜𝑡
𝑐 𝑐𝑜𝑙𝑑 = exp(−𝑆𝑇 ∆𝑇) 

Where chot and ccold are the molecule concentrations in the hot and cold areas. Soret 

coefficient (ST) describes the degree of the molecule separation. Mathematically, ST is 

described as a fraction of thermal diffusion coefficient (DT) relative to the normal 

diffusion coefficient (D). Depending on the sign of DT, ST could be positive, where 

molecules focus at cold region, or negative, where molecules focus at hot region.88   

3.2.1 Microscale Thermophoresis (MST)  
	

Based on thermophoresis theory, microscale thermophoresis (MST) has been 

developed and designed as a tool for biomolecular affinity quantification. In principle, 

MST is a technique used for quantitative analysis of macromolecular interactions in free 

solution with high sensitivity for changes in molecular characteristics during binding 

event, like size, charge, hydration shell and conformation.  In essence, MST is operated 

through two fundamental actions: fluorescence and heat application via infrared (IR) 

laser, which is selected as heat source because it coincides with the restriction of the 

temperature gradient of thermophoresis.89 Water molecules in the sample are primarily 

responsible for providing temperature gradient when they absorb IR radiations.  

According to MST application, IR laser of 1480 nm is linked to fluorescence pathway. 

Three readings of fluorescence in each well are recorded in accordance to the change 

Equation 3.2.  
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in sample temperature, before, during, and after IR laser is turned on. Figure 3.1 depicts 

MST device, its components, and MST signal.90  

 

 

Figure 3.1. A) Image of MST device from NanoTemper technology GmbH. B) 

MST setup showing a focused IR laser is combined with fluorescence light 

excitation and emission and both IR laser and excitation and emission light are 

directed to a specific spot or volume of a capillary. C) Typical MST signal. Before 

turning on IR laser, initial fluorescence is recorded, where homogenous sample 

exists. Once IR laser is turned on, temperature jump (T-Jump) is noticed as a 

result of rapid change in temperature and fluorescence intensity of molecules. 

Then, fluorescently labeled molecules start to move outside the heated spot and 

thermophoresis is recorded till it reaches steady state shown as plateau. 

Afterward, when IR laser is turned off, an inverse T-Jump is observed where 

molecules moves back by effect of mass diffusion.89 Taken from Jerabek-

Willemsen et al. J. Mol. Struct. 2014, 1077, 101–113.    
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3.2.2 Experiment Aspects of MST 

 

MST is an optical and solution-based technique used to define biomolecules 

characteristics. In MST, non-fluorescent partner is often titrated against constant 

concentration of fluorescent partner. Titration is performed by serial dilution in either 96 

or 384 wells plate that facilitates the insertion of glass capillaries into wells to allow 

samples loading through capillary action for MST measurement. 90, 91 

 With respect to fluorescence, MST can be utilized into two approaches: label free 

approach or intrinsic fluorescence and labeling-based approach or extrinsic 

fluorescence. The former is very simple approach in which the fluorescence of one 

reactant is utilized to monitor binding effect. Most of the time intrinsic fluorescence of 

the protein itself is used, arising from aromatic AA (Tyrosine (Tyr), Phenylalanine (Phe), 

Tryptophan (Trp). The other approach is commonly used when both reactants could 

interfere fluorescently with each other at the intended emission wavelength making it 

hard to perform the experiment without using external fluorescent molecule emitting 

light at a wavelength that none of reactants could have recognized for its emission 

spectrum. In label free, both excitation and emission wavelengths are fixed at 280 nm 

and 360 nm, respectively, which are related especially to protein excitation and 

emission, thus, limits using this approach for molecules other than proteins.85 

From labeling approach standpoint, visible light is used to excite fluorescent molecule 

via three types of LED-filter: blue (excitation 460-480 nm, emission 515-530 nm), green 

(excitation 515-525 nm, emission 560-585 nm), and red (excitation 605-645 nm, 
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emission 680-685 nm). There are certain AA in protein molecules considered potential 

sites for fluorescent dye labeling including Lysine (Lys) or Arginine (Arg) and Cysteine 

(Cys).87 In these cases, an additional purification step to eliminate free dye molecules 

prior to binding assay is required. One important thing one has to keep in mind that 

location of labeling site in protein molecule is not important for thermophoretic analysis, 

however, it is extremely important to make sure labeling doesn’t interfere with binding 

site. In addition to that, other fluorescence labeling approach can be used; including 

fluorescent fusion protein, such as green fluorescent protein. This protein is coupled to 

specific tag of AA sequence on protein of interest providing site specific labeling as well 

as purification-free approach.85-87 

3.2.3 Mathematics of MST 
	

MST can quantify biomolecular interaction and provides relevant interpretation within 

the corresponding biological system. Affinity constant (Kd), which is the equilibrium 

dissociation constant of the binding event is feasibly derived from MST traces. Upon 

microscopic temperature gradients, thermophoretic movement of fluorescent molecule 

(unbound) comparing to that of fluorescent molecule complex with non-fluorescent 

molecules (bound state) lead to different MST traces which could be utilized to estimate 

Kd.85 In fact, change in thermophoresis is correlated to normalized change in 

fluorescence ΔFnorm, which is described as fraction of Fhot, a fluorescence value at 

steady state, relative to Fcold, an initial fluorescence value before IR laser starts working. 

Equation 3.3 is used to derive Kd of the binding event. Figure 3.2 demonstrates the 

concept of thermophoresis and fluorescence correlation.85, 89  



51 
	

	

[AL]=1/2*(([A0]+[L0]+ Kd)-(([A0]+[L0]+ Kd)2-4*[A0]*[L0])1/2) 

Where [AL] is the concentration of the fluorescent and ligand molecules complex, [A0] is 

fluorescent molecule initial concentration, which is kept constant in all samples, [L0] is 

the initial concentration of ligand or non-fluorescent molecule, though its concentration 

is adjusted during serial dilution, and Kd is the equilibrium dissociation constant. 

 
 

 
 
 
 
 
 
 

Figure 3.2. On the left side: Different MST traces are plotted for fluorescent 

molecule (shown in black; unbound), and bound state of fluorescent molecule with 

ligand (shown in red). On the right side: ΔFnorm ( Fhot / Fcold ) of each sample is 

plotted against concentrations of ligand (non-fluorescent molecule) from which Kd is 

calculated.89 Taken from Jerabek-Willemsen et al. J. Mol. Struct. 2014, 1077, 101–

113.     

Equation 3.3. 



52 
	

	

3.3 Surface Plasmon Resonance (SPR)  

	
Surface plasmon resonance (SPR) is a biosensor-based optical technique, which allows 

various types of biomacromolecules, such as proteins and nucleic acids, to interact with 

other molecules in label free fashion. Kinetics binding parameters, like association rate 

(ka) and dissociation rate (kd) constants can be obtained along with Kd because 

interaction is monitored in real-time featuring SPR with a unique characteristic. Simply, 

SPR experiment is performed by injecting a series of analyte concentrations over a 

protein of interest that is chemically immobilized on a metal chip, most probably gold 

due to its high ability to support surface plasmons.92   

3.3.1 Principle of Surface Plasmon Resonance  
 

Resonance, generated physically by photons, occurs at the interface between dielectric 

medium (usually glass) and metal (gold or silver) when only the propagation constant of 

surface plasmons matches that of incident light waves at particular angle, known as 

resonance angle.92 To ensure the coupling of propagation constants, prism coupler is 

used. Then, intensity of reflected light decreases as a result of absorption detected at 

that particular angle, which is specifically related to the refractive index of the medium. 

Upon binding events, refractive index changes for a given change in chemical or 

biological species at the surface, which produces change in resonance angle (Figure 

3.3.).93 

 

 



53 
	

	

 

 

SPR sensorgram is a SPR signal measured in resonance units [RU] over a period of 

time. It represents the three primary phases during one interaction of an analyte over 

immobilized ligand. First, the ligand has to be immobilized on the metal chip by various 

chemical immobilization strategies (please see 3.3.2 section).93, 94 Ligand immobilization 

would give a certain resonance unit that is considered the baseline from which analyte 

response is measured. In first phase, which is called association phase, analyte sample 

is injected over a period of time allowing binding which could be seen as an increase in 

SPR signal until it reaches saturation (Rmax). Depending on analyte-ligand affinity, this 

Figure 3.3. Schematic representation of SPR experiment. The instrument 

measures the angle of resonance at a minimum observed intensity, which 

changes according to change in refractive index of the medium, such as a ligand-

protein binding.93 Taken from Hahnefeld et al. Methods Mol. Med. 2004, 94, 299–

320.   
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SPR increase could be fast/slow or low/high in signal magnitude. Second phase is 

dissociation phase in which the system stops injecting analyte sample and allows buffer 

running only. Sometimes baseline of ligand can’t be achieved so to eliminate remaining 

analyte molecules from the surface before injecting the next analyte sample, a 

regeneration solution is used, which represents regeneration phase.95, 96 Figure 3.4 

displays SPR signal with the three phases.  

 

 

Figure 3.4. Typical SPR sensorgram with y-axis denoting SPR signal in [RU] and 

x-axis denoting time. (A), (B), and (C) represent association phase, dissociation 

phase, and regeneration phase, respectively.93 Taken from Hahnefeld et al. 

Methods Mol. Med. 2004, 94, 299–320.   
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3.3.2 Strategies of ligand chemical immobilization 
 

The bottleneck step in SPR experiment is the immobilization of ligand on the metal chip 

with taking into consideration the caveats that ligand inactivity or improper site of 

immobilization could happen. Great knowledge of ligand structure for determining the 

appropriate chemical mean of immobilization is required to successfully complete this 

step. There are two types of coupling chemistry: covalent and non-covalent 

immobilization.97 

3.3.2.1 Covalent immobilization 
 

It’s also known as direct immobilization in which a covalent bond is formed between 

ligand and metal surface. This strategy involves coupling of the following chemical 

functional groups: amine, thiol, maleimide, and aldehyde coupling. The most common 

chemical way is amine coupling in which free primary amine, such as Lys, bonds 

covalently to carboxyl dextran chip. Sample of ligand with high purity is required. Thiol 

and maleimide are both thiol coupling, however, the former involves exchange reaction 

between thiol and active disulfide groups, while the latter involves formation of thioether. 

Both require the ligand to have a free thiol group (usually cysteine residue). Aldehyde 

coupling is useful for site directed immobilization in which a ligand possesses either 

inherent or induced aldehyde group. Among variety of chemical immobilizing ways, one 

has to ensure that the binding site of a ligand with the chip is clear of interfering with 

ligand active site by neither introducing conformational change nor modifying it 

chemically.92-96  
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3.3.2.2 Non-covalent immobilization  
 

Non-covalent or indirect immobilization strategy involves high affinity capturing of ligand 

to a molecule binding covalently with a metal chip by previously mentioned covalent 

immobilizing reactions. For example, biotin-streptavidin interaction is widely used as 

non-covalent strategy in which biotinylated molecules are immobilized on streptavidin 

metal chip. Non-covalent strategy overweighs covalent one by a number of advantages. 

It’s not required for ligand to be chemically modified which help to avoid improper 

immobilization. Unlike covalent immobilization, capturing approach is selective 

technique, which doesn’t require very purified ligand sample. Ligand can be removed 

with analyte after regeneration phase providing fresh binding sites of new ligand 

sample. This process could consume more ligand sample at each analyte injection. 

However, this could be considered beneficial if the ligand molecule gets structurally 

changed after each analyte binding event.93, 98   

 

Normally, SPR instrument comprises of three main components: sensor device, sample 

delivery system, sensor surface (metal chip). Sensor device, where physical and optical 

principles can be utilized, consists of LED-near infrared light, a glass prism, and 

position-sensitive diode array detector.92, 99   

 

3.4 Other Techniques Used for Affinity Studies  

There are plenty of biophysical techniques available for studying protein interactions but 

it’s hard to find one that is widely applicable for most of protein interactions types. One 
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important factor gives rise to the right and successful binding assay experiment is the 

awareness of researchers about strengths and weaknesses of biophysical methods and 

selecting the right technique, consistent with the purpose of experiment. Isothermal 

titration calorimetry (ITC) relies on heat change, which is either released or absorbed 

during biomolecular binding event, by titrating one reactant into adiabatic cell containing 

fixed amount of the other reactant. Good part about this approach is conducting the 

experiment without requiring labeling. However, it is a low sensitive technique because 

it depends on alteration of heat during experiment, which means high amounts of 

protein samples are required to produce efficient heat signal. Another label-free 

biophysical technique is dynamic light scattering (DLS), which is limited to certain 

binding effect that causes change in the average particle size. It detects time dependent 

variations in light scattering by binding partners. Hydrodynamic radius of each reactant 

has to be similar or at maximum differs in factor of two because calculation depends on 

substantial difference in the hydrodynamic radius of unbound reactant related to the 

bound state radius providing low sensitive and limited results.89  

Surface plasmon resonance (SPR) is somehow unique in that interaction between 

molecules takes place on a special designed metal chip. SPR is an optical method 

relying on change in refractive index of the medium closed to metal chip surface, which 

is used to observe interaction event. It has the advantages of measuring binding events 

in real time, and measuring on- and off-rates with affinities range of nM to mM. 

Nevertheless, producing the appropriate chip is quite challenging and time consuming. 

Also immobilization of a protein on chip could affect binding pocket or alter protein 

conformation and thus inaccurate binding event assessment could happen.96-99  
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 Conversely, MST provides almost all possible conditions and can be adjusted to 

coincide with experimental parameters. Protein sample could be prepared in solutions 

or in cell lysate resembling in vivo conditions. That is, MST could analyze protein 

sample regardless of its purity. One can also customize protein environment or solution 

with various potential factors such as co-factors, salts, and other important additives 

that might contribute to or reveal protein function and behavior in context of its cellular, 

extracellular or nuclear surroundings. Additionally, some proteins, such as membrane 

proteins, are only stable in complex solutions or buffers in order to assess its binding 

constant. Variety of molecules types involving small molecules, peptide, and proteins 

could be tested for binding effect with the protein of interest. With respect to 

maintenance and cleaning, MST instrument doesn’t require any sort of cleaning and 

sterilization for device parts, since application of buffer addition and titration is 

completed outside the device.88-90  
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Chapter 4. Crystal structure of Matrix protein (M1) Mutant (B-
M1)  

 
 

4.1 Introduction  

 
Influenza virus is a negative single stranded RNA, which is composed of eight RNA 

segment, protected by two main layers: nucleocapsid protein and matrix M1 protein, 

and membrane envelope with HA and NA glycoproteins. The influenza virus can adopt 

various morphologic conformations owing to the protein protective shells. During virus’ 

evolution, supplemental protein layers are developed as a barrier machinery to protect 

genetic material. These layers of protein also participate in viral entry and invasion. 

These proteins have evolved in a symmetry-related interaction to enable its functions.33, 

100, 101  

 

Influenza matrix protein 1 (M1) is a viral protein shell that recently has gained much 

attention due to its vital role in virus replication. It was assumed that M1 only functions 

as a structural protein, which supports virus particle shape and protects genome, 

however, importance of M1 protein exceeds that assumption to a broader scope 

involving nuclear transportation of viral genome. Additionally, many metabolic functions 

remain to be discovered that are proposed to involve M1 in one way or another.9, 103 

Biochemical assays indicate that M1 is quite important for virion integrity and formation. 

Generally, M1 provides entire physical entity of viral particle and anchored layer for 

membrane proteins. It also facilitates the recruitment of viral proteins into the newly 

formed virions.   
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When it’s the time for virus to release its genomic material, the interior of the virus is 

acidified, and in response M1 protein oligomeric layer dissociates.101 On the other hand, 

M1 oligomeric layer is formed and packed again at neutral pH in host cellular cytoplasm 

when virus particles are assembled for budding. Different structural conformations of M1 

during virus lifecycle result from direct influence of pH changes.26, 102-105  

 

We were interested in studying much more structural details of M1 protein in conditions 

of various pH. Crystallographic study, therefore, were planned by our lab in 

collaboration with lab of FDA to examine the effect of mutation of G88E, R101S, and 

R105S on geometry of M1 structure and its oligomerization, and elucidate any structural 

changes that may contribute to its biological function. These mutations deliberately took 

place in specific regions containing charged residues and mediate M1 interactions. One 

of the mutation that the virus itself generates is G88R and was effective as wt-M1. 

Furthermore, NLS region consists of basic residues, such as Arg 101 and Arg 105, 

which are found critical for M1 layer formation. Surprisingly, triple mutation of R101S 

and R105S with G88R maintain virion integrity and activity. Therefore, G88E mutant 

was generated along with mutation in NLS region (R101S and R105S) to investigate the 

reason of G88R mutant activity and confirm the importance of positive charged residues 

of NLS and its neighboring regions.   

 

4.2 Material 

The N-terminal domain (1–165 AA) of mutant M1 was produced through pHW2000 

plasmid expressing full-length M1 complementary DNA gene of influenza virus 
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A/WSN/33 (H1N1). Three point mutations were inserted into the plasmid including 

R101S, R105S, and G88E, located at the NLS motif and its neighboring region, 

respectively.34-35, 103 The mutant is denoted as G88E-M1, was confirmed by the Center 

for Biologics Evaluation and Research (CBER) at U.S. Food and Drug Administration 

(FDA).38 

 

4.3 Crystallization and Data Collection 

	
The crystals of N1–165-domain of G88E-M1 were obtained by automated sitting-drop 

vapor diffusion technique using Crystal GRYPHON crystallization robot using 96 wells, 

which can be sealed in less than two minutes. In each well, one drop of protein (0.2 µL) 

was mixed with one drop of the reservoir (0.2 µL) at 1:1 ratio, leaving the mixture to 

equilibrate with 58 µL of the same reservoir solution at 20 °C. Various commercially 

available crystallization conditions were also screened including Screen 1 & 2 from 

Hampton research, Wizard 1,2,3, and 4 from Rigaku. The sample of G88E-M1 had a 

protein concentration of 15 mg/ml in a buffer of 55 mM KH2PO4/K2HPO4/H3PO4, 0.2 M 

NaCl, 2mM tris(2-carboxyethyl) phosphine (TCEP), pH 3.4. The condition of the 

reservoir was 0.1 M Tris, pH 8.5, 8% PEG (8K). The estimated pH of crystallization drop 

was 6.2.  

 

For X-ray data collection, the M1 crystal was cryoprotected with mixture of its mother 

liquid and 25% glycerol prior to data collection in liquid nitrogen stream. The X-ray data 

set was obtained at 100 K on an R-axis IV++ image plate detector using CuKα X-ray 

(λ = 1.5417) from a Rigaku Micro-MaxTM-007 X-ray source equipped with Varimax 
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confocal optics operating at 40 kV and 20 mA (Rigaku, The Woodlands, TX). Crystal 

diffracted to 2.5 Å resolution, and the data set was processed and scaled using Rigaku 

D*TREK software.  

4.4 Structure Determination  

	
The structure was solved through molecular replacement technique using Phaser-MR 

(simple interface) within the Phenix software package (version1.9).79 Using the 

monomeric structure of N-terminal domain of M1 (A/WSN/33 strain) with a PDB entry of 

1EA3, molecular replacement resulted in a solution of three monomers per asymmetric 

unit; LLG= 1173, TFZ= 13.7, R-value= 48.2. Initial refinement was performed by 

Phenix.refine within the Phenix software package. The refinement revealed disorder in 

different regions in all three monomers. After multiple cycle of refinement, the current 

refined structure resulted in Rwork / Rfree of 22.35 / 31.83 with three water molecules. 

Table 4.1 and Table 4.2 summarize data collection and refinement statistics. This 

crystal structure of N-terminal domain of M1 is abbreviated as B-M1 throughout this 

chapter.  
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Table 4.1. Data collection of x-ray reflections. 

Data collection statistics  

Space group P 21 21 2 

Cell dimensions (Å) a = 85.61  b = 133.26   c = 39.31 

Resolution (Å) 29.44 - 2.50 (2.59 - 2.50) 

Number of measured reflections  79188 

Unique reflections 14742 

Redundancy 5.37       (5.51) 

1/σΙ 16.69       (5.01) 

Completeness (%) 90.7       (91.9) 

Rmerge (%)  0.077     (0.449) 
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Table 4.2. Statistical data of G88E M1 protein structure refinement.   

Structure refinement  

Resolution limit (Å) 26.23 - 2.5 (2.589 - 2.5) 

Number of reflections 14742 (1473) 

Rwork (%) 22.35 (29.6) 

Rfree (%)  31.83 (41.68) 

R.m.s.d. standard geometry  

Bond lengths (Å) 0.010 

Bond angles  1.42 

Dihedral angles (%) 

Most favored regions  97 

Allowed regions  2.33 

Average B-factors (Å2) 

All atoms  59.50 

Protein alone  59.50 

Water  49.00 

Rmerge = Σhkl
Σi
Ihkli−< Ihkl >/Σhkl Σi < Ihkli >. 

Rfree was calculated with 5% excluded reflection from the refinement.82 
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4.5 Results and Discussion  

 

4.5.1 Crystallization and Structure of the Truncated N-terminal Domain of M1 
	

  
Truncated N terminal domain (1-165) of M1 was crystallized in a pH close to neutral (~ 

6.4) but still acidic. The space group was found to be P 21 21 2 with unit cell parameters, 

a= 85.61, b= 133.26, c= 39.31 Å and α=β=γ 90°, and a trimer (monomers A, B, C) in the 

asymmetric unit as shown in Figure 4.1. Molecular replacement was processed based 

on the fact of having three monomers in the asymmetric unit using a search model 

1EA3, a monomeric structure of N-terminal domain of wt-M1 in neutral pH. The final 

refinement produced Rwork / Rfree 22.35 / 31.83.  

 

Space group P 21 21 2 is an orthorhombic crystal with two-fold screw axis along axes (a) 

and (b) and two-fold rotation along axis (c).  Each monomer, A, B, and C, is related to 

each other by two-fold non-crystallographic symmetry (NCS) as in Figure 4.1 (A).  

Monomers A and B in B-M1 are packed into face-to-face fashion resembling that of wt-

M1 in acidic pH. Monomers A and B form a physiological dimer arranged in the so-

called “face-to-face” fashion as previously observed for M1 dimers obtained at low-pH of 

crystallization. Monomer C also forms a dimer with its symmetry-related counterpart, 

also in a face-to-face fashion. It should be noted that M1 structures form physiological 

monomers when crystallized at pHs over 7. The different oligomerization states of M1 at 

different pH have been proposed to be related to its multiple function.40 
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The N-terminal domain of M1 used for the structural study has a molecular weight of 

~18 kDa and consists of nine helices with no β-strands. The nine helices are further 

divided into two domains N and M domains and each comprises of four helices. N-

domain contains H1 (3-12), H2 (19-32), H3 (39-48), and H4 (54-67), while M domain 

consists of H6 (90-105), H7 (106-116), H8 (121-132), and H (140-157). Both domains 

are linked by small helix H5 (78-84). Moreover, each helix is separated from the other 

by a loop. Each of the three monomers has two distinguished faces; one face occupied 

mostly by positive amino acids, while the opposite face is covered mostly by negative 

AA. Figure 4.1 (B) demonstrates the two opposite sides, in which positively changed 

AA, NLS motif or 101RKLKR105 and Lys95, Lys98, and Arg134 are located on one side 

and on the other side negatively charged AA are lined up, such as Glu8, Glu23, Glu29, 

Asp30, Asp38, and Glu44.  Primarily, these charged AA define electrostatic interactions 

of M1 with several viral proteins and in M1-M1 oligomerization at high pH, where the 

monomers associate in a face-to-back fashion.22, 39  
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During structure validation by COOT software version 0.8, each monomer showed high 

degree of disorder in certain AA side chains. Generally, N-domain in all monomers has 

shown higher disorder degree comparing to M-domain. The calculated average-B 

factors for N-domain vs M-domain are in the following order for monomer A, B, and C: 

61.12 Å2 / 57.57 Å2, 59.27 Å2 / 53.22 Å2, and 67.42 Å2 / 57.88 Å2. However, monomer C 

has the highest average-B factor among B-M1 monomers with average-B factor of 

62.49 Å2 comparing to A and B monomers, whose average-B factors are 59.83 Å2 and 

56.16 Å2, respectively. Despite these figures, all monomers have similar average-B 

factor range, which is expected with the obtained resolution of 2.5 Å. Furthermore, 

monomers displayed similar geometry in their structures when they are superimposed 

H6 

H

H8 

H9 
H1 

H4 

H2 

H3 

H5 
H7 

A 
A

A 
A

C 
B 

B 

Figure 4.1. (A) Three monomers of B-M1 in asymmetric unit (A monomer in blue, B 

monomer in gold, and C monomer in silver). (B) A monomer geometry with two 

bundles of four helices: N domain (H1-H4) and M domain (H6-H9). The side of H2 

and H3 contains mainly acidic aa where is the side of H6 and H7 contains mainly 

basic aa. 
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to each other with RMSD ranged from 0.35 Å to 0.5 Å, except for some difference in 

loops folding. 

 

The AA sequence, 69-75, is highly disordered and lacked continuous electron density in 

all monomers of B-M1, and was therefore deleted from the structure. It’s important to 

note that similar observation has been reported in the same region in previously 

resolved M1 crystal structures.22, 39 Ser2, Leu3, and Leu4 of monomers A and C but not 

B had highly constrained peptide bond. Application of multiple cycles of deleting AA, 

refinement, and adding AA was implemented until acceptable electron density was 

achieved to fit the peptide bond of the three AA.  

 

To improve refinement, the occupancy of Gly136 was adjusted to zero in monomer C 

since it is disordered as shown in Figure 4.2 (A). In monomer A and C, Asn36, Thr37, 

Asn87, and Asn91 were removed and rebuilt manually in order to improve overall model 

validity, due to steric hindrance of phi and psi angles conformations, which eventually 

results in acceptable Ramachandran plot Figure 4.2 (B).  

 

The intrinsically disordered regions of M1 could perform special biological function, 

contributing to vital interaction. Similar observations have been observed for many 

proteins that also contain intrinsically unstructured regions. These regions highlight 

proteins with multifunctionality and plasticity to accommodate different conformations 

required for interactions with different proteins.106-108 
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Although this structure of M1 is His-tagged at its N terminus, we didn’t observe any 

relevant density in all B-M1 monomers. However, positive helical electron densities at 

the end of monomers B and C were found after Gln158 and filled with the corresponding 

AA. In monomer B, AA sequence of His159, Arg160, and Ser161 was fitted except for 

Arg160 side chain which was mutated to Ala, while monomer A showed no density to 

any AA after Gln158 as depicted in Figure 4.3. Moreover, AA sequence: His159, 

Arg160, Ser161, His162, Arg163, Glu164, Met165 was built in monomer C, however, 

side chain of His159 and Arg160 lacked for electron density, so they were mutated to 

Ala. These AA were conjoined into atomic structure of monomers B and C at an RMSD 

contour of 0.9 σ as shown in Figure 4.4.  

Gly 136 

A B 

Met 135 

Figure 4.2. (A) AA Gly 136 and Met 135 are out of density and hard to fit them in 

density. (B) Final modeling with COOT resulted in zero outliers, 96.44% and 

3.56% of AA are in preferred and allowed regions of Ramachandran plot, 

respectively.  
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A 

B 

Figure 4.3. (A) The electron density at the end of Gln158 of monomer B. (B) Fitted 

aa sequence of His159, Ala160, and Ser161 into electron density.    
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A 

B 

Figure 4.4. (A) The electron density at the end of Gln158 of monomer C. (B) Fitted 

aa sequence of Ala159, Ala160, and Ser161, His162, Arg163, Glu164, and Met165 

into electron density.    
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Another important modification step during refinement was mutating G88, R101, and 

R105 to E88, S101, S105 since the search model is wt-M1 with these residues being 

Gly88, Arg101, and Arg105. This mutation was also observed through electron density 

change, for example, density of both Arg101 and Arg105 was missing and side chains 

of serine residues were nicely fitted into their corresponding electron densities. The 

same thing took place for Gly88 replacement with Glu as depicted in Figure 4.5.  

 

 

 
 

           

 

B A 

Ser 105 

Glu 88 

Figure 4.5. COOT modeling. (A) Gly88 was replaced with Glu88 and its side 

chain was well fitted into its relative electron density. (B) Smaller electron density 

projected from main electron density path corresponding to Ser105 side chain 

instead of Arg105. 
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4.5.2 Structure Comparison with Other M1 Structures 
 
 
There are several M1 crystal structures deposited in PDB of which only three are known 

for their detailed conditions, including 1AA7 (pH~4.3), 4PUS (pH~4.7), and 1EA3 

(pH~7.5), which form dimer in their asymmetric unit except 1EA3. When comparing the 

structure of 1AA7 and 1EA3, 1AA7 dimerizes into face-to-face fashion, where, 1EA3 

dimerizes into face-to-back fashion.40, 110 The interaction involved in monomer-monomer 

association determines the pattern in which M1 molecules dimerize. For example, 1EA3 

dimerization is mainly derived by electrostatic interaction between patch of positive 

charge AA from monomer A including Lys95, Lys98, Arg101, Lys102, Lys104, Arg105, 

and Arg134 as well as Asp94 with negative charged AA from monomer B including 

Glu8, GLu23, Glu29, and Asp30 plus Lys35 as shown in Figure 4.6.39 Conversely, at 

acidic medium, the M1-M1 dimer structure, such as observed with 1AA7 and 4PUS 

occur due to mainly hydrophobic interaction in such a way that Pro90, Met93, Val97, 

Leu130, and Met135 on monomer A interact with the same AA on monomer B as 

depicted in Figure 4.7 (A). Additionally, hydrogen bond interactions take place between 

both monomers, summarized in (Table 4.3).22 Equally, B-M1 dimerizes like 1AA7, 

however, they differ in many aspects in terms of interface alignment, monomer-

monomer interaction, and buried surface area (Table 4.3). We noticed largely unaligned 

loop L8 portion of B-M1 with 1AA7. This is primarily due to the replacement of Gly88 in 

1AA7 with Glu88 in B-M1 resulting in the disturbance of the hydrophobic AA cluster in 

the M-domain that is involved in the dimerization of the M1 monomers. A closer look at 

the interface of 1AA7 shows loop L8 with the hydrophobic AA, Met135, Gly136, Ala137, 

and Val138 protruding into the hydrophobic interface and interacting with another 
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hydrophobic AA as depicted in Figure 4.7 (B).22 In case of B-M1, this loop is shifted 

inside a monomer due to projection of polar Glu88 side chain into the interface from the 

other monomer as demonstrated in Figure 4.8.  For example, Met135 folds inside a 

monomer to interact with hydrophobic AA, such as Leu66 and Phe62 on H4.  To further 

investigate the interface differences, solvent accessible buried surface area (computed 

by Chimera UCSF software) and structure alignment (computed by PyMol software) 

were estimated.109 The buried surface area of 1AA7, B-M1, and 1EA3 are 2272 Å2, 

1403 Å2, and 1063 Å2. Interestingly, the buried area of B-M1 is far less than that of 

1AA7 as a result of reduction of the interfacial hydrophobic interaction though they have 

the same interface of dimerization. Least-squares superposition of monomer A of B-M1 

with 1AA7 showed similar monomeric structures with RMSD value of 0.6 Å, whereas the 

superposition of all Cα residues resulted in RMSD value of 1.35 Å. To align monomer B 

of B-M1 onto its counterpart of 1AA7 a screw rotation angle/translation of 10.1°/0.22 Å 

is needed. Alignment of 1AA7 and B-M1 is visualized in Figure 4.9. Despite the 

perturbation in hydrophobic interaction zone caused by mutation of G88E, glutamate 

forms a net of hydrogen bond and electrostatic interaction with Tyr100, Lys104, and 

Arg134 as shown in Figure 4.10.  

 

Furthermore, structural difference other than Loop L8 between 1AA7 and B-M1 was 

placed on folding of Loop regions. Of B-M1, Loops, L1, L2, L3, L6, and L8, were not well 

aligned between the two structures, among which L8 is the most unlayered with its 

counterpart on 1AA7. On the other hand, L5 and L7 are well aligned.   
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Figure 4.6. 1EA3 dimer interface, which is mainly maintained through Hydrogen 

bond or electrostatic interactions which are summarized in Table 4.4 (monomer A in 

orange (Carbon: Silver, Nitrogen: Blue, Oxygen: Red) and monomer B in silver 

(Carbon: Orange, Nitrogen: Blue, Oxygen: Red)  
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A 

B 

 

Figure 4.7. 1AA7 dimer interface that (A) is stabilized through hydrophobic 

interactions of Pro 90, Met 93, Val 97, Leu 130, and Met 135 from both monomers. 

(B) Loop L8 (Met 135, Gly 136, Ala 137, and Val 138) of each monomer pointed 

toward interface (A monomer in blue (Carbon: cyan, Oxygen: red, Hydrogen: white, 

Sulfur: gold, and Nitrogen: blue), and B monomer in gold (Carbon: yellow, Oxygen: 

red, Hydrogen: white, Sulfur: gold, and Nitrogen: blue)).  
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A 

B 

H4 

Figure 4.8. B-M1 monomers interface is (A) stabilized through hydrophobic 

interactions of Pro 90, Met 93, Val 97, and Leu 130 from both monomers. (A 

monomer in blue (Carbon: cyan, Oxygen: red, Hydrogen: white, Sulfur: gold, and 

Nitrogen: blue), and B monomer in gold (Carbon: yellow, Oxygen: red, Hydrogen: 

white, Sulfur: gold, and Nitrogen: blue)). (B) Difference in L8 between 1AA7 (blue) 

and B-M1 (green). L8 in 1AA7 protrudes into monomers interface, and in B-M1 it 

folds back inside the monomer to interact with H4 hydrophobic residues.  
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A B B monomers 

Figure 4.9. (A) Monomers A of both 1AA7 and B-M1 are aligned (1AA7 in blue, B-

M1 in green). (B) Overlapping of monomers “A” of the two dimers and monomers 

“B” showed more deviation than monomer A.   

Figure 4.10. Interface of B-M1. Glu88 interacts with Lys104, Tyr100, and Arg134. 

Another Hydrogen bond is between Asn85 and Arg134. (monomer A in green, 

monomer B in yellow)   
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4.5.3 Physiological relevance of M1 Conformation and Oligomerization 
 

As described above, dimeric M1 structures show significant differences in their interface 

arrangements that might represent several intermediate conformations of M1 during cell 

invasion in accordance to subtle changes in pH, which can also determine the 

oligomerization state, either face-to-face or face-to-back.40 At neutral pH, all acidic and 

basic residues of the two monomers get ionized and favor electrostatic interaction 

leading to face-to-back dimerization fashion (Table 4.4).110 Conversely, at low pH, acidic 

AA become neutralized leaving basic AA ionized on same side of a monomer, such as 

Lys35 and Lys21, generating repulsive force with positively charged AA, such as 

Arg134 and Lys98, on another monomer leading to different dimerization form.109 In 

acidic pH condition, the main driving force for dimerization of face-to-face fashion is 

hydrophobic interaction involving helices H6 and H8 and Loop L8.22  

 

Oligomer is the super structure of M1 layer when there is an intact viral particle. Crystal 

structures were used to predict the model of M1 layer. It was predicted that M1 layer 

forms either coil or strands.110 Another gel filtration study has revealed that M1 

oligomerization is a pH dependent process in which M1 stays in oligomeric state at 

neutral pH and dimer in acidic pH. Upon pH neutralization, M1 maintains dimerization 

instead of oligomerization, which could be a result of pH irreversible change of M1 

structure.117 The smallest oligomerization state that M1 can form is a dimer.109 Despite 

mutation, B-M1 keeps the same packing fashion, face-to-face, in acidic condition. 

Although, some hydrophobic interactions disappear at the dimer interface, Glu88 
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generates hydrogen bond interactions with Tyr100, Lys104 and Arg134 that account for 

stabilized monomer-monomer association.       

 
Table 4.3. M1-M1 interface interaction with buried interface residues of B-M1, and 

1AA7.  

  

Monomer A Monomer B Distance (Å) Buried Surface 
Area (Å2) 

 
B-M1 

 

   
1403 

Glu 81 [NE2] Asn 133 [O] 2.4 
Arg 76 [NH2] Asn 133 [OD1] 3 

Arg 134 [NH2] Asn 85 [OD1] 3.4 
Arg 134 [NH1] Glu 88 [OE2] 2.7 
Tyr 100 [OH] Glu 88 [OE1] 2.9 
Lys 98 [NZ]  Asp 94 [OD1] 3.4 

Asp 94 [OD2] Lys 98 [NZ] 3.5 
Lys 104 [NZ] Glu 88 [OE1] 3 
Glu 88 [OE1]  Tyr 100 [OH] 3.2 
Asn 133 [O] Gln 81 [NE2] 2.5 

 
1AA7 

 

   
2272 

Gln 75 [OE1] Arg 78 [N] 2.9 
Arg 78 [N] Gln 75 [OE1] 3.0 
Arg 76 [O] Gln 75 [NE2] 3.2 

Gln 81 [OE1] Arg 134 [NE] 3.1 
Gly 88 [O] Tyr 100 [OH] 2.9 

Tyr 100 [OH] Gly 88 [O] 2.7 
Arg 101 [NH2] Asn 91 [OD1] 3.0 
Asn 91 [OD1] Arg 101 [NH1] 3.4 
Asn 133 [O] Asn 85 [ND2] 3.1 

Asn 85 [ND2]  Arg 134 [O] 3.1 
Arg 134 [O] Asn 85 [ND2] 3.2 

Gln 75 [NE2]  Arg 77 [NH1] 3.4 
Asn 133 [ND2]  Asn 133 [O] 3.6 
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Table 4.4. M1-M1 interface interaction with buried interface residues of 1EA3.  
 

Monomer A Monomer B Distance (Å) Buried Surface 
Area (Å2) 

Asp 94 [OD2] Lys 21 [NZ] 3.2 1063 
Tyr 100 [OH] Glu 29 [OE1] 3.5 
Tyr 100 [OH] Glu 29 [OE2] 3.7 

Arg 134 [NH1] Asp 30 [OD1] 2.7 
Arg 134 [NH2] Asp 30 [OD2] 2.5 
Arg 101 [NH2] Glu 8 [OE1] 3.4 

 Arg 101 [NH2] Glu 8 [OE2] 3.4 
Lys 104 [NZ]  Glu 29 [OE2] 3.1 
Asp 94 [OD2] Ser 17 [OG] 3.1 

 
 

Self-polymerization and depolymerization of M1 are two major features that mediate M1 

functions and interactions.100 Self polymerization of M1 is important to build a full matrix 

layer that supports viral shape and skeleton, however, during virus lifecycle it is 

necessary for M1 to breakdown, thereby, viral particle and its components can be fused 

into host cell.111 Accordingly, conformational changes of M1 in response take place of 

which each structural conformation uniquely interact with other proteins or act as an 

intermediate.40 Specific AA sequences are responsible for a number of M1 interactions 

either hydrophobic or hydrophilic interaction, thus, M1 is characterized as amphitropic 

molecule.112 At neutral pH, M1 exists in continuous oligomer underneath lipid bilayer 

where positively charged areas are lined up towards the core of the virus to interact and 

hold vRNP in virus core through quantum electrostatic interactions. A segment of AA 

from 80-111 in helices H6 and H7 is critical for vRNP binding owing to positively 

charged NLS motif and other positive charge neighboring AA that bind to negative 

charged molecules of RNP. There is controversy concerning whether negative charge 

comes from the phosphate group of RNA or acidic AA on NP.20, 22 Although, NLS motif 
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contributes to dimer and oligomer formation at neutral pH, its interaction is not essential 

for M1 to dimerize or associate with membrane. A site-directed mutagenesis study has 

suggested that polybasic residues of NLS motif are not mandatory for membrane 

association, but it could be trivial.113      

   

Sha et al had suggested that N domain involves mainly in M1-lipid interaction. Helices 

H1 and H4 has hydrophobic interactions with lipid bilayer via Leu3, Leu4, Val7, Tyr10, 

Val11, and Ile14 from H1 and Pro54, Leu55, Ile59, Phe62, Val63, and Leu66 from H4.22 

Like 1AA7, H1 and H4 of B-M1 are not exposed to bulk solvent; hence they are in non-

binding conformation. Sequence of Arg76, Arg77, and Arg78, which are located right 

after H4, has also found to facilitate electrostatic interaction with lipid membrane, in 

particular phosphate heads.32 This charge-charge interaction, formed either by NLS 

residues or 76-78 AA or both, has been prevented in vitro by salt dependent study. It’s 

clearly that multitude of M1 sites contribute to membrane binding forming final strong 

association of the two layers. One recent study has shown that M1 contains cholesterol 

recognition/interaction amino acid consensus (CRAC) motifs, involving Val31, Met93, 

Val97, Lys98, Tyr100, Lys104, and Leu130 that provides multi-point interactions with 

viral membrane.102 With respect to B-M1, mutation of G88E could also affect membrane 

binding. Since it is acidic and polar, it may deteriorate M1-membrane binding through 

two events: first, polar side chain causes bending and hiding of hydrophobic residues 

inside M1 protein inhibiting their exposure to the membrane. Second factor is the acidic 

characteristic of Glu that repulses interaction with phosphate groups on the membrane.  

This was observed when M1 layer was disturbed in virion with B-M1 under TEM.38     
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Normally, M1 dissociate between pH 6.0 and 5.5.103, 114 This dissociation takes place 

when viral particle gets acidified at fusion step causing M1 layer disappearance and 

release of M1 dimer or monomer, and subsequently, the release of genetic material due 

to conformational changes in M1 structure. M1 has a role in newly synthesized vRNP 

transportation from nucleus.100 In this case, M1 should exist in dimer or monomeric 

state to expose NLS motif for charge interaction with glutamate residues on NEP/NS2.32 

In the same time, C terminal of M1 (166-252 AA) binds to vRNP complex and eventually 

the triple complex travel across nuclear pores to the cytoplasm for viral particle 

generation steps.24, 115 A site directed mutagenesis of four basic residues in NLS, where 

Arg and Lys replaced with Ala (101AALAA105), resulted in severe reduction in M1-

NEP/NS2 binding affinity.113, 116 From B-M1 standpoint, mutation of R101S and R105S 

reduces basicity nature of M1, thus could weaken M1-NEP/NS2 interaction. 

  

4.5.4 Crystal Packing and M1 Oligomerization 
	
	
 
Crystal packing could be used to interpret M1 oligomerization and build structural model 

that is required to maintain virus integrity and M1 interactions. At acidic pH, two M1 

monomers dimerize into face-to-face fashion by hydrophobic interactions. Acidic pseudo 

tetramer is formed by two stacked 1AA7 dimers as one dimer on the top of the other 

and related through non crystallographic two-fold axis, while 4PUS had failed to show 

fully stacked pseudo tetramer due to 21 symmetry related molecule.40 On the other 

hand, two monomers of M1 at neutral pH dimerize into face-to-back fashion through 

electrostatic interaction. 1EA3 dimer at neutral pH forms pseudo tetramer by 
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translational stacking interaction that clusters patch of basic AA on one side and acidic 

AA on the other side as in Figures 4.11.39 Only neutral pH tetramer generates the intact 

M1 layer that is truthfully functional M1 layer. At neutral pH, each side of monomer is 

available for other M1 molecule binding and eventually all monomers form final M1 

polymer. In comparison, acidic pH tetramer fails to produce intact M1 layer since its 

monomers are assembled into face-to-face fashion in which interactive M1 sides are not 

accessible for binding with other M1 monomer. Expectedly, B1-M1 structure generates 

pseudo tetramer at acidic pH condition in the same manner as 1AA7. However, a 

crystallographic symmetry related copy of monomer C was generated to build up the 

tetramer, as depicted in Figure 4.12. One important point is that this tetramer lacks any 

physiological relevance since the tetramer at neutral pH is the one that has been shown 

to form M1 oligomeric layer.101 If we consider B-M1 tetramer as two dimers, they are 

related by NCS two-fold axis.     
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Figure 4.11. Tetramers of (A) 1AA7 and (B) 1EA3. (monomer A in blue and 
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Figure 4.12.  B-M1 tetramer is arranged as two dimers (A and B as one dimer) 

and (C and C copy as the other dimer) in such a way one dimer is on the top of 

the other.  
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4.6 Conclusion  

We have crystallized M1 at pH 6.5, and as expected the structure crystallized as a 

dimer. Nonetheless, the dimer arrangement shows significant differences with 1AA7 

which also crystallized as a dimer at low pH. Surprisingly, it delivers the structural keys 

relevant to dimerization of M1 in acidic condition despite the three point mutations of 

Gly88, Arg101, and Arg105. However, it also revealed the importance of having Gly at 

position 88 because it stabilizes hydrophobic characteristic of M1 for membrane 

binding. Glu88 creates hydrogen bond interactions with AA in close proximity The take 

home message is pH factor plays a vital role in structural features of M1 that are 

correlated to its physiological behavior.     

 

4.7 Future plans 

Viral morphology detected by cryo-electron microscopy and cryo-electron tomography 

have shown that pleomorphic sizes and shapes of the virus are manifestations of 

conformational changes of structural proteins, such as HA and M1 under acidic or 

neutral conditions. These changes in structural conformations of M1 supposedly could 

rely on C-terminal structural changes because at different pH conditions N-terminal 

crystal structures are relatively similar. Nevertheless, N-terminal of M1 largely 

contributes to M1 oligomerization and interactions. It is important, therefore, to 

investigate structure conformational changes of C-terminal domain.114, 118 Our lab has 

computationally developed library of small molecules to destabilize M1 layer. Co-

crystallization of wt-M1 with an inhibitor is highly appreciated to detect binding mode of 

drug candidate with M1.    



88 
	

	

Chapter 5. Interaction of Proteins with Small Molecules using 

Biophysical Techniques. 	

5.1 Study of M1 binding towards inhibitor and its derivatives.  

5.1.1 Introduction 
 
 
The M1 protein is considered a promising target protein because it has an 

advantageous profile of low antigenic shift or mutation compared to HA and NA. 

However, M1 is a structural protein, which is located between viral core and envelope. 

Indeed, this layer is important for viral replication and integrity.18-21 Yet, designing a drug 

to block M1 activity is the hardest task, because M1 lacks for well-defined binding 

cavity. Our lab computationally found small molecule inhibitor, called 2-(4-(3-(4-acetyl-3-

hydroxy-2-propylphenoxy)propoxy)phenoxy)acetic acid (PHE), through virtual screening 

of a drug-like molecules library (Figure 5.1). Interestingly, virtual screening of libraries is 

usually performed on a single molecule of target protein. However, this is not the case 

for M1, therefore, screening was based on the nature forces of M1-M1 interaction 

aiming to destabilize M1 layer by molecule having wedge like action.119  

 

We studied the affinity of M1 with PHE, M1-M1, and M1-M1-PHE interaction using 

biophysical techniques, SPR and MST. The results revealed a fairly high affinity of M1 

with PHE as well as very high affinity of M1 for self-association. We studied same 

interaction using MST. Additionally, we predicted affinity constants of M1 with PHE 

derivatives (Figure 5.1), which are selected from ZINC docking library based on 
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structural similarity with PHE. Then, we predicted structure-activity relationship through 

criterion of affinity constant.     

 

 

 
 
 
 
 
 
 
 
 

5.1.2 Elucidating of M1 binding affinity using SPR experiments 
	

 
5.1.2.1 Materials and Result 
	
 
The interaction of M1-M1 in the presence and absence of PHE was studied using a 

Reichert SR7500DC optical biosensor. NeutrAvidin sensor chips (Reichert 

Technologies, Depew, NY, USA) were used for capturing biotinylated M1 and Scrubber 

(Version 2.0c, 2008, BioLogic Software) was used for processing the data. Two 

biotinylated M1 protein chips were prepared utilizing recombinant M1 protein expressing 

the N1-165-domain of WSN/33 and a biotin-avidin immobilization strategy. One chip was 

used to study M1–PHE interaction. Biotinylated M1 protein (50 µM) in 10 mM HEPES 

buffer, pH 7.4 containing 150 mM NaCl, 3.4 mM EDTA, and 0.05% Tween 80 was 

injected onto NeutrAvidin sensor chip for ~40 min with a constant flow of 5 µL/min at 10 

°C. An immobilization level of ~700 µRIU was achieved. For M1–PHE interaction study, 

OOH

OO

O
O

OH

Figure 5.1. Chemical structures of PHE. 

PHE 
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PHE at varying concentrations (1.67, 3.33, 12.5, 25 and 50 µM) was injected over the 

biotinylated M1 protein chip at ow rate of 20 µL/min and room temperature. Association 

and dissociation of PHE was monitored for 1–3 min. e increase in SPR signal was 

proportional to the PHE concentration. The association and dissociation rates were 

used to calculate the affinity constant.  

To study M1-M1 self-association, biotinylated M1 (10 µM) was injected over the 

NeutrAvidin sensor chip for ~5 min with a constant flow of 30 µL/min at 10 °C. An 

immobilization response of 150 µRIU was achieved. For the M1-M1 interaction study, 

M1 at 71, 143, 300 and 570 nM concentrations were injected as described above for 

M1–PHE interaction at flow rate of 30 µL/min and room temperature. Association and 

dissociation kinetics was monitored for over 5 min and the affinity was calculated by 

averaging the affinities at each concentration. Binding curves showing association and 

dissociation phases are displayed in Figure 5.2. Lastly, constant concentration of M1 

protein was pre-mixed in samples with different PHE concentrations (75 nM, 150 nM, 

300 nM, and 600 nM) for the M1-M1-PHE interaction study.119 Dissociation rate 

constant of each concentration of M1-PHE, M1-M1, and M-M1-PHE interactions are 

depicted in Table 5.1.  
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Figure 5.2.  Binding curves of M1-M1 interaction (A) is the association phase, (B) is 

the dissociation phase. Association and dissociation of M1-PHE interaction 

represented by (C) and (D), respectively. (Binding curves are plotted as response 

unit against time in (sec)).119  
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Table 5.1. Off rate (dissociation rate constant (s-1)) and On rate (association rate 

constant (µM-1.s-1)) of M1-M1 interaction (yellow table), M1-PHE interaction (blue table), 

and M1-M1-PHE interaction (green table). 

 

                                     

 

              

 

M1-PHE interaction 

M1-M1 interaction M1-M1-PHE interaction 
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Table 5.2. Equilibrium dissociation constant (Kd) in µM of M1-M1 interaction (yellow 

table), M1-PHE interaction (blue table), and M1-M1-PHE interaction (green table). 

PHE (µM)  Kd (µM) 

1.67 1.11±0.21 

3.33 0.75±0.05 

6.67 0.77±0.04 
 

12.5 0.92±0.10 

25 0.71±0.04 

50 0.94±0.08 
 

  

PHE 

(µM)  
Kd (µM) 

0.075 0.643±0.038 

0.15 0.519±0.023 

0.3 0.779±0.045 

0.6 0.470±0.0187 

 

M1 

(µM)  

Kd (µM) 

0.3 0.043±0.003 

0.57 0.027±0.004 

1.2 0.026±0.003 

  

2.4 0.013±0.002 
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5.1.3 Elucidating of M1 binding affinity using MST  
 

5.1.3.1 Material 
 
 
His-tagged N-terminal of M1 protein (0.5 mg/ml) was obtained from Origene. Buffer 

used in experiment was 20 nM Na phosphate, 100 mM NaCl, 0.1% PEG (8K), 0.1 mM 

EDTA, and pH 7.4. PHE and their derivatives were obtained from Sigma-Aldrich. 

Protein labeling kit His-tag labeling kit RED-tris-NTA from NanoTemper Technologies 

GmbH was used to label M1. 

 

5.1.3.2 Result 
 

PHE and their derivatives contain aromatic moiety that fluorescently interfere with M1 

fluorescence. Therefore, M1 was labeled with His-Tag Labeling Kit RED-tris-NTA since 

M1 is a His-tagged protein. The labeling was carried out as ratio of 2:1 of protein and 

dye. Then, the mixture was left in dark for 30 min. The protein wasn’t further purified 

and the sample immediately was used. Serial dilution of 16 samples of PHE (2 µM as 

initial highest concentration) were mixed with 50 nM of M1. Change in fluorescence 

revealed an affinity constant (Kd) of 1.5 µM and that is comparable to the one predicted 

by SPR (Kd ~1µM) as in Figure 5.3 (A). This experiment was done four times and only 

one showed good fluorescence signal. Irregular fluorescence signal is shown in Figure 

5.4 (A). 

Compound 1, 2, 3, and 4, derivatives of PHE with chemical variation of linker length, 

and aromaticity character, were tested for their affinity toward M1. Among them, 

compounds 2 and 3 failed to show consistent change in fluorescence unless bovine 
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serum albumin (BSA) is added. Irregular MST signal of compound 2 and 3 without BSA 

are shown in Figure 5.4 (B and C). Compound 1, 2, 3, and 4 had shown Kd values of 

37.87 µM, 24.5 µM, 6 µM, and 60 µM, respectively. Change in fluorescence signals of 

the four compounds, characterizing their binding curves, is shown in Figure 5.3. Table 

5.3 summarizes affinity constants of the ligands. Similar to PHE, experiments of 

compound 1, 2, 3, and 4 were carried out three times but their fluorescence signals 

were irregular. One experiment of good signal of each compound is presented in this 

thesis. Experiment settings were set at MST power of 20% and excitation power of 

20%. The standard evaluation strategy of the experiments was set up to 

“thermophoresis with T-Jump”, which compares initial fluorescence (F cold) to the 

steady state fluorescence (F hot). 
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Figure 5.3. MST binding curves of wt-M1 with (A), (B), (C), (D), and (E) represent 
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(Binding curves are plotted as normalized fluorescence (hot fluorescence/initial 
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Figure 5.4. Irregular 

fluorescence signal of (A) 

PHE, (B) compound 2, and 

(C) compound 3. Both 

Compound 2 and 3 

experiments were carried 

out without BSA.  

Compound 2 

Compound 3 
 

A 
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Table 5.3. Summary of Kd values of PHE and all four derivatives with their response 

amplitude. 

 

 

 

 

 

 

 

 

 

 

 

With respect to compound (3) analysis, two data points (capillaries no. 8, and 14) were 

deleted because they were largely deviated. Upon eye-inspection of these capillaries, 

there were small bubbles inside, which probably contribute to irregular fluoresence 

reading as in Figure 5.5.  

Compound Affinity constant 
(Kd) 

Response 
amplitude  

PHE 1.5 µM ± 0.1 53 

Compound 1 37.87 µM ± 1.23  57 

Compound 2 24.5 µM ± 2.5 57 

Compound 3 6 µM ± 1.8 19 

Compound 4 60 µM ±1.6  32 
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5.1.3.3 Discussion 
 
 
Affinity of PHE for M1 is fairly high (Kd ~ 1 µM) which is confirmed by two biophysical 

techniques, SPR and MST. Moreover, M1-M1 interaction is so strong to have a Kd of 50 

pM. Relating off-rate and on-rate of the three type of experiments in table 5.1 reveals 

A 

B 

Figure 5.5. MST experimental parameters of compound 3 (A) All capillaries 

showed similar fluorescence magnitude except for capillaries no. 8 and 14 

which were deleted. (B) There was slight adsorption on capillaries that was 

noticed with all experiments with or without BSA.  
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that dissociation of M1-M1 interaction took place at faster rate in presence of PHE. PHE 

has acidic and hydrophobic characteristics explicated by carboxyl and aromatic groups, 

respectively. These chemical features are complementary to their counterparts of M1. 

For example, acidic character may interact with basic residues of NLS motif or its 

neighboring region that play a crucial rule in M1 oligomerization at neutral pH. 

Additionally, hydrophobic moiety of PHE could interfere with hydrophobic interactions 

that maintain M1-M1 association. Unexpectedly, the affinity of compound 1 that has 

longer linker by only a methylene group and shares almost all PHE chemical features, 

dramatically dropped. Similarly, compound 2, which has double bond instead on an 

ether group binds to M1 with Kd of 24.4 µM, while compound 3, possessing the highest 

affinity to M1 after PHE, has a piperidine group instead of 2-phenoxycarboxyl group. 

Although, compound 3 lacks for carboxyl group, it still binds to M1 similar to PHE.  

Finally, compound 4 poorly binds to M1 among all molecules with Kd of 60 µM. We can 

conclude from all compounds that linker length is extremely important for positioning 

two chemical groups at the end of PHE to their counterpart AA residues of M1. 

Furthermore, it’s likely that acidic group doesn’t add large difference in M1 binding 

comparing to hydrophobic moiety.119  

 

5.2. Affinity study of Growth factors towards inhibitor G2.2. 

Our body maintains its tissue growth and homeostasis through stem cells (SCs), which 

are found in many tissue such as, haematopoietic lineages, digestive tract, brain tissue 

and skin.120 These cells are characterized by their long-term self-renewal and ability to 

produce different cell lineages that serve the specific function of a specific tissue. In 
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digestive tract, for example, intestinal cells proliferate and grow from SCs that reside in 

a particular microenvironment called “niche”, which provides necessary factors needed 

for stem cells to work.121 Also this environment limits the expansion of SC growth to 

localized regions in the intestine and controls its activity. Under normal physiological 

condition, SCs are developed into progenitor cells, which further differentiate into 

different cells lineages that have shorter life span, forming cellular hierarchy as shown in 

Figure 5.6 (a). However, it has been found that malignant tumors occur in tissue 

containing long life span and self-renewing SCs.121, 122  

 

Colorectal cancer (CRC) is considered a third leading death in the world with 8% five-

years relative survival rate.123 Many health issues could contribute to CRC including 

obesity and visceral adiposity, but potential complexity of CRC is mainly due to disease 

metastasis and tumor reoccurrence.124 These manifestations were poorly understood till 

the hypothesis of cancer stem cells (CSCs) has emerged.125 Primarily, there are two 

models for tumor propagation, clonal evalution model and CSCs model, described in 

Figure 5.6 (b, d). Normal SCs or progenitor cells could be developed into CSCs, which 

are responsible for initiating and maintaining tumor growth. Moreover, CSCs are 

distinctive from other tumor cells by their renewal capacity as in Figure 5.6 (c, d). In 

other words, the role of CSCs in the growth of cancer tissue is analogous to that of 

normal SCs in maintaining growth of body tissue whenever there is a need.126 
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Figure 5.6. Models of tumor propagation. (a) is the normal hierarchy of cell growth in 

which stem cells produce progenitor cells that eventually differentiate into mature 

cells, (b) is the clonal evolution model where all cells equally tend to acquire 

cancerous activity. (c) CSCs model is hierarchal model, in which only CSCs develop 

tumor. (d) Both models may contribute to tumorigenesis. First, a specific CSC 

(CSC1) will cause tumor growth. As tumor progressed, another distinct CSC (CSC2) 

may appear due to clonal evolution of CSC1, resulted from the acquisition of an 

additional mutation or epigenetic modification. This more aggressive CSC2 becomes 

dominant and initiates tumor formation.126 Taken from Visvader, et al. Nat. Rev. 

Cancer 2008, 8, 755–768. 
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Failure of cancer therapy and disease relapses are most likely due to CSCs, which are 

resistance to chemotherapy by the virtue of their mutation.122 Consequently, CSCs 

could be an attractive paradigm for cancer therapy through targeting biological 

molecules that facilitate CSCs cellular activity.126 Treatment should be highly selective 

to cancerous cells without affecting other healthy cells. It also should be potent to a 

degree that ensures no potential cancerous cells left behind, which might lead to 

disease recurrence and metastasis.123 

 

Both SCs and CSCs are regulated through signaling molecules through different 

signaling pathways that mediate cell proliferation and differentiation. Some of signaling 

pathways are more active than the other, which are identified by elevation of their 

corresponding molecules, such as fibroblast growth factor (FGF), epidermal growth 

factor (EGF), bone morphogenetic protein 4 (BMP4), wingless-int (Wnt), and 

transforming growth factor-β (TGF β). These growth factors are secreted from epithelial 

cells. These cells are associated always with SCs and CSCs in their niches. Therefore, 

SCs and CSCs can get vital soluble signaling molecules in extremely closed proximity 

to empower their communication and replication in a very short time.120-123, 127  

 

 

EGF and FGF are important for cells purification and renewal. One study had shown 

that EGF promotes tumor sphere formation in dose dependent manner,128 while FGF 

promotes angiogenesis and maintenance of cancerous cells.129 On the other hand, 

TGFβ enhances the production of IL11 from stromal cells, which is a megakaryopoietic 
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cytokine that stimulates platelet production.130 Platelets are a rich source of TGFβ, 

which has been found to be hiding circulating tumor from immune response.131 Thus, 

TGFβ enhances tumor metastasis. In one study, it has been shown that inhibition of 

TGFβ pathways leads to cell differentiation, which is a treatment strategy to enhance 

tumor regression.132 Other important signaling molecule is Wnt, which is an essential 

molecule in normal intestinal SCs. However, in CRC it gets mutated leading to active 

Wnt isoform that causes benign polyps and CSCs renewal and proliferation.133, 134 

Unlike previously mentioned growth factors, activation of BMP pathway leads to 

suppression of tumor growth. It has been found that when BMP pathway is disturbed, it 

results in development of adenomas.135  

 

These growth factors communicate through glycosaminoglycans (GAGs) and heparan 

sulfate (HS).136 Our lab had devised a unique class of compounds, called sulfated 

monosaccharide GAG mimetic (NSGM). Of this class, one compound, called G2.2, has 

shown anti-cancer activity by inhibiting a number of growth factors (Figure 5.7).137 

Interestingly, it is a selective inhibitor of colon CSCs. Unlike available chemotherapy, 

G2.2 had exclusively displayed a great safety profile in that mice could tolerate a dose 

of G2.2 up to 400 mg/kg (unpublished data). We believe that G2.2 acts by cutting off 

cellular communicating pipeline of CSCs; hence, preventing their activity and limiting 

tumor propagation. We are interested in elucidating affinity of G2.2 to a library of various 

proteins that might be involved in CRC. 
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5.2.1 Material 
 
 
TGFβ2 protein sample of 10 µg (EMD Millipore) and EGF of 100 µg (EMD Millipore) 

were constituted with the same buffer used in experiment (20 nM Na phosphate, 100 

mM NaCl, 0.1% PEG (8K), 0.1 mM EDTA, pH 7.4). G2.2 was used with a concentration 

of 1 mM being the highest concentration used in serial dilution of 12 capillaries. Protein 

labeling kit RED-MALEIMIDE (cysteine reactive) from NanoTemper Technologies 

GmbH was used to label EGF and TGFβ2.  
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Figure 5.7. Chemical structure of G2.2.   
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5.2.2 Result  
 
 
Since G2.2 emits fluorescence simultaneously with protein fluorescence emission 

range, extrinsic fluorescence was needed. Labeling of EGF and TGFβ2 was done with 

maleimide labeling through free thiol group, such as reduced cysteine (Cys) residues as 

in Figure 5.8.   

 

 

 

 

 

Importantly, EGF and TGFβ2 structures were analyzed for availability of free Cys 

residues, which have no interference with G2.2 binding site. A 20 µM of EGF and 4 µM 

TGFβ2 of 100 uL were separately mixed with cysteine red dye of concentration 43 µM 

of 100 uL and left to react for 30 min in dark. Then, labeled EGF and TGFβ2 were 

purified from other reaction components by gravity gel filtration. Small fractions of 200 

µL were collected and UV/VIS absorbance of protein as well as dye was determined at 

280 nm and 640 nm respectively. Protein concentration of EGF was 0.8 µM and degree 

of labeling was 0.1, while the concentration of TGFβ2 was 50 nM and degree of labeling 

was 0.2. Affinity constants of both EGF/TGFβ2 with G2.2 binding were determined 

NT 647N

O

O

Biomolecule SH + NT 647N

O

O

S
Biomolecule

Figure 5.8. Schematic representation displays the site of thiol coupling with 

maleimide functional group that attaches to red dye absorbing near red region in 

visible light wavelength.138 
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using automated MST instrument from NanoTemper Technologies GmbH. Figure 5.9 

displays binding curves of EGF and TGFβ2.   

 

 
 
 

 
 

 
 
 

 

 

 

 

853 
856 
859 
862 
865 
868 
871 

0.1 1 10 100 1000 

Fn
or

m
 [‰

] 

Ligand Concentration (µM) 

Dose Response Chart 

849 

854 

859 

864 

869 

0.1 1 10 100 1000 

Fn
or

m
 [‰

] 

Ligand Concentration (µM) 

Dose Response Chart 

Figure 5.9. Binding curves of (A) EGF and (B) TGFβ2 with G2.2. 

(Fluorescence change is plotted against G2.2 (µM)).   
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The experiments were performed in duplicate. Experiment settings were adjusted to 

MST power of 20% and excitation power of 20%. Thermophoresis with T-Jump was 

chosen as the standard evaluation strategy of the experiments, which compares initial 

fluorescence to the steady state fluorescence as in Figure 5.10. There are some 

important experimental factors that have to be checked to ensure accuracy and avoid 

experiment caveats, such as capillaries adsorption. 

 

In Figure 5.11, capillary shapes of all samples are overlapped nicely indicating no 

adsorption of protein on capillaries. Change in fluorescence magnitude was 21% and 

equilibrium dissociation constant were calculated as 80 µM and 54 µM for EGF and 

TGFβ2, respectively.  
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Figure 5.10.  MST traces of (A) EGF and (B) TGFβ2 upon G2.2 binding. Blue 

bar represents initial fluorescence and red bar represents hot fluorescence.  
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Figure 5.11. Overlapping of MST capillaries shape of (A) EGF and (B) TGFβ2 

upon G2.2 binding, which show no adsorption on capillaries since all capillaries 

are nicely overlapped.  
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5.2.3 Discussion 
 
 
G2.2 showed low affinity towards EGF and TGFβ2 compared to other growth factors 

such as FGF and IGF in which G2.2 binds with low Kd values (~1.8-50 µM) 

(unpublished data). Our computational studies initially indicated that G2.2 binds with low 

affinity toward EGF and TGFβ2, which was confirmed using MST. In the same study, 

G2.2 could have high affinity toward BMP4 and Wnt signaling molecules suggesting that 

G.2.2 targets key communicating proteins that are selective to CRC pathogenesis.  We 

believe G2.2 occupies the same binding pocket of HS or GAGs that mediate signal 

transduction in aforementioned signaling pathways. G2.2 could interfere with HS or 

GAGs binding through electrostatic interaction of its sulfate groups with basic residues 

of signaling molecules along with hydrophobic interactions of its aromatic moieties with 

hydrophobic residues. Therefore, G2.2 targets multiple critical signaling pathways rather 

than single cellular route promoting its therapeutic value and synergistic effect. This is 

extremely important as therapeutic strategy in diseases prone to have cross-link 

between many cellular pathways, such as cancer.  

 
 

5.2.4 Conclusion 
 
 
PHE and G2.2 are promising small molecules that could be optimized into drug 

candidate for treatment of influenza infection and CRC, respectively. PHE had displayed 

sufficient inhibitory effect on viral replication in TEM studies and high affinity to M1 

under neutral pH conditions. On the other hand, G2.2 seems to be a promising drug 

therapy that target CRC through inhibiting growth factors and cytokines associated with 
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CSCs activity. It has a high selectivity and safety profile, which enables it to compete 

with current CRC drug treatment. However, it has low affinity to EGF and TGFβ2. As 

future direction, it is quite important to investigate other protein binding affinity with 

G2.2, such as BMP4 and Wnt. 
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