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ABSTRACT

DISTRIBUTED SPARSE SIGNAL RECOVERY IN NETWORKED SYSTEMS

By Puxiao Han, Ph.D.

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Advisor: Ruixin Niu, Ph.D.,

Assistant Professor, Department of Electrical and Computer Engineering

In this dissertation, two classes of distributed algorithms are developed for

sparse signal recovery in large sensor networks. All the proposed approaches con-

sist of local computation (LC) and global computation (GC) steps carried out by a

group of distributed local sensors, and do not require the local sensors to know the

global sensing matrix. These algorithms are based on the original approximate mes-

sage passing (AMP) and iterative hard thresholding (IHT) algorithms in the area of

compressed sensing (CS), also known as sparse signal recovery. For distributed AMP

(DiAMP), we develop a communication-efficient algorithm GCAMP. Numerical re-

sults demonstrate that it outperforms the modified thresholding algorithm (MTA),

another popular GC algorithm for Top-K query from distributed large databases.

For distributed IHT (DIHT), there is a step size µ which depends on the `2 norm of

the global sensing matrix A. The exact computation of ‖A‖2 is non-separable. We

propose a new method, based on the random matrix theory (RMT), to give a very

tight statistical upper bound on ‖A‖2, and the calculation of that upper bound is

separable without any communication cost. In the GC step of DIHT, we develop an-

viii



other algorithm named GC.K, which is also communication-efficient and outperforms

MTA. Then, by adjusting the metric of communication cost, which enables transmis-

sion of quantized data, and taking advantage of the correlation of data in adjacent

iterations, we develop quantized adaptive GCAMP (Q-A-GCAMP) and quantized

adaptive GC.K (Q-A-GC.K) algorithms, leading to a significant improvement on

communication savings.

Furthermore, we prove that state evolution (SE), a fundamental property of

AMP that in high dimensionality limit, the output data are asymptotically Gaus-

sian regardless of the distribution of input data, also holds for DiAMP. In addition,

compared with the most recent theoretical results that SE holds for sensing matrices

with independent subgaussian entries, we prove that the universality of SE can be

extended to far more general sensing matrices. These two theoretical results provide

strong guarantee of AMP’s performance, and greatly broaden its potential applica-

tions.

ix



CHAPTER 1

INTRODUCTION

1.1 An Overview of Compressed Sensing

Compressed sensing (CS) [1, 2, 3, 4] has wide applications in various areas of

signal processing, such as multimedia processing [5, 6, 7], power systems [8, 9, 10],

signal detection [11, 12, 13], and manifold learning [14, 15], etc.

Given a sparse N -dimensional signal s0 which has at most K non-zero compo-

nents (we say s0 is K-sparse, or the sparsity level of s0 is K), and a sensing matrix

A ∈ RM×N , we can obtain M measurements composing the vector

y = As0 + e, (1.1)

where e is an additive noise. Recovery of s0 from y and A turns out to be solving

the following optimization problem:

min
‖x‖0≤K

||y −Ax||22. (1.2)

Typically, solving (1.2) is a NP-hard problem. However, if A is a matrix with en-

tries being independent and identically distributed (i.i.d.) random variables drawn

from a sub-Gaussian distribution and M = O
(
K log N

K

)
, then with a very high prob-

ability, restricted isometry property (RIP) [16] will be satisfied [17], and s0 can be

reconstructed with high accuracy by solving the least absolute shrinkage and selection

operator (LASSO) problem [18]:

min
x

1

2
||y −Ax||22 + λ||x||1, (1.3)

where λ > 0 is called the regularization parameter and needs to be tuned if the

1



sparsity level K is not known in advance. In the rest of this dissertation, we assume

that all entries of A are i.i.d. random variables following N (0, 1/M).

1.2 Applications of CS

1.2.1 Power Systems

In power systems, each entry of the state vector x ∈ Rn depicts the voltage phase

angle of the corresponding bus, and the control center monitors the system by taking

measurement of x using the so-called measurement Jacobian matrix H ∈ Rm×n[10,

19]:

z = Hx + n (1.4)

Unlike network traffic systems, the measurement model in (1.4) is over-complete, i.e.,

m ≥ n. Anomaly in power systems is typically defined as a false vector a ∈ Rm

injected onto the measurement domain by some malicious users, which may cause the

control center obtaining a wrong estimate of x.

According to [8] and [20], traditional statistical tests will fail to detect a malicious

attack if there exists c ∈ Rn such that

a = Hc (1.5)

Due to limited resources and other constraints of the malicious users, it is reason-

able to assume that a is sparse. In [8], the authors proposed a targeted attack model,

in which the attackers can only control a subset of entries in c, say cL := {ci, i ∈ L}.

Given cL, the object of the attackers is to find a sparse a such that (1.5) holds, which

can be formulated as a `1 or LASSO optimization problem.

In [9] a different model named strategic sparse attacks was proposed. Instead

of an assumption on the controllability on the state domain [n], this model divided

2



the measurement domain [m] into two parts A and S, where the attackers can only

inject data in aA, i.e., aS = 0. The attackers then seek a vector c minimizing ‖aA‖0

subject to aS = 0 and ‖c‖∞ ≥ τ , where τ > 0 is some predefined constant.

In [10], these two models were summarized and their corresponding optimization

problems were solved by using Alternating Direction Method of Multipliers (ADMM)

algorithm [21]. Distributed optimization strategies for attackers and estimation algo-

rithms for system protectors were also proposed in [10].

1.2.2 Video Anomaly Detection

In trajectory-based video monitoring systems, there are K pre-built dictionaries

D1,D2, · · · ,DK ∈ Rd×n, where each column of Dk is a training sample labeled as

the k-th type of trajectories [6, 7, 22]. For example, in a road traffic scenario, we can

predefine K types of driving behaviors: legal/illegal straight, legal/illegal right turn,

legal/illegal left turn, and legal/illegal U-turn, etc., and collect n sample trajectories

for each category to build Dk’s. A testing trajectory y ∈ Rd is then approximated as

a linear combination of columns in D := [D1,D2, · · · ,DK ], that is,

y ≈ Dx, (1.6)

where x is called a representation of y on D. Moreover, if we design D properly, we can

have a sparse vector x ∈ RKn, which means that the dictionary is very comprehensive

so that any normal y can be well “indexed” by very few items in it. Finding a sparse

3



x̂ satisfying (1.6) is a typical CS recovery problem. In [6], upon finding

x̂ =



x̂1

x̂2

...

x̂K


, (1.7)

where x̂k = [x̂k,1, · · · , x̂k,n]T is the vector of coefficients corresponding to the k-th

category, a residual rk is calculated for each k:

rk = ‖y −Dkx̂k‖2, (1.8)

and y is classified as the category corresponding to the minimal residual. If it falls

into a category that is labeled abnormal, then we have a detection.

In [7], multiobject trajectory anomaly detection was proposed that exploits the

interaction among multiple objects. For example, in a scenario where two moving

vehicles are present, if both drivers drive carefully and follow the rules, then the

trajectories of the two cars are all smooth and normal; however, if one car drives

on a wrong way, then it may force an oncoming vehicle make a sudden change in

direction, which leads both cars in an anomalous pattern. Mathematically, this can

be formulated as a joint-sparsity structure, that is, for multiple trajectories y1, · · · ,yP

in one scenario, their sparse representations x1, · · · ,xP under D shares a common

support. Denote Y = [y1, · · · ,yP ] and X = [x1, · · · ,xP ], the following `2 − `0

optimization problem was formulated to recover X:

min ‖X‖2,0

s.t.‖Y −DX‖F ≤ ε,

(1.9)

which is a common structured CS problem and has many existing solvers.

4



1.2.3 Manifold Learning

In the context of manifold-based compressed sensing (CS), a sparse signal means

that it is in a low-dimensional manifold of a high-dimensional domain. In [3] and

[14], the properties of manifold-based CS were analyzed theoretically. In [15], a

mixture of factor analyzers (MFA) [23, 24] was applied to model manifolds with low

intrinsic dimension. The authors modeled a manifold as a finite mixture of Gaussians

with low-rank covariance matrices. The intuition of this model is straightforward

geometrically, in the sense that the contour of distribution of a manifold can be well

approximated a collection of flat ellipsoids — in statistics, a ellipsoids corresponds to

a multivariate Gaussian distribution, and the flatness indicates that the covariance

matrix is low-rank. In their paper, they drew n samples {xi}ni=1 from a manifold

Ω ⊂ RN as the training data, and built a mixture low-rank Gaussian prior p(x),

where the number of mixtures and the rank of the Gaussian covariance matrices are

inferred by non-parametric Bayesian approaches in [25] and [26]. Then, given a CS

measurement of a vector x ∈ Ω, which is y = Φx + ν, where Φ is the sensing matrix

and ν is a zero-mean Gaussian noise, the likelihood p(y|x) can be easily obtained in

a closed form. With p(x) and p(y|x) available, the posterior distribution p(x|y) can

be inferred by the Bayes’ rule.

1.3 Motivation of Distributed CS

In spite of its strength in dimensionality reduction, it is still demanding to per-

form CS on a single processor with limited memory and computational power when

N and M are large. This urges the emergence of distributed CS (DCS), due to its

nature of dividing and allocating large memory burden into a network of sensors, and

its potential of speeding up the CS recovery process [27, 28, 29, 30, 31, 32].

5



In the literature, the term DCS may refer to two kinds of systems: one is linked

to joint sparsity [33, 34, 35, 36], where P nodes take measurements of P correlated

signals {sp0}Pp=1; in the other system, all the nodes in the network take measurements of

a common s0 [37, 38, 39, 40, 41, 42], and the goal is to develop a distributed approach

with the same accuracy as the centralized setting, that is, single-processor setting.

For the former, each node has a sensing matrix Ap with enough rows such that the

restricted isometry property (RIP) [16] is satisfied, and can perform signal recovery

individually, although collaboration will further improve the recovery performance.

On the other hand, the latter can be viewed as a distributed version of a centralized

system, where the row-combination of all the P sensing matrices Ap, is equivalent to

a global sensing matrix A in centralized CS satisfying RIP. It is a typical assumption

that each individual sensor has limited memory so that it cannot store the entire

global sensing matrix.

In our work, we focus on the second DCS system, which contains two parts: (1)

the local computation (LC) performed at each sensor, and (2) the global computation

(GC) to obtain the estimate of the original sparse signal after sensors exchange the

results of local computation. Among many efforts on the distributed computation,

optimization, and network topology [37, 38] in DCS, only a few have been spent on

addressing the communication issue in the GC step [40, 43, 41].

We are particularly interested in one category of CS recovery algorithms, where

in every iteration t we have a sparse estimate xt of s0, a residual or innovation zt ∈ RM

in the measurement domain, and a predetermined step size µt, based on which we

can obtain a new estimate xt+1 of s0 as follows:

ft = xt + µtA
Tzt, (1.10)

xt+1 = ηt(ft), (1.11)

6



where [·]T denotes transposition, and ηt is some predefined thresholder, for example,

the hard thresholder in [44, 45], and the soft thresholder applied in [46, 47]. The

reason we find these algorithms appealing is that we can develop DCS approaches

based on them with a small communication cost and exactly the same recovery result

as the centralized CS algorithms. As will be shown later, ft in (1.10) can be expressed

as the summation of P vectors wp
t , where each wp

t can be calculated by the p-th

sensor without communication. Due to the thresholding process in (1.11), it is not

necessary to compute all the elements in ft to obtain xt+1, which indicates that each

sensor does not need to send the whole vector wp
t to the fusion center in the GC step,

hence yielding an amount of communication saving.

More specifically, in a DCS framework, the hard thresholding applied in [44, 45]

can be modeled as an extension of Top-K problems [48, 49] in the field of distributed

database querying, where there are P distributed agents indexed by p ∈ {1, · · · , P}

and N objects indexed by n ∈ {1, · · · , N}, with each object n having P partial scores

Sp(n)’s distributed on the P sensors, and the object is to find the top K total scores

S(n) =
∑P

p=1 S
p(n) as well as the corresponding object indices with a minimum

communication cost. On the other hand, the soft thresholding applied in [46, 47] can

be modeled as a similar problem, which we name Top-β problem and is to find all the

total scores with magnitudes greater than a threshold β as well as the corresponding

object indices in pursuit of the highest communication savings.

Throughout the dissertation, we use bold capital letters to denote matrices and

bold lower-case letters to denote vectors. [·]T denotes matrix or vector transposition.

v(k) denotes the k-th component of the vector v, TK(v) returns its K-th largest

absolute element, S(v) = {k : v(k) 6= 0} denotes its support set, and ‖v‖0 denotes

|S(v)|, where | · | on a set means its cardinality. A\B denotes the set difference

between sets A and B. [n] denotes the set {1, · · · , n}. For Ω = {n1, · · · , nd} ⊂
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[n], v(Ω) denotes [v(n1), · · · ,v(nd)]
T ; W(Ω, :) and W(:,Ω) denote the rows and

columns of the matrix W, specified by Ω respectively. The sign function is defined

as sgn(x)
∆
= x/|x| if x 6= 0 and 0 otherwise; indicator function I(STATEMENT) = 1

if the boolean STATEMENT is true and 0 otherwise, and IS(x) means I(x ∈ S). E

denotes the expectation of a random variable,N (µ, σ2) denotes the normal (Gaussian)

distribution with mean µ and variance σ2. For Z ∼ N (0, 1), Φ(z)
∆
= Pr{Z ≤ z} and

φ(z)
∆
= dΦ(z)/dz denote its cumulative distribution function (CDF) and probability

density function (PDF) respectively, Q(z)
∆
= 1−Φ(z) denotes the right tail probability

Pr{Z > z} and zα
∆
= Q−1(α).
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CHAPTER 2

DCS BASED ON APPROXIMATE MESSAGE PASSING

2.1 Introduction

Different from traditional CS recovery algorithms such as convex relaxation [50,

51], greedy pursuit [52, 53, 54], and iterative thresholding [46, 55, 44, 45], etc., ap-

proximate message passing (AMP) [47] is a statistical algorithm derived from the

theory of probabilistic graphical models (PGM) [56]. The reason we choose AMP as

a basic algorithm for developing DCS is that it is analytically convenient due to its

state evolution (SE) formalism, as will be shown later in this chapter.

Instead of focusing on network topologies varying from applications, we are try-

ing to propose some “universal” efficient data querying algorithms in the GC step

of DiAMP. To this end, we assume a network of P sensors where Sensors 2 to P

are connected to the fusion center Sensor 1, for better illustration of the proposed

algorithms. We also assume that each individual sensor has limited memory, so that

it cannot store the entire global sensing matrix, which has been assumed in [40, 43,

41]. In the LC step, each sensor only performs simple matrix operations, and in the

GC step where communication cost is induced, we propose a algorithm named GC

of DiAMP (GCAMP), to reduce the amount of data transmitted in the sensor net-

work. Based on GCAMP, we take into consideration the correlation of data between

adjacent iterations and incorporate quantization and propose a more sophisticated

approach named quantized adaptive GCAMP (Q-A-GCAMP), which comes close to

requiring the minimum bit rates.

In the rest of the chapter, we will give a brief review on AMP in Section 2.2, and
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then present the framework of DiAMP and GCAMP algorithm in Section 2.3. An

improved version of GCAMP, A-GCAMP is presented in Section 2.4, which is further

improved by Q-A-GCAMP in Section 2.5. The proposed algorithms are evaluated in

Section 2.6 and the dissertation is concluded in Section 2.7.

2.2 Overview of AMP

2.2.1 Centralized AMP

AMP starts from an initial estimate x0 = 0 and residual z0 = y, and proceeds

as follows:

ft = xt + ATzt, (2.1)

xt+1 = η(ft; τσt), (2.2)

zt+1 = y −Axt+1 +
||xt+1||0
M

zt, (2.3)

where the square of σt, namely σ2
t = E{‖ft − s0‖2/N} is the component-wise mean

square error (MSE) of ft, and is often replaced by its estimate σ̂2
t = ‖zt‖2/M since s0

is unknown [57, 58], τ is a tunable parameter, and η(x; β) is a component-wise soft

thresholding function and returns u ∈ RN with the i-th component computed by

u(i) = sgn(x(i))I(|x(i)| > β)(|x(i)| − β). (2.4)

Define κ = M/N and ρ = K/M , and assume that each component of s0 comes from

an i.i.d. source S0 with unknown distribution. In the large system limit, that is, with

N →∞ and κ, ρ keeping constant, each component in ft − s0 is i.i.d. Gaussian with

mean 0 and variance σ2
t , where σ2

t follows the State Evolution (SE) equation [47, 57,

58]:
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σ2
t+1 = σ2 +

1

κ
E
‖xt − s0‖2

2

N

= σ2 +
1

κ
E [η(S0 + σtZ; τσt)− S0]2 ,

(2.5)

where σ2 is the variance of the noise e in (1.1) and Z ∼ N (0, 1).

Compared with RIP-based deterministic approaches, AMP has the following ad-

vantages:

1) The SE equation in AMP enables us to predict the recovery performance

analytically in each iteration.

2) The soft thresholding denoiser in (2.4) is optimal in the minimax sense, i.e., it

minimizes the recovery error in the worst-case scenario when the distribution of s0 is

unknown. In the Bayesian framework, when the prior distribution of s0 is given, the

denoiser can be replaced by the Minimum-Mean-Square-Error (MMSE) estimator,

which is the conditional mean

xt+1(n) = η(ft(n);σt)

= E{s0(n)|s0(n) + σtZ = ft(n)},
(2.6)

and the SE still holds [58, 59, 60, 61].

2.2.2 Tuning of τ in Centralized AMP

We adopt the tuning framework in [62] to determine τ , which inherits the idea of

continuation from the area of optimization [63]. First, a candidate list of candidate

values of τ , {τ`}L`=1 is generated. Then, for each candidate τ`, we run iterations in

(2.2) and (2.3) until xt and σt converge to x∗` and σ̂∗` , and use them as the initial

estimates for the iterations using the next candidate τ`+1. Among all the L estimates

x∗` , we choose the one that corresponds to the minimal σ̂∗` .

Since τ is directly related to the sparsity level of the estimate xt — the larger

τ is, the more sparse xt becomes, and vice versa — we can determine the upper and
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lower bounds on τ , namely τmax and τmin, due to this property. Note that at the

beginning, x0 = 0, z0 = y, and f0 = ATy, if τ ≥ ‖f0‖∞ = ‖ATy‖∞/σ̂0, then we will

come to the zero solution. Therefore τmax = ‖f0‖∞/σ̂0. If we set the first candidate

value τ1 = τmax, then we will still stay at the zero solution after the first iteration.

To prevent it from happening, we set τ1 = T2(f0)/σ̂0, which is guaranteed to yield a

non-zero solution x1.

To determine τmin, notice that for a given κ = M/N , the most dense s0 AMP

can guarantee to recover is with the sparsity level Nκρ(κ), where ρ(κ) is given by the

phase-transition formalism [47, 57]:

ρ(κ) = max
z≥0

{
1− 2/κ [(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2 [(1 + z2)Φ(−z)− zφ(z)]

}
, (2.7)

and the value of τ in this case is given by

τ(κ) = arg max
z≥0

{
1− 2/κ [(1 + z2)Φ(−z)− zφ(z)]

1 + z2 − 2 [(1 + z2)Φ(−z)− zφ(z)]

}
. (2.8)

Therefore, we can set τmin = τ(κ), and set the last candidate value τL = τmin. Let

∆τ = (τ1 − τL)/(L− 1), we can then set τ` = τ1 − (`− 1)∆τ , ∀` ∈ {2, · · · , L− 1}.

Regarding when to terminate the algorithm, we use the convergence criterion

|σ̂t+1 − σ̂t| ≤ ζσ̂t. Besides, we set a “budget” T1 for the total number of itera-

tions of DiAMP; for each candidate τ`, we set its maximum number of iterations as

min{T2, (T1 −
`−1∑
i

ti)/(L − ` + 1)}, where ti is the number of iterations of running

DiAMP with parameter τi. In this way, the total number of iterations would not

exceed T1 and the number of iterations corresponding to each τ` would not exceed T2.

The pseudo code of AMP algorithm is shown in Table 1.

2.3 Distributed AMP Framework

Let us consider a sensor network with P distributed sensors. Each sensor p

(p = 1, · · · , P ) takes Mp rows of A, namely Ap, and obtains yp = Aps0 + ep. Then
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Table 1. Centralized AMP algorithm
Input y, A, τ1, · · · , τL, T1, T2

Initialization x0 = 0, z0 = y
for ` = 1:L

initialize t` = 0;

while t` < max{T2, (T1 −
∑`−1

i=1 ti)/(`− 1)}
obtain an estimator σ̂2

t`
of σ2

t`
;

xt`+1 = η(xt` + AT zt` ; τ`σ̂t`)

zt`+1 = y −Axt`+1 +
||xt`+1||0

M zt`
if some convergence cretieron is met
σ̂(τ`) = σ̂t` ,x(τ`) = xt`+1, z(τ`) = zt`+1

break
else

update t` ← t` + 1
continue

endif
endwhile
update x0 = xt`+1, z0 = zt`+1;

endfor

Output σ̂(τ`),x(τ`), ` = 1, · · · , L.

(1.1) can be rewritten as: 
y1

...

yP

 =


A1

...

AP

 s0 +


e1

...

eP

 . (2.9)

Let us introduce an intermediate matrix Wt =
[
w1
t , . . . ,w

P
t

]
with each column com-

puted by the corresponding sensor as [41]:

wp
t =


xt + (Ap)Tzpt , if p = 1,

(Ap)Tzpt , otherwise.

(2.10)
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It is easy to show that AMP can be run in a distributed manner:

ft = xt + (A1)Tzpt +
P∑
p=2

[
(Ap)Tzpt

]
=

P∑
p=1

wp
t , (2.11)

xt+1 = η (ft; τ σ̂t) , (2.12)

zpt+1 = yp −Apxt+1 +
||xt+1||0
M

zpt , ∀p ∈ [P ] . (2.13)

In (2.10), if we modify the definition of wp
t as

wp
t = ωpxt + (Ap)Tzpt , (2.14)

where ωp = Mp/M with Mp being the number of rows of Ap, then it is easy to verify

that (2.11) still holds. The new definition is adopted not only because it generates

more balanced data, but also due to our recent proof on distributed AMP (DiAMP)

that wp
t − ωps0 is asymptotically N (0, ωpσ

2
t IN) as N → ∞, where IN is the N × N

identity matrix. The proof will be shown later in Chapter 3. Due to this property,

we can obtain a new estimator σ̂2
t of σ2

t as follows.

On Sensor p, we further partition Ap equally by rows and obtain Ap,1, Ap,2 ∈

RMp/2×N , and the corresponding yp,1, yp,2, zp,1t , zp,2t , etc. Denoting wp,i
t = (ωp/2)xt +

(Ap,i)Tzp,it (i = 1, 2), then the 2P random vectors rp,it = wp,i
t − (ωp/2)s0 is asymptot-

ically N (0, (ωp/2)σ2
t IN). Defining dpt = (wp,1

t − wp,2
t )/
√
ωp, it is easy to show that

dpt =
wp,1
t −wp,2

t√
ωp

=
rp,1t − rp,2t√

ωp
∼ N (0, σ2

t IN). (2.15)

We can obtain an estimator for σ2
t :

σ̂2
t =

∑P
p=1 ‖d

p
t‖2

2

NP
. (2.16)

Note that dpt can be computed locally without communication. In order to obtain

σ̂2
t , each sensor p ≥ 2 only needs to send a positive number ‖dpt‖2

2 to Sensor 1; Sensor
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1 then computes σ̂2
t and broadcasts it back to other sensors. This communication

cost is negligible compared with that of obtaining xt+1, as will be shown later.

It can be seen that DiAMP can be divided into two parts: local computation

(LC) of wp
t and zpt+1(p = 1, · · · , P ), where there is no communication; and global

computation (GC) of xt+1, where communication is needed. For the latter, a natural

approach is to send all the components in wp
t for p ≥ 2 to sensor 1, which will

induce a high communication cost when N is large. Therefore, how to reduce the

communication cost, meanwhile without incurring any loss of accuracy compared

with the original AMP, is the main goal of the distributed approach.

In DiAMP, by (2.10), xt+1(n) = 0 if |ft(n)| ≤ βt = τ σ̂t. Therefore, we only need

to know all (n, ft(n)) such that |ft(n)| = |
∑P

p=1 wp
t (n)| > βt in the GC. As introduced

in Chapter 1, this is a Top-β problem. The n-th row of the intermediate matrix

Wt can be viewed as an object with index n and partial scores w1
t (n), · · · , wP

t (n)

stored on agents (sensors) 1, · · · , P respectively, and the total score of object n is

ft(n) =
∑P

p=1 wp
t (n). Our objective is to find all the total scores with magnitudes

greater than the threshold βt as well as the objects they correspond to, meanwhile

trying to reduce the communication cost induced. The Top-β problem has a very

similar structure to the Top-K problem.

For the Top-K problems, one of the most popular algorithms is known as thresh-

olding algorithm (TA) [48], which requires a known K and all the entries in Wt to be

non-negative, and cannot be directly applied in DCS. In [40], a modified TA (MTA)

was proposed to deal with the positivity issue. Notice that for DiAMP, TA can also

be modified in a similar way to solve the induced Top-β algorithm, namely, MTA,

which is shown in Table 2.

Theorem 1 In each iteration, MTA gives exactly the same xt+1 as that of original
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Table 2. MTA Algorithm for DiAMP
Input w1

t , · · · ,wP
t , βt = τ σ̂t;

Initialization xt+1 = 0, count= 0;
for sensor p = 1:P

sort components of wp
t in descending order of magnitudes;

define the sorted vector as spt and Ipt (n) := ` s.t. wp
t (`) = spt (n);

mark all (Ipt (n), spt (n)) pairs as “unsent”;
endfor
while TRUE

for p = 1:P
find the first (Ipt (n), spt (n)) pair marked “unsent” from top;
set up = spt (n), broadcast (Ipt (n), up) to other sensors;
mark (Ipt (n), spt (n)) as “sent”;
for sensor q 6= p

store up and send (Ipt (n), wq
t (I

p
t (n))) to sensor p;

mark (Ipt (n), wq
t (I

p
t (n))) as “sent”;

endfor

update xt+1(Ipt (n)) = ηt(
∑P

p=1 w
p
t (I

p
t (n));β);

count=count+1;

if count≥ P and
∑P

p=1 |up| ≤ β, or if count≥ N
set Ns = count, the algorithm terminates;

endif
endfor

endwhile

Output xt+1

AMP algorithm computed by (2.2).

Proof of Theorem 1: As we can see, MTA is composed of a series of global summation,

where a global summation means computing a total score ft(n) for some n. Ns is a

counter recording the number of global summations. At the very end of one global

summation, for each n, either the (n,wp
t (n)) pairs for all p are marked as “sent”; or

all are marked as “unsent”. So we can just say n is marked as “sent” or “unsent”. It

is easy to show that,
∑P

p=1 |up| is an upper bound on |ft(n)| for all the n’s that have

not been marked as “sent”; if
∑P

p=1 |up| ≤ βt, then we have |ft(n)| ≤ βt for these n’s.

Therefore, as the algorithm terminates, we do not lose any non-zero components of
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xt+1. Q.E.D.

2.3.1 Proposed GC Algorithm in DiAMP: GCAMP

As discussed in the introduction of this chapter, the GC step of DiAMP can be

modeled as a Top-β problem, which has a structure similar to the Top-K problem.

There are many mature algorithms, e.g., TA [48], and the three-phase uniform thresh-

old (TPUT) algorithm [49] . Similar to TA, the original TPUT cannot be applied in

DiAMP, not only because it solves a Top-K problem instead of a Top-β problem, but

also due to the fact that it requires all partial scores to be non-negative, which does

not hold in our problem settings. The point is that some essence of TPUT, which

is to get an upper bound on the total score, really helps us derive our own Top-β

algorithm. Before we proceed, we first introduce the following Lemma:

Lemma 1 Given arbitary T > 0, define

Sn = {p ∈ [P ] \{1} : |wp
t (n)| > T} (2.17)

for n ∈ [N ], then

U(n) = |w1
t (n) +

∑
p∈Sn

wp
t (n)|+ (P − 1− |Sn|)T (2.18)

is an upper bound on |ft(n)|.

Proof of Lemma 1: For any n = 1, · · · , N , we have

ft(n) = w1
t (n) +

∑
p∈Sn

wp
t (n) +

∑
p≥2,p/∈Sn

wp
t (n) (2.19)
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Then, applying the triangular inequality, we have

|ft(n)| ≤

∣∣∣∣∣w1
t (n) +

∑
p∈Sn

wp
t (n)

∣∣∣∣∣+

∣∣∣∣∣∣
∑

p≥2,p/∈Sn

wp
t (n)

∣∣∣∣∣∣
≤

∣∣∣∣∣w1
t (n) +

∑
p∈Sn

wp
t (n)

∣∣∣∣∣+ (P − 1− |Sn|)T = U(n)

(2.20)

According to Lemma 1, we develop the following GCAMP algorithm.

First, sensors 2 to P only send the partial scores with magnitudes greater than

a predefined threshold T , as well as the corresponding indices of objects to sensor

1. Then sensors 1 computes an upper bound U(n) for each n according to (2.18)

and obtains the set of n’s with U(n) > βt. Finally, sensor 1 requests all the partial

scores for all objects n ∈ F from other sensors, computes total scores ft(n) for all

objects n ∈ F , and obtains the new estimate xt+1, where xt+1(F ) = η(ft(F ); βt) and

xt+1([N ] \F ) = 0.

Theorem 2 In each iteration, GCAMP gives exactly the same xt+1 as that of the

centralized AMP algorithm computed by (2.2).

Proof of Theorem 2: Let xGt+1 and xAt+1 denote the result obtained by the GCAMP and

the Centralized AMP respectively. For any n ∈ F , we have xGt+1(n) = η(ft(n); βt) =

xAt+1(n); for any n /∈ F , we have xGt+1(n) = 0 and U(n) ≤ βt, while according to

Lemma 1, we know |ft(n)| ≤ U(n) ≤ βt, so xAt+1(n) = 0. Therefore, xGt+1 = xAt+1.

A remaining problem is how to choose a proper T . Theoretically, we can use

arbitrary T > 0. However, if T is too large, then we may get a very loose upper

bound U(n) for n. Moreover, considering the case that all entries in Wt have the

same sign but we are not aware of it in advance, and we use T ≥ βt
P−1

, then it is easy

to show that we will have U(n) > βt for all n ∈ [N ], that is, we need to send all

partial scores from other sensors to sensor 1 and cannot save any communication. To
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prevent such case from happening, we need to constrain T < βt
P−1

. Therefore, we can

choose some θ ∈ (0, 1), and set T = θ βt
P−1

.

The pseudo code of GCAMP algorithm is shown in Table 3. It can be shown

that the total numbers of messages is
∑P

p=1 |Ωp

⋃
F |+ |F |, where the first part is the

number of data other sensors send to Sensor 1, and the second part is the number of

broadcasting messages Sensor 1 sends to others. For MTA, in each global summation,

there are 1 broadcasting message from some sensor to others and P − 1 incoming

messages, so the total number of messages is PNs.

In every inner loop of DiAMP, after GCAMP and MTA return xt+1, it takes

‖xt+1‖0 messages for all the sensors to know the non-zero components in xt+1. Once

knowing xt+1, each local sensor can obtain zpt+1 using (2.13) and σpt+1 = ||zpt+1||2

(p = 1, · · · , P ). Next, each sensor p ≥ 2 just sends a scalar σpt+1 to Sensor 1, which

needs P−1 messages. Then, sensor 1 computes σ̂t+1 =
√∑P

p=1(σpt+1)2/M , updates βt

and T , and broadcasts the scalar T to other sensors, so the total number of messages

in DiAMP is that of GCAMP (MTA) plus ‖xt+1‖0 + P .

In Fig. 1, an example is provided to illustrate how GCAMP works, in which each

sensor p already sorts wp
t (n) in descending order of magnitudes, and stores the data

in the form of (n, wp
t (n)) pairs (p = 1, · · · , 3, n = 1, · · · , 10). Suppose βt = 20 and

θ = 0.8, since we have P = 3 sensors, we get T = βtθ/(P − 1) = 8. In Step I, Sensors

2 to P send all the (n, wp
t (n)) pairs with |wp

t (n)| > T (red boxes in the figure) to

Sensor 1 (red arrows). In Step II, Sensor 1 receives the data and computes upper

bounds U(n) for n = 1, · · · , 10. As we can see, only U(4), U(6) and U(7) > βt, which

means that we are sure that xt+1(n) = 0 for all n /∈ F = {4, 6, 7}. So Sensor 1 only

needs to broadcast requests of partial scores of objects n ∈ V . In Step III, Sensor 2

sends w2
t (4) and w2

t (7), and Sensor 3 sends w3
t (4) and w3

t (6) to Sensor 1. Finally, in

Step IV, Sensor 1 computes xt+1(n) for n ∈ F by (2.11), and outputs the non-zero
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Table 3. GCAMP algorithm
Input w1

t , · · · ,wP
t , βt = τσt, θ

Step I Set T = βtθ/(P − 1)
for sensor p = 2:P

denote Ωp = {n : |wp
t (n)| > T};

send all (n,wp
t (n)) pairs for n ∈ Ωp to sensor 1.

endfor
Step II for sensor 1,
for n = 1:N

get Sn as defined in (2.17);
Compute the upper bound U(n) for |ft(n)| according to (2.18)
if U(n) > βt

broadcast the index n to other sensors
endif

endfor
Step III denote F = {n : U(n) > βt}
for sensor p = 2:P

send all (n,wp
t (n)) pairs for n ∈ F\Rp to sensor 1.

endfor
Step IV for sensor 1, denote Γ = {n ∈ F : |ft(n)| > βt}
assign xt+1(Γ) = η(ft(Γ);βt) and xt+1([N ] \Γ) = 0;

Output xt+1

components of xt+1, which is xt+1(6) = 3 and xt+1(6) = −1. It is easy to verify that

the gap ∆t+1 obtained for this example is 1. Overall, in this example, only 9 data

points are sent from the sensors to sensor 1, and the total number of messages is 12

(9 data points plus 3 broadcast requests). For the data set in Fig. 1, MTA needs 9

global summations to get the final results, which leads to 27 messages, much greater

than of that of GCAMP.

Recall that the centralized AMP starts with x0 = 0, z0 = y, and τ = T2(f0)/σ̂0,

which requires the second largest magnitude in the vector f0. This requires us to solve

an extended Top-2 problem to obtain T2(f0) at the beginning of DiAMP.
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Fig. 1. GCAMP algorithm

2.3.2 The optimal value of θ in GCAMP

It can be shown in Table 3 that the number of communication messages needed

in GCAMP is NG =
∑P

p=2 |F ∪ Ωp| + |F | + ‖xt+1‖0. If we model the elements in

s0 and measurement noise e as i.i.d. scalar random variables S0 ∼ pS0 and E ∼ pE
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respectively, then NG is also a random variable, where its expectation

E [NG] =
P∑
p=2

E [|F ∪ Ωp|] + E [|F |] + E [‖xt+1‖0] (2.21)

is a function of the parameter θ. More specifically, only the items E|F ∪Ωp| and E|F |

depend on θ. So we can model the following optimization problem to determine the

value of θ:

min
θ

P∑
p=2

E [|F ∪ Ωp|] + E [|F |] . (2.22)

Recalling the Gaussianity in DiAMP as described in Section 2.3, we know that each

element wp
t (n) follows i.i.d. ωpS0 + σt

√
ωpZp with Z1, · · · , ZP ∼ i.i.d. N (0, 1). We

can derive

E [|F |]=N Pr{U(n)>βt}=NPr


∣∣∣∣∣∣∣∣ωpS0+σt

√
ω1Z1+

P∑
p=2

(
ωpS0+σt

√
ωpZp

)
I

(∣∣∣∣∣ωpS0+σt
√
ωpZp

∣∣∣∣∣ > θβt
P−1

)∣∣∣∣∣∣∣∣
+ T

P∑
p=2

I

(∣∣∣∣∣ωpS0+σt
√
ωpZp

∣∣∣∣∣≤ θβt
P − 1

)
> βt

,

(2.23)

and

E [|F∪Ωp|]=N

Pr

U(n)>βt

+Pr


∣∣∣∣∣∣∣∣ωpS0+σt

√
ωpZp

∣∣∣∣∣∣∣∣>
θβt
P − 1

−Pr

U(n)>βt,

∣∣∣∣∣∣∣∣ωpS0+σt
√
ωpZp

∣∣∣∣∣∣∣∣>
θβt
P − 1


.

(2.24)

For the most common cases where the prior distribution pS0 is unknown, we can

perform worst-case analysis to obtain a mini-max solution:
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min
θ

sup
pS0

P∑
p=2

E [|F ∪ Ωp|] + E [|F |] . (2.25)

Unfortunately, there is no closed-form solution for either (2.22) or (2.25). While it

may be possible to get some approximated solutions given particular assumptions, we

will tune θ empirically in this dissertation.

2.4 Improvement on GCAMP: Adaptive Approach

In GCAMP, the intermediate Wt in each iteration t is considered as totally new

data, i.e., correlation between Wt and Wt−1 is not considered in the algorithm. How-

ever, due to the convergence of AMP, Wt and Wt−1 will become closer and closer

through iterations. If an adaptive approach based on GCAMP can be developed by

taking advantage of this property, then further improvements in terms of communi-

cation savings may be achievable without loss of recovery accuracy.

From Table 3, it can be shown that GCAMP has the following outcomes:

i) Total scores for all objects n ∈ Γ, where Γ is the support of xt+1. They have

one-to-one mapping to non-zero entries in xt+1.

ii) Total scores for all objects n ∈ F\Γ, where Γ is the support of xt+1. These

objects have U(n) > βt but |ft(n)| ≤ βt. The total scores for all objects in i) and ii),

that is, in F , are saved in the column vector xht+1 as shown in Table 3.

iii) A gap ∆t+1 between {|ft(n)| : n /∈ Γ} and the threshold βt. For n /∈ Γ, if

n ∈ F , which means that GCAMP obtains ft(n) for n, then

βt − |ft(n)| ≥ βt −max
n∈F
|ft(n)|; (2.26)

if n /∈ F , which means U(n) ≤ βt, then

βt − |ft(n)| ≥ βt − U(n) ≥ βt −max
n/∈F

U(n). (2.27)

Overall, we have
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βt − |ft(n)| ≥ ∆t+1 = βt −max{max
n∈F\Γ

|ft(n)|,max
n/∈F

U(n)} (2.28)

for all n /∈ Γ.

For GCAMP itself, i) is the only outcome of interest, and ii) and iii) seem to be

meaningless byproducts. However, if an adaptive approach is developed as discussed

above, where GCAMP is used as a subroutine, then outcomes in ii) and iii) will

become important as shown later in the dissertation.

2.4.1 Question: Can We Save More?

In the previous sections we discussed the framework of DiAMP consisting of

a series of local and global computations, where the global computation (GC) step

consumes communication bandwidths. To reduce the communication cost in the GC

step, we proposed GCAMP, which sifts a candidate set for the support of xt+1 and

then sends the partial scores of all the objects within the candidate set to the fusion

center (Sensor 1).

While the aforementioned framework is communication efficient, it still induces

more communication cost than what is necessary. This is because GCAMP is a non-

adaptive approach, i.e., in each iteration t, it obtains xt+1 only based on the current

intermediate data Wt, with no memory about Wt−1 nor xt; on the other hand, AMP

has a linear convergence rate such that after a few iterations, Wt−1 and Wt will

become very close, so it is the case for xt and xt+1. This indicates that it is possible

to adaptively learn some useful knowledge from previous data Wt−1 and xt when

computing xt+1, in return for a further reduction in communication cost.

To see this, we first define ∆wp
t = wp

t −wp
t−1, p ∈ [P ], ∆Wt =

[
∆w1

t , · · · ,∆wP
t

]
,

and rewrite ft(n) in the following way:

ft(n)=
P∑
p=1

(
wp
t−1(n)+∆wp

t (n)
)

= ft−1(n)+∆ft(n), (2.29)
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where we use ∆ft(n) to denote
P∑
p=1

∆wp
t (n).

By applying the triangular inequality, we can easily establish an upper bound on

|ft(n)|:
|ft(n)| ≤ |ft−1(n)|+ |∆ft(n)|. (2.30)

Remember that after iteration t − 1, we have obtained the support set S(xt),

and for any n /∈ S(xt), we are certain that |ft−1(n)| ≤ βt−1. Suppose in iteration t,

we have a threshold βt > βt−1, then for any n /∈ S(xt) satisfying |∆ft(n)| ≤ βt−βt−1,

we have

|ft(n)| ≤ βt−1 + (βt − βt−1) = βt, (2.31)

which means that n will not be in the support set of xt+1 either. In other words,

only two groups of n’s can be in S(xt+1): (i) n’s∈ S(xt), (ii) n’s/∈ S(xt) satisfying

|∆ft(n)| > βt − βt−1. Therefore, we can use the following adaptive procedure named

adaptive GCAMP (A-GCAMP) to obtain S(xt+1).

For group i, we can run GCAMP on Wt(S(xt), : ) to find all the n’s with |ft(n)| >

βt, which does not consume much communication since xt is sparse, i.e., |S(xt)| � N .

For group ii, we first need to run GCAMP on ∆Wt([N ] \S(xt), : ) to find all

the n’s with |∆ft(n)| > βt − βt−1. Let Vt+1 be the set of these n’s, we further run

GCAMP on Wt(Vt+1, : ) to find all the n’s with |ft(n)| > βt. Note that if most

entries’ magnitudes in ∆Wt([N ] \S(xt), : ) are much smaller than βt − βt−1, then by

the mechanism of GCAMP, the induced communication cost will be negligible. But

how likely is this assumption to be valid?

First, let us consider the magnitudes in Wt. According to [47, 64, 65], AMP has

a linear convergence rate, which implies that after a few iterations, Wt−1 and Wt

will be very close, i.e., most entries in ∆Wt will be close to 0.

Second, we need to evaluate βt − βt−1. Note that the procedure mentioned

above only makes sense when βt > βt−1. However, this seems over-optimistic since βt
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Fig. 2. A diagram of A-GCAMP.

proportional to σ̂t is generally decreasing. To circumvent this conundrum, we propose

a First-Lose-Then-Win strategy in the following subsection.

2.4.2 First-Lose-Then-Win Strategy

The basic idea of this strategy is to design a sequence {αt} ⊂ (0, 1] and transform

the threshold to γt = αtβt, so that γt > γt−1 and A-GCAMP introduced in Section

2.4.1 can be applied, as shown in Fig. 2, where It+1 denotes the set of objects with

total scores |ft(n)| > γt.

Note that after we find It+1, we still plug the original threshold βt into the soft

thresholding function to obtain xt+1. Therefore, to maintain accuracy we need to

constrain αt ≤ 1 so that any |ft(n)| > βt will satisfy |ft(n)| > γt. However, lowering

the threshold may cause additional communication costs, which is the “First-Lose”
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stage; on the other hand, we can have γt > γt−1 hold, which may lead to a significant

reduction in communication cost as discussed in Section 2.4.1, and this is the “Then-

Win” stage. The key is to properly design {αt} so that what we win is more than

what we lose, which will be described in the next subsection.

We provide an overview of A-GCAMP based on the strategy below:

(i) Input: Wt−1, Wt, βt.

(ii) Intermediate: αt, γt, It+1 = {n : |ft(n)| > γt}.

(iii) Output: xt+1.

Theorem 3 A-GCAMP obtains xt+1 which is exactly the same as that obtained by

the centralized AMP using (2.1) and (2.2).

Proof of Theorem 3: We know that all the n’s in It+1 = {n : |ft(n)| > γt} will either

satisfy n ∈ It, or n /∈ It but |∆ft(n)| > ∆γt. The latter group is found by GCAMP.

Denoting Vt+1 = {n : n /∈ It, |∆ft(n)| > ∆γt}, GCAMP will lose no accuracy when

only searching in It ∪ Vt+1 for n’s such that |ft(n)| > γt. Since γt ≤ βt and ft(n)’s for

all the n’s in It+1 are calculated, we know that A-GCAMP will return the same xt+1

as that of the centralized AMP. Q.E.D.

2.4.3 Design of αt

The aim of designing αt in A-GCAMP is to yield a threshold difference ∆γt =

γt − γt−1 which is much greater than most magnitudes in ∆ft([N ] \It), so that the

communication cost of running GCAMP on ∆Wt([N ] \It, :) can be negligible.

In Fig. 3 the flow chart of determining γt is shown, where q is a small number

and is set to 0.05 in this dissertation, and θ is the parameter in GCAMP which is

invoked to find all the n’s not in It such that |∆ft(n)| > ∆γt. As shown in the figure,

we first obtain the P quantiles, take the maximal, namely max
p
TbqNr

t c(∆wp
t ([N ] \It)),
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where N r
t = N − |It|, and obtain a candidate value ∆γ′t for ∆γt:

∆γ′t =
P max

p
TbqNr

t c(∆wp
t ([N ] \It))

θ
, (2.32)

based on which we can obtain a candidate value

γ′t = γt−1 + ∆γ′t. (2.33)

Since γt is upper bounded by βt, we set

γt = min{γ′t, βt} and αt = min

{
1,
γ
′
t

βt

}
. (2.34)

Since βt is generally decreasing, the sequence {αt} is typically increasing. Once

αt−1 = 1, we will reset αt = α∗, where α∗ is a predefined parameter less than 1 and

set to 0.94 in this dissertation, and repeat the above process to generate αt+1.

Define

∆Ωp
t = |{n /∈ It : |∆wp

t (n)|}| (2.35)

for any p ∈ [P ], and

∆Ωt =

∣∣∣∣∣{n /∈ It : |∆ft(n)| > θ∆γt}

∣∣∣∣∣. (2.36)

It is easy to verify that if ∆γt = ∆γ′t, then

|∆Ωp
t | ≤

∣∣{n /∈It: |∆wp
t (n)|>TbqNr

tc(∆wp
t([N ]\It))

}∣∣≤qN r
t (2.37)
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for any p ∈ [P ], and

|∆Ωt| ≤
∣∣∣∣{n /∈It: max

p
|∆wp

t (n)|>
θ∆γt
P

}∣∣∣∣
=

∣∣∣∣∣
P⋃
p=1

{
n /∈It : |∆wp

t (n)|>max
p
TbqNr

tc(∆wp
t ([N ] \It))

}∣∣∣∣∣
≤

P∑
p=1

∣∣∣∣{n /∈It : |∆wp
t (n)|>max

p
TbqNr

tc(∆wp
t ([N ]\It))

}∣∣∣∣
≤

P∑
p=1

∣∣{n /∈It : |∆wp
t (n)|>TbqNr

tc(∆wp
t ([N ]\It))

}∣∣≤qN r
tP,

(2.38)

where the notation |{·}| on a set {·} denotes its cardinality, and | · | on a number, for

example, wp
t (n), denotes its magnitude.

As we can see, (2.37) sets an upper bound on number of the data points Sensor p

sends to Sensor 1 at Stage I of GCAMP, and (2.38) obtains an upper bound on number

of n’s with |∆ft(n)| > ∆γt. The equality in (2.38) holds because the statement “the

maximal of the P numbers is greater than some value” is equivalent to “at least one

of the P numbers is greater than the same value”.

It is clear that if we choose the starting point αmin properly, then we can have

αt−1 < 1 and αt < 1, which makes ∆γt =
P max

p
TbqNrt c

(|∆wp
t |)

θ
hold in most iterations.

In computing xt, we find all the n’s such that |ft−1(n)| > γt−1, which includes the

n that γt−1 < |ft−1(n)| ≤ βt−1, this seems a waste of computation since we are sure

xt(n) = 0 for these n’s without knowing their total scores, that is why we call it

the “first-lose” stage; however, what we win are thresholds {γt} and gaps ∆t which

satisfy γt + ∆t − γt−1 = ∆γt > 0, which implies reduction of communication cost in

computing xt+1.
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2.4.4 DiAMP Based on A-GCAMP

In Fig. 4 a detailed diagram of DiAMP is shown based on A-GCAMP. In each

iteration t, we will get It+1 = {n : |
∑P

p=1 wp
t (n)| > γt}, and will also get a group of

total scores for n ∈ Rt+1 ⊂ [N ] \It+1; furthermore, we will get a gap ∆t+1 between

|ft(n)| for n /∈ It+1 and γt.

In the first iteration t = 0, we get these by running the original GCAMP algo-

rithm. Starting from t = 1, we first need to check whether ∆Γt = max(γt−γt−1+∆t, 0)

is a large positive number compared with the magnitudes of partial scores for n ∈

[N ] \It, by checking whether

P∑
p=1

|∆Ωp
t | ≤ ρwN

r
t P (2.39)

holds, where ∆Ωp
t is the same as defined in (2.35) and ρw is within (0, 1). This process

just needs P communication messages. If (2.39) does not hold, then we still run the
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original GCAMP algorithm on Wt to obtain It+1, Rt+1 as well as the total scores

ft(It+1), ft(Rt+1), and a gap ∆t+1. Now we mainly focus on the case that (2.39) holds.

If so, then we proceed as follows:

We first calculate total scores for all n ∈ It = I1
t+1∪R1

t+1, where |ft(n)| > γt,∀n ∈

I1
t+1 and |ft(n)| ≤ γt,∀n ∈ R1

t+1; for n /∈ It, we run GCAMP on ∆Wt to get Vt+1 =

{n : |
∑P

p=1 ∆wp
t (n)| > ∆γt, and a gap ∆1

t+1 between {|∆wpt (n)| : n /∈ It
⋃
Vt+1} and

∆Γt, where ∆Γt = max(γt − γt−1 + ∆t, 0).

For each n ∈ Vt+1

⋂
Rt, we know the total scores ft−1(n) since n ∈ Rt and∑P

p=1 ∆wp
t (n) since n ∈ Vt+1, so we can easily calculate total scores ft(n). Now par-

tition the set Vt+1

⋂
Rt into I2

t+1 and R2
t+1, where |ft(n)| > γt,∀n ∈ I2

t+1 and |ft(n)| ≤

γt,∀n ∈ R2
t+1. So far, we have obtained the total scores for n ∈ I1

t+1

⋃
I2
t+1

⋃
R1
t+1

⋃
R2
t+1.

We then calculate

∆2
t+1 = γt −max |ft(R1

t+1

⋃
R2
t+1)| (2.40)

For n ∈ Vt+1\Rt, we run GCAMP on w1
t (Vt+1\Rt), · · · , wP

t (Vt+1\Rt) to get a group

of total scores for n ∈ I3
t+1

⋃
R3
t+1, where |ft(n)| > γt,∀n ∈ I3

t+1 and |ft(n)| ≤ γt, ∀n ∈

R3
t+1, and a gap ∆3

t+1 between {|ft(n)| : n ∈ Vt+1\Rt, |ft(n)| ≤ γt} and γt. Then we

have the following outcomes for GCAMP:

i) It+1 = I1
t+1 ∪ I2

t+1 ∪ I3
t+1 and total scores ft(It+1), xt+1(It+1) = ηS(ft(It+1); βt)

and xt+1([N ] \It+1) = 0;

ii) Rt+1 = R1
t+1 ∪R2

t+1 ∪R3
t+1 and total scores ft(Rt+1);

iii) ∆t+1 = min(∆1
t+1,∆

2
t+1,∆

3
t+1).

The total scores ft(It+1

⋃
Rt+1) are saved in vector xht+1.

In order to show the correctness of A-GCAMP, we first need to prove the following

lemma.

Lemma 2 ∆t+1 calculated in A-GCAMP is a gap between {|ft(n)| : n /∈ It+1, |ft(n)| ≤
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γt} and γt.

Proof of Lemma 2: It is clear that

[N ] \It+1 = [[N ] \( It ∪ Vt+1)]∪

(R1
t+1 ∪R2

t+1) ∪
[
Vt+1\(I3

t+1 ∪Rt)
] (2.41)

Obviously, ∆2
t+1 is a gap between {|ft(n)| : n ∈ (R1

t+1

⋃
R2
t+1)} and γt, and ∆3

t+1 is a

gap between {|ft(n)| : n ∈ Vt+1\(I3
t+1

⋃
Rt)} and γt. Now we need to show that ∆1

t+1

is a gap between {|ft(n)| : n ∈ [N ] \( It
⋃
Vt+1)} and γt.

By the definition of ∆1
t+1 in GCAMP algorithm, we know that

|
P∑
p=1

∆wp
t (n)| ≤ ∆γt −∆1

t+1,∀n ∈ [N ] \( It
⋃

Vt+1) (2.42)

Therefore, we have

|ft(n)| = |ft−1(n) +
P∑
p=1

∆wp
t (n)|

≤ |ft−1(n)|+ |
P∑
p=1

∆wp
t (n)|

≤ (βt−1 −∆t) + (∆γt −∆1
t+1)

= βt −∆1
t+1,∀n ∈ [N ] \( It

⋃
Vt+1)

(2.43)

In summary, ∆t+1 = min(∆1
t+1,∆

2
t+1,∆

3
t+1) is a gap between {|ft(n)| : n /∈ It+1, |ft(n)| ≤

γt} and γt. Q.E.D.

Now we can prove the correctness of A-GCAMP.

Theorem 4 A-GCAMP algorithm obtains xt+1 which is exactly the same as that of

the centralized AMP algorithm computed by (2.2).

Proof of Theorem 4: Applying Lemma 2, we know that ∆t calculated in the A-

GCAMP algorithm at iteration t − 1 is a gap between {|ft−1(n)| : n /∈ It, |ft−1(n)| ≤
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γt−1} and γt−1. Therefore, It+1 ⊂ It ∪ Vt+1 = It ∪ (Vt+1 ∩Rt) ∪ (Vt+1\Rt).

According to the algorithm, for all n ∈ It∪(Vt+1∩Rt), we get the total scores ft(n),

and find I1
t+1 = {n : |ft(n)| > γt, n ∈ It} and I2

t+1 = {n : |ft(n)| > γt, n ∈ Vt+1 ∩ Rt}.

For all n ∈ Vt+1\Rt, I
3
t+1 = n : |ft(n)| > γt, n ∈ Vt+1\Rt and ft(I

3
t+1) are found by

running the GCAMP algorithm. Therefore, ft(It+1) with It+1 = I1
t+1 ∪ I2

t+1 ∪ I3
t+1

contains all the total scores with magnitude greater than γt. In other words, |ft(n)| ≤

γt ≤ βt, ∀n /∈ It+1. Similar to the Proof of Theorem 2, we know that the xt+1 GCAMP

algorithm obtains is exactly the same as that of the centralized AMP algorithm

obtains. Q.E.D.

The pseudo code of A-GCAMP algorithm for iterations t ≥ 2 is given in Table 4

.

Table 4.: A-GCAMP Algorithm

Input wp
t , ∆wp

t , xht , γt−1, αt, βt, ∆t, θ, ρw

It = {n : |xht (n)| > γt−1};

Rt = {n : 0 < |xht (n)| ≤ γt−1};

C1
t = [N ] \It;

γt = αtβt;

Compute ∆γt;

if ∆γt > 0

for sensor p = 1 : P

obtain ∆Ωp;

if p ≥ 2
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send the cardinality |∆Ωp| to sensor 1;

endif

endfor

N g =
∑P

p=1 |∆Ωp|;

else

N g = |C1
t |P ;

endif

if N g ≤ ρw|C1
t |P

initialize xht+1 = 0,∆xht+1 = 0;

xht+1(It) =
∑P

p=1 wp
t (It);

I1
t+1 = {n : n ∈ It, |xht+1(n)| > γt};

R1
t+1 = It\I1

t+1;[
∼,∆xht+1(C1

t ),∆1
t+1

]
= GCAMP(∆w1

t (C
1
t ), · · · ,∆wP

t (C1
t ),∆γt, θ);

Vt+1 = {n : |∆xht+1(n)| > ∆γt};

C2
t = Vt+1 ∩Rt;

xht+1(C2
t ) = xht (C

2
t ) + ∆xht+1(C2

t );

I2
t+1 = {n : n ∈ C2

t , |xht+1(n)| > γt};

R2
t+1 = C2

t \I2
t+1;

∆2
t+1 = γt −max(|xht+1(R1

t+1 ∪R2
t+1)|);

C3
t = Vt+1\Rt;[
∼,xht+1(C3

t ),∆3
t+1

]
= GCAMP

(
w1
t (C

3
t ), · · · ,wP

t (C3
t ), γt, θ

)
;

I3
t+1 = {n : n ∈ C3

t , |xht+1(n)| > γt};

R3
t+1 = {n : n ∈ C3

t , 0 < |xht+1(n)| ≤ γt};

It+1 = I1
t+1 ∪ I2

t+1 ∪ I3
t+1;

Rt+1 = R1
t+1 ∪R2

t+1 ∪R3
t+1;

34



∆t+1 = min(∆1
t+1,∆

2
t+1,∆

3
t+1);

else[
∼,xht+1,∆t+1

]
= GCAMP

(
w1
t , · · · ,wP

t , γt, θ
)

;

endif

xt+1 = η(xht+1; βt);

Output xt+1,x
h
t+1,∆t+1

With A-GCAMP, the adaptive DiAMP approach is shown in Table 5,

Table 5.: Adaptive DiAMP Algorithm

Input {yp}Pp=1, {Ap}Pp=1, {τ`}L`=1, αmin, q, θ, ρw, T1, T2

Initialize x0 = 0, z0 = y, α0 = αmin, τ = τ1;

for ` = 1:L

initialize t` = 0;

while t` < max{T2, (T1 −
∑`−1

i=1 ti)/(`− 1)}

set t =
∑`−1

i=1 ti + t`;

if t ≥ 1

Compute wpt and ∆wpt = wpt − w
p
t−1 by (3.251) for each p;

if αt−1 = 1
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αt = αmin;

else

Compute αt according to (2.34);

endif

obtain an estimator σ̂2
t of σ2

t , and set βt = τ σ̂t and γt = αtβt;

if t ≥ 1[
xt+1,x

h
t+1,∆t+1

]
=

A-GCAMP(w1
t , · · · ,wP

t ,∆w1
t , · · · ,∆wP

t ,x
h
t , γt−1, αt, βt,∆t, θ, ρw);

else[
∼,xht+1,∆t+1

]
= GCAMP(w1

t , · · · ,wP
t , γt);

xt+1 = η(xht+1; βt);

endif

Compute zpt+1 by (2.13) for each p;

if some convergence cretieron is met

set σ̂(τ`) = σt+1,x(τ`) = xt+1, z
p(τ`) = zpt+1 for p = 1 · · ·P

update τ = τ`+1;

break;

else

t` ← t` + 1;

continue;

endif

endwhile

endfor

36



Output σ̂(τ`), x(τ`), zp(τ`)

2.5 Improvement on GCAMP: Quantization

2.5.1 Intuition: A Sign-Aware Approach

In GCAMP and A-GCAMP, we aimed to reduce the number of communication

messages, also known as units of communication [49] needed in the GC step. Seem-

ingly a reasonable metric of communication cost to some extent, it does not account

for the difference in structures of various types of data, for example, while broad-

casting an object index and sending a (n,wp
t (n)) pair consumes different number of

bits, they are both viewed as 1 message. Furthermore, evaluating the communication

cost in terms of the number of communication messages does not show the advan-

tage of quantization, a powerful technique in data compression, since one data point,

regardless of being quantized or not, needs one message to be transmitted.

From this perspective, we update the communication cost metric to the number

of communication bits. The new metric is not only more practical, but also motivates

us to develop more sophisticated algorithms taking account of the structure of trans-

mitted data. When developing GCAMP in Section 2.3, we restricted the parameter θ

to be strictly less than 1, to prevent sending all the partial scores under the extreme

cases where all of them have the same sign but no sensor is aware of that in advance.

This restriction sometime may limit the availability of a finer upper bound U(n) on

|ft(n)|. However, with the new communication cost metric in terms of the communi-

cation bits, we can get rid of this restriction by adding a “sign-awareness” step at the

beginning of GCAMP, where Sensors p ≥ 2 send the signs of all the partial scores to
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Sensor 1, with a communication bit of only 1 bit per element. After this step, Sensor

1 is aware of all the partial scores’ signs and hence has more flexibility in choosing θ,

which helps obtaining a tighter upper bound U(n) and reducing the communication

cost. This is the essence of the sign-aware GC (SAGC) algorithm.

We assume that all the components in wp
t are stored as IEEE double-precision

floating-point numbers, with a 1-bit sign, an 11-bit exponent, and a 52-bit significand

[66], which will be discussed in detail in Section 2.5.3. Now, we present the SAGC

algorithm as follows:

Step I: Define T = θβt/(P − 1) and Ωp = {n : |wp
t (n)| > T}, where θ > 0 is a

tunable parameter for the trade-off between the communication cost in this step and

that in Step III. Each sensor p ≥ 2 sends to Sensor 1 the package shown in Fig. 5.
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Fig. 5. The structure of the package Sensor p sends to Sensor 1 in Step I

As shown in Fig. 5, the package contains four parts:

1) the sensor index p, since there are P − 1 sensors other than Sensor 1, we can

use dlog2(P − 1)e bits to encode p.

2) the 1-bit signs (“+” or “-”) of all the components in wp
t , which totally require

N bits to represent.

3) To represent Ωp, we can either directly encode each index (dlog2Ne bits per

index) in Ωp with |Ωp|dlog2Ne bits in total, or use a 1/0 flag to denote whether each

index n = 1, · · · , N is in Ωp, which requires totally N bits. We finally choose the one
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using fewer bits. For the case where |Ωp|dlog2Ne = N , the latter will be chosen.

4) all the absolute values of wp
t (Ωp), since they are all positive numbers, the total

number of bits required is 63|Ωp|.

Therefore, the total number of bits in Step I is

B1 = (P − 1) [dlog2(P − 1)e+N ]

+
P∑
p=2

min{|Ωp|dlog2Ne, N}+ 63
P∑
p=2

|Ωp|.
(2.44)

Proposition 1 Sensor 1 can decode the package from Sensor p without ambiguity.

Proof of Proposition 1: It is easy to show that there is no ambiguity decoding Parts 1)

and 2): the first dlog2(P −1)e bits of the package indicate which sensor the package is

from, and the next N bits reveal the signs of wp
t . Now we need to show that there is no

ambiguity decoding Ωp and wp
t (Ωp), which takes L = min{|Ωp|dlog2Ne, N}+ 63|Ωp|

bits in total.

The possible ambiguity, if any, happens only if there exists two different values x

and y for |Ωp| leading to different encoding patterns of Ωp yet ending up with the same

L. Without loss of generality, let us assume that xdlog2Ne < N , ydlog2Ne ≥ N ,

and xdlog2Ne+ 63x = N + 63y = L. We can easily show that this will not happen:

since xdlog2Ne < N and ydlog2Ne ≥ N , we have x < y; on the other hand, because

xdlog2Ne < N and xdlog2Ne+ 63x = N + 63y, we have x > y, which is a contradic-

tion. Therefore, the solution |Ωp| to the equation L = min{|Ωp|dlog2Ne, N}+ 63|Ωp|

is unique, that is, there is no ambiguity in decoding Parts 3) and 4) of the package.

Step II: Sensor 1 decodes the packages from other sensors as discussed above, and

obtains a range
[
RL(n), RU(n)

]
of ft(n):
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RL(n) = w1
t (n) +

P∑
p=2

wp
t (n)I(n ∈ Ωp)

− T
P∑
p=2

I(−T ≤ wp
t (n) < 0)

(2.45)

and

RU(n) = w1
t (n) +

P∑
p=2

wp
t (n)I(n ∈ Ωp)

+ T

P∑
p=2

I(0 < wp
t (n) ≤ T ).

(2.46)

It can be shown that

U(n) = max
{
RU(n),−RL(n)

}
(2.47)

is an upper bound on |ft(n)|. Sensor 1 obtains the set Π = {n : U(n) ≥ βt}, represents

Π in the same way as encoding Ωp, and broadcasts it to all the other sensors, resulting

in the number of bits used in Step II as

B2 = min{|Π|dlog2Ne, N}. (2.48)

Step III: Each sensor p ≥ 2 reads all the indices in Π, and sends the package shown

in Fig. 6 to Sensor 1.
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Fig. 6. The structure of the package Sensor p sends to Sensor 1 in Step III.

Note that both Sensors 1 and p know Π and Ωp, and there is no need to send

the object indices in the set Π\Ωp.

Now Sensor 1 can compute ft(Π) and obtain
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xt+1(n) =


η(ft(n); βt) if n ∈ Π,

0 otherwise.

(2.49)

Finally, Sensor 1 needs to broadcast the support set of xt+1, which is Γ = {n : xt+1(n) 6=

0}, and the non-zero components xt+1(Γ) to other sensors. Since Γ ⊂ Π, and each

Sensor p ≥ 2 already knows Π, Sensor 1 only needs min{|Γ|dlog2 |Π|e, |Π|} bits to

represent Γ. Therefore, the number of bits in Step III is

B3 = (P − 1)dlog2(P − 1)e+ 63
P∑
p=2

|Π\Ωp|

+ min{|Γ|dlog2 |Π|e, |Π|}+ 64|Γ|,

(2.50)

and the total number of bits in SAGC is
∑3

i=1Bi.

As we can see, θ is a parameter controlling the trade-off between the number of

communication bits in Steps I and III: increasing θ leads to a larger T , which means

less data sent to Sensor 1 in Step I; however, this can cause a more conservative upper

bound U(n), which increases the number of bits in Step III, and vice versa. In this

dissertation, we tune θ empirically.

Regarding the recovery accuracy of SAGC, we have the following theorem:

Theorem 5 Given the same threshold βt = τ σ̂t, SAGC algorithm obtains exactly the

same xt+1 as that of the centralized AMP algorithm computed by using (2.2).

In other words, DiAMP based on SAGC has the same accuracy and convergence rate

as the centralized AMP.

In order to prove Theorem 2, we first introduce the following lemma:

Lemma 3 U(n) is an upper bound on |ft(n)|.

Proof of Lemma 3: First, we show that RL(n) ≤ ft(n) ≤ RU(n) for any n = 1, · · · , N :
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ft(n) = w1
t (n) +

P∑
p=2

wp
t (n)I(n ∈ Ωp)

+
P∑
p=2

wp
t (n)I(−T ≤ wp

t (n) < 0)

+
P∑
p=2

wp
t (n)I(0 ≤ wp

t (n) ≤ T )

≥ w1
t (n) +

P∑
p=2

wp
t (n)I(n ∈ Ωp)

+
P∑
p=2

(−T )× I(−T ≤ wp
t (n) < 0) + 0 = RL(n).

(2.51)

Similarly, we can prove that ft(n) ≤ RU(n). Since RL(n) ≤ ft(n) ≤ RU(n), we have

−RU(n) ≤ −ft(n) ≤ −RL(n) and hence

|ft(n)| = max{ft(n),−ft(n)}

≤ max{RU(n),−RL(n)} = U(n).

(2.52)

Now we can prove Theorem 2 as follows.

Proof of Theorem 2: Let xGt+1 and xAt+1 denote the results obtained by the SAGC

and the centralized AMP respectively. For any n ∈ Π, according to (2.49), we

have xGt+1(n) = η(ft(n); βt) = xAt+1(n); for any n /∈ Π, according to (2.49), we have

xGt+1(n) = 0 and U(n) ≤ βt, and according to Lemma 1, we know that |ft(n)| ≤

U(n) ≤ βt, so xAt+1(n) = 0. Therefore, xGt+1 = xAt+1.

2.5.2 Quantized GCAMP Algorithm

In SAGC we calculate U(n) based on Wt and T . Since U(n) in SAGC is only

an upper bound on |ft(n)|, we can use quantized Wt for its calculation, and for those

n’s with U(n) > βt, we send all the floating-point numbers wp
t (n) to Sensor 1, which

could lead to a further reduction in communication cost. For a better understanding

of the proposed approach, we first give a brief review of the format of floating-point
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numbers.

2.5.3 Preliminary on Floating-Point Numbers

In the IEEE standard [67], to obtain the floating-point format of a real number

a, we first need 1 bit to denote its sign, and then express |a| using scientific notation

with base 2:

|a| = Sa × 2Ea , (2.53)

where Ea = blog2 |a|c is called the exponent, and Sa ∈ [1, 2) is called the significand

in the form of 1.a1a2 · · · ak · · · (ak ∈ {0, 1},∀k) with base 2. Note that {ak} can be

an infinite sequence.

Since Ea is an integer, if we know that Ea ∈ [Emin, Emax], then we need

Be = dlog2(Emax − Emin + 1)e (2.54)

bits to represent Ea. For examples, the exponents of all the 64-bits floating-point

numbers are within [−1022, 1023], so the corresponding Be = dlog2(1022+1023+1)e =

11 [67].

Regarding Sa, if we only choose the first ` items in {ak}, then we will obtain a

number

S`a = 1 +
b2`(Sa − 1)c

2`
. (2.55)

It can be shown that

0 ≤ Sa − S`a <
1

2`
, (2.56)

that is, S`a converges to Sa at least exponentially fast. In 64-bit floating-point num-

bers, the first Bs = 52 bits are used for representing the significand [67].

2.5.4 Computing U(n) Using Quantization

Here, we present the quantized GCAMP (Q-GCAMP) algorithm, which has the

same structure as SAGC, only by introducing quantization in Steps I and II, and
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modifying the calculation of U(n):

Step I: Define T and Ωp the same as in SAGC, and define Np = |Ωp|, N ′p = N −Np,

Up = max
n
|wp

t (n)|, and Lp = min
n
|wp

t (n)|. We can carefully choose the parameter

θ so that Lp < T < Up holds. Before sending anything to Sensor 1, each Sensor

p ≥ 2 uniformly quantizes (T, Up] into brNpc bins, and [Lp, T ] into br′N ′pc bins, where

r, r′ ∈ (0, 1] are scaling parameters and tuned empirically. Each bin inside (T, Up] or

[Lp, T ] is indexed from 0 to brNp − 1c or br′N ′p − 1c.

Then, Sensor p ≥ 2 finds the quantization index of wp
t (n), which is denoted as

qpt (n), for each n ∈ [N ]. It is easy to show that

T + qpt (n)
Up − T
brNpc

≤ |wp
t (n)|

≤ T + (qpt (n) + 1)
Up − T
brNpc

, ∀n ∈ Ωp,

(2.57)

and

Lp + qpt (n)
T − Lp
br′N ′pc

≤ |wp
t (n)|

≤ Lp + (qpt (n) + 1)
T − Lp
br′N ′pc

, ∀n /∈ Ωp.

(2.58)

Now, Sensor p sends a package containing the sensor index p, sgn(wp
t ), Lp, Up, Np,

Ωp, and qpt (Ωp) to Sensor 1.

Note that both Lp and Up take 63 bits, Np takes dlog2Ne bits, and qpt (Ωp) are

integers, which take Np dlog2brNpce bits. Therefore, the total number of communica-

tion bits used in Step I is

B1 = (P − 1) [dlog2(P − 1)e+N + 126 + dlog2Ne]

+
P∑
p=2

(min{Npdlog2Ne, N}+Np dlog2brNpce) .
(2.59)

Step II: On receiving a package, Sensor 1 can obtain a range
[
RL
Q1

(p, n), RU
Q1

(p, n)
]

on

wp
t (n): for any n ∈ Ωp, R

L
Q1

(p, n) and RU
Q1

(p, n) can be obtained according to (2.57);
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for any n /∈ Ωp, R
L
Q1

(p, n) = Lp and RU
Q1

(p, n) = T if wpt (n) > 0, and RL
Q1

(p, n) = −T

and RU
Q1

(p, n) = −Lp otherwise.

Sensor 1 can then obtain a range
[
RL
Q1

(n), RU
Q1

(n)
]

on ft(n):

RL
Q1

(n) = w1
t (n) +

P∑
p=2

RL
Q1

(p, n), (2.60)

and

RU
Q1

(n) = w1
t (n) +

P∑
p=2

RU
Q1

(p, n). (2.61)

Further,

UQ1(n) = max
{
RU
Q1

(n),−RL
Q1

(n)
}

(2.62)

is an upper bound on |ft(n)|. Sensor 1 broadcasts the set FQ1 = {n : UQ1(n) ≥

βt} to other sensors, which requires min{|FQ1|dlog2Ne, N} + 1 bits, and receives a

package containing p and qpt (FQ1\Ωp) from each Sensor p, of the size dlog2(P − 1)e+

|FQ1\Ωp|
⌈
log2br′N ′pc

⌉
bits.

Now, Sensor 1 can obtain a new range
[
RL
Q2

(p, n), RU
Q2

(p, n)
]

on each wp
t (n) for

each n ∈ FQ1 : for n ∈ Ωp, the range remains the same; for n ∈ FQ1\Ωp, the range is

updated according to (2.58). Therefore, we can obtain a new range
[
RL
Q2

(n), RU
Q2

(n)
]

on ft(n) and a new upper bound U(n) on |ft(n)| for each n ∈ FQ1 , in a similar way

as (2.60)-(2.62).

Sensor 1 broadcasts the “refined” set Π = {n : U(n) ≥ βt} to other sensors,

which requires min{|Π|dlog2 |FQ1|e, |FQ1|} bits.

The total number of bits in Step II is

B2 = min{|FQ1|dlog2Ne, N}

+ (P − 1)dlog2(P − 1)e

+
P∑
p=2

|FQ1\Ωp|
⌈
log2br′N ′pc

⌉
+ min{|Π|dlog2 |FQ1|e, |FQ1|}.

(2.63)
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Step III: Up to now, both Sensors 1 and p know Π, and
[
RL
Q2

(p, n), RU
Q2

(p, n)
]

for

each n ∈ Π, so they can determine the minimum number of bits B(p, n) required for

Sensor 1 to know wp
t (n), in the following way:

1) Let BL
e (p, n) and BU

e (p, n) be the exponents of RL
Q2

(p, n) and RU
Q2

(p, n), if they

are not the same, then Sensor p needs to send dlog2(|BU
e (p, n)− BL

e (p, n)| + 1)e bits

representing the exponent of wp
t (n), and all the 52 bits of the significand of wp

t (n),

i.e., B(p, n) = dlog2(|BU
e (p, n)−BL

e (p, n)|+ 1)e+ 52.

2) if BL
e (p, n) = BU

e (p, n), then Sensor 1 knows that the exponent of wp
t (n) is also

BL
e (p, n). Let {Lpn(k)} and {Up

n(k)} (k = 1, 2, · · · , 52) denote the 52-bit significands

of RL
Q2

(p, n) and RU
Q2

(p, n) respectively. Sensor p compares {Lpn(k)} and {Up
n(k)}, and

counts Bsame = max{k : Lpn(j) = Up
n(j),∀j = 1, · · · , k}. In this case, Sensor p only

needs to send the last B(p, n) = 52−Bsame bits of the significand of wp
t (n) to Sensor

1.

Finally, Sensor 1 computes ft(n) for each n ∈ Π, and obtains xt+1 correspond-

ingly. The support set Γ takes min{|Γ|dlog2 |Π|e, |Π|} bits, and xt+1(Γ) takes 64|Γ|

bits to broadcast.

Therefore, the number of bits in Step III is

B3 = (P − 1)dlog2(P − 1)e+
P∑
p=2

∑
n∈Π

B(p, n)

+ min{|Γ|dlog2 |Π|e, |Π|}+ 64|Γ|.

(2.64)

As we can see, the major modification of Q-GCAMP based on SAGC is that in Steps

I and II there is no communication of floating-point numbers other than Lp and Up in

Step I, the two rounds of sifting in Step II leaves a “good” candidate set Π, and in Step

III, we further reduce the communication of floating-point numbers by incorporating

the information of their ranges obtained in the first two steps.

Now we prove the correctness of Q-GCAMP.
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Theorem 6 Given the same threshold βt = τ σ̂t, Q-GCAMP algorithm obtains ex-

actly the same xt+1 as that of the centralized AMP algorithm computed by (2.2).

It is straightforward to prove Theorem 6 due to the fact that for any n ∈ Γ, ft(n) is

calculated since U(n) ≥ |ft(n)| ≥ βt.

2.6 Numerical Results

2.6.1 Simulation Setup

In the simulation, we set N = 10, 000, and choose (κ, ρ) pairs below the phase

transition curve ρ = ρ(κ) = max
τ≥0

ρ(κ, τ) to generate s0 with each entry drawn from

i.i.d. S0 which follows the Bernoulli-Gaussian distribution:

fS0(s) = εφ(s) + (1− ε)δ(s), (2.65)

where ε = κρ denotes the normalized sparsity level of s0, and φ(s) is the PDF of the

standard normal distribution N (0, 1).

The sensing matrix A with i.i.d. entries ∼ N (0, 1
M

) is equally divided into P

parts by rows, with each sensor having a (M/P ) ×N measurement matrix, and the

measurement noise e consists of i.i.d. N (0, σ2) entries. We determine the values of

σ2 based on given signal-to-noise ratios (SNR), which is defined as

SNR = 10 log10

E(‖As0‖2
2)

E(‖e‖2
2)
≈ 10 log10

E(‖s0‖2
2)

E(‖e‖2
2)
. (2.66)

It can be shown that for the Bernoulli-Gaussian in (2.65),

SNR = 10 log10

ρ

σ2
. (2.67)

In order to evaluate how efficient the proposed GC algorithms are in terms of

communication savings, we first consider the naive approach where each Sensor p ≥ 2

sends the whole vector wp
t−1 to Sensor 1 to compute xt, which requires
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Bt,max = (P − 1) [dlog2(P − 1)e+ 64N ]

+ min{‖xt+1‖0dlog2Ne, N}+ 64‖xt+1‖0

(2.68)

bits, where the first line of the right hand side (RHS) is the number of bits required

for sending wp
t and sensor indices p to Sensor 1, and the second line refers to that

used for broadcasting the support and non-zero elements of xt+1 from Sensor 1 to

others. For large N , Bt,max is dominated by the item 64N(P − 1), which does not

depend on t.

We then define the normalized bit rate NRt = Bt/Bt,max for DiAMP, where Bt is

the number of bits required by DiAMP in the t-th iteration.

For every proposed GC algorithm, we tune their parameters θ empirically and

choose the ones that yield the best simulation results (Different algorithms may have

different “optimal” θ). The tuned parameters are given as follows: in GCAMP,

θ = 0.8; in A-GCAMP, when GCAMP is invoked on Wt, we set θ = θ1 = 0.8, and

when when GCAMP is invoked on ∆Wt, we set θ = θ2 = 0.85; in Q-A-GCAMP, we

set θ1 = θ2 = 1.1. In A-GCAMP and Q-A-GCAMP, ρw is set to 0.5.

Regarding when to terminate the algorithm, we use the convergence criterion

|σ̂t+1 − σ̂t| ≤ ζσ̂t, where ζ = 1 × 10−4. In tuning the parameter τ , we set L = 10,

T1 = 100, and T2 = 20. For each (κ, ρ) pair, we have 100 Monte-Carlo simulations.

2.6.2 Accuracy of σ̂2
t in DiAMP

In this section we evaluate the accuracy of the proposed estimator σ̂2
t in (2.16). In

Fig. 7 we compare the proposed estimator σ̂2
t with σ2

t,S obtained by the SE equation

(2.5), and the empirical σ2
t,E =

√
‖xt + ATzt − s0‖2

2/N . As shown in the figure, σ̂2
t is

very close to σ2
t,E, and matches σ2

t,S reasonably well, where the match of σ̂2
t and σ2

t,E

indicates that the proposed σ̂2
t is an accurate estimator of σ2

t , and the match of σ̂2
t
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and σ2
t,S verifies that the simulation setup fits well into the large system limit where

the SE equation holds.
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Fig. 7. Empirical CDF of the absolute values of relative errors of σ̂2
t with respect to

σ2
t,S and σ2

t,E.

2.6.3 Performance of Proposed GC Algorithms

Since the communication cost of GC algorithms is directly related to the sparsity

of xt+1, to observe their relation, we compute the normalized sparsity level of xt+1,

namely εt = ‖xt+1‖0/N .

In Table 6 we list the normalized sparsity levels of xt+1 and the normalized

bit rates of the proposed GC algorithms averaged over iterations, which are ε =
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∑100
t=1 εt/100 and NR =

∑100
t=1Bt/

∑100
t=1 Bt,max respectively. It can be seen that the

trend (increasing or decreasing) of NR agrees well with that of ε, which is not surpris-

ing: the more sparse xt+1 is, the lower communication cost it takes to find S(xt+1).

It can be shown that MTA becomes inefficient when the total score is no longer

monotone with partial scores. On the other hand, the proposed GCAMP works rea-

sonably well and saves roughly 50% of the communication cost compared with MTA.

The adaptive approach A-GCAMP improves another 7%-14% of communication sav-

ings based on GCAMP. With quantization incorporated, Q-A-GCAMP achieves fur-

ther significant reduction of communication cost, ranging from 13%-26%.

More insight can be obtained from Table 6. Note that εt is factually the lower

bound on NRt. This is because the former is the percentage of ft(n)’s with magni-

tudes greater than βt, while the latter can be approximately interpreted from another

perspective — the percentage of ft(n)’s calculated in GC algorithms. In order not to

lose any accuracy, the latter must be greater than or equal to the former, and the

equality holds only if S(xt+1) is known in advance. In this aspect, we can see that

the NR of Q-A-GCAMP comes close to its lower bound ε.

In Fig. 8 we provide more detailed information of the NRt values obtained by

different GC algorithms. The more top-left the empirical CDF curve of NRt is located,

the better communication saving a GC algorithm has achieved. It is clear that Q-A-

GCAMP > A-GCAMP > GCAMP > MTA in terms of communication savings.

2.7 Conclusion

Assuming the sparsity of the original signal to be unknown, several DiAMP al-

gorithms have been proposed for performing compressed sensing in distributed sensor

networks, consisting a series of local and global computations. All of these algorithms

have exactly the same recovery result as the centralized algorithms, given the same
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Table 6. Performance of GC algorithms

ρ = 0.1,SNR = 20dB ρ = 0.2,SNR = 20dB

κ 0.20 0.30 0.40 0.20 0.30 0.40

# of iterations 98.33 96.61 94.54 94.34 93.86 95.18

MTA (%) 96.65 96.40 96.32 109.23 108.47 108.31

GCAMP (%) 42.02 44.11 45.60 53.29 55.57 57.70

A-GCAMP (%) 33.90 36.25 38.15 40.50 43.18 45.43

Q-A-GCAMP (%) 10.05 12.64 14.87 12.94 15.94 18.84

ε̄ (%) 4.23 6.41 8.45 6.13 8.92 11.75

ρ = 0.1,SNR = 10dB ρ = 0.2,SNR = 10dB

κ 0.20 0.30 0.40 0.20 0.30 0.40

# of iterations 83.43 81.58 80.64 75.76 73.94 74.62

MTA (%) 97.03 96.40 96.47 108.52 107.48 107.07

GCAMP (%) 43.77 45.77 47.57 53.23 55.13 57.03

A-GCAMP (%) 33.89 36.44 38.32 40.17 42.37 44.90

Q-A-GCAMP (%) 10.36 13.06 15.37 13.18 15.83 18.59

ε̄ (%) 4.78 7.17 9.40 6.25 9.00 11.84

thresholds. To reduce the communication cost in the GC step for both non-quantized

and quantized data, we developed GCAMP, which is a communication-efficient data-

querying algorithm and outperforms another popular algorithm MTA significantly.

By taking into consideration the correlation of data between adjacent iterations and

incorporating quantization steps, a more sophisticated algorithm Q-A-GCAMP is

developed, which comes close to requiring the minimum bit rates stipulated by the

sparsity of xt+1.
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CHAPTER 3

GAUSSIANITY IN DIAMP

3.1 Introduction

Approximate message passing (AMP) [47], a statistical algorithm originally de-

veloped for compressed sensing (CS) recovery [1], turns out to have more promising

applications for general linear inverse problems, including low-rank matrix comple-

tion [68], non-negative principal component analysis (PCA) [69], and code division

multiple access (CDMA) systems [70, 71], etc. The popularity of AMP is due to the

universality of state evolution (SE) [72], a one-dimensional recursion that determines

AMP’s performance.

Consider the linear inverse problem

y = As0 + w, (3.1)

where s0 ∈ RN is unknown and w ∈ Rn is additive measurement noise, and A ∈ Rn×N

and y ∈ Rn are given, which are known as the sensing matrix and the measurement

respectively. AMP obtains a sequence of estimators {xt}t≥0 for s0, by starting from

an initial estimate x0 = 0 and residual z0 = y, and proceeding as follows:

ut = xt + ATzt, (3.2)

xt+1 = ηt(u
t), (3.3)

zt+1 = y −Axt +
1

κ
γtz

t, (3.4)

where κ = n/N is called the measurement ratio, [·]T denotes transposition, ηt : RN →
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RN is a separable denoiser, i.e.,

ηt(u
t) =

[
ηt(u

t
1), ηt(u

t
2), · · · , ηt(utN)

]T
, (3.5)

and

γt =
1

N

N∑
i=1

η′t(u
t
i), (3.6)

where η′t(u
t
i) denotes the derivative of ηt(u

t
i) with respect to uti.

In AMP literature, it is a common assumption that the sensing matrix A consists

of i.i.d. Gaussian entries with zero-mean and variance 1/n, and the entries of s0 and

w follow i.i.d. S0 ∼ pS0 and W ∼ pW respectively, where W is zero-mean with

variance σ2; ut and zt in (3.2) and (3.4) are called pseudo data and measurement

residual respectively, and 1
κ
γtzt in (3.4) is known as the Onsager term.

The popularity of AMP lies in its theoretical support — state evolution (SE),

which depicts the performance of AMP through an one-dimensional recursive equa-

tion. More specifically, it shows that ut−s0 behaves as N (0, τ 2
t IN) [58], where N (·, ·)

denotes the normal (Gaussian) distribution, IN denotes the N × N identity matrix,

and τ 2
t satisfies

τ 2
t+1 = σ2 +

1

κ
E [ηt(S0 + τtZ)− S0]2 , (3.7)

where Z ∼ N (0, 1) is independent of S0. Note that E [ηt(S0 + τtZ)− S0]2 in (3.7) is

exactly the mean square error (MSE) of xt+1. Therefore, the SE equation in (3.7)

can also be written as

σ2
t+1 =

1

κ
MSE(xt+1) =

1

κ
E [ηt(S0 + τtZ)− S0]2 , (3.8)

and

τ 2
t+1 = σ2 + σ2

t+1. (3.9)
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The Gaussianity of ut − s0 comes from the Onsager term in (3.4), which is the

key difference between AMP and the iterative soft thresholding (IST) algorithm in

[46, 55].

SE makes AMP favorable in two aspects. First, it converts the linear inverse

problem in (3.1) into a sequence of sub-problems in scalar channels:

ut = s0 + θt, with θt ∼ N (0, τ 2
t IN), (3.10)

or simply

Ut = S0 + τtZ, (3.11)

which avoids complicated matrix operations such as inversion, and provides a handful

of choices for the denoiser ηt. For example, if s0 is assumed to be sparse yet with

unknown prior distribution, then the soft thresholding function [47] yields the mini-

max reconstruction MSE [57]; otherwise, if pS0 is given, then the minimum MSE

(MMSE) estimator conditioning on ut in (3.10), or Ut in (3.11) will be the optimal

denoiser in the MSE sense.

Second, the SE equations (3.8) and (3.9) can be performed offline, which makes

the performance of AMP more predictable. For example, an important parameter

in AMP is the compression ratio κ, to determine what κ is good enough in order to

achieve a recovery MSE below a designed threshold, one can find a corresponding

solution by evaluating SE equations with binary search.

3.1.1 Existing Results about SE

In order to show the universality of SE, a generalized algorithm based on AMP

was considered in [58] , which we denote as AMP-G1:

bt = Aft(h
t, s0)− λtgt−1(bt−1,w), and ht+1 = ATgt(b

t,w)− ξtft(ht, s0), (3.12)
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where all the elements of s0 ∈ RN and w ∈ Rn follow i.i.d. pS0 and pW respectively,

A ∈ Rn×N is with entries following i.i.d. N (0, 1/n), ft : RN × RN → RN and gt :

Rn×Rn → Rn are assumed to be separable, i.e., ft(h, s) = [ft(h1, s1), · · · , ft(hN , sN)]T

and gt(b,w) = [gt(b1, w1), · · · , gt(bn, wn)]T , with ft(h, s) and gt(b, w) being Lipschitz

continuous1, and λt and ξt are given by

λt =
N∑
i=1

f ′t(h
t
i, s0,i)/n, and ξt =

n∑
i=1

g′t(b
t
i, wi)/n, (3.13)

where the derivatives are with respect to the first arguments.

Denote

qt = ft(h
t, s0), and mt = gt(b

t,w). (3.14)

It can be shown that the original AMP is a special case of AMP-G1 with

ht+1 = s0 − ut,

bt = w − zt,

qt = s0 − xt,

mt = −zt,

ft
(
ht, s0

)
= ηt−1(s0 − ht)− s0,

gt
(
bt,w

)
= bt −w.

(3.15)

AMP-G1 starts with initial values q0 ∈ RN satisfying some statistical property, and

m−1 = 0, while the original AMP starts with x0 = 0, corresponding to q0 = s0. By

comparison, it is useful to model the initial value q0 in AMP-G1 as a function of s0

and another random vector x0 independent of s0.

By applying a so-called conditioning technique that originates from Spin Glass

1A function f : Rp → Rq is said to be Lipschitz continuous if there exists L > 0
only depending on f such that ∀x,y ∈ Rp, ||f(x)− f(y)|| ≤ L‖x− y‖.
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Theory [73], in [58] it was shown that elements in ht+1 and bt are asymptotically i.i.d.

Gaussian as N →∞ and n/N → κ > 0, with their variances τ 2
t and σ2

t satisfying the

generalized SE:

σ2
t =

1

κ
E [ft(τt−1Z, S0]2 , (3.16)

and

τ 2
t = E [gt(σtZ,W )]2 . (3.17)

The essence of the conditioning technique is to view AMP-G1 as a generator of

linear constraints for A:

Aqt = bt + λtm
t−1,

ATmt = ht+1 + ξtq
t,

(3.18)

Note that AMP-G1 can be divided into two stages: i) given

St,t
4
= {w, s0,q

0,b0,m0,h1,q1, · · · ,bt−1,mt−1,ht,qt},

it obtains bt and mt, and ii) given

St+1,t
4
= St,t ∪ {bt,mt},

it obtains ht+1 and qt+1, and has

St+1,t+1
4
= St+1,t ∪ {ht+1,qt+1},

The proof in [58] is sketched as follows: since A is Gaussian, its conditional

distribution under linear constraints determined by St,t and St+1,t is still Gaussian.

Based on A|St,t and A|St+1,t, one can further obtain the conditional distributions

bt|St,t and ht+1|St+1,t. Since they are linear in A, their conditional distributions

are also Gaussian. Then, one can take the limit N → ∞ and n/N → κ > 0,
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and show that their conditional distributions become irrelevant to St,t and St+1,t

asymptotically, which finishes the proof.

In [74] a Bayesian optimal AMP was proposed, where the denoiser is the minimum-

mean-squared-error (MMSE) estimator, for solving the linear inverse problem in (3.1),

by assuming a prior knowledge of pS0 . In that paper the sensing matrix A is replaced

by a so-called spatially-coupled sensing matrices, where each element is zero-mean

and Gaussian, yet with different variances. In [74] it was shown that SE still holds in

this case, and proved that the Bayesian optimal AMP achieves a mean-squared-error

(MSE) of O(σ2) asymptotically as N → ∞, n/N → κ > 0, and t → ∞, where σ2 is

the variance of noise.

In [75] AMP was further combined with spatially-coupled sensing matrices into

a more general algorithm, which we denote as AMP-G2:

Πt = AFt(Ψ
t,S)− 1

κ
Gt−1(Πt−1,Y)JTψ,t,

Ψt+1 = ATGt(Π
t,Y)− Ft(Ψt,S)JTπ,t,

(3.19)

where A ∈ Rn×N consists of i.i.d. N (0, 1/n) entries, S and Y are N × q and n × q

matrices, with each of their rows si ∈ Rq and yj ∈ Rq following i.i.d. pS and pY

correspondingly, Ft : RN×q × RN×q → RN×q and Gt : Rn×q × Rn×q → Rn×q are

assumed to be row-separable, i.e., Ft(Ψ
t,S) = [f rowt (ψt

1, s1), · · · ,f rowt (ψt
N , sN)]

T
, and

Gt(Π
t,Y) = [growt (πt1,y1), · · · , growt (πtn,yn)]

T
, with f rowt : Rq → Rq and growt :

Rq → Rq being Lipschitz continuous, and Jψ,t ∈ Rq×q and Jπ,t ∈ Rq×q are the

empirical averages of Jacobian of f rowt (ψt
i , si) and growt (πtj,yj) with respect to their
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first arguments, i.e.,

Jψ,t =
1

N

N∑
i=1

OT
ψti
f rowt (ψt

i , si)

=
1

N

N∑
i=1


∂frowt,1 (ψti ,si)

∂ψti,1
· · · , ∂frowt,1 (ψti ,si)

∂ψti,q

...
. . .

...

∂frowt,q (ψti ,si)

∂ψti,1
· · · , ∂frowt,q (ψti ,si)

∂ψti,q

 ,

Jπ,t =
1

n

n∑
i=1

OT
πti
growt (πti ,yi)

=
1

n

n∑
i=1


∂growt,1 (πti ,yi)

∂πti,1
· · · , ∂growt,1 (πti ,yi)

∂πti,q

...
. . .

...

∂growt,q (πti ,yi)

∂πti,1
· · · , ∂growt,q (πti ,yi)

∂πti,q

 .

(3.20)

It can be verified that for the case q = 1, AMP-G2 is the same as AMP-G1. By

applying a conditioning technique similar to [58], in [75] it was shown that rows of

Πt and Ψt+1 are asymptotically Gaussian as N → ∞ and n/N → κ > 0. Finally,

the state-of-art work in [72] showed that SE still holds for AMP-G2 when A consists

of independent zero-mean subgaussian2 entries with variance 1/n.

3.1.2 Our Contribution: State Evolution in Distributed AMP

Recently, the advance of distributed processing techniques has helped increase

more attention to large-scale linear inverse problems, due to its potential to speed up

the recovery process. In our earlier work [41], a distributed AMP (DiAMP) algorithm

was developed, which decomposes ut in (3.2) into a summation of P vectors utp ∈ RN ,

2The definition of subgaussian random variables will be introduced in Section 3.3.1.
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with

utp =


xt + AT

p ztp, if p = 1,

AT
p ztp, otherwise,

(3.21)

where



A1

...

Ap

...

AP


= A, and



zt1

...

ztp

...

ztP


= zt are row partitions of A and zt respectively.

In the designed system, P sensors take the corresponding partitions Ap, and compute

utp, which dissertation AMP running in a parallel pattern. For presentation purposes,

we use some different notations from the previous chapter, for example, Ap instead of

Ap when denoting the p-th row partition of A at most places of this chapter, where

the reason should be straightforward as will be shown later.

On the meantime, the summation of P vectors utp implies inter-sensor commu-

nication, which can be a challenging issue as the problem size goes up. In [76], lossy

compression is introduced in DiAMP in order to save communication cost, where each

sensor quantizes utp into

Q(utp) = utp + vtp, (3.22)

with the quantization error vtp, and sends Q(utp) to the fusion center. If the uniform

scalar quantization is performed and the characteristic function of utp is band limited,

or if vector quantization is performed, it is a good approximation to model vtp as a

random vector with i.i.d. zero-mean elements in addition that vtp is independent of

utp [66, 77].
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Finally, the fusion center obtains

ũt =
P∑
p=1

Q(utp) = ut + vt (3.23)

with vt =
P∑
p=1

vtp independent of ut, and updates the estimation of s0 as

xt+1 = ηt(ũ
t). (3.24)

Furthermore, compared with [41], the computation of utp in [76] is slightly changed:

utp = ωpx
t + AT

p ztp, (3.25)

where ωp = np/n, with np being the number of rows of Ap. The modification was

made because numerical results indicate that utp−ωps0 behaves like a random vector

following N (0, ωpτ
2
t,QIN), where

τ 2
t+1,Q = σ2 +

1

κ
E [ηt(S0 + τt,QZ + Vt)− S0]2 , (3.26)

and Vt has the same distribution as all the elements in vt. As we can see, if there is

no quantization error (Vt = 0), then τ 2
t,Q is exactly the same as that in (3.7). In other

words, SE still holds for DiAMP, even in the presence of quantization error, which is

exactly what we are trying to prove in this dissertation.

In light of the universality of SE for centralized AMP, we have good reason to

conjecture that SE holds for the following more general DiAMP algorithms, which

we denote as DiAMP-G1(G2):
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local computation:

DiAMP-G1


btp = Apq

t − λtgt−1(bt−1
p ,wp),

ht+1
p = AT

p gt(b
t
p,wp)− ωpξtqt,

DiAMP-G2


Πt
p = ApΦ

t − 1
κ
Gt−1(Ψt−1

p ,Yp)J
T
ψ,t,

Ψt+1
p = AT

pGt(Ψ
t
p,Yp)− ωpΦtJTπ,t,

(3.27)

global computation:

DiAMP-G1: qt = ft

(
P∑
p=1

htp,v
t, s0

)
,

DiAMP-G2: Φt = Ft

(
P∑
p=1

Ψt
p,V

t,S

)
,

(3.28)

where vt or Vt accounts for quantization noise, which is assumed to be independent

of ht+1
p or Ψt+1

p , and mutually independent for different t. As we can see, when

vt = 0 or Vt = 0, the proposed DiAMP algorithms are equivalent to centralized

AMP algorithms.

In this dissertation, we will show stronger results for DiAMP than previous work.

For simplicity of illustration, we are only going to prove that DiAMP-G1 has the

following properties: (This proof can be easily extended for DiAMP-G2)

i) In addition to the Gaussianity of ht+1 =
∑P

p=1 ht+1
p and bt in centralized AMP

where there is no quantization noise, we show that each individual ht+1
p and btp are also

asymptotically zero-mean Gaussian with variances ωpτ
2
t and σ2

t respectively, where

σ2
t =

1

κ
E [ft(τt−1Z, Vt, S0)]2 , (3.29)

and

τ 2
t = E [gt(σtZ,W )]2 . (3.30)
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ii) We provide a broader class of sensing matrices than [72] where SE holds for

DiAMP and the centralized AMP. The proof is based on our own developed technique

called augmenting .

Specifically, we have the following theorem:

Theorem 7 For DiAMP-G1 in (3.27) and (3.28), if A ∈ Rn×N , s0 ∈ RN , and

w ∈ Rn satisfy the following conditions:

i) A, s0, and w are independent;

ii) A consists of independent zero-mean entries with variance 1/n, and each row

(column) of A satisfies Lindeberg’s condition3;

iii) The empirical distribution4 of s0, F̂s0(x) converges weakly ( in distribution

) to a probability measure FS0(x) with bounded moments up to the order of 2k − 2

for k ≥ 2 as N → ∞, and the empirical (2k − 2)-th moment of s0, ÊF̂s0
|S0|2k−2 ,∑N

i=1 s
2k−2
0,i /N → EFS0

|S0|2k−2;

iv) The empirical distribution of the initial value q0, F̂q0(x), ∀p ∈ [P ], converges

weakly to a probability measure FQ0(x), with Q0 being a Lipschitz continuous function

of S0 and another random variable X0 independent of S0, and assume that 〈q0,q0〉 →

κσ2
0 and

∑N
i=1 |q0

i |2k−2/N <∞ almost surely;

v) the empirical distribution of wp, F̂wp(x), ∀p ∈ [P ], converges weakly to a

common probability measure FW (x) with bounded moments up to the order of 2k − 2

for k ≥ 2 as np → ∞, where np is the number of rows of Ap, and the empirical

(2k − 2)-th moment of wp, ÊF̂wp
|W |2k−2 ,

∑N
i=1w

2k−2
p,i /np → EFW

|W |2k−2;

vi) vt in (3.28) is independent of A, s0, and w; in addition, all the elements of

vt follow i.i.d. FVt, where Vt are independent for different t,

3Lindeberg’s condition will be introduced in Section 3.3.1.
4Empirical distribution is defined in Section 3.2, Corollary 1.
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then as N → ∞ and n/N → κ > 0 with t, P , ω1, · · · , and ωP fixed, for any pseudo

Lipschitz functions5 ψh : RP+2 → R and ψb : R2 → R of order k, the following holds:

1

N

N∑
i=1

ψh(
[
ht+1

1

]
i
, · · · ,

[
ht+1
P

]
i
,
[
vt
]
i
, [s0]i)

a.s.→

Eψh
(
τt
√
ω1Z

t
1, · · · , τt

√
ωPZ

t
P , Vt, S0

)
,

(3.31)

where Zt
1, · · · , Zt

P ∼ i.i.d. N (0, 1), and

1

np

N∑
i=1

ψb(
[
btp
]
i
, [wp]i)

d→ Eψb
(
σtẐ

t
p,W

)
, (3.32)

where Ẑt
1, · · · , Ẑt

P ∼ i.i.d. N (0, 1).

Moreover, if A only consists of i.i.d. N (0, 1/n) entries, the weak convergences

in (3.31) and (3.32) can be replaced by almost sure convergences.

Our focus in this chapter is to prove Theorem 7.

3.1.3 Organization, Definitions, and Notations

In the following, we will first prove the asymptotic Gaussianity of ht+1
p and

btp, under the case where A consists of i.i.d. N (0, 1/n) entries, by applying similar

techniques in [58] and [75]. Then, we will present our proposed augmenting technique

to show the universality of SE for more general cases, thus finishing the proof of

Theorem 7.

Throughout the proof, we use the following definitions and notations similar to

[58].

Upper-case and lower-case bold letters with (without) superscript and subscript

denote matrices and vectors respectively. [vsupsub ]i, or simply vsupsub,i denotes the i-th

5A function f : Rp → Rq is said to be pseudo Lipschitz continuous of order k
if there exists L > 0 only depending on f such that ∀x,y ∈ Rp, ||f(x) − f(y)|| ≤
L(1 + ‖x‖k−1 + ‖y‖k−1)‖x− y‖.[58]
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element of the vector vsupsub . Similarly, [Msup
sub ]i,j and M sup

sub,i,j both denote the ele-

ment at the i-th row and j-th column of the matrix Msup
sub . f ′(x, · · · ) denotes the

partial derivative of the function f with respect to the first argument x, and for

x = [x1, · · · , xn]T , f(x, · · · ) denotes [f(x1, · · · ), · · · , f(xn, · · · )]T , and f ′(x, · · · ) de-

notes [f ′(x1, · · · ), · · · , f ′(xn, · · · )]T . ‖ · ‖p denotes `p norm, and without specification,

‖ · ‖ denotes `2 norm. Indicator function Ibool or I(bool) returns 1 if bool is true

and 0 otherwise, and IA(x) means I(x ∈ A). δ(x) denotes Dirac Delta function, while

δij means I(i = j), which is the Kronecker delta. 〈·〉 denotes the empirical average

of elements in a vector, while 〈·, ·〉 for u,v ∈ Rn denotes 〈u,v〉 = uTv/n. −→o nt (1)

denotes a sequence of length-t vectors where all the elements converge to 0 almost

surely as n→∞. For simplicity, we will omit the superscript n, and when t = 1, we

use o(1) to denote −→o 1(1). [n] denotes the set {1, 2, · · · , n}. PLk denotes the set of

pseudo Lipschtiz continuous functions of order k.

Define mt
p = gt(b

t
p,wp) and the following:

Ht
p =

[
h1
p| · · · |htp

]
,Mt

p =
[
m0

p| · · · |mt−1
p

]
, (3.33)

Bt
p =

[
b0
p| · · · |bt−1

p

]
,Qt =

[
q0| · · · |qt−1

]
, (3.34)

Xt
p =

[
h1
p + ξ0ωpq

0| · · · |htp + ξt−1ωpq
t−1
]
, (3.35)

Yt
p =

[
b0
p|b1

p + λ1m
0
p| · · · |bt−1

p + λt−1m
t−2
p

]
. (3.36)

It is easy to show that

Xt
p = Ht

p + QtΞt
p,Y

t
p = Bt

p +
[
0|Mt−1

p

]
Λt, (3.37)
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where

Ξt
p = ωp


ξ0

. . .

ξt−1

 , Λt =


λ0

. . .

λt−1

 , (3.38)

further,

Xt2
p = AT

p Mt2
p , Yt1

p = ApQ
t1 , ∀t1, t2. (3.39)

From (3.39) it can be shown that

(Xt2
p )TQt1 = (Mt2

p )TYt1
p = (Mt2

p )TApQ
t1 . (3.40)

Define the following σ-algebras

Sp
t1,t2 , {H

t1
p ,Q

t1 ,v1, · · · ,vt1 ,Bt2
p ,M

t2
p , s0,wp},

and St1,t2 ,
P⋃
p=1

Sp
t1,t2 .

(3.41)

For a full-column matrix M, M† = (MTM)−1MT denotes its pseudo inverse,

span(M) denotes its column space, and PM = MM† and P⊥M = I−PM denote the

projectors onto span(M), and the orthogonal complement of span(M) respectively.

Based on the above notations, we can write

qt = qtq + qt⊥, mt
p = mt

p,q + mt
p,⊥, (3.42)

where

qtq
4
= PQtqt, qt⊥

4
= P⊥Qtqt,

mt
p,q
4
= PMt

p
mt

p, mt
p,⊥

4
= P⊥Mt

p
mt

p.

(3.43)

By definition, we have

(Qt)Tqt⊥ = 0, (Mt
p)
Tmt

p,⊥ = 0, (3.44)
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and

mt
p,q = Mt

pα
t
p, qtq = Qtβt, (3.45)

where

αtp =
[
α0
p, α

1
p, · · · , αt−1

p

]T
= (Mt

p)
†mt

p,

βt = [β0, β1, · · · , βt−1]T = (Qt)†qt.

(3.46)

Further, define

Q̃t = Qt

[
(Qt)TQt

N

]− 1
2

and M̃t
p = Mt

p

[
(Mt

p)
TMt

p

np

]− 1
2

,

it is easy to show that

Q̃t(Q̃t)T = NPQt , M̃t
p(M̃

t
p)
T = npPMt

p
, (3.47)

and

(Q̃t)T Q̃t = NIt, (M̃t
p)
TM̃t

p = npIt, (3.48)

i.e., columns of Q̃t/
√
N and M̃t

p/
√
np form orthonormal basis of span(Qt) and span(Mt

p)

respectively.

3.2 Proof for i.i.d. Gaussian Sensing Matrices

In this section, we focus on DiAMP where A consists of i.i.d. Gaussian entries.

In order to show that Theorem 7 holds for this case, we first need to prove a more

thorough lemma, similar to Lemma 1 in [58].

Lemma 4 For DiAMP-G1, given the sequence {σ2
t } and {τ 2

t } generated according to

(3.29) and (3.30), where A, s0, wp, q0, and vt satisfy all the conditions in Theorem

7, and that A consists of i.i.d. N (0, 1/n) entries, the following holds:
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(a)

ht+1
p |S

p
t+1,t

d
= Ht

pα
t
p + ÃT

p mt
p,⊥ + Q̃t+1−→o t+1(1)

=
t−1∑
i=0

αiph
i+1
p + ÃT

p mt
p,⊥ + Q̃t+1−→o t+1(1),

btp|S
p
t+1,t

d
= Bt

pβ
t + Ãpq

t
⊥ + M̃t

p
−→o t(1)

=
t−1∑
i=0

βib
i
p + Ãpq

t
⊥ + M̃t

p
−→o t(1),

(3.49)

(b) for any φh, φb ∈ PLk,

lim
N→∞

1

N

N∑
i=1

φh
(
h1

1,i, · · · , h1
P,i, h

2
1,i, · · · , h2

P,i, · · · ,

ht+1
1,i , · · · , ht+1

P,i , v
1
i , · · · , vti , s0,i

)
a.s.
= E

{
φh
(
τ0

√
ω1Z

0
1 , · · · , τ0

√
ωPZ

0
P , · · · ,

τt
√
ω1Z

t
1, · · · , τt

√
ωPZ

t
P , V

0, · · · , V t, S0

)}
,

(3.50)

where Zt
p are mutually independent for different p.

lim
n→∞

1

np

np∑
i=1

φb
(
b0
p,i, b

1
p,i, · · · , btp,i, wp,i

)
a.s.
= E

{
φb

(
σ0Ẑ

0
p , · · · , σtẐt

p,Wp

)}
,

(3.51)

where Ẑt
p are mutually independent for different p.

(c) ∀0 ≤ r, s ≤ t,

lim
N→∞

〈
hr+1
p ,hs+1

p

〉 a.s.
= ωp lim

n→∞

〈
mr

p,m
s
p

〉
, (3.52)

lim
n→∞

〈
brp,b

s
p

〉 a.s.
=

1

κ
lim
n→∞

〈qr,qs〉 . (3.53)
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(d) ∀0 ≤ r, s ≤ t, ∀φ ∈ PLk,

lim
N→∞

〈
hr+1
p , φ

(
P∑
q=1

hs+1
q ,vs, s0

)〉
a.s.
=

lim
N→∞

〈
hr+1
p ,hs+1

p

〉〈
φ′

(
P∑
q=1

hs+1
q ,vs, s0

)〉
,

(3.54)

lim
n→∞

〈
brp, φ(bsp,wp)

〉 a.s.
= lim

N→∞

〈
brp,b

s
p

〉 〈
φ′(bsp,wp)

〉
. (3.55)

(e) for ` = k − 1,

lim sup
N→∞

1

N

N∑
i=1

(
[
ht+1
p

]
i
)2` <∞, (3.56)

lim sup
n→∞

1

np

np∑
i=1

(
[
btp
]
i
)2` <∞. (3.57)

(f) 0 ≤ r ≤ t,

lim
N→∞

〈
hr+1
p ,q0

〉 a.s.
= 0. (3.58)

(g) 0 ≤ r, s ≤ t,

lim
N→∞

〈
hr+1
p ,hs+1

q

〉 a.s.
= 0,∀p 6= q. (3.59)

(h) ∀0 ≤ r ≤ t, 0 ≤ s ≤ t− 1, ∃ρr, ζs > 0, s.t.

lim
N→∞

〈qr⊥,qr⊥〉 > ρr, (3.60)

lim
n→∞

〈
ms

p,⊥,m
s
p,⊥
〉
> ζs. (3.61)

It can be shown that under the condition that A consists of i.i.d. N (0, 1/n), Theorem

7 holds immediately once proving Lemma 4, as it is a special case of Lemma 4 (b).

In Lemma 4, denote Bt as all the conclusions regarding btp and mt
p conditioning

on Sp
t,t, and denote Ht+1 as all the conclusions regarding ht+1

p and qt conditioning on

Sp
t+1,t. We apply induction to prove Lemma 4, and follow the same flow of proof as

in [58]: B0 → H1 → · · · → Bt → Ht+1.
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3.2.1 Important Results In Literature

The following theoretical results in literature are important for proving Lemma

4.

Lemma 5 (Lemma 2 in [58]) For deterministic vectors u ∈ RN and vp ∈ Rnp and

a random matrix Ãp ∈ Rnp×N consisting of i.i.d. N (0, 1/n) entries, the following

arguments hold:

i) vTp Ãpu
d
= Z‖u‖‖vp‖/n, where Z ∼ N (0, 1);

ii) ‖Ãpu‖2 a.s.
= np‖u‖2/n = ωp‖u‖2;

iii) For a full-column rank matrix Dp ∈ Rnp×d satisfying DT
p Dp = nId, we have

PDpÃpu
d
= ‖u‖Dpx with x→ 0 ∈ Rd almost surely.

Lemma 6 (Lemma 10 in [58]) Let A be a matrix consisting of i.i.d. zero-mean

Gaussian entries. Given X, Y, M, Q, and the linear constraints AQ = Y and

ATM = X, the conditional distribution of A satisfies

A|{X,Y,M,Q} = (XM†)T + P⊥MYQ† + P⊥MÃP⊥Q

= YQ† + (XM†)TP⊥Q + P⊥MÃP⊥Q,

where Ã is an independent copy of A, and P⊥M and P⊥Q are the orthogonal projector

onto the complimentary column spaces of M and Q respectively.

Theorem 8 ( Theorem 2.1 in [78], strong low of large numbers ) Let {Xn,i} (i =

1, · · · , n and n = 1, 2, · · · ) be a triangular array of zero-mean random variables with

Xn,i being mutually independent for same n and different i, and let φ(t) be a positive

even function such that φ(t)/|t|2 is increasing and φ(t)/|t|3 is decreasing on (0,∞).

If {Xn,i} satisfies
∞∑
n=1

n∑
i=1

Eφ(Xn,i)

φ(n)
<∞, (3.62)
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and
∞∑
n=1

[
n∑
i=1

E(X2
n,i)

n2

]2p

<∞ (3.63)

for some positive integer p, then

lim
n→∞

1

n

n∑
i=1

Xn,i
a.s.
= 0. (3.64)

Lemma 7 ( Theorem 3 in [58] ) If the triangular array {Xn,i} in Theorem 8 satisfies

n∑
i=1

E|Xn,i|2+ρ ≤ cn
2+ρ
2 (3.65)

for any ρ ∈ [0, 1) and some c > 0 independent of n, then the strong law of large

numbers (SLLN) holds.

It is straightforward to show the correctness of Lemma 7 when noticing that (3.65)

implies (3.62) and (3.63).

Lemma 8 (Stein’s Lemma, [79]) For two zero-mean and jointly Gaussian random

variables X and Y , let f : R→ R be any function such that E [f ′(Y )] and E[Xf(Y )]

exist, then

E[Xf(Y )] = Cov(X, Y )E [f ′(Y )] . (3.66)

Lemma 9 (Equation 1.4.14-18 in [80], fundamental equation of linear estimation

) For two jointly Gaussian random vectors x ∈ Rm and y ∈ Rn, if the covariance

matrix of their joint distribution is given by

Σ(x,y) =

Pxx Pxy

Pyx Pyy

 , (3.67)

where Pxx ∈ Rm×m and Pyy ∈ Rn×n are invertible, then the covariance matrix of the

conditional distribution p(x|y) is

Σx|y = Pxx −PxyP
−1
yy Pyx. (3.68)
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Based on Lemma 9, we introduce the following definition.

Pseudo conditional auto-correlation: For two random vectors x and y with

E
[
xxT

]
= Pxx, E

[
yyT

]
= Pyy, and E

[
xyT

]
= Pxy,

we define the pseudo conditional auto-correlation (PCAC) of x given y as

PCor(x|y) = Pxx −PxyP
−1
yy Pyx, (3.69)

similarly, the PCAC of y given x is defined as

PCor(y|x) = Pyy −PyxP
−1
xxPxy. (3.70)

Lemma 10 (Lemma 7 in [58]) For a sequence of correlated N (0, 1) random variables

Z1, Z2, · · · , Zt, suppose that Var(Zi|Z1, · · · , Zi−1) ≥ c > 0 for any i = 1, · · · , t. Let

Y be another random variable independent of Z1, Z2, · · · , Zt, and let Xi = f(Zi, Y ),

i = 1, · · · , t, where f : R2 → R is a Lipschitz continuous function, and the probability

of f(Z, Y ) being non-constant with respect to Y is greater than 0, then there exists

ct > 0 independent of Z1, Z2, · · · , Zt such that

PCor(Xt|X1, · · · , Xt−1) > ct. (3.71)

Proposition 2 For any x ∈ Rn and q > p > 0,

‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q.

3.2.2 Induction to Prove Lemma 4

Denote Bt and Ht+1 as all the conclusions in Lemma 4 given Sp
t,t and Sp

t+1,t

respectively. The proof is done by induction, which has the same flow as the proof
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of Lemma 1 in [58]. First, we prove the base cases B0 and H1. Then, we prove that

Bt holds based on the induction hypothesis B0, · · · , Bt−1, H1, · · · , and Ht, and prove

that Ht+1 holds based on the induction hypothesis B0, · · · , Bt−1, Bt, H1, · · · , and Ht.

The proof literally is presented in the following four steps: B0, H1, Bt, and Ht+1.

Step I: B0

We prove B0 in the order of (a), (e), (c), (b), (d) and (h).

B0 a) Trivial since Sp
0,0 = {q0, s0,wp}, according to (3.27), we have

b1
p = Apq

0. (3.72)

B0 (e) Conditioning on Sp
0,0,

1

N

np∑
i=1

(
[
b0
p

]
i
)2` =

1

np

np∑
i=1

{[
Apq

0
]2`
i

}
a.s.
=

1

np

np∑
i=1

{[
Zi‖q0‖√

N

]2`
}

=
1

np

np∑
i=1

{
Z2`
i

[〈
q0,q0

〉]`}
<∞.

(3.73)

B0 (c) Applying Lemma 5,

〈
b0
p,b

0
p

〉
=
‖b0

p‖2

np
=
‖Apq

0‖2

np

a.s.→ ωp‖q0‖2

np
=
〈q0,q0〉

κ
.

B0 (b) Define

Xnp,i = φb
(
b0
p,i, ?

)
− EAp

{
φh
([

Apq
0
]
i
, ?
)}
,

where we use ? to replace wp,i.
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We want to show that

np∑
i=1

EAp |Xnp,i|2+ρ ≤ c(np)
2+ρ
2

for any ρ ∈ [0, ) some c independent of Ap, so that Lemma 7 can be applied to show

that

lim
n→∞

1

np

np∑
i=1

Xnp,i
a.s.
= 0.

Using Lemma 5, we have

b0
p,i =

[
Apq

0
]
i
∼ i.i.d.

‖q0‖√
N
Zi, Zi ∼ N (0, 1),

and

EAp

{
φb
([

Apq
0
]
i
, wp,i

)}
= EZ

{
φb

(
Zi√
N
‖q0‖, wp,i

)}
.

Since φb(·, ·) is pseudo Lipschitz continuous of order k, we have

EAp|Xnp,i|2+ρ = EZ̃i


∣∣∣∣∣φb
(

Z̃i√
N
‖q0‖, ?

)
− EZiφb

(
Zi√
N
‖q0‖, ?

)∣∣∣∣∣
2+ρ


=EZ̃i

∣∣∣∣∣∣
+∞∫
−∞

[
φb

(̃
zi‖q0‖√

N
, ?

)
− φb

(
zi‖q0‖√

N
, ?

)]
e−

1
2
z2i

√
2π

dzi

∣∣∣∣∣
2+ρ

≤LEZ̃i


+∞∫
−∞

|z̃i − zi|

[
1+

(
‖q0‖2

N
z̃2
i + w2

p,i

) k−1
2

+

(
‖q0‖2

N
z2
i + w2

p,i

) k−1
2

]
e−

1
2
z2i

√
2π

dzi

}2+ρ

.

Applying Proposition 2 for x =
(
‖q0‖2z̃2

i /N,w
2
p,i

)
or
(
‖q0‖2z2

i /N,w
2
p,i

)
, p = 1
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and q = (k − 1)/2, we have

EAp|Xnp,i|2+ρ

≤LEZ̃i


+∞∫
−∞

|z̃i − zi|
[
1+ 2

k−3
2

(〈
q0,q0

〉 k−1
2
∣∣z̃k−1
i

∣∣+
∣∣wk−1

p,i

∣∣)

+2
k−3
2

(〈
q0,q0

〉 k−1
2
∣∣zk−1
i

∣∣+
∣∣wk−1

p,i

∣∣)]e− 1
2
z2i

√
2π

dzi

}2+ρ

.

After integration, the above inequality has the following form:

EAp|Xnp,i|2+ρ ≤

EZ̃i


[
1 〈q̃0, q̃0〉

k−1
2 |wp,i|k−1

]
C1



1

|z̃i|

|z̃i|k−1

|z̃i|k





2+ρ

.

Applying Proposition 2 again for p = 1 and q = 2 + ρ, we can move the power

2 + ρ inside, i.e.,

EAp|Xnp,i|2+ρ ≤

EZ̃i


[
1,
〈
q0,q0

〉 (k−1)(2+ρ)
2 , |wp,i|(k−1)(2+ρ)

]
C2



1

|z̃i|2+ρ

|z̃i|(k−1)(2+ρ)

|z̃i|k(2+ρ)




= c0 + c1

〈
q0,q0

〉 (k−1)(2+ρ)
2 + c2|wp,i|(k−1)(2+ρ).

Since

np∑
i=1

|wp,i|(k−1)(2+ρ) =

np∑
i=1

{
|wp,i|2(k−1)

} 2+ρ
2 ≤

{
np∑
i=1

|wp,i|2(k−1)

} 2+ρ
2

, (3.74)
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we have

np∑
i=1

EAp |Xnp,i|2+ρ ≤
[
c0 + c1

(〈
q0,q0

〉k−1
) 2+ρ

2

]
np

+ c2


np∑
i=1

|wp,i|2(k−1)

np


2+ρ
2

(np)
2+ρ
2

(3.75)

By assumption of the empirical distribution of q0 and wp, we know that

(〈
q0,q0

〉k−1
) 2+ρ

2
<∞, (3.76)

and 
np∑
i=1

|wp,i|2(k−1)

np


2+ρ
2

→
(
EW 2k−2

) 2+ρ
2 <∞, (3.77)

therefore

np∑
i=1

EAp|Xnp,i|2+ρ ≤ c(np)
2+ρ
2

for any ρ ∈ [0, 1) and some c > 0 independent of Ap.

Applying Lemma 7, we have

lim
np→∞

1

np

np∑
i=1

φb

([
b0
p

]
i
, wp,i

)
a.s.
= lim

np→∞

1

np

np∑
i=1

EZφb
(√
〈q0,q0〉Z,wp,i

)
.

(3.78)

Let

ψ(wp,i) = EZφb
(√
〈q0,q0〉Z,wp,i

)
.
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Applying Lemma 4 in [58], we have

lim
np→∞

1

np

np∑
i=1

ψ(wp,i)
a.s.
= EW{ψ(W )}, (3.79)

i.e.,

lim
np→∞

1

np

np∑
i=1

φb
(
b0
p,i, wp,i

) a.s.
= lim

np→∞

1

np

np∑
i=1

EZφb
(√
〈q0,q0〉Ẑ0

p , wp,i

)
a.s.
= EWEZφb

(
τ0Ẑ

0
p ,W

)
.

(3.80)

Note that Ẑ0
p are mutually independent for different p, since the corresponding Ap

are mutually independent.

Now we can show the following result, which is one intuitive indication of the

Gaussianity of btp and ht+1
p .

Corollary 1 The empirical distributions of btp and ht+1
p , defined as

F̂ t
b (x) =

1

np

np∑
i=1

I(−∞,x]

(
btp,i
)

and

F̂ t+1
h (x) =

1

N

N∑
i=1

I(−∞,x]

(
ht+1
p,i

)
respectively, converges almost surely to

Φtb(x) = P(σtZ ≤ x)

and

Φt+1
h (x) = P(

√
ωpτtZ ≤ x)

as N →∞ and n/N → κ > 0.

Proof: Considering the base case B0, for each given x, I(−∞,x]

(
b0
p,i

)
is not a continuous

function of b0
p,i. However, we can construct the following Lipschitz continuous function
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series

φkx
(
b0
p,i

)
=



1 if b0
p,i < x− 1

2k
,

1
2
− k(b0

p,i − x) if
∣∣b0
p,i − x

∣∣ ≤ 1
2k
,

0 if b0
p,i > x+ 1

2k
.

(3.81)

It can be shown that lim
k→∞

φkx
(
b0
p,i

)
= I(−∞,x]

(
b0
p,i

)
.

Now we apply B0 (b) for φkx
(
b0
p,i

)
:

lim
np→∞

1

np

np∑
i=1

φkx
(
b0
p,i

) a.s.
= Eφkx

(
τ0Ẑ

0
p

)
. (3.82)

Let k →∞, the left hand side becomes

1

np

np∑
i=1

I(−∞,x]

(
b0
p,i

)
= F̂ 0

b (x),

while the right hand side becomes

E
{
I(−∞,x] (σ0Z)

}
= P(σ0Z ≤ x) = Φ0

b(x).

Therefore, F̂ 0
b (x)

a.s.→ Φ0
b(x).

Similarly, on proving Bt and Ht+1, we can apply the similar technique to obtain

F̂ t
b (x)

a.s.→ Φtb(x)

and

F̂ t+1
h (x)

a.s.→ Φt+1
h (x).

B0 (d) Using B0 (b) for φb(b
0
p,i) = b0

p,iφ(b0
p,i, wp,i) and applying Lemma 8,

lim
n→∞

〈
b0
p,wp

〉 a.s.
= E{σ0Ẑpφ(σ0Ẑp,W )} = σ2

0E{φ′(σ0Ẑp,W )}. (3.83)

Note: xφ(x, ·) ∈ PL(k).

By Corollary 1, empirical distribution of (b0
p,wp) converges weakly to (σ0Ẑ,W ),
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applying Lemma 5 in [58], we have

lim
n→∞

〈
φ′(b0

p,wp)
〉 a.s.

= E{φ′(σ0Ẑp,W )}. (3.84)

Therefore,

〈
b0
p,φ(b0

p,wp)
〉 a.s.

= τ 2
0

〈
φ′(b0

p,wp)
〉 a.s.

=
〈
b0
p,b

0
p

〉 〈
φ′(b0

p,wp)
〉
.

B0 (h) Trivial since m0
p = m0

p,⊥, lim
n→∞

〈
m0

p,⊥,m
0
p,⊥
〉 a.s.

= τ 2
0 > 0.

Step II: H1

Before proving H1, we first show the following useful proposition.

Proposition 3 Define ξtp =
〈
g′t(b

t
p,wp)

〉
, then as N → ∞, n/N → κ > 0 with t, P

and ω1, · · · , ωP fixed,

ξtp
a.s.
= ξt, ∀p ∈ [P ] , (3.85)

where ξt is defined in (3.13).

Proof: By definition, we know that

ξt =
P∑
p=1

ωpξ
t
p. (3.86)

For t = 0, apply B0 (b) for φb(x,w) = g′0(x,w), we have

ξ0
p = g′0(b0

p,wp)
a.s.
= Eg′0(σ0Z,W ), ∀p ∈ [P ] . (3.87)

Therefore,

ξ0 =
P∑
p=1

ωpξ
0
p

a.s.
= Eg′0(σ0Z,W )

a.s.
= ξ0

p , ∀p ∈ [P ] . (3.88)

For t > 0, once proving Bt (b), we will have the same conclusion that ξtp
a.s.
=

ξt, ∀p ∈ [P ].
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Now we prove H1, in the order of (a), (c), (e), (f), (g), (b), (d), and (h).

H1 (a) Noting that Sp
1,0 = {b0

p,m
0
p,q

0, s0,wp}, applying Lemma 6,

Ap|Sp
1,0

d
=

b0
p(q

0)T

‖q0‖2
2

+ ÃpP
⊥
q0 , (3.89)

∴ h1
p|S

p
1,0

d
= P⊥q0(Ãp)

Tm0
p +

q0(b0
p)
Tm0

p

‖q0‖2
2

− ξ0ωpq
0

= P⊥q0(Ãp)
Tm0

p +
np
〈
b0
p,m

0
p

〉
N 〈q0,q0〉

q0 − ξ0ωpq
0

(3.90)

Apply B0 (d) for φb(x,w) = g0(x,w), and then apply B0 (c) and Proposition 3,

〈
b0
p,m

0
p

〉 a.s.
=
〈
b0
p,b

0
p

〉 〈
g′0(b0

p,wp)
〉

a.s.
=

1

κ

〈
q0,q0

〉
ξ0
p

a.s.
=

1

κ

〈
q0,q0

〉
ξ0,

(3.91)

i.e., 〈
b0
p,m

0
p

〉
=

1

κ

〈
q0,q0

〉
ξ0 +−→o 1(1). (3.92)

Therefore,

h1
p|S

p
1,0

d
= P⊥q0(Ãp)

Tm0
p + κωp

1
κ
〈q0,q0〉 ξ0 +−→o 1(1)

〈q0,q0〉
q0

− ξ0ωpq
0 = P⊥q0(Ãp)

Tm0
p +−→o 1(1)q0.

(3.93)

Apply Lemma 5 iii),

P⊥q0(Ãp)
Tm0

p = (Ãp)
Tm0

p −Pq0(Ãp)
Tm0

p

= (Ãp)
Tm0

p +−→o 1(1)q̃0.

(3.94)

Since ‖q0‖2
2 → Nκσ2

0 has the same order of ‖q̃0‖2
2 = N , we finally show that

h1
p|S

p
1,0

d
= ÃT

p m0
p +−→o 1(1)q0 d

= ÃT
p m0

p +−→o 1(1)q̃0. (3.95)
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H1 (c) Apply B0 (b) for φb(x,w) = g0(x,w)2,

lim
n→∞

〈
m0

p,m
0
p

〉 a.s.
= E [g0(σ0Zp,Wp)] = τ 2

0 <∞, (3.96)

then apply H1 (a) and Lemma 5 ii),

lim
N→∞

〈
h1
p,h

1
p

〉
|Sp

1,0
d
= lim

N→∞

‖(Ãp)
Tm0

p +−→o 1(1)q0‖2

N

= lim
N→∞

‖(Ãp)
Tm0

p‖2

N
a.s.
= lim

N→∞
ωp
〈
m0

p,m
0
p

〉
= ωpτ

2
0 .

(3.97)

H1 (e) Apply H1 (a), Proposition 2 and Lemma 5,

1

N

N∑
i=1

(h1
p,i)

2`|Sp
1,0

d
=

1

N

N∑
i=1

([
ÃT
p m0

p

]
i
+−→o 1(1)q0

i

)2`

≤ 22`

2

1

N

N∑
i=1

{[
ÃT
p m0

p

]2`

i
+
[−→o 1(1)q0

i

]2`}
a.s.
=

22`

2

1

N

N∑
i=1

{[
Zi‖m0

p‖√
n

]2`

+
[−→o 1(1)q0

i

]2`}

=
22`

2

1

N

N∑
i=1

{
Z2`
i

[
ωp
〈
m0

p,m
0
p

〉]`
+−→o 1(1)(q0

i )
2`
}
.

Since
N∑
i=1

Z2`
i /N < ∞, and according to (3.96) and the assumption of empirical

distribution of q0, we know that

1

N

N∑
i=1

(h1
p,i)

2` <∞,∀` ≤ k. (3.98)
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H1 (f) Apply H1 (a) and Lemma 5,

lim
N→∞

〈
h1
p,q

0
〉 d

= lim
N→∞

〈
ÃT
p m0

p +−→o 1(1)q0,q0
〉

= lim
N→∞

(m0
p)
T Ãpq

0

N
= lim

N→∞

Z‖m0
p‖‖q0‖

N
√
n

= lim
N→∞

Z
√
ωp
〈
m0

p,m
0
p

〉
〈q0,q0〉

√
N

a.s.
= 0.

(3.99)

H1 (g)

lim
N→∞

〈
h1
p,h

1
`

〉 d
=

lim
N→∞

〈
ÃT
p m0

p +−→o 1(1)q0, ÃT
` m0

` +−→o 1(1)q0
〉

d
= lim

N→∞

1

N

N∑
i=1

Zp,iZ`,i‖m0
p‖‖m0

`‖
n

= lim
N→∞

ωp
N

N∑
i=1

Zp,iZ`,i

√〈
m0

p,m
0
p

〉
〈m0

` ,m
0
`〉

a.s.
= 0.

(3.100)

H1 (b) Apply H1 (a), we know that

φh
(
h1

1,i, · · · , h1
P,i, s0,i

)
|S1,0

d
=

φh

([
ÃT

1 m0
1

]
i
+−→o 1(1)q0

i , · · · ,
[
ÃT
Pm0

P

]
i
+−→o 1(1)q0

i , s0,i

)
.

First, we want to show that

lim
N→∞

N∑
i=1

φh

([
ÃT

1 m0
1

]
i
+−→o 1(1)q0

i ,

· · · ,
[
ÃT
Pm0

P

]
i
+−→o 1(1)q0

i , s0,i

)
a.s.
=

lim
N→∞

φh

([
ÃT

1 m0
1

]
i
, · · · ,

[
ÃT
Pm0

P

]
i
, s0,i

)
.

(3.101)

Let

ai =
([

ÃT
1 m0

1

]
i
+−→o 1(1)q0

i ,

· · · ,
[
ÃT
Pm0

P

]
i
+−→o 1(1)q0

i , s0,i

)
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and

ci =
([

ÃT
1 m0

1

]
i
, · · · ,

[
ÃT
Pm0

P

]
i
, s0,i

)
,

by the assumption of φh, we have

|φh(ai)− φh(ci)| ≤ L
{

1 + ‖ai‖k−1 + ‖ci‖k−1
}
|q0
i |−→o 1(1).

Let p = [p1, · · · , pN ], where pi = 1 + ‖ai‖k−1 + ‖ci‖k−1, according to Cauchy-

Schwartz inequality,

pTq0 ≤ ‖p‖‖q0‖ =

√√√√ N∑
i=1

(1 + ‖ai‖k−1 + ‖ci‖k−1)2‖q0‖

≤

√√√√3
N∑
i=1

(1 + ‖ai‖2k−2 + ‖ci‖2k−2)‖q0‖.

Therefore,

1

N

N∑
i=1

|φh(ai)− φh(ci)| ≤
L

N
pTq0−→o 1(1)

≤ L

√√√√3
N∑
i=1

(
1 + ‖ai‖2k−2 + ‖ci‖2k−2

N

)√
〈q0,q0〉−→o 1(1).

In order to show that
∑N

i=1 |φh(ai)− φh(ci)|/N
a.s.
= 0, we need to show that

1

N

N∑
i=1

‖ai‖2k−2 <∞, and
1

N

N∑
i=1

‖ci‖2k−2 <∞. (3.102)
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For the former, applying Proposition 2 and Lemma 5,

1

N

N∑
i=1

‖ai‖2k−2 =

1

N

N∑
i=1

{
P∑
p=1

[(
ÃT
p m0

p

)
i
+−→o 1(1)q0

i

]2

+ |s0,i|2
}k−1

≤ 2k−1

2

1

N

N∑
i=1

{
P∑
p=1

[
ÃT
p m0

p

]2k−2

i
+ |s0,i|2k−2

}
=

2k−1

2

1

N

N∑
i=1

{
P∑
p=1

(ωp
〈
m0

p,m
0
p

〉
Z2
p,i)

k−1 + |s0,i|2k−2

}
<∞.

Similarly,

1

N

N∑
i=1

‖ci‖2k−2 =
1

N

N∑
i=1

{
P∑
p=1

[
ÃT
p m0

p

]2

i
+ |s0,i|2

}k−1

≤ 2k−1

2

1

N

N∑
i=1

{
P∑
p=1

[
ÃT
p m0

p

]2k−2

i
+ |s0,i|2k−2

}
<∞.

Therefore,

lim
N→∞

1

N

N∑
i=1

φh
(
h1

1,i, · · · , h1
P,i, s0,i

) a.s.
=

lim
N→∞

1

N

N∑
i=1

φh

([
ÃT

1 m0
1

]
i
, · · · ,

[
ÃT
Pm0

P

]
i
, s0,i

)
.

On the other hand, following the similar technique in proof of B0 (b), we can obtain

lim
N→∞

1

N

N∑
i=1

φh

([
ÃT

1 m0
1

]
i
, · · · ,

[
ÃT
Pm0

P

]
i
, s0,i

)
a.s.
= lim

N→∞

1

N

N∑
i=1

EZφh
(√

ω1 〈m0
1,m

0
1〉Z0

1 ,

· · · ,
√
ωP 〈m0

P ,m
0
P 〉Z

0
P , s0,i

)
.

(3.103)
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According to (3.96), we further have

lim
N→∞

1

N

N∑
i=1

φh

([
ÃT

1 m0
1

]
i
, · · · ,

[
ÃT
Pm0

P

]
i
, s0,i

)
a.s.
= lim

N→∞

1

N

N∑
i=1

EZφh
(√

ω1τ0Z
0
1 , · · · ,

√
ωP τ0Z

0
P , s0,i

)
.

Let ψ(s0,i) = EZφh
(√

ω1τ0Z
0
1 , · · · ,

√
ωP τ0Z

0
P , s0,i

)
, by the assumption of empiri-

cal distribution of s0, we can apply Lemma 4 in [58] to obtain

lim
N→∞

1

N

N∑
i=1

ψ(s0,i)
a.s.
= ES0{ψ(S0)}, (3.104)

i.e.,

lim
N→∞

1

N

N∑
i=1

φh
(
h1

1,i, · · · , h1
P,i, s0,i

)
a.s.
= ES0EZφh

(√
ω1τ0Z

0
1 , · · · ,

√
ωP τ0Z

0
P , S0

)
.

(3.105)

H1 (d) Using H1 (b) for φh
(
h1

1,i, · · · , h1
P,i, s0,i

)
= h1

p,iφ

(
P∑
q=1

h1
q,i, s0,i

)
and applying

Lemma 8, we have

lim
N→∞

〈
h1
p, φ

(
P∑
q=1

h1
q, s0

)〉

a.s.
= E

{
√
ωpτ0Zpφ

(
P∑
q=1

√
ωqτ0Zq, S0

)}

= ωpτ
2
0E

{
φ′

(
P∑
q=1

√
ωqτ0Zq, S0

)}
.

(3.106)

On the other hand, let φh(h
1
1,i, · · · , h1

P,i, s0,i) = h1
p,i, we have φ′(h1

p,i, s0,i) = 1 every-

where, so

lim
N→∞

〈
h1
p,h

1
p

〉 a.s.
= ωpτ

2
0 . (3.107)

Applying Corollary 1, we know that the empirical distribution of (h1
p, s0) →
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(
√
ωpτ0Z, S0), according to Lemma 5 of [58],〈

φ′

(
P∑
q=1

h1
q, s0

)〉
a.s.→ E

{
φ′

(
P∑
q=1

√
ωqτ0Zq, S0

)}
. (3.108)

Now, by (3.106), (3.107), and (3.108), we have

lim
N→∞

〈
h1
p,φ

(
P∑
q=1

h1
q, s0

)〉
a.s.
=
〈
h1
p,h

1
p

〉〈
φ′

(
P∑
q=1

h1
q, s0

)〉
.

H1 (h) holds since for t = 0, q0 = q0
⊥, and lim

N→∞
〈q0
⊥,q

0
⊥〉 = κσ2

0 > 0.

Step III: Bt

In this step we prove in the order of (h), (a), (e), (c), (b), and (d). Bt (h) Using

Bt−1 (b) for

φb(b
r
p,i, b

s
p,i, wp,i) = gr(b

r
p,i, wp,i)gs(b

s
p,i, wp,i), (3.109)

where 0 ≤ r, s ≤ t− 1, we have

lim
n→∞

〈
mr

p,m
s
p

〉
= lim

n→∞

1

np

np∑
i=1

gr(b
r
p,i, wp,i)gs(b

s
p,i, wp,i)

a.s.
= E{gr(σrẐr

p ,W )gs(σsẐ
s
p ,W )}.

(3.110)

Then, by definition of mt−1
p,⊥ ,

〈
mt−1

p,⊥ ,m
t−1
p,⊥
〉

=
1

np
(mt−1

p,⊥)Tmt−1
p,⊥

=
1

np

{[
I−PMt−1

p

]
mt−1

p

}T {[
I−PMt−1

p

]
mt−1

p

}
=

1

np

{
(mt−1

p )Tmt−1
p − (mt−1

p )TMt−1
p (Mt−1

p )†mt−1
p

}
=
〈
mt−1

p ,mt−1
p

〉
−

(mt−1
p )TMt−1

p

np

[
(Mt−1

p )TMt−1
p

np

]−1
(Mt−1

p )Tmt−1
p

np
.

(3.111)
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By induction, ∀s < t− 1,

lim
n→∞

〈
ms

p,⊥,m
s
p,⊥
〉
> ζs > 0. (3.112)

Using Lemma 8 in [58], we have

λmin

[
(Mt−1

p )TMt−1
p

np

]
> c′ (3.113)

independent of n. Then, applying Lemma 9 in [58], we know that (Mt−1
p )TMt−1

p /np

is invertible as n→∞, and

lim
n→∞

[
(Mt−1

p )TMt−1
p

np

]
r,s≤t−2

= lim
n→∞

〈
mr

p,m
s
p

〉
a.s.
= E{gr(σrẐr

p ,W )gs(σsẐ
s
p ,W )} ,

[
Ct−1

]
r,s
,

(3.114)

and [
(Mt−1

p )Tmt−1
p

np

]
0≤r≤t−2

= (mr
p)
Tmt−1

p /np

a.s.
= E{gr(σrẐr

p ,W )gt−1(σt−1Ẑ
t−1
p ,W )} ,

[
ut−1

]
r
,

(3.115)

therefore 〈
mt−1

p,⊥ ,m
t−1
p,⊥
〉

a.s.
= E

{[
gt−1(σt−1Ẑ

t−1
p ,W )

]2
}
− (ut−1)T (Ct−1)−1ut−1.

(3.116)

Define X̂r
p = gr(Ẑ

r
p ,W ), noting that the correlation matrix of (X̂0

p , X̂
1
p , · · · , X̂ t−1

p )

is exactly

Ct =

 Ct−1 ut−1

(ut−1)T E
{[
gt−1(σt−1Ẑ

t−1
p ,W )

]2
}
 . (3.117)
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By definition of pseudo conditional auto-correlation (PCAC), we know

〈
mt−1

p,⊥ ,m
t−1
p,⊥
〉 a.s.→ PCor

(
X̂ t−1
p |X̂0

p , · · · , X̂ t−2
p

)
. (3.118)

In order to prove Bt (h), we need to show that

PCor
(
X̂ t−1
p |X̂0

p , · · · , X̂ t−2
p

)
> ζt−1 > 0, (3.119)

which is a straightforward conclusion of Lemma 10, if the following holds:

Var
[
σrẐ

r
p |σ0Ẑ

0
p , · · · , σr−1Ẑ

r−1
p

]
> 0,∀r ≤ t− 1. (3.120)

Define Σr+1 ∈ R(r+1)×(r+1) whose elements are given by

Σr+1
i,j = σiσjE(Ẑi

pẐ
j
p),∀0 ≤ i, j ≤ r. (3.121)

Using Bt−1 (b) for φb(b
0
p,`, · · · , bt−1

p,` ) = bip,`b
j
p,`, then

〈
bip,b

j
p

〉
=

1

np

np∑
`=1

bip,`b
j
p,`

a.s.→ E(σiσjẐ
i
pẐ

j
p) = Σr+1

i,j ,

i.e.,

Σr+1 =

 Σr Σr+1
0:(r−1),r

Σr,0:(r−1) σ2
r


a.s.
=

 (Brp)TBrp
np

〈
b0≤s≤r−1
p ,brp

〉
〈
brp,b

0≤s≤r−1
p

〉 〈
brp,b

r
p

〉
 =

(Br+1
p )TBr+1

p

np
.

(3.122)

Using induction Bs (c) for any 0 ≤ s ≤ r ≤ t− 1,[
(Br+1

p )TBr+1
p

np

]
0≤i,j≤r

=
〈
bip,b

j
p

〉 a.s.
=

1

κ

〈
qi,qj

〉
, (3.123)

88



i.e.,
(Br+1

p )TBr+1
p

np

a.s.
=

1

κ

(Qr+1)TQr+1

N
, ∀r ≤ t− 1. (3.124)

Therefore,

1

κ

(Qr+1)TQr+1

N

a.s.→ Σr+1. (3.125)

Applying Lemma 9, we get

Var
[
σrẐ

r
p |σ0Ẑ

0
p , · · · , σr−1Ẑ

r−1
p

]
= σ2

r −Σr+1
r,0≤s≤r−1(Σr)−1Σ0≤s≤r−1,r

a.s.
=
〈qr,qr〉

κ
− (qr)TQr

κN

[
(Qr)TQr

N

]−1
(Qr)Tqr

N

=
1

κ
〈qr,qr〉 .

(3.126)

By induction Hr+1 (h), 〈qs⊥,qs⊥〉 > ρs > 0, ∀s ≤ r ≤ t− 1.

Therefore, we can apply Lemma 10 to show that there exists ζt−1 > 0, such that

〈
mt−1

p,⊥ ,m
t−1
p,⊥
〉
> ζt−1. (3.127)

Furthermore, applying Lemma 8 and 9 in [58], we know that ∃c > 0 such that

λmin((Mt
p)
TMt

p/np) > c and λmin(Ct) ≥ c, i.e., lim
np→∞

(Mt
p)
TMt

p/np
a.s.
= Ct is invertible.

Based on these findings we have the following corollaries, which are useful for proving

(a) and (e) of Bt and Ht+1 .

Corollary 2

αtp = (α0
p, α

1
p, · · · , αt−1

p )

=

[
(Mt

p)
TMt

p

np

]−1
(Mt

p)
Tmt

p

np
<∞,
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βt = (β0, β1, · · · , βt−1)

=

[
(Qt)TQt

N

]−1
(Qt)Tqt

N
<∞.

Corollary 3

Mt
p
−→o t(1) = M̃t

p
−→o t(1), and

Qt−→o t(1) = Q̃t−→o t(1).

Proof: By definition,

M̃t
p = Mt

p

[
(Mt

p)
TMt

p

np

]− 1
2

,

we need to show that [
(Mt

p)
TMt

p

np

] 1
2

−→o t(1) = −→o t(1), (3.128)

and [
(Mt

p)
TMt

p

np

]− 1
2

−→o t(1) = −→o t(1), (3.129)

which are equivalent to ∥∥∥∥∥∥
[

(Mt
p)
TMt

p

np

] 1
2

−→o t(1)

∥∥∥∥∥∥ = o(1), (3.130)

and ∥∥∥∥∥∥
[

(Mt
p)
TMt

p

np

]− 1
2

−→o t(1)

∥∥∥∥∥∥ = o(1). (3.131)

For (3.130), since (Mt
p)
TMt

p/N converges to Ct with each element having finite

limit, while according to Gershgorin circle theorem [81], the largest eigenvalue of Ct

satisfies

λmax(Ct) ≤ sup
i∈[t]

t∑
j=1

|Ct
i,j| <∞, (3.132)

on the other hand, since Ct is symmetric and positive definite, it is orthogonally
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similar to a diagonal matrix Dt, i.e.,

Ct = UDtUT , (3.133)

where U ∈ Rt×t is orthogonal, and the diagonal elements of Dt are all positive.

Therefore

(Ct)−
1
2 = U(Dt)−

1
2 UT , (3.134)

which implies that

λmax

[
(Ct)−

1
2

]
=
√
λmax(Ct) <∞. (3.135)

Hence ∥∥∥∥∥∥
[

(Mt
p)
TMt

p

np

] 1
2

−→o t(1)

∥∥∥∥∥∥ ≤√λmax(Ct)‖−→o t(1)‖ = o(1). (3.136)

For (3.131), since λmin(Ct) > c independent of np, we have λmax

[
(Ct)−

1
2

]
<

1/
√
c. Therefore ∥∥∥∥∥∥

[
(Mt

p)
TMt

p

np

]− 1
2

−→o t(1)

∥∥∥∥∥∥ ≤ 1√
c
‖−→o t(1)‖ = o(1). (3.137)

The same proof also applies for Qt.

Bt (a) Sp
t,t = {Bt

p,M
t
p,H

t
p,Q

t+1,v1, · · · ,vt, s0,wp}.

Applying Lemma 6, we have

Ap|Sp
t,t

d
= Yt

p(Q
t)† +

[
Xt
p(M

t
p)
†]T P⊥Qt + P⊥Mt

p
ÃpP

⊥
Qt ,

where Xt
p and Yt

p are defined in (3.37).
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Since btp = Apq
t − λtmt−1

p ,

btp|S
p
t,t

d
=
[
Xt
p(M

t
p)
†]T qt⊥ + Yt

p(Q
t)†qtq

+ P⊥Mt
p
Ãpq

t
⊥ − λtmt−1

p

=
{[

Ht
p + QtΞt

p

]
(Mt

p)
†}T qt⊥

+
(
Bt
p +

[
0|Mt−1

p

]
Λt
)

(Qt)†qtq

+ P⊥Mt
p
(Ãp)q

t
⊥ − λtmt−1

p ,

(3.138)

where Ξt
p and Λt are define in (3.38).

By definition of qtq, qt⊥ and Qt, we have

(Qt)†qtq = βt,

and {
QtΞt

p(M
t
p)
†}T qt⊥ =

[
(Mt

p)
†]T Ξt

p

[
Qt
]T

qt⊥ = 0.

Therefore,

btp|S
p
t,t =

[
Ht
p(M

t
p)
†]T qt⊥ + Bt

pβ
t

+ P⊥Mt
p
Ãpq

t
⊥ +

[
0|Mt−1

p

]
Λtβt − λtmt−1

p .

(3.139)

Now we want to show that[
Ht
p(M

t
p)
†]T qt⊥ +

[
0|Mt−1

p

]
Λtβt − λtmt−1

p

= Mt
p
−→o t(1),

(3.140)

i.e.,

btp|S
p
t,t = Bt

pβ
t + P⊥Mt

p
Ãpq

t
⊥ + Mt

p
−→o t(1)

=
t−1∑
i=0

βib
i
p + P⊥Mt

p
Ãpq

t
⊥ + Mt

p
−→o t(1),

(3.141)
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Let F = (Mt
p)
TMt

p/N , noting that

1○
[
Ht
p(M

t
p)
†]T qt⊥

= Mt
p

[
(Mt

p)
TMt

p

]−1
(Ht

p)
Tqt⊥,

=
[
m0

p| · · · |mt−2
p |mt−1

p

]
F−1

(Ht
p)
Tqt⊥
N

, and

2○
[
0|Mt−1

p

]
Λtβt

=
[
0|m0

p| · · · |mt−2
p

]


λ0β0

...

λt−1βt−1

 ,

3○− λtmt−1
p

(3.142)

are linear combinations of the t columns in Mt
p. We will evaluate the coefficients of

m`
p, ∀0 ≤ ` ≤ t− 1 in each of them separately.

The coefficient of m`
p in 2○ is λ`+1β`+1, ∀0 ≤ ` ≤ t− 2 and 0 for ` = t− 1.

The coefficient of m`
p in 1○ is

[
F−1(Ht

p)
Tqt⊥/N

]
`
, where[

F−1
(Ht

p)
Tqt⊥
N

]
`

=
t−1∑
r=0

[
F−1

]
`,r

[
(Ht

p)
Tqt⊥

]
r

N

=
t−1∑
r=0

[
F−1

]
`,r

(hrp)
Tqt⊥
N

=
t−1∑
r=0

[
F−1

]
`,r

〈
hrp,q

t
⊥
〉

=
t−1∑
r=0

[
F−1

]
`,r

〈
hrp,q

t − qtq
〉

=
t−1∑
r=0

[
F−1

]
`,r

〈
hrp,q

t −
t−1∑
s=0

βsq
s

〉

=
t∑

r=0

{[
F−1

]
`,r

〈
hrp,q

t
〉
−

t−1∑
s=0

βs
[
F−1

]
`,r

〈
hrp,q

s
〉}

.

(3.143)
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Applying Lemma 8, we have

〈
hrp,q

s
〉

=

〈
hrp, fs

(
P∑
q=1

hsq,v
s, s0

)〉

a.s.
=

〈
hrp,

P∑
q=1

hsq

〉〈
f ′s

(
P∑
q=1

hsq,v
s, s0

)〉

= κλs
〈
hrp,h

s
p

〉 a.s.
= κλsωp

〈
mr−1

p ,ms−1
p

〉
= λs

(mr−1
p )Tms−1

p

N
= λsFr,s,∀0 ≤ s ≤ t− 1,

(3.144)

and [
F−1

(Ht
p)
Tqt⊥
N

]
`

a.s.
=

t∑
r=0

[
F−1

]
`,r

(
λtFr,t −

t−1∑
s=0

βsλsFr,s

)

= λt
[
F−1F

]
`,t
−

t−1∑
s=0

βsλs
[
F−1F

]
`,s

= λtδ`t −
t−1∑
s=0

βsλsδ`s

=


−λ`+1β`+1, 0 ≤ ` ≤ t− 2,

λt, ` = t− 1.

(3.145)

The coefficient of m`
p in 3○ is 0, ∀0 ≤ ` ≤ t− 2 and λt for ` = t− 1.

Therefore, (3.140) holds, further, according to Lemma 5, we have

PMt
p
(Ãp)q

t
⊥

d
= M̃t

p
−→o t(1). (3.146)

Therefore, applying Corollary 3, we get

btp|S
p
t,t

d
=

t−1∑
i=0

βib
i
p + Ãpq

t
⊥ + M̃t

p
−→o t(1) + Mt

p
−→o t(1)

=
t−1∑
i=0

βib
i
p + Ãpq

t
⊥ + M̃t

p
−→o t(1).

(3.147)
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Bt (e) According to (3.141) and Proposition 2,

1

np

np∑
i=1

[
btp
]2`
i

=
1

np

np∑
i=1

[
t−1∑
s=0

βsb
s
p + P⊥Mt

p
Ãpq

0 + Mt
p
−→o t(1)

]2`

i

≤ (t+ 2)`

np

np∑
i=1

{
t−1∑
s=0

β2`
s

[
bsp
]2`
i

+
[
P⊥Mt

p
Ãpq

0
]2`

i
+
[
ms

p

]2`
i
o(1)

}
,

(3.148)

According to Corollary 2 and induction Br (e) for any r ≤ t− 1,

t−1∑
s=0

β2`
s

[
bsp
]2`
i

np
<∞. (3.149)

Considering that

[
P⊥Mt

p
Ãpq

t
⊥

]
i

= eTi P⊥Mt
p
Ãpqt⊥

d
= Zi

‖P⊥Mt
p
ei‖‖qt⊥‖√
n

, (3.150)

we have

np∑
i=1

[
P⊥Mt

p
Ãpq

t
⊥

]2`

i

np

d
=

np∑
i=1

Z2`
i

np

[
‖P⊥Mt

p
ei‖‖qt⊥‖√
n

]2`

≤
np∑
i=1

Z2`
i

np

[
‖qt‖√
n

]2`

<∞.

(3.151)

Further, since gt(·, ·) is Lipschitz continuous, we know that ∃L > 0, such that

|ms
p,i| = |gt(bsp,i, wsp,i)| ≤ |gt(0, 0)|+ L

√
|bsp,i|2 + |wsp,i|2.

Therefore, we have

np∑
i=1

[
ms

p

]2`
i
o(1)

np
≤ L′

np

np∑
i=1

(1 + |bsp,i|2` + |wp,i|2`)o(1) <∞,

and Bt (e) holds.
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Bt (c)

We consider three cases: i) r < t and s < t, ii) s = t and r < t, and iii) r = s = t.

i) Bt (c) holds ∀r, s < t by induction.

ii) s = t, r < t, according to (3.141),

〈
btp,b

r
p

〉
|St,t

d
=

t−1∑
i=0

βi
〈
bip,b

r
p

〉
+
〈
P⊥Mt

p
Ãpq

t
⊥,b

r
p

〉
+

t∑
i=0

o(1)
〈
mi

p,b
r
p

〉
.

(3.152)

By induction Bt−1(d),
〈
mi

p,b
r
p

〉
<∞, ∀r ≤ t− 1, ∀i ≤ t.

∴ lim
N→∞

t∑
i=0

o(1)
〈
mi

p,b
r
p

〉 a.s.
= 0. (3.153)

By Lemma 5, 〈
P⊥Mt

p
Ãpq

t
⊥,b

r
p

〉
d
= lim

N→∞

Z

np
√
n
‖qt⊥‖‖P⊥Mt

p
brp‖

≤ lim
N→∞

Z

np
√
n
‖qt‖‖brp‖ = lim

N→∞

√
〈qt,qt〉

〈
brp,b

r
p

〉 Z
√
κnp

.

By induction hypothesis Ht (b) and Bt−1 (c), we know that√
〈qt,qt〉

〈
brp,b

r
p

〉
<∞. (3.154)

Therefore,

〈
P⊥Mt

p
Ãpq

t
⊥,b

r
p

〉
a.s.→ 0. (3.155)

Hence

〈
btp,b

r
p

〉 a.s.
=

t−1∑
i=0

βi
〈
bip,b

r
p

〉 a.s.
=

1

κ
lim
n→∞

t−1∑
i=0

βi
〈
qi,qr

〉
=

1

κ
lim
n→∞

〈
qtq,q

r
〉

=
1

κ
lim
n→∞

〈
qt,qr

〉
.
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iii) r = s = t,

〈
btp,b

t
p

〉
|Sp

t,t
d
=〈

t−1∑
i=0

βib
i
p + P⊥Mt

p
Ãpq

t
⊥ +

t−1∑
i=0

mi
po(1),

t−1∑
j=0

βjb
j
p + P⊥Mt

p
Ãpq

t
⊥ +

t−1∑
j=0

mj
po(1)

〉

=
t−1∑
i,j=0

βiβj
〈
bip,b

j
p

〉
i○

+ 2
t−1∑
i=0

βi

〈
P⊥Mt

p
Ãpq

t
⊥,b

i
p

〉
ii○

+ 2
t−1∑
i=0

t∑
j=0

βi
〈
bip,m

j
p

〉
o(1) iii○

+
〈
P⊥Mt

p
Ãpq

t
⊥,P

⊥
Mt
p
Ãpq

t
⊥

〉
iv○

+ 2
t∑

j=0

〈
P⊥Mt

p
Ãpq

t
⊥,m

j
po(1)

〉
v○

+
t−1∑
i,j=0

〈
mi

p,m
j
p

〉
o(1) vi○.

By (3.155), Bt−1 (d) and (b), we know that ii○, iii○, and vi○ a.s.→ 0.

Consider v○, 〈
P⊥Mt

p
Ãpq

t
⊥,m

j
po(1)

〉
d
= Z
‖qt⊥‖‖P⊥Mt

p
mj

p‖o(1)

np
√
n

a.s.→ 0,

(3.156)

i○,

t−1∑
i,j=0

βiβj
〈
bip,b

j
p

〉
=

1

κ

t−1∑
i,j=0

βiβj
〈
qi,qj

〉
=

1

κ

t−1∑
i=0

βi
〈
qi,qtq

〉
=

1

κ

〈
qtq,q

t
q
〉
,

(3.157)
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and ii○, 〈
P⊥Mt

p
Ãpq

t
⊥,P

⊥
Mt
p
Ãpq

t
⊥

〉
=
〈
Ãpq

t
⊥, Ãpq

t
⊥

〉
−
〈
PMt

p
Ãpq

t
⊥,PMt

p
Ãpq

t
⊥

〉
a.s.→ ‖q

t
⊥‖2

n
−
‖M̃t

p
−→o t(1)‖2

np

a.s.→ 1

κ

〈
qt⊥,q

t
⊥
〉
.

(3.158)

Therefore,

〈
btp,b

t
p

〉 a.s.→ 1

κ

〈
qtq,q

t
q
〉

+
1

κ

〈
qt⊥,q

t
⊥
〉

=
1

κ

〈
qt,qt

〉
. (3.159)

Bt (b) Apply Bt (a),

φb

([
b0
p

]
i
, · · · ,

[
bt−1
p

]
i
,
[
btp
]
i
, [wp]i

)
|Sp

t,t
d
=

φb

([
b0
p

]
i
, · · · ,

[
bt−1
p

]
i
,[

t−1∑
r=0

βrb
r
p + Ãpq

t
⊥ + M̃t

p
−→o t(1)

]
i

, [wp]i

)
.

(3.160)

Let

ai =
([

b0
p

]
i
, · · · ,

[
bt−1
p

]
i
,[

t−1∑
r=0

βrb
r
p + Ãpq

t
⊥ + M̃t

p
−→o t(1)

]
i

, [wp]i

)
,

and

ci =

([
b0
p

]
i
, · · · ,

[
bt−1
p

]
i
,

[
t−1∑
r=0

βrb
r
p + Ãpq

t
⊥

]
i

, [wp]i

)
.

Similar to B0 (b), we want to show that

1

np

∣∣∣∣∣
np∑
i=1

[φb(ai)− φb(ci)]

∣∣∣∣∣ a.s.→ 0. (3.161)

Applying the property of pseudo Lipschitz continuous function of order k, we
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have

1

np

∣∣∣∣∣
np∑
i=1

[φb(ai)− φb(ci)]

∣∣∣∣∣ ≤ 1

np

np∑
i=1

|φb(ai)− φb(ci)|

≤ L

np

np∑
i=1

(1 + ‖ai‖k−1 + ‖ci‖k−1)
∣∣∣[M̃t

p
−→o t(1)

]
i

∣∣∣
≤ L

np

√√√√ np∑
i=1

(1 + ‖ai‖k−1 + ‖ci‖k−1)2

√
‖M̃t

p
−→o t(1)‖2

np

≤ L′

√√√√ np∑
i=1

1 + ‖ai‖2k−2 + ‖ci‖2k−2

np
o(1),

(3.162)

where

np∑
i=1

‖ai‖2`

np
=

np∑
i=1

{
t∑

r=0

[
brp
]2
i

+ [wp]
2
i

}`
N

≤ (t+ 2)`

np∑
i=1

{
t∑

r=0

[
brp
]2`
i

+ [wp]
2`
i

}
np

<∞, due to Bt (e),

(3.163)

and

ci = ai −
(

0, · · · ,
[
M̃t

p
−→o t(1)

]
i
, 0
)
.

Applying Corollary 3, we know that

ci = ai −
(

0, · · · ,
[
Mt

p
−→o t(1)

]
i
, 0
)
,

which satisfies

np∑
i=1

‖ci‖2`

np
≤ C

np∑
i=1

‖ai‖2` +
np∑
i=1

(
t−1∑
r=0

[
mr

p

]
i
o(1)

)2`

np

≤ C

N∑
i=1

‖ai‖2`

np
+ C ′

t−1∑
r=0

np∑
i=1

[
mr

p

]2`
i
o(1)

np
<∞.

(3.164)
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Similar to the proof of B0 (b), using Lemma 5, we have

1

np

np∑
i=1

φh

(
b0
p,i, · · · , bt−1

p,i ,

[
t−1∑
r=0

βrb
r
p + Ãpq

t
⊥

]
i

, wp,i

)
a.s.→ 1

np

np∑
i=1

EZφb

(
b0
p,i, · · · , bt−1

p,i ,
t−1∑
r=0

βrb
r
p,i +

‖qt⊥‖Z√
n

,wp,i

)
.

The right hand side of the above equation is a function of (b0
p,i, · · · , bt−1

p , i), so

we can use induction Bt−1 (b) to obtain

1

np

np∑
i=1

EZφb

(
b0
p,i, · · · , bt−1

p,i ,
t−1∑
r=0

βrb
r
p,i +

‖qt⊥‖Z√
n

,wp,i

)
a.s.→ 1

np

np∑
i=1

EZ,Ẑφb
(
σ0Ẑ

0
p , · · · , σt−1Ẑ

t−1
p ,

t−1∑
r=0

βrσrẐ
r
p +
‖qt⊥‖Z√

n
,wp,i

)
.

Now we need to show that

Var

{
t−1∑
r=0

βrσrẐr

}
+
‖qt⊥‖2

n
a.s.
= σ2

t . (3.165)

Using induction Ht (b) with

φh(
[
h1

1

]
i
, · · · ,

[
htP
]
i
, · · · , [s0]i)

=

ft
[ P∑

p=1

htp

]
i

, [vt]i , [s0]i

2

,
(3.166)

we have 〈
qt,qt

〉
=

1

N

N∑
i=1

ft
[ P∑

p=1

htp

]
i

, [vt]i , [s0]i

2

a.s.→ κσ2
t . (3.167)

On the other hand, 〈
qt,qt

〉
=
〈
qtq,q

t
q
〉

+
〈
qt⊥,q

t
⊥
〉
, (3.168)
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where

〈
qtq,q

t
q
〉

=

〈
t−1∑
r=0

βrqr,
t−1∑
s=0

βsqs

〉

=
t−1∑
r=0

t−1∑
s=0

βrβs 〈qr,qs〉 .
(3.169)

Applying Bt (c) and induction hypothesis Bt−1 (b) for φb(· · · ) = brp,ib
s
p,i, 0 ≤ r, s ≤ t−1,

we have

〈
qtq,q

t
q
〉

=
1

κ

t−1∑
r=0

t−1∑
s=0

βrβs
〈
brp,b

s
p

〉
a.s.
= κ

t−1∑
r=0

t−1∑
s=0

βrβsE(σrẐ
r
pσsẐ

s
p) = κVar

{
t−1∑
r=0

βrσrẐ
r
p

}
.

Therefore, (3.165) holds. Applying Lemma 4 in [58], we finally have

lim
np→∞

np∑
i=1

φb

([
b0
p

]
i
, · · · ,

[
btp
]
i
, [wp]i

)
a.s.
=

a.s.
= EẐ,Wφb

(
σ0Ẑ

0
p , · · · , σt−1Ẑ

t−1
p , σtẐ

t
p,W

)
.

(3.170)

Bt (d) Using Bt (b) and Lemma 8,

lim
n→∞

〈
btp, φ(bsp,wp)

〉 a.s.
= E{σtẐt

pφ(σsẐ
s
p ,W )}

a.s.
= Cov(σtẐ

t
p, σsẐ

s
p)E{φ′(σsẐs

p ,W )}
a.s.
=
〈
btp,b

s
p

〉 〈
φ′(bsp,wp)

〉
.

(3.171)

Step IV: Ht+1

The proofs of Ht+1 (c), (e), and (h) are very similar to those of Bt and are

skipped. For the remain parts, we prove them in the order of (a), (b), (g), (d), and

(f).

Ht+1 (a) Sp
t+1,t = {Bt+1

p ,Mt+1
p ,Ht

p,v
1, · · · ,vt,Qt+1, s0,wp}.
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Applying Lemma 6, we have

Ap|Sp
t+1,t

d
= P⊥Mt

p
Yt+1
p (Qt+1)† +

[
Xt
p(M

t
p)
†]T

+ P⊥Mt
p
ÃpP

⊥
Qt+1 .

(3.172)

Since ht+1
p = AT

p mt
p − ωpξtqt,

ht+1
p |S

p
t+1,t

d
= Xt

p(M
t
p)
†mt

p,q +
[
Yt+1
p (Qt+1)†

]T
mt

p,⊥

+ P⊥Qt+1(Ãp)
Tmt

p,⊥ − ωpξtqt

=
[
Ht
p + QtΞt

p

]
αtp +

[(
Bt+1
p +

[
0|Mt

p

])
(Qt+1)†

]T
mt

p,⊥

+ P⊥Qt+1ÃT
p mt

p,⊥ − ωpξtqt

= Ht
pα

t
p + P⊥Qt+1(Ãp)

Tmt
p,⊥

+ QtΞt
pα

t
p +

[
Bt+1
p (Qt+1)†

]T
mt

p,⊥ − ωpξtqt.

Similar to the proof of Bt (a), we can show that

QtΞt
pα

t
p +

[
Bt+1
p (Qt+1)†

]T
mt

p,⊥ − ωpξtqt

= Qt+1−→o t+1(1).

(3.173)

Therefore,

ht+1
p |S

p
t+1,t

d
= Ht

pα
t
p + P⊥Qt+1ÃT

p mt
p,⊥ + Qt+1−→o t+1(1)

=
t−1∑
i=0

αiph
i+1
p + P⊥Qt+1ÃT

p mt
p,⊥ + Qt+1−→o t+1(1).

(3.174)

Applying Lemma 5, we have

PQt+1(Ãp)
Tmt

p,⊥
d
= Q̃t+1−→o t+1(1). (3.175)

Then applying Corollary 3, we have

ht+1
p |S

p
t+1,t

d
=

t−1∑
i=0

αiph
i+1
p + (Ãp)

Tmt
p,⊥ + Q̃t+1−→o t+1(1).
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Ht+1 (b) Applying Ht+1 (a) and following a similar proof in Bt (b),

1

N

N∑
i=1

φh
(
h1

1,i, · · · , h1
P,i, · · · , ht+1

1,i , · · · , ht+1
P,i , v

1
i , · · · , vti , s0,i

)
a.s.→ 1

N

N∑
i=1

EZφh
(
τ0

√
ω1Z

0
1 , · · · , τ0

√
ω1Z

0
P , · · · , τt−1

√
ω1Z

t−1
1 ,

· · · , τt−1

√
ω1Z

t−1
P ,

t−1∑
r=0

√
ω1α

r
1τrZ

r
1 +
‖mt

1,⊥‖Z1√
n

, · · · ,

t−1∑
r=0

√
ωPα

r
P τrZ

r
P +
‖mt

P,⊥‖ZP√
n

, V1, · · · , Vt−1, v
t
i , s0,i

)
.

(3.176)

Now we need to show that

Var

{
t−1∑
r=0

√
ωPα

r
P τrZ

r
P

}
+
‖mt

p,⊥‖2

n
a.s.
= ωpτ

2
t , ∀p. (3.177)

Using induction Bt (b) with φb(
[
b0
p

]
i
, · · · ,

[
btp
]
i
, [wp]i) =

[
gt(
[
btp
]
i
, [wp]i)

]2

, we have

〈
mt

p,m
t
p

〉
=
[
gt(
[
btp
]
i
, [wp]i)

]2 a.s.→ τ 2
t . (3.178)

On the other hand,

〈
mt

p,m
t
p

〉
=
〈
mt

p,q,m
t
p,q
〉

+
〈
mt

p,⊥,m
t
p,⊥
〉
, (3.179)

where

〈
mt

p,q,m
t
p,q
〉

=

〈
t−1∑
r=0

αrpm
r
p,

t−1∑
s=0

αspm
s
p

〉

=
t−1∑
r=0

t−1∑
s=0

αrpα
s
p

〈
mr

p,m
s
p

〉
,

(3.180)

applyingHt+1 (c) and inductionHt (b) with φh([h
1
1]i , · · · , [htP ]i , [s0]i) =

[
hr+1
p

]
i

[
hs+1
p

]
i
,
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we have

〈
mt

p,q,m
t
p,q
〉

=
1

ωp

t−1∑
r=0

t−1∑
s=0

αrpα
s
p

〈
hr+1
p ,hs+1

p

〉
a.s.
=

1

ωp

t−1∑
r=0

t−1∑
s=0

αrpα
s
pE(
√
ωpτrZ

r
p

√
ωpτsZ

s
p)

= Var

{
t−1∑
r=0

αrP τrZ
r
P

}
.

(3.181)

Therefore, (3.177) holds, and apply Lemma 4 in [58],

1

N

N∑
i=1

φh
(
h1

1,i, · · · , h1
P,i, · · · , ht+1

1,i , · · · , ht+1
P,i , v

1
i , · · · , vti , s0,i

)
a.s.→ EZφh

(
τ0

√
ω1Z

0
1 , · · · , τ0

√
ωPZ

0
P , · · · , τt

√
ω1Z

t
1, · · · ,

τt
√
ω1Z

t
P , V1, · · · , Vt, S0

)
.

Also, since Zt
p only depends on Zs

p for any s < t, by induction Ht (b), we can see

that it is independent of any Zr
q for q 6= p.

Ht+1 (g) Using Ht+1 (b) with φh([h
1
1]i , · · · , s0) =

[
hrp
]
i

[
hsq
]
i

for r, s ≤ t+1 and p 6= q,

we have 〈
hrp,h

s
q

〉 a.s.→ EZr−1
p Zs−1

q = 0. (3.182)

Ht+1 (d) Let

φh(h
1
1,i, · · · , ht+1

P,i , v
1
i , · · · , vti , s0,i) =

ht+1
p,i φ

(
P∑
q=1

hs+1
q,i , v

s
i , s0,i

)
,

(3.183)
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using Ht+1 (b) and Lemma 8, we have

lim
N→∞

〈
ht+1
p ,φ

(
P∑
q=1

hs+1
q ,vs, s0

)〉

a.s.
= E{√ωpτtZt

pφ(
P∑
q=1

√
ωqτ

s
qZ

s
q , Vs, S0)}

a.s.
= ωpCov(τtZ

t
p, τsZ

s
q )E{φ′(τsZs, Vs, S0)}.

(3.184)

On the other hand, let

φh(h
1
1,i, · · · , ht+1

P,i , v
1
i , · · · , vti , s0,i) = ht+1

p,i h
s+1
p,i , (3.185)

we have

lim
N→∞

〈
ht+1
p ,hs+1

p

〉 a.s.
= E{√ωpτtZt

p

√
ωpτsZ

s
p}

= ωpCov(τtZ
t
p, τsZ

s
p).

(3.186)

Since empirical distribution of (
∑P

q=1 hs+1
q ,vs, s0) → (τsZs, Vs, S0), applying Lemma

5 in [58], we have

φ′

(
P∑
q=1

hs+1
q ,vs, s0

)
a.s.
= E{φ′(τsZs, Vs, S0)}.

Therefore

lim
N→∞

〈
ht+1
p , φ(

P∑
q=1

hs+1
q ,vs, s0)

〉
a.s.
=

〈
ht+1
p ,hs+1

p

〉〈
φ′

(
P∑
q=1

hs+1
q ,vs, s0

)〉
.
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Ht+1 (f) Using (3.174), Hr (f) for r ≤ t− 1 and Corollary 2,

〈
ht+1
p ,q0

〉
|Sp

t+1,t
d
=

t−1∑
s=0

αsp
〈
hs+1
p ,q0

〉
+
〈
P⊥Qt+1(Ãp)

Tmt
p,⊥,q

0
〉

+
〈
Qt+1−→o t+1(1),q0

〉
a.s.→

Z‖P⊥Qt+1q0‖‖mt
p,⊥‖

N
√
n

+
t∑

s=0

〈
qs,q0

〉
o(1).

(3.187)

Now

‖P⊥Qt+1q0‖‖mt
p,⊥‖

N
√
n

≤
‖q0‖‖mt

p‖
N
√
n

=

√
N 〈q0,q0〉

√
np
〈
mt

p,m
t
p

〉
N
√
n

a.s.→ 0,

(3.188)

and,

〈
qs,q0

〉
≤
√
〈qs,qs〉 〈q0,q0〉 <∞, (3.189)

we have 〈
ht+1
p ,q0

〉 a.s.→ 0. (3.190)

By now we finish the proof of Lemma 4.

3.3 Universality of SE

3.3.1 Families of Distributions Satisfying Lindeberg’s Condition

In the previous section we prove that SE holds for DiAMP-G1 where A consists

of i.i.d. N (0, 1/n) entries. In this section, we will show that the universality of SE can

be extended to more general cases, even broader than the class of matrices composed

of independent subguassian entries.
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First, we introduce Lindeberg Central Limit Theorem (CLT) [82].

Theorem 9 For n independent (not necessarily identically distributed) random vari-

ables X1, · · · , Xn, with each Xi of finite mean µi and σ2
i , define sn =

√∑n
i=1 σ

2
i . If

Lindeberg’s condition is satisfied:

lim
n→∞

1

s2
n

n∑
i=1

E
{
|Xi − µi|2I(εsn,∞)(|Xi − µi|)

}
= 0 (3.191)

for any ε > 0, then as n→∞,

1

sn

n∑
i=1

(Xi − µi)
d→ N (0, 1). (3.192)

The Lindeberg’s condition in (3.191) seems very stringent, it yet holds for a broad

class of distributions. Here we list two families of distributions that satisfy Linde-

berg’s condition — one is the so-called subgaussian distribution [83], and another is

sublaplacian distribution defined by us.

Definition 1: If the moment generating function (m.g.f.) of a random variable X

satisfies

MX(t) = E(etX) ≤ eb
2t2/2, ∀t, for some b > 0,

then X is called subgaussian or b−subgaussian.

Examples: The continuous uniform distribution

fX(x) =
1

2a
I[−a,a](x)

and the symmetric Bernoulli distribution

gX(x) =
1

2
δ(x+ a) +

1

2
δ(x− a)

are both a-subgaussian.

Subgaussian random variables have the following properties:
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Proposition 4 All b-subgaussian random variables have mean 0 and variance not

greater than b2.

Proposition 5 If random variables X1 and X2 are b1, b2-subgaussian random vari-

ables respectively, then c1X1 + c2X2 is (|c1|b1 + |c2|b2)-subgaussian. Moreover, if X1

and X2 are independent, then c1X1 + c2X2 is
√
c2

1b
2
1 + c2

2b
2
2-subgaussian.

Proposition 6 A random variable X is subgaussian if and only if there exists b > 0

such that

P(|X| ≥ t) ≤ 2e−
t2

2b2 for any t > 0.

Definition 2: If the probability density function (PDF) of a random variable X is a

even function, and there exists constants α, β > 0 such that

P(|X| ≥ t) ≤ α2e−t/β, ∀t > 0

then X is called sublaplacian or (α, β)−sublaplacian.

Regarding all the sublaplacian random variables, we have the following results.

Proposition 7 All (α, β)-sublapalacian random variables have mean 0 and variance

not greater than 2α2β2.

Proof: It is trivial to show that all the sublaplacian random variables are zero-mean

since they have even PDFs by definition. For the variance of a (α, β)-sublaplacian

random variable X, by definition, we have

Var(X) = E
{
X2
}

= E
{
|X|2

}
=∫ ∞

0

t2
dP(|Xi| ≤ t)

dt
dt = −

∫ ∞
0

t2
dP(|Xi| > t)

dt
dt

= t2P(|Xi| > t)|0∞ +

∫ ∞
0

2tP(|Xi| > t)dt.

(3.193)
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By definition,

P(|X| > t) ≤ α2e−t/β, (3.194)

we have

lim
t→∞

t2P(|X| > t) = 0. (3.195)

Therefore,

Var(X) =

∫ ∞
0

2tP(|X| > t)dt

≤
∫ ∞

0

2tα2e−t/βdt = 2α2β2.

(3.196)

Proposition 8 If X is (α, β)-sublaplacian, then cX is (α, |c|β)-sublaplacian.

Proof: Let Y = cX, then

P(|Y | ≥ t) = P(|X| ≥ t/|c|) ≤ α2e−t/(|c|β).

Therefore, Y is (α, |c|β)-sublaplacian.

Proposition 9 For a finite set of distributions {fX1(x), · · · , fXk(x)}, where fXi(x)

is (αi, βi)-sublaplacian, ∀i ∈ [k], then any mixture of the k distributions is

(
max
i∈[k]
{αi} ,

max
i∈[k]
{βi}

)
-sublaplacian.

Proof: Let fX(x) =
∑k

i=1 pifXi(x) be any mixture, where pi ≥ 0, ∀i and
∑k

i=1 pi = 1.

Then we have

P(|X| ≥ t) =
k∑
i=1

piP(|Xi| ≥ t)

≤
k∑
i=1

piα
2
i e
−t/βi ≤

[
max
i∈[k]
{αi}

]2

e
−t
/[

max
i∈[k]
{βi}

]
.

(3.197)

Proposition 10 If X has an even PDF fX(x), and there exists α, β > 0 such that

fX(x) ≤ α2

2β
e−t/β, ∀x
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then X is (α, β)-sublaplacian.

Proof: by the above assumption on fX(x),

P(|X| > t) = 2

∫ ∞
t

fX(x)dx

≤ 2

∫ ∞
t

α2

2β
e−t/βdx ≤ α2e−t/β.

(3.198)

Therefore, X is (α, β)-sublaplacian.

Examples: The Laplace distribution

fX(x) =
1

2β
e−|x|/β (3.199)

is (1, β)-sublaplacian, but it is not subgaussian since

P(|X| ≥ t) = e−t/β,

and ∀b > 0, as long as t > max{2b2/β, β ln 2}, we will have

P(|X| ≥ t) > 2e−
t2

2b2 ,

which violates the condition in Proposition 6.

Another example is zero-mean Logistic distribution

gX(x) =
ex/β

β(1 + ex/β)2
. (3.200)

It is (
√

2, β)-sublaplacian, since

gX(x) = gX(|x|) =
e|x|/β

β(1 + e|x|/β)2
≤ 1

β
e−|x|/β.

However, it is not subgaussian, since

gX(x) = gX(|x|) =
e|x|/β

β(1 + e|x|/β)2
≥ 1

4β
e−|x|/β,
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which implies that

P(|X| ≥ t) ≥ 2

∫ ∞
t

1

4β
e−x/βdx =

1

2
e−t/β,

and contradicts the condition in Proposition 6.

Furthermore, we can plug β = 1/
√

2 into fX(x) in (3.199) and β = 3/
√
π into

gX(x) in (3.200), which makes both distributions with unit variance. According to

Proposition 9, their mixture pfX(x) + (1− p)gX(x) for any p ∈ [0, 1] is (
√

2, 3/
√
π)-

sublaplacian with unit variance.

Lemma 11 For n independent zero-mean random variables X1, · · · , Xn, with each

Xi either being b-subgaussian, or (α, β)-sublaplacian, if there exists some ρ ∈ (0, 1]

such that Var(Xi) = σ2
i ≥ max{b2, 2α2β2}ρ for any i, then Lindeberg’s condition

holds.

Proof of Lemma 11: Define sn =
∑n

i=1 σ
2
i . We have

E
{
X2
i I(εsn,∞)(|Xi|)

}
=

∫ ∞
0

t2I(εsn,∞)(t)
dP(|Xi| ≤ t)

dt
dt

= −
∫ ∞
εsn

t2
dP(|Xi| > t)

dt
dt

= t2P(|Xi| > t)|εsn∞ +

∫ ∞
εsn

2tP(|Xi| > t)dt.

(3.201)

Since Xi is either b-subgaussian or (α, β)-subgaussian,

P(|Xi| > t) ≤ max{2e−
t2

2b2 , α2e−t/β}, (3.202)

we have

lim
t→∞

tP(|Xi| > t) = 0, (3.203)

t2P(|Xi| > t)|∞t=εsn ≤ ε2s2
n max{2e−

ε2s2n
2b2 , α2e−εsn/β}, (3.204)
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and ∫ ∞
εsn

2tP(|Xi| > t)dt ≤

max

{∫ ∞
εsn

4te−
t2

2b2 dt,

∫ ∞
εsn

2tα2e−t/βdt

}
= max

{
4b2e−

ε2s2n
2b2 , 2α2β(εsn + β)e−εsn/β

}
.

(3.205)

Therefore,

1

s2
n

n∑
i=1

E
{
X2
i I(εsn,∞)(|Xi|)

}
≤ nε2 max{2e−

t2

2b2 , α2e−t/β}

+
n

s2
n

max

{
4b2e−

ε2s2n
2b2 , 2α2β(εsn + β)e−εsn/β

}
.

(3.206)

Note that σ2
i ≥ max{b2, 2α2β2}ρ implying that

b2

s2
n

=
b2∑n
i=1 σ

2
i

≤ 1

ρn
, (3.207)

and

2α2β2

s2
n

=
2α2β2∑n
i=1 σ

2
i

≤ 1

ρn
, (3.208)

i.e.,

s2
n/b

2 = O(n), and sn/β = O(n1/2). (3.209)

Since either e−n and e−n
1/2

decays to 0 faster than any polynomial of n increases

to ∞, we have

1

s2
n

n∑
i=1

E
{
X2
i I(εsn,∞)(|Xi|)

}
→ 0 as n→∞, (3.210)

that is, Lindeberg’s condition holds.

Remarks: The condition σ2
i ≥ b2ρ or σ2

i ≥ 2α2β2ρ is actually a natural property

for many subgaussian and sublaplacian distributions. For example, the continuous

112



uniform distribution over [−a, a] is a-subgaussian with variance σ2 = a2/3, where

ρ = 1/3, and the symmetric Bernoulli distribution over {−a, a} is also a-subgaussian

with variance σ2 = a2, where ρ = 1. For the Laplace distribution in (3.199), σ2 = 2β2

while 2α2β2 = 2β2, ρ = 1, and for the logistic distribution in (3.200), σ2 = β2π2/3

while 2α2β2 = 4β2, ρ = π2/12.

3.3.2 Augmenting Technique to Prove SE’s Universality

Now we can extend the theoretical results of SE for sensing matrices with i.i.d.

Gaussian entries to more general cases. Specifically, we have the following lemma.

This is done by a augmenting technique proposed by us.

Lemma 12 In Lemma 4, if all the entries in sensing matrix A is changed to be

independent (not necessarily identically distributed) random variables with mean 0 and

variance 1/n, and the elements in each row or column satisfy Lindeberg’s condition,

then all of the conclusions in Lemma 4 hold with the almost-sure convergence being

replaced by convergence in distribution.

Since the core of the proof of SE is the distribution of Ap conditioning on Sp
t1,t2 ,

we need to first prove that Ap|Sp
t1,t2 remains the same as that for A with i.i.d.

Gaussian entries in the large system limit, which is the following lemma:

Lemma 13 If A satisfies the condition in Lemma 12, then

Ap|Sp
t1,t2

d→
[
Xt2
p (Mt2

p )†
]T

+ P⊥
M
t1
p

Yt1
p (Qt1)†

+ P⊥
M
t2
p

ÃpP
⊥
Qt1 = Yt1

p (Qt1)†

+
[
Xt2
p (Mt2

p )†
]T

P⊥Qt1 + P⊥
M
t2
p

ÃpP
⊥
Qt1 ,

where Ãp consists of i.i.d. N (0, 1/n) entries independent of Ap.
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Proof : Let us construct a matrix series {Pk}k≥0 as follows:

Pk =
1√
2

 Pk−1 Pk−1

Pk−1 −Pk−1

 , (3.211)

with initial value P0 = [1]. It can be easily verified that Pk is an orthogonal matrix

of order 2k, and all the elements in Pk have the same magnitude 2−k/2.

Consider the case where each row of A satisfies Lindeberg’s condition. Now

augment Ap into a np × 2K matrix Aa
p, where 2K > N :

Aa
p = [Ap|Cp] , (3.212)

where Cp is independent of Ap, and consists of i.i.d. N (0, 1/
√
n). Let

Sp = Aa
pPK = ApP

A
K + CpP

C
K , (3.213)

where PA
K and PC

K as the first N rows and the last R = 2K − N rows of PK . It is

easy to show that

PA
K(PA

K)T = IN , PC
K(PC

K)T = IR, (3.214)

PA
K(PC

K)T = 0 ∈ RN×R, (3.215)

and

Aa
p = Sp(PK)T , Ap = Sp(P

A
K)T , Cp = Sp(P

C
K)T . (3.216)

Using (3.216), then ht+1
p and btp in (3.216) become

ht+1
p = PA

KSTp mt
p − ξtpωpqt,

btp = Sp(P
A
K)

T
qt − λtmt−1

p ,

(3.217)

and the linear constraints in (3.39) can be written as

PA
KSTp Mt2

p = Xt2
p ,Y

t1
p = Sp(P

A
K)TQt1 . (3.218)
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The element in the i-th row and j-th column of Sp is

spi,j =
2K∑
k=1

[
Aa
p

]
i,k

[PK ]k,j

=
N∑
k=1

[Ap]i,k [PK ]k,j +
2K∑

k=N+1

[Cp]i,k−N [PK ]k,j .

(3.219)

Since the N random variables [Ap]i,1, · · · , [Ap]i,N satisfy Lindeberg’s condition, we

have

lim
N→∞

1

N/n

N∑
k=1

E
{

[Ap]
2
i,k I(ε
√
N/n,∞)

(| [Ap]i,k |)
}

= 0,

for any ε > 0. Noting that | [PK ]k,j | = 2−K/2 for all i and k, it is easy to verify that

[Ap]i,k [PK ]k,j for k = 1, · · · , N also satisfy Lindeberg’s condition. Therefore, we can

apply Lindeberg Central Limit Theorem (CLT) to obtain

N∑
k=1

[Ap]i,k [PK ]k,j
d→ N

(
0,
N

2K
1

n

)
. (3.220)

Now consider the restR random variables [Cp]i,k−N . Since they are i.i.d. N (0, 1/n),

it is easy to show that

2K∑
k=N+1

[Cp]i,k−N [PK ]k,j
d→ N

(
0,
R

2K
1

n

)
. (3.221)

Therefore

spi,j
d→ N (0, 1/n), as K →∞, ∀i, j. (3.222)

Using the independence of entries in Aa
p and the orthogonality of PK , we can further

show that

Cov(spi1,j1 , s
p
i2,j2

) =
1

n
δi1,i2δj1,j2 , ∀i1, i2, j1, j2. (3.223)

Therefore

Sp
d→ SGp , as K →∞, (3.224)
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where SGp consists of i.i.d. N (0, 1/n) entries.

We can apply Lemma 11 in [58] to obtain

Sp|Sp
t1,t2

d→ Lp
t1,t2 + Pt1,t2(S̃Gp ), (3.225)

where Lp
t1,t2 is the least-square-solution of

arg min
S
‖S‖2

F , s.t. PA
KSTMt2

p = Xt2
p ,Y

t1
p = S(PA

K)TQt1 ,

S̃Gp consists of i.i.d. N (0, 1/n) entries independent of Sp, and Pt1,t2 is the orthogonal

projector onto the following subspace

S = {S : PA
KSTMt2

p = 0,S(PA
K)TQt1 = 0}. (3.226)

The way of obtaining Lp
t1,t2 and Pt1,t2(S̃Gp ) is similar to that of conditional distri-

bution of A in [58]. We will still present the process, yet in a way easier for readers

to follow.

Obtain Lp
t1,t2 : Write the Lagrangian

J(S,Θ,Γ) = ‖S‖2
F + tr

{
ΘT

[
Yt1
p − S(PA

K)TQt1
]}

+ tr
{
ΓT
[
Xt2
p −PA

KSTMt2
p

]}
,

where Θ and Γ are Lagrangian multipliers to be determined, tr{·} denotes the trace

of a matrix, and tr{ATB} is a well-defined inner product for vector spaces V where

all the elements are matrices.

Note that

tr{ΘTS(PA
K)TQt1} = tr{(PA

K)TQt1ΘTS}

= tr{STΘ(Qt1)TPA
K},

(3.227)
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and

tr{ΓTPA
KSTMt2

p } = tr{STMt2
p ΓTPA

K} (3.228)

Applying the KKT condition, we have

OSJ(S,Θ,Γ) = 2S−
[
Θ(Qt1)T + Mt2

p ΓT
]
PA
K = 0. (3.229)

Post-multiplying the left hand side of (3.229) by (PA
K)T , according to (3.214),

we get

2S(PA
K)T = Θ(Qt1)T + Mt2

p ΓT . (3.230)

Post-multiplying both sides of (3.230) by Qt1 , plugging in the linear constraints

in (3.218), we get

Θ(Qt1)TQt1 + Mt2
p ΓTQt1 = 2Yt1

p . (3.231)

Take transposition and then post-multiply Mt2
p on both sides of (3.230), plug in

the linear constraints in (3.218) again, we have

Qt1ΘTMt2
p + Γ(Mt2

p )TMt2
p = 2Xt2

p . (3.232)

From (3.231) we can get

Θ = 2Yt1
p

[
(Qt1)TQt1

]−1 −Mt2
p

[
(Qt1)†Γ

]T
. (3.233)

Plugging it in (3.232), we have

P⊥Qt1Γ = 2
{

Xt2
p −

[
(Mt2

p )TYt1
p (Qt1)†

]T} [
(Mt2

p )TMt2
p

]−1
. (3.234)
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Plugging (3.40) in, the right hand side becomes

2
{

Xt2
p −

[
(Mt2

p )TYt1
p (Qt1)†

]T} [
(Mt2

p )TMt2
p

]−1

= 2
{

Xt2
p −

[
(Xt2

p )TQt1(Qt1)†
]T} [

(Mt2
p )TMt2

p

]−1

= 2P⊥Qt1X
t2
p

[
(Mt2

p )TMt2
p

]−1
.

(3.235)

Γ has infinitely many solutions since P⊥Qt1
is not full rank. Nevertheless, we can

take the most straightforward one

Γ = 2Xt2
p

[
(Mt2

p )TMt2
p

]−1
. (3.236)

Plugging it back to (3.233), we obtain

Θ = 2P⊥
M
t2
p

Yt1
p

[
(Qt1)TQt1

]−1
. (3.237)

Plugging (3.236) and (3.233) in (3.229), we finally obtain

Lp
t1,t2 =

{
P⊥

M
t2
p

Yt1
p (Qt1)† +

[
Xt2
p (Mt2

p )†
]T}

PA
K

=
{

Yt1
p (Qt1)† +

[
Xt2
p (Mt2

p )†
]T

P⊥Qt1

}
PA
K .

(3.238)

Obtaining Pt1,t2(S̃Gp ): First, we try to construct a linear operator P : Rnp×2K → S,

where S is the subspace described in (3.226).

∀ S ∈ S, we have PA
KSTMt2

p = 0 and S(PA
K)TQt1 = 0. Now we want to find

such a S.

Let us consider PA
KSTMt2

p = 0 only. It is easy to show that for any V1 ∈ Rnp×N ,

all the S satisfying S(PA
K)T = P⊥

M
t2
p

V1 will suffice for PA
KSTMt2

p = 0.

Let us consider S(PA
K)TQt1 = 0 only, It is easy to show that for any V2 ∈ Rnp×N ,

all the S satisfying S(PA
K)T = V2P

⊥
Qt1

will suffice for S(PA
K)TQt1 = 0.

Now, if we want S to satisfy both, then V1 and V2 are coupled though P⊥
M
t2
p

V1 =

V2P
⊥
Qt1

. To decouple, we pick up another arbitrary VA ∈ Rnp×N , and let V1 =
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VAP⊥Qt1
and V2 = P⊥

M
t2
p

VA, then it is easy to show that P⊥
M
t2
p

V1 = V2P
⊥
Qt1

=

P⊥
M
t2
p

VAP⊥Qt1
. In other words, ∀ VA ∈ Rnp×N , any S that satisfies

S(PA
K)T = P⊥

M
t2
p

VAP⊥Qt1

will suffice for S ∈ S, and this condition is equivalent to

S = P⊥
M
t2
p

VAP⊥Qt1P
A
K + VcP

C
K ,∀ VA ∈ Rnp×N ,

∀ Vc ∈ Rnp×R, where R = 2K −N.
(3.239)

Since VA and VC are arbitrary, they form an arbitrary V = [VA|VC ] PK ∈ Rnp×2K

with VA = V(PA
K)T and VC = V(PC

K)T . Plugging them back, we get the following

operator Pt1,t2(V):

Pt1,t2(V) = P⊥
M
t2
p

V(PA
K)TP⊥Qt1P

A
K + V(PC

K)TPC
K . (3.240)

To show that P 4= Pt1,t2 is indeed the projector onto S, we need to verify that

a) ∀ V ∈ Rnp×2K , P(V) ∈ S, i.e., projection of any matrix should not go beyond

S.

b) P(S) = S for any S ∈ S.

c) ∀ S ∈ S, ∃V ∈ Rnp×2K , s.t. P(V) = S.

d) P ◦ P = P , i.e., projection of projection should remain the same.

e) ∀ V ∈ Rnp×2K , ∀ S ∈ S, tr
{
ST [V − P(V)]

}
= 0. Geometrically, this can be

interpreted as (V − P(V))⊥S, i.e., projection should be orthogonal.

Verification of Properties (a) ∼ (e) of P:

(a) ∀ V ∈ Rnp×2K , we have

PA
KP(V)TMt2

p =

PA
K

[
P⊥

M
t2
p

V(PA
K)TP⊥Qt1P

A
K + V(PC

K)TPC
K

]T
Mt2

p = 0,
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and

P(V)(PA
K)TQt1 =[

P⊥
M
t2
p

V(PA
K)TP⊥Qt1P

A
K + V(PC

K)TPC
K

]
(PA

K)TQt1 = 0.

So P(V) ∈ S.

(b) ∀S ∈ S, we have PA
KSTMt2

p = 0,S(PA
K)TQt1 = 0,

P(S) = P⊥
M
t2
p

S(PA
K)TP⊥Qt1P

A
K + S(PC

K)TPC
K

= P⊥
M
t2
p

S(PA
K)T

(
I−PQt1

)
PA
K + S(PC

K)TPC
K

=
(
I−P

M
t2
p

)
S(PA

K)TPA
K + S(PC

K)TPC
K

= S(PA
K)TPA

K + S(PC
K)TPC

K = S.

(c) is a direct result of (b) by plugging V = S.

(d) ∀ V ∈ Rnp×2K , applying (a), we have P(V) ∈ S. Denote P(V) = S, apply

(b), we have P ◦ P(V) = P(S) = S = P(V).

(e) ∀ V ∈ Rnp×2K ,

V − P(V) =

V −P⊥
M
t2
p

V(PA
K)TP⊥Qt1P

A
K −V(PC

K)TPC
K

= V(PA
K)TPA

K −P⊥
M
t2
p

V(PA
K)TP⊥Qt1P

A
K

= V(PA
K)TPA

K − (I−P
M
t2
p

)V(PA
K)TP⊥Qt1P

A
K

= V(PA
K)TPQt1P

A
K + P

M
t2
p

V(PA
K)TP⊥Qt1P

A
K .

(3.241)

Therefore, ∀ S ∈ S, we have

tr
{
ST [V − P(V)]

}
= tr

{
STV(PA

K)TPQt1P
A
K

}
+ tr

{
STP

M
t2
p

V(PA
K)TP⊥Qt1P

A
K

}
.

(3.242)
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Since S ∈ S, PA
KSTMt2

p = 0,S(PA
K)TQt1 = 0, we have

tr
{
STV(PA

K)TPQt1P
A
K

}
= tr

{
V(PA

K)TPQt1P
A
KST

}
= tr

{
V(PA

K)T
[
S(PA

K)TQt1(Qt1)†
]T}

= 0,

(3.243)

and

tr
{

STP
M
t2
p

V(PA
K)TP⊥Qt1P

A
K

}
= tr

{
PA
KSTMt2

p (Mt2
p )†V(PA

K)TP⊥Qt1

}
= 0.

(3.244)

So

tr
{
ST [V − P(V)]

}
= 0.

Now we have shown that

Sp|Sp
t1,t2

d→ Lp
t1,t2 + Pt1,t2(S̃Gp ) ={

P⊥
M
t2
p

Yt1
p (Qt1)† +

[
Xt2
p (Mt2

p )†
]T}

PA
K+

P⊥
M
t2
p

S̃Gp (PA
K)TP⊥Qt1P

A
K + S̃Gp (PC

K)TPC
K .

(3.245)

Since Ap = Sp(P
A
K)T , we have

Ap|Sp
t1,t2

d→ Lp
t1,t2(P

A
K)T + Pt1,t2(S̃Gp )(PA

K)T ={
P⊥

M
t2
p

Yt1
p (Qt1)† +

[
Xt2
p (Mt2

p )†
]T}

PA
K(PA

K)T+

P⊥
M
t2
p

S̃Gp (PA
K)TP⊥Qt1P

A
K(PA

K)T + S̃Gp (PC
K)TPC

K(PA
K)T

= P⊥
M
t2
p

Yt1
p (Qt1)† +

[
Xt2
p (Mt2

p )†
]T

+ P⊥
M
t2
p

S̃Gp (PA
K)TP⊥Qt1 .

(3.246)

Noting that (PA
K)T has orthogonal columns, it is easy to show that Ãp =

S̃Gp (PA
K)T consists of i.i.d. N (0, 1/n) entries. Now we finish the proof of Lemma

13 for the case where each row of A satisfies Lindeberg’s condition. For the case

where each column of A satisfies Lindeberg’s condition, we can augment Ap from the
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row direction into a 2K × N matrix, where 2K > np, and apply the same proof to

show that Lemma 13 holds.

Proof of Lemma 12: According to Lemma 13, Ap|Sp
t1,t2 will converge in distribution

to the same result as the case where A consists of i.i.d Gaussian entries. None of the

assumptions used in the proof of Lemma 4 requires any type of convergences stronger

than convergence in distribution, and for all the conclusions obtained during the proof

of Lemma 4, there are no converge types weaker than convergence in distribution.

Therefore, the same flow of proof works for Lemma 12, by replacing all the almost-sure

convergences in the conclusions in Lemma 4 by convergences in distribution (weak

convergence).

Corollary 4 For DiAMP-G1, if all the entries in sensing matrix A are independent

zero-mean random variables with variance 1/n, with each one being either (b/
√
n)-

subgaussian, or (α, β/
√
n)-sublaplacian, then all of the conclusions in Lemma 4 hold

with the almost-sure convergence being replaced by convergence in distribution.

It is straightforward to prove Corollary 4, by applying Lemma 11 to show that

each row or column of A satisfies Lindeberg’s condition.

Lemma 12 provides a class of sensing matrices for DiAMP-G1 where SE still

holds, which is even broader than the set of matrices consisting of independent sub-

gussian random variables with variance 1/n, as described in Section 3.3.1 and Corol-

lary 4. This greatly extends the universality of SE on the theoretical level. Applying

Lemma 4 and Lemma 12 (b) directly, we can show that Theorem 7 holds.

Remarks: The crucial part of proof of Lemma 13 is the augmenting. The orthogonal

matrix PK serves as a group of well-designed weights, to transform a non-Gaussian

matrix into an asymptotic Gaussian matrix. In most cases, to apply Lindeberg’s CLT

for n independent random variables, a prerequisite is that their variances should be
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in the same level, i.e., there should be no one’s variance dominating the others so

that when taking summations, the averaging effect “turns on” in terms of asymptotic

Gaussianity. This implies that all the elements in PK should be on the same level.

However, there is no guarantee of the existence of such orthogonal matrices, unless it

is of order 2K .

3.4 Numerical Illustrations of Gaussianity in DiAMP

Having proved that SE holds in DiAMP, we now give some illustrations of Gaus-

sianity in DiAMP, Q-Q Plot, hypothesis testing, and negentropy.

3.4.1 Q-Q Plot

Considering the DiAMP framework in (3.23), (3.24), and (3.21), on each Sensor

p we further partition Ap equally by rows and obtain Ap,1, Ap,2 ∈ RMp/2×N , and

the corresponding yp,1, yp,2, ztp,1, ztp,2, etc. Denoting utp,i = (ωp/2)xt + AT
p,iz

t
p,i (i =

1, 2), it can be shown that in the large system limit, the 2P random vectors rtp,i =

utp,i − (ωp/2)s0 behave like i.i.d. N (0, (ωp/2)σ2
t IN), where IN is the N × N identity

matrix. In Fig. 9 an example is provided illustrating the Gaussianity of rtp,i with soft

thresholding function as the denoiser. As shown in the figure, all the Q-Q plots are

close to straight lines, which is a good evidence of Gaussianity.

3.4.2 Hypothesis Test

Let us introduce an N × 2P matrix G, with each column g2(p−1)+i =
√

2/ωpr
t
p,i.

If the Gaussianity assumption is valid, then all the elements gij in G follows i.i.d.

N (0, σ2
t ). Therefore, we can design the following nonparametric hypothesis test:

H0: gij follows i.i.d. N (0, σ2
t );

H1: gij does not follow i.i.d. N (0, σ2
t ),
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Fig. 9. QQ-plots of rtp,i (p = 1, · · · , P and i = 1, 2) at the 1-st and 20-th iterations of

AMP with soft thresholding, with P = 2 and ω1 = ω2 = 0.5.

which can be performed by the Kolmogorov-Smirnov (K-S) test [84]. Note that K-S

test for large sample is highly sensitive to outliers [85], whereas the sample size in

our case is 2NP with the order of 105 or even larger, which may cause numerical

instability if we directly run K-S on the sample. In the following we propose a

hierarchical approach, which contains two layers of tests.

Layer 1: Randomly reorder the elements in G, and then partition them equally into

KB blocks, with each block having SB = 2NP/KB elements. For each block i ∈ [KB],

run K-S test and obtain the corresponding p-value pL1(i).

Layer 2: If the null hypothesis in Layer 1 is true, then all the p-values pL1(i) should

follow i.i.d. U(0, 1) [86, 87], where U denotes uniform distribution; otherwise, most

pL1(i)’s should concentrate near 0, which implies that the true CDF of pL1(i)’s, say

FL1(x), will soon increase to 1, i.e., F (x) > x. Therefore, we can build the following

one-sided hypothesis test:

H0: FL1(x) = x;

H1: FL1(x) > x,
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where we can perform K-S test again, and obtain the corresponding p-value pL2 . Note

that the test will be performed in each iteration of DiAMP, and there will be KB pL1 ’s

and 1 pL2 per iteration. The larger pL2 , the better, as is shown in the numerical results

later on.
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Fig. 10. p-Values of the proposed two-layer tests. In the first sub-figure, the x-axis

corresponds to all the p-Values pL1 ’s of the first layer obtained in simulations,

the FL1(x)-axis corresponds to their CDF values, and the color bar indicates

the percentage of (x, FL1(x))′s falling into each bin (in %). The second sub-

-figure shows all the p-Values pL2 ’s of the second layer in DiAMP iterations,

where the color bar indicates the percentage of (t, pL2)
′s falling into each bin

(in %).

In Fig. 10 p-Values of the proposed two-layer tests are shown. As we can see, the

distribution of the p-Values pL1 ’s of the first layer, that is, p-Values of Gaussianity
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test of rtp,i in DiAMP, is very close to U(0, 1); furthermore, the p-Values pL2 ’s of the

second layer, that is, that of the uniformity test of pL1 ’s, are concentrated in the range

[0, 1], which verifies the uniformity of pL1 ’s, thereby validating the Gaussianity of rp,it

in DiAMP.

3.4.3 Negentropy

We can also validate the Gaussianity in rtp,i by observing its negentropy, a non-

Gaussianity measure [88] of a given distribution Y ∼ PY with zero mean and unit

variance:

JY =
[E(Y 3)]

2

12
+

[E(Y 4)− 3]
2

48
, (3.247)

where JY is a nonnegative number, the smaller it is, the more close it is to a standard

normal distribution.

In Fig. 11 the negentropy values of rtp,i are shown in DiAMP, which are dis-

tributed within [2× 10−7, 2× 10−5], very close to 0. This verifies the Gaussianity of

rtp,i in DiAMP.

3.5 Applications: Lossy DiAMP

3.5.1 AMP with Bayesian MMSE Estimator

In previous sections on AMP, we assume no prior knowledge on s0, where the

soft thresholding function is nearly a minimax risk denoiser. On the other hand, if

we know that s0 follows some prior distribution, then the optimal denoiser in the

mean-square-error (MSE) sense is the minimum MSE (MMSE) estimator:

ηt(Ft) = E [S0 |S0 + σtZ = Ft ] . (3.248)

For simplicity of illustration, we assume that S0 follows the Bernoulli Gaussian
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Fig. 11. Empirical CDF of negentropy of rtp,i in DiAMP.

distribution:

pS0(s) = εN (s;µs, σ
2
s) + (1− ε)δ(s), (3.249)

where δ(s) denotes the Dirac delta function, the notation N (s;µs, σ
2
s) denotes the

value of Gaussian PDF N (µs, σ
2
s) evaluated at s, and S0 typically has mean µs = 0.

The denoiser is easily derived and given as follows:

ηt(Ft) =
εN (Ft;µs, σ

2
s + σ2

t )

εN (Ft;µs, σ2
s + σ2

t ) + (1− ε)N (Ft; 0, σ2
t )
× Ftσ

2
s + µsσ

2
t

σ2
s + σ2

t

. (3.250)

In this dissertation we set µs = 0.

As a measure of the measurement noise level and recovery accuracy, we define

127



the signal-to-noise-ratio (SNR) as

SNR = 10 log10

(
E
[
‖As0‖2

]
/E
[
‖e‖2

])
≈ 10 log10

(
E
[
‖s0‖2

]
/E
[
‖e‖2

])
= 10 log10

(
ρ/σ2

e

)
,

where ρ = ε/κ, and the signal-to-distortion-ratio (SDR) at iteration t as

SDR(t) = 10 log10

(
E
[
‖s0‖2

]
/E
[
‖xt − s0‖2

])
.

Using the SE equation in (2.5), we have

SDR(t) = 10 log10

[
ρ/
(
σ2
t − σ2

e

)]
.

Note that the Bernoulli Gaussian assumption in this paper is only for illustration,

and our work is easily extended to other prior distributions pS0 .

3.5.2 Multi-Processor AMP Framework

Consider a system with P processors and one fusion center. Each processor p ∈

{1, · · · , P} takes M/P rows of A ∈ RM×N , namely Ap, and obtains yp = Aps0 + ep.

The procedures in (2.1) — (2.3) can then be rewritten in a distributed manner:

Local Computation (LC) performed by each processor p:

zpt = yp −Apxt + (1/κ)η′t(ft−1)zpt−1,

fpt = xt/P + (Ap)Tzpt .

Global Computation (GC) performed by the fusion center :

ft =
P∑
p=1

fpt , η
′
t(ft), and xt+1 = ηt (ft) .

It can be seen that in the GC step of MP-AMP, each processor p sends fpt to the

fusion center, and the fusion center sums them to obtain ft and xt+1, and sends xt+1
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to each processor.6 Our goal in this dissertation is to reduce these communication

costs while barely impacting recovery performance.

Suppose that all the elements in fpt are computed as 32-bit single-precision

floating-point numbers. As shown in previous sections, SE still holds in DiAMP

even in the presence of quantization noises, we can compress fpt lossily up to some

reasonable distortion level, and send the compressed output to the fusion center. By

applying SE in DiAMP, we can link σ2
t to the quantization error D, while by applying

rate-distortion theory [77], we can further connect D to the bit rates we use in lossy

compression. In other words, we can precisely control the trade-off between recovery

accuracy and communication cost, based on the one-to-one map from the bit rate per

element R, and σ2
t in DiAMP, a measure of its accuracy.

3.5.3 Lossy Compression of fpt

Due to the proof of SE in DiAMP in previous sections of this chapter, we know

that elements of fpt − (1/P )s0 are i.i.d. Gaussian with mean 0 and variance σ2
t /P .

Furthermore, fpt − (1/P )s0 and f qt − (1/P )s0 are independent for different processors

p and q. In light of this property, fpt can be described as a scalar channel:

F p
t = S0/P + (σt/

√
P )Zp, where Zp ∼ N (0, 1).

For the Bernoulli Gaussian distribution (3.249),

F p
t ∼ εN

(
µs/P, (σ

2
s + Pσ2

t )/P
2
)

+ (1− ε)N
(
0, σ2

t /P
)
.

Scalar Quantization: Next, we propose a uniform quantizer with entropy coding,

also known as entropy coded scalar quantization (ECSQ) [89].

6In order to calculate each zpt+1, the fusion center also needs to send η′t(ft) to all the
processors. This is a scalar, and the corresponding communication cost is negligible
compared with that of transmitting a vector.
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Let Ψ(u) denote the characteristic function of F p
t , it can be shown that

|Ψ(u)| ≤ ε exp
[
−0.5

(
σ2
s + Pσ2

t

)
u2/P 2

]
+ (1− ε) exp

(
−0.5σ2

t u
2/P

)
≤ exp

(
−0.5σ2

t u
2/P

)
is nearly band-limited. Due to this property, it is possible to develop a uniform quan-

tizer of fpt ∼ i.i.d. F p
t , where the quantization error vpt is approximately statistically

equivalent to a uniformly distributed noise V p
t ∼ U [−0.5∆Q, 0.5∆Q] uncorrelated to

F p
t . Actually, a quantization bin size ∆Q ≤ 2σt/

√
P will suffice for validation of vpt ∼

i.i.d. V p
t [66].

The fusion center will receive the quantized data f̃pt ∼ i.i.d. F̃ p
t , and calculate

f̃t =
∑P

p=1 f̃pt ∼ i.i.d. F̃t, where

F̃t =
P∑
p=1

F̃ p
t = Ft + Vt, and Vt =

P∑
p=1

V p
t . (3.251)

Applying the central limit theorem, Vt approximately follows N (0, Pσ2
Q) for large P ,

where σ2
Q = ∆2

Q/12.

Entropy Coding and Optimum Bit Rate: Let pi be the probability that F p
t

falls into the i-th quantization bin. The entropy of quantized F p
t , F̃ p

t , is HQ =

−
∑

i pi log2 (pi)[77], that is, the sensors need HQ bits on average to represent each

element in f̃pt to the fusion center, which is achievable through entropy coding [77].

In rate distortion (RD) theory [77], we are given a length-n random sequence

Yn = {Yn,i}ni=1 ∼ i.i.d. FY , and our goal is to identify a reconstruction sequence

Ŷn = {Ŷn,i}ni=1 that can be encoded at low rate while the distortion d(Yn, Ŷn) =

1
n

∑
i d(Yn,i, Ŷn,i) (e.g., squared error distortion) between the input and the reconstruc-

tion sequence is small. RD theory has characterized the fundamental best-possible

trade-off between the distortion D = d(Yn, Ŷn) and coding rate R(D), which is called

the rate distortion function. The RD function R(D) can be computed numerically

(cf. Blahut [90] and Arimoto [91]). For the uniform quantizer that yields a quantiza-
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tion MSE of σ2
Q with a coding rate HQ bits per element, the RD function will give a

bit rate R(D = σ2
Q) < HQ, which is achievable through vector quantization [89].

New SE Equation: For both ECSQ and RD-based vector quantization that lead

to a quantization MSE of σ2
Q, the fusion center will have F̃t = S0 +

√
σ2
t + Pσ2

QZ̃,

where Z̃ ∼ N (0, 1). The new denoiser and SE equation become

ηQt (F̃t) = E
[
S0

∣∣∣S0 +
√
σ2
t + Pσ2

QZ̃ = F̃t

]
and

σ2
t+1 =σ2

e+(1/κ)E
[
ηQt

(
S0 +

√
σ2
t + Pσ2

QZ̃
)
−S0

]2

. (3.252)

Currently, we only consider compression of fpt . When broadcast from the fusion

center to the P processors is allowed in the network topology, the communication cost

of sending xt – even uncompressed – is smaller than that of communicating the P

vectors fpt . We are considering the case where broadcast is not allowed in our ongoing

work.

3.5.4 Online Back-tracking (BT-MP-AMP)

Let σ2
t,C and σ2

t,D denote the σ2
t obtained by the centralized AMP (2.5) and

MP-AMP (3.252), respectively. In order to reduce communication while maintaining

high fidelity, we first constrain σ2
t,D so that it will not deviate much from σ2

t,C , and

then determine the minimum coding rate required in each iteration. This can be

done through an online back-tracking algorithm, which we name BT-MP-AMP and

present below.

In each iteration t, before quantizing fpt , we first compute σ2
t+1,C for the next

iteration. Then we find the maximum quantization MSE σ2
Q allowed so that the ratio

σ2
t+1,D/σ

2
t+1,C does not exceed some constant, provided that the required bit rate does

not exceed some threshold. Based on the obtained σ2
Q we construct the corresponding

quantizer.
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Note that the SE in (3.252) is only an approximation, and we do not know the true

value of σ2
t,D in the current iteration. To better predict σ2

t+1,D, we use σ̂2
t,D = ‖zpt‖2/M ,

which is a good estimator for σ2
t,D[57, 58], to compute σ2

t+1,D. To obtain σ̂2
t,D, each

processor p sends the scalar ‖zpt‖2 to the fusion center, which then sends the scalar

σ̂2
t,D =

∑P
p=1 ‖z

p
t‖2/M to all the processors. The corresponding communication cost

is also negligible compared with that of communicating fpt .

3.5.5 Dynamic Programming (DP-MP-AMP)

While back-tracking is a useful heuristic, it is possible for a given coding budget

R per element, total number of AMP iterations T , and initial noise level σ2
0 in the

scalar channel to compute the coding rate allocations among the AMP iterations that

minimize the final MSE, σ2
T,D.

To do so, note that we can evaluate σ2
t,C offline and hence obtain the number of

iterations required to reach the steady state, which would be a reasonable choice for

T . Second, recalling the new SE equation in (3.252), σ2
t,D depends on σ2

t−1,D and σ2
Q,

which is a function of Rt, the coding rate allocated in the t-th iteration. Therefore,

we can rewrite σ2
t,D as follows:

σ2
t,D = f1(σ2

t−1,D, Rt) = f2(σ2
t−2,D, Rt−1, Rt)

= · · · = ft(σ
2
0, R1, · · · , Rt−1, Rt),

(3.253)

that is, given σ2
0, σ2

T,D is only a function of Rt for t ∈ {1, 2, · · · , T}. Denoting

FT (R) = {R1, · · · , RT ≥ 0:
∑T

t=1Rt = R}, minimizing σ2
T,D for a given R can be

formulated as the following optimization problem:

min
FT (R)

σ2
T,D = min

FT (R)
fT (σ2

0, R1, · · · , RT ). (3.254)

Since σ2
t,D is increasing with σ2

t−1,D, it is easy to verify the following recursive rela-
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tionship:

min
FT (R)

σ2
T,D= min

0≤RT≤R
f1

(
min

FT−1(R−RT )
σ2
T−1,D,RT

)
= · · · ,

which makes the problem solvable through dynamic programming (DP).

To implement DP, we need to discretize FT (R) into {R1, · · · , RT ∈ Ω :
∑T

t=1Rt =

R}, where Ω = {R(1), · · · , R(S)} with R(s) = R(s−1)/(S−1), ∀s ∈ {1, · · · , S}. In this

dissertation, we set the bit rate resolution ∆R = R/(S − 1) = 0.1 bits per element.

Then, we create an S×T array Σ, with the element in the s-th row (s ∈ {1, · · · , S})

and t-th column (t ∈ {1, · · · , T}) denoted as σ2
D(s, t), storing the optimal value of

σ2
t,D when a total of R(s) bits per element are used in the first t iterations. By the

definition of σ2
D(s, t), we have

σ2
D(s, t) = min

r∈{1,2,··· ,s}
f1

(
σ2
D(r, t− 1), R(s−r+1)

)
, (3.255)

and the first column of elements in Σ is obtained by:

σ2
D(s, 1) = f1

(
σ2

0, R
(s)
)
, ∀s ∈ {1, 2, · · · , S}. (3.256)

After obtaining Σ, the optimal value of σ2
T,D, by definition, is σ2

D(S, T ). Meanwhile,

to obtain the optimal bit allocation strategy, we need another S×T array R to store

the optimal bit rate RDP (s, t) that is allocated at iteration t when a total of R(s) bits

per element are used in the first t iterations. Similar to BT-MP-AMP, we name the

proposed MP-AMP approach combined with DP as DP-MP-AMP.

3.6 Numerical Results

We evaluate BT-MP-AMP and DP-MP-AMP in an MP system with P = 30

processors at SNR= 20 dB, where we set N = 10,000, M = 3,000, i.e., κ = 0.3,

and generate Bernoulli-Gaussian sequences s0 with ε ∈ {0.03, 0.05, 0.1}, µs = 0, and

σs = 1.

We first evaluate the SE equation (2.5) of centralized AMP for the three sparsity
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Fig. 12. SDR and bit rates as functions of iteration number t. (N=10,000, M=3,000,

κ=0.3, µs=0, σs=1, SNR=20 dB.)

levels. As shown in Fig. 12, they reach the steady state after T = 8, 10, and 20

iterations respectively. Then, we run BT-MP-AMP and DP-MP-AMP, where for the

latter the total rates are R = 2T bits per element and the RD-function models the

relation between Rt and σ2
Q.

According to RD theory, in the high rate limit, we should expect a gap of roughly

0.255 bits per element between the entropy and RD function for a given distortion

level [89]. Therefore, in an implementation of DP-MP-AMP where we apply ECSQ,

we add 0.255 bits per element to the results in each iteration obtained by DP. Note

that the two solid curves in the top three panels are obtained through offline calcu-

lation and optimization, and the two dash-dotted curves are obtained through AMP

simulations. As shown in Fig. 12, BT-MP-AMP uses fewer than 6 bits per ele-

ment in each iteration, more than 80% communication savings compared with 32-bit

single-precision floating-point transmission, while achieving almost the same SDR’s

as in centralized AMP. On the other hand, there are clear gaps between the SDR’s of
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Table 7. Total bits per element of MP-AMP
ε 0.03 0.05 0.10

T 8 10 20

BT-MP-AMP (RD prediction) 33.82 46.43 96.16

BT-MP-AMP (ECSQ simulation) 36.09 49.19 101.50

DP-MP-AMP (RD prediction) 16 20 40

DP-MP-AMP (ECSQ simulation) 18.04 22.55 45.10

DP-MP-AMP and centralized AMP during the first few iterations, but they vanish

quickly as t approaches T , in return for over 50% communication reduction beyond

that provided by BT-MP-AMP, as shown in Table 7.

Note also that the ECSQ implementation of DP-MP-AMP has lower SDR’s than

that predicted by DP results based on the RD function at the beginning. This is

because the 0.255-bits gap only holds in the high rate limit. However, due to the

robustness of SE to disturbances, and the increasingly high rates as t approaches T ,

the ECSQ implementation matches the predicted DP results at the last iteration.

3.7 Conclusion

In this chapter, we proved that SE still holds in a distributed AMP framework,

where quantization noise is incorporated. Furthermore, compared to previous theoret-

ical results which assume that the sensing matrix consists of independent subgaussian

entries, our work further extends the validity of SE to more general sensing matri-

ces, which strengths the theoretical support of AMP in general applications. Taking

advantage of this theoretical progress, we proposed a multi-processor approximate

message passing framework with lossy compression. We used a uniform quantizer

with entropy coding to reduce communication costs, and reformulated the SE equa-

tion while accounting for quantization noise. Combining the quantizers and modi-

fied state evolution equation, an online back-tracking approach and another method

based on dynamic programming were developed to determine the coding rate in each
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iteration by controlling the induced error. The numerical results showed that our ap-

proaches can maintain a high signal-to-distortion-ratio despite a significant and often

dramatic reduction in inter-processor communication costs.
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CHAPTER 4

DCS BASED ON ITERATIVE HARD THRESHOLDING

4.1 Introduction

Different from AMP, iterative hard thresholding (IHT) is a deterministic greedy

algorithm [44, 45]. Taking an input parameter K, the sparsity level of the sparse

signal of s0 ∈ RN , IHT aims to find a local minimum of (1.2) close to s0; provided

that the sensing matrix A ∈ RM×N satisfies the RIP condition [16] well and there is

no measurement noise, IHT hopefully converges to s0 [45]. The term “deterministic”

is from the modeling perspective, meaning that there are no quantities in the CS

measurement model in (1.1) that are viewed as random variables. The term “greedy”

depicts its nature, since in each iteration it minimizes a surrogate function which is

an upper bound on the objective function in (1.2). IHT has a linear convergence

rate [44], which is good for most CS recovery algorithms, and compared with other

iterative greedy algorithms like orthogonal matching pursuit (OMP), it has a lower

complexity in each iteration, since no matrix inversion is performed.

Denote IHT with the input parameter K as IHTK . It starts with x0 = 0 and

z0 = y, and repeats the following process:

ft = xt + µATzt (4.1)

xt+1 = η(ft;K) (4.2)

zt+1 = y −Axt+1 (4.3)

where the step size µ can be any positive number within (0, 1/‖A‖2), and u = η(v;K)
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for v ∈ Rn is called hard thresholding function, where u ∈ Rn only keeps the K

largest-in-magnitude components in v and has other components all zero, that is

u(k) = v(k)I(|v(k)| ≥ TK(v)),∀k ∈ [n] (4.4)

Like DiAMP, we can introduce a similar intermediate matrix Wt =
[
w1
t , · · · ,wP

t

]
for distributed IHT (DIHT) [40]:

wp
t =


xt + µ(Ap)Tzpt , p = 1,

µ(Ap)Tzpt , otherwise.

(4.5)

It is easy to show that

ft =
P∑
p=1

wp
t (4.6)

and

xt+1 = η(ft;K) = η

(
P∑
p=1

wp
t ;K

)
(4.7)

zpt+1 = yp −Apxt+1, ∀p = 1, · · · , P (4.8)

also hold for DIHT.

To save the communication cost in the GC step of DIHT, a modified TA (MTA)

approach was proposed in [40], which has been introduced in Chapter 2. As shown

in Table 8, in each iteration of the modified TA (MTA), there is an object being

selected and the corresponding total score is computed; then an upper bound ν on

magnitudes of the total scores that have not been computed yet is obtained. The

algorithm terminates if the K-th largest magnitude of computed total scores is greater

than ν.
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Table 8. MTA Algorithm for DIHT
Input w1

t , · · · ,wP
t , K

Initialize xt+1 = 0 ∈ RN , count= 0, τT = +∞, τB = +∞,
up = +∞, `p = −∞, ∀p = 1, · · · , P ;

Mark all the pairs (n,wp
t (n)) as “unsent”, ∀n, p;

while TRUE

for sensor p = 1:P
obtain R = {n : (n,wp

t (n)) is marked as “unsent”};
if τT ≥ τB

set ns = arg maxn∈Rwp
t (n);

update up = wp
t (ns) and τT = max{0,

∑P
q=1 uq};

else
set ns = arg minn∈Rwp

t (n);

update `p = wp
t (ns) and τB = −min{0,

∑P
q=1 `q};

endif
? broadcast (ns,w

p
t (ns)) and mark it as “sent”;

for sensor q 6= p
? send (ns, w

q
t (ns)) to sensor p and mark it as “sent”;

store wp
t (ns) as the new up or `p;

endfor
? compute ft(ns) and broadcast it to other sensors;
count=count+1;
let β be K-th largest element in {|ft(n)| : n /∈ R\{ns}};
if max{τT , τB} < β or count≥ N

update xt+1(n) = ft(n) if |ft(n)| > β, ∀n /∈ R\{ns};
set Ns = count, the algorithm terminates;

endif
endfor

endwhile

Output xt+1

4.2 Proposed GC Algorithms for DIHT

4.2.1 GC.K Algorithm

For DIHT, according to (4.4), xt+1(n) = 0 if |ft(n)| < TK(ft). Therefore, the GC

in DIHT turns out to be a Top-K problem, that is, to find the K largest-in-magnitude

total scores ft(n) =
∑P

p=1 wp
t (n), as well as the indices n’s of objects they correspond

to. Similar to the derivation of GCAMP, what we are going to do is not using TPUT
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[49] to solve the problem since entries in Wt can either be positive or negative, but

following the essence of the TPUT algorithm to develop our own Top-K algorithm.

Before presenting GC.K, we first give the following straightforward propositions

and lemmas, which shows the intuitive essence of GC.K.

Proposition 11 Let f(x) be a scalar-valued function with domain ΩG, then for any

ΩL ⊂ ΩG, we have

sup
x∈ΩG

f(x) ≥ sup
x∈ΩL

f(x) (4.9)

Proposition 12 Let f(x) and g(x) be two scalar-valued functions with a common

domain Ω, if f(x) ≥ g(x) holds for any x ∈ Ω, then we have

sup
x∈Ω

f(x) ≥ sup
x∈Ω

g(x) (4.10)

With Propositions 11 and 12, we have the following Lemma.

Lemma 14 Given v ∈ RN , for arbitrary Ω ⊂ [N ], let u = v(Ω) and uc = v([N ] \Ω),

we have

TK(v) ≥ TK(u), ∀K ≤ |Ω|. (4.11)

The equality holds if |uc(j)| < TK(v),∀j ∈ [N − |Ω|].

Furthermore, if l ∈ R|Ω| satisfies l(j) ≤ u(j),∀j ∈ [|Ω|], then

TK(v) ≥ TK(l), ∀K ≤ |Ω|. (4.12)

Lemma 14 is straightforward after applying Propositions 11 and 12. With Lemma

14, we develop the following GC.K algorithm, of which the essence is to get lower

bounds on TK(|ft|) and upper bounds on |ft(n)| for each n ∈ [N ].

Let Ω1
p be the set of indices of the largest-in-magnitude K partial scores wp

t (n)

on Sensor p. First, each Sensor p ≥ 2 sends the (n, wp
t (n)) pairs for all n ∈ Ω1

p to

Sensor 1. Sensor 1 then computes a partial sum P (n) for each n ∈
⋃P
p=1 Ω1

p, where a
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partial sum for n is defined as the summation of partial scores Sensor 1 now collects

for n (including w1
t (n)). Denote F 1 as the set of indices for the largest-in-magnitude

K partial sums, then Sensor 1 broadcasts a request for all the partial scores for each

n ∈ F 1 from other Sensors, computes the total score ft(n) for each n ∈ F 1, and

obtains ν1 = TK(|ft(F 1)|).

The following process is very similar to GCAMP algorithm. Set T = θν1/(P−1),

where θ ∈ (0, 1). For p ≥ 2, define Ω2
p = {n /∈ F 1

⋃
Ω1
p : |wp

t (n)| ≥ T}. Each Sensor

p ≥ 2 sends the (n, wp
t (n)) pairs for all n ∈ Ω2

p to Sensor 1. So far, Sensor 1 has

obtained partial scores from Sensor p for all n ∈ Ωp = Ω1
p

⋃
Ω2
p

⋃
F 1, and the set

Sn = {p ∈ [P ] \{1} : n ∈ Ωp} (4.13)

for each n /∈ F 1. Sensor 1 then computes

L(n) = max(|w1
t (n) +

∑
p∈Sn

wp
t (n)| − (P − 1− |Sn|)T, 0) (4.14)

and

U(n) = |w1
t (n) +

∑
p∈Sn

wp
t (n)|+ (P − 1− |Sn|)T (4.15)

for each n /∈ F 1. Denote ν2 as the K-th largest lower bound L(n) and set ν =

max(ν1, ν2), Sensor 1 obtains the set F 2 = {n /∈ F 1 : U(n) ≥ ν}, requests all the

partial scores for each n ∈ F 2 from other sensors, and computes the total score ft(n).

Up to now, we have obtained total scores for all n ∈ F = F 1
⋃
F 2.

Finally, compute xt+1 as follows: for any n ∈ F ,

xt+1(n) = ft(n)I(ft(n) ≥ TK(ft(F ))) (4.16)

and for any n /∈ F , xt+1(n) = 0.

Lemma 15 L(n) in (4.14) is a lower bound on |ft(n)|, and U(n) in (4.15) is an
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upper bound on |ft(n)|.

The proof of Lemma 15 is very similar to that of Lemma 1, by applying the triangular

inequality and the fact that |wp
t (n)| < T for all p /∈ Sn.

Theorem 10 In each iteration, GC.K algorithm gives exactly the same xt+1 as that

of the centralized IHT algorithm computed by (4.2).

Proof of Theorem 10: Let xGt+1 and xIt+1 denote the result obtained by the GC.K and

the centralized IHT respectively. According to Lemma 14, ν1 is a lower bound on

TK(|ft|). For all n /∈ F 1, according to Lemma 15, L(n) ≤ |ft(n)|; applying Lemma 14

again, ν2 is another lower bound on TK(|ft|). Therefore, TK(ft) ≥ ν = max(ν1, ν2).

Now, ∀n /∈ F , we have xGt+1(n) = 0; according to Lemma 15, we have |ft(n)| ≤

U(n) < ν ≤ TK(|ft|), so xIt+1(n) = 0 and according to Lemma 14, TK(|ft|) =

TK(|ft(F )|). ∀n ∈ F , according to (4.2), (4.4), (4.16), and the fact that as we

TK(ft) = TK(ft(F )) just showed, we have xGt+1(n) = xIt+1(n). Therefore, xGt+1 = xIt+1.

The pseudo code of the GC.K algorithm is shown in Table 9, which contains 8

steps. It can be shown that the total number of messages is
∑P

p=1 |Ωp

⋃
F |+(|F |+1),

where the first part is the number of data other sensors send to Sensor 1, and the

second part is the number of broadcasting messages Sensor 1 sends to others.

Table 9.: GC.K algorithm

Input w1
t , · · · ,wP

t , K, θ

Step I
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for sensor p = 1:P

obtain Ω1
p = {n : |wp

t (n)| ≥ TK(wp
t )};

Sensors p ≥ 2 send all (n,wp
t (n)) pairs for n ∈ Ω1

p to Sensor 1

endfor

Step II define xht+1 ∈ RN and initialize xht+1 = 0;

for n ∈
⋃P
p=1 Ω1

p

get Rn := {p : n ∈ Ω1
p};

Compute a partial sum P (n) = w1
t (n) +

∑
p∈Rn\{1}w

p
t (n);

endfor

Sort all the (n,P (n)) pairs in the descending order of |P (n)|;

Broadcast F 1, which is the set of n’s in the first K pairs of the sorted list;

Step III Upon receiving the broadcast message from sensor 1

for sensor p = 2:P

send all (n,wp
t (n)) pairs for n ∈ F 1\Ω1

p to sensor 1.

endfor

Step IV Sensor 1 assigns xht+1(F 1) = ft(F
1), obtain ν1 = TK(|xht+1(F1))| and broad-

cast ν1;

Step V Upon receiving ν1 from sensor 1

for sensor p = 2:P

Set T = ν1θ/(P − 1) and obtain Ω2
p = {n : |wp

t (n)| > T}\(Ω1
p

⋃
F1);

Ωp = Ω1
p

⋃
Ω2
p

⋃
F1;

send all (n,wp
t (n)) pairs for n ∈ Ω2

p to sensor 1.

endfor

Step VI On sensor 1,

for n ∈ [N ] \F1
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get Sn as defined in (4.13), compute L(n) and U(n) according to (4.14) and (4.15);;

endfor

Define ν2 as the K-th largest L(n) and set ν = max(ν1, ν2);

Broadcast F 2 := {n ∈ [N ] \F 1 : U(n) ≥ ν};

Step VII

for sensor p = 2:P

send all (n,wp
t (n)) pairs for n ∈ F 2\Ωp to sensor 1.

endfor

Step VIII for Sensor 1, assign xht+1(F 2) = ft(F
2)

obtain F = F 1
⋃
F 2 and Γ = {n : |xht+1(n)| ≥ TK(|xht+1(F )|)};;

compute xt+1(Γ) = xht+1(Γ) and set xt+1([N ] \Γ) = 0;

Output xt+1.

In Figs. 13 and 14 an example of GC.K was shown with the same input data

as in Fig. 1. Suppose K = 2, in Step I, each Sensor p obtains the set of indicies Ω1
p

for the largest-in-magnitude partial scores, as we can see, Ω1
1 = {6, 4}, Ω1

2 = {6, 2},

and Ω1
3 = {1, 7}. Sensors p ≥ 2 send the (n, wp

t (n)) pairs for n ∈ Ω1
p to Sensor

1. In Step II, Sensor 1 receives the data and computes a partial sum for each n ∈⋃P
p=1 Ω1

p = {1, 2, 4, 6, 7}. As we can see, the indicies of the 2 largest-in-magnitude

partial sums are 6 and 7, so sensor 1 broadcasts F 1 = {6, 7} to other sensors. In Step

III, Sensor 2 and 3 send w2
t (7) and w3

t (6) to Sensor 1. In Step IV, Sensor 1 computes

ft(n) =
∑P

p=1 wp
t (n) for n ∈ F 1 by (3.251), gets ν1 = 21, which is the second largest-

in-magnitude total score for n ∈ F1, and broadcasts it to other sensors. Step V
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to VIII are very similar to GCAMP except for the threshold for the upper bounds

U(n) obtained. Instead of directly applying ν1 as the threshold, as in GCAMP, we

compute a lower bound L(n) for each n ∈ [N ] \F 1, and get the second largest lower

bound ν2 = 0, and the threshold for U(n) is ν = max(ν1, ν2) = 21. Finally, we

obtain the non-zero components of xt+1, which are xt+1(6) = 23 and xt+1(7) = −21;

meanwhile, we save all the total scores we calculated in xht+1, which are xht+1(6) = 23,

xht+1(7) = −21 and xht+1(4) = 7. Overall, in this example, 10 data points are sent

from the sensors to sensor 1, and the total number of messages is 14 (10 data points

plus 4 broadcast requests).

4.2.1.1 The step size µ in DIHT

Theoretically, µ in AIHT can be any value within (0, 1/‖A‖2), while from the

convergence perspective, µ should be as large as possible. Therefore, in the centralized

AIHT, we can just set µ to be 1/‖A‖2 minus a very small positive number. However,

this is intractable in DIHT, since the exact computation of 1/‖A‖2 needs the access

to the entire global sensing matrix, and this contradicts the basic assumption of our

proposed DCS framework. An alternative was to get an upper bound on ‖A‖2, as

proposed in [43], in which each Sensor p ≥ 2 gets the `2 norm of its own sensing

matrix Ap, and sends ‖Ap‖2 to Sensor 1, then Sensor 1 can get
√∑P

p=1 ‖Ap‖2
2, which

is an upper bound on ‖A‖2, sets µ = 1/
√∑P

p=1 ‖Ap‖2
2, and broadcasts µ to other

sensors. However, this approach has a very conservative upper bound for ‖A‖2 and

leads to a much smaller µ than the centralized IHT can get. Here, we propose a new

approach which gives a very good estimate of ‖A‖2, by applying the random matrix

theory (RMT).

Let G = AAT be the Gram matrix of rows of A, and let L1 > · · · > LM be the

M eigenvalues of G, then ‖A‖2 =
√
L1. In RMT, for A := [aij]M×N with aij ∼ i.i.d.
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Fig. 13. Step I ∼ IV of GC.K algorithm

N (0, 1/M), the corresponding Gram matrix G is called Wishart matrix. According

to [92], the largest eigenvalue L1 of G has the following almost sure (a.s.) convergence

in the large system limit:

L1
a.s.−−→ (1 +

√
N/M)2 (4.17)

This implies that for large M and N , L1 will become very close to a deterministic

number, which only depends on the ratio between M and N , that is, the variability

of L1 vanishes in the large system limit. Further, the distribution of L1 was studied
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in [93] and the following results were given: Let us define

µMN = (1 +
√

(N − 1)/M)2 (4.18)

σMN =

√
M +

√
N − 1

M

(
1√
M

+
1√

N − 1

)1/3

(4.19)

then

L1
D−→ µMN + σMNT1 with T1 ∼ F1 (4.20)
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where F1 is the cumulative distribution function (CDF) of Tracy-Widom (TW) law

of order 1 [94]:

F1(s) = exp

{
−1

2

∫ ∞
s

[
q(x) + (x− s)q(x)2

]
dx

}
(4.21)

where q(s) is the solution to the Painlev type II equation

q
′′
(s) = sq(s) + 2q(s)3 (4.22)

with the boundary condition

q(s) ∼ Ai(s), as s→ +∞ (4.23)

where Ai(s) is Airy function defined as

Ai(s) =
1

3

∫ ∞
0

cos

(
t3

3
+ st

)
dt (4.24)

It has been shown that for T1 ∼ F1, its mean is -1.21 and standard deviation is 1.27.

In the large system limit, the standard deviation of L1 approaches 1.27σMN → 0,

which means that the distribution of L1 will become more and more concentrated

on its mean µMN − 1.21σMN → (1 +
√
N/M)2 as the dimensionality of A increases.

Taking advantage of the asymptotic deterministic property of L1, we can get an

approximate q = 1 − α quantile for L1 (α is a smaller number, e.g. 0.01), which

is L(α) = µMN + σMNF
−1
1 (1 − α) and serves as a statistical upper bound on L1.

Due to the fact σMN → 0, this bound will be very tight. We set the step length

µ = 1/
√
L(α). Note that each sensor can calculate µ which only depends on M and

N , without any data transmission between sensors.
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4.2.1.2 Numerical Results

We fix N = 5, 000, set M = Nκ and K = Mρ, where κ ∈ {0.2, 0.3, 0.4, 0.5}

and ρ ∈ {0.1, 0.15, 0.2, 0.25}, and choose P ∈ {10, 15, · · · , 50}. s0 is generated

with random support and non-zero components drawn from N (0, 1). The noise

e ∼ N (0, σ2IM) with σ ∈ {0.01, 0.02, · · · , 0.09}. IHT terminates if ‖xt+1 − xt‖2 ≤

0.001‖xt‖2 or if it runs up to 100 iterations. θ in GC.K is set to 0.8. We have

the following setup: i) fix (P, σ) = (10, 0.02), and change (κ, ρ); ii) fix (κ, ρ, P ) =

(0.2, 0.1, 10), and change σ; iii) fix (κ, ρ, σ) = (0.2, 0.1, 0.02), and change P . Under

each parameter setting, we take nsim = 100 Monte-Carlo runs.

For evaluating the communication cost, considering the approach sending all

the data to Sensor 1, which has a total number of messages N(P − 1), we use the

ratio between the number of messages of GC.K and N(P − 1), denoted as µM , to

measure the efficiency of GC.K. After Sensor 1 obtains xt+1, it needs K messages

to broadcast the non-zero components in xt+1 to other sensors. So we also define

TM = µM +K/[N(P − 1)] to evaluate the performance of GC.K-based DIHT.

For MTA, as shown in Table 8, in each for-loop iteration inside the while-loop,

the algorithm consumes P + 1 messages, and there are totally Ns such iterations. So

the number of messages in MTA is Ns(P + 1). It can be shown that if we run MTA

on the data in Fig. 1, then we will get Ns = 9, which corresponds to 9× (3 + 1) = 36

messages. After MTA terminates, each sensor has obtained the same xt+1, and there

are no additional broadcast messages for the non-zero components of xt+1. Since

the communication cost is proportional to Ns ≤ N , we define µM for the MTA as

µM = Ns/N , and TM = Ns(P + 1)/[N(P − 1)]. Note that the definitions of µM in

GC.K and MTA are slightly different.

We first compare the GC.K-based DIHT.S and MTA-based DIHT.S. Since they
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Fig. 15. Communication cost of GC.K and MTA.

have the same recovery results, we only compare their communication cost, i.e., µM

and TM defined above.

In Fig. 15 we show T̄M , the sample mean of TM ’s, obtained by the two algorithms.

As σ, P and K increase, the values of T̄M in MTA become close to 1, which means

that MTA hardly saves any communication cost, while GC.K can still work efficiently.

In all the cases, GC.K outperforms MTA. In Fig. 16 the cumulative distributions of

µM for GC.K and MTA are given under two extreme settings (large P and large K).

In all iterations under these two settings, the number of messages in MTA are greater

than 0.8N(P − 1), while GC.K can save at least 0.35N(P − 1) messages in 80% of

the total iterations.
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Fig. 16. Cumulative distributions of µM for GC.K and MTA.

Next, we compare GC.K-based DIHT.S with the oracle-aided approach GC.K-

based DIHT.C, where ‖A‖2 is known and µ = 0.99/‖A‖2. The recovery accuracy is

measured in terms of relative root mean squared error (RRMSE), which is defined as

RRMSE =

√∑nsim

i=1 ||(x∗i − s0)||22/nsim

||s0||2
,

where x∗i is the recovered signal in the i-th Monte-Carlo run. The convergence rate is

evaluated in terms of n̄iter :=
∑nsim

i=1 n
i
iter/nsim, where niiter is the number of iterations

in the i-th Monte-Carlo run. In Fig. 17 we show these quantities as well as the

communication cost of DIHT.S and DIHT.C respectively, under all parameter set-

tings, where µ̄M denotes the sample mean of µM ’s. As we can see, DIHT.S performs

similarly to DIHT.C.

We also observe the ratios µ̄M/T̄M for GC.K under all parameter settings, and

find that they are within the interval [0.9771, 0.9989], which means that GC.K incurs

most of the communication cost in the corresponding DIHT algorithms.
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Fig. 17. Comparison of DIHT.S and DIHT.C.

4.2.2 Sign-Aware Data Querying

4.2.2.1 Improvement on GC.K

GC.K uses the number of communication messages (transmitted data points) as

the metric of communication cost. Similar to SAGC, an improvement on GCAMP

in Chapter 2, we notice that if we evaluate the communication cost in terms of

the number of communication bits, which is more practical and informative than

the number of communication messages, and dissertation taking advantage of the

structure of transmitted data, then a further improvement on GC.K is achievable.

Here, we propose a new distributed data querying algorithm, sign-aware data

querying (SADQ), which obtains an upper bound on |ft(n)| and a lower bound on
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TK(ft), and decides whether to transmit all the wp
t (n)’s or not by comparing the two

bounds. When calculating the number of bits needed in communication, we assume

that all the entries in wp
t are stored as 64-bits floating-pointing numbers, with 1-bit

sign and 63-bits magnitudes. The SADQ algorithm contains the following 3 major

steps:

Step I: The key idea of this step is to obtain a Top-K candidate in ft. First,

each sensor p ≥ 2 sends a package as shown in Fig. 18 to Sensor 1.

        
Motivation 

Distributed IHT (D-IHT) 

Sign-Aware Data Querying (SADQ) 

Summary and References 

A typical Compressed Sensing (CS) problem: 

I) Unkown                 with sparsity level K ; 

II) Designed sensing matrix                    with M << N ; 

III) Measurement                        with noise e unknown. 

Task: recover      from y.  

Challenges: When N, M, and K are large, centralized CS (CCS) can 

be demanding (left figure). 

Alternative: distributed CS (DCS, right figure). 
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Step I: Obtain a lower bound on TK ( ft ): the K-th largest magnitude  

in  ft .  

Choose K indices  F1 and  calculate               , then 

is a lower bound.  

How to choose F1? 

Each sensor p > 1 sends the following package to Sensor 1: 
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1) It is easy to obtain an upper bound U(n), and a lower bound L(n) on  

 | ft (n) | , based on the data Sensor 1 currently has and T. 

2) The K-th largest         ,     is another lower bound on             . 

Step III: Obtain xt+1. 
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3) It can be shown that                                            By computing 
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MTA: another distributed data querying algorithm ( [1]~[2] ), which generates an increasing 

sequence of lower bounds on TK ( ft ), and a decreasing sequence of upper bounds on | ft (n) |, 

and terminates if the former exceeds the latter. 

    The communication in SADQ includes two types of data: 

  Real Numbers: all the entries in      . We assume that they are 

  stored as 64-bits floating-point numbers, with 1-bit sign and 63- 

  bits magnitudes. It is easy to compute their # of bits. 

     

P 5 10 15 20 25 

θ* in SADQ 0.8 1.1 1.2 1.3 1.4 

nB in SADQ 0.0984 0.1355 0.1704 0.2006 0.2288 

nB in MTA 0.2355 0.7116 1.0228 1.0962 1.0938 

P 30 35 40 45 50 

θ* in SADQ 1.4 1.5 1.5 1.5 1.6 

nB in SADQ 0.2505 0.2708 0.2861 0.3026 0.3161 

nB in MTA 1.0801 1.0685 1.0597 1.0529 1.0475 

N = 5000, M = 1000, K = 100, Gaussian white noise with standard deviation 0.02; 

θ* : the optimal parameter tuned in SADQ; 

[1] Patterson, Eldar, and Keidar,  ICASSP'13. 

[2] Patterson, Eldar, and Keidar,  IEEE T-SP 2014. 
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  Integers: the indices for each sensor, and the indices in each 

  vector       , e.g.,         and        , etc. 

  There are two ways to encode       : we can either use binary 

  codes to present each index in         , which requires 

  bits; or use a 1-bit flag to denote whether an index is in        , 

  which requires N bits. We choose the one with fewer bits.  
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nB: the ratio of # of bits in SADQ by that of the approach where Sensor 1 has a full access to  

all the data; 

Fig. 18. The structure of the package Sensor p sends to Sensor 1 in Step I

Note that there are two ways for Sensor p to send Ω1
p: It can either directly

represent each index in Ω1
p using binary codes, or use a 1/0 flag to denote whether

each index n = 1, 2, · · · , N is in Ω1
p. The former requires Kdlog2Ne bits, and the

latter requires N bits. Sensor p will compare them and choose the one with fewer

bits.

Let O =
⋃P
p=1 Ω1

p and define Cn = {p ≥ 2 : n ∈ Ω1
p} for each n ∈ O, Sensor

1 computes P (n) = w1
t (n) +

∑
p∈Cn wp

t (n) for each n ∈ O. Denote F 1 as the set

of indices for the largest-in-magnitude K P (n)’s. Sensor 1 broadcasts F 1 to other

sensors, similar to encoding Ω1
p, it takes min{Kdlog2Ne, N} bits to represent F 1.

Now Sensor 1 knows F 1, Ω1
p and wp

t (Ω
1
p), Sensor p only needs to send the sensor

index p, and the magnitudes of wp
t (F

1\Ω1
p) to Sensor 1, i.e., there is no need to send

the indices set F 1\Ω1
p. So it takes dlog2(P − 1)e+ 63|F 1\Ω1

p| bits to send these data

from Sensor p to 1. Finally, Sensor 1 computes ft(F
1), obtains ν1 = TK(ft(F

1)), and
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broadcasts it to other sensors, which requires 63 bits.

The number of required communication bits in this step is

B1 =

[dlog2(P − 1)e+N + min{Kdlog2Ne, N}+ 63K] (P − 1) Sensor p to 1

+ min{Kdlog2Ne, N} Sensor 1 to p

+ (P − 1)dlog2(P − 1)e+ 63
P∑
p=2

|F 1\Ω1
p| Sensor p to 1

+ 63 Sensor 1 to p

Step II: This step is to bound |ft(n)| for each n /∈ F 1.

Set T = θν1/(P − 1), where θ is a parameter trading off the communication cost

of the current step and the following step. Each sensor p ≥ 2 sends the package as

shown in Fig. 19 to Sensor 1.

        
Motivation 

Distributed IHT (D-IHT) 

Sign-Aware Data Querying (SADQ) 

Summary and References 

A typical Compressed Sensing (CS) problem: 

I) Unkown                 with sparsity level K ; 

II) Designed sensing matrix                    with M << N ; 

III) Measurement                        with noise e unknown. 

Task: recover      from y.  

Challenges: When N, M, and K are large, centralized CS (CCS) can 

be demanding (left figure). 

Alternative: distributed CS (DCS, right figure). 

 

 

   

  

 

 

 

A new lossless distributed data querying algorithm is proposed for D-

IHT, which reduces the communication cost efficiently and 

outperforms the MTA proposed in an earlier work. 
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Iterative Hard Thresholding (IHT) algorithm: 

 

            only keeps the K largest-in-magnitude entries. 

Partition the global sensing matrix and measurement: 

 

 

 

 

Local Computation (LC) of        : No communication; 

Global Computation (GC): Need communication to know the K   

largest-in-magnitude entries of                              .   

Question: can this be achieved by transmitting far fewer than  

N ( P – 1 ) data points? 

Solution: Estimate the support of xt+1 first, and then only send  

all the data on the support. 

1 1

P P

A y

A y

A y

   
   

    
   
   

       1 1 1

1

2

; .
P

T T
p p p

t t t t

p

x x A y A x A y A x K  



 
     

 


1

tw
p

tw
p

tw

0

Ns 
M NA 

0s

  1 ; ;T

t t tx x A y Ax K    

 ; K

1

P p

t tp
f w




Step I: Obtain a lower bound on TK ( ft ): the K-th largest magnitude  

in  ft .  

Choose K indices  F1 and  calculate               , then 

is a lower bound.  

How to choose F1? 

Each sensor p > 1 sends the following package to Sensor 1: 

 

 

 

Now Sensor 1 knows all the signs of         , and the values of                   , 

It can compute a “partial sum” P(n) for each                     . 

Choose F1 to be the indices of the top K | P(n) |’s. 

Each sensor p > 1 sends all the entries in                   to Sensor 1. 

Step II: Obtain a range of  ft (n) for all            . 

Define 

   : controlling trade-off  between communication costs in Steps II and III 

Each sensor p > 1 sends the following package to Sensor 1: 

 

 

 

 

 

 

 

 

 

 

      

 

1) It is easy to obtain an upper bound U(n), and a lower bound L(n) on  

 | ft (n) | , based on the data Sensor 1 currently has and T. 

2) The K-th largest         ,     is another lower bound on             . 

Step III: Obtain xt+1. 

Define  

Sensor 1 requests data with indices in       . 

3) It can be shown that                                            By computing 

            , Sensor 1 obtains xt+1 and broadcasts it to other sensors.  
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MTA: another distributed data querying algorithm ( [1]~[2] ), which generates an increasing 

sequence of lower bounds on TK ( ft ), and a decreasing sequence of upper bounds on | ft (n) |, 

and terminates if the former exceeds the latter. 

    The communication in SADQ includes two types of data: 

  Real Numbers: all the entries in      . We assume that they are 

  stored as 64-bits floating-point numbers, with 1-bit sign and 63- 

  bits magnitudes. It is easy to compute their # of bits. 

     

P 5 10 15 20 25 

θ* in SADQ 0.8 1.1 1.2 1.3 1.4 

nB in SADQ 0.0984 0.1355 0.1704 0.2006 0.2288 

nB in MTA 0.2355 0.7116 1.0228 1.0962 1.0938 

P 30 35 40 45 50 

θ* in SADQ 1.4 1.5 1.5 1.5 1.6 

nB in SADQ 0.2505 0.2708 0.2861 0.3026 0.3161 

nB in MTA 1.0801 1.0685 1.0597 1.0529 1.0475 

N = 5000, M = 1000, K = 100, Gaussian white noise with standard deviation 0.02; 

θ* : the optimal parameter tuned in SADQ; 

[1] Patterson, Eldar, and Keidar,  ICASSP'13. 

[2] Patterson, Eldar, and Keidar,  IEEE T-SP 2014. 
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nB: the ratio of # of bits in SADQ by that of the approach where Sensor 1 has a full access to  

all the data; 

Fig. 19. The structure of the package Sensor p sends to Sensor 1 in Step II

Define Ωp := Ω1
p

⋃
Ω2
p

⋃
F 1 for each p ≥ 2, which contains the indices of the

entries Sensor p has sent to Sensor 1 by now, and Sn := {p ≥ 2 : n ∈ Ωp} for

each n /∈ F 1. Sensor 1 obtains a range [Lpt (n), Up
t (n)] of wp

t (n) for n /∈ Ωp: [0, T ] if

wp
t (n) > 0 and [−T, 0] otherwise.

Next, Sensor 1 obtains a range
[
BL(n), BU(n)

]
of ft(n) as BL(n) = w1

t (n) +∑
p∈Sn wp

t (n) +
∑

p/∈Sn L
p
t (n) and BU(n) = w1

t (n) +
∑

p∈Sn wp
t (n) +

∑
p/∈Sn U

p
t (n).
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Therefore, we can compute an upper bound U(n) and a lower bound L(n) on

|ft(n)| for each n /∈ F 1 based on the range. Denote ν2 as the K-th largest L(n)

and set ν = max(ν1, ν2), which is a lower bound on TK(ft). Sensor 1 obtains the set

F 2 = {n /∈ F 1 : U(n) ≥ ν}, and sends F 2 to other sensors.

Similar to Step I, we can compute the number of bits in this step:

B2 = (P − 1)dlog2(P − 1)e+ 63
P∑
p=2

|Ω2
p|+

P∑
p=2

min(dlog2

(
N − |F 1

⋃
Ω1
p|
)
e|Ω2

p|, N − |F 1
⋃

Ω1
p|) Sensor p to 1

+ min{|F 2|dlog2(N −K)e, N −K}. Sensor 1 to p

Step III: Each sensor p ≥ 2 sends its sensor index p and wp
t (F

2\Ωp) to Sensor 1.

Sensor 1 computes ft(n) for each n ∈ F 2. It can be shown that F = F 1
⋃
F 2 contains

all the indices of the ft(n)’s such that |ft(n)| ≥ TK(ft). Finally, Sensor 1 broadcasts

the largest-in-magnitude K ft(n)’s as well as their indices to other sensors.

The number of required communication bits in this step is

B3 = (P − 1)dlog2(P − 1)e+ 63
P∑
p=2

|F 2\Ωp| Sensor p to 1

+ min(Kdlog2 |F |e, |F |) + 64K. Sensor 1 to p

In a naive approach in which other sensors directly send all the 64-bits numbers to

Sensor 1, the communication cost can be easily derived and denoted as Bmax. We

define the normalized number of bits required by SADQ as nB =
∑3

i=1Bi/Bmax.

4.2.2.2 Numerical Results

We set N = 5, 000, M = 1, 000, and K = 100. s0 is generated with random

support and non-zero components ∼ i.i.d. N (0, 1). The noise e ∼ N (0, σ2I) with
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Table 10. Average communication costs of SADQ-based DIHT and MTA-based DIHT

P 5 10 15 20 25

θ∗ in SADQ 0.8 1.1 1.2 1.3 1.4

n̄B in SADQ 0.0984 0.1355 0.1704 0.2006 0.2288

n̄B in MTA 0.2355 0.7116 1.0228 1.0962 1.0938

P 30 35 40 45 50

θ∗ in SADQ 1.4 1.5 1.5 1.5 1.6

n̄B in SADQ 0.2505 0.2708 0.2861 0.3026 0.3161

n̄B in MTA 1.0801 1.0685 1.0597 1.0529 1.0475

σ = 0.02. We tune θ in SADQ, and obtain the optimal θ∗, as well as the corresponding

mean value of nB, (n̄B) based on 100 Monte-Carlo runs. We also implement the

MTA, another data querying algorithm proposed in [40]. As shown in Table 10,

the SADQ-based DIHT outperforms the MTA-based DIHT significantly in terms of

communication savings.

4.3 Improvement on GC.K: Adaptive Approach

IHT needs the sparsity level K of s0 as an input parameter, which is unrealistic

for most real-world applications. However, a good property is that IHT will always

converge, regardless of whether K is the real sparsity level of s0. Due to this property,

we can develop an adaptive IHT algorithm, which can tune K itself, i.e., can infer

the sparsity level of s0 purely based on the measurement y and the sensing matrix A.

4.3.1 Adaptive IHT Algorithm without Prior Knowledge of K

Since IHT needs the sparsity level K as an input, we denote IHT with a speacific

K as IHTK . We first introduce the following two theoretical results in [45] and [95]:

Theorem 11 (Theorem 5 in [45]) Given a noisy observation y = As0+e, where s0 is

K-sparse. If A has the RIP with δ3K <
1√
32

, then IHTK will eventually convergence
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to x∗ such that

‖s0 − x∗‖2 ≤ 6‖e‖2 (4.25)

Lemma 16 ( Lemma 6.1 in [95] ) Given a noisy observation y = As0+e, where s0 is

an arbitrary vector. Let sK0 be the best K-sparse approximation to s0 and sr = s0−sK0 .

If A has the RIP with (K, δK), then y can be rewritten in terms of sK0 such that

y = AsK0 + Asr + e = AsK0 + ẽ (4.26)

where ẽ is bounded by

‖ẽ‖2 ≤
√

1 + δK‖s0 − sK0 ‖2 +
√

1 + δK
‖s0 − sK0 ‖1√

K
+ ‖e‖2 (4.27)

According to Theorem 11 and Lemma 16, we can directly obtain the following theo-

retical result:

Corollary 5 Given a noisy observation y = As0 + e, where ‖s0‖0 = K0. Let xK be

the final estimate given by IHTK, where K < K0. If A has the RIP for sparsities

with δ3K0 <
1√
32

, then we have the following error bound:

‖s0 − xK‖2 ≤ 6

(√
1 + δK‖s0 − sK0 ‖2 +

√
1 + δK

‖s0 − sK0 ‖1√
K

+ ‖e‖2

)
. (4.28)

Proposition 13 A necessary condition for any CS recovery algorithm is M ≥ 2K.[96]

According to Corollary 5, even if ‖s0‖0 > K, IHTK will still recover s0 with

a bounded error. Similar to the tuning procedure for the parameter τ in AMP, we

derive the following adaptive IHT (AIHT) algorithm, which runs the original IHT as

a subroutine for a list of candidate sparsity levels {K`}L`=1, where K1 < K2 < · · · <

KL = M/2.

Lemma 17 (Theorem 4 in [44]) For any given K ≤ N , the sequence ‖y−Axt‖2 in

IHTK is non-increasing and converges to a local minimum of (1.2).
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Table 11. Adaptive IHT algorithm
Input y, A, K1, · · · , KL, T1, T2, ε1, ε2

Initialization x0 = 0, z0 = y
for ` = 1:L

initialize t` = 0;

while t` < max{T2, (T1 −
∑`−1

i=1 ti)/(`− 1)}
xt`+1 = η(xt` + AT zt` ;K`);
zt`+1 = y −Axt`+1;
if ‖xt`+1 − xt`‖ ≤ ε1‖xt`‖
x(K`) = xt`+1, z(K`) = zt`+1

break
else

update t` ← t` + 1
continue

endif
endwhile
if ‖x(K`)− x(K`−1)‖ ≤ ε2‖x(K`−1)‖
x∗ = xK` , K

∗ = K`

break;
else

update x0 = xt`+1, z0 = zt`+1;
endif

endfor

Output x∗, K∗.

Regarding the performance of AIHT, we have the following theorem.

Theorem 12 Given a noisy observation y = As0 + e, where ‖s0‖0 = K. The

sequence ‖y −Ax(K`)‖2 in AIHT is non-increasing. Furthermore, if AIHT returns

x∗ with ‖x∗‖0 = K∗, and A has RIP with δ3K < 1/
√

32 and δ3K∗ < 1/
√

32, then

‖x∗ − s0‖ ≤


6.51‖s0 − sK

∗
0 ‖2 + 6.51‖s0 − sK

∗
0 ‖1/

√
K∗ + 6‖e‖2 if K∗ ≤ K

7.1‖e‖2 if K∗ > K.

(4.29)
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Proof of Theorem 12: The `-th outer loop of AIHT runs IHTK` , which starts from

x(K`−1) with sparsity level K`−1, which is a feasible solution of the optimization

problem

min
‖x‖0≤K`

‖y −Ax‖2 (4.30)

since K`−1 < K`. By Lemma 17, the value of the objective function keeps non-

increasing and IHTK` will converge to a local optimum x(K`). Therefore, we have

‖y −Ax(K`−1)‖2 ≥ ‖y −Ax(K`)‖2.

If K∗ ≤ K, according to Lemma 5, we have

‖s0 − x∗‖ ≤ 6‖ẽ‖2 ≤ 6.51‖s0 − sK
∗

0 ‖2 + 6.51‖s0 − sK
∗

0 ‖1/
√
K∗ + 6‖e‖2. (4.31)

If K∗ > K, letting se = AT (AAT )−1e, we have Ase = e. Further, letting sK
∗−K

e

be the best (K∗ −K)-sparse approximation of se, we have

y = A(s0 + se) = A(s0 + sK
∗−K

e ) + A(se − sK
∗−K

e ). (4.32)

Since s0 is K-sparse and sK
∗−K

e is (K∗−K)-sparse, s0 +sK
∗−K

e is K∗-sparse. Applying

Lemma 17, we have

‖s0 − x∗ − sK
∗−K

e ‖ ≤ 6‖A(se − sK
∗−K

e )‖2 ≤ 6‖Ase‖2 = 6‖e‖2. (4.33)

By the RIP property,

‖sK∗−Ke ‖2 ≤ ‖AsK
∗−K

e ‖2/
√

1− δK∗−K ≤ 1.1‖Ase‖2 = 1.1‖e‖2. (4.34)

Therefore,

‖s0 − x∗‖2 ≤ ‖s0 − x∗ − sK
∗−K

e ‖2 + ‖sK∗−Ke ‖2 ≤ 7.1‖e‖2. (4.35)
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4.3.2 More Efficient GC Algorithms for DIHT

Similar to GCAMP in the previous chapter, GC.K and SADQ for DIHT are non-

adaptive approaches. If we can propose an adaptive approach that takes advantage

of the strong correlation between Wt and Wt−1, then we may obtain significant

communication savings.

Like GCAMP, GC.K and SADQ have the following outcomes:

i) A new sparse estimate xt+1 with support Γ ⊂ F .

ii) A group of total scores ft(n) for n ∈ F .

iii) A lower bound ν for TK(ft).

iv) A gap ∆t+1 between {|ft(n)| : n ∈ [N ] , |ft(n)| < ν} and ν.

The adaptive GC.K (A-GC.K) approach can use GC.K or SADQ as a subrou-

tine, and utilize these outcomes as intermediate results.

4.3.3 A-GC.K Algorithm

The essence of the A-GC.K algorithm is quite similar to that of A-GCAMP.

Suppose in the outer loop of AIHT, K is the current candidate sparsity, and at the

inner loop iteration t − 1, we obtained xt as well as a group of total scores ft−1(n)

for n ∈ It with magnitudes greater than a threshold γt−1 ≤ TK(|ft−1|), and a gap ∆t

between {|ft−1(n)| : n /∈ It} and γt−1. Then at iteration t, we can first calculate the

total scores for n ∈ It. Note that |It| ≥ K, so we can obtain TK(|ft(It)|), which is a

tight lower bound on TK(|ft|). Due to the linear convergence rate of AIHT, after a

few iterations, xt and xt+1 will be very close and may even have the same support.

Therefore, TK(|ft(It)|) is a tight lower bound. Then, we let γt = αtTK(|ft(It)|), where

αt ∈ (0, 1), and run the A-GCAMP algorithm to get all the total scores for n /∈ It

with magnitudes greater than γt.
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Similar to the A-GCAMP algorithm, how to design the sequence {αt} for t ≥ 1

is also an important probelm in A-GC.K. First, we set up an upper bound αmax

for {αt}, where αmax is close to 1, e.g., 0.99. Once αt−1 reaches αmax, we will reset

αt = αrst, where αrst ∈ (0, 1) is a constant, and if αt−1 < αmax, or if t = 1, we compute

γ
′
t as defined in (2.34), and obtain αt as follows:

αt = min

(
γ
′
t

TK(|ft(It)|)
, αmax

)
. (4.36)

Then, like in A-GCAMP, we can check whether (2.39) holds. If not, then we run

the GCAMP to get all the total scores for n /∈ It with magnitudes greater than γt.

If (2.39) holds, then we apply the A-GCAMP algorithms to get these total scores,

which will save a lot of communication cost.

In Tables 12 and 13 we give the pseudo code of the A-GC.K algorithm and the

corresponding DAIHT algorithm respectively.

Table 12.: A-GC.K Algorithm

Input wpt , ∆wpt , x
h
t , rst, γt−1, ∆t, K, αrst, αmax, q, θ, ρw

Set It = {n : |xht (n)| > γt−1}, Rt = {n : 0 < |xht (n)| ≤ γt−1}, and C1
t = [N ] \It;

Initialize xht+1 = 0 and ∆xht+1 = 0;

Obtain xht+1(It) =
∑P

p=1 wp
t (It) and βt = TK(|xht+1(It)|);

if rst = 1

αt = αrst;

else

Compute αt according to (4.36);
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endif

γt = αtβt;

Compute ∆γt as defined in (2.34);

if ∆γt > 0

for sensor p = 1 : P

obtain ∆Ωp
t as defined in (2.35);

if p ≥ 2

send the cardinality |∆Ωp
t | to sensor 1;

endif

endfor

N g =
∑P

p=1 |∆Ωp
t |;

else

N g = |C1
t |P ;

endif

if N g ≤ ρw|C1
t |P[

∼,xht+1(C1
t ),∆1

t+1

]
= A-GCAMP(w1

t (C
1
t ), · · · ,wP

t (C1
t ),

∆w1
t (C

1
t ), · · · ,∆wP

t (C1
t ),xht (C

1
t ), γt−1, αt, βt,∆t, θ, ρw);

else[
∼,xht+1(C1

t ),∆1
t+1

]
= GCAMP(w1

t (C
1
t ), · · · ,wP

t (C1
t ), γt, θ);

endif

∆2
t+1 = γt −max({|xht+1(n)| : n ∈ It, |xht+1(n)| ≤ γt});

∆t+1 = min(∆1
t+1,∆

2
t+1);

xt+1 = ηH(xht+1;K);
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Output xt+1,x
h
t+1, γt,∆t+1, αt

Table 13.: DAIHT Algorithm Based on A-GC.K

Input {yp}Pp=1, {Ap}Pp=1, {K`}L`=1, µ, αrst, αmax, q, θ, ρw, T1, T2

Initialize x0 = 0, z0 = y, K = K1;

for ` = 1:L

initialize t` = 0;

while t` < min{T2, T1 −
∑`−1

i=1 Ti/(`− 1)}

set t =
∑`−1

i=1 ti + t`;

if t ≥ 1

Compute wp
t and ∆wp

t = wp
t −wp

t−1 by (4.5);

if t ≥ 2 and αt−1 = αmax

rst= 1;

else

rst= 0;

endif[
xt+1,x

h
t+1, γt,∆t+1, αt

]
= A-GC.K(w1

t , · · · ,wP
t ,∆w1

t , · · · ,

∆wP
t ,x

h
t ,rst,γt−1,∆t, K, αrst, αmax, q, θ, ρw);

else[
xt+1,x

h
t+1, γt,∆t+1

]
= GC.K(w1

t , · · · ,wP
t , K, θ);

endif
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Compute zpt+1 by (2.13) for each p

if ‖xt+1 − xt‖ ≤ ε1‖xt‖

x(K`) = xt+1, z
p(K`) = zpt+1 for p = 1 · · ·P

update K = K`+1;

break;

else

t` ← t` + 1;

continue;

endif

endwhile

if ‖x(K`)− x(K`−1)‖ ≤ ε2‖x(K`−1)‖

set x∗ = x(K`) and K∗ = K`;

break;

endif

endfor

Output x∗, zp∗

Regarding the accuracy of A-GC.K, we have the following theorem.

Theorem 13 Given the same step size µ, A-GC.K algorithm obtains xt+1 which is

exactly the same as that of the centralized AIHT algorithm computed by (4.2).

The proof is very straightforward and is not presented in this dissertation due to the

space limit.
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Like DiAMP, we can also use the quantization procedure to further reduce the

communication cost in GC.K and A-GC.K, namely, Q-GC.K and Q-A-GC.K.

4.4 Conclusion

In this chapter, we proposed an tuning algorithm for IHT which can tuning

the sparsity level of s0 automatically. In the GC step of DIHT, we proposed a

communication-efficient GC algorithm GC.K for DIHT. For the computation of the

step size, we proposed a statistical approach DIHT.S which provides a very tight

statistical upper bound on ‖A‖2 that only depends on the dimensionality of A. Like

DiAMP, similar improvements can be made based on GC.K, by incorporating quan-

tization, such as SADQ and Q-GC.K, and using adaptive approach, by first finding

a lower bound on TK(ft) and then performing the GC step of DIHT by A-GCAMP

algorithm.
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Motivation 

Distributed IHT (D-IHT) 

Sign-Aware Data Querying (SADQ) 

Summary and References 

A typical Compressed Sensing (CS) problem: 

I) Unkown                 with sparsity level K ; 

II) Designed sensing matrix                    with M << N ; 

III) Measurement                        with noise e unknown. 

Task: recover      from y.  

Challenges: When N, M, and K are large, centralized CS (CCS) can 

be demanding (left figure). 

Alternative: distributed CS (DCS, right figure). 

 

 

   

  

 

 

 

A new lossless distributed data querying algorithm is proposed for D-

IHT, which reduces the communication cost efficiently and 

outperforms the MTA proposed in an earlier work. 

Remark of SADQ 

0y As e 

Iterative Hard Thresholding (IHT) algorithm: 

 

            only keeps the K largest-in-magnitude entries. 

Partition the global sensing matrix and measurement: 

 

 

 

 

Local Computation (LC) of        : No communication; 

Global Computation (GC): Need communication to know the K   

largest-in-magnitude entries of                              .   

Question: can this be achieved by transmitting far fewer than  

N ( P – 1 ) data points? 

Solution: Estimate the support of xt+1 first, and then only send  

all the data on the support. 

1 1

P P

A y

A y

A y

   
   

    
   
   

       1 1 1

1

2

; .
P

T T
p p p

t t t t

p

x x A y A x A y A x K  



 
     

 


1

tw
p

tw
p

tw

0

Ns 
M NA 

0s

  1 ; ;T

t t tx x A y Ax K    

 ; K

1

P p

t tp
f w




Simulation Results 

Communication-Efficient Distributed IHT 

Puxiao Han*, Ruixin Niu*, and Yonina C. Eldar** 

*Department of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, VA, 23284, U.S.A. 

**Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel 

1 1

2 2
,

   
    
   

y A
y A

y A
*

x

Sensor 1 Sensor 2

Center

(y
1  , 

 A
1 )

(y 2 ,  A 2)

CS Recovery

It
er

at
iv

e
co

m
pu

ta
ti
on

intermediate data

Exchange

Sensor 1 Sensor 2

(y
1 , A

1 , x
t) (y 2

, A
2

, x
t )

1

tw
2

tw

Iterative
com

putation

xt+1

MTA: another distributed data querying algorithm ( [1]~[2] ), which generates an increasing 

sequence of lower bounds on TK ( ft ), and a decreasing sequence of upper bounds on | ft (n) |, 

and terminates if the former exceeds the latter. 

Step I: 1) ~ 6) in the algorithm 

 This step is to find a top-K candidate, which is F1 obtained in 2); 

   

     

P 5 10 15 20 25 

θ* in SADQ 0.8 1.1 1.2 1.3 1.4 

nB in SADQ 0.0984 0.1355 0.1704 0.2006 0.2288 

nB in MTA 0.2355 0.7116 1.0228 1.0962 1.0938 

P 30 35 40 45 50 

θ* in SADQ 1.4 1.5 1.5 1.5 1.6 

nB in SADQ 0.2505 0.2708 0.2861 0.3026 0.3161 

nB in MTA 1.0801 1.0685 1.0597 1.0529 1.0475 

N = 5000, M = 1000, K = 100, Gaussian white noise with standard deviation 0.02; 

θ* : the optimal parameter tuned in SADQ; 

[1] Patterson, Eldar, and Keidar,  ICASSP'13. 

[2] Patterson, Eldar, and Keidar,  IEEE T-SP 2014. 

Acknowledgement: P. Han and R. Niu’s ’s work was supported in part by VCU Presidential Research 

Quest Fund.  
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𝜈1 is a lower bound on TK ( ft ). 

Step II: 7) ~ 10) in the algorithm 

 This step bounds | ft (n) | for each n not in F1; 

  θ > 0  in 7) is a trade-off parameter: if it is large, Sensor p will 

send less data in 7), but Sensor 1 will obtain a more conservative 

bound on | ft (n)|, which leads to more communication in 11).  

Step III: 11) ~ 13) in the algorithm 

 This step obtains xt+1 , which is exactly the same as the 

centralized IHT. 
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Fig. 20. SADQ Algorithm
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CHAPTER 5

CONCLUSION

In this dissertation, two classes of distributed algorithms were developed for sparse

signal recovery in large sensor networks. First, a distributed compressed sensing

(DCS) framework was developed based on approximate message passing (AMP). The

distributed AMP (DiAMP) framework does not need a prior knowledge of the spar-

sity of the original signal, and has exactly the same recovery result as the centralized

AMP. Just like the centralized AMP, DiAMP is also a iterative approach, where each

iteration contains a local computation (LC) step, and a global computation (GC)

step, where the latter incurs communication among sensors. To reduce the commu-

nication cost in the global computation (GC) step, we developed GCAMP, which is a

communication-efficient data-querying algorithm and significantly outperforms modi-

fied thresholding algorithm (MTA), another popular data query algorithm. By taking

into consideration the correlation of data between adjacent iterations and incorporat-

ing quantization steps, a more sophisticated algorithm quantized-adaptive-GCAMP

(Q-A-GCAMP) was developed, which comes close to requiring the minimum bit rates

stipulated by the sparsity of the signal to be estimated.

Furthermore, we prove that state evolution (SE), a fundamental property of

AMP that in high dimensionality limit, the output data are asymptotically Gaus-

sian regardless of the distribution of input data, also holds for DiAMP, even in the

presence of quantization noise. In addition, compared with the most recent theoreti-

cal results that SE holds for sensing matrices with independent subgaussian entries,

we proved that the universality of SE can be extended to far more general sensing
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matrices. These two theoretical results provided strong guarantee for AMP’s per-

formance, and greatly broaden its potential applications. As a direct application of

this theoretical progress, we proposed a multi-processor approximate message passing

framework with lossy compression. We used a uniform quantizer with entropy cod-

ing to reduce communication costs, and reformulated the state evolution formalism

while accounting for quantization noise. Combining the quantizers and modified state

evolution equation, an online back-tracking approach and another method based on

dynamic programming were developed to determine the coding rate in each iteration

by controlling the induced error. The numerical results suggest that our approaches

can maintain a high signal-to-distortion-ratio despite a significant and often dramatic

reduction in inter-processor communication costs.

Finally, in Chapter 4, another DCS approach was developed based on iterative

hard thresholding (IHT). For distributed IHT (DIHT), there is a step size µ which de-

pends on the `2 norm of the global sensing matrix A. The exact computation of ‖A‖2

is non-separable. We proposed a new method, based on the random matrix theory

(RMT), to give a very tight statistical upper bound of ‖A‖2, and the calculation of

that upper bound is separable without any communication cost. Similar to DiAMP,

DIHT also contains a LC step and a GC step in each iteration. In the GC step of

DIHT, we developed another algorithm named GC.K, which is also communication-

efficient and outperforms MTA. Then, by converting the GC step of DIHT into a

GCAMP problem, we can apply the same improvement on GCAMP, such as the

adaptive approach and quantization, to further improve the communication savings

in DIHT.
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