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ABSTRACT

JOINT DETECTION-STATE ESTIMATION AND SECURE SIGNAL

PROCESSING

By Mengqi Ren, Ph.D.

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Advisor: Ruixin Niu, Ph.D.,

Assistant Professor, Department of Electrical and Computer Engineering

In this dissertation, joint detection-state estimation and secure signal process-

ing are studied. Detection and state estimation are two important research topics in

surveillance systems. The detection problems investigated in this dissertation include

object detection and fault detection. The goal of object detection is to determine

the presence or absence of an object under measurement uncertainty. The aim of

fault detection is to determine whether or not the measurements are provided by

faulty sensors. State estimation is to estimate the states of moving objects from mea-

surements with random measurement noise or disturbance, which typically consist of

their positions and velocities over time. Detection and state estimation are typically

implemented separately and state estimation is usually performed after the decision is

made. In this two-stage approach, missed detection and false alarms in detection stage

decrease accuracy of state estimation. In this dissertation, several joint detection and

state estimation algorithms are proposed. Secure signal processing is indispensable

in dynamic systems especially when an adversary exists. In this dissertation, the

vii



developed joint fault detection and state estimation approach is used to detect at-

tacks launched by an adversary on the system and improve state estimation accuracy.

The security problem in satellite communication systems is studied and a minimax

anti-jammer is designed in a frequency hopping spread spectrum (FHSS)/quadrature

phase-shift keying (QPSK) satellite communication system.

In object detection problems, the false alarms create ghost targets, especially

when the object has a very low signal to noise ratio (SNR) and a decision is made

with a single sample. If the system state is estimated after an object is detected, the

presence of ghost target(s) decreases the accuracy of the system state estimate. In

this dissertation, a new joint sequential object detection and system state estimation

algorithm is proposed, which has the potential to significantly improve the detection

of extremely weak targets or phenomena. This algorithm combines Wald’s sequential

probability ratio test (SPRT) and the Kalman filter. Theoretical results have been

provided on the first and second moments of the test statistic under both hypotheses,

to calculate Kullback-Leibler distance and deflection coefficient, and give insights

on the termination of the SPRT procedure. To guarantee the termination of the

sequential test with probability one, a joint terminative sequential detection and

system state estimation algorithm is proposed, which uses fused test statistic in Wald’s

SPRT. A method of choosing the thresholds by using the nominal probabilities of error

is proposed. The upper bounds on the actual probabilities of error are derived.

The problem of faulty sensor detection is investigated in large sensor networks

where sensors’ measurement noise is correlated and the faulty sensors are sparse and

time-varying. Similar to object detection and state estimation, fault detection and

state estimation are usually implemented separately. However, when faulty sensors

are missed in fault detection, their measurements will deteriorate the state estimation

performance. Furthermore, when sensors’ measurement noise is correlated, detecting

viii



faulty sensors by testing each single sensor individually is not optimal. To improve

the performance of detection and state estimation, an approach for joint group test-

ing of time-varying faulty sensors and state estimation in the presence of correlated

measurement noise is proposed.

In satellite communication systems, jamming attack from an adversary is a sig-

nificant threat. A jammer can simply interfere the legitimate communication system

by injecting jamming signals into communication channels. As a result, the commu-

nication between the transmitter and receiver will be corrupted. To achieve reliable

communication, employing anti-jammer is crucial in satellite communication systems.

One efficient way to design anti-jammer is adopting FHSS, which avoids attacks by

switching channels from time to time. In this dissertation, a minimax anti-jamming

strategy in a FHSS/QPSK satellite communication system is developed.
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CHAPTER 1

INTRODUCTION

In this dissertation, joint detection-state estimation and secure signal processing are

studied, in which both object detection and faulty sensor detection are investigated.

In surveillance systems, object detection and system state estimation are two impor-

tant problems. They are typically implemented separately and system state estima-

tion is implemented after an object is detected. However, this two-stage approach

may generate ghost targets because of false alarms and/or fail to detect the target,

especially when the object has a very low signal to noise ratio (SNR) and a decision

is made with a single sample. The false alarms and/or missed detection in detection

stage will also decrease the accuracy of system state estimation. That motivates the

research on joint detection-estimation to improve both the detection and estimation

performance by integrating information over multiple samples using a system state

estimator.

In large sensor networks, faulty sensor detection is crucial in system reliability,

especially when the sensors are under the risk of attacks. If the measurements ob-

tained by all the sensors are used to estimate the system state, the accuracy of system

state estimation will be decreased by the existence of faulty sensors. Detecting faulty

sensors before estimating the system state is one possible solution, but the miss in the

detection stage will still affect the performance of system state estimation. Further-

more, testing sensors one by one is not optimal when measurement noise is correlated.

So, joint detection-estimation is also studied in faulty sensor detection and system

state estimation.
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Besides in surveillance systems, the security issue is also important in satellite

communication systems. A jammer can simply interfere the legitimate communication

systems by injecting jamming signals into communication channels [1, 2]. As a result,

the communication between the transmitter and receiver will be corrupted. To achieve

reliable communication, employing anti-jammer is crucial in satellite communication

systems.

In this dissertation, four algorithms have been proposed: a new joint sequential

object detection and system state estimation approach based on Wald’s sequential

probability ratio test (SPRT), terminative joint sequential object detection and sys-

tem state estimation based on fused test statistics, joint group testing of time-varying

faulty sensors and system state estimation with correlated measurement noise, and

minimax anti-jammer design for frequency hopping spread spectrum (FHSS)/ quadra-

ture phase-shift keying (QPSK) satellite communication systems. Detection and sys-

tem state estimation are two important problems in the proposed algorithms. The

detection mentioned here includes object detection and faulty sensor detection. Ob-

ject detection is to determine the presence or absence of an object under uncertainty.

The aim of fault detection is to determine whether the measurements are corrupted or

not under uncertainty, where the corruption could be caused by injected false informa-

tion by an adversary, abnormal behavior of sensor, etc. [3]. In detection algorithms,

binary hypothesis testing is widely applied, in which the general or default status is

usually represented by null hypothesis and the status needs to be detected is usually

represented by alternative hypothesis. In object detection, the absence and presence

of an object are usually represented by null hypothesis and alternative hypothesis,

respectively. In fault sensor detection, the absence and presence of faulty sensor(s)

are usually represented by null hypothesis and alternative hypothesis, respectively.

The goal of system state estimation is to estimate the states of moving objects from

2



inaccurate and uncertain measurements, which typically consist of their positions and

velocities over time. The estimation of states of dynamic system is termed as filtering,

because the best estimate is obtained from noisy measurements via filtering out the

noise [4]. The optimal estimator for linear dynamic system with additive Gaussian

noise is Kalman filter [5] which is a minimum mean squared error estimator. If the

system is linear and Gaussian, only conditional mean and covariance need to be esti-

mated recursively. However, in the nonlinear case, the conditional mean is obtained

by updating the posterior probability density function (PDF) of the system state re-

cursively, in which the accuracy of the estimator is measurement-dependent and the

computational complexity is exponential in the dimension of the state [4]. Therefore,

some suboptimal recursive Bayesian filters are widely applied, which include extended

Kalman Filter [4], unscented Kalman Filter [6], particle filter [7], and particle flow

filter [8]. In the following sections, some classical algorithms of detection and system

state estimation are presented.

1.1 Detection Algorithms

Detection is to decide when an event of interest occurs. The technology to achieve

this goal is called detection theory in the context of radar and communication, and it

is well known as hypothesis testing or decision theory in statistics [9]. The simplest

detection problem is to decide whether a signal is present combined with noise or

only noise is present. This detection problem can be modeled as binary hypothesis

testing problem.

Hypothesis testing is a standard procedure for testing a claim or statement about

a property of a population. A hypothesis test includes four components: null hypothe-

sis (denoted by H0), alternative hypothesis (denoted by H1), test statistic, and critical

region (or rejection region). Null hypothesis is a statement that the value of a popula-

3



tion parameter is equal to some claimed value. The null hypothesis is assumed to be

true and to be tested. In the simplest detection problem, null hypothesis is noise only

hypothesis. Alternative hypothesis is a statement that the parameter has a value that

differs somewhat from the null hypothesis. In the simplest detection problem, there

is only one alternative hypothesis and it is signal with noise hypothesis. Test statistic

is a sample statistic (a value) used in making a decision about the null hypothesis.

Critical region is the range of values of the test statistic that will lead to reject the

null hypothesis. The hypothesis test leads to the conclusion that either rejects or fails

to reject null hypothesis. Therefore, the potential outcomes can be classified into four

categories: rejecting the null hypothesis when it is actually false (which is called hit

or detection in detection theory), rejecting the null hypothesis when it is actually

true (which is called false alarm in detection theory and type I error in hypothesis

testing), failing to reject the null hypothesis when it is actually false (which is called

miss in detection theory and type II error in hypothesis testing), failing to reject the

null hypothesis when it is actually true (which is called correct rejection in detection

theory). A common way to display these outcomes is shown in Table 1.

Table 1. Four categories of potential outcomes of hypothesis testing

True State of Signal

Present (H1) Absent (H0)

Decision
Present (H1) Detection/Hit False Alarm

Absent (H0) Miss Correct Rejection

The power of a test is defined as the probability of rejecting H0 [10] which can

4



be expressed as

Power(θ) = Pθ(rejecting H0) =

 α if H0 is true

1− β if H1 is true
(1.1)

where θ denotes parameter(s) of distribution of the random variable(s), α and β

denote probability of false alarm and probability of miss respectively.

Generally, the tests which minimize probabilities of error are optimal. By control-

ling probability of false alarm, most powerful test is the optimal test. Neyman-Pearson

test is a most powerful (or an optimal) test [9] since it minimizes the probability of

miss by controlling the probability of false alarm. Neyman-Pearson test (also known

as likelihood ratio test) is shown in Theorem 1.

Theorem 1 Denote a set of measurements as z1:K = {z1, z2, . . . , zK}, where K is a

fixed number. Let the likelihood of z1:K under H0 and H1 be p(z1:K |H0) and p(z1:K |H1)

respectively. To maximize probability of detection PD for a given probability of false

alarm PFA = α, decide H1 if the likelihood ratio satisfies the following inequality;

otherwise, decide H0

L(z1:K) =
p(z1:K |H1)

p(z1:K |H0)
> γ (1.2)

where the threshold γ is found from

PFA =

∫
{z1:K :L(z1:K)>γ}

p(z1:K |H0)dz1:K = α

Neyman-Pearson is not the only optimal test. To specify clearly, the test proce-

dures are classified into two categories according to whether the sample size is fixed

or not. If the decision is made based on pre-defined number of samples, the proce-

dure is called fixed-sample-size (FSS) procedure. Neyman-Pearson test is one FSS

procedure. Contrary to FSS procedures, the number of samples needed by sequen-

tial hypothesis test procedures is a random variable. The sequential hypothesis tests

5



include sequential probability ratio test (SPRT), generalized sequential probability

ratio test (GSPRT) [11], and Chernoff test [12]. The advantage of SPRT is that its

required average (expected) sample number (ASN) is smaller than that required by

the FSS procedure to achieve the same detection performance.

Wald’s SPRT is a sequential procedure. At each stage of the experiment, the

likelihood ratio for this stage is compared with two thresholds. If it is between the two

thresholds, the test enters next stage and the likelihood ratio will be recalculated by

combining next sample. Wald’s SPRT procedure will continue this iteration until the

likelihood ratio passes either threshold. The Wald’s SPRT is summarized as follows

[13]:

pK(z1:K |H1)

pK(z1:K |H0)


≥ A stop and decide H1

≤ B stop and decide H0

otherwise continue

(1.3)

where K denotes the number of samples which increases stage by stage until either

H1 or H0 is decided, A and B are two positive constants and B < A, which are

determined by pre-specified probabilities of false alarm and miss.

In Wald’s SPRT, the thresholds A and B, actual probability of false alarm αa,

and actual probability of miss βa satisfy the following inequalities [13].

A 6
1− βa

αa
(1.4)

B >
βa

1− αa
(1.5)

Therefore, the actual probabilities of false alarm and miss, i.e., αa and βa, are con-

trolled by the thresholds A and B. Let αn and βn be the nominal probabilities of

false alarm and miss, respectively. Since 0 6 αa 6 1 and 0 6 βa 6 1, if A = 1−βn
αn

and B = βn

1−αn , then actual probabilities of error and nominal probabilities of error

6



satisfy the following inequalities.

αa 6
αn

1− βn
(1.6)

and

βa 6
βn

1− αn
(1.7)

Wald’s SPRT satisfies Wald-Wolfowitz optimality property when the samples

are independent and identically distributed (i.i.d.) random variables [14]. The Wald-

Wolfowitz optimality property is defined as neither probability of false alarm nor

probability of miss of an SPRT can be reduced without recourse to a test of larger

expected sample size under both hypotheses.

Besides Wald’s SPRT, there exist other SPRTs which also satisfy the Wald-

Wolfowitz optimality property under the i.i.d. model [15]. The SPRT is summarized

as follows:

pK(z1:K |H1)

pK(z1:K |H0)


≥ AK stop and decide H1

≤ BK stop and decide H0

otherwise continue

(1.8)

where AK and BK are the thresholds that are functions of K and 0 6 Bk < AK 6∞

for K = 1, 2, . . . .

If 0 6 Bk 6 AK 6∞ for all K, the SPRT test becomes GSPRT which is optimal

when the samples are independent but not identically distributed [16]. Comparing

with SPRT, there is one additional case in GSPRT which is AK = BK . When

pK(z1:K |H1)
pK(z1:K |H0)

= AK = BK , the decision is made according to the following rules: H0 is

decided if pK(z1:K |H1)
pK(z1:K |H0)

= AK = BK = 0, H1 is decided if pK(z1:K |H1)
pK(z1:K |H0)

= AK = BK =

∞, and if 0 < pK(z1:K |H1)
pK(z1:K |H0)

= AK = BK < ∞, either H0 or H1 can be decided by

randomization.

When the samples are dependent, the SPRT and GSPRT is optimal by intro-
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ducing weakly admissibility which is a weaker notion of optimality [15]. A sequential

test for deciding between H0 and H1, whose stopping variable is Ns and whose error

probabilities are α and β, will be called inadmissible if there exists an alternative test

T ′, with stopping variable N ′s and error probabilities α′ and β′, such that

α′ 6 α, P (N ′s > K|H0) 6 P (Ns > K|H0),

β′ 6 β, P (N ′s > K|H1) 6 P (Ns > K|H1), K = 1, 2, . . .

with at least one of these inequalities strict. T is admissible if no such T ′ exists [15,

17]. A test T will be called weakly admissible if there is no alternative test T ′ which

not only improves upon T in the sense of admissibility but also stops no later than

T does under H0 and H1. It was shown that every SPRT is weakly admissible, and

a GSPRT is weakly admissible if 0 6 BK+1 6 BK 6 AK 6 AK+1 6∞ for each K.

Another optimal detector is Bayesian detector, which is suitable for the case

where the hypotheses H0 and H1 have certain prior probabilities. The objective of

the detector is to minimize the expected cost which is called Bayes risk. When the

costs assigned to detection and correct rejection are zeros and the costs assigned to

false alarm and miss are ones, the objective of the detector becomes to minimize the

probability of error. The test statistic used in a Bayesian detector is also the likelihood

ratio. The threshold is determined by the prior probabilities of the two hypotheses. In

this dissertation, the focus will be on non-Bayesian sequential detection procedures.

1.2 System State Estimation Algorithms

The Kalman filter is the optimal estimator for linear dynamic system with ad-

ditive Gaussian noise. Consider a discrete-time linear dynamic system given by the

following state-space model [4]

xk+1 = Fxk + Γvk (1.9)
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zk = Hxk + wk (1.10)

where xk is nx × 1 state vector at time k, zk is the nz × 1 measurement vector at

time k, F is nx × nx state transition matrix, H is the nz × nx measurement matrix,

wk is the measurement noise at time k, vk is the process noise at time k, and Γ is

the gain matrix for vk. The {vk} and {wk} are sequences of white Gaussian process

noise with zero-mean and covariance matrices Q and Rw, respectively. Furthermore,

{x0}, {vk} and {wk} are independent.

The Kalman filter consists of two steps at each time: prediction and update.

Since the state-space model is linear and Gaussian, all the random variables follow

Gaussian distributions which can be determined by their means and variances. In the

prediction step, the conditional distribution of xk+1 is predicted. The mean of xk+1

conditioned on z1:k is termed as state prediction, which is obtained as follows

x̂k+1|k = E(xk+1|z1:k) = Fx̂k|k (1.11)

The state prediction covariance which is covariance matrix of xk+1 conditioned on

z1:k is given as

Pk+1|k = FPk|kF
T + ΓQΓT (1.12)

In the update step, measurement prediction of zk+1 is calculated first.

ẑk+1|k = Hx̂k+1|k (1.13)

The measurement prediction covariance is

Sk+1 = HPk+1|kH
T + Rw (1.14)

The updated state estimate is

x̂k+1|k+1 = x̂k+1|k + Wk+1νk+1 (1.15)
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where νk+1 , zk+1 − ẑk+1|k is called innovation or measurement residual, and Wk+1

is the filter gain which is defined as follows

Wk+1 , Pk+1|kH
TS−1k+1 (1.16)

The updated state covariance is

Pk+1|k+1 = Pk+1|k −Wk+1Sk+1W
T
k+1 (1.17)

The input of the Kalman filter is nonwhite measurement sequence {zk}, but out-

put of the Kalman filter is the innovation which is a zero mean and white sequence.

Therefore, the Kalman filter is a whitening system for the measurement sequence.

Under the Gaussian assumption, the innovation is not only a zero mean and white

sequence, but also follows Gaussian distribution and independent with each other.

Furthermore, the PDF of innovation νk+1 can be obtained from the PDF of measure-

ment zk+1 conditioned on z1:k through a simple mean shift. These properties can be

utilized to design joint detection and system state estimation approaches.

This dissertation is organized as follows. In Chapter 2, the problem of object de-

tection and system state estimation is investigated, and a new joint sequential object

detection and system state estimation approach based on Wald’s SPRT is developed.

In Chapter 3, terminative joint sequential object detection and system state estima-

tion based on fused test statistics is developed to guarantee that the sequential test

will eventually terminate with probability one. In Chapter 4, the problem of faulty

sensor detection and system state estimation is investigated, and joint group testing of

time-varying faulty sensors and system state estimation with correlated measurement

noise is developed. In Chapter 5, the security problem in satellite communication

systems is investigated, and a minimax anti-jammer is designed for FHSS/QPSK

satellite communication systems. Finally, this dissertation is concluded in Chapter 6.
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CHAPTER 2

A NEW JOINT SEQUENTIAL OBJECT DETECTION AND SYSTEM

STATE ESTIMATION APPROACH

2.1 Introduction

For most surveillance systems, object detection and system state estimation are

two important problems that need to be solved. The goal of object detection is to

determine the presence or absence of a target under uncertainty. In object detec-

tion algorithms, the presence and absence of targets are usually represented by two

hypotheses H1 and H0 respectively, under which the knowledge of distributions of

measurements are required. System state estimation is to estimate the states of mov-

ing targets, which typically consist of their positions and velocities over time. The

system state estimation algorithms usually assume the presence of the target(s). The

object detection and system state estimation are typically implemented separately

and system state estimation is performed after the target is detected, which is shown

by the first diagram in Fig. 1. This two-stage approach works well when the target

has a relatively high signal-to-noise ratio (SNR), and it can be reliably detected. But

this approach may not detect the weak target reliably with acceptable detection per-

formance using a single sample. This motivates the research on joint object detection

and system state estimation, which has the potential to significantly improve the de-

tection of extremely weak targets or phenomena, such as a weak target that is far

away from the radar or the chemical/biological plumes with very low concentration.

The joint object detection and system state estimation is compared with the first

procedure in Fig. 1.
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Detector
Samples Decision

Estimator
State 

estimate

H1

H0, get next sample

Joint detection and estimation
Samples H1/H0

and state estimate

Fig. 1. Comparison of Two Detection and System State Estimation Procedures

There are a number of publications on joint detection and parameter estimation

in the literature [18, 19, 20, 21, 22]. Using a Bayes criterion, the optimum detector

and estimator structures were derived for joint detection and estimation by minimiz-

ing the average risk in [18]. Later, the results in [18], which were derived based on

the binary-hypothesis assumption, were extended to the multi-hypothesis case in [19].

The trade-off between detection and estimation for a finite discrete parameter space

was studied in [20]. The assumption of finite discrete parameter space makes it possi-

ble to convert the parameter estimation problem to a detection sub-problem. In [21],

the joint detection and estimation problem was defined as an optimization problem

in which the objective function is associated with the Bayesian formulation of the

estimation sub-problem and the constraints depend on the detection sub-problem.

The algorithm proposed in [21] assumes that only the parameters in the alternative

hypothesis are unknown. This assumption was later relaxed in [22]. However, these

algorithms cannot be directly applied in the joint detection and system state esti-

mation problems, since in a system state estimation problem, the estimator needs to

sequentially estimate the system state, which is time-varying.

Joint detection and system state estimation methods can be used to solve joint

object detection and tracking problems. There are only a very limited number of pub-
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lications on joint detection and tracking. One joint detection and tracking algorithm

is called multiple multistage hypothesis test tracking algorithm [23]. This algorithm

detects targets by evaluating candidate track hypotheses via test statistic in the mul-

tistage hypothesis testing algorithm [24]. The premise of this algorithm is that the

possible target trajectories are known. One track-before-detect algorithm was pro-

posed in [25], which utilizes a dynamic programming algorithm to evaluate candidate

target states. This algorithm detects target by comparing the accumulated maxi-

mum target amplitude over time with one empirical threshold. The target trajectory

is formed by the candidate state with maximum target amplitude at each time. This

algorithm requires large data storage and needs to evaluate all the candidate states.

In [26], truncated sequential probability ratio test (SPRT) was introduced into joint

detection and tracking in which both likelihood ratio test (LRT) and maximum a

posteriori (MAP) can be applied to detect target. Note that all the algorithms men-

tioned above assume the state space is discrete. In [27], multiple active radars were

adopted to design joint detection and tracking algorithm. The decision was made by

comparing ratio of probabilities of amplitude under two hypotheses with a Bayesian

threshold which is obtained via the probabilities of predicted measurements in tar-

get tracking. Since tracking is activated when the decision is positive, the Bayesian

threshold will not be updated if no target is detected in last step. In [28], a tracking

algorithm without detection was proposed. A lidar sensor was used to measure the

surrounding environment and returns environment information in polar coordinates.

The system state estimate was obtained via a particle filter. The measurements used

by the particle filter are the values of a cumulative function which measures the den-

sities of the objects and the distances between the objects and the lidar sensor in

each angular interval. In [29], an algorithm using the Bernoulli filter was proposed

to perform joint detection and tracking. This algorithm assumes that the presence
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or absence of a single target is time-varying and models it as a random set: the

posterior probability density function (PDF) of the set’s cardinality determines the

presence/absence state of the target, and the posterior PDF of the element in the

set corresponds to the target’s state given the presence of target. The two posterior

PDFs of the random set are updated recursively in a Bayesian framework. In this

algorithm, the detection decision is made by comparing the posterior probabilities of

the two hypotheses, and the hypothesis with higher posterior probability is decided.

Different from all the joint detection and system state estimation algorithms

discussed above, a joint object detection and system state estimation algorithm based

on the LRT and the extended Kalman filter (EKF) was proposed for sensor networks

[30]. This algorithm has the following advantages: it works in continuous state space,

applies the most powerful test — LRT, does not need the knowledge of possible system

state trajectories, does not require very informative prior knowledge, does not require

large data storage, and has acceptable computational complexity. However, this

algorithm is a fixed-sample-size (FSS) procedure, where the number of samples has

been pre-specified. It is well known that sequential detection on the average requires

a smaller number of measurements than a detection procedure with a fixed sample

size [13]. Moreover, SPRT is always weakly admissible [15], which will be discussed in

detail later in the chapter. Therefore, to reduce the average sample number (ASN),

we apply Wald’s SPRT instead of LRT to perform joint detection and system state

estimation. This feature is very attractive in radar surveillance systems, which try

to declare the presence of a target as early as possible with acceptable detection

performance.

In order to obtain useful insights and theoretical results, we study a general lin-

ear Gaussian system state estimation problem in this chapter. It was proved in [13]

that Wald’s SPRT procedure will eventually terminate with probability one if the
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measurements are independent. However, the successive measurements are depen-

dent in the proposed joint sequential object detection and system state estimation

algorithm under hypothesis H1, which means the existence of a target. In such a case,

it is difficult to rigorously prove that the Wald’s SPRT will eventually terminate with

probability one. Instead, we analytically derive the expected value and variance of

the test statistic under both hypotheses. For the example given in this chapter, we

show that the expected value of the test statistic under the two hypotheses, which

is proportional to the Kullback-Leibler distance, is either a monotonically increasing

or decreasing function of the number of samples. This implies that most probably

the Wald’s SPRT will eventually terminate. The deflection coefficient is also applied

to evaluate the termination and detection performance of the proposed algorithm.

We show that the deflection coefficient is increasing over time, which means that the

probability of termination is increasing with time and the detection performance is

also increasing with time. The numerical results also show that the proposed sequen-

tial detector is very powerful in detecting weak objects, especially compared with the

optimal FSS detection procedure based on the LRT.

This chapter is organized as follows. The test statistic of the joint object de-

tection and system state estimation algorithm based on the Kalman filter (KF) is

derived in Section 2.2. In Section 2.3, the new joint detection and system state esti-

mation algorithm by using Wald’s SPRT is proposed. To evaluate the performance of

proposed algorithm, the first and second moments of test statistic are derived under

both hypotheses. In Section 2.4, the performance of proposed algorithms is evaluated

via simulations. Finally, this chapter is concluded in Section 2.5.
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2.2 Problem Formulation

Let us assume that under hypothesis H1, an object exists and its motion could

be modeled by the following discrete-time linear system state equation [4]

xk+1 = Fkxk + vk (2.1)

where xk is nx × 1 state vector at time k, Fk is nx × nx state transition matrix at

time k, and {vk} is a sequence of white Gaussian process noise with E(vk) = 0 and

E(vkv
T
k ) = Qk for all k = 0, 1, 2, · · · .

The measurement equation is

zk = Hkxk + wk (2.2)

where zk is the nz × 1 measurement vector at time k, Hk is the nz ×nx measurement

matrix at time k, and wk is the measurement noise at time k. Also, {wk} is a

sequence of white Gaussian measurement noise with E(wk) = 0 and E(wkw
T
k ) = Rwk

for k = 1, 2, · · · .

Let us assume that under hypothesis H0, no object exists and the measurement

is purely noise

zk = uk (2.3)

where uks are independent and follow Gaussian distribution with mean µk and co-

variance Ruk . x0, vk, wk, and uk are assumed to be independent with each other for

all k.

To solve the joint detection and system state estimation problem, it is important

to derive the log-likelihood ratio for the measurements accumulated up to the Kth

step, which is

logΛ(z1:K) = log
p(z1:K |H1)

p(z1:K |H0)
(2.4)
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Under hypothesis H1, the likelihood function p(z1:K |H1) can be calculated using

chain rule as follows

p(z1:K |H1) = p(z1|H1)
K−1∏
k=1

p(zk+1|z1:k, H1) (2.5)

Since the measurements are independent over time under hypothesis H0 and

substituting (2.5) in (2.4), the log-likelihood ratio can be written in the following

summation form

logΛ(z1:K) = log
p(z1|H1)

∏K−1
k=1 p(zk+1|z1:k, H1)∏K
k=1 p(zk|H0)

=
K∑
k=1

log
p(zk|z1:k−1, H1)

p(zk|H0)
=

K∑
k=1

Θk

(2.6)

in which

Θk , log
p(zk|z1:k−1, H1)

p(zk|H0)
(2.7)

and z1:0 is an empty set.

By using the Kalman filter in this joint detection and system state estimation

problem in a manner similar to using the EKF in [30], we obtain p(zk|z1:k−1, H1) as

follows

p(zk|z1:k−1, H1)

= |2πSk|−
1
2 e−

(zk−Hkx̂k|k−1)
T S−1

k
(zk−Hkx̂k|k−1)

2

(2.8)

where Sk is the measurement residue covariance, and x̂k|k−1 is the predicted state

given the accumulated measurements z1:k−1. Under hypothesis H0, it is easy to show

that

p(zk|H0) = |2πRuk |−
1
2 e−

(zk−µk)
TR−1

uk
(zk−µk)

2 (2.9)
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Substituting (2.8) and (2.9) in (2.7), we have

Θk =
1

2
log
|Ruk |
|Sk|

+
1

2
(zk − µk)

TR−1uk (zk − µk)

− 1

2
(zk −Hkx̂k|k−1)

TS−1k (zk −Hkx̂k|k−1)

(2.10)

Let tI(z1:K) , 2
∑K

k=1Θk be the hypothesis testing statistic. According to (2.6)

and (2.10), we have

tI(z1:K)

= 2logΛ(z1:K)

=
K∑
k=1

[
log
|Ruk |
|Sk|

+ (zk − µk)
T R−1uk (zk − µk)

−
(
zk −Hkx̂k|k−1

)T
S−1k

(
zk −Hkx̂k|k−1

)]
(2.11)

2.3 Joint Sequential Detection and System State Estimation

2.3.1 Applying Wald’s SPRT

According to [15], the Wald’s SPRT is weakly admissible even if the samples

are dependent. A sequential test for deciding between H0 and H1, whose stopping

variable is Ns and whose error probabilities are α and β, will be called inadmissible if

there exists an alternative test T ′, with stopping variable N ′s and error probabilities

α′ and β′, such that

α′ 6 α, P (N ′s > K|H0) 6 P (Ns > K|H0),

β′ 6 β, P (N ′s > K|H1) 6 P (Ns > K|H1), K = 1, 2, . . .

with at least one of these inequalities strict. T is admissible if no such T ′ exists. A

test T will be called weakly admissible if there is no alternative test T ′ which not only

improves upon T in the sense of admissibility but also stops strictly no later than T
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does under H0 and H1 [15, 17].

Since the ASN required by Wald’s SPRT is smaller than the number of samples

required by the FSS test [13] and Wald’s SPRT is weakly admissible when samples

are dependent [15], we propose a new joint sequential detection and system state

estimation algorithm by using Wald’s SPRT. Assume that Wald’s SPRT procedure

will continue by taking an additional measurement if

B < Λ(z1:K) < A (2.12)

For purposes of practical computation, let us take the logarithm of (2.12) as follows

logB < logΛ(z1:K) < logA (2.13)

Substituting (2.11) in (2.13) we have

2logB < tI(z1:K) < 2logA (2.14)

Hypothesis H1 will be accepted and the sequential test will terminate as long as

tI(z1:K) > 2logA (2.15)

Hypothesis H0 will be accepted and the sequential test will terminate as long as

tI(z1:K) 6 2logB (2.16)

2.3.2 Expected Values of the Test Statistic

To gain some insights on the termination of the proposed algorithm, we derive

the expectation of test statistic tI(z1:K) under both hypotheses. In the derivation,

we assume that x0 ∼ N (x̂0|0,P0|0), where x̂0|0 and P0|0 are the mean and covariance

matrix associated with the prior PDF of the object state at time 0.
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2.3.2.1 Expectation of Test Statistic tI(z1:K) Under H1

Under hypothesis H1, based on (2.11), we have

E [tI(z1:K)|H1]

=
K∑
k=1

{
log
|Ruk |
|Sk|

+ E
[
(zk − µk)

T R−1uk (zk − µk) |H1

]
−E

[(
zk −Hkx̂k|k−1

)T
S−1k

(
zk −Hkx̂k|k−1

)
|H1

]}
(2.17)

In this subsection, for simplicity and without ambiguity, we skip the conditioning on

hypothesis H1 in the notations.

Let us consider the second term E[(zk −µk)
TR−1uk (zk −µk)] in (2.17), which can

be expanded as

E[(zk − µk)
TR−1uk (zk − µk)]

= tr[R−1uk Var(zk − µk)] + E(zk − µk)
TR−1uk E(zk − µk)

(2.18)

where Var(y) = E
[
(y − E(y))(y − E(y))T

]
represents the covariance matrix of a

random vector y.

Clearly, to calculate E[(zk−µk)
TR−1uk (zk−µk)], we need both the expectation and

the covariance matrix of zk −µk. Since E(wk) = E(vk) = 0 for all k, the expectation

of zk − µk is

E(zk − µk) = E(Hkxk + wk)− µk

= Hk E(Fk−1xk−1 + vk−1)− µk

= HkFk−1 E(xk−1)− µk

(2.19)
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We can repeat this process k times till we get the following results:

E(zk − µk) = Hk

k∏
i=1

Fk−i E(x0)− µk

= Hk

k∏
i=1

Fk−ix̂0|0 − µk

(2.20)

where the product of the matrices is defined as

i2∏
i=i1

Ai = Ai1Ai1+1 · · ·Ai2 (2.21)

Since µk is deterministic, the covariance matrix of zk − µk is the same as that

of zk.

Var(zk − µk) = Var(zk) = Var(Hkxk + wk)

= Hk Var(xk)H
T
k + Rwk

= Hk Var(Fk−1xk−1 + vk−1)H
T
k + Rwk

= HkFk−1 Var(xk−1)(HkFk−1)
T + HkQk−1H

T
k + Rwk

(2.22)

Repeating this process k times, we have

Var(zk − µk) = Var(zk)

= Hk

k∏
i=1

Fk−i Var(x0)

(
Hk

k∏
i=1

Fk−i

)T

+ Rwk

+
k−1∑
i=0

Hk

k−i−1∏
j=1

Fk−jQi

(
Hk

k−i−1∏
j=1

Fk−j

)T

= Hk

k∏
i=1

Fk−iP0|0

(
Hk

k∏
i=1

Fk−i

)T

+ Rwk

+
k−1∑
i=0

Hk

k−i−1∏
j=1

Fk−jQi

(
Hk

k−i−1∏
j=1

Fk−j

)T

(2.23)
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where
0∏
j=1

Fk−j = I.

Substituting (2.20) and (2.23) in (2.18), we finally have

E[(zk − µk)
TR−1uk (zk − µk)]

= tr

R−1uk Hk

k∏
i=1

Fk−iP0|0

(
Hk

k∏
i=1

Fk−i

)T

+ R−1uk Rwk

+R−1uk

k−1∑
i=0

Hk

k−i−1∏
j=1

Fk−jQi

(
Hk

k−i−1∏
j=1

Fk−j

)T


+

(
Hk

k∏
i=1

Fk−ix̂0|0 − µk

)T

R−1uk

(
Hk

k∏
i=1

Fk−ix̂0|0 − µk

)
(2.24)

Now let us consider the third term in (2.17). It is known that in a Kalman

filter, the innovation νk , zk − Hkx̂k|k−1 is a zero-mean Gaussian random vari-

able with covariance matrix Sk [4]. Then, the normalized innovation squared (zk −

Hkx̂k|k−1)
TS−1k (zk −Hkx̂k|k−1) follows a Chi-square distribution with degree of free-

dom nz, where nz is the dimension of the measurement zk. Since the expected value

of a Chi-square distributed random variable is its degree of freedom, we have

E
[
(zk −Hkx̂k|k−1)

TS−1k (zk −Hkx̂k|k−1)
]

= nz (2.25)

Finally, by substituting (2.24) and (2.25) in (2.17), we can obtain E[tI(z1:K)|H1]

and summarize the result in the following proposition.

Proposition 1 The expectation of test statistic tI(z1:K) under hypothesis H1 is pro-
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vided as follows

E[tI(z1:K)|H1]

=
K∑
k=1

{
log
|Ruk |
|Sk|

− nz + tr(R−1uk Rwk)

+ tr

R−1uk Hk

k∏
i=1

Fk−iP0|0

(
Hk

k∏
i=1

Fk−i

)T

+R−1uk

k−1∑
i=0

Hk

k−i−1∏
j=1

Fk−jQi

(
Hk

k−i−1∏
j=1

Fk−j

)T


+

(
Hk

k∏
i=1

Fk−ix̂0|0 − µk

)T

R−1uk

(
Hk

k∏
i=1

Fk−ix̂0|0 − µk

)

(2.26)

2.3.2.2 Expectation of Test Statistic tI(z1:K) Under H0

Using (2.11), we have the expectation of test statistic tI(z1:K) under H0:

E [tI(z1:K)|H0]

=
K∑
k=1

{
log
|Ruk |
|Sk|

+ E
[
(zk − µk)

T R−1uk (zk − µk) |H0

]
−E

[(
zk −Hkx̂k|k−1

)T
S−1k

(
zk −Hkx̂k|k−1

)
|H0

]}
(2.27)

In this subsection, without ambiguity and for simplicity, again we skip the condition-

ing on hypothesis H0 in the notations.

Let us first consider the second term in (2.27). Since under hypothesis H0,

(zk − µ) ∼ N (0, Ruk), it is very easy to show that

E
[
(zk − µk)

TR−1uk (zk − µk)
]

= nz (2.28)

Similar to the derivation in Subsection 2.3.2.1, to find the third term in (2.27),

the expectation and covariance matrix of zk −Hkx̂k|k−1 need to be calculated. First,
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let us investigate its expectation:

E(zk −Hkx̂k|k−1)

= µk −HkFk−1 E(x̂k−1|k−1)

= µk −HkFk−1 E
[
x̂k−1|k−2 + Wk−1

(
zk−1 −Hk−1x̂k−1|k−2

)]
= µk −HkFk−1Wk−1µk−1

−HkFk−1(I−Wk−1Hk−1) E(x̂k−1|k−2)

= µk −HkFk−1Wk−1µk−1

−HkFk−1(I−Wk−1Hk−1)Fk−2 E(x̂k−2|k−2)

(2.29)

where Wk is the Kalman filter gain at time k. Repeating this process, we have

E(zk −Hkx̂k|k−1)

= µk −HkFk−1

{
k−1∏
j=1

[(I−Wk−jHk−j) Fk−j−1] x̂0|0

−
k−1∑
i=1

i−1∏
j=1

[(I−Wk−jHk−j) Fk−j−1] Wk−iµk−i

}

= µk −Bk,kx̂0|0 −
k−1∑
i=1

Bk,iWk−iµk−i

(2.30)

in which we define
0∏
j=1

[(I−Wk−jHk−j) Fk−j−1] = I,
0∑
i=1

Ai = 0, and

Bk,i = HkFk−1

i−1∏
j=1

[(I−Wk−jHk−j) Fk−j−1] (2.31)

Since x̂k|k−1 is a function of z1:k−1, it is independent of zk. Considering this fact,
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the covariance matrix of zk −Hkx̂k|k−1 is

Var(zk −Hkx̂k|k−1)

=HkFk−1 Var(x̂k−1|k−1)(HkFk−1)
T + Ruk

=HkFk−1 Var
[
(I−Wk−1Hk−1) x̂k−1|k−2

+Wk−1zk−1] (HkFk−1)
T + Ruk

(2.32)

Repeating this process, we finally have

Var(zk −Hx̂k|k−1)

=Ruk + HkFk−1

k−1∏
i=1

[(I−Wk−iHk−i) Fk−i−1] Var(x̂0|0)

·

{
HkFk−1

k−1∏
i=1

[(I−Wk−iHk−i) Fk−i−1]

}T

+
k−1∑
i=1

HkFk−1

i−1∏
j=1

[(I−Wk−jHk−j) Fk−j−1] Wk−iRuk−i

·

{
HkFk−1

i−1∏
j=1

[(I−Wk−jHk−j) Fk−j−1] Wk−i

}T

=Ruk +
k−1∑
i=1

Bk,iWk−iRuk−i (Bk,iWk−i)
T

(2.33)

in which we use the fact that x̂0|0 is a constant.

Similar to (2.18), the third term in (2.27) is expanded by using (2.30) and (2.33)
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as follows

E
[(

zk −Hkx̂k|k−1
)T

S−1k
(
zk −Hkx̂k|k−1

)]
= tr

[
S−1k Var(zk −Hkx̂k|k−1)

]
+ E(zk −Hkx̂k|k−1)

TS−1k E(zk −Hkx̂k|k−1)

= tr

[
S−1k Ruk + S−1k

k−1∑
i=1

Bk,iWk−iRuk−i(Bk,iWk−i)
T

]

+

(
µk −Bk,kx̂0|0 −

k−1∑
i=1

Bk,iWk−iµk−i

)T

S−1k

·

(
µk −Bk,kx̂0|0 −

k−1∑
i=1

Bk,iWk−iµk−i

)

(2.34)

Finally, substituting (2.28) and (2.34) in (2.27), we have the following proposi-

tion.

Proposition 2 The expectation of test statistic tI(z1:K) under H0 when using the

Kalman filter is

E [tI(z1:K)|H0]

=
K∑
k=1

{
log
|Ruk |
|Sk|

+ nz

− tr

[
S−1k Ruk + S−1k

k−1∑
i=1

Bk,iWk−iRuk−i(Bk,iWk−i)
T

]

−

(
µk −Bk,kx̂0|0 −

k−1∑
i=1

Bk,iWk−iµk−i

)T

S−1k

·

(
µk −Bk,kx̂0|0 −

k−1∑
i=1

Bk,iWk−iµk−i

)}

(2.35)

According to [31], the Kullback-Leibler distance between p(z1:K |H1) and p(z1:K |H0)
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has the following relationship with E[tI(z1:K)|H1].

D(p(z1:K |H1)||p(z1:K |H0))

= Ep(z1:K |H1)

[
log

p(z1:K |H1)

p(z1:K |H0)

]
= Ep(z1:K |H1)[logΛ(z1:K)]

=
1

2
E[tI(z1:K)|H1]

(2.36)

The Kullback-Leibler distance between p(z1:K |H0) and p(z1:K |H1) has the following

relationship with E[tI(z1:K)|H0].

D(p(z1:K |H0)||p(z1:K |H1))

= Ep(z1:K |H0)

[
log

p(z1:K |H0)

p(z1:K |H1)

]
= −Ep(z1:K |H0)[logΛ(z1:K)]

= −1

2
E[tI(z1:K)|H0]

(2.37)

2.3.3 Variances of the Test Statistic

The variance of test statistic tI(z1:K) in (2.11) does not depend on log
|Ruk

|
|Sk|

be-

cause this term is deterministic. So, it contains two parts. Part I contains all the

variances of the terms in sequence (zk −µk)
TR−1uk (zk −µk) where k = 1, 2, ..., K and

sequence −(zk−Hkx̂k|k−1)
TS−1k (zk−Hkx̂k|k−1) where k = 1, 2, ..., K. Part II contains

all the covariances of the terms in the two sequences. It can be summarized as follows
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Var[tI(z1:K)] =
K∑
k=1

Var
[
(zk − µk)

TR−1uk (zk − µk)
]

+
K∑
k=1

Var
[
(zk −Hkx̂k|k−1)

TS−1k (zk −Hkx̂k|k−1)
]

+
K∑
i=1

K∑
j=1
j 6=i

Cov[(zi − µi)
TR−1ui (zi − µi),

(zj − µj)
TR−1uj (zj − µj)]

+
K∑
i=1

K∑
j=1
j 6=i

Cov[(zi −Hix̂i|i−1)
TS−1i (zi −Hix̂i|i−1),

(zj −Hjx̂j|j−1)
TS−1j (zj −Hjx̂j|j−1)]

− 2
K∑
i=1

K∑
j=1

Cov[(zi −Hix̂i|i−1)
TS−1i (zi −Hix̂i|i−1),

(zj − µj)
TR−1uj (zj − µj)]

(2.38)

where Cov(x,y) = E
[
(x− E(x))(y − E(y))T

]
denotes the covariance between x and

y.

To derive part I, we need the expression of Cov
(
xTAx,xTBx

)
which denotes

the covariance between xTAx and xTBx. Similarly, Cov
(
xTAx,yTBy

)
is the key

to derive part II.

Assuming A and B are symmetric matrices and x ∼ N (µ, P), the covariance

between xTAx and xTBx is [32]

Cov
(
xTAx,xTBx

)
= 2 tr(APBP) + 4µTAPBµ (2.39)

To derive the covariance between xTAx and yTBy, we need to derive E(xTAxyTBy)

first. To reduce the complexity of the derivation of E(xTAxyTBy), we introduce a
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vector and a matrix

z =

 x

y

 and C =

 A 0

0 B


where A, B, and C are symmetric matrices.

Let us denote the mean and covariance matrix of x as µx and Px respectively,

and the mean and covariance matrix of y as µy and Py respectively. The covariance

Cov(x,y) is denoted by Pxy. Then, the mean and covariance matrix of z are as

follows

µz =

 µx

µy

 and Pz =

 Px Pxy

Pyx Py

 (2.40)

The relationship between xTAx, yTBy and zTCz is as follows

zTCz =

[
xT yT

] A 0

0 B


 x

y


= xTAx + yTBy

(2.41)

Then, we have

(
zTCz

)2
=
(
xTAx + yTBy

)2
=
(
xTAx

)2
+
(
yTBy

)2
+ 2xTAxyTBy

(2.42)

Taking expectation on both sides of (2.42), we have

E(xTAxyTBy)

=
1

2

{
E
[(

zTCz
)2]− E

[(
xTAx

)2]− E
[(

yTBy
)2]} (2.43)

Now we need to derive the expression of E
[(

xTAx
)2]

. According to (2.39), we

have

Var
(
xTAx

)
= 2 tr

[
(APx)2

]
+ 4µT

xAPxAµx (2.44)
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We also know that E
(
xTAx

)
[32]

E
(
xTAx

)
= tr(APx) + µT

xAµx (2.45)

Then, E
[(

xTAx
)2]

is

E
[(

xTAx
)2]

= Var
(
xTAx

)
+
[
E
(
xTAx

)]2
=
(
µT

xAµx

)2
+ 2 tr(APx)µT

xAµx + [tr(APx)]2

+ 2 tr
[
(APx)2

]
+ 4µT

xAPxAµx

(2.46)

Similarly, E
[(

yTBy
)2]

is

E
[(

yTBy
)2]

=
(
µT

yBµy

)2
+ 2 tr(BPy)µT

yBµy + [tr(BPy)]2

+ 2 tr
[
(BPy)2

]
+ 4µT

yBPyBµy

(2.47)
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E
[(

zTCz
)2]

is derived via (2.40) as follows

E
[(

zTCz
)2]

=
(
µT

z Cµz

)2
+ 2 tr(CPz)µ

T
z Cµz + [tr(CPz)]

2

+ 2 tr
[
(CPz)

2
]

+ 4µT
z CPzCµz

=
(
µT

xAµx + µT
yBµy

)2
+ 2 [tr(APx) + tr(BPy)]

(
µT

xAµx + µT
yBµy

)
+ [tr(APx) + tr(BPy)]2

+ 2
{

tr
[
(APx)2

]
+ 2 tr(APxyBPyx) + tr

[
(BPy)2

]}
+ 4

[
µT

x µT
y

] APxA APxyB

BPyxA BPyB


 µx

µy



(2.48)

Substituting (2.46), (2.47) and (2.48) in (2.43), the mean of xTAxyTBy is de-

rived as follows

E(xTAxyTBy)

= 2 tr(APxyBPyx) + 4µT
xAPxyBµy

+ tr(APx) tr(BPy) + µT
xAµxµ

T
yBµy

+ tr(APx)µT
yBµy + tr(BPy)µT

xAµx

(2.49)

Since the product E
(
xTAx

)
E
(
yTBy

)
is

E
(
xTAx

)
E
(
yTBy

)
=
[
tr(APx) + µT

xAµx

] [
tr(BPy) + µT

yBµy

]
= tr(APx) tr(BPy) + µT

xAµxµ
T
yBµy

+ tr(APx)µT
yBµy + tr(BPy)µT

xAµx

(2.50)
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the covariance between xTAx and yTBy is

Cov
(
xTAx,yTBy

)
= E

(
xTAxyTBy

)
− E

(
xTAx

)
E
(
yTBy

)
= 2 tr(APxyBPyx) + 4µT

xAPxyBµy

(2.51)

Note that (2.51) is a general case of (2.39).

2.3.3.1 Variance of Test Statistic tI(z1:K) Under H1

Var[tI(z1:K)|H1] will be derived by substituting means, variances and covariances

of zk − µk and zk −Hkx̂k|k−1 in (2.39) and (2.51). In this subsection, for simplicity

and without ambiguity, we skip the conditioning on hypothesis H1 in the notations.

The five terms in (2.38) are derived separately in order. Replacing A and B by

R−1uk and x by zk − µk in (2.39), the variance of (zk − µk)
TR−1uk (zk − µk) is derived

as follows

Var
[
(zk − µk)

TR−1uk (zk − µk)
]

= 2 tr
(
R−1uk Var(zk − µk)R

−1
uk

Var(zk − µk)
)

+ 4 E(zk − µk)
TR−1uk Var(zk − µk)R

−1
uk

E(zk − µk)

(2.52)

where E(zk−µk) and Var(zk−µk) have been derived as in (2.20) and (2.23), respec-

tively.

Since (zk −Hkx̂k|k−1)
TS−1k (zk −Hkx̂k|k−1) follows Chi-square distribution with

degree of freedom nz, its variance is

Var
[
(zk −Hkx̂k|k−1)

TS−1k (zk −Hkx̂k|k−1)
]

= 2nz (2.53)

Now, we derive the covariance between (zi−µi)
TR−1ui (zi−µi) and (zj−µj)

TR−1uj (zj−
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µj) via (2.51) as follows

Cov[(zi − µi)
TR−1ui (zi − µi), (zj − µj)

TR−1uj (zj − µj)]

= 2 tr(R−1ui Pµ1ijR
−1
uj

PT
µ1ij)

+ 4 E(zi − µi)
TR−1ui Pµ1ijR

−1
uj

E(zj − µj)

(2.54)

where Pµ1ij = Cov
(
zi − µi, zj − µj

)
= Cov (zi, zj) since µi and µj are deterministic.

Now, we need to find Cov (zi, zj). When i < j, Cov (zi, zj) is

Cov (zi, zj) = Cov (Hixi + wi,Hjxj + wj)

= Hi Cov (xi,xj) HT
j

= Hi Cov (xi,Fj−1xj−1 + vj−1) HT
j

= Hi Cov (xi,xj−1) (HjFj−1)
T

(2.55)

Repeating this process, we have

Cov (zi, zj) = Hi Var(xi)

(
Hj

j−i∏
m=1

Fj−m

)T

(2.56)

Similar to (2.23), Cov (zi, zj) when i < j is

Cov (zi, zj)

= Hi

i∏
m=1

Fi−mP0|0

(
Hj

j∏
m=1

Fj−m

)T

+
i−1∑
m=0

Hi

i−m−1∏
n=1

Fi−nQm

(
Hj

j−m−1∏
n=1

Fj−n

)T

(2.57)

Similarly, Cov (zi, zj) can be derived when i > j. In summary, Cov (zi, zj) is as
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follows when i 6= j

Cov (zi, zj)

= Hi

i∏
m=1

Fi−mP0|0

(
Hj

j∏
m=1

Fj−m

)T

+

min(i,j)−1∑
m=0

Hi

i−m−1∏
n=1

Fi−nQm

(
Hj

j−m−1∏
n=1

Fj−n

)T

(2.58)

Then, the covariance between (zi−µi)
TR−1ui (zi−µi) and (zj−µj)

TR−1uj (zj−µj)

can be got by substituting (2.20) and (2.58) in (2.54).

The fourth term in (2.38) is the covariance between two different terms in the

sequence −(zk −Hkx̂k|k−1)
TS−1k (zk −Hkx̂k|k−1) where k = 1, 2, ..., K. This term is

simply zero because the innovations are independent under H1 and Sk is deterministic.

Now, we derive the fifth term in (2.38). Since E(zi − Hix̂i|i−1) = 0, the co-

variance between (zi − Hix̂i|i−1)
TS−1i (zi − Hix̂i|i−1) and (zj − µj)

TR−1uj (zj − µj),

∀i, j = 1, 2, ..., K, can be derived via (2.51) as follows

Cov[(zi −Hix̂i|i−1)
TS−1i (zi −Hix̂i|i−1),

(zj − µj)
TR−1uj (zj − µj)]

= 2 tr
(
S−1i Pxµ1ijR

−1
uj

PT
xµ1ij

) (2.59)

where

Pxµ1ij = Cov
(
zi −Hix̂i|i−1, zj − µj

)
= Cov(zi, zj)−Hi Cov

(
x̂i|i−1, zj

) (2.60)

Cov(zi, zj) when i 6= j has been derived and provided in (2.58). Cov(zi, zj) when

i = j, i.e., Var(zi), has been derived and provided in (2.23).
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Hi Cov
(
x̂i|i−1, zj

)
is derived as follows

Hi Cov
(
x̂i|i−1, zj

)
= HiFi−1 Cov

(
x̂i−1|i−1, zj

)
= HiFi−1 Cov

[
(I−Wi−1Hi−1) x̂i−1|i−2 + Wi−1zi−1, zj

]
= HiFi−1 (I−Wi−1Hi−1) Cov

(
x̂i−1|i−2, zj

)
+ HiFi−1Wi−1 Cov (zi−1, zj)

= HiFi−1 (Fi−2 −Wi−1Hi−1Fi−2) Cov
(
x̂i−2|i−2, zj

)
+ HiFi−1Wi−1 Cov (zi−1, zj)

(2.61)

Repeating this process, we have

Hi Cov
(
x̂i|i−1, zj

)
=

i−1∑
n=1

HiFi−1

[
n−1∏
m=1

(I−Wi−mHi−m) Fi−m−1

]

·Wi−n Cov (zi−n, zj)

+ HiFi−1

[
i−1∏
m=1

(I−Wi−mHi−m) Fi−m−1

]

· Cov
(
x̂0|0, zj

)
=

i−1∑
n=1

Bi,nWi−n Cov (zi−n, zj) + Bi,i Cov
(
x̂0|0, zj

)
=

i−1∑
n=1

Bi,nWi−n Cov (zi−n, zj)

(2.62)

where Cov
(
x̂0|0, zj

)
= 0 since x̂0|0 is deterministic. Bi,n has been defined in (2.31).

Finally, substituting (2.52), (2.53), (2.54) and (2.59) in (2.38), we have the fol-

lowing proposition:

Proposition 3 The variance of test statistic tI(z1:K) under H1 when using the Kalman
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filter is

Var[tI(z1:K)|H1]

= 2
K∑
k=1

[
tr
(
R−1uk Var(zk − µk)R

−1
uk

Var(zk − µk)
)

+2 E(zk − µk)
TR−1uk Var(zk − µk)R

−1
uk

E(zk − µk)
]

+ 2
K∑
i=1

K∑
j=1
j 6=i

{
tr
(
R−1ui Pµ1ijR

−1
uj

PT
µ1ij

)

+2 E(zi − µi)
TR−1ui Pµ1ijR

−1
uj

E(zj − µj)
}

+ 2Knz − 4
K∑
i=1

K∑
j=1

tr
(
S−1i Pxµ1ijR

−1
uj

PT
xµ1ij

)

(2.63)

2.3.3.2 Variance of Test Statistic tI(z1:K) Under H0

The procedure of deriving Var[tI(z1:K)|H0] is similar to that of deriving Var[tI(z1:K)|H1].

For simplicity, we again skip the conditioning on hypothesis H0 in the notations in

this subsection.

Under H0, (zk−µk)
TR−1uk (zk−µk) follows a Chi-square distribution with degree

of freedom nz. So, the first term in (2.38) is

Var
[
(zk − µk)

TR−1uk (zk − µk)
]

= 2nz (2.64)

The second term in (2.38) is derived via (2.39) as follows

Var
[(

zk −Hkx̂k|k−1
)T

S−1k
(
zk −Hkx̂k|k−1

)]
= 2 tr

[(
S−1k Var(zk −Hkx̂k|k−1)

)2]
+ 4 E

(
zk −Hkx̂k|k−1

)T
S−1k Var

(
zk −Hkx̂k|k−1

)
· S−1k E

(
zk −Hkx̂k|k−1

)
(2.65)

where E
(
zk −Hkx̂k|k−1

)
and Var

(
zk −Hkx̂k|k−1

)
have been derived in Section 2.3.2.2
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and provided in (2.30) and (2.33), respectively.

The third term in (2.38) is the covariance between two different terms in the

sequence (zk −µk)
TR−1uk (zk −µk) where k = 1, 2, ..., K, which is simply zero because

zks are independent under H0 and Ruk is deterministic.

The fourth term in (2.38) can be derived via (2.51) directly as follows

Cov[(zi −Hix̂i|i−1)
TS−1i (zi −Hix̂i|i−1),

(zj −Hjx̂j|j−1)
TS−1j (zj −Hjx̂j|j−1)]

= 2 tr(S−1i PHx0S
−1
j PT

Hx0)

+ 4 E
(
zi −Hix̂

T
i|i−1

)T
S−1i PHx0

· S−1j E
(
zj −Hjx̂

T
j|j−1

)
(2.66)

Since Cov(zi, zj) = 0 under H0 when i 6= j, PHx0 in (2.66) can be simplified by

using (2.58) and (2.62) when i > j as follows

PHx0 = Cov
(
zi −Hix̂i|i−1, zj −Hjx̂j|j−1

)
= Cov(zi, zj) + Hi Cov

(
x̂i|i−1, x̂j|j−1

)
HT
j

−Hi Cov
(
x̂i|i−1, zj

)
− Cov

(
zi, x̂j|j−1

)
HT
j

= Hi Cov
(
x̂i|i−1, x̂j|j−1

)
HT
j −Bi,i−jWjRuj

(2.67)

When i < j, PHx0 is

PHx0 = Hi Cov
(
x̂i|i−1, x̂j|j−1

)
HT
j −RuiW

T
i BT

j,j−i (2.68)
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where Hi Cov
(
x̂i|i−1, x̂j|j−1

)
HT
j is derived as follows

Hi Cov
(
x̂i|i−1, x̂j|j−1

)
HT
j

= HiFi−1 Cov
(
x̂i−1|i−1, x̂j−1|j−1

)
(HjFj−1)

T

= HiFi−1 Cov
[
(I−Wi−1Hi−1) x̂i−1|i−2 + Wi−1zi−1,

(I−Wj−1Hj−1) x̂j−1|j−2 + Wj−1zj−1
]

(HjFj−1)
T

= HiFi−1 (I−Wi−1Hi−1) Cov
(
x̂i−1|i−2, x̂j−1|j−2

)
· [HjFj−1 (I−Wj−1Hj−1)]

T

+ HiFi−1 (I−Wi−1Hi−1)

· Cov
(
x̂i−1|i−2, zj−1

)
(HjFj−1Wj−1)

T

+ HiFi−1Wi−1 Cov
(
zi−1, x̂j−1|j−2

)
· [HjFj−1 (I−Wj−1Hj−1)]

T

+ HiFi−1Wi−1 Cov (zi−1, zj−1) (HjFj−1Wj−1)
T

(2.69)
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Repeating this procedure min(i, j)− 1 times, we have

Hi Cov
(
x̂i|i−1, x̂j|j−1

)
HT
j

= HiFi−1

min(i,j)−1∏
m=1

(I−Wi−mHi−m) Fi−m−1


· Cov

(
x̂i−min(i,j)|i−min(i,j), x̂j−min(i,j)|j−min(i,j)

)
·

HjFj−1

min(i,j)−1∏
m=1

(I−Wj−mHj−m) Fj−m−1

T

+

min(i,j)−1∑
n=1

HiFi−1

[
n∏

m=1

(I−Wi−mHi−m) Fi−m−1

]

· Cov
(
x̂i−n−1|i−n−1, zj−n

)
·

{
HjFj−1

[
n−1∏
m=1

(I−Wj−mHj−m) Fj−m−1

]
Wj−n

}T

+

min(i,j)−1∑
n=1

HiFi−1

[
n−1∏
m=1

(I−Wi−mHi−m) Fi−m−1

]
Wi−n

· Cov
(
zi−n, x̂j−n−1|j−n−1

)
·

[
HjFj−1

n∏
m=1

(I−Wj−mHj−m) Fj−m−1

]T

+

min(i,j)−1∑
n=1

HiFi−1

[
n−1∏
m=1

(I−Wi−mHi−m) Fi−m−1

]
Wi−n

· Cov (zi−n, zj−n)

·

{
HjFj−1

[
n−1∏
m=1

(I−Wj−mHj−m) Fj−m−1

]
Wj−n

}T

=

min(i,j)−1∑
n=1

Bi,n+1 Cov
(
x̂i−n−1|i−n−1, zj−n

)
WT

j−nB
T
j,n

+

min(i,j)−1∑
n=1

Bi,nWi−n Cov
(
zi−n, x̂j−n−1|j−n−1

)
BT
j,n+1

(2.70)
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where Cov
(
x̂i−min(i,j)|i−min(i,j), x̂j−min(i,j)|j−min(i,j)

)
= 0 since x̂0|0 is deterministic, Cov (zi−n, zj−n) =

0 since zi−n and zj−n are independent under H0 when i 6= j, Cov
(
x̂i−n−1|i−n−1, zj−n

)
and Cov

(
zi−n, x̂j−n−1|j−n−1

)
can be easily derived by using (2.62).

The last term in (2.38) is derived via (2.51) as follows

Cov[(zi −Hix̂i|i−1)
TS−1i (zi −Hix̂i|i−1),

(zj − µj)
TR−1uj (zj − µj)]

= 2 tr
(
S−1i Pxµ0R

−1
uj

PT
xµ0

)
+ 4 E

(
zi −Hix̂i|i−1

)T
S−1i Pxµ0R

−1
uj

E(zj − µj)

= 2 tr
(
S−1i Pxµ0R

−1
uj

PT
xµ0

)
(2.71)

where Pxµ0 is derived by using (2.62) as follows

Pxµ0 = Cov
(
zi −Hix̂i|i−1, zj − µj

)
= Cov(zi, zj)−Hi Cov

(
x̂i|i−1, zj

)

=


−Bi,i−jWjRuj i > j

Ruj i = j

0 i < j

(2.72)

Finally, substituting (2.64), (2.65), (2.66) and (2.71) in (2.38), we have the fol-

lowing proposition:

Proposition 4 The variance of test statistic tI(z1:K) under H0 when using the Kalman
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filter is

Var[tI(z1:K)|H0]

= 2
K∑
k=1

{
tr
[(

S−1k Var(zk −Hkx̂k|k−1)
)2]

+2 E
(
zk −Hkx̂k|k−1

)T
S−1k Var

(
zk −Hkx̂k|k−1

)
·S−1k E

(
zk −Hkx̂k|k−1

)}
+ 2

K∑
i=1

K∑
j=1
j 6=i

{
tr
(
S−1i PHx0S

−1
j PT

Hx0

)
+2 E

(
zi −Hix̂

T
i|i−1

)T
S−1i PHx0

·S−1j E
(
zj −Hjx̂

T
j|j−1

)}
+ 2Knz − 4

K∑
i=1

K∑
j=1

tr
(
S−1i Pxµ0R

−1
uj

PT
xµ0

)

(2.73)

2.4 Simulation Results

In this section, the proposed algorithms are used to solve joint sequential target

detection and tracking problems, where target tracking is one case of system state

estimation. The 1-dimensional target tracking has low computational complexity and

could be applied in surveillance systems like intelligent robotic systems [33, 34] and

visuomotor testing systems [35, 36]. Let us assume that an object is moving in a

1-dimensional space with its state at time k denoted by xk = [ξk ξ̇k]
T , where ξk and

ξ̇k are the object’s position and velocity at time k, respectively. The state transition

matrix is

Fk =

 1 Ts

0 1


for all k, where Ts = 0.5 seconds is the time interval between two measurements.

Let us assume that there is one sensor measuring the object’s position over time.

41



Therefore, the measurement matrix is Hk = [1 0] for all k. The variance matrix of

state process noise is

Qk = 0.01×

 T 4
s

4
T 3
s

2

T 3
s

2
T 2
s


for all k. The mean of the object’s initial state is x̂0|0 = [0 1.5]T . The mean

of measurement noise under H0 is the same as the position mean of x0, namely

µ = 0. The variance of measurement noise under H0, Ruk , is the same as the position

variance of x0, which is P0|0(1, 1) for all k. In this way, the prior estimator without

measurement for the target under H1 is not very informative. All the simulation

results are based on 105 Monte Carlo simulations.

Firstly, we demonstrate that the theoretical results derived in Subsection 2.3.2

are correct by comparing them with the simulation results. In this simulation, the

covariance matrix of sensor measurement noise is Rwk = 100 for all k, the covariance

matrix of x0 is P0|0 = diag([1000, 1]). Both nominal probabilities of false alarm and

miss are set to 10−3. Threshold A is set by using its upper bound in (1.4), and thresh-

old B is set by using its lower bound in (1.5). The results are shown in Figs. 2 and

3. It is clear that the theoretical value matches the simulation value very well under

both hypotheses. From Figs. 2 and 3, we know that E[tI(z1:K)|H1] is a monotoni-

cally increasing function of K, E[tI(z1:K)|H0] is a monotonically decreasing function

of K, and they cross the thresholds after 8 and 3 samples, respectively. According to

(2.36) and (2.37), both D(p(z1:K |H1)||p(z1:K |H0)) and D(p(z1:K |H0)||p(z1:K |H1)) are

monotonically increasing function of K. This implies, in this example, the sequential

detector will eventually terminate with a very high probability.

Secondly, we demonstrate that the theoretical results derived in Subsection 2.3.3

are correct by comparing them with the simulation results. In this simulation, the

settings are the same as that in the first simulation. The results are shown in Figs.
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Fig. 2. E[tI(z1:K)|H1] vs. K
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Fig. 3. E[tI(z1:K)|H0] vs. K

4 and 5. It is clear that the theoretical value matches the simulation value very well

under both hypotheses. Both Var[tI(z1:K)|H1] and Var[tI(z1:K)|H0] are monotonically

increasing functions of K.

Thirdly, the deflection coefficient is applied to evaluate the detection performance
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of the proposed algorithm, which is defined as follows [9]

d2 =
(E[tI(z1:K)|H1]− E[tI(z1:K)|H0])

2

Var[tI(z1:K)|H0]
(2.74)

Since the distributions of tI(z1:K) are not Gaussian under both hypotheses, the deflec-

tion coefficient only serves as a tractable measure of separability of the distributions

of tI(z1:K) under H1 and H0. The higher deflection coefficient is, the larger distance
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Fig. 6. Deflection Coefficient vs. K

between distributions of tI(z1:K) under H1 and H0 is. The theoretical and simulation

values of deflection coefficient are shown in Fig. 6. All the settings are the same

as previous simulations. From Fig. 6, we know that the theoretical value matches

the simulation value very well and deflection coefficient is a monotonically increasing

function of K. According to the property of deflection coefficient, the distance be-

tween distributions of tI(z1:K) under two hypotheses increases as time goes on, which

implies that the probability of termination is increasing with time. The increasing

distance between distributions of tI(z1:K) under H1 and H0 also implies the detection

performance of the propose algorithm is increasing with time.

We then evaluate the ASN required by the proposed algorithm under different

SNRs in the fourth simulation. In this simulation, the SNR is defined as Fisher

information about the object’s position contained in zk. Therefore, the SNR in deci-

bels is equal to 10log10(1/Rwk) in this case. The covariance matrix of x̂0|0 is still

P0|0 = diag([1000, 1]). Both nominal probabilities of false alarm and miss are set to

10−3. The threshold A is set by using its upper bound in (1.4), and threshold B is
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set by using its lower bound in (1.5). As expected, from Fig. 7, we can see that the

ASN decreases when SNR increases. It is equivalent to say that the ASN decreases

when
Ruk
Rwk

increases as Ruk is fixed and Rwk is inversely proportional to SNR. The

impact of SNR on ASN under H1 is smaller than that under H0. As we can see, as

long as SNR > −15dB, the proposed algorithm will terminate and make a decision

very quickly, requiring a small number of samples.

Next, we evaluate the ASN with different P0|0 under both hypotheses in the fifth

simulation. In this simulation, Rwk is fixed at 100, the initial covariance matrix of

state at time 0 is scaled by a factor κ, namely P0|0 = κ diag([100, 0.1]), so Ruk = 100κ.

Both nominal probability of false alarm and miss are set to 10−3. The threshold A is

set by using its upper bound in (1.4), and threshold B is set by using its lower bound

in (1.5). From Fig. 8, it is clear that ASN decreases as P0|0 increases. From this

result, we also know that ASN decreases when
Ruk
Rwk

increases, which is in agreement

with the conclusion in last simulation. This can be explained as follows. Since P0|0 is

already large and we already know so little about x0, increasing P0|0 does not make

our prior knowledge about the target state at time 0 much poorer. On the other
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hand, under H0 we have assumed that Ruk = P0|0(1, 1). Increasing the measurement

variance under H0 (Ruk) while at the same time keeping the sensor noise variance

under H1 (Rwk) a constant will make it easier to discriminate one hypothesis from

another, especially after the sequential detector integrates a few samples.

We evaluate the probabilities of false alarm and miss with different SNRs in the

sixth simulation. The settings are the same as those in the second simulation. The

comparison between the given nominal probability of false alarm αn and the actual

probability of false alarm αa is shown in Fig. 9. It is clear that the relationship

between αn and αa satisfies (1.6). Similarly, the relationship between βn and βa

satisfies (1.7) as demonstrated in Fig. 10. Note that the proposed algorithm has the

probabilities of error that are smaller than the nominal ones, since it will eventually

terminate in this example, and the inequalities in (1.6) and (1.7) hold. From this

simulation, we know that the proposed algorithm can detect an object with very low

probabilities of false alarm and miss even under low SNR conditions. Analyzing the

second and this simulations together, we know that the proposed algorithm can detect
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Fig. 9. Probability of False Alarm vs. SNR
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Fig. 10. Probability of Miss vs. SNR

the object with a few ASN and with very small probabilities of error under low SNR

conditions.

We compare the proposed SPRT detector with the optimal FSS detector in the

seventh simulation, the latter of which compares the test statistic tI(z1:K) with a

threshold at specified time K which is equal to the fixed sample size. The settings

are the same as those in the first simulation. The detection performance of the FSS
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Fig. 11. ROC Curves for FSS detector

detector is demonstrated by the receiver operating characteristic (ROC) curves in

Fig. 11. The ROC curves from bottom to top correspond to K = 1, 2, · · · , 20,

respectively. We fix the probabilities of false alarm and miss and compare the sample

size required by the FSS detector with the ASN required by the SPRT detector.

From the fourth simulation, we know that probability of false alarm is 6.1×10−4 and

probability of miss is 1.4× 10−4 when SNR is −20dB. From Fig. 11, we find that the

sample size needed by the FSS detector is K = 19 if the FSS detector has the same or

better detection performance than the SPRT detector. In the second simulation, we

know that the ASN required by the proposed sequential detector under H1 is about

10 and ASN is about 5 under H0. Clearly, on the average, the proposed sequential

detector requires a smaller number of samples than the FSS detector.

Finally, we evaluate the performance of proposed algorithm in target tracking.

Under hypothesis H1, the root mean square error (RMSE) in position or velocity over

time is shown in Fig. 12. Obviously, both RMSE in position and RMSE in velocity

decrease over time, which means that the accuracy of the proposed algorithm in target

49



0 1 2 3 4 5
0

10

20

30

40

Time (s)

R
M

SE
 in

 P
os

iti
on

 (m
)

0 1 2 3 4 5
0.9

0.95

1

1.05

1.1

Time (s)

R
M

SE
 in

 V
el

oc
ity

 (m
/s

)

Fig. 12. RMSE in Position or Velocity over Time

1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

K

U
pd

at
ed

 p
os

iti
on

 s
ta

nd
ar

d 
de

vi
at

io
n

Fig. 13. Updated Position Standard Deviation vs. K

tracking is increasing over time. Under hypothesis H1, updated position standard

deviation
√

Pk|k(1, 1) over time step K is shown in Fig. 13. From this figure, we know

that the updated position standard deviation converges to a steady-state value within

a few time steps, which means that the proposed algorithm converges to steady-state

quickly.
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2.5 Conclusion

In this chapter, we proposed a new joint sequential object detection and system

state estimation algorithm based on the Wald’s SPRT and the Kalman filter. To

gain insights on the test statistic and investigate the termination of the proposed

algorithm, we derived the closed-form formulas for the first and second moments

of the test statistic under both hypotheses H1 and H0. Numerical results showed

that the expected values of the test statistic are monotone functions of the number

of samples, and they cross their respective thresholds in a few samples. According

to the relationship between the Kullback-Leibler distance and expected value of the

test statistic, the Kullback-Leibler distances are monotonically increasing functions

of the number of samples which means that the distance between distributions of test

statistic under H1 and H0 increases over time. This conclusion was also drawn by

investigating the deflection coefficient, which was obtained via the expected values and

variances of the test statistic. Numerical results showed that the deflection coefficient

is monotonically increasing function of the number of samples which implies that both

probability of termination and performance of the proposed algorithm are increasing

with time. Numerical results also showed that the sequential detection algorithm

detects a moving object with a small ASN and low probabilities of error even under

low SNR conditions, and it outperforms the optimal FSS detector significantly in

terms of the number of samples required to achieve the same detection performance.

As a system state estimator, the proposed algorithm converges to steady-state quickly.
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CHAPTER 3

TERMINATIVE JOINT SEQUENTIAL OBJECT DETECTION AND

SYSTEM STATE ESTIMATION

3.1 Introduction

A joint sequential object detection and tracking approach based on Wald’s SPRT

and the Kalman filter was proposed in Chapter 2. According to [15], this approach

is weakly admissible even if measurements are dependent under H1. Moreover, it can

be proved that the thresholds A, B and probabilities of error α, β still satisfy (1.4)

and (1.5). However, the number of samples required by Wald’s SPRT could approach

to infinity, which means that these tests will not terminate with probability one. This

may cause long time delay in making a decision.

In [16] and [37], Wald’s SPRT was also applied when the measurements are

statistically dependent. In [16], the measurements under both hypotheses were trans-

formed into independent samples via multiplying a common transform matrix. For

example, if the measurement under H1 is a given signal with additive Gaussian noise

and the measurement under H0 is the Gaussian noise only, then the covariance ma-

trix of measurement under H1 and H0 are exactly the same. The common transform

matrix could be the inverse of the lower triangular matrix obtained by Cholesky de-

composition of the covariance matrix. In [37], four under-sampling methods were

proposed to get rid of the correlation between samples. Since the signal is given and

the correlation between additive noise at different time decays as the time interval

increases, the correlation between new samples will approach to zero as long as the

sampling rate is low enough with respect to correlation decaying rate. Note that the
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correlation decaying rate depends on SNR. The processing time will be long when

SNR is low. Moreover, the signal we consider is a random process instead of a deter-

ministic signal. Therefore, the above methods cannot be applied. The other way to

make sure Wald’s SPRT will terminate with probability one is truncating the proce-

dure at K = K0. However, the probabilities of error depend on the value of K0 and

the thresholds cannot be set by probabilities of error as in the case of the original

SPRT.

To make sure that the sequential test procedure will terminate with probability

one and the probabilities of error will be controlled by thresholds A and B, a joint

terminative sequential object detection and system state estimation algorithm is pro-

posed in this chapter. Since it was proved in [13] that Wald’s SPRT procedure will

terminate with probability one if the samples are independent, the proposed algorithm

is designed by constructing a sequence of independent samples based on the sensor

measurements. In this new algorithm, two hypothesis testing statistics are fused to

guarantee that the sequential test will not only eventually terminate but also keep

the power of our previous algorithm proposed in Chapter 2. The relationship between

nominal probabilities of error and actual probabilities of error of fused algorithm is

derived in this chapter.

This chapter is organized as follows. In Section 3.2, the terminative joint se-

quential object detection and tracking algorithm is proposed. In Section 3.3, the

performance of the proposed algorithm is shown by simulations. Finally, this chapter

is concluded in Section 3.4.
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3.2 Terminative Joint Sequential Detection and System State Estimation

The joint sequential detection and system state estimation algorithm proposed

in Chapter 2 is summarized as follows:

tI(z1:K)


> 2logA stop and accept H1

6 2logB stop and accept H0

otherwise continue

(3.1)

where A and B are two positive constants and B < A, which are determined by

pre-specified probabilities of false alarm and miss.

3.2.1 Independent Samples

Wald’s SPRT terminates with probability one on the premise of the samples

are independent under both hypotheses [13]. However, the measurements zk do not

satisfy this termination condition. To guarantee that Wald’s SPRT will eventually

terminate with probability one, we construct a sequence of independent samples {yl}

based on the measurements {zk}. To construct independent samples {yl}, we only

need to consider the measurements under hypothesis H1. Because the measurements

under hypothesis H0 are independent and identically distributed, and the linear com-

binations of them are still independent and identically distributed. Under hypothesis

H1, we know that the process noise sequence {vk} and measurement noise sequence

{wk} are independent of each other. So, the measurements zi and zj are correlated

only because they depend on the correlated states xi and xj respectively. Since the

measurements are linear functions of states, the independent samples can be con-

structed by linear combination of zks in which the coefficient corresponding to xk

should be zero. In this chapter, the independent samples {yl} are obtained by using

three different methods.
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3.2.1.1 Invertible Measurement Matrices

If Hks are invertible, measurement zk+1 under H1 can be expanded as follows

zk = Hk(Fk−1xk−1 + vk−1) + wk

=HkFk−1xk−1 + Hkvk−1 + wk

=HkFk−1(H
−1
k−1zk−1 −H−1k−1wk−1) + Hkvk−1 + wk

=HkFk−1H
−1
k−1zk−1 −HkFk−1H

−1
k−1wk−1 + Hkvk−1 + wk

(3.2)

The independent samples can be constructed by combining two consecutive mea-

surements as follows

yal = z2l −H2lF2l−1H
−1
2l−1z2l−1 (3.3)

According to (3.2) and (3.3), yal under H1 is the following function of w2l, w2l−1

and v2l−1.

yal |H1 = w2l −H2lF2l−1H
−1
2l−1w2l−1 + H2lv2l−1 (3.4)

Since {wk} and {vk} are white Gaussian sequences, wks and vks are independent for

all k, and there is no common term between yal and yal+1 for all l = 1, 2, . . . , the sample

sequence {yal } under H1 is also a white Gaussian sequence and follows N (0, Pa
l |H1)

where Pa
l |H1 = Rw2l

+ H2lF2l−1H
−1
2l−1Rw2l−1

(H2lF2l−1H
−1
2l−1)

T + H2lQ2l−1H
T
2l.

Substituting (2.3) in (3.3), yal under H0 is the following function of u2l and u2l−1.

yal |H0 = u2l −H2lF2l−1H
−1
2l−1u2l−1 (3.5)

Since {uk} is a white Gaussian sequence and there is no common term between

yal |H0 and yal+1|H0 for all l = 1, 2, . . . , the sample sequence {yal }|H0 is also white and

follows Gaussian distribution N (µa
l , Pa

l |H0), where µa
l = µ2l −H2lF2l−1H

−1
2l−1µ2l−1

and Pa
l |H0 = Ru2l + H2lF2l−1H

−1
2l−1Ru2l−1

(H2lF2l−1H
−1
2l−1)

T .
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3.2.1.2 Observable Systems Based on Two Consecutive Measurements

UnderH1, we know that z4k−3 = H4k−3x4k−3+w4k−3 and z4k−2 = H4k−2F4k−3x4k−3+

H4k−2v4k−3 + w4k−2. Combine these two formulas as follows z4k−3

z4k−2

 = G4k−3x4k−3 +

 w4k−3

H4k−2v4k−3 + w4k−2

 (3.6)

where G4k−3 =

 H4k−3

H4k−2F4k−3

.

When the system is observable based on two consecutive measurements, G4k−3

is invertible and x4k−3 can be expressed as

x4k−3 = G−14k−3


 z4k−3

z4k−2

−
 w4k−3

H4k−2v4k−3 + w4k−2


 (3.7)

It is easy to show that

 z4k−1

z4k

 can be expanded as the following function of

x4k−3, {vk}, and {wk}. z4k−1

z4k


= G4k−1x4k−1 +

 w4k−1

H4kv4k−1 + w4k


= G4k−1F4k−2F4k−3x4k−3 + G4k−1F4k−2v4k−3

+ G4k−1v4k−2 +

 w4k−1

H4kv4k−1 + w4k



(3.8)
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Substituting (3.7) in (3.8), we have z4k−1

z4k


= J4k−3


 z4k−3

z4k−2

−
 w4k−3

H4k−2v4k−3 + w4k−2




+ G4k−1F4k−2v4k−3 + G4k−1v4k−2

+

 w4k−1

H4kv4k−1 + w4k



(3.9)

where J4k−3 = G4k−1F4k−2F4k−3G
−1
4k−3.

Sample ybl is constructed via four consecutive measurements in {xk} as follows

ybl =

 z4l−1

z4l

− J4l−3

 z4l−3

z4l−2

 (3.10)

The sample ybl under H1 is only a function of {vk} and {wk}.

ybl |H1

= G4l−1F4l−2v4l−3 − J4l−3

 w4l−3

H4l−2v4l−3 + w4l−2


+ G4l−1v4l−2 +

 w4l−1

H4lv4l−1 + w4l


(3.11)

Obviously, the sample sequence {ybl}|H1 is white and follows Gaussian distribu-
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tion N (0, Pb
l |H1), where

Pb
l |H1

= G4l−1F4l−2Q4l−3 (G4l−1F4l−2)
T + G4l−1Q4l−2G

T
4l−1

+ J4l−3

 Rw4l−3
0

0 H4l−2Q4l−3H
T
4l−2 + Rw4l−2

JT4l−3

−G4l−1F4l−2

[
0 Q4l−3H

T
4l−2

]
JT4l−3

+

 Rw4l−1
0

0 H4lQ4l−1H
T
4l + Rw4l



(3.12)

Under H0, the sample ybl is

ybl |H0 =

 u4l−1

u4l

− J4l−3

 u4l−3

u4l−2

 (3.13)

which is white and follows N (µb
l , Pb

l |H0), where µb
l =

 µ4l−1

µ4l

 − J4l−3

 µ4l−3

µ4l−2


and Pb

l |H0 =

 Ru4l−1
0

0 Ru4l

+ J4l−3

 Ru4l−3
0

0 Ru4l−2

JT4l−3.

3.2.1.3 Independent Samples Based on Cayley-Hamilton Theorem

Assume state transition matrix Fk and measurement matrix Hk are not time-

varying, i.e., Fk = F and Hk = H. It is easy to show that zk+m is a linear function of

Fmxk for any m = 0, 1, 2, .... As long as we can find a polynomial of F such that it is

zero, we can generate the independent samples {yl} in the form of linear combination
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of {zk}. Let us take a look at the characteristic equation of F.

κ(λ) = |λI− F|

= λnx + p1λ
nx−1 + · · ·+ pnx−1λ+ pnx

= 0

(3.14)

where the pis are determined by the eigenvalues of F. Let us denote the ith eigenvalue

of F as λi. The characteristic equation of F can be rewritten as

κ(λ) =
nx∏
i=1

(λ− λi) = 0 (3.15)

According to Cayley-Hamilton theorem [38], we know that the square matrix F

satisfies its own characteristic equation. Therefore, we have

κ(F) = Fnx + p1F
nx−1 + · · ·+ pnx−1F + pnxI

=
nx∏
i=1

(F− λiI) = 0
(3.16)

According to (3.16), the independent samples {ycl } is constructed as a linear

combination of nx + 1 adjacent measurements.

ycl =z(nx+1)l + p1z(nx+1)l−1 + · · ·

+ pnx−1z(nx+1)l−(nx−1) + pnxz(nx+1)l−nx

(3.17)

This is the general way to construct ycl for any nx. Under H0, {ycl } is a white

sequence and follows Gaussian distribution as {uk} is white and Gaussian distributed.

Under H1, the terms containing xks will be canceled out by linearly combining (nx+1)
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zks in this way. Substituting (2.1), (2.2), and (3.16) in (3.17), we have

ycl = H(Fnx + p1F
nx−1 + · · ·+ pnxI)x(nx+1)l−nx

+ g(w(nx+1)l,w(nx+1)l−1, . . . ,w(nx+1)l−nx)

+ f(v(nx+1)l−1,v(nx+1)l−2, . . . ,v(nx+1)l−nx)

= Hκ(F)x(nx+1)l−nx

+ g(w(nx+1)l,w(nx+1)l−1, . . . ,w(nx+1)l−nx)

+ f(v(nx+1)l−1,v(nx+1)l−2, . . . ,v(nx+1)l−nx)

= g(w(nx+1)l,w(nx+1)l−1, . . . ,w(nx+1)l−nx)

+ f(v(nx+1)l−1,v(nx+1)l−2, . . . ,v(nx+1)l−nx)

(3.18)

where g(·) and f(·) are linear functions. Obviously, there is no common terms between

ycl and ycl−1 for all l. Also, wks and vks are independent, {wk} and {vk} are white

Gaussian sequences. Therefore, the sample sequence {ycl } under H1 is also white

Gaussian sequence.

Let us take nx = 2 as an example. In this case, F is a 2 × 2 matrix, and the

characteristic equation of F becomes

κ(F) = F2 + p1F + p2I

= (F− λ1I)(F− λ2I)

= F2 − (λ1 + λ2)F + λ1λ2I = 0

(3.19)

where p1 = −(λ1 + λ2) and p2 = λ1λ2.

According to (3.19), the sample ycl in (3.17) becomes

ycl = z3l + p1z3l−1 + p2z3l−2

= z3l − (λ1 + λ2)z3l−1 + λ1λ2z3l−2

(3.20)
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z3l, z3l−1, and z3l−2 are expanded as functions of x3l−2 as follows

z3l = Hx3l + w3l

= H(F2x3l−2 + Fv3l−2 + v3l−1) + w3l

(3.21)

z3l−1 = Hx3l−1 + w3l−1

= H(Fx3l−2 + v3l−2) + w3l−1

(3.22)

and

z3l−2 = Hx3l−2 + w3l−2 (3.23)

Substituting (3.21), (3.22), and (3.23) in (3.20), we have

ycl = z3l − (λ1 + λ2)z3l−1 + λ1λ2z3l−2

= H
{[

F2 − (λ1 + λ2)F + λ1λ2I
]
x3l−2

+ [F− (λ1 + λ2)I] v3l−2 + v3l−1}

+ w3l − (λ1 + λ2)w3l−1 + λ1λ2w3l−2

(3.24)

where the coefficient of x3l−2 is equal to zero as shown in (3.19). So, the sample ycl

under H1 is as follows

ycl |H1 = H {[F− (λ1 + λ2)I] v3l−2 + v3l−1}

+ w3l − (λ1 + λ2)w3l−1 + λ1λ2w3l−2

(3.25)

Now, we derive the distribution of independent samples ycl under H1 and H0,

respectively. Let Pc
l |H1 and Pc

l |H0 denote the covariance matrices under H1 and H0,

respectively. According to (3.25), we get Pc
l |H1 as follows

Pc
l |H1 = H [F− (λ1 + λ2)I] Q3l−2 [F− (λ1 + λ2)I]T HT

+ HQ3l−1H
T + Rw3l

+ (λ1 + λ2)
2Rw3l−1

+ λ21λ
2
2Rw3l−2

(3.26)
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Obviously, the mean of ycl under H1 is zero. Therefore, ycl |H1 ∼ N (0, Pc
l |H1).

ycl under H0 is obtained in the same way as (3.20) and we have

ycl |H0 = z3l − (λ1 + λ2)z3l−1 + λ1λ2z3l−2

= u3l − (λ1 + λ2)u3l−1 + λ1λ2u3l−2

(3.27)

It’s easy to show that ycl |H0 ∼ N (µc
l , Pc

l |H0) where

µc
l = µ3l − (λ1 + λ2)µ3l−1 + λ1λ2µ3l−2 (3.28)

and

Pc
l |H0 = Ru3l + (λ1 + λ2)

2Ru3l−1
+ λ21λ

2
2Ru3l−2

(3.29)

For all of the three methods, the mean and variance of yl can be calculated

off-line.

3.2.2 Fused Hypothesis Testing Statistic

No matter which method is chosen to construct independent sample yl, the dis-

tributions of yl under both hypotheses are known. So, the log-likelihood ratio is

adopted to generate the hypothesis testing statistic. Let tII(y1:L) denote the hypoth-

esis testing statistic for the samples accumulated up to the Lth step based on the
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independent samples. The test statistic tII based on independent samples {yl} is

tII(y1:L)

= 2log
p(y1:L|H1)

p(y1:L|H0)
= 2log

∏L
l=1 p(yl|H1)∏L
l=1 p(yl|H0)

= 2
L∑
l=1

log
p(yl|H1)

p(yl|H0)

=
L∑
l=1

[
log
|Pl|H0|
|Pl|H1|

− (yl)
T (Pl|H1)

−1yl

+(yl − µl)
T (Pl|H0)

−1(yl − µl)
]

(3.30)

where L = 1, 2, · · · .

To guarantee that the joint sequential detection and system state estimation

algorithm in Chapter 2 will eventually terminate with probability one, a terminative

algorithm is constructed as follows by applying a fused hypothesis testing statistic.

1. Hypothesis H1 will be accepted and the sequential test will terminate if

UK > 2logA (3.31)

where

UK = max{tI(z1:K), tII(y1:bK/nsc)} (3.32)

2. Hypothesis H0 will be accepted and the sequential test will terminate if

LK 6 2logB (3.33)

where

LK = min{tI(z1:K), tII(y1:bK/nsc)} (3.34)

3. Otherwise, the sequential test will continue to take the next sample.

Note that ns denotes the number of measurements zk used to generate each indepen-
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dent sample yl. The value of ns depends on which method is used to generate yl:

ns = 2 when the first method in Section 3.2.1.1 is adopted, ns = 4 when the second

method in Section 3.2.1.2 is adopted, and ns = nx + 1 when the third method in

Section 3.2.1.3 is adopted.

In this procedure, tI(z1:K) is calculated for each positive integerK, and tII(y1:K/ns)

is fused together with tI(z1:K) when K = ns×r, r = 1, 2, · · · . This procedure will ter-

minate if either the larger one between tI(z1:K) and tII(y1:K/ns) is greater than or equal

to 2logA or the smaller one is less than or equal to 2logB whenK = ns×r, r = 1, 2, · · · .

When K 6= ns× r, equivalently only tI(z1:K) is used to make decision as tII(y1:bK/nsc)

does not provide any new information. If we only use tII(y1:bK/nsc) as hypothesis test-

ing statistic in Wald’s SPRT, it will eventually terminate as yls are independent. It

is easy to show that the proposed algorithm will also terminate with probability one

since Wald’s SPRT procedure will terminate as long as either tI(z1:K) or tII(y1:bK/nsc)

crosses one threshold.

Now, for the algorithm based on fused statistics, we derive the upper bound on

αaf and βaf in terms of αnf and βnf , where αaf and βaf denote the actual probabilities

of false alarm and miss of the proposed fused algorithm respectively, and αnf and

βnf denote the nominal probabilities of false alarm and miss of the proposed fused

algorithm respectively.

We know that the thresholds A and B, actual probability of false alarm αa, and

actual probability of miss βa will satisfy the following inequalities when the samples

are independent [13].

A 6
1− βa

αa
(3.35)

B >
βa

1− αa
(3.36)

Since the proposed fused algorithm will eventually terminate, denote the largest
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number of samples required by it as Ns. Note that the proposed fused algorithm

contains two sequential tests with only one test statistic within limited steps Ns:

the algorithm based on dependent measurements in Chapter 2 and the algorithm

based on independent samples which only uses tII in Wald’s SPRT. First, we show

that the inequalities (3.35) and (3.36) always hold for any sequential test with only

one test statistic within limited steps (no matter whether the test statistic crosses

the thresholds or not). To simplify the notation, denote a collection of the samples

under consideration as x := [x1, x2, . . . , xk]
T where 1 6 k 6 Ns. Denote the joint

PDFs of x under H1 and H0 are p1k(x) and p0k(x), respectively. Therefore, the

likelihood ratio is Λk = p1k(x)/p0k(x). The decision set of accepting H1 is denoted by

R1 := {x : Λk > A,B < Λm < A,∀m = 1, 2, . . . , k− 1}. The decision set of accepting

H0 as R0 := {x : Λk 6 B,B < Λm < A, ∀m = 1, 2, . . . , k − 1}. If x does not fall in

either R1 or R0 when k = Ns, Wald’s SPRT is forced to terminate and no decision

is made. Note that this procedure is different from truncated Wald’s SPRT which is

forced to make a decision when k = Ns. Since x may not fall in either R1 or R0 when

k = Ns, the probability of detection is less than or equal to 1− βa. So, we have

1− βa >
∫
R1

p1k(x)dx =

∫
R1

p1k(x)

p0k(x)
p0k(x)dx

> A

∫
R1

p0k(x)dx = Aαa
(3.37)

that is, 1 − βa > Aαa which is equivalent to (3.35). Note that if there is no limit

on the number of samples Ns, then 1− βa equals to probability of detection. In this

case, the inequality (3.35) is still true. However, if the Wald’s SPRT is truncated,

inequality (3.35) is not true.
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Similarly, we have

1− αa >
∫
R0

p0k(x)dx =

∫
R0

p0k(x)

p1k(x)
p1k(x)dx

>
1

B

∫
R0

p1k(x)dx =
1

B
βa

(3.38)

that is, 1−αa > βa/B which is equivalent to (3.36), which is true no matter whether

the number of samples is limited or not. However, (3.36) is not true if the Wald’s

SPRT is truncated.

If we set the thresholds as A = 1−βn
αn

and B = βn

1−αn , then we obtain the following

inequalities from (3.35) and (3.36).

αa

1− βa
6

αn

1− βn
(3.39)

and

βa

1− αa
6

βn

1− αn
(3.40)

where αn and βn denote the nominal probability of false alarm and nominal proba-

bility of miss, respectively.

Since 0 < 1− αa < 1 and 0 < 1− βa < 1, (3.39) and (3.40) become

αa 6
αn

1− βn
(3.41)

and

βa 6
βn

1− αn
(3.42)

which are the same as (1.6) and (1.7). Multiplying (3.39) by (1 − βn)(1 − βa) and

(3.40) by (1 − αn)(1 − αa) and adding them, we obtain the following relationship

between actual probabilities of error and nominal probabilities of error.

αa + βa 6 αn + βn (3.43)
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Up to now, we have proved that the following proposition is true no matter

whether the test statistic is generated by independent samples or dependent samples.

Proposition 5 For any SPRT with fixed thresholds A and B where B < A, if only

one test statistic is adopted and the SPRT is not truncated, then

1. the thresholds A and B, the actual probability of false alarm αa, and the actual

probability of miss βa satisfy A 6 1−βa
αa

and B > βa

1−αa ,

2. suppose A = 1−βn
αn

and B = βn

1−αn , the upper bounds on the actual probability

of false alarm αa and the actual probability of miss βa are αa 6 αn

1−βn and

βa 6 βn

1−αn ,

3. the actual probabilities of error and nominal probabilities of error have the re-

lationship αa + βa 6 αn + βn.

Let αaI and βaI denote the actual probabilities of false alarm and miss of the

dependent algorithm in Chapter 2 respectively. Let αaII and βaII denote the actual

probabilities of false alarm and miss of the independent algorithm which only uses

tII in Wald’s SPRT respectively. Let αn and βn be the nominal probability of false

alarm and miss of the SPRT using tI or tII as test statistic respectively. If we still use

A = 1−βn
αn

and B = βn

1−αn as the thresholds in the proposed fused algorithm, we will

obtain the following inequalities from (3.43).

αaI + βaI 6 αn + βn (3.44)

and

αaII + βaII 6 αn + βn (3.45)
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Adding (3.44) to (3.45), we have

αaI + βaI + αaII + βaII 6 2αn + 2βn (3.46)

Now, let us find the relationship between αaI + αaII and the actual probability of

false alarm of the proposed fused algorithm αaf . Denote tI and tII corresponding to

Uk and Lk by tkI and tkII respectively. The relationship between αaf and αaI + αaII is

derived as follows

αaf =
Ns∑
k=1

Pr {Uk > 2 logA,

2 logB < {Li}k−1i=1 6 {Ui}k−1i=1 < 2 logA|H0

}
=

Ns∑
k=1

Pr
{

max(tkI , t
k
II) > 2 logA,

(2 logB < {tiI}k−1i=1 , {tiII}k−1i=1 < 2 logA)|H0

}
=

Ns∑
k=1

Pr
{

(tkI > 2 logA or tkII > 2 logA),

(2 logB < {tiI}k−1i=1 , {tiII}k−1i=1 < 2 logA)|H0

}
6

Ns∑
k=1

Pr
{
tkI > 2 logA, 2 logB < {tiI}k−1i=1 < 2 logA,

2 logB < {tiII}k−1i=1 < 2 logA|H0

}
+

Ns∑
k=1

Pr
{
tkII > 2 logA, 2 logB < {tiI}k−1i=1 < 2 logA,

2 logB < {tiII}k−1i=1 < 2 logA|H0

}
6

Ns∑
k=1

Pr
{
tkI > 2 logA, 2 logB < {tiI}k−1i=1 < 2 logA|H0

}
+

Ns∑
k=1

Pr
{
tkII > 2 logA, 2 logB < {tiII}k−1i=1 < 2 logA|H0

}
= αaI + αaII

(3.47)
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Similarly, the actual probability of miss of the proposed fused algorithm βaf has

the following relationship with βaI and βaII.

βaf 6 βaI + βaII (3.48)

Adding (3.47) to (3.48), we have

αaf + βaf 6 αaI + βaI + αaII + βaII (3.49)

Let αnf and βnf be the nominal probabilities of false alarm and miss of the proposed

fused algorithm, respectively. Let us assume that αnf = 2αn and βnf = 2βn. Then,

A =
2−βnf
αnf

and B =
βnf

2−αnf
. αaf + βaf has the following relationship with αnf + βnf by

comparing (3.46) with (3.49).

αaf + βaf 6 αnf + βnf (3.50)

That is, the sum of actual probabilities of false alarm and miss will be upper bounded

by the sum of nominal probabilities of false alarm and miss.

Furthermore, we can find the upper bound of αaf via (3.47) and (3.41) as follows

αaf 6 αaI + αaII 6
αn

1− βn
+

αn

1− βn
=

αnf

1− βnf
2

(3.51)

Similarly, we have

βaf 6 βaI + βaII 6
βn

1− αn
+

βn

1− αn
=

βnf

1− αnf
2

(3.52)

It’s easy to prove that
αnf

1−
βn
f
2

< αnf + βnf and
βnf

1−
αn
f
2

< αnf + βnf . Therefore, the

feasible region of αaf and βaf is shown as in Fig. 14.
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Fig. 14. The Feasible Region of αaf and βaf

3.3 Simulation Results

In this subsection, we evaluate performance of the algorithm proposed in Chapter

3. Most settings are the same as that in Chapter 2. The covariance matrix of the ob-

ject’s initial state is P0|0 = diag([1000, 1]). The SNR is defined as Fisher information

about the object’s position contained in zk. Therefore, the SNR in decibels is equal

to 10log10(1/Rwk) in this case. Let αnf = βnf = 10−3. The thresholds A and B are

set via A =
2−βnf
αnf

and B =
βnf

2−αnf
. Since H = [1 0] is not invertible but the system is

observable, ybl and ycl are used to generate independent samples. For simplicity, the

algorithm proposed in Chapter 2 is named dependent algorithm, the Wald’s SPRT

that only uses independent samples ycl is named independent algorithm I, the Wald’s

SPRT that only uses independent samples ybl is named independent algorithm II, the

Wald’s SPRT uses fused samples generated by ycl is named fused algorithm I, the

Wald’s SPRT uses fused samples generated by ybl is named fused algorithm II. Since

nx = 2 in this simulation, every three consecutive measurements are used to generate

independent samples ycl . The eigenvalues of F are λ1 = λ2 = 1.
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First, we evaluate the ASN required by the five algorithms under different SNRs.

The simulation results under H0 and under H1 are shown in Table 2 and Table 3,

respectively. From the results, we know that ASN is inversely proportional to SNR

under both hypotheses. This is just as expected. We know that when the SNR

increases, the distance between distributions of samples under two hypotheses also

increases. So, less time is needed to terminate under higher SNR. From the results, we

also know that the ASNs required by the fused algorithms are always less than those

required by the dependent and independent algorithms. This is because the fused

algorithm uses both the test statistics of dependent and independent algorithms and

it terminates as long as one test statistic crosses the thresholds. The ASNs required by

the independent algorithms are much higher than the other two algorithms as their

test statistics contain less information when eliminating the terms containing xk.

By designing the fused algorithm, the Wald’s SPRT will terminate with probability

one and the performance of dependent algorithm in terms of ASN will be slightly

improved.

Table 2. ASNs of five algorithms under H0
SNR (dB) -25 -20 -15 -10 -5
Dependent algorithm 17.3395 5.2373 3.1512 2.5144 2.2594
Independent algorithm I 55.5248 13.0013 6.4813 4.5392 3.7619
Fused algorithm I 17.3014 5.2166 3.1419 2.5107 2.2578
Independent algorithm II 38.5708 9.8977 5.6360 4.5220 4.1728
Fused algorithm II 17.2876 5.2199 3.1465 2.5128 2.2590

Table 3. ASNs of five algorithms under H1
SNR (dB) -25 -20 -15 -10 -5
Dependent algorithm 21.1927 10.5060 7.0246 5.4581 4.6130
Independent algorithm I 100.3770 34.5868 20.1028 14.1998 11.0138
Fused algorithm I 21.1878 10.5054 7.0243 5.4581 4.6130
Independent algorithm II 68.4534 24.1695 14.4066 10.2750 8.3947
Fused algorithm II 21.1660 10.5007 7.0230 5.4570 4.6129

Second, we evaluate the relationship between αaf , β
a
f , and their upper bounds.
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Fig. 15. Compare (αaf , β
a
f ) Pair and Its Feasible Region under Different SNRs

The (αaf , β
a
f ) pairs under different SNRs and the feasible region are plotted in Fig. 15.

Obviously, relationships (3.50), (3.51) and (3.52) derived in Chapter 3 are satisfied.

Therefore, the thresholds in the fused algorithm can be set by the nominal probabili-

ties of error and the upper bounds on the actual probabilities of error can be obtained

via nominal probabilities of error.

Third, we compare the probabilities of error made by the five algorithms. The

probability of false alarm and probability of miss at different SNRs are shown in

Fig. 16 and Fig. 17, respectively. For each independent algorithm, the actual proba-

bilities of error of are less than the nominal probabilities of error αn = βn = 0.5×10−3

respectively, which means that (3.41), (3.42) and (3.43) are satisfied. In Fig. 16, the

summation of probabilities of false alarm of dependent algorithm and independent

algorithm is greater than probability of false alarm of the fused algorithm, which sat-

isfies (3.47). Similarly, (3.48) is demonstrated by Fig. 17. In Fig. 16, the probability

of false alarm of the fused algorithm is slightly greater than that of the dependent

algorithm. This is also the case for the probability of miss. This is because every
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Fig. 16. Probability of False Alarm vs. SNR
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Fig. 17. Probability of Miss vs. SNR

SPRT is weakly admissible [15]. Although the probabilities of error of fused algorithm

is higher than the dependent algorithm, the ASN required by the fused algorithm is

smaller.
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3.4 Conclusion

In this chapter, the terminative joint sequential detection and system state es-

timation algorithm was proposed to guarantee the Wald’s SPRT will eventually ter-

minate with probability one. This is a fused algorithm by using both dependent

measurements and independent samples. The relationship between the probabili-

ties of error for the fused algorithm and those for Wald’s SPRT with only one test

statistic was derived. We also derived the upper bounds on the actual probabilities

of error by using nominal probabilities of error. Simulation results showed that the

proposed fused terminative algorithm needs a smaller ASN than Wald’s SPRT with

only one test statistic. The theoretical upper bounds on the actual probabilities of

error were demonstrated to be true by simulation results. The theoretical relationship

between the proposed fused terminative algorithm and Wald’s SPRT with only one

test statistic was also demonstrated to be true by simulations.
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CHAPTER 4

JOINT GROUP TESTING OF TIME-VARYING FAULTY SENSORS

AND SYSTEM STATE ESTIMATION

4.1 Introduction

Faulty sensors are the sensors which return corrupted data [39, 40, 41]. The

corruption could be caused by attacks from an adversary [42, 43, 44], sensor malfunc-

tioning [45], or disturbance from the environment [46]. One interesting topic is how

to reliably estimate system state when faulty sensors exist in large sensor networks.

In many cases, the faulty sensors are sparse in sensor networks. For example,

if sensors are attacked by an adversary, typically only a small number of sensors are

attacked and corrupted due to the adversary’s limited resources and his/her intention

to reduce the chance of being detected by the system defender. Furthermore, the

adversary may adopt a time-varying attack strategy to further reduce the probability

of being detected. In a real environment, the measurement noise of closely located

sensors is usually correlated. In this case, detecting faulty sensors by testing each

single sensor individually is not optimal. One promising approach to solve these

problems is group testing which is able to detect sparse faulty sensors using testing

groups. It was first proposed by Dorfman [47] to identify infected soldiers by detecting

syphilitic antigen in blood sample pool during the World War II. In group testing,

each test is applied to a subset of populations instead of performing tests on every

single item separately. The subsets of a population is called testing groups (or testing

pools). Group testing can be viewed as a Boolean version of compressive sensing

[48, 49, 50], where a sparse vector only consists of binary entries and Boolean matrix
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multiplication is used to generate compressed testing results which contain all the

information of the sparse vector.

There are few papers on fault/failure detection using group testing in dynamic

systems with time-varying fault states. One related publication is [51], in which a

fault detection approach based on combinatorial group testing and the Kalman filter

was proposed. In this approach, each testing group is divided into two subgroups

and two Kalman filters are run separately on them. The decision for each testing

group is made by comparing predicted state estimates of the two Kalman filters.

Note that in [51], only the problem of time-invariant faulty sensor detection was

investigated. In [52], the problem of sparse fault/failure detection in distributed sensor

networks was studied. To reduce communication cost, the group testing procedure

was successively separated into two phases, in which all the sensors only need to

communicate with their neighbors. However, this approach requires the fault state

to be time-invariant while preforming group testing over phases. In addition, both

the above mentioned approaches perform only sensor fault/failure detection but not

system state estimation.

Typically, faulty sensor detection and system state estimation are performed

separately and the latter is implemented after all the faulty sensors are detected

and removed from the system. To detect the faulty sensor(s) via group testing, a

time consuming optimization problem needs to be solved. Therefore, it is difficult

to implement this procedure in real-time systems. In this chapter, an approach for

joint multiple time frame group testing of time-varying faulty sensors and system state

estimation is proposed, in which system state is estimated in real time before decoding

the fault state of sensors. Furthermore, the sensors are tested in groups which will

improve detection performance when sensors’ measurement noise is correlated. The

innovation of Kalman filter is used to decide whether a testing group contains faulty
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sensors or not.

This chapter is organized as follows. The problem is formulated in Section 4.2.

The multiple time frame group testing method is proposed in Section 4.3. The joint

group testing of time-varying faulty sensors and system state estimation is proposed

in Section 4.4. In Section 4.5, several simulations are implemented to show the

performance of proposed approach. Finally, this chapter is concluded in Section

4.6.

4.2 Problem Formulation

In this chapter, we still assume that the system state is modeled by the following

discrete-time linear system state equation [4]

xk+1 = Fxk + vk (4.1)

where xk is the nx × 1 state vector at time k, F is the nx × nx state transition

matrix, and {vk} is a sequence of white Gaussian process noise with E{vk} = 0 and

E{vkvTk } = Qk for all k = 0, 1, 2, . . . .

Let us consider a large sensor network which is composed of N sensors. Denote

this sensor network as a set N = {1, 2, . . . , N}. Assume that only a few sensors in

the sensor network are corrupted by adversary and the fault state of sensors is time-

varying. Denote the set of faulty sensors at time k as Dk which is a subset of N .

The components of Dk are time-varying as different sensors are attacked over time.

Denote the size of Dk by Dk, which is also time-varying and Dk � N . To detect

faulty sensors, the possible states of each sensor are represented by two hypotheses

H0 and H1 respectively. Let us assume that under hypothesis H0, sensor i is normal
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and its measurement equation is

zik = Hixk + wi
k (4.2)

where zik is the nz × 1 measurement vector of sensor i at time k, Hi is the nz × nx

measurement matrix of sensor i, and wi
k is the measurement noise of sensor i at time

k. Also, {wi
k} is a sequence of white Gaussian measurement noise with E{wi

k} = 0

for k = 1, 2, . . . and i = 1, 2, . . . , N . The measurement noise of different sensors is

assumed to be correlated.

Under hypothesis H1, sensor i is faulty and its measurement equation is

zik = Hixk + wi
k + bik (4.3)

where bik is the bias vector which is injected by the adversary to sensor i at time k.

The Kalman filter is used to estimate the system state and generate the innova-

tion (measurement residual) which is used to detect the faulty sensors. Considering

the measurement noise of the sensors is correlated, block processing is used to update

state estimate when using Kalman filter, which means that state estimate and state

covariance are updated at time k using the sensor measurement vector consisting

of the measurements from all the sensors, i.e., zk =

[
(z1
k)
T

(z2
k)
T · · ·

(
zNk
)T ]T

[4]. To maintain the performance of the Kalman filter in the presence of faulty sen-

sors, the measurements of time-varying faulty sensors should be removed adaptively.

This motivates joint group testing of time-varying faulty sensors and system state

estimation.

4.3 Multiple Time Frame Group Testing

Since a large sensor network is considered and the faulty sensors are assumed

to be sparse in the sensor network, group testing is adopted to detect sensor faults.
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Group testing implements tests on several testing groups which are generated by

binary probabilistic sampling matrix, and the indicator vector of defective sensors is

decoded from the testing results. Typically, group testing is applied at each point in

time. In this chapter, a new group testing structure is designed over a period of time.

By doing this, we are able to detect faulty sensors when their quantity and indices

are changing over time.

The fault state of all the N sensors during a time period K is indicated by a

KN -dimensional binary vector f ∈ GFKN(2), where GF(2) is a Galois field of order

two [53]. f(i) = 1 indicates sensor 1+[(i−1) mod N ] at time di/Ne is faulty whereas

f(i) = 0 indicates a normal sensor. Denote the sparsity level of f by d, and clearly

d =
∑K

k=1Dk. Assume Tg testing groups are generated in total. The tests performed

on the sensor network over sensors and over time are represented with Tg × KN

probabilistic sampling matrix Φ. If Φ(i, j) = 1, then the sensor 1 + [(j − 1) mod N ]

at time dj/Ne is selected in the ith testing group. The entries of Φ follow i.i.d.

Bernoulli(p). In noise-free model, group testing outcome vector g is obtained as

follows

g = Φ� f (4.4)

where g ∈ GFTg(2), and � denotes the Boolean matrix multiplication operator which

is composed of the logical AND and OR operators. The tests are called positive tests

if the corresponding outcomes are ones; otherwise, the tests are negative tests. In the

presence of noise, group testing results are inverted which can be illustrated by the

following simple model [54]

g = (Φ� f)⊕ e (4.5)

where ⊕ denotes XOR operator, e ∈ GFTg(2) is the Boolean vector of errors which

represents the effect of noise. The ones in e indicate corruption and they will invert
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Fig. 18. An example of time-varying group testing problem

the corresponding results of Φ � f which leads to false alarms or misses. Note that

model (4.5) is a simple way to illustrate the presence of noise/errors and e is difficult

to model statistically in some cases.

A toy example of the noise-free multiple time frame group testing procedure is

shown in Fig. 18. In this example, N = 4, K = 2, Tg = 4, and D1 = D2 = 1. Sensor

2 at time 1 and Sensor 3 at time 2 are faulty. Sensor 2 at time 1 is selected in Test 2

and Sensor 3 at time 2 is selected in Tests 1, 2, and 3. As long as at least one faulty

sensor is selected in a specific test, the outcome of this test will be 1. If no faulty

sensors are selected in one test, then its testing outcome is 0. Therefore, Tests 1, 2,

and 3 are positive tests and their outcomes g1 = g2 = g3 = 1, Test 4 is a negative test

and its outcome g4 = 0.

To decode the fault state vector f efficiently, the probabilistic sampling matrix

Φ should satisfy d-disjunct property as it ensures identifiability of the d-sparse fault

state vector. A matrix Φ is called d-disjunct if for any d + 1 columns, there always

exists a row with entry 1 in a column and zeros in all the other d columns [55]. In the

example shown in Fig. 18, Φ is a 2-disjunct probabilistic sampling matrix. The fault
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state vector f is decoded via the linear programming (LP) relaxation [54], in which

the inputs are g and Φ, and the output is f .

min
KN∑
s=1

fs + ρ

Tg∑
t=1

ξt

s.t. 0 6 f 6 1, 0 6 ξI 6 1, ξJ > 0

ΦIf + ξI > 1, ΦJ f = ξJ

(4.6)

where fs denotes the sth entry of f and ρ is a regularization parameter. I = {i|gi = 1}

denotes the set of positive tests, J = {j|gj = 0} denotes the set of negative tests.

ξ = ξI ∪ ξJ is a set of slack variables where ξI and ξJ correct false alarms and

misses caused by e in (4.5), respectively. Denote the tests with false alarm outcomes

as If . The false alarms gIf can be corrected by introducing the fourth constraint in

(4.6). Similarly, the misses gIm can be corrected by introducing the fifth constraint

in (4.6). According to [54], this LP relaxation provides the optimal solution if f is

d-sparse and Φ is d-disjunct. Some algorithms, such as the ellipsoid algorithm and

Karmarkar’s algorithm, can solve this problem in polynomial time even in the worst

case scenarios.

4.4 Joint Group Testing of Time-varying Faulty Sensors and System

State Estimation

Note that the outcome of group testing is a binary vector but the measurements

are continuous. We need to find a way to decide whether a testing group contains

faulty sensors or not. The innovation of Kalman filter is a good choice as it is a

zero-mean, white, and Gaussian sequence when no faulty sensors are in the testing

group. To achieve real-time system state estimation and detect time-varying faulty

sensors, joint group testing of time-varying faulty sensors and system state estimation
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is proposed and described as the following steps.

Step I: Build testing groups. Generate Tg ×KN probabilistic sampling matrix

Φ via Bernoulli(p). Let us divide Φ into K blocks by column, where each block is

a Tg × N sub-matrix Φk. Denote the t-th testing group at time k by Gt,k, which is

chosen by the t-th row of Φk. The size of Gt,k is denoted by Gt,k, where 1 6 t 6 Tg

and 1 6 k 6 K.

Step II: Generate outcome vector g. Run Kalman filter from k = 1 to K. For

each time k, run Kalman filter by using each testing group Gt,k, then obtain innovation

νt,k and its covariance St,k. If all the sensors in Gt,k are normal, then νt,k is a zero-mean

Gaussian random variable and it can be tested via χ2 test: νTt,kS
−1
t,kνt,k ∼ χ2(nzGt,k).

Moreover, the innovation is a zero-mean white sequence if there are no faulty sensors

in Gt,1,Gt,2, . . . ,Gt,k, and the following holds

k∑
s=1

νTt,sS
−1
t,sνt,s ∼ χ2

(
nz

k∑
s=1

Gt,s

)
(4.7)

Note that if Gt,k = ∅, do not run Kalman filter in test t at time k and skip the

corresponding item in (4.7). The outcome vector g is generated via (4.7) as follows:

the testing groups Gt,1,Gt,2, . . . ,Gt,K in test t are tested one by one from k = 1 to

k = K. If (4.7) is unsatisfied at time k, this procedure is stopped for test t with

positive outcome, i.e. gt = 1. Otherwise, the next innovation νt,k+1 is calculated and

tested. If (4.7) is satisfied by all the testing groups in test t, the outcome of test t is

negative and gt = 0. In this way, not all testing groups chosen by Φ are fully tested

as this procedure may stop when k < K, which saves computational costs.

Step III: State estimation via Kalman filter. At each time k, test all the sensor

groups G1,k,G2,k, . . . ,GTg ,k via (4.7). Form a normal sensor group by taking the union

of all the sensor groups which pass the test. Run Kalman filter on this normal sensor
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group using block processing. The updated state estimate and covariance are used as

the inputs of Kalman filter at the next time k + 1 in both Steps II and III, and they

are the system state estimation outputs of this algorithm at time k.

Step IV: Identify faulty sensors via group testing. By the end of time K, with

the group testing outcome vector g, the fault state vector f is decoded by solving

(4.6).

Note that system state estimation is implemented before decoding f which is

time consuming. This design guarantees real-time system state estimation with faulty

sensors in large sensor networks. If only system state estimation is required, then Step

IV does not need to be implemented.

If the sensors are tested via χ2 test one by one at each time, we can design a sim-

ilar testing procedure. The differences are Tg = N , Φk = I for all k ∈ {1, 2, . . . , K},

and there is no need to calculate group testing outcome vector g. Now we analyze

the computational complexities of group testing based approach and one-by-one test

approach. We assume that the adversary chooses sensors to attack randomly via

Bernoulli(q(K,N)). We use q instead of q(K,N) for simplicity. For both approaches,

the dominating term in computational complexity is for the inverse of measurement

prediction covariance in Step III, which is O
({[

1− (1− p)Tg
]

(1− q)Nnz
}3)

for

group testing based approach and O ([(1− q)Nnz]3) for the one-by-one test approach.

Since Step III will be implemented K times, the computational complexity of group

testing based approach is O
(
K
{[

1− (1− p)Tg
]

(1− q)Nnz
}3)

. For the one-by-one

test approach, the computational complexity is O (K[(1− q)Nnz]3). We know that

p = 1
qKN

design is asymptotically close to optimal when qKN = o(KN) [55, 56].

If Tg = O(qKNlog(KN)), the randomly generated matrix Φ will be qKN -disjunct

with an arbitrarily small error probability [57]. Hence,
[
1− (1− p)Tg

]3 → 1 when

KN → ∞. Therefore, the computational complexity of the proposed group testing
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based method and that of the one-by-one test based method are at the same level.

Table 4. Computational complexity
Group testing based approach One-by-one test

O
(
K
{[

1− (1− p)Tg
]

(1− q)Nnz
}3) O (K[(1− q)Nnz]3)

4.5 Simulation Results

For simplicity we give a multi-sensor target tracking example to illustrate the

effectiveness of the proposed approach. Let us assume that an object is moving in

a 1-dimensional space with its state at time k denoted by xk = [ϕk ϕ̇k]
T , where

ϕk and ϕ̇k are the object’s position and velocity at time k, respectively. The state

transition matrix is F = [1 Ts; 0 1] where Ts = 0.1 seconds is the time interval

between two measurements. The covariance matrix of state process noise is Qk =

0.01 ×
[
T 4
s

4
T 3
s

2
; T 3

s

2
T 2
s

]
for all k. The mean and covariance matrix of the object’s

initial state are x̂0|0 = [0 1.5]T and P0|0 = diag([1000, 1]), respectively. Assume that

there is a linear sensor array includes N = 150 sensors, the distance between adjacent

sensors is 2m. All the sensors measure the object’s position over time. Namely, the

measurement matrix is Hi = [1 0] for all i. The element of covariance matrix of sensor

measurement noise in the ith row and the jth column is Rw(i, j) = σ2
we
−ρ‖βi−βj‖2 [58],

where σw = 1, ρ = 0.01, βi and βj are positions of sensor i and sensor j respectively.

The adversary chooses sensors to attack randomly via Bernoulli(q) where q = 0.03.

The bias injected by the adversary follows i.i.d. Gaussian distribution bik ∼ N (0, Rb).

We choose K = 5 to design Φ and the entries of Φ follow i.i.d. Bernoulli(p), where

p = 1
qKN

= 0.0444. The number of testing groups is Tg = 200. Two-sided χ2 test

with 0.005 significance level is applied in Step II in Section 4.4. The regularization

parameter ρ in (4.6) is set as 1. All the results are based on 100 Monte Carlo runs.
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The tracking performance of the proposed approach is compared with two ap-

proaches: one is using the measurements from all the sensors, and the other is the

one-by-one test based approach. The performance of the three approaches is com-

pared in terms of root mean squared error (RMSE) of the position estimate. We

assume that Rb = 5× 104 which means that the injected bias noise by the adversary

is strong. The simulation results are shown in Fig. 19. It is clear that the RMSEs

of the position estimate of the proposed approach are the smallest among the three

approaches and they are almost the same as the RMSEs achieved by a clairvoyant

Kalman filter using all the normal sensors. That is to say, the proposed approach

chooses normal sensors efficiently when tracking the object. One reason is that in

group testing, there are multiple sensors in each testing group, and the χ2 test can

take advantage of the correlation between sensor measurements. Furthermore, the

test statistic in group testing (shown in (4.7)) has higher degrees of freedom and less

variability than that used in one-by-one test. From Fig. 19, it is clear that the pro-

posed group testing based approach is very robust to attacks with strong injection

noise.

To study the fault detection performance of the proposed approach under differ-

ent levels of attacks, Rb is changed from 103 to 5× 104 and probabilities of error are

evaluated under different Rb. The simulation results are shown in Fig. 20. We can see

that both the probabilities of miss and false alarm of group testing based approach

are less than those of the one-by-one test based approach. Again, the reason is that

group testing based approach takes advantage of the correlated measurements from

multiple sensors when detecting faulty sensor(s), whereas the one-by-one test has to

make a decision relying on a single sensor’s measurement.
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4.6 Conclusion

In this chapter, an approach for joint group testing of time-varying faulty sen-

sors and system state estimation was proposed. A multiple time frame group testing

structure was developed to detect the time-varying fault state of sensors. For real

time implementation, system state estimation is performed without waiting for the
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estimate of the full fault state of sensors. The proposed approach has the same level

of computational complexity as an alternative one-by-one test. Simulations showed

that, compared to the one-by-one test, the proposed approach has significantly better

system state estimation performance and improves faulty sensor detection perfor-

mance, especially the probability of miss. The reason is that the proposed approach

uses correlated measurements from multiple sensors to make decision and the de-

grees of freedom of the χ2 test statistics are higher with less variability. Furthermore,

the proposed approach achieves almost the same state estimation performance as a

clairvoyant Kalman filter with the perfect knowledge of the sensor fault state.
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CHAPTER 5

MINIMAX ANTI-JAMMER DESIGN FOR FHSS/QPSK SATELLITE

COMMUNICATION SYSTEMS

5.1 Introduction

Jamming attacks are significant threats to satellite communication systems. A

jammer can simply interfere the legitimate communication systems by injecting jam-

ming signals into communication channels [1, 2]. As a result, the communication

between the transmitter and receiver will be corrupted. To achieve reliable commu-

nication, employing anti-jammer is crucial in satellite communication systems. One

efficient way to design anti-jammer is adopting frequency hopping spread spectrum

(FHSS) [59, 60], which avoids attacks by switching channels from time to time.

In the literature, the performance of phase-shift keying (PSK) with FHSS was

studied under various types of jammer attacks. In [61], signals were generated using

binary PSK (BPSK) with FHSS. Four types of jamming were investigated and the

bit error probability was provided under each type of jamming. In [62], the error

probability of quadrature PSK (QPSK) or quadrature amplitude-shift keying (QASK)

with FHSS was evaluated, either in the presence of partial-band multitone jamming

or partial-band noise jamming. In [63], the performance of a slow frequency-hopped

differential PSK system was studied in the presence of jamming and additive white

Gaussian noise (AWGN). The performance of any M-ary PSK with FHSS under

partial-band multitone jamming was studied in [64]. By assuming that the phase of

jamming signal is a random variable, the probability density function (PDF) of the

phase difference between received jammed signal and transmitted signal was derived,
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based on which the bit error probability and the performance expression under worst

jamming scenarios were obtained in [64]. In all the above publications, no anti-jammer

was considered and the decision thresholds used by the demodulator are fixed. An

optimal anti-jammer was designed by solving a maximin optimization problem in [65].

In this maximin optimization problem, the expected detection time at the jammer

was minimized respect to the window length used by the jammer’s detector and

maximized respect to the receiver side signal power.

In this chapter, we design an anti-jammer which is optimal under the worst jam-

ming scenario. The FHSS/QPSK is employed to modulate signals. Since the main

purpose of satellite communication systems is to transfer signals correctly, the per-

formance of FHSS/QPSK is evaluated by using the symbol error probability. The

purpose of the anti-jammer is to minimize the symbol error probability while that of

the jammer is to maximize it. To reduce the jammer’s effect, the anti-jammer uses

FHSS to transmit and receive QPSK signals. The carrier frequency of QPSK signals

is hopping between N frequencies according to a predetermined pseudo-random fre-

quency hopping sequence. We assume that the jammer uses the same symbol duration

as the transmitter and receiver, and the total jamming power is fixed. For simplicity,

we assume that the jammer attacks the legitimate communication system with only

two jamming strategies: single-tone jamming—randomly jamming one tone with full

power, and full-band multitone jamming—jamming all the N tones and allocating

jamming power equally among the N tones. The jamming tones coincide with carrier

frequencies of the transmitter and receiver. In the worst jamming case, jammer will

use the strategy and jamming phase which cause highest symbol error probability.

Therefore, the anti-jammer is designed to minimize symbol error probability under

the worst jamming case by changing decision thresholds when the receiver demod-

ulates QPSK signals. So, the anti-jammer needs to solve a minimax optimization
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problem.

This chapter is organized as follows. The problem is formulated in Section 5.2.

The minimax anti-jammer is design in Section 5.3. In Section 5.4, several numerical

results are shown to reveal the properties of the minimax anti-jammer. Finally, this

chapter is concluded in Section 5.5.

5.2 Problem Formulation

In this chapter, QPSK is used to modulate and demodulate the signals in satellite

communication systems. Let Uk(t) be the QPSK signal sent by transmitter, where k

is signal index. Assume the jammer attacks the communication systems by jamming

interference Jk(t) into the channel. Denote the received signal by Rk(t), which is

represented as

Rk(t) = Uk(t) + Jk(t) + n(t), k = 1, 2, . . . (5.1)

where n(t) denotes the sample function of the additive white Gaussian noise (AWGN)

random process with the power spectral density Sn(f) = N0

2
W/Hz.

The QPSK modulated signal Uk(t) is a frequency hopping signal, which is rep-

resented as

Uk(t) = pk(t) cos(2πfc(k)t+ φm(k)) (5.2)

where fc(k) is the carrier frequency for the kth signal which is changing amongN tones

{fc1, fc2, . . . , fcN} according to a predetermined pseudo-random frequency hopping

sequence. The phase for the kth signal is

φm(k) =
(2m− 1)π

4
, m = 1, 2, 3, 4 (5.3)

and pk(t) is

pk(t) =

√
2Es
Tm

gTm [t− (k − 1)Tm] (5.4)
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where Es is the energy in each signal, Tm is the signal duration, and gTm(t) is a

rectangular baseband pulse as follows

gTm(t) =

 1, 0 6 t < Tm

0 otherwise
(5.5)

Two jamming strategies are considered: single-tone jamming and full-band mul-

titone jamming. The single-tone jamming is randomly jamming one tone with full

power at each time. The full-band multitone jamming is jamming all the N tones

with equal power. Assuming that the jammer uses the same signal duration Tm, the

jamming signal is in one of the following forms

Strategy I : J I
k(t) = qk(t) cos(2πfj(k)t+ θ)

Strategy II : J II
k (t) =

∑N
i=1

qk(t)√
N

cos(2πfcit+ θ)

(5.6)

where fj(k) is carrier frequency of the kth jamming signal which is randomly picked

from the N tones {fc1, fc2, . . . , fcN}, the phase θ is deterministic which is chosen from

[0, 2π), and qk(t) is

qk(t) =

√
2Ej
Tm

gTm [t− (k − 1)Tm] (5.7)

where Ej is the energy in each jamming signal.

The orthonormal basis functions used by the receiver are ψ1k(t) =
√

1
Es
pk(t) cos (2πfc(k)t)

ψ2k(t) = −
√

1
Es
pk(t) sin (2πfc(k)t)

(5.8)

The outputs of QPSK demodulator ym(k) contains two signal components y1m(k)

and y2m(k), which may be expressed as

ym(k) =

 y1m(k)

y2m(k)

 = sm(k) + j(k) + n(k) (5.9)
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Fig. 21. QPSK signal constellation.

Let sm(k) =

 s1m(k)

s2m(k)

, j(k) =

 j1(k)

j2(k)

, and n(k) =

 n1(k)

n2(k)

. The two compo-

nents of sm(k) are  s1m(k) =
√
Es cos(φm(k))

s2m(k) =
√
Es sin(φm(k))

(5.10)

From (5.10), we know that when the channel is noise-free and jamming-free, the four

symbols sm(k) (m = 1, 2, 3, 4) form a square in phase quadrature, which is shown in

Fig. 21.

The two components of n(k) are
n1(k) = 1√

2Tm

∫ Tm

0

nck(t)dt

n2(k) = 1√
2Tm

∫ Tm

0

nsk(t)dt

(5.11)

where nck(t) and nsk(t) are the in-phase and quadrature components of n(t) respec-

tively, i.e., n(t) = nck(t) cos(2πfc(k)t)−nsk(t) sin(2πfc(k)t). From (5.11), it is easy to

show that n1(k) and n2(k) are independent and identically distributed Gaussian ran-

dom variables with zero mean and variance N0

2
. When the channel is jamming-free, the

outputs of QPSK demodulator follow Gaussian distribution ym(k) ∼ N (sm(k), N0

2
I).
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If Strategy I is used, j(k) = 0 when fj(k) 6= fc(k). When fj(k) = fc(k), the two

components of j(k) are  jI1(k) =
√
Ej cos θ

jI2(k) =
√
Ej sin θ

(5.12)

If Strategy II is used, the two components of j(k) are jII1 (k) =
√

Ej
N

cos θ

jII2 (k) =
√

Ej
N

sin θ
(5.13)

Obviously, when the received signal contains additive white Gaussian noise and deter-

ministic interference, the outputs of QPSK demodulator follow Gaussian distribution

ym(k) ∼ N (sm(k) + j(k), N0

2
I). To find the best anti-jammer under the worst jam-

ming case, we design the minimax anti-jammer which is shown in the next section.

5.3 Minimax Anti-Jammer Design

Since the symbol error probability is the most important measure to evaluate the

performance of the QPSK communication system, the aim of the anti-jammer is to

minimize it while the jammer’s goal is to maximize it. The best anti-jammer under

the worst jamming case can be obtained by solving a minimax optimization problem,

in which the objective function is the maximum symbol error probability of the two

jamming strategies. Denote symbol error probability by Pe(·). The jammer may

change Pe(·) via j(k), and the anti-jammer may change Pe(·) via decision thresholds.

Let ξk and ηk denote the decision thresholds along ψ1k(t) and ψ2k(t) respectively.

Then, the symbol error probability is a function of ξk, ηk, j1(k), and j2(k). We omit

k for simplicity. Then, symbol error probability is denoted by Pe(ξ, η, j1, j2).

From (5.6), we know that the jammer may attack the channel via two strategies,

and the jamming signal may use different phases for each strategy. When Strategy I
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is used, the probability of fj(k) = fc(k) is 1
N

, and the probability of fj(k) 6= fc(k) is

N−1
N

. The symbol error probability of Strategy I is

P I
e =

1

N
Pe(ξ, η, j

I
1, j

I
2) +

N − 1

N
Pe(ξ, η, 0, 0) (5.14)

where jI1 and jI2 are provided in (5.12).

When Strategy II is used, the symbol error probability is

P II
e = Pe(ξ, η, j

II
1 , j

II
2 ) (5.15)

where jII1 and jII2 are provided in (5.13). Note that j1 and j2 depend on phase θ for

both strategies.

The minimax anti-jammer can be formulated as

min
ξ,η

max
i,j1,j2

P i
e (5.16)

To solve this minimax optimization problem, we need to derive the closed-form of

Pe(ξ, η, j1, j2). We know that the received signal contains two binary phase mod-

ulation signals along in-phase and quadrature carriers respectively. With perfect

orthonormal basis as in (5.8), there is no crosstalk or interference between the signals

on the in-phase and quadrature carriers [66]. Therefore, if Gray encoding is adopted,

the symbol error probability of QPSK has the following relationship with bit error

probabilities.

Pe(ξ, η, j1, j2) = 1− [1− Pbξ(ξ, j1)] [1− Pbη(η, j2)] (5.17)

where Pbξ(ξ, j1) denotes bit error probability on the in-phase carrier ψ1k(t), Pbη(η, j2)

denotes bit error probability on the quadrature carrier ψ2k(t).

Now, we derive the bit error probability Pbξ(ξ, j1). Since two bits represent

one symbol in QPSK, the energy per bit Eb is one half of Es. From (5.10), we
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Fig. 22. The PDFs of signals ym(k) on the in-phase carrier ψ1k(t).

have s1m(k) =
√
Eb when m = 1, 4, and s1m(k) = −

√
Eb when m = 2, 3. Hence,

y1m(k) ∼ N (
√
Eb + j1,

N0

2
) when m = 1, 4, and y1m(k) ∼ N (−

√
Eb + j1,

N0

2
) when

m = 2, 3. The PDFs of signals ym(k) (m = 1, 2, 3, 4) on the in-phase carrier ψ1k(t)

are shown in Fig. 22.

From Fig. 22, we can derive the bit error probability Pbξ(ξ, j1) as follows

Pbξ(ξ, j1) =
1

2

∫ ξ

−∞

1√
πN0

e
− (ya−

√
Eb−j1)

2

N0 dya

+
1

2

∫ +∞

ξ

1√
πN0

e
− (yb+

√
Eb−j1)

2

N0 dyb

=
1

2

∫ +∞

√
Eb+j1−ξ√

N0
2

1√
2π
e−

u2a
2 dua

+
1

2

∫ +∞

√
Eb−j1+ξ√

N0
2

1√
2π
e−

u2b
2 dub

(5.18)

where ya ∈ {y11, y14} and yb ∈ {y12, y13}. Using the definition of Q-function Q(x) =

1√
2π

∫ +∞
x

e−
u2

2 du, the bit error probability Pbξ(ξ, j1) can be represented as follows

Pbξ(ξ, j1) =
1

2
Q

√Eb + j1 − ξ√
N0

2

+
1

2
Q

√Eb − j1 + ξ√
N0

2

 (5.19)

By using the same method, it is easy to show that the bit error probability
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Pbη(η, j2) is as follows

Pbη(η, j2) =
1

2
Q

√Eb + j2 − η√
N0

2

+
1

2
Q

√Eb − j2 + η√
N0

2

 (5.20)

Substituting (5.19) and (5.20) into (5.17), we have the closed-form of Pe(ξ, η, j1, j2).

Then, P I
e and P II

e will be obtained by substituting (5.17) into (5.14) and (5.15). By

solving the minimax optimization problem in (5.16), we will have the optimal anti-

jammer under the worst jamming attack.

5.4 Numerical Results

In this numerical example, we solve the minimax problem in (5.16). By solving

this problem, we will know what the optimal anti-jammer is when it is under the

worst case jamming attack, and which strategy and phase the jammer will use if it

knows the anti-jammer’s decision thresholds. Since j1 and j2 are the only functions of

θ, we maximize P i
e respect to θ instead of j1 and j2, where θ = lπ

32
, l = 0, 1, 2, . . . , 31.

The starting guess of the optimal solution is ξ = η = 0.

Let Es
Ej

= 0.5, Es
N0

= 20, and N = 5. By solving (5.16), we have the following

results: the optimal solution is ξ = η = 0 and θ ∈ {0, π
2
, π, 3π

2
}, the optimum objective

value is Pe = 0.1592. When the anti-jammer has no knowledge about jamming phase

θ, no matter which strategy the jammer uses, the optimum decision thresholds for

anti-jammer are ξ = η = 0. If the jammer knows how the anti-jammer designs decision

thresholds, the best choice of the jammer under this setting is using Strategy II and

θ ∈ {0, π
2
, π, 3π

2
}. To get this optimal solution, the jammer needs to know Es

Ej
,
Ej
N0

, and

the anti-jammer’s decision rule. Note that (5.16) has more than one optimal solution.

To show the optimum solution for the jammer, we plot the optimum objective values

of P i
e with different jamming phases in Fig. 23. Obviously, the optimal solution of
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Fig. 23. Optimum objective value of Pe for two strategies with different jamming

phases, where Es
Ej

= 0.5, Es
N0

= 20, and N = 5.

P i
e are periodic functions of θ with period π

2
. Because the QPSK signal constellation

is symmetric, which is shown in Fig. 21, the effect of j(k) is periodic with period

π
2
. More specifically, P I

e is maximized when θ ∈ {π
4
, 3π

4
, 5π

4
, 7π

4
} and P II

e is maximized

when θ ∈ {0, π
2
, π, 3π

2
}. It is easy to explain for Strategy II. When θ ∈ {0, π

2
, π, 3π

2
}

and decision thresholds are fixed, j(k) on the in-phase or quadrature carrier is the

largest, which can be figure out from Fig. 22. Hence, the symbol error probability is

the largest when θ ∈ {0, π
2
, π, 3π

2
}. Fig. 23 also shows that maxP I

e < maxP II
e at the

optimal solution, which means that jammer can cause more serious interference by

applying Strategy II under this setting.

Now, we increase Es
Ej

to 1.25 and show the optimal solution under this setting.

By solving (5.16), we have the following results: the optimal solution is ξ = η = 0

and θ ∈ {0, π
2
, π, 3π

2
}, the optimum objective value is Pe = 0.0882. If the jammer

knows how the anti-jammer obtains decision thresholds, the best strategy for the

jammer becomes Strategy I under this setting. The optimum objective values of P i
e

with different jamming phases are shown in Fig. 24. Obviously, both P I
e and P II

e are
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Fig. 24. Optimum objective value of Pe for two strategies with different jamming

phases, where Es
Ej

= 1.25, Es
N0

= 20, and N = 5.

maximized when θ ∈ {0, π
2
, π, 3π

2
}. Comparing Fig. 24 with Fig. 23, the maximum

positions of P I
e shift π

4
. More specifically, if the working frequency is attacked, θ ∈

{π
4
, 3π

4
, 5π

4
, 7π

4
} will be the optimal solution when the jammer’s power is relatively

high comparing with the anti-jammer’s power; otherwise, θ ∈ {0, π
2
, π, 3π

2
} will be

the optimal solution. We can explain it as follows: when Es
Ej

= 1.25,
√

Ej
Eb
≈ 1.26

which is not large enough, the jammer needs to fully utilize the limited power by

making j(k) on the in-phase or quadrature carrier the largest, so θ ∈ {0, π
2
, π, 3π

2
} is

the optimal solution; when Es
Ej

= 0.5,
√

Ej
Eb

= 2, the projection of j(k) on the in-phase

or quadrature carrier is smallest when θ ∈ {π
4
, 3π

4
, 5π

4
, 7π

4
}, which is about 1.41 and it

is still large, then θ ∈ {π
4
, 3π

4
, 5π

4
, 7π

4
} becomes the best solution for the jammer.

To analyze why the optimal solution is ξ = η = 0 and θ ∈ {0, π
2
, π, 3π

2
}, we show

the maximum Pe between two strategies in ξ-η-θ space in Figs. 25, 26, and 27. First,

the function needs to be maximized respect to θ. From Figs. 25 and 26, we know that

this function is maximized when θ is close to nπ
2
, n = 0, 1, 2, 3. Second, the function

needs to be minimized respect to ξ and η. From Fig. 27, we know that this function
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Fig. 25. Maximum Pe between two strategies shown in ξ-θ space when η = 0, where
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Fig. 26. Maximum Pe between two strategies shown in η-θ space when ξ = 0, where
Es
Ej

= 0.5, Es
N0

= 20, and N = 5.

has minimum value when (ξ, η) is close to (0, 0). This is why the optimum solution

of (5.16) is ξ = η = 0 and θ ∈ {0, π
2
, π, 3π

2
}.

To compare the optimal value of Pe between two strategies and evaluate the

performance under different settings, we change Es
Ej

, Es
N0

, or N to get numerical results.
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2
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Es
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By changing Es
Ej

, we have Fig. 28. The optimal value of Pe is inversely proportional

to Es
Ej

under both strategies. Furthermore, as Es
Ej

increases, Strategy I becomes better

choice for the jammer than Strategy II. In other words, it is better for the jammer

to choose single-tone jamming when jamming power is low. We also know that anti-

jammer can reduce symbol error probability by increasing signal power. By changing

Es
N0

, we get Fig. 29. The behavior of Strategy II under different Es
N0

is similar to that

under different Es
Ej

. But the performance of Strategy I is nearly constant when SNR is

between 8dB and 20dB. From Fig. 29, we also know that Strategy I is a better choice

for the jammer when SNR is high and Strategy II is a better choice for the jammer

when SNR is low. In this chapter, we define signal to interference plus noise ratio

(SINR) as Es
Ej+N0

. Figs. 30 and 31 show the optimal value of Pe vs. SINR, which are

under the same settings as in Figs. 28 and 29 respectively.

By changing N , we obtain Fig. 32. The optimal value of Pe is inversely pro-

portional to N under both strategies, which indicates that the anti-jammer is able

to reduce symbol error probability by increasing the number of frequency hopping
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Fig. 28. Optimal value of Pe vs. Es
Ej

, where Es
N0

= 20 and N = 5.
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Fig. 29. Optimal value of Pe vs. Es
N0

, where Es
Ej

= 0.5 and N = 5.

channels. From Fig. 32, we also know that Strategy I is preferred by the jammer

when N is large and Strategy II is preferred by the jammer when N is small.
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Fig. 30. Optimal value of Pe vs. SINR, where Es
N0

= 20 and N = 5.
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Fig. 31. Optimal value of Pe vs. SINR, where Es
Ej

= 0.5 and N = 5.

5.5 Conclusion

In this chapter, we designed a minimax anti-jammer for FHSS/QPSK satellite

communication system. Two jamming strategies are evaluated: single-tone jamming

and full-band multitone jamming. For each strategy, the phase of the jamming signal

can be changed. The anti-jammer resists attacks from the jammer by choosing the
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Fig. 32. Optimal value of Pe vs. number of frequency hopping channels, where Es
Ej

= 0.5

and Es
N0

= 20.

optimal decision thresholds. The symbol error probability corresponding to each

jamming strategy with different jamming phases when different decision thresholds

are used is derived. By solving this minimax optimization problem, we know that

the best decision thresholds for the anti-jammer when it has no prior knowledge of

the phase of the jamming signal are the same as those when received signals are not

attacked by the jammer, and the anti-jammer can reduce the symbol error probability

by increasing signal power or employing more frequency hopping channels. If the

jammer knows the anti-jammer’s minimax decision thresholds, the best choice for the

jammer is using single-tone jamming when the jamming power is low orN is large, and

single-tone jamming will cause nearly constant Pe to the legitimate communication

system under different SNRs.
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CHAPTER 6

CONCLUSION

In this dissertation, joint detection-state estimation and secure signal processing were

studied.

A new joint sequential object detection and system state estimation approach

based on Wald’s SPRT was proposed to achieve improved detection and system state

estimation performance. This approach is weakly admissible and the probabilities

of error can be controlled by the thresholds. The closed-form formulas for the first

and second moments of the test statistic under both hypotheses were derived. Based

that, both Kullback-Leibler distance and deflection coefficient were obtained. Numer-

ical results showed that both Kullback-Leibler distance and deflection coefficient are

monotonically increasing function of the number of samples which implies that both

probability of termination and performance of the proposed algorithm are increasing

with time. Numerical results also showed that the sequential detection algorithm de-

tects a moving object with a small ASN and low probabilities of error even under low

SNR conditions, and it outperforms the optimal FSS detector significantly in terms

of the number of samples.

To guarantee that this approach will eventually terminate with probability one,

a terminative joint sequential object detection and system state estimation approach

based on a fused test statistic was proposed. This is a fused algorithm by using

both dependent measurements and independent samples. The relationship between

fused algorithm and the Wald’s SPRT with only one test statistic was derived in

terms of probabilities of error. The upper bounds on the actual probabilities of error
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were derived, which are represented via nominal probabilities of error. Therefore, the

probabilities of error of this fused algorithm can also be controlled by the thresholds.

Besides detection and system state estimation, secure signal processing is also an

important problem in surveillance systems. One interesting topic is how to reliably

estimate system state when faulty sensors exist in large sensor networks especially

when measurement noise is correlated. In this dissertation, joint group testing of

time-varying faulty sensors and system state estimation in the presence of correlated

measurement noise was proposed. Compared to the one-by-one test, the proposed

approach has significantly better system state estimation performance and improves

faulty sensor detection performance, especially the probability of miss. Furthermore,

the proposed approach achieves almost the same state estimation performance as a

clairvoyant Kalman filter with the perfect knowledge of the sensor fault state.

The secure signal processing is also important in satellite communication sys-

tems. To improve the system’s robustness, a minimax anti-jammer was design for

FHSS/QPSK satellite communication systems. The anti-jammer resists attacks from

the jammer by choosing the optimal decision thresholds. The best decision thresh-

olds for the anti-jammer when it has no prior knowledge of the phase of the jamming

signal was evaluated and the strategies for anti-jammer to reduce the symbol error

probability were provided.
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