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Abstract

MITIGATING INTERFERENCE DURING VIRTUAL MACHINE LIVE

MIGRATION THROUGH STORAGE OFFLOADING

By Morgan S. Stuart

A Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Engineering at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Director: Dr. Xubin He,

Professor, Department of Electrical & Computer Engineering

Today’s cloud landscape has evolved computing infrastructure into a dynamic,

high utilization, service-oriented paradigm. This shift has enabled the commoditiza-

tion of large-scale storage and distributed computation, allowing engineers to tackle

previously untenable problems without large upfront investment. A key enabler of

flexibility in the cloud is the ability to transfer running virtual machines across sub-

nets or even datacenters using live migration. However, live migration can be a costly

process, one that has the potential to interfere with other applications not involved

with the migration. This work investigates storage interference through experimen-

tation with real-world systems and well-established benchmarks. In order to address

migration interference in general, a buffering technique is presented that offloads the

migration’s read, eliminating interference in the majority of scenarios.

vii



CHAPTER 1

INTRODUCTION

1.1 Overview

Full machine virtualization [1][2][3], which decouples the hardware and operating

system to allow disparate environments atop a single physical machine, has become

standard for large scale datacenters. Enterprises leverage virtual machines (VMs) to

create infrastructures that are easier to manage and efficiently share resources, while

still supporting a variety applications. The highly dynamic nature of these topologies

has afforded the ’cloud’ computing label that many are familiar with today [4].

In an effort to maximize performance, consolidate utilization, and avoid down-

time, cloud providers can leverage live VM migration to transfer a customer’s running

VM to separate hardware resources with no discernible downtime [5]. This popular

capability [6] helps create a highly dynamic topology, where the provider focuses on

responding to the hardware and customer demands, and customers prioritize building

and maintaining applications with little concern for the underlying hardware.

A primary struggle for cloud environments is maintaining the performance of

hosted virtual machines, as any computation that shares resources may have a ten-

dency to interfere with one another. The work presented here focuses on migration

interference - the performance degradation caused by live migration in the cloud.

Experimentation on real-world systems is used to guide the design of the proposed

solutions as well as evaluate each approach.
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1.2 Motivation

Sharing resources invites scarcity and contention, and the cloud environment is

no different. A growing body of work has studied the issue of VM interfence - scenarios

where co-located VMs compete for access to shared hardware resources, ultimately

degrading the performance of all virtual machines involved [7]. The challenge of

approaching this issue is further elevated by the strong abstractions provided by

full machine virtualization, often referred to as the semantic gap. Any method that

breaks this gap and requires introspection into a customer’s VM, for any purpose,

undermines core security and privacy drivers for cloud use-cases.

Using shared storage migrations can complete rapidly by only moving the VM’s

working memory, otherwise the migration must move the VM’s large backing store.

Research on live migration has largely focused on methods of improving migration

performance, for both memory [8][9][10][11] and full-machine migrations [12][13][14].

However, as migration has become more prevalent, researchers have begun to recog-

nize and address issue of interference caused by VM migration [15]. Methods tend to

focus on reducing the overall data transfer [11][16] or optimally placing VMs [17][18]

to avoid inter-machine interference on network, CPU, and memory resources.

1.3 Problem Statement

Full machine live migrations that require a full read of the VM’s backing disk are

burdensome to this already limited resource. Techniques for migrating a full virtual

machine should make an effort to mitigate the interference that is likely to impact

unsuspecting co-located workloads. Presented here is a dynamic buffering technique

that uses an interference classifier to offload the VM’s virtual disk at opportune times

during a migration.
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1.4 Contributions

1. Experimentation illustrating the mutual storage interference between a migrat-

ing VM and co-located workloads.

2. Online detection of interference given only the host machine’s I/O metrics.

3. Design and implementation of host-level processes that leverage interference

classification as means to offload virtual disk data when the probability of

interference is low.

1.5 Organization

The remainder of this thesis is organized as follows. Details on the background

needed to frame this work are provided in Chapter 2. Chapter 3 examines interference

and introduces the design for Migration Buffering as means to more directly mitigate

storage interference during full machine migration. Chapter 4 examines an implemen-

tation of this design, including an experimental evaluation. In Chapter 5, prior works

in this area are outlined. Conclusions and future work are presented in Chapter 6.
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CHAPTER 2

BACKGROUND

2.1 Datacenter Challenges

A traditional enterprise datacenter houses a variety of software applications inte-

grated with lower-level storage, security, and network hardware. While maintaining

performance of these systems is paramount, so is the need to keep the operation flexi-

ble and low-cost [19]. In these traditional datacenter models, a single application or a

group of related applications may run inside a standard operating systems, atop a sin-

gle physical machine. Larger applications may require multiple machines for improved

performance or fault tolerance. However, with these configurations, applications are

unlikely to utilize all of their resources at all times, potentially leaving costly resources

idle for extended periods of time. Ideally, applications would be arranged across the

datacenter’s infrastructure such that when one application is idle, another is ready

to make use of the now underutilized resources. However, sharing these resources

in a traditional, non-virtualized environment is complex and potentially application-

specific. High performance computing (HPC) centers typically approach this issue

using monolithic batch scheduling systems to allocate jobs/applications to machines.

For transactional workloads, such as web applications, batch scheduling does not

deliver the on-demand low latency response that’s typically required.

Ensuring high utilization of resources in an HPC environment does not present

the same challenges. Instead, HPC applications are long-running and performance

intensive, typically hosting bleeding edge technology with potentially complex con-

figurations [20] [21]. This includes custom operating systems and low-level profiling.
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These challenges are difficult to address in the more traditional static physical topolo-

gies [22].

2.2 Traditional Computer Architecture

Conventional organization of a physical computer can be broken into several

layers, each abstracting complexities for the components that it interfaces [23] [24].

At the lowest level, the hardware layer encapsulates various microelectronic compo-

nents and power systems, such as a CPU, main memory, storage, and networking

interfaces. These components are generally highly complex and do not readily inter-

operate with each other. Instead, these components must be orchestrated in tandem

using the instructions and control signals that they are fed. The operating system

kernel is the low-level arbiter and controlling software that engages these components

in order to make them functional at a more practical level [25]. The kernel houses

drivers for the hardware that can translate general commands to the specific piece of

hardware implementing the functionality. Different scheduling and monitoring mech-

anisms within the kernel ensure that the hardware is utilized to it’s fullest while still

avoiding errors or other faults. With the kernel in place providing a means to interact

with different hardware configurations in a standard way, the final computing layer

can be implemented as the user-space environment. This final layer describes what

many are familiar with as the modern day computer, hosting potentially hundreds

of processes simultaneously, such as internet browsers, word processors, or multime-

dia applications. User-space applications are scheduled by the kernel to have their

instructions execute on the CPU. These instructions may be simple operations such

as arithmetic, or they may instead be requests for a lower-level operation, which can

only be facilitated on behalf of the application by the kernel.

In combination, these layers faithfully describe most non-virtualized computing
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systems, including desktop computers, servers, and even most ’smart’ mobile devices.

As time-tested as this architecture is, in many scenarios it has it’s limitations and

difficulties as discussed in 2.1.

2.3 Virtualization

Specification of virtualization and virtual machines as they are commonly known

today was outlined in [1]. Virtual machines are managed by a virtual machine moni-

tor (VMM or hypervisor), which must provide an isolated and efficient means to run

a machine, with only negligible difference when compared to the machine’s execution

on real hardware. Importantly, these criteria generally cannot simply be fulfilled by

common interpreters or machine simulators. Thus, a VMM decouples the hardware

from the OS kernel, allowing multiple systems to be run simultaneously, efficiently,

and in isolation. This added layer of abstraction provides valuable utility and flexi-

bility in a variety of scenarios, leading to an entire market of virtualization software

targeted at both enterprises and home users.

Today’s hypervisor’s [2] [3] can be separated into two distinct categories - Type

I hypervisors and Type II hypervisors. A Type I hypervisor is a VMM that acts

both as the primary OS kernel for the overall system as well as the VM hypervisor.

By placing the hypervisor at such a low-level, expensive context switching can be

avoided in hopes of improving overall performance. In contrast, a Type II hypervisor

operates in user-space like other applications, only making lower-level calls when

necessary. The distinction between Type I and Type II can indeed become blurred

when a non-VMM kernel loads modules at runtime that allow user-space VMMs more

direct access to virtualization functionality contained within the kernel.

Whether a hypervisor is Type I or Type II, both can present either a virtual

hardware interface that is entirely faithful to it’s physical counterparts or instead

6



provide the VM with optimized virtual components. The former is referred to as full

virtualization and is often utilized when virtualizing older systems that cannot be

made virtualization-aware. The latter methodology is known as paravirtualization,

and can greatly simplify the hypervisor’s duties and even bring further optimization.

It is now common to use paravirtualization to present optimized virtual devices to a

more modern kernel ready with supporting drivers.

Hypervisors must expose a storage system to the VM - the virtual analog of

a hard-disk drive or solid-state drive known as a virtual disk. There are numerous

formats for storing virtual disk, but in general, the virtual disk can be understood as

a file on the physical backing storage system. The hypervisor exposes this file through

it’s I/O device driver, ensuring that the VM cannot write outside this region.

Finally, it’s important to impart that the hypervisor’s narrow but low-level arbi-

tration allows it near complete complete control over the systems that it’s virtualizing.

Hypervisor’s can redirect and inspect I/O operations or even completely pause a VM.

Possibly inspired by these properties, it’s typical to refer to a hypervisor’s VMs as

guests to the hypervisor host, all running atop a physical host hardware system.

2.4 Live Migration

The hypervisor separates the OS from the underlying hardware in a well-defined,

or narrow, way. With this layer in place Clark et. al. showed that a running virtual

machine could be transferred to a hypervisor located on a separate physical machine,

without shutting down the VM [5]. This operation is known as VM live migration.

Variants requiring that the VM shutdown before transferring are known as offline

migration. During live migration, the VM’s working data is copied to the destination

and any dirtied data is iteratively retransmitted. Once sufficient working data resides

at the destination, the hypervisor can suspend the VM and transfer the small amount
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of remaining state to the destination in what is known as the stop-and-copy phase of

migration. A migration process that is able to reach the stop-and-copy phase with

the desired downtime though iterative copying is said to have converged. If network

bandwidth is low or the dirty rate of the VM workload is high, it’s possible for the

migration to not converge. Depending on the implementation, the migration may

simply fail in error or be forced to prematurely stop-and-copy, resulting in a longer

downtime.

The live migration implemented by [5] only moves the working memory and CPU

state of the VM - the backing virtual disk must be accessible from both the source

and destination hypervisors since it is not transferred. Now known as a memory-only

migration, this technique limits the use-cases for live migration to those that only

require movement locally, keeping the VM within reach of the host’s shared storage.

Following the development of memory-only migration was extensive research into

full machine migration, or migrations that uplift both the working memory and back-

ing virtual disk of a VM. Three methodologies for this type of migration arose: pre-

copy [5] [26], post-copy [27], and hybrid pre+post-copy [28] migration. During pre-

copy migration, the hypervisor begins transferring the VM’s backing virtual disk to

the destination as soon as migration is begun, but the VM continues to run on the

source system. Since the VM continues to run, it may write to regions that have al-

ready been transferred, requiring that the updated data be resent to the destination.

Therefore, either the hypervisor must implement dirty block tracking in order to later

resend the dirtied data, or the hypervisor must support write-mirroring. The hyper-

visor monitors the transfer speed and the amount of data remaining to be transferred.

Once the amount of data is small enough to be transferred within the configurable

downtime (typically only 10s or 100s of milliseconds to prevent disruption), the hy-

pervisor pauses the VM’s execution and transfers all remaining data and VM state to
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the destination where the VM is immediately resumed. The initial work of [5] could

be considered a memory-only form of pre-copy storage migration.

A post-copy migration inverts this process [27]. The basic VM state is transferred

first to the destination and resumed, while the source begins sending the bulk data

that remains at the source machine. If the VM requests data at the destination that

has not yet been transferred, the data can be prioritized and sent immediately to

minimize the delay inflicted on the I/O operation. This continues until all of the data

at the source machine is transferred to the destination.

Combining pre- and post-copy migration techniques helps to compromise between

the two techniques [28]. Under this hybrid scheme, data is initially copied in a manner

similar to a pre-copy migration. However, rather than iteratively retransmit data

until convergence, the pre-copy phase is bounded by some criteria, at which point

the running state is transferred and a post-copy phase begins in order to transfer the

remaining data.

While many schemes exist to perform full machine migration, all methods must

read the entirety of the backing virtual disk at least once. This is intuitive given that

the entire virtual disk must be transferred.

2.5 Cloud Computing

With rapid research and development of modern virtualization techniques came

the growth of cloud computing. Though the term is often used ambiguously in market-

ing material, the term ‘cloud’ has concrete meaning for practitioners and researchers.

Leveraging virtualization, public cloud providers allow customers to construct topolo-

gies in minutes, with costs often calculated by the hour. Virtualization allows the

provider to expose an elastic infrastructure to their customers, atop the provider’s

own static physical datacenters [4] [29].
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There are three types of clouds: Infrastructure-as-a-Service (IaaS), Platform-as-

a-Service (PaaS), and Software-as-a-Service (SaaS) [30]. IaaS providers allow cus-

tomers to directly instantiate VMs, typically allowing for a variety of different OS

options and pre-configured software. Customers can often further define there topol-

ogy by configuring virtual LANs, load balancers, and firewalls. PaaS removes some

of the complexity of IaaS by enabling customers to directly instantiate a supporting

piece of software, such as a web server or database. The customer still has to provide

content or make use of the newly created platform, such as providing the content for

a web site or reading/writing to a database with their application. Finally, SaaS fur-

ther removes the intricacies of IaaS and PaaS by allowing the user to purchase access

to an instance of a software that’s hosted by the provider. The provider no longer

has to distribute updates, and can maintain a more consistent application code-base.

The work presented herein focuses on applications for IaaS providers and cus-

tomers, but designs and implementations are valuable for any infrastructure that

makes use of VMs.
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CHAPTER 3

DESIGN OF STORAGE MIGRATION BUFFERING

In this era of expansive data collection and analysis, cloud infrastructures are com-

monly used to house massive datasets. In a study of private cloud data centers

consisting of eight thousand physical machines and 22 petabytes of data, Birke et. al.

[31] report that the average size of an individual VM’s virtual disk usage is upwards

of 60GB in size since 2012. In 2013, VMs used 76GB on average, with some using

as much as 200GB. They found that a typical physical machine hosts 11 VMs on

average, with I/O rates capable of exceeding well beyond 10MB/s per VM. Clearly

cloud environments and substantial data usage go hand-in-hand.

Researchers and practitioners have historically focused on improving performance

of VM storage migrations. This includes leveraging compression, deduplication, and

optimizing the order of block transmissions. Only more recent work has approached

issues arising from the resource contention caused by a live migration. Still, this

work largely focuses on non-storage resources, such as CPU, memory, and network

subsystems, largely ignoring storage.

In this chapter Migration Buffering is presented, a method of storage migration

that prioritizes the storage I/O of co-located workloads, while still maintaining mi-

gration performance. Migration buffering uses an interference classifier to detect the

likelihood of storage interference. When the likelihood is low, data is prefetched off

of the backing storage system for use when interference becomes more likely. We first

motivate our approach by demonstrating the severity of interference and then present

our design.
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3.1 Investigating Storage Interference

Migration of an entire Virtual Machine, including its virtual disk, risks inflicting

considerable storage performance degradation on both the migrating machine and

those machines co-located with it. This interference is due to the contention between

I/O-bound workloads and the large read required to transfer the migrating machine’s

virtual disk. Existing work in the area of live VM migration has largely focused on

improving migration performance. The limited work addressing interference stem-

ming from migration has not considered storage contention. For these reasons this

work must empirically demonstrate the issue of storage interference between storage

migration and co-located workloads.

3.1.1 Environment and Workloads

We use 4 distinct I/O-bound workloads throughout our experimentation: Filebench’s

Fileserver and Videoserver [32], YCSB [33], and Fio [34]. These workloads, their de-

scriptions, and our configurations are outline in the following subsections along with

a description of our environment.

3.1.1.1 Base Environment

All physical machines are equipped with an Intel Xeon E5-2630, 64 GB of RAM,

and are connected via both a 1 Gbps Ethernet and Infiniband networks. Migrating

VMs have a 20GB virtual disk and each workload VM has a 40GB virtual disk. All

VMs are configured to use raw storage with write-through caching, 2 VCPUs, and

2GB of RAM running atop QEMU(2.1.3)/KVM(CentOS 6, Kernel 2.6.32) [35][3].

Additional configuration details are provided in the test subsection.
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3.1.1.2 Filebench Fileserver & Videoserver

Filebench [32] is a file system benchmarking application that uses a wokload

model language to describe the storage I/O characteristics of an application. This al-

lows researchers to describe complex storage applications, including multiple threads,

file operations, and simulated events using only a plain text configuration file. The

filebench project provides base configurations that imitate common real-world appli-

cations such as the fileserver and videoserver models used in this work.

The filebench fileserver simulates common file operations performed concur-

rently, including creation, deletion, and mode changes. The result is a benchmark

that can closely simulate a shared file store such as an FTP or NFS server. The base

fileserver configuration is determined empirically to over-utilize the test VMs, so the

default number of threads is reduced from 50 to 5 in the model.

The filebench videoserver simulates the concurrent uploading and streaming

of video files. Many streaming threads sequentially read various files, simulating a

large user-base viewing content. In addition, a smaller number of uploading threads

sequentially write new files and delete old ones, simulating privileged tasks that are

accepting new submissions and managing old ones. The default videoserver model

requires excessive storage space without providing significant load, so the base con-

figuration is altered to increase the event rate to 200 per second, using 100 threads,

across only 20 active videos and 16 passive videos.

3.1.1.3 Yahoo! Cloud Serving Benchmark (YCSB)

YCSB [33] provides a program suite that can be used to compare the relative

performance of database management systems, with specific focus on key-value and

cloud serving storage systems. YCSB is capable of interfacing with a wide variety
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of storage software, including caching systems. With a storage system in place to

test, YCSB loads a workload configuration that simulates clients utilizing the chosen

system. In these experiments, Cassandra [36], a popular open-source key-value store,

is loaded with 12 million entries for YCSB ’s simulated clients to query. WorkloadA

is used for execution, which consists of an equal amount of read and write operations

that are issued continuously until the test is ended.

3.1.1.4 Flexible I/O (Fio)

Fio [34] is a highly configurable utility that can be used to simulate a variety of

I/O patterns across a data file. It’s typically used as a micro-benchmark to efficiently

stress I/O systems since it only requires a filesystem to issue requests against. Fio

doesn’t attempt to imitate application I/O patterns on its own, though it can be used

to replay pre-recorded traces, but this functionality is not used in these experiments.

We use Fio in several of our initial experiments due to it’s simplicity and flex-

ibility. Unless otherwise noted, Fio is configured to perform synchronous random

read/write across a 4GB file at 1MB/s using 2 threads. This makes for a fairly low

throughput workload, but one that demands consistency through the use of synchro-

nization. These parameters were chosen to compliment the other workloads, which

are generally higher throughput, but don’t enforce expensive synchronization.

3.1.2 Investigating Possible Compromises

A hypervisor typically facilitates some level of configuration when migrating, and

most modern operating systems allow users to tune process-level priorities. These ini-

tial experiments explore how these simple, yet naive techniques, impact a migration

and it’s tendency to interfere with a workload. More thorough experimental investi-

gation follows in section 3.1.3.
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3.1.2.1 Migration Speed Trade-off

We first demonstrate an intuitive trade-off between migration speed and guest

storage I/O performance. A full machine migration must read the entirety of migrat-

ing virtual disk at least once. Furthermore, it’s expected that the VMM’s migration

process, in this case QEMU/KVM’s pre-copy method, will only read the virtual disk

data at a rate that is aligned to the configured migration speed. In other words, a

faster migration will result in more disk I/O from the hypervisor’s migration proce-

dure, while a slower migration will demand less throughput from the storage device.

We use a workload VM running our fio configuration and an idle VM that is mi-

grated at increasing speeds to demonstrate the trade-off between migration speed

and guest VM performance. Note that this tests uses local hard-disk drives. The

max-normalized results of these experiments are provided in Figure 1, with maxi-

mums of 263 IOPS and 321 Mbps.

From these results we can make several observations. Most important is the clear

ability for a migration to degrade a storage-bound workload. Additionally, a faster

migration will have a larger impact on a co-located workload, while a slower migration

will have less of an impact. This is clear from the decrease in IOPS achieved as the

configured migration speed is increased. These result also suggest that a possible

solution may be to simply migrate at lower speeds and accept the reduced migration

performance. But even with this compromise, a migration may fail to complete due

to block dirty rates [37].

3.1.2.2 Adjusting I/O Priority

Storage I/O issued to the host machine must first be enqueued for dispatch

by the kernel I/O scheduler. Our systems use the default Linux CFQ scheduler,
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Fig. 1. Trade-off between Guest IOPS (fio random read/write) and increasing migra-

tion speed. Higher migration speed will decrease migration latency, but reduce

guest performance.

which is capable of linking I/O priority to a specific process. A possible approach to

abating interference caused by storage migration is to decrease the I/O priority for

the migration process. The goal being to encourage the I/O scheduler to prioritize

other workloads over the expensive migration process. We configure the migration for

128Mbps and adjust the migration processes’ priority to low (4) best effort priority.

With migration at the lowest I/O priority, fio can double it’s IOPs when co-located

with a migration - but this is still only 36% of fio’s nominal performance. Although

not tested, reducing the migration’s process priority is likely to impact the migration’s

ability to converge in much the same way throttling would. Therefore, adjusting

the system’s scheduler cannot provide the fine-grained control needed to approach

interference.
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3.1.3 Workloads Co-located with Migration

The previous experiments have demonstrated basic storage-level interference and

shown that tuning the OS scheduler cannot address the issue. We now take a more

systematic approach of investigating interference across a wider variety of workloads.

As discussed at the start of this chapter, cloud environments are capable of scal-

ing to thousands of machines and often demand high storage throughput. While

environments supporting these clouds are both complex and expensive, our experi-

ments must only focus on recreating the pertinent attributes and use-case of a live

storage migration. A full machine migration is a process involving a VM and its

virtual disk, which subsequently involves the storage subsystem hosting the virtual

disk. In cloud environments, this must naturally be a high performance shared stor-

age volume that can accommodate the workloads of many machines. A migration of

any kind requires both a source and destination physical machine. Moving groups

of VMs may involve many more physical machines, but any single VM still has only

one pair of physical hosts. These properties support the validity of our experiments

described in the this section and their ability to fairly represent cloud environments.

Two physical machines are used to demonstrate interference, one as the migra-

tion source host and another as the destination host. In order to apply reasonable

utilization to the physical storage system, identical workloads are run in 2 VMs on

the source machine simultaneously. Meanwhile, a third VM with no active workloads

migrates from the source to the destination. No workloads or other significant soft-

ware are run at the destination - only a hypervisor ready to receive the incoming VM.

This configuration produces notable interference only at the source machine’s storage

system. Therefore, all storage metrics presented in this work are collected from the

source machine. A diagram of the configuration is provided in Figure 2.
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In practice, a migrating VM may be running its own workloads when undergoing

migration, and the destination host may already be under heavy utilization. However,

our tests keep the migrating VM idle in order to isolate the impact of storage-level

interference. This is needed because workloads executed within a migrating VM

will degrade migration in two different ways - (1) writes from within the migrating

machine will force repeated transmissions of dirtied blocks [37] and (2) I/O from the

migrating machine’s workload will contribute to the storage-level interference. While

(2) is a shared property of any workload co-located with migration, (1) is unique to

workloads running inside a migrating guest. This work is focused on characteristics

of (2), so we control for (1). Therefore, by keeping the migrating machine idle,

the experiments can directly show the impact of co-located workload interference on

migration latency, without mixing the impact of dirty block re-transmissions. Of

course, if these workloads under test were instead run inside the migrating VM,

migration latency would likely see further degradation.

In an effort to create an analog of enterprise-level systems, all virtual disks at

the source are stored on a 12 TB RAID-6 volume. The destination machine stores

the incoming VM’s virtual disk to a local HDD. Metrics and other collected data are

stored to a single HDD on the source machine. Each experiment is repeated three

times and the results are averaged.

All migrations, including both the QEMU/KVM’s pre-copy methodology and

our buffering methodology, target a 40MB/s live VM transfer. This is above the

default configuration of 32MB/s in order to simulate a high performance migration -

the preferred case in most scenarios.
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Fig. 2. Configuration of physical machines, the VMs they host, and the experimental

process. Matching workload VMs issues I/O requests while a third idle VM

migrates to the second physical host.

3.1.3.1 Nominal Workload & Migration

Initial experiments examine the storage I/O characteristics of each workload in

isolation. Figure 3 illustrates sector-level patterns for each workload’s I/O, collected

from within the guest VM during the first 100 seconds of nominal execution. We

find that the filebench fileserver has a consistent operating region, with over 98%

of I/O occurring within a contiguous 15% of the virtual disk’s sectors. In addition,

fileserver completes just under 1.5 million I/O operations, which is second only to

the videoserver ’s 5 million completed operations. The videoserver ’s sector activity

in Figure 3 shows that the workload develops “hotpots” in small regions of the disk

as threads compete to sequentially stream video files. This creates two layers of lo-

cality in which highly local I/O is randomly dispersed across the disk. In contrast,

with it’s configuration set to random R/W, fio sensibly exhibits one of the least se-

quential patterns, with operations scattered across it’s working file. With our low
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Fig. 3. Guest-level sector usage over time for each workload under test. Regions col-

ored by the log normal (w.r.t the individual workload) of completed I/O oper-

ations. Distribution over time and across sectors are given along the top and

bottom edges, respectively.
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bandwidth configuration, fio completes just over 25 thousand I/O operations during

execution. However, it’ll be seen that even though fio executes fewer operations, the

burden of forcing a synchronization coupled with large seek times makes fio particu-

larly contentious. Finally, YCSB demonstrates a reasonable locality with 54% of its

operations taking place in 10% of the disk, but with only 100K I/O operations overall.

The characteristics of YCSB complement the previous three workloads by combining

a moderate amount of I/O with a new pattern of locality not yet demonstrated by

fio nor the filebench workloads.

Figure 4 includes a chart for host-level utilization, R/W disk bandwidth, and

the number of I/O operations (IOPS) for a static VM migration. The migrating

machine runs idle, with no co-located workloads. The same host-level metrics for the

Videoserver, Fileserver, Fio, and YCSB workloads can also be seen in Figure 4. Each

workload is run in isolation within a VM, with no co-located workloads or other VMs.

Both the migration and the workloads demonstrate relatively distinct I/O patterns,

both in average and variance in resource usage.

The migration itself has the most consistent storage I/O pattern - unsurprising

given the fundamentally sequential nature of an idle machine’s pre-copy live migra-

tion. Disk utilization remains low with only minor fluctuations near the start. Band-

width stays near the expected 40MB/s with IOPS at a consistent rate. This data

hints at an underlying simplicity in the process of a live migration’s storage access,

one that we intend to leverage in our design. Throughout the remainder of this work,

pre-copy migration as demonstrated here is also referred to as static migration.

The I/O workloads under test demonstrate a wide-array of characteristics, from

chaotic, to consistent and predictable. Both the Fileserver and Fio workloads exhibit

relatively low variance, but with noticeable disruptions to their patterns in their initial

stages. In addition, fio launches with a more variable level of IOPS and storage
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Fig. 4. Characteristics of I/O over time for the nominal execution of each workload,

including pre-copy storage migration
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utilization, though this abates within a minute of starting. The Videoserver has

the most sporadic I/O footprint, with 2.2x the standard deviation of bandwidth and

5.7x the standard deviation of IOPs when compared to the Fileserver. Finally, YCSB

undergoes high intensity I/O near the start, but gradually settles to a lower utilization

and throughput. This suggests aggressive application-level optimization and caching

by the back-end, which will lead to less interference.

These workloads give a diverse cross-section of I/O workloads possible in to-

day’s large systems, making them good candidates for use in exploring migration

interference and evaluating our approach.

3.1.3.2 Workload-Migration Interference

Next, we examine static migration performance when executed alongside these

workloads. These experiments introduce two important new variables - the time offset

into the migration at which a workload is launched and the duration of the workload’s

execution. Workloads launched earlier during the migration process have more time

to cause interference. Similarly, longer workloads will also impact performance for

a longer period, resulting in larger degradation. We run tests with each workload

launching at the start of migration (0 seconds) and at 100, 200, and 300 seconds into

the migration process. Note that the migration process takes approximately 540 sec-

onds on average without interference. Each test is performed with workloads lasting

60 seconds, 240 seconds, or 1920 seconds (1, 4, and 32 minutes, respectively). These

lengths are chosen to demonstrate the contention of shorter bursts in I/O activity,

medium-length application updates, as well as more persistent long running storage

usage. In these experiments, the worst-case scenario are those where a workload

lasting 1920 seconds is launched at the start of migration.

Under our experimental conditions, the impact of storage contention is severe for
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Fig. 5. Comparison of static migration latency for workloads under test. Values are

computed as the normalized to the nominal migration latency (lower is better).
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three of the four workloads tested. The average migration latency, normalized to the

expected latency, for each workload’s test set is shown in Figure 5. From these results,

we can see the relationship between the workloads’ start time and the final impact

on performance. Intuitively, the longer these workloads are allowed to run co-located

with migration, the longer migration will require to complete. The largest contention

is imposed by the fileserver, which quadruples the length of the migration in the

extreme cases. This specific workload forces the migration to take over 36 minutes,

when it normally takes only 9 minutes. The interference caused by both the fileserver

and fio is consistent enough to double migration latency even when launched well into

the migration. Even though it’s workload is moderate, YCSB manages to inflict very

little interference on the migration performance. We believe this to be in-part due

to the application-level I/O management that’s merging and caching I/O requests,

which is supported by YCSB ’s high number of blocks per I/O on average.

Of course, the migration is not the only piece impacted - except for fio, all

workloads undergo degradation when accounted for via guest-level I/O metrics. The

results shown in Table 1 quantify these changes as the ratio of the mean metric

during static migration over the mean metric during nominal execution. Both the

fileserver and videoserver see the largest reduction in their ability to maintain I/O.

Interestingly, both fileserver and fio appear mostly unaffected by the migration’s

sequential read.

From these results, we see that interference can occur at varying degrees across a

range of workload characteristics. The experiments show that even a lower bandwidth

workload such as fio can greatly reduce migration performance, while higher band-

width applications such as YCSB can have almost no affect, yet itself be degraded by

the migration. This implies a complex relationship between the access patterns and

how each workload chooses to issue its own I/O.
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Fig. 6. Characteristics of I/O over time for workoads co-located with pre-copy migra-

tion
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Table 1. Workload performance degradation when co-located with static migration

fileserver fio videoserver ycsb

Throughput 0.953 0.973 0.577 0.637

IOPS 0.946 0.998 0.679 0.725

3.2 Design

The experiments conducted in section 3.1 clearly demonstrate the potential for

varying degrees of interference between a VM storage migration and co-located VM

workloads. We address this scenario in order to find a non-invasive, yet effective

strategy for avoiding this type of performance degradation.

Our approach to mitigating storage migration interference makes use of several

key observations deduced from our experiments and prior work. First, we recog-

nize that by decreasing migration speed, which reduces the storage I/O rate of the

migration process, we can nearly eliminate interference, but at the cost of higher

migration latency. Second, pre-copy migration is a predictable process in which the

backing virtual disk will be sequentially read at least once. Any further dirtying of

data from the migrating VM can be cached in the host’s page cache or mirrored to

the destination. Finally, we recognize that interference is a case of extremes, and

that even simple algorithms can recognize host-level patterns that are indicative of

ongoing interference.

We combine these three notions to design Migration Buffering, a method of

offloading a migrating machine’s virtual disk as it is migrated. When no interference

is detected, un-migrated virtual disk data can be prefetched into a secondary, low-

interference storage buffer. If interference conditions arise, only the prefetching I/O
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must subside to reduce contention, but the migration can continue at full speed until

the buffer is exhausted or the migration has completed. This technique is conceptually

similar to the video and audio content buffering many experience daily.

3.2.1 Adaptive Transfer

A cohort of processes can eliminate or greatly reduce mutual resource contention

if one or more applications can reduce its utilization of the shared resource. We’ve

shown this to be true for migration in section 3.1. We believe a comparatively long-

running I/O process such as VM migration must be capable of adapting to the de-

mands of other applications, especially applications that may have no view or knowl-

edge of the migration. Such an online adaption allows the migration to prioritize more

sensitive applications in exchange for reduced speeds, and thus prolonged migration

times. However, this facility must be carefully balanced to ensure that the migration

itself does not fail to meet any timing requirements.

In this design, we employ an adaptive transfer as means to adjust the migration’s

read rate in concert with the availability of data in the buffer. This may be imple-

mented through lower-level I/O throttling of the migration process or by directly

interfacing with the VMM, if it allows.

3.2.2 Buffering

Storage migration requires a full read of the virtual disk, no matter where it

resides. Furthermore, this read should preferably have high throughput, both to

satisfy any latency restrictions, but also to ensure migration convergence. These types

of large and intensive I/O patterns are not unique to modern environments, but the

predictable pattern of a full read across a large dataset makes storage migration a

special case. These properties of storage migration I/O inspires the prefetching aspect
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of our design - when a machine is being migrated, we can accurately anticipate what

data will be required from the storage system. Bringing non-migrated data off of the

storage system, when the likelihood of interference is low, and storing the data in

low-interference storage creates a buffer for use when interference probability is high.

Therefore, when the system determines that interference is probable, the migration

process can continue at desired speeds by sourcing non-migrated data from the buffer.

During these periods, only the rate of prefetching must be reduced in order to prevent

storage I/O interference. The migration performance, the rate at which data is being

transferred to the destination, must only be reduced when the buffer is depleted and

interference is still occurring.

Importantly, the migration buffer can be implemented in a variety of ways, in-

cluding secondary local disks, RAM, or even idle disks from other machines across

the data center [38]. The only requirement is that continued usage of the buffer will

not impact critical storage applications. Ideally, the buffer can also act as a storage

cache for the VM undergoing migration. This way I/O requests from the migrating

VM can serve two purposes - to deliver data into and out of the VM, but also to pull

data from the primary storage and into the buffer.

3.2.3 Interference Classification

An important input to adaptive transfer and prefetching is the accurate identifi-

cation of I/O interference as it occurs. Intuitively, such a system can either monitor

application performance directly, through some known metrics such as client request

latency, or indirectly, in a black box fashion. It may even be feasible to allow an

administrator or user to directly provide feedback on the levels of interference from

their viewpoint. In the case of cloud computing, where providers and customers are

separated by a strong semantic gap, a black box method is preferable in order to
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maintain customer privacy and abstraction. An important property for the flexibil-

ity of the design is the need for interference classifiers output to be a probability of

interference, rather than a binary classification. Outputting a ratio that indicates

the likelihood of interference enables the other components to respond fluidly. A bi-

nary output would require integration of the output over time to simulate degrees of

interference, which we’ll show is important to allow a practitioner to configure their

desired level of performance compromise.
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CHAPTER 4

IMPLEMENTATION AND EVALUATION

In order to demonstrate the effectiveness of our Migration Buffering, as well as to

explore its parameters, we implement a prototype of the design describe in section

3.2. After detailing the implementation, we evaluate our approach and demonstrate

its ability to abate interference in the majority of scenarios presented earlier.

4.1 Components and Features

Our prototype is a host-level, black-box version of the proposed design as a set of

three primary components: the Migration Controller, Storage Monitor, and Storage

Prefetcher. These components are loosely coupled by design, allowing each to be run

on separate hosts if need be, or as a single application process. In addition to these

components, the Migration Controller utilizes an Interference Classifier to identify

interference during the process of migration. A summary of these components can be

seen in Figure 7.

4.1.1 Migration Controller

The Migration Controller is responsible for collecting the metrics retrieved by the

Storage Monitor and forwarding them to the Interference Classifier. This classification

algorithm reports the probability of interference, which the Migration Controller then

uses to determine a new migration speed. The Migration Controller communicates

with the hypervisor directly, in our case QEMU, to both configure migration speed

and retrieve the amount of data transferred. The flow chart in Figure 8 outlines the
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Fig. 7. Overview of our method of migration using adaptive transfer and prefetching

Migration Controller’s basic steps, computed every second during a migration.

The Migration Controller uses a Proportional Integral Derivative (PID) feedback

loop to manage the migration and prefetching rates. This interference-PID is given

an interference probability as its set-point, and after each step returns a migration

rate delta, or suggested change in migration rate. This delta therefore represents the

PID’s suggested change in migration speed in order to approach the configured max

allowable interference probability, which we refer to as the interference threshold. A

higher interference threshold weights the controller’s priority in favor of the migration

process. A lower threshold prioritizes co-located workloads by forcing the migration

to reduce speed in the face of lower interference probability. Note that the migration

rate is capped at the configured rate - if the delta values suggest higher speeds, the

migration will not exceed this target.

The interference-PID’s delta is also provided to the prefetcher. That is, the

migration rate change needed to achieve the desired interference probability is passed

to the prefetcher for use in scaling the amount of data to be prefetched. Therefore, if
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Fig. 8. Migration Controller’s steps and their dependencies.

the interference-PID delta is positive, but small, the prefetcher fetches comparatively

fewer pages than if the delta was larger. If the delta is negative or zero, no pages are

prefetched. The rate delta provided to the prefetcher is first converted from bytes to

number of pages by dividing by page size (4KB in our system). Then, the number of

pages is scaled by a configurable constant referred to as the prefetching factor. This

allows us to decouple the PID gains from the aggressiveness of the prefetcher. For

example, by keeping the interference-PID gains small, the system does not “over-

react” to variations in interference probability by making large adjustments to the

rates over time. However, these small gains would result in smaller prefetches during

each time-step. To counter this, and maintain an aggressive prefetching process, we

can allow an administrator to increase this prefetching factor to a larger value, giving

the interference-PID a wide-range of page amounts to prefetch per step.

Additionally, as long as the amount of data in the buffer is larger than the

migration rate per step time, the controller maintains the migration speed at the

target rate. Once the buffer’s size shrinks to below the amount to transfer in a time-
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step, the migration rate is dictated by the interference-PID’s delta much like the

prefetcher. This logic is key to allowing the migration to maintain it’s speed when

it’s able to source from the buffer and not cause storage interference.

Assuming our method of eliminating interference is effective, then once we reduce

interference, the interference classifier will begin outputting lower probabilities. In

turn, our system will respond by increasing speeds, which will subsequently cause

interference to occur again. These oscillations could potentially be combated by fine-

tuning the interference-PID but we empirically find that a more brute force count-

and-lock approach to be more effective. The controller keeps a counter of how long

the probability of interference has been above the interference threshold. Once this

count grows, the controller begins to adjust a backoff variable. This backoff value

is adjusted proportionally to the error in interference probability. Each iteration,

the backoff is used to reduce both prefetching and positive movement in migration

speed. As prefetching is reduced through this backoff, the probability of interference

begins to decrease since I/O pressure is being reduced. Once the probability is no

longer above this upper interference threshold, the lock counter stops increasing and

prefetching remains in this degraded state. A second low-end threshold dictates at

what interference probability the controller is willing to release the prefetcher from its

degraded backoff state. Once the probability is below this low interference threshold

for a short period, the backoff is reset, and the rate of migration will begin to grow.

4.1.2 Storage Monitor

The interference classifier housed within the migration controller requires storage

metrics, updated every time-step, in order to determine the probability of interference

at that time. The storage monitor process collects metrics via the counters exposed

in /proc/diskstats on the physical machine hosting the storage subsystem. In order to
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reduce the volatility of the metrics reported, the storage monitor computes a moving

average on the current and past three time-steps, with more recent values weighted

more heavily. This filtering has the benefit of transparently adding a temporal aspect

to the interference classifier, without the need for time to be explicitly considered.

4.1.3 Storage Prefetcher

During periods of low interference probability, the storage prefetcher marks the

next un-migrated pages of the migrating virtual disk as WILLNEED using the Linux

kernel’s fadvise interface. Cached pages are determined through the kernel’s fincore

system call. Due to the sequential nature of a migration, the next n pages are

prefetched from offset where data has neither been migrated nor cached. The number

of pages prefetched is determined by the probability of interference and the resulting

interference-PID’s output. A positive delta from the interference-PID is converted

from bytes to pages and scaled by a configurable factor.

Using the host’s page cache as the buffer in this way has both benefits and

drawbacks. The implementation is fairly simple and requires no modifications to

the hypervisor or operating system, improving on the practicality of the system.

Furthermore, if the migrating VM were to modify storage blocks that have already

been transmitted, the host’s page cache will naturally capture these modifications.

The modified data has therefore been buffered transparently, and our prefetching

process does not need to explicitly fetch this data. The same can be said of data read

by the migrating VM. Of course, if memory usage is high, or the block dirty rate is

high, using the page cache may not be wise. By paging large chunks of the virtual disk,

we potentially evict critical data and cause memory interference. Furthermore, there

is no guarantee that the OS will honor the suggestions conveyed through the calls to

fadvise at all. Still, we find this prefetching technique suitable for demonstrating our
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design - real-world implementations may opt for different mechanisms.

4.1.4 Interference Classifier

The proposed design requires an interference classifier - an algorithm capable

of computing the likelihood, or probability, of interference occurring. As discussed

earlier, it is important for practical applications that this algorithm not need VM

introspection or any application-specific knowledge. Many clouds and VM providers

enforce strong isolation, breaking this isolation considerably restricts the use-cases of

the proposed design. For these reasons, the interference classifier in this work uses

only host-level metrics from user-space to provide the probability of interference.

The problem of identifying interference can be simplified to a binary classification

problem: at any point, the system can either be undergoing interference or not. Many

algorithms for binary classification exist, but we seek those that are easily interpreted,

fast to compute, and widely known. For these reasons, we evaluate both regularized

logistic regression and decision trees as offered by the SciKit-Learn Python library

[39] for use in classifying interference.

We produce samples by labeling the data presented in section 3.1.3.1 and 3.1.3.2.

For experiments where obvious interference degradation occurs, we label all time

ranges where the workload is executing as positive for interference. Therefore, we

mark all pairings of workloads and static migration, except for YCSB, as interference.

All other collected samples are labeled negative. This includes samples of an idle ma-

chine, nominal migration, and nominal workload execution. Additionally, we record

metrics for nominal migration with fixed prefetching at each step in an effort to

prevent misclassification of the paging process’s characteristics.

The points in Figure 9 demonstrate the natural separation of the workloads

within the dimensions of some of our notable host-level metrics. These contain only
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Fig. 9. (Best viewed in color) Sample of resulting host-level metrics when workloads

are co-located with live migration (i.e. interference test). Fileserver marked

as red ’X’, Videoserver as blue ’+’, fio as green points, and YCSB as magenta

squares.
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points where both the workload and migration are running, including negatives pro-

vided by YCSB. It’s clear that some metrics, such as percent utilization are strong

indicators for interference.

With labeled samples generated from our tests, the predictive power of the col-

lected attributes is evaluated by constructing and testing models. Numerous ver-

sions of each model with varying hyperparameters are constructed and tested. We

use 5-fold cross validation on 75% of the samples in order to evaluate the classifi-

cation power of different combinations of our collected metrics. Included in these

trials are various transformations of each metric, intended to enhance separability

for the model. Models selected by cross-validation were then judged on their ability

to maximize both accuracy and F-score on the hold-out 25% test set. Under these

circumstances, both logistic regression and decision perform well with their default hy-

perparameters. However, we favor logistic regression for its more continuous output,

which applies well given our use of the output probability and not simply discrete

prediction. Our final logistic regression model is made up of the following coeffi-

cients and features: −2.27 × 10−5(IOPS Comp.)2, −7.80 × 10−1 log(IOPS Comp.),

2.10 × 10−2(IO Ticks)2, 0.55 · log(Throughput), 6.87 × 10−4(Util. P ct.)2, and an

intercept of −0.296. These learned coefficients provide some insight into the charac-

teristics of interference. Our model defines interference as periods where the host is

spending a large portion of time performing I/O, but the number of I/O operations

remains small. Thus, for our data, storage interference is a special case of extremes

- when more is demanded than can be given across a suspiciously low number of

requests.

Combining our three primary components at the host level, as described above

and illustrated in Figure 7, yields a practical version of our proposed design. With

this prototype, we can compare our method directly against static migration.
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4.2 Results

In order to investigate our prototype implementation, we evaluate our method

under the same conditions as our initial interference experimentation in section 3.1.

In addition to these experiments, we also adjust the interference threshold of our im-

plementation to demonstrate the prototype’s ability to vary the degree of compromise

in migration performance.

For all experiments the interference-PID is empirically configured with the gains

pk = 2 × 106, ik = 5 × 104, dk = 6 × 104 bytes and the prefetching factor is set to

50. Unless otherwise noted, the high interference threshold is set to 0.5 and the low

interference threshold is set to 0.15. The lock count threshold is set at two with an

unlock count threshold of three. Functionally, this means that migration will begin

adapting when the probability of interference has remained above 0.5 for two time-

steps, and will only fully rebound if the probability remains under 0.15 for 3 steps.

The results of our evaluation are shown in Figure 10 for each combination of workload,

workload length, and workload launch time.

Our methodology is designed to page data yet-to-be-migrated into host memory

when the probability of interference is low. This prefetched data can then be used to

avoid storage interference later in the process. For this design, the worst case scenario

occurs when a high-interference I/O workload is already executing once the migration

is launched. In this situation, our implementation may have to reduce speed until

the I/O pressure resides, since no prefetched data exists in the buffer. Conversely,

the best case scenario for our methodology is when the entire virtual disk can be

prefetched before any interfering workloads launch. More precisely, if enough data is

prefetched to last a period of interference contention, our method will help prevent

degradation to both the I/O workloads and the migration.
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Fig. 10. Comparison of migration latency when using Migration Buffering. Values

are computed as the normalized to the nominal migration latency (lower is

better).
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Table 2. Workload degradation when co-located with adaptive migration

Fileserver Fio Videoserver YCSB

Throughput 1.01 1.01 0.923 0.855

IOPS 1.02 1.01 0.965 0.884

The results in Figure 10 illustrate our implementation’s ability to prevent degra-

dation in migration latency in the majority of scenarios. As expected, our method

only sees degraded performance when a contentious workload is executing at the start

of migration. When contentious workloads are launched later in the migration, data

prefetched into the buffer allows the migration to maintain it’s transfer rate.

A detailed example of a worst case scenario for our design is illustrated in Figure

11. In this experiment, fio is launched alongside our migration system for 240 seconds,

causing interference before our method is able to prefetch any amount of the virtual

disk. Still, our system recognizes the interference and reduces both prefetching and

migration transfer speed in order to avoid impacting the workload. Thus, even in

the worse case, when the migration latency is lengthened, the workload still performs

near nominal levels. In Figure 12 fio is launched 100 seconds into the migration, and

our configuration is able to prefetch almost all of the virtual disk before fio launches.

Thus, our implementation preserves the low migration latency as well as the co-

located workload’s performance. Intuitively, under this configuration with workloads

on or after 100 seconds, the migration and workload perform near nominal levels.

The results in Figure 12 also illustrate how our configuration pushes the prefetcher

to aggressively increase its rate and move the entire virtual disk into memory. Of

course, loading this much data into memory may cause unwanted memory pressure
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Fig. 11. Live migration using Migration Buffering against 240 second fio launched

at the start of the migration. The migration resumes at full speed, with

prefetching at approximately 250 seconds.

42



Fig. 12. Live migration using Migration Buffering against 240 second fio launched at

100 seconds into an ongoing migration. The migration is able to maintain

speed during the contentious workload, allowing the migration to achieve a

nominal latency.

43



and disk utilization, but at the risk of later vulnerability to interference should an

I/O burst arrive. A trivial preventative measure for unwanted memory pressure is to

simply cap the amount of prefetched data.

In both Figures 11 and 12 some characteristics of our design are clearly exem-

plified. The interference-PID attempts to move the interference probability to the

configured interference threshold (0.5), and it does this by increasing the number of

pages prefetched each step. This can be seen between approximately 250 and 350

seconds in Figure 11 and 0 and 100 seconds in Figure 12. The interference threshold

combined with the prefetching factor is what we use to control this growth, though

the PID configuration also has an impact.

Varying the interference threshold allows one to vary the desired level of mi-

gration performance compromise. This is illustrated in Figure 13 - as expected, the

higher threshold value of 0.75 consistently results in faster migrations. Although not

explored, this higher threshold will inevitably lead to more interference.

Presented in Table 2 are the average IOPS and throughput of each workload

when run against our buffering methodology, normalized to the nominal results for

each workload. For simplicity, we only show results for the worst case - these results

are computed from experiments where each workload is run for 1920 seconds from the

start of migration. Shorter versions of the workload distort these values due to the

asymmetry of their metrics, while evaluating at later launch points would clearly favor

our method. This simple evaluation of the worst-case demonstrates the effectiveness

of simply reducing the migration speed - maintaining migration speed while sourcing

from the buffer is similarly effective.

Our evaluation has demonstrated our approach’s ability to mitigate storage

interference - in the majority of scenarios we maintain migration speed with sig-

nificantly reduced impact to workload performance.
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Fig. 13. Effect of interference threshold on migration latency for 240 second fio. Higher

thresholds correspond to a more aggressive migration, allowing an adminis-

trator to tune the process to their needs.
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CHAPTER 5

RELATED WORK

5.1 Virtual Machine Live Migration

Work in the area of live migration has largely focused on methods of improving

migration performance, for both memory [8] [9] [10] [11] and full-machine migrations

[12] [13] [14]. However, as migration has become more prevalent, researchers have

begun to recognize and address issue of interference caused by VM migration [15].

Methods tend to focus on reducing the overall data transfer [11][16] or optimally plac-

ing VMs [17][18] to avoid inter-machine interference on network, CPU, and memory

resources. iAware [17] treats a VM live migration as a CPU and network I/O de-

manding task. Given a group of VMs to be migrated along with potential destination

hosts, iAware can make an interference-aware migration decision based on the mea-

surements to jointly minimize VM migration and co-location interference. However,

iAware focuses on interference as it pertains to memory-only live migration, which

differs from the challenges unique to VM storage migration. Along with taxing CPU

and network usage, storage migration also introduces a burdensome disk read. As

we’ve shown, this additional I/O competes for the backing storage resource, nega-

tively impacting co-located VMs through interference. Work in DeepDive [18] uses

host-level metrics to identify when running VMs are interfering. Similar to the work

in iAware[17], DeepDive use live migration to move culprit VMs.

In [8] the authors implement a new termination criteria for KVM’s pre-copy mi-

gration. In pursuit of this goal, the authors explore the impact a migration has on

application performance in order to motivate the need to avoid pursuing counter-

46



productive downtime for stop-and-copy. Their algorithm focuses on the optimal mo-

ment that the migration should switch between iteratively copying the VMs working

memory to the stop-and-copy phase.

Migrating a full virtual machine, including it’s virtual disk, requires the transfer

of a considerable amount of data. Work in Shrinker [13], VMFlock [14], and CloudNet

[40] focus on reducing the amount of data to transfer to the destination. Still, these

works do not address storage interference nor do they detect the affinity between

related VMs in order to avoid application degradation. The work in LIME [41] instead

migrates the entire network of related VMs, but this method cannot scale when

VM clusters contain thousands of machines. Furthermore, the limited bandwidth

of a WAN connection may make this technique impractical. The authors of Pacer

[42] perform a synchronized migration of VMs, but again don’t propose a grouping

mechanism to handle large clusters.

5.2 Resource Contention

VM migration in general can be considered an abberation, which requires intense

utilization of almost all system components. Performance interference due to resource

contention, including CPU, cache, memory, and IO, has attracted significant research.

Thread slow-down caused by L2 cache contention has been reported in [43].

Classification-based thread scheduling has been proposed to address CPU time and

last level cache (LLC) contention in multicore processors [44]. In ordered to increase

the utilization of warehouse scale computers, Bubble-Up [45] proposes sensible co-

location of applications based on the prediction of performance degradation that

results from LLC and main memory bandwidth contention. VM storage performance

degradation caused by I/O device contention has also been discussed in [46] [47].

Although many methods have been proposed to address storage interference,
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they’re generally not well-suited as a solution in the domain of storage migration.

Storage I/O bursts can cause a significant increase in request latency. Caching layers

are often used to absorb sudden bursts in read requests, helping to further reduce disk

contention. Everest [38] proposes write off-loading to dampen peak loads. However,

write off-loading does not address the long read burst caused by a storage migration.

Unfair storage resource allocation may violate the application service level objective

(SLO). Soundararajan et. al. [48] propose quanta-based proportional resource alloca-

tion via coordinated learning and throttling-based I/O scheduling to enforce applica-

tion SLO in Associateshared server farms. Stay-Away [49] also proposes proactively

throttling the execution of batch applications to protect the performance of latency

sensitive applications. In storage migration, I/O throttling can be employed to reduce

the migration speed so as to mitigate the interference. However, this will consider-

ably prolong the migration time, which is a key metric when evaluating VM migration

performance. Contention for the I/O device itself dramatically degrades VM storage

performance. To avoid I/O interference between servers, TRACON [46] proposes

task-VM mapping using interference prediction to minimize the runtime and maxi-

mize the I/O throughput of data-intensive applications in a holistic way. TRACON

assumes the storage of each physical machine is independent. However, our scenario

is based on deployments in which VMs are backed by a centralized storage system,

which is common in cloud environments [50]. Moreover, in TRACON the task and

VM are independent, but in our case the VM migration task cannot be isolated from

the migrating VM. To speedup MapReduce applications, ILA [47] proposes nonlinear

interference prediction and adaptive delay scheduling. ILA targets batch processing

applications and assumes jobs can be delayed and scheduled at a later time, while our

work targets maintaining the performance of delay-sensitive applications. DeepDive

[18] monitors low-level system metrics to pinpoint the culprit resources undergoing
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interference, then employs VM migration to balance the system loads and mitigate

interference. However, the interference caused by the migration activity is not dis-

cussed. DeepDive primarily focuses on system management within a local area, but

storage migration typically occurs across wide area environments.

Fundamental to our interference avoidance mechanism are I/O burst off-loading

and prefetching. The I/O burst caused by storage migration is predominately a se-

ries of sequential reads. Similar to Everest [38], which redirects write requests to a

low-load volume, we use a buffer to serve the read requests of storage migration so as

to redirect the read requests out of the primary storage. In order to better utilize pe-

riods of low contention, prefetching is used to pull un-migrated data into the buffer.

Correlation-directed prefetching [51] employs frequent sequence mining to achieve

fine-grained data preloading. Adaptive feedback-directed prefetching [52] employs

counter based feedback to achieve prefetching aggressiveness control. However, since

the storage migration can be treated as a sequential stream, sophisticated prefetching

algorithms to discover and recognize block correlations are simply not needed. In-

stead, our method focuses on a rate-controlled prefetching mechanism. Empirically,

we employ logistic regression on a handful of I/O features to estimate interference

severity in order to dynamically adjust prefetching speed, as well as migration rate.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusion

An entire industry, and with it countless new applications, has been spawned

from the rapid growth and success of virtualization technology. At the heart of the

modern cloud infrastructure is full machine virtualization, with its strong isolation

and administrative perks it has proliferated nearly all corners of modern comput-

ing. Live migration, a key enabler of virtualization’s flexibility, has seen significant

attention from both researchers and practitioners.

In order to mitigate migration storage interference, we’ve proposed a migration

approach that leverages the known sequential pattern of a pre-copy migration, in

combination with interference prediction and adaptive transfer. Our approach is suc-

cessful at abating workload degradation due to interference in nearly every scenario.

In some experiments, our methodology must compromise the performance of the mi-

gration itself, though we show that the degree of this trade-off is configurable. Still, in

the majority of tests where both the migration and workload suffer, our prototype is

successful at eliminating any reduction in storage performance, for both the workload

and migration.

6.2 Future Work

Our design and prototype invite several future enhancements and areas to ex-

plore. Most important is the need for a hypervisor-level implementation of migration

buffering, which would provide more granular control of the prefetching process and
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introspection into the migrating machine’s I/O. An implementation within the hy-

pervisor would allow prefetching at the block-level rather than page-level, while also

removing the uncertainty of the operating system’s paging decisions.

To reduce complexity, we opted to not address the migrating machine’s I/O

pattern’s in this work, though it would intuitively impact both the buffering we

propose and the retransmissions typical of pre-copy migrations. New work in this

area should address this challenge more extensively.

In order to combat our design’s worst-case scenario, buffering of the virtual disk

can begin prior to the actual migration process - much the same way an application

buffers a portion of streaming media before beginning playback. For VM migration, an

administrator or placement algorithm may indicate their desire to perform migration

before it actually occurs. Thus giving time to prefetch and warm the migration buffer

as means to mitigate interference.

The control mechanisms centered around our interference-PID may be more com-

plex than required. An exploration into tuning this system, or even reworking it

entirely, may make the approach more effective while being easier for others to grasp.

Finally, while successful, our interference classifier is rudimentary - additional

work should investigate this component closely as its output controls many aspects

of the design. New features should be explored along with additional learning algo-

rithms, with success contingent on correctly classifying entirely unseen workloads.
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Appendix A
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ABBREVIATIONS

CPU Central Processing Unit

FTP File Transfer Protocol

GB Gigabyte

HPC High Performance Computing

IOPS I/O Per Second

KB Kilobyte

KVM Kernel Virtual Machine

LAN Local Area Network

MB Megabyte

MPI Message Passing Interface

NFS Network File System

OS Operating System

PID Proportional Integral Gain

QEMU Quick Emulator

RAID Redundant Array of Independent Disks

RAM Random Access Memory

R/W Read/Write

VCU Virginia Commonwealth University

VM Virtual Machine

VMM Virtual Machine Manager

WAN Wide Area Network

YCSB Yahoo! Cloud Serving Benchmark
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