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OPTIMIZING VIRTUAL MACHINE I/O PERFORMANCE IN

CLOUD ENVIRONMENTS

By Tao Lu

A Dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Director: Dr. Xubin He,

Professor, Department of Electrical and Computer Engineering

Maintaining closeness between data sources and data consumers is crucial for

workload I/O performance. In cloud environments, this kind of closeness can be vio-

lated by system administrative events and storage architecture barriers. VM migra-

tion events are frequent in cloud environments. VM migration changes VM runtime

inter-connection or cache contexts, significantly degrading VM I/O performance. Vir-

tualization is the backbone of cloud platforms. I/O virtualization adds additional hops

to workload data access path, prolonging I/O latencies. I/O virtualization overheads

cap the throughput of high-speed storage devices and imposes high CPU utilizations

and energy consumptions to cloud infrastructures.

To maintain the closeness between data sources and workloads during VM migra-

tion, we propose Clique, an affinity-aware migration scheduling policy, to minimize

the aggregate wide area communication traffic during storage migration in virtual

cluster contexts. In host-side caching contexts, we propose Successor to recognize

warm pages and prefetch them into caches of destination hosts before migration com-



pletion. To bypass the I/O virtualization barriers, we propose VIP, an adaptive I/O

prefetching framework, which utilizes a virtual I/O front-end buffer for prefetching

so as to avoid the on-demand involvement of I/O virtualization stacks and accelerate

the I/O response.

Analysis on the traffic trace of a virtual cluster containing 68 VMs demonstrates

that Clique can reduce inter-cloud traffic by up to 40%. Tests of MPI Reduce scatter

benchmark show that Clique can keep VM performance during migration up to 75% of

the non-migration scenario, which is more than 3 times of the Random VM choosing

policy. In host-side caching environments, Successor performs better than existing

cache warm-up solutions and achieves zero VM-perceived cache warm-up time with

low resource costs. At system level, we conducted comprehensive quantitative analy-

sis on I/O virtualization overheads. Our trace replay based simulation demonstrates

the effectiveness of VIP for data prefetching with ignorable additional cache resource

costs.



CHAPTER 1

INTRODUCTION

Public cloud utilizes statistical multiplexing of computation, storage, and network

to achieve elasticity, and the illusion of infinite resource capacity [3]. Virtualization

techniques, which enable resource multiplexing, play a key role in data centers. Vir-

tualization technologies bring the following noteworthy benefits. First, virtualization

enables higher levels of resource utilization. Historically, in x86 server environments,

companies would run just one application workload per server. The advent of server

virtualization enables multiple workloads per server in virtualization environments.

Second, virtualization techniques improve the manageability of data centers. The

ability to migrate complete operating system instances without perceivable downtime,

also known as live migration of virtual machine (VM), facilitates fault management,

load balancing, system maintenance [20], network optimization [54], and cloud burst-

ing [25]. Third, virtualization enables software-defined resource reservation, which

provides huge flexibility to resource allocation in multi-tenancy environments.

A recent IBM research on production datacenters shows that the percentage

of physical machines and VMs involving at least one occurrence of migration in a

one-month observation window is 56.3% and 30.8%, respectively [12]. However, the

benefits of VM mobility are gained with prices. VM migration brings overheads to

applications from two aspects. First, mobility changes the network interconnection

of VMs in a cluster. Analysis on Google Cluster Data shows that 96.2% of the VMs

are not working alone. On average, a VM collaborates with 19.2 other VMs, and

49.1% of the VMs even have more than 1000 collaborator VMs. Thus, there is a high

1



chance that the migration of VMs will cause sub-optimal interconnection among VMs.

Sub-optimal interconnection degrades the performance of a cluster. This problem is

especially obvious in wide area migration scenarios. Second, mobility changes cache

contexts of VMs. Cache contexts have important impact on VM performance. Since

host-side warm pages are not transferred to the destination host during migration,

a newly migrated VM suffers HDD-like performance until host-side cache is rebuilt.

If the working set size of a VM is large (eg. Tens of GB), without a proper cache

warm-up, the period of I/O performance degradation can be as long as hours.

Virtualization provides huge flexibility to resource allocation and infrastructure

management in cloud environments. Unfortunately, I/O virtualization itself incurs

additional overheads. Our tests on KVM virtualization platforms show that the vir-

tual I/O sub-path adds an additional latency of about 60 µs. As high-performance

NVM devices such as phase change memory (PCM) emerge, which delivers page I/O

latency of about 1 µs, the overheads of virtual I/O become salient.

In this dissertation, we optimize VM storage performance in cloud environments.

The optimizations are conducted from two aspects. First, we propose Clique and Suc-

cessor mechanisms to mitigate the storage performance degradation caused by VM

migration. Second, we propose VIP framework. Considering the virtual I/O sub-

path has relatively long RTT but high bandwidth, VIP aims to avoid the virtual I/O

bottleneck via front-end I/O merging and prefetching.

1.1 Affinity Grouping of Virtual Machines for Inter-Cloud Live Migration

Public cloud utilizes statistical multiplexing of computation, storage, and net-

work to achieve elasticity, and the illusion of infinite resource capacity [3]. Virtualiza-

tion techniques, which enable resource multiplexing, play a key role in data centers.

The noteworthy benefits of virtualization techniques are twofold. First, virtualization

2



enables higher levels of resource utilization. Second, virtualization techniques improve

the manageability of data centers. The ability to migrate complete operating system

instances without perceivable downtime, also known as live migration of virtual ma-

chine (VM), facilitates fault management, load balancing, system maintenance [20],

network optimization [54], and cloud bursting [25].

When VM migration happens in a single data center, where shared storage is

available, storage migration can be avoided, just the CPU and memory states need

to be migrated. As a result, the total migration time is usually less than 30s when

the used memory size of the VM is less than 250 MB and without memory stress [29].

Even when the VM memory size is configured as 800 MB with memory stress, the

memory migration costs less than 100s [20]. Storage migration, on the other hand,

may take up to 1000s with a configured virtual disk of 40 GB in LAN environments

with Gbps links.

Resource requirement of a cloud is fluctuant. To meet the QoS of peak load,

resource is usually over-provisioned, which causes the resource underutilization when

the load is low. The hybrid cloud model, which enables overloaded applications to be

migrated to the public cloud [25], shows promise in solving this dilemma. The inter-

cloud VM migration has two notable differences with the traditional intra-cloud VM

migration. First, the inter-cloud link bandwidth is limited, due to the geographically

distributed characteristic of data centers. Second, the storage of VMs needs to be

migrated due to the inaccessibility of shared storage.

Cloud applications are usually complicated, and require the collaboration of a

cluster of VMs. Analysis of Google Cluster Data [72] shows that a single job is served

by 19.2 VMs on average, and can grow up to 4880 for large jobs. For a job consist-

ing of several tasks, communication among tasks is common. Two typical examples

are MapReduce [24] and MPI [32] applications. When performing VM migration in

3



cloud environments, existing VM selection policies, such as minimum migration time

(MMT), random choice (RC), and the maximum correlation (MC) [9] all fail to con-

sider the affinity of VMs during migration. If the VMs collaborating on a single job are

split in geographically distributed clouds, the limited inter-cloud link bandwidth will

dramatically degrade the application performance. This type of performance degra-

dation was also reported in Pacer [78] and COMMA [77]. A potential strategy is to

optimize the VM selection during migration to mitigate the impact of the network

bottleneck to application performance. For example, if all of the VMs collaborating

on an application are migrated in parallel, and resumed running at the destination

simultaneously, then the VM communication through WAN can be avoided. How-

ever, if an application contains a large number of VMs, the migration can’t converge

[77]. For the aggregate block dirty rate of the VMs overwhelms the inter-cloud link

bandwidth. As a result, grouping mechanisms are needed to partition the VMs into

subgroups. Subgroups can then be migrated one at a time.

Analysis of a traffic trace of 68 VMs in an IBM production cluster [54] shows

that the inter-VM traffic rate varies significantly. It implies that a judicious grouping

strategy benefits the application performance during migration. Migrating a group of

VMs with intensive traffic in parallel can avoid these VMs being split at geographi-

cally distributed locations during migration. We define the traffic-aware VM grouping

problem as an optimization problem, and we propose a method called Clique Migra-

tion. Two implementations of Clique Migration, R-Min-cut and Kmeans-SF algo-

rithms, are proposed. Inputs to the algorithms are the VM level traffic matrix, which

contains the VM-to-VM traffic rate, and parameters indicate the number of sub-

groups. The algorithms output the policies indicate which VMs should be migrated

together as subgroups, and the order in which each subgroup should be migrated.
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1.2 Proactive Cache Warm-up of Destination Hosts in VM Migration

Contexts

Shared storage is widely deployed as an IaaS cloud building block. In shared

storage such as Amazon Elastic Block Storage (EBS), disks are located across the

network [61]. Compared to CPU computation and DRAM access, the latencies of

disk access and network transfer are relatively high. In IaaS clouds, multiple tenants

access the storage components simultaneously. Concurrent access incurs network and

disk contention. Therefore, as it has been observed in [2], often not the computing

frontend, but the storage components, the disk backend, and the network fabric, are

the performance bottlenecks in IaaS clouds.

Caches are employed to save remote data locally so as to shorten the data access

path and reduce access latency. For example, FS-Cache [28], a network filesystem

caching facility, trades client-side local storage space to gain performance improve-

ments for access to slow IP networks. The web caching [33] is also widely deployed

to accelerate page response of web browsers. In Bing web search, each worker server

uses tens of GB of DRAM for caching to reduce the average amount of disk I/O to

less than 0.3 KB/s per server [26].

In cloud environments, I/O requests from applications traverse VMs, hosts, net-

works, and finally complete on storage servers. In virtualization systems, host-side

caches are critical for improving VM storage performance. Many optimizations of

host-side caches have been proposed. To achieve better cache efficiency, eviction-

based page placement policies [35, 48] and content-based page deduplication [62]

have been implemented to make the VM direct cache and the host-side cache be ex-

clusive. Cache pooling [31], and SSD-based caching [17, 15, 70, 71, 52, 4, 53] have

been implemented to increase the cache efficiency or capacity. These existing works
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bring host-side caching to the stage.

VM storage performance benefits brought by warm host-side caches are voided

by VM migration, a common activity in today’s datacenters. The live migration of

VMs facilitates fault management, load balancing, system maintenance [20], datacen-

ter network optimization [54], and cloud bursting [25], etc.. A recent IBM research

on production datacenters shows that the percentage of physical machines and VMs

involving at least one occurrence of migration in a one-month observation window

is 56.3% and 30.8%, respectively [12]. Since warm pages in the source host are not

transferred to the destination host during migration, a newly migrated VM suffers

HDD-like performance until the cache is rebuilt. If the working set size of the VM is

large (eg. Tens of GB), without a proper cache warm-up, the period of I/O perfor-

mance degradation can be as long as several hours [4]. This performance degradation

has been reported in [15, 22, 10].

There are three potential methods to mitigate the VM I/O performance degra-

dation due to the cache coldness after VM migration. First, a shared cache pool [31]

can be deployed to enable post-migration accessibility of cached pages. Second, pages

residing in host-side caches can be migrated during migration process [70]. Third, ex-

isting storage-side cache warm-up mechanism such as Bonfire [75] can be customized

to preload data into caches after VMs resume running on destination hosts. However,

all these methods have limitations. The first method is restricted to local areas since

low-speed wide area networks limit the benefits of cache pooling. The second method

may considerably prolong the total VM migration time if the cache footprint to be mi-

grated is large. The third method is practical, but during the cache warm-up period,

VMs will undergo extreme I/O performance degradation due to the I/O contention

caused by aggressive data preloading.

We propose Successor, which proactively warms up caches of destination hosts

6



before migration completes. Successor ensures that post-migration VM storage per-

formance is as good as the pre-migration performance. Specifically, accessibility of

destination hosts during migration enables Successor to parallelize cache warm-up

and VM migration. Being different from storage-side cache warm-up [75] that only a

single machine is involved, VM migration involves two active physical machines, which

enable running VM on the source host and concurrently conducting cache warm-up

on the destination host. Parallelizing the cache warm-up and VM migration brings

challenges. In the memory-only migration scenario, there is a write-after-prefetch

cache consistency problem. That’s if a page is modified in the source host after it

has been prefetched into the cache of the destination host, the prefetched page be-

comes stale. In storage migration scenario, there is a warm-up I/O path problem.

That’s VM disk images still reside in source hosts during VM migration, destination

hosts are not able to build local cache footprints of migrating VMs before migra-

tion completes. We propose dirty page tracking and piggyback warm-up on migration

mechanisms to address these two problems, respectively. We implement Successor on

a QEMU/KVM [8, 39] virtualization platform. Tests show that parallelizing cache

warm-up and VM migration can be achieved with Successor.

1.3 System-level Optimization of Virtual I/O

VM-side caches can obviate the I/O virtualization overheads so as to improve

the VM storage performance and system energy efficiency. More specifically, based

on our tests for 4KB read requests at the IOPS of 5k, hypervisor-side DRAM caches

consume about 3x the power and delivers 30x the per I/O latency of VM-side DRAM

caches. One of our servers hosts four I/O intensive VMs, the hypervisor-side caching

consumes 48 watts while the VM-side caching consumes only 13 watts. The idle power

of the server is 121 watts. In other words, comparing with hypervisor-side caching,
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VM-side caching can save about 25% of the entire server’s active power.

Although the performance and energy efficiency of VM-side caching are much

higher than hypervisor-side caching, building a large VM-side DRAM cache is costly.

For example, doubling the DRAM size of a Google n1-standard-1 VM instance in-

creases the whole VM’s price by 40%. From the viewpoint of system management,

larger VM DRAM allocation means lower VM density, which is the number of VMs

can be supported by a physical machine, since the DRAM capacity is a key limita-

tion factor of VM density. Therefore, it’s not cost-efficient to simply deploy a large

VM-side DRAM cache for performance and energy efficiency purpose.

Fortunately, the transfer bandwidth between the virtual I/O front-end and the

back-end is high, that provides a chance to implement front-end prefetching so as to

avoid the I/O virtualization bottleneck. Specifically, for application running inside

the VM, our tests show that for 4KB small I/O requests, the maximum throughput of

hypervisor-side caching is only about 3% of the VM- side caching. For 1MB large I/O

requests, the maximum throughput of hypervisor-side caching is nearly the same as

the VM-side caching. Therefore, if a batch of small front-end requests can be merged

as a large request, the I/O virtualization overhead can be amortized. As a result,

VM applications perceive improved throughput and the system energy consumption

is also reduced. The I/O batch submission has also been employed to improve the

throughput of multi-queue SSDs in I/O virtualization platforms [37]. However, as

it’s stated in [37] that if the polling interval of the batch submission is too short, the

throughput gain is very limited. Simply increasing the polling interval will consider-

ably increase the latency of part of the requests.

Prefetching can obtain the similar benefits of I/O batch submission, but avoid the

increased I/O response time caused by long polling intervals. Instead of batching on-

demand requests, if correlated blocks can be predicted, batched and prefetched into
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the VM-side cache, future read requests can be accelerated without a long queuing

latency. Our tests on Google Compute Engine show that even the naive sequential

front-end prefetching increases the VM random read I/O throughput by 2.7x and

shortens the response time of more than 95% of the requests.

An optimal prefetching needs to take the block correlation as well as the perfor-

mance characteristics of the storage devices into consideration. Since not all workloads

have strong spatial locality, a native sequential prefetching may read considerable un-

used data into the cache. Prefetching is not free. Prefetching unused data is a waste

of storage device bandwidth and cache space. Also, the prefetching process competes

system resources with the user-oriented applications, and degrades the application

performance.

We propose VIP, which utilized Markov chains to recognize I/O correlation se-

quences which in turn are used for prefetching. VIP makes the following contributions.

First, we extensively evaluate the impact of virtual I/O on VM storage performance

and on system energy consumption. Second, we analyze a group of block I/O traces

and quantify workload features to validate the potential gains of virtual I/O front-

end prefetching. Third, we propose VIP, which adaptively preloads data from the

back-end cache into the front-end cache so as to improve the VM performance and

the system energy efficiency. Through block I/O trace based simulations, we verify

the effectiveness of VIP algorithm. VIP enables tenants of public clouds to optimize

storage performance without the involvement of cloud service providers. Also, IaaS

providers can integrate VIP into their VM instance templates to improve virtual I/O

performance in a tenant-transparent way. VIP can be stacked above virtual I/O

optimizations such as VIO-prefetching [19] and Virtio-blk Multi-queue [43, 38].
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1.4 Dissertation Organization

The remainder of this dissertation is structured as follows. In Chapter 2, we

introduce Clique Migration, a migration optimization mechanism that exploits the

affinity of VMs to maximize cluster performance during its inter-cloud live migration.

Based on Clique Migration, we propose and implement two algorithms called R-

Min-Cut and Kmeans-SF. Analysis of the traffic trace of 68 VMs in an IBM produc-

tion cluster shows that our algorithms can reduce inter-cloud traffic by 25% to 60%,

when the degree of parallel migration is from 2 to 32. Tests of MPI multi-PingPing

benchmark running on simulated inter-cloud environments, show that our algorithms

can significantly shorten the period during which applications undergo performance

degradation. Tests of MPI Reduce scatter benchmark show that R-Min-Cut can keep

the performance during migration at 26% to 75% of the non-migration scenario.

In Chapter 3, we present Successor, a proactive cache warm-up mechanism for

destination hosts in virtual machine migration contexts. Based on the observation

that destination hosts are active during migration, Successor parallelizes destination

cache warm-up and VM migration to proactively prefetch warm pages into destination

caches before migration completion, so that the cache contexts as well as the post-

migration performance of VMs can be maintained without degradation. Compared

with migrating host-side cache and Bonfire, Successor achieves zero VM-perceived

cache warm-up time with low resource costs and performance penalties.

In Chapter 4, we present VIP, an adaptive virtual I/O front-end prefetching

mechanism. VIP prefetches correlated data from the back-end (hypervisor-side) cache

into the front-end (VM-side) cache when a back-end access is inevitable, so as to take

the performance benefits of VM-side caches without losing the capacity benefits of

hypervisor-side caches. Compared with hypervisor-side caching, VIP achieves faster
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virtual I/O response and lower system energy consumption with a cost of limited

additional VM-side DRAM resource.

In Chapter 5, we discuss research efforts related to this dissertation. In Chapter

6, we summarize our work and discuss various directions for future work motivated

by the work of this dissertation.
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CHAPTER 2

AFFINITY GROUPING OF VIRTUAL MACHINES FOR

INTER-CLOUD LIVE MIGRATION

Affinity is common among Virtual Machines (VMs) in cloud environments. If VMs

collaborating on a job are split in geographically distributed clouds, the low band-

width and high latency inter-cloud communication via a wide area network (WAN)

will dramatically degrade the system performance. A potential solution is migrating

all of the VMs collaborating on a job in parallel, so as to avoid wide area communi-

cation. However, if the job is too large, it becomes impractical to migrate all of the

VMs simultaneously due to limited WAN bandwidth and high block dirty rate. We

propose a migration optimization mechanism called Clique Migration to partition a

large group of VMs into subgroups based on the traffic affinities among VMs. Then,

subgroups are migrated one at a time. Based on Clique Migration, we propose and

implement two algorithms called R-Min-Cut and Kmeans-SF. Analysis of the traffic

trace of 68 VMs in an IBM production cluster shows that our algorithms can reduce

inter-cloud traffic by 25% to 60%, when the degree of parallel migration is from 2

to 32. Tests of MPI multi-PingPing benchmark running on simulated inter-cloud

environments, show that our algorithms can significantly shorten the period during

which applications undergo performance degradation. Tests of MPI Reduce scatter

benchmark show that R-Min-Cut can keep the performance during migration at 26%

to 75% of the non-migration scenario.
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Fig. 1. The Throughputs of Intel MPI Multi-PingPing benchmark using different net-

work configuration.

2.1 Problem Description

We consider a scenario where multiple VMs need to be migrated from one data

center to another. In this scenario, we seek to mitigate the performance degradation

of applications during the live migration of VMs. We name our migration optimiza-

tion mechanism Clique Migration.

Clique Migration is proposed based on several observations: (1) Network band-

width is often the bottleneck of cluster systems, especially when the applications are

I/O intensive. (2) In cloud environments, VMs are not working alone. (3) When the

available migration bandwidth for a VM is limited, and the block dirty rate of the

VM is relatively high, the migration fails to complete. (4) The traffic affinities among

VMs are different.

Network communication has long been the bottleneck of cluster systems for scien-

tific computation [65]. For modern cloud applications, a sudden explosion of network

traffic can significantly deteriorate the application performance [58]. Even when the

network is not saturated, remote access can still cause significant performance degra-
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dation [67]. As a result, when the interactive components of MPI, batch processing,

or multi-tier applications are split in geographically distributed data centers, the low

bandwidth, high latency link between data centers will dramatically degrade the ap-

plication performance. This observation is also reported in Pacer [78], COMMA [77],

and M. Cardosa’s work [16].

Figure 1 shows our tests with Intel MPI1 Multi-PingPing benchmark using dif-

ferent network configurations on a cluster, which contains 8 VMs hosted on 4 physical

machines. Tests show that when a VM pair are collocated at the same host, the VM-

to-VM throughput achieves 552.6 MB/s. When the VMs are interconnected via 1

Gbps LAN, the throughput achieves 54.8 MB/s on average. However, the through-

put drops to less than 1.2 MB/s when we limit the link bandwidth to 100 Mbps to

simulate WAN. This group of tests show that the link bandwidth has an obvious im-

pact on application performance, especially when the applications are communication

intensive.

The performance of inter-cloud communication decides the performance of ge-

ographically distributed applications. We use inter-cloud communication volume as

the metric to measure the performance degradation of applications during migration.

The larger the communication volume during migration, the more application perfor-

mance will be degraded. The communication volume is the product of the traffic rate

and communication time. The communication time depends on the migration time,

as well as the order in which each subgroup of VMs are migrated. This is because in

the wide area migration scenario, the longer migration takes, the more opportunity

it gives the VMs to generate dirty data at the source site. Intuitively, if all the VMs

collaborating on a job can be migrated in parallel, and resumed running at the des-

tination data center simultaneously, then the inter-cloud VM-to-VM communication

as well as the application performance degradation can be avoided.
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Fig. 2. The collaborative behavior of VMs in Google workloads.

10 20 30 40 50 60
0

500
1000
1500
2000
2500

10000

Tr
af

fic
 R

at
e

Virtual Machine ID

 Traffic Rate

Fig. 3. The traffic rate of each VM to all the other VMs.

However, based on observation 2, the number of VMs collaborating on a job can be

up to several thousands. Figure 2 demonstrates our analysis of Google Cluster Data

[72]. We define “sibling” as the VMs collaborating on a single job. The trace con-

tains more than 3 millions observations, 9218 unique jobs and 176,580 unique tasks.

The analysis shows that 96.2% of the VMs in the cloud are not working alone. On

average, a VM has 19.2 siblings, and 49.1% of the VMs have more than 1000 siblings.

As a result, if all of the VMs serving a single job are migrated simultaneously, the

migration bandwidth allocated to each VM is limited. Bradford’s work [13] has shown
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Fig. 4. The traffic rate between VM1 and each of the other VMs.

that if the VM to be migrated writes to the disk at a very fast rate, it generates a

lot of dirty data which prevents the migration from progressing [13]. The similar

observation of migrating multiple VMs in parallel was also reported in COMMA [77].

The I/O throttling mechanism proposed in [13] can be used to enforce migration con-

vergence, but it will degrade the application performance dramatically. To mitigate

performance loss, VMs need to be partitioned into several subgroups based on traffic

affinity, with each subgroup migrated as an ensemble in parallel.

As the information about the inter-VM traffic rate is not available in Google

Cluster Data [72], we use another trace from an IBM production cluster system [54]

to show the traffic affinities among VMs. The trace contains the network connection

rates of 68 VMs. The connection rate is the number of TCP connections in unit

time. We use this connection rate as traffic rate in our paper, similar to its use in the

original literature [54]. The inter-VM traffic rate can be found in Meng’s paper [54].

Here we simply show each VM’s total traffic rate, and traffic rates between VM1 and

all the other VMs. From Figure 3, we can see that each VM’s total traffic rate varies.

Figure 4 shows that different VM pairs have significantly different traffic intensities.
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Observation 4 implies that different grouping strategies have different impacts on the

inter-cloud communication, which affects the application performance. Meng’s paper

[54] has shown that per-VM traffic is relatively constant at a large time scale. This

observation implies the predictability of VM traffic, further motivating the practical-

ity of Clique Migration.

The overview of Clique Migration is illustrated in Figure 5. We use a simpli-

fied tree-like switch interconnection to demonstrate the inter-cloud VM migration

scenario. We assume a predefined group of VMs G needs to be migrated from data

center X to data center Y . We assume X and Y are geographically distributed, and

interconnected via WAN. As a result, the virtual disk must be migrated. The migra-

tion is performed in the pre-copy [39] manner, in which the storage is migrated first,

then the memory and CPU states.

When the migration is initiated, all of the VMs are located at data center X.

We assume the number of VMs contained in G is too large to be migrated all to-

gether simultaneously. G needs to be partitioned into n subgroups. Each subgroup

is denoted as gi (1 ≤ i ≤ n). When migrating gi (i ≥ 2), the subgroup sets ∪i−1j=1gj

and ∪nk=igk are split in data centers X and Y . During the migration of gi, the total
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wide area communication volume Vi is denoted as R∪i−1
j=1gj ,∪nk=igk

Tgi . As a result, dur-

ing the whole migration process, the inflicted wide area communication volume V is∑n
i=2R∪i−1

j=1gj ,∪nk=igk
Tgi .

As we use inter-cloud communication volume as the metric to measure the per-

formance degradation, we aim to minimize V . V is determined by the inter-subgroup

traffic rate, the migration latency of each subgroup, and the order in which each sub-

group is migrated. We individually discuss each of these subproblems in the following

section.

2.2 Modeling and Analysis

To minimize inter-cloud communication volume, we propose grouping mecha-

nisms to determine which VMs should be migrated together as subgroups, and a

shuffling mechanism to decide the order in which each subgroup should be migrated.

Specifically, we propose and implement two independent algorithms R-Min-Cut, and

Kmeans-SF as potential solutions.
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2.2.1 Grouping Mechanism

Assume we have a group of virtual machines G that needs to be migrated. Graph

a of Figure 6 shows the traffic graph of G. Each node represents a VM, and each

edge represents the traffic rate between each VM pair. If VMs in G are too numerous

to be migrated all together, G has to be partitioned into several subgroups, and each

VM in a subgroup can be migrated in parallel. To minimize wide area communication

volume during migration, the traffic rate between subgroups g1 and g2 should be kept

as low as possible.

The central aspect of the grouping mechanism is a graph partitioning algorithm.

The input to the algorithm is a traffic graph, which contains the VM-to-VM traf-

fic rate. The outputs are two subgraphs with minimum inter-subgroup traffic rate.

Therefore, the grouping problem can be transformed to classic min-cut problem. The

min-cut algorithm [66] can find the minimum cut of an undirected, edge-weighted

graph. The procedure of the algorithm can be summarized as follows. Suppose an

ordinary undirected graph G represents the traffic flow among all the VMs. The

vertex set V represents the VMs, and the edge set E represents the traffic relation

among VMs. Every edge e has a nonnegative real weight w(e), which specifies the

quantitative traffic rate between VM pairs. Let s and t be two vertices of G, and

G/{s,t} be the graph evolved from merging s and t. Then, a minimum cut of G is

the smaller one of a minimum s-t-cut of G and a minimum cut of G/{s, t}. So a

minimum s-t-cut algorithm can be used to construct a recursive algorithm to find a

minimum cut of a graph. The detail of the algorithm can be found in [66]. An ex-

ample in Figure 6 b demonstrates what the min-cut algorithm is expected to achieve.

The expected partitions of cluster G are g1={1,5,6}, g2={2,3,4,7} with weight w=

2.
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Algorithm: R-Min-Cut

Input: An ordinary undirected graph G with vertex set V and edge set E, edge

weight set W contains nonnegative real weight w(e) of every edge e, an arbitrarily

selected vertex a, size of each subgroup S1, ..., Sk.

Return: Sub-groups.

Procedure:

{G1, G2}=MinimumCut (G, W, a); /* Compute the binary min-cut of G using

Stoer-Wanger MinimumCut algorithm; */

Sort {Gi} by decreasing size;

index=1;

for i=1 to 2 do

subsize=|Gi|;

for i=1 to subsize do

pick a VM v which incurs minimal WAN traffic from Gi;

ordered[index]=v;

index++;

delete v from Gi;

for m=1 to k do

pick Sm elements serially from array ordered, and insert these elements

into subgroup gm;

return k subgroups {g1, ..., gk} each with a size of S1, ..., Sk

For a binary partition, min-cut is theoretically an optimal solution. However,

binary partition may be not enough for partitioning a group of VMs in a practical

scenario, because each subgroup can still be too large for migration. A further min-

cut on the subgroups seems to be a feasible solution. However, a further min-cut
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partition can’t guarantee that the wide area traffic remains minimal. That’s to say,

if g2 is still too large to be migrated, it can be further partitioned into g2a, and g2b

based on min-cut. This partition can guarantee that Rg2a,g2b is minimal. However,

it can’t guarantee that Rg1∪g2a,g2b is minimal. We propose a greedy algorithm called

R-Min-Cut, to recursively maintain a minimal wide area traffic rate during migra-

tion. In the above described scenario, instead of performing a further min-cut on g2,

R-Min-Cut will select VMs one by one from g2 to decide the order in which VMs in

g2 should be migrated. In each selection, R-Min-Cut uses an exhaustive comparison

to guarantee that the wide area traffic rate is minimal. The size of each subgroup Sm

(1 ≤ m ≤ k) can be predefined, or decided dynamically based on the block dirty rate

and available migration bandwidth. The pseudo code of R-Min-Cut is described in

Algorithm R-Min-Cut.

k-means clustering [47] is a method of vector quantization that’s popular for

cluster analysis in data mining. k-means aims to partition n observations into k

clusters, in which each observation belongs to the cluster with nearest mean. As the

traffic rate among all the VMs can be presented as a traffic matrix, each row of the

matrix is a natural traffic vector of a VM. We also explore the feasibility of k-means

to minimize inter-subgroup traffic. Although k-means is computationally difficult,

there are efficient heuristic algorithms that are commonly used and converge quickly

to a local optimum.
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Algorithm: Kmeans-SF

Input: A traffic matrix T contains VM-to-VM traffic rate, parameter k specifies

the number of result subgroups.

Procedure:

GT=kmeans(T, k); /* Compute the k-means clusterings of T using Kendall

tau similarity metric; */

Shuffle(GT)

Algorithm: Shuffle

Input: GT , the result subgroups of kmeans clustering on T .

Return: Shuffled sub-groups.

Procedure:

Find a gi from GT such that
Rgi,G\gi

Lgi
is minimal;

shuffled[1]=gi;

Delete gi from GT;

for i=2 to k do

Find a gi from GT such that
Rgi,shuffled

Lgi
is maximal;

shuffled[i]=gi;

Delete gi from GT;

return shuffled;

2.2.2 Shuffling Mechanism

After determining which VMs will be grouped together via grouping mechanism,

the order in which subgroups are migrated has considerable impact on the application
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performance. For example, assume a group of VMs G is partitioned into g1 and g2,

which consist of 2 and 5 VMs respectively. Also we assume the migration time of 2

VMs is 2T , and the migration time of 5 VMs is 5T . Let R represent the traffic rate. If

g1 is migrated first, followed by g2, then the total wide area traffic during migration

is 5T × Rg1,g2. On the other hand, if g2 is migrated first, followed by g1, then the

total wide area traffic during migration is 2T × Rg1,g2. From this analysis, we can

see that even for the same grouping decision, different orders in which subgroups are

migrated considerably affects the amount of wide area traffic during migration.

To decide the order in which subgroups should be migrated, we have to answer

two questions. First, which group should be migrated first when migration is initi-

ated? Second, based on the already migrated groups, which group should be migrated

subsequently? When migrating the first subgroup, it will still be running at the source

site, thus, there is no wide area communication during this step. After the comple-

tion of this step, the migrated subgroup of VMs will communicate with the VMs

located at the source site, and the wide area communication occurs. Based on the

analysis, if the first subgroup is larger, it will stay with the other VMs at the source

site longer, and less wide area communication occurs. Also, if the first subgroup is

more isolated, it will cause less wide area communication. As a result, we use
Rgi,G\gi

Lgi

as criteria for picking the first subgroup to be migrated. From all of the subgroups,

the one selected to be migrated should have the minimum quotient of traffic rate and

migration latency. After the migration of the first subgroup completes, the following

subgroup should be picked to immediately reduce wide area traffic rate. Thus, the

subgroup with higher traffic with the already migrated VMs, and with shorter migra-

tion latency, will be picked as the migration candidate.

For R-Min-Cut algorithm, shuffling is not required. Because R-Min-Cut employs

a greedy strategy which implies a chronological order. But for k-means, the clustering
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Table 1. A List of Symbols
Symbols Description

D Disk size of a VM
Ddirty Dirty data size during the last iteration of migration
W Total WAN bandwidth
R Block dirty rate of a VM
Li Latency of the ith iteration of migrating a VM
L Total latency of migrating a VM
N Number of VMs in parallel migration
Di Disk size of the ith VM in parallel migration
Wi Bandwidth allocated to the ith VM in parallel migration
Ri Block dirty rate of the ith VM in parallel migration
Lp
i Latency of migrating the ith VM in parallel migration

Lp Total latency of migrating all N VMs in parallel

is a static process, a shuffling process is needed. With shuffling mechanism, an opti-

mized k-means algorithm called Kmeans-SF is described in Algorithm Kmeans-SF.

2.2.3 Modeling the Migration Latency

Migration latency is an important parameter for our shuffling mechanism. Be-

cause migration latency decides the period during which applications undergo per-

formance degradation. A model to accurately predict the VM migration latency is

needed. Related work have been discussed in [76, 78, 46]. A list of symbols used in

this section are summarized in Table 1.

We use KVM [39] as the VM hypervisor in our testbed. The storage migration of

KVM employs the pre-copy migration model. Therefore, all of our analysis related to

storage migration in this paper assumes pre-copy. That’s virtual disk will be migrated

prior to memory copying. Storage migration of KVM employs a dirty block tracking

(DBT) mechanism. With the DBT mechanism, the virtual disk will be migrated from

beginning to end during the first iteration, and if a block has been modified after it

has been copied during migration, it will be tracked and copied again. In practice,

KVM employs a dirty block log, which provides a bitmap of modified blocks since
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the last migration. The storage migration is an iterative process, when the amount

of blocks remaining is reduced to a threshold, the memory migration begins. The

memory migration performs in a similar manner to storage migration. When the

number of dirty pages reduces to a threshold, the system will be shutdown, and the

left-over dirty blocks, pages, and CPU state will be copied to the destination. The

VM then resumes running at the destination.

The disk size is usually about two orders of magnitude of the memory size, which

makes the storage migration our primary consideration. Suppose a VM with virtual

disk size of D, migration speed of W , and block dirty rate of R. The latency of

migrating this VM can be calculated as follows.

First of all, the disk is migrated from the beginning to the end. The migration

latency of the first round iteration is calculated according to Equation 2.1.

L1 =
D

W
(2.1)

During the migration’s first round, the size of dirty blocks accumulated can be

calculated according to Equation 2.2.

Ddirty =
RD

W
(2.2)

Thus, the latency of second round migration is calculated according to Equa-

tion 2.3.

L2 =
Ddirty

W
=

RD

W 2
(2.3)
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The latencies of all rounds compose a geometric progression with the common

ratio of R
W

. The total latency of migrating the VM can be calculated according to

Equation 2.4.

L =
D

W −R
(2.4)

For parallel migration, suppose N VMs are migrated simultaneously, the latency

of migrating the ith VM can be calculated according to Equation 2.4. The latency is

shown as Equation 2.5.

Lp
i =

Di

Wi −Ri
(2.5)

Finally, the total latency of migrating all the N VMs is shown as Equation 2.6.

Lp = max
1≤i≤N

Di

Wi −Ri
(2.6)

2.3 Evaluation

To verify the effectiveness of Clique Migration, we perform trace based analysis,

as well as tests on a practical prototype system. For trace based analysis, we use

the inter-cloud communication volume during migration as the metric to measure the

performance of both R-Min-cut and Kmeans-SF algorithms. For tests on simulated

inter-cloud environments, we directly measure the performance of MPI benchmarks

in the testbed.

We run Intel MPI benchmarks 4.0 beta [32] in our prototype KVM-based virtual

machine cluster. Specifically, in one scenario, we run parallel transfer benchmark
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Multi-PingPing on 8 VMs to measure the performance of Clique Migration on a

group of VMs with obvious Cliques. In another scenario, we run a collective bench-

mark Reduce scatter on 32 VMs to measure the performance of Clique Migration in

an environment with more complex inter-VM traffic affinity.

The experiment setup is as follows. We use a data center interconnection struc-

ture described in Figure 5 as our reference model. We use a 24-port HP 1810-24G

switch as the core switch. We use another two NETGEAR ProSAFE 8-Port GS108

as edge switches, which are connected to the core switch. Each edge switch connect 4

physical machines. Each physical machine has two 2.30GHz Intel(R) Xeon(R) CPU

E5-2630 processors, 64GB RAM, 500 GB hard drives, CentOS with Linux kernel

version 2.6.32, QEMU and KVM. All of the VMs located in physical machines are

configured with 8 GB disks, 2 GB of RAM, and a single VCPU. Normally, the link

bandwidth between edge switch and core switch is 1 Gbps. In the scenario of simu-

lating WAN, we limit this link bandwidth to be 100 Mbps via configuring the core

switch parameters.

2.3.1 Accuracy of The Latency Model

Migration latency is an important metric for making a migration decision. In the

storage migration scenario, both the virtual disk and memory need to be migrated.

As the virtual disk is usually one or two orders of magnitude larger than memory, the

migration latency is dominated by the disk size. With a certain disk size, available

migration bandwidth, as well as block dirty rate have direct impact on the migration

latency [29].

To measure the accuracy of the migration latency model we conduct extensive

tests on our platform. As the latency model of parallel migration is a direct extension

of migrating a single VM, we focus on testing the migration latency of a single VM
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Table 2. Evaluation of VM migration latency with different block dirty rates.
Parameters collected with different fio write rates (MB/s);

(The units of W , R and Measured Latency are MB/s, MB/s and second;)
0 0.25 1 4 16

W 85.5 72.1 72.1 72.5 68.8
R 0 0.25 0.98 3.3 4.7

Measured Latency 93.4 110.8 112 113.6 120.1

with varying block dirty rates. The migration latency of parallel migration is decided

by the last completed VM. For parallel migration, we focus on observing the difference

in completion time for each VM.

We use fio, a standard Linux I/O tester, to generate disk pressure during
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Fig. 7. Comparison of predicted and measured migration latency of a single VM with

different block dirty rates in fio.

migration. We set the fio in randwrite and sync mode, with size of 256 MB. Meaning

that fio will perform random write directly to the disk in the range of 256 MB.

Also, we specify the write rate as 0.25, 1, 4, and 16 MB/s respectively, in the tests.

The actual migration bandwidth W , as well as the actual block dirty rate R in each

test are shown in Table 2. The measured base data D migrated during migration

is 7989.6 MB. The comparison of predicted and measured latency of migrating a
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Fig. 8. Migration completion time of each VM in the scenarios of migrating 4 VMs in

parallel with different block dirty rates in fio.

single VM with different block dirty rates is shown in Figure 7. The tests show that

with configured block dirty rate ranges from 0 to 16 MB/s, the migration latency

model has an error of less than 4%. Note that because of I/O interference, when fio

executes, the migration speed has an obvious degradation. The reason is that the

random write of fio affects the read performance of migration process. Also, when

the specified random write of fio is larger than 4 MB/s, the specified speed cannot

be achieved because of disk contention.

For parallel migration, we migrate 4 VMs simultaneously from 4 different physical

machines. The migration is performed via infiniband. The migration latency is shown

in Figure 8. The tests show that without a control mechanism, the 4 VMs can’t

complete migration at the exactly same time. The first migrated VM and the last

migrated VM have migration latency difference of up to 20%. This gap will be much

larger if the configured virtual disk size dramatically varies. In practical scenario, this

latency gap will cause wide area traffic during migration. Therefore, a synchronization

mechanism like Pacer [78] is necessary.
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Fig. 9. Comparison of traffic savings with different balanced group sizes.

2.3.2 Parallel Migration vs. Serial Migration

The motivation of Clique Migration is that serial migration will split the collab-

orating applications in geographically distributed clouds, resulting in the degradation

of application performance. In order to show the benefits of parallel migration, we

analyze the communication volume during migration in serial and parallel migration

procedures using IBM cluster trace [54]. The inter-cloud VM migration is a dynamic

process, when the placement of VMs located at the source or at the destination

change, the inter-cloud traffic rate changes. We analyze each state of the VM place-

ment during migration, calculate the inter-cloud traffic rate in a certain state, as well

as the duration of each state. We sum up the product of traffic rate and duration in

each state as the total size of communication volume during migration.

For a more accurate comparison, we use balanced group sizes in parallel migra-

tion. We partition all 68 VMs using group sizes from 2 to 32 with an exponential

increment. When the group size is 32, there are actually 3 groups with sizes of 32, 32

and 4. For a more comprehensive comparison, we use Random grouping, as well as
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Fig. 10. Comparison of Traffic savings with different Grouping, and Shuffling Mecha-

nisms.

R-Min-Cut grouping mechanism, to measure the benefits of parallel migration. The

test results are shown in Figure 9. We use communication volume of serial migration

during migration as the baseline. Tests show that even with a Random grouping

mechanism which doesn’t implement any optimization, parallel migration reduces

communication volume by up to 26.4% compared to serial migration. However, when

the group size is as small as 2 or 4, Random grouping can’t provide obvious benefits.

Parallel migration based on R-Min-Cut, on the other hand, reduces the communica-

tion volume by 24.7% even when the group size is 2. When increasing the group size

to 32, the communication volume can be reduced by up to 41.2%.

2.3.3 Grouping and Shuffling Mechanisms

To estimate the benefits of our grouping and shuffling mechanisms, we use the

same trace and metric as the above tests. We introduce random grouping as a control

group to show the benefits of our optimized methods. The test results are shown in

Figure 10. Note that in this test, we don’t employ balanced grouping sizes. This
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limitation is caused by the k-means grouping mechanism, since k-means can’t en-

sure the clustering result sets have the same size. If the size of subgroups obtained

from the grouping mechanisms are different, the comparison is not fair. To combat

this, we use the group sizes from k-means to direct the execution of R-Min-Cut and

Random mechanisms to ensure all the grouping mechanisms get the same number of

subgroups. This also ensure that the size of the subgroups are identical.

From the tests, we have two key observations. First, both R-Min-Cut and

Kmeans-SF outperform random grouping mechanism considerably. Specifically, R-

Min-Cut outperforms random grouping by 37.0% on average and up to 74.4% when

the total subgroup number is 4. Kmeans-SF also outperforms random grouping by

32.1% on average and up to 66.9%. Second, the k-means algorithm provides no ob-

vious benefits without optimizing the order in which each subgroup is migrated. The

tests show that for k-means, the shuffling mechanism reduces the communication vol-

ume by 35.3% on average, and up to 80%. This group of trace-based analysis proves

that grouping mechanisms combined with a shuffling mechanism can considerably

reduce the wide area communication volume during migration.

Additionally, in Figure 10 we can see that when k equals 8, the communication

volume is even larger than when k equals 16. The result seems to contradict with

the tests in Figure 9. The reason is that k-means clustering causes varying size of

subgroups with different values of k.

2.3.4 Simulation of MPI Performance over WAN

To verify the practicability of Clique Migration in production environments, we

test our optimization mechanisms on a simulated inter-cloud platform. The config-

urations of the system have been described at the beginning of this section. In this

group of tests, we aim to first quantify the benefits of R-Min-Cut and Kmeans-SF al-
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gorithms in a real scenario. Then, explore the range of application of each algorithm.

Finally, we provide some valuable observations made from the tests.

To quantitatively analyze application performance during migration via a net-
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Fig. 11. The performance of MPI1 parallel transfer Multi-PingPing benchmark during

migration normalized to Non-Migration.

work with limited bandwidth, we run MPI1 parallel transfer benchmark Multi-PingPing

on 8 VMs. We first obtain the traffic statistics by tracing the benchmarks, and form-

ing a traffic matrix. Then, the traffic matrix is used as input to R-Min-Cut and

Kmeans-SF algorithms. The algorithms will make optimization decisions, result-

ing in the VMs contained in each subgroups and the order in which each subgroup

should be migrated. Multi-PingPing contains multiple pairs of VMs collaborating

on the tasks, with each pair of VMs forming a natural subgroup. We perform R-

Min-Cut and Kmeans-SF algorithms on the traffic matrix of 8 VMs using group size

of 4, they both generate exactly the same migration decision. The first migration

subgroup is {VM0, VM1, VM2, VM3}, followed by {VM4, VM5, VM6, VM7}. The

Multi-PingPing application contains 4 process groups, {VM0, VM1}, {VM2, VM3},

{VM4, VM5}, and {VM6, VM7}. VMs contained in the same process group have
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intensive communication, while inter-group VMs have little communication. As a

result, the decision made by our optimized grouping mechanisms can avoid the in-

tensive intra-group communication during migration. The test results are shown in

Figure 11. As the four process groups demonstrate similar performance patterns, for

the regularity of the figure, we just show the throughput of group1 which contains

VM0 and VM1 in the figure. VM0 and VM1 have migration time of 71.4s and 72.8s in

the migration under the direction of R-Min-Cut algorithm. While in the scenario of

Random grouping, VM0 and VM1 happen to be allocated to different migration sub-

groups. VM0 and VM1 have migration time of 72.1s and 71.5s respectively. The tests

show that in the Random grouping, during the first 72.1s, VM0 and VM1 located at

the same data center, and connected through LAN, the throughput between them is

43.0 MB/s. After 72.1s, VM0 has been migrated to the other simulated data center,

and VM0 and VM1 are connected through the link with bandwidth configured as 100

Mbps. As a result, after 72.1s, the application performance undergo serious degrada-

tion, and the throughput decreases to 0.07 MB/s. After 143.6s, both VM0 and VM1

are migrated to the destination data center, and the throughput of the application

increased to the normal level of 43 MB/s. For the process group which contains VM0

and VM1, migration based on Random grouping causes a performance degradation

period of 71.4 seconds. In comparison, migration based on R-Min-Cut only causes

a performance degradation period of 4.9 seconds. Theoretically, R-Min-Cut should

not cause performance degradation during migration. However, although VM0 and

VM1 are migrated in parallel, the completion time of these two VMs has a gap of

1.4s, which causes performance degradation.

In the above scenario, Random grouping will split some tightly related VMs into

different migration subgroups. R-Min-Cut, on the other hand, can ensure all the

VM pairs with strong traffic affinity are allocated to the same migration subgroup.
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Fig. 12. The Performance of MPI1 collective Reduce scatter benchmark with different

message sizes during migration.

To further verify the usefulness of R-Min-Cut and Kmeans-SF algorithms in

complex environments, we run Intel MPI1 collective benchmark Reduce scatter on

32 VMs hosted by 8 physical machines. We first run the benchmark in static envi-

ronments and get the traffic matrix of the VMs. Then we perform R-Min-Cut and

Kmeans-SF algorithms on the matrix respectively to get the migration decisions. Fi-

nally, we perform migration in our simulated inter-cloud platform. In this test, we

set the group number as 8. The test results are shown in Figure 12.

To normalize the application performance during migration, we use the reciprocal

of response time as the metric. The reciprocal of response time in the non-migration

scenario is used as baseline. For example, when the message size is 1KB, in the non-

migration scenario, the average response time of a single Reduce scatter operation

costs 0.8 ms. When the migration is directed by random grouping, Kmeans-SF and

R-Min-Cut, the response time is 9.9 ms, 8.7 ms and 1.5 ms respectively. Thus the

normalized performance of the three mechanisms is 8.0%, 9.2%, and 52.4% of the

baseline performance respectively.
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The tests show that R-Min-Cut can keep the application performance between

27.1% and 77.8% of the baseline performance. K-menas-SF doesn’t performs as well

as it does in the Multi-PingPing scenario. We also observed an interesting phe-

nomenon in our tests. During migration, when the message size if less than 1KB,

the maximum response time can be up to 7 times of the average response time. This

implies that in the environments with limited network bandwidth, the transferring

of small message may encounter large transfer fluctuations. Therefore, in a scenario

where high QoS is required, some mechanisms are needed to reduce the ratio of this

kind of fluctuation.

36



CHAPTER 3

PROACTIVE CACHE WARM-UP OF DESTINATION HOSTS IN VM

MIGRATION CONTEXTS

In virtualization platforms, host-side storage caches can serve virtual machines (VM)

disk I/O requests, which originally target network storage servers. When these re-

quests hit host-side caches, network and disk access latencies are obviated, and thus

VMs perceive improved storage performance. VM migration is common in cloud en-

vironments, however, VM migration does not transfer host-side cache states. As a

result, a newly migrated VM suffers performance degradation until the cache is fully

rebuilt. The performance degradation period can be hours long if the cache is nat-

urally warmed up. Employing existing cache warm-up solutions such as migrating

host-side cache and Bonfire, VMs may either have a prolonged total migration time

or undergo a performance degradation period of tens of minutes due to the warm-

up caused storage contention. We propose Successor, which proactively warms up

caches of destination hosts before migration completes. Specifically, accessibility of

destination hosts during migration enables Successor to parallelize cache warm-up

and VM migration. Compared with migrating host-side cache and Bonfire, Successor

achieves zero VM-perceived cache warm-up time with low resource costs and perfor-

mance penalties. We have implemented a prototype of Successor on QEMU/KVM

based virtualization platform and verified its efficiency.
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3.1 Problem Statement

Our work parallelizes cache warm-up of the destination host and VM migration

so that a newly migrated VM perceives a warm cache instantly after migration com-

pletes. In terms of VM storage performance, we define the optimal host-side cache

warm-up in VM migration contexts as follows.

Definition. Optimal Host-side Cache Warm-up Mechanism in VM Migration

Contexts. Let D be the VM storage I/O latency distributions, and L the VM mi-

gration latency. Then a host-side cache warm-up mechanism W is optimal if the

migrated VM instantly perceives unchanged D when migration completes, and L is

not prolonged by W .

We first discuss the importance of warm host-side cache. Then, we discuss the

importance of eliminating VM-perceived cache warm-up period as well as limitations

of existing cache warm-up solutions. Finally, we discuss the optimal solution.
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Table 3. CloudVPS traces. WSS denotes the VM working set size, which is the total

data size of unique read or write. Reaccess represents the fraction of repeated

read, including read after read and read after write.

VM IOPS Volume(GB)
WSS(GB) ReaccessRead Write Read Write

vps26020 1 1.1 6.65 1.57 0.63 0.96
vps26107 17.7 18.4 36.98 33.42 9.45 0.81
vps26134 0.9 4.4 2.41 5.57 1.83 0.46
vps26136 1.6 11.7 3.03 33.61 2.83 0.68
vps26148 8.2 7.5 6.46 11.51 3.48 0.78
vps26215 3.8 17.1 15.20 24.28 12.12 0.41
vps26254 1.3 0.9 3.28 4.17 2.92 0.30
vps26255 1.6 11.8 6.05 18.44 6.23 0.12
vps26271 0.2 0.6 1.29 1.36 1.00 0.48
vps26330 1.6 13.6 2.77 31.92 1.45 0.79
vps26356 0.4 0.9 1.77 0.88 1.13 0.49
vps26391 0.6 5.7 1.31 7.94 1.56 0.37
vps26401 2.1 2.4 9.06 5.65 6.77 0.49
vps26440 3.1 2.2 10.98 3.56 1.48 0.90
vps26458 0.6 3.1 2.69 3.84 1.90 0.46
vps26477 0.2 0.15 0.53 0.37 0.48 0.53
vps26511 12.1 15.2 16.42 19.37 6.38 0.65
vps26535 8.0 18.5 36.53 35.79 20.80 0.61
Average 3.6 7.5 9.08 13.51 4.58 0.80
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3.1.1 Importance of Warm Host-side (L2) Caches

Figure 131 shows the critical path of storage access in virtualization systems.

From the viewpoint of applications running in VMs, the VM direct cache (L1), host-

side cache (L2), and storage-side cache (L3) compose a multi-level cache.

We analyze two-day traces [4] of CloudVPS production VMs. The traces are

collected at block I/O layers under L2 caches. As it’s shown in Table 3, VMs such

as vps26440 has a read volume which is 7.4x of its WSS; vps26107, vps26215 and

vps26535 have large read volumes of tens of GB. Due to the lack of simultaneously

collected traces at L1 and L2, it’s not feasible to make a quantitative comparison

between the hit ratio of L1 and L2 caches. Also, the miss ratio of L1 caches cannot be

quantitatively demonstrated. However, considering the CloudVPS traces are filtered

by L1 and L2 caches, these large read volumes probed under L2 caches are clear proof

that considerable I/O requests miss at L2 caches and more I/O requests miss at L1

caches. Thus, reducing the miss penalty of L1 caches is critical for improving read

I/O performance.

Increasing hit rates of L2 caches is the most straightforward and efficient way

to reduce the miss penalty of L1 caches. As it’s shown in Table 4, once L2 cache

hits, VMs perceive a nearly 8x read throughput increment. Once L2 cache misses, L3

cache helps improving application performance because disk accesses can be obviated.

However, L3 caches only provide obvious benefits in the case that disks of the storage

server are under pressure. If the storage server is idle, L3 caches only increase VMs

read throughput by 20%, because the block I/O layer overhead and the network

latency involved in L3 cache access are comparable to disk access time.

1L1, L2, and L3 are commonly used to denote CPU data cache hierarchies. In
the virtualization storage stack, we use L1, L2, and L3 to denote the VM, host, and
storage server side cache, respectively.
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Table 4. Impacts of the hypervisor layer cache on the VM Storage I/O performance.

fio randread benchmark is executed upon a 10 GB file in a VM under different

host-side and storage server-side cache states.
Storage Server Hypervisor VM IOPS

L3 cache miss & disk busy L2 cache miss 123
L3 cache miss & disk idle L2 cache miss 495

L3 cache hit L2 cache miss 597
Not Accessed L2 cache hit 3883
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Fig. 14. Migration-Then-Warmup. T2A exists only in storage migration scenarios, since

memory-only migration doesn’t transfer VM image files.

In production systems, the small capacity of L1 caches and high access overhead

of L3 caches are obvious limitations for improving VM storage performance. L2 caches

become standard components for optimizing VM storage performance. Cache pooling

[31] and SSD based caching [15, 52] have been deployed to extend the capacities of L2

caches so as to promote hit rates. In general, the warmness of L2 caches provides the

following benefits. First, it improves the VM-perceived storage performance. Second,

it reduces network traffic and disk load of storage servers. Third, it mitigates the

impact of storage contention on VM performance. Finally, it accelerates the VM

startup.

3.1.2 Importance of Eliminating VM-Perceived Cache Warm-up Period

As it’s shown in Figure 14, intuitively, the cache of the destination host gradu-

ally warms up after migration completes and the VM resumes running on the des-
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Fig. 15. VM migration with cache pooling.

tination machine. The problem of migration-then-warmup is that the migrated VM

will perceive the T3 period shown in Figure 14, and during T3, the VM will undergo

low storage performance due to HDD access and storage contention caused by cache

warm-up. Although during T3 the VM will observe low storage performance, if T3

is short, this is not a serious problem. However, our analysis on Cloud VPS traces

shows that the working set sizes of I/O intensive VMs can be up to 20 GB, which can

cause a T3 of more than 15 minutes. Thus, we argue that it’s imperative to eliminate

T3.

3.1.3 Existing Warm-up Solutions and Their Limitations

3.1.3.1 Cache Pooling

Cache pooling is a coldness-avoidance solution. Cache pooling enables the des-

tination host to access the source host’s pages after VM migration, so as to obviate

the need to migrate the cached pages from the source host to the destination host

and achieve seamless VM migration [10]. Figure 15 demonstrates how cache pooling

handles VM migration between two hosts. When the migrated VM issues a read

request that causes a cache miss on the destination host’s cache, the destination host
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Fig. 16. VM migration with host-side cache transfer.

forwards the read to the cache pool, which fetches the page from the source host via

remote paging instead of accessing the storage server.

Cache pool is not a standard component of virtualization platforms. Addition-

ally, cache pooling has two main limitations. First, the performance of remote paging

is much lower than accessing the local cache, because remote reads incur additional

network latencies. The post-migration performance degradation of VMs with cache

pooling is reported in [10]. Second, considering network latencies, cache pooling is

usually implemented in local area environments. Thus, for wide area migration, cache

pooling is not a practical solution.

3.1.3.2 Migrating the Host-side Cache

A straightforward method to maintain warmness of host-side caches is making

cache transfer a procedure of VM migration process. As it’s shown in Figure 16,

during VM migration, the hypervisor can transfer the host-side cache before the VM

resumes running on the destination host. Transferring the host-side cache maintains

the cache warmness after VM migration. However, host-side cache migration is not

a default function of most mainstream hypervisors. Currently, only vMotion of a

vFRC-enabled VM supports transferring host-side caches [70]. KVM and Xen don’t

support transferring host-side caches. Additionally, as we have demonstrated using
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Fig. 17. VM migration with Bonfire cache warm-up.

CloudVPS traces, VM working set size can be tens of GB, moving such a large bulk

of data during migration will considerably prolong the total VM migration latency,

which is a key metric to measure migration performance, thus, makes this mechanism

suboptimal.

3.1.3.3 Bonfire

Bonfire-like tools [75] can be used in virtualization environments to warm up

host-side caches. As it’s shown in Figure 17, after VM migration completes, Bonfire

prefetches pages from persistent storage to warm up the cache of the destination

host. As a host-side cache warm-up tool, Bonfire has two limitations. First, although

Bonfire accelerates the cache warm-up process, VMs still observe a relatively long

cache warm-up period when the cache is large. Moreover, our tests show that the

VM IOPS decreases to less than 20 during the warm-up period, which is a serious

performance problem. Thus, Bonfire violates the optimal host-side cache warm-up

requirement that a VM should perceive unchanged storage performance instantly

after migration completes. Second, Bonfire prefetches data from storage devices into

caches. This warm-up I/O path is suboptimal in storage migration scenario. Since
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Fig. 18. Migration-And-Warmup.

the whole virtual disk will be transferred from the source host to the destination host,

the candidate pages can be admitted into the cache during the transfer of virtual disks

to avoid the succedent data prefetching from the disks.

3.1.4 Optimal Solution: Proactive Cache Warm-up

The reason that existing solutions fail to achieve optimal host-side cache warm-up

is that the warm-up process and the migration process are not parallelized. To achieve

optimal warm-up, instead of waiting until the VM migration completes, cache warm-

up can be conducted proactively as soon as migration is scheduled. As it’s shown in

Figure 18, Migration-And-Warmup scheme eliminates T3. Specifically, T3 in Figure

18 can be overlapped with T1 and T2, and become T3’.

The challenges for proactive cache warm-up are twofold. First, there is a write-

after-prefetch cache consistency problem in memory-only migration scenario. Since a

VM is still running on the source host during migration, a page prefetched into the

cache of the destination host can be updated by a source side write request, which
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Fig. 19. Successor cache warm-up timeline.

makes the prefetched page in the destination cache become stale. Second, there

is a warm-up I/O path problem for proactive cache warm-up in storage migration

scenario. During storage migration, the virtual disk still resides at the source side,

thus, the destination host is not able to build local cache footprint of the migrating

VM before migration completes.

We propose Successor, a proactive cache warm-up solution. Successor employs

dirty page tracking and piggyback warm-up on migration to solve write-after-prefetch

cache consistency problem and absence of data source problem, respectively.

3.2 Successor

3.2.1 Design Overview

Successor is designed as a plug-in component of virtualization platforms. The

logical steps that we warm up a destination cache using Successor are summarized in

Figure 19.

Stage 1: Successor activation We begin with activating Successor in the
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source and destination hosts. Two subroutines, I/O logging and migration listening,

of the Successor fronend are initiated in the source host. In this stage, Successor

backend in the destination host lazily waits for the warm-up execution request from

the frontend.

Stage 2: Warm-up initialization Upon the scheduling of a VM migration,

Successor frontend determines the optimal time to initiate warm-up. Successor fron-

tend forms an optimal candidate page list and sends it to Successor backend.

Stage 3: Warm-up execution Upon receiving a page list, Successor backend

preloads the pages into the destination cache. During each round of prefetch, Succes-

sor frontend employs dirty page tracking to record the pages which are updated after

prefetch. Page preloading is an iterative process. The write-after-prefetch pages in

each round will be dropped from the destination cache and fetched again in the next

round.

Stage 4: Warm-up completion Once VM migration completes, Successor

backend conducts the last round page preloading to ensure the consistency of the

destination cache. Successor backend notifies Successor frontend that warm-up work
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is done, so the frontend can terminate I/O logging and migration listening of the

migrated VM.

3.2.2 Successor Architecture

Figure 20 presents the Successor architecture and its interaction with other sys-

tem components. Successor consists of a frontend component and a backend compo-

nent. Successor frontend functions as a warm-up coordinator, which conducts I/O log

collection, migration listening, and cache page checking to form a candidate page list

for warm-up. The frontend also takes the VM migration scheduling information, such

as migration preparing time, image file transfer time, and memory migration time,

into consideration to determine the optimal time to initiate warm-up. The Successor

backend functions as a warm-up executor, which preloads candidate pages into the

destination cache.

3.2.2.1 Successor frontend

Successor frontend includes the following routines.

Source cache snapshotting. The most straightforward candidate pages for

warm-up are the existing contents of the source host caches. Instead of copying those

contents in bulk from the source host to the destination host, Successor frontend

communicates with the memory management module via system calls like mincore

to gain a snapshot which contains a list of page numbers indicating cache contents.

With this page list, pages can be recognized and fetched from the storage server into

the destination cache during warm-up process.

I/O logging. Getting a list of the pages residing in the source cache is not

enough to make an optimal warm-up decision, since it’s not guaranteed that the size

of the destination cache is exactly the same as the source cache. Page access history
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is needed to decide which pages should be pruned if the destination cache is smaller

than the source cache, or which additional pages should be preloaded if there is more

cache space available at the destination side. To avoid the I/O requests being filtered

by the cache, page access requests need to be probed above the cache. Virtual file

system (VFS) layer is a suitable log collection point since it’s above the cache and

VFS requests contain access type, offset, size information. The I/O logging routine

probes the accesses on specified virtual disk files and extracts the access information

of each request into a log file.

I/O log based cache alignment. Using the snapshot of the source cache and

the I/O log, an optimal candidate page list can be formed. Since both the source

and the destination host use LRU as the cache replacement algorithm, Successor

uses recency as the criteria to decide the hotness of pages. Pruning the source cache

snapshot or adding additional pages, Successor prefers to reserve the most recently

accessed pages.

Dirty page tracking. Successor employs dirty page tracking based iterative

preloading to avoid the write-after-prefetch cache consistency problem. Since all of

the write requests are probed by the I/O logging routine of the frontend, dirty pages

can be determined through comparing the write time of a page in the source host

and the preloading time of the page in the destination host. During each round of

preloading, a dirty page list is formed and pushed to the backend for the next round of

preloading. The last round of preloading is performed instantly after VM migration

completes.

3.2.2.2 Successor backend

Successor backend mainly includes page preloading and piggyback cache warm-

up routines for memory-only migration and storage migration, respectively.
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Page preloading is the cache warm-up routine in memory-only migration sce-

nario. Once a page list is received from the frontend, the backend preloads the pages

from the storage server into the cache of the destination host. The page preloading

path is indicated by 1b in Figure 20. Since reading the pages incurs pressure on the

storage server, Successor supports preloading at various rates.

Piggyback warm-up on migration is the cache warm-up routine for storage

migration scenario. For storage migration, virtual disk image files are transferred

from source hosts to destination hosts. During migration, all of the virtual disk data

including the hot pages pass through the cache of the destination host. Successor

backend selectively admits hot pages into caches on-the-fly, thus, no further data

preloading from the storage server is needed. The path 2 in Figure 20 shows the

backend processing flow during storage migration.

Both page preloading in the memory-only migration, and piggyback warm-up on

migration in the storage migration scenario can be implemented via system call like

fadvise.

3.3 Implementation and Evaluation

Our tests are conducted on a 19-nodes cluster interconnected with a 24-port HP

1810-24G switch. Each physical node has two 2.30 GHz Intel(R) Xeon(R) CPU E5-

2630 processors, totally 64 GB DRAM, one 500 GB hard drive. One 12 TB RAID6

volume, which is managed by an LSI 9271-8i RAID controller, serves as the NAS

storage of the cluster. The host OS is CentOS with Linux kernel version 2.6.32, with

QEMU and KVM deployed as the hypervisor. We employ two types of VMs to con-

duct the tests, one with a 10 GB virtual disk to run micro-benchmarks, and the other

with an 80 GB virtual disk to conduct macro-benchmarks. VMs are deployed with 2

GB memory and 2 vCPU. We implemented Successor prototype as a user space tool
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Table 5. RunTime of YCSB workloads under different host-side cache states. Each

workload conducts a total of 100K operations on 100K records (Unit: Sec-

ond).

Workload Host-side Cache/ Storage Server Cache
Warm/Not Accessed Cold/Warm

Workload A 177 600
Workload B 258 1280
Workload C 176 1264
Workload D 234 1000
Workload E 991 2200

at the host layer. We employ DRAM as the host-side cache.

Our evaluation employs a mix of YCSB [21] macro-benchmarks, fio [5] micro-

benchmarks, and CloudVPS production storage traces [4]. First, we evaluate the

benefits of warm host-side caches using five representative cloud workloads of YCSB

macro-benchmark. Second, to focus on evaluating the performance of VM storage

subsystem in migration contexts and accurately compare the performance of Succes-

sor with other schemes, we employ fio micro-benchmark to minimize interferences

caused by other system resources including CPU and memory. Third, we compare

the post-migration VM storage performance under different cache warm-up mecha-

nisms through replaying IaaS VM traces, which represent the storage characteristics

of production platforms. Finally, we evaluate the overheads of Successor.

3.3.1 The benefits of warm host-side cache

3.3.1.1 Improving VM read performance

We first compare the VM read performance under warm and cold host-side caches

using YCSB benchmark. In all tests, we use gigabit Ethernet. Each workload con-

ducts a total of 100K operations on 100K records. Other parameters such as the read

and write ratios are configured as the default values. The runtimes of workloads under
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Fig. 21. Performance of YCSB workloads under warm and cold host-side caches, re-

spectively. Each workload may have a mix of reads and writes. Since the

warmness of host-side caches has ignorable impact on write requests such as

update and insert, we focus on the performance of READ operation of Work-

load A, B, C, D, and SCAN operation of Workload E.

warm and cold host-side caches are shown in Table 5. Figure 21 shows the latency

distributions in the scenarios that the host-side cache is warm and cold, respectively.

To make the host-side cache cold and warm, we drop the cached pages and run the

workload once before tests, respectively. In cold host-side cache tests, the storage-side

cache is actually warm since we don’t drop the cache of storage server explicitly. In

general, under warm host-side cache, a VM perceives a lower average read latency,

as well as 95th and 99th percentile latencies. Specifically, compared with the cold

cache scenario, warm caches reduce average read latency by 55% to 86%. Compared

with average latency, the improvement of tail latencies is moderate, but for Workload
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C, a read-only workload, the 95th and 99th percentile latencies still reduce by 86%

and 71%, respectively. This group of tests shows that warm host-side caches improve

the VM read performance a lot. Thus, from the viewpoint of applications running in

VMs, it’s important to maintain the warmness of the caches.

3.3.1.2 Reducing traffic and load on storage servers

Warm host-side caches can absorb I/O requests which originally target the net-

work storage servers, reducing network traffic and storage server load. Figure 22

shows the network traffic rate between the host machine and the storage server when

the host-side cache is warm and cold, respectively. In the tests, we keep the cache

of storage server warm to avoid the network utilization being limited by disk speed.

Compared with the cold cache, warm host-side cache reduces the network traffic rate

between the host and the storage server by 81% for Workload E and up to 95% for

Workload C. When network traffic arrives on storage servers, if the requested data is

not included in the storage-side cache, disk access is required. Our tests show that

compared with warm host-side caches, cold ones cause about a 10% increment of

storage server disk utilization under the pressure of a single workload execution.

3.3.1.3 Storage contention resisting and VM startup accelerating

Disk I/O is an important factor which limits the growth of VM density. When

multiple VMs share storage, VM storage performance is unpredictable during I/O

contention. Warm host-side cache helps to resist storage contention. Figure 23 shows

the VM storage performance under different pressure levels when the host-side cache

is cold and warm, respectively. We have two observations. First, warm caches make

VM storage performance 23x better than cold caches. Second, cold caches increase

the VM average I/O latency by up to 81% as the storage pressure increases; warm
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Fig. 22. Network traffic rate between the host and storage server under warm and cold

host-side caches, respectively.

caches make VMs perceive consistent high performance, which is not affected by I/O

activities of other VMs.

Our tests also show that a warm host-side cache accelerates the startup of a

single VM by about 20%, although the VM startup is CPU intensive. In the offline

migration scenario, VMs are migrated then restarted. As a result, proactively fetching

the boot demanded data into the cache can reduce the VM startup time. Especially

when multiple VMs are migrated in batch and restarted simultaneously as in [77, 49].

3.3.2 VM storage performance in migration contexts

3.3.2.1 Post-migration storage performance degradation

We first evaluate application performance degradation after VM migration using

three synthetic random read workloads: Uniform, Zipf, and Pareto. Each workload

has 2.5 million 4KB candidate pages, with a working set size of 10, 1.8, and 5.6

GB for Uniform, Zipf, and Pareto, respectively. We use IOPS, and 95th percentile
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Fig. 23. The performance of fio randread workload under different host-side cache

states and storage server pressure levels. Two VMs are running concurrently

on two physical machines which share a storage server. The measured VM

executes a single fio job, the other VM presses the storage system using 1, 2,

or 4 fio jobs to impose different levels of storage pressure.

latency to measure the throughput and response time of I/O requests. Benchmarks

are running in VMs. Since we focus on evaluating the impact of host-side cache on

the VM disk storage, direct I/O is set for the benchmarks to bypass the VM direct

memory. In each run, 2.5 million read requests are issued to warm up the host-

side cache. A second round benchmarking measures the storage performance of VM

under warm host-side cache. Then, VM migration is performed and another round of

benchmarking is conducted to measure the post-migration VM storage performance.

Compared with pre-migration VM storage performance under warm host-side cache,

the post-migration throughputs of benchmarks drop by 65.3% to 96.2%. Meanwhile,

the 95th percentile latencies increase by 10x to 37x.
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Fig. 24. The on-the-fly VM storage performance before, during, and after migration

with Successor, Bonfire and Natural cache warm-up mechanisms.

3.3.2.2 VM-perceived cache warm-up time

We evaluate the efficacy of Successor through comparing it with Bonfire [75], a

state-of-the-art cache warm-up solution. We focus on measuring the VM-perceived

cache warm-up time. To focus on VM storage subsystem, and to give a clear picture

of the VM storage performance fluctuation in migration contexts, we execute an fio

uniform randread benchmark inside a VM. In this group of tests, we conduct storage

migration. The VM is configured with a 10 GB virtual disk, and the working set of

the fio benchmark is 2 GB. We run the benchmark once to warm up the cache of the

source host, then we run the benchmark for a second time, meanwhile, we execute

live storage migration of the VM. We monitor the benchmark performance before,

during, and after migration. The cache of the destination host is warmed up using

Natural, Bonfire, and Successor mechanisms respectively. Natural indicates the cache

is warmed up on demand, no specific warm-up mechanism is employed.

From Figure 24, we have several important observations. First, if the cache is

warmed up naturally without any specific mechanism, it takes more than 20 minutes
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Fig. 25. The post-migration throughput of Zipf workload in asymmetric destination

cache size scenario with and without I/O log-based optimization.

for the destination cache to achieve a similar hit rate as the pre-migration source

cache. The Natural cache warm-up time relies on the request arrival rate. Intensive

requests result in a shorter cache warm-up time. In our Natural case, we use the

best achievable I/O rates of random read to warm up the cache. Second, Bonfire

shortens the cache convergence time, but during the cache warm-up period, IOPS

of fio running in the VM drops to less than 20. Some I/Os are even hung for up

to 180 seconds. To explain this, we further check the host-side CPU utilization of

processes when conducting cache warm-up with Bonfire. We notice that Bonfire

causes the CPU utilization of rpciod process, an RPC multiplexer daemon in the

critical path of remote packet transmission, increasing from 30% to 100%. Thus,

VM I/Os are blocked. Third, Successor achieves zero VM-perceived cache warm-up

time. Using Successor, the VM perceives consistent latency distributions before and

after migration. Also, Successor doesn’t prolong the VM migration latency. These

observations verify that parallelizing the warm-up and migration process is practical

and optimal host-side cache warm-up is achievable.
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Fig. 26. The first-hour post-migration read latency of Day 2 CloudVPS traces.

3.3.2.3 I/O log-based cache alignment

In unplanned memory-only migration scenario, it’s possible that there is not suf-

ficient time to preload all of the candidate pages into the destination cache. Besides,

the destination host may allocate a smaller cache to a migrating VM than what it

previously has in the source host. In these cases, some pages need to be pruned dur-

ing warm-up. Also, the destination host may allocate a larger cache to a migrating

VM, then additional pages which are currently not in the cache of the source host

can also be preloaded into the destination cache. Determining which pages should

be pruned or additionally preloaded is critical for post-migration VM storage per-

formance. Figure 25 shows the post-migration throughput of Zipf workload in the

asymmetric destination cache size scenario with and without I/O log-based optimiza-
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tion. The size of source cache is 1 GB, we extend it to 1.5 GB, and shrink it to 0.5 GB

at the destination side respectively to evaluate the benefits of I/O log-based cache

alignment. The pre-migration throughput is used as the baseline. In extend scenario,

with I/O log-based cache alignment optimization the VM throughput increases by

44%. In the shrink scenario, with and without optimization, the throughput of work-

load decreases by 39% and 52%, respectively. This group of tests shows that I/O

log-based cache alignment can be used to preload pages in preferential ways.

3.3.3 Benefits of Successor for production clouds

To evaluate the potential benefits of Successor for production clouds, we compare

the post-migration VM storage performance under different warm-up mechanisms via

replaying IaaS VM traces. We select to replay the block I/O trace of VM vps26107,

vps26215, and vps26535, which have the largest working set in the CloudVPS traces.

Trace replay is conducted in the VM user space. Since the traces span two days, we

use the day-1 trace to warm up the cache, followed by conducting VM migration, then

replay the day-2 traces and measure the latency of read requests. Considering the

fluctuation of VM performance during migration and the variety of I/O arrival rate

during the trace wall-clock time, we don’t replay traces during migration, instead, we

start replaying the day-2 traces after migration completes. We focus on observing

the first hour post-migration read latency of VMs.

Figure 26 shows the trace replay results. First, the post-migration VM storage

performance degrades by 82%, 73%, and 87% for vps26107, vps26215, and vps26535,

respectively. This is attributed to post-migration cache coldness which causes cache

hit rate loss of 91%, 77%, and 96% for vps26107, vps26215, and vps26535, corre-

spondingly. Second, Natural cache warm-up improves VM storage performance very

slowly. VM storage performance doesn’t increase much at the end of the first hour.
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Third, Bonfire can accelerate cache warm-up. It takes 327 seconds, 311 seconds, and

861 seconds to warm up vps26107, vps26215, and vps26535, respectively. However,

during Bonfire warm-up periods, VMs undergo IOPS of less than 20, which is ultra-

low. The I/O response time is highly fluctuating under Bonfire, during which we

observed a single I/O was hung for 180 seconds. Fourth, Successor enables VMs in-

stantly achieving the same post-migration storage performance as pre-migration, thus

obviating the extreme VM storage performance penalty during the Bonfire warm-up.

Compared with the Natural warm-up, Successor brings a 5.4x, 3.7x, and 7.5x VM

performance improvement for vps26107, vps26215, and vps26535, respectively. This

group of tests verifies the potential benefits of deploying Successor in production

clouds where migration activities are frequent.

3.3.4 Successor Overheads

Overheads of Successor front-end mainly come from two sources: cache snap-

shotting and VFS I/O logging. To quantify the overheads, we first measure the cache

snapshotting time with different cache sizes, and with different virtual disk sizes, re-

spectively. Tests show that page snapshotting time is positively correlated with both

the cache size and virtual disk size, but dominated by the virtual disk size. Although

page snapshotting is resource consuming, the effect of it on system performance is

not serious. Because the snapshotting period is short, only 5.3 seconds for an 80 GB

virtual disk file with a 16 GB cache. 80 GB is an average storage size per VM in

production environments [11]. Cache snapshot volume cost is about 2MB per GB

cache footprint. VFS I/O logging is implemented using SystemTap, which incurs a

very little system performance penalty. We choose fio, an I/O intensive application,

and Advanced Encryption Standard (AES), a computation intensive application to

evaluate the impact of VFS I/O logging on application performance. Tests show that
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VFS I/O logging incurs less than 2% performance penalty to fio randread benchmark,

and incurs less than 1% performance penalty to AES. About storage space consump-

tion of logging, 1 GB I/O consumes about 2 MB disk space.

Overheads of Successor back-end are scenario dependent. In storage migration

scenario, the cache warm-up is implemented via Piggyback warm-up on migration,

which is achieved by using SystemTap utility to probe the entrance of pages into the

cache and the fadvise system call to admit or evict the page. The implementation

causes a very slight performance penalty to co-locating applications. In memory-

only migration scenario, hot pages need to be preloaded from the storage server into

the cache. This process incurs considerable disk contention to co-locating applica-

tions. Proactively prefetching candidate pages into the cache at a moderate rate can

mitigate this impact.
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CHAPTER 4

SYSTEM-LEVEL OPTIMIZATION OF VIRTUAL I/O

As per-server CPU cores continuously increase, application density of virtualization

platforms has been increased, imposing high pressure on storage systems. Layers

of caches are deployed to improve storage performance. Owing to its manageability

and transparency advantages, hypervisor-side caching is widely employed. However,

hypervisor-side caches locate at the lower layer of VM disk filesystems, thus, I/O virtu-

alization operations are still involved in the critical path of cache access. Virtual I/O is

expensive in terms of round-trip time (RTT) between the front-end and the back-end

as well as CPU cycles. Virtual I/O caps the throughput (IOPS) of hypervisor-side

caches and incurs additional energy consumption. If requested data reside in the

VM-side DRAM cache, I/O virtualization overheads are obviated. Therefore, VM

applications observe fast I/O response and systems have reduced energy consump-

tion. Fortunately, the bandwidth between the virtual I/O front-end and back-end is

high, which provides a chance to prefetch some correlated data from the back-end

(hypervisor-side) cache into the front-end (VM-side) cache when a back-end access is

inevitable. We propose Virtual I/O Prefetcher (VIP), which aims to bridge the per-

formance and capacity gap between VM-side and hypervisor-side caches via virtual

I/O front-end prefetching. Our trace based simulations demonstrate that compared

with the sequential prefetching, VIP prefetching algorithm improves VM cache hit

ratio by up to 70%.
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Fig. 27. System components involved in a VM block device operation. Page cache is

a built-in module of most modern operating systems. Flash-based caches are

optional but widely deployed in virtualization platforms to accelerate storage.

The lines highlighted with red color represent virtual I/O path, which is CPU

cycle consuming and imposes considerable latency on virtual I/O requests.

4.1 Motivation and Problem Statement

In this section, we first present storage access path of VMs, explain the involve-

ment of storage components when cache hits at VM and hypervisor side, respectively.

Second, we analyze where the virtual I/O overheads lie in. Third, we discuss existing

optimizations on virtual I/O and their limitations. Finally, we discuss the benefits of

virtual I/O front-end prefetching.

4.1.1 Storage Access of VMs

Block devices are commonly exposed to VMs via emulation. The host-side entity

of a virtualized block device can be a file, an LVM logical volume, a device partition,

or a whole device. Since device emulation incurs overheads, dedicated device allo-

cation, also known as device passthrough, is implemented to enable a device being

exclusively used by a VM without the involvement of I/O virtualization layers. How-
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ever, not all devices can be allocated in the way of passthrough. For block devices,

currently only the PCI-based devices such as PCIe SSDs can be assigned to VMs via

PCI passthrough; SATA devices, however, cannot be allocated to VMs in the way

of passthrough. In this paper we assume the persistent storage of VMs is backed

by emulated block devices. But when we discuss the implementations of SSD-based

guest-side caches, we will compare the performance and energy efficiency of SSDs

connected to VMs via PCI passthrough and virtio, respectively.

For efficient emulation of block devices, paravirtualization is the standard so-

lution. Two of the most widely used para-virtualized device drivers are virtio [60]

and Xen paravirtualization [7]. The former is widely used in QEMU/KVM based

virtualization platforms; the latter is from the Xen project. Xen PV and virtio are

architecturally similar, we discuss the virtio based storage stack in details. As it’s

shown in Figure 27, assume a guest OS issued a read request on some disk file, the

activities of the guest OS and the host OS components are as follows:

(1) The read request activates a Virtual Filesystem (VFS) function, passing to

it a file descriptor and an offset.

(2) If the request doesn’t indicate direct I/O, the VFS function determines

whether the required data are available in the page cache 1a. If 1a hits, the data are

returned from the cache and the request is completed.

(3) Assuming the page cache 1a missed, the guest OS kernel must read the data

from the block device. If the requested data reside in the flash cache, it’s a flash

cache hit at 1b. In this case, data are fetched from the flash device and HDD access

is obviated.

(4) Assuming it’s a flash cache miss, the request has to go through the traditional

generic block and I/O scheduler layer and then be served by the virtual I/O device
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driver such as virtio-blk.

(5) Upon a read request, the virtio-blk frontend driver composes a request entry

and places it into the descriptor table of the virtqueue. Then, the virtio-blk frontend

driver will call virtqueue kick, which causes guest I/O exit and triggers a hardware

register access called VIRTIO PCI QUEUE NOTIFY.

(6) vhost is the host-side virtio component for completing the virtual I/O request.

Once vhost is notified by KVM for the guest kick, it fetches the virtio request from

the queue and calls QEMU, which works as a regular userspace process, to complete

the data transfer.

(7) To fetch the data, QEMU issues I/O requests which again traverse the host

OS storage stack. Host-side page cache or the optional flash cache are successively

checked. Once the data hit at the caches or have been fetched from the HDD, vhost

updates the status bit of the virtio request and issues an irqfd interrupt to notify the

guest that the request is completed.

4.1.2 I/O Virtualization Overheads

In the virtual I/O path, there are two operations that are expensive in CPU cy-

cles or in request latencies. The first is virtual I/O emulation, which requires intensive

interactions between the virtio frontend and backend. Emulation causes frequent I/O

interrupts and guest I/O exits, which are expensive in CPU cycles, as well as increase

I/O latency. The second is the relatively slow HDD-based storage access, which costs

milliseconds and has long been the bottleneck of cloud applications.

Both VM-side and hypervisor-side cache hits avoid the HDD access, thus, obvi-

ate the HDD latency. For hypervisor-side caching, virtio and qemu are always in the

I/O critical path, thus, I/O virtualization overheads are inevitable. In contrast, for

VM-side caching, if it’s DRAM-based cache, virtio and qemu are not involved in the
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Fig. 28. The meter used for power consumption measurement.

I/O path, because the DRAM of a VM is managed by KVM instead of qemu. KVM

is much more efficient than qemu userspace emulation, especially with the support of

hardware-assisted virtualization. If the cache is PCIe SSD-based, and the cache de-

vice is allocated to the VM via PCI passthrough, the I/O virtualization layers are also

obviated. PCI passthrough is supported by IOMMU, which enables direct remapping

of the guest physical address to host physical address, thus avoids I/O virtualization

layers to apply the translations and obviates the I/O operation delay. However, if

it’s SATA SSD-based, even if the cache is logically VM-side, since the access to the

cache device needs the involvement of virtio and qemu, I/O virtualization overheads

still exist. As a result, VM-side caching is not superior to hypervisor-side caching

for SATA SSD devices. To understand the I/O virtualization penalties as well as

the performance and energy efficiency characteristics of various cache deployments,

we quantitatively compare different cache schemes. Insights from the evaluation can

direct future cache designs and optimizations of virtualization systems.

To evaluate the virtual I/O overhead, we use fio [5] as the I/O benchmark. fio

enables various I/O workloads with optional parameters including read/write type,

sequential/random access, I/O size, IOPS, and O DIRECT etc.. We run fio on VMs.

Setting the direct parameter enables I/O requests bypassing VM-side caches and hit-

66



4 8 16 32 64 128 256 512 1024

0
50
100
150
200
250
300
350
400
450

I/O size (KB)

IO
P

S
 (K

)

Native
VM_side
Hypervisor_side

(a) Maximum randread
throughputs with various
I/O sizes.

1 5 10 50 90 95 99 99.9 99.99

0

50

100

150

200

250

300

350

Latency distribution (percentile)

La
te

nc
y 

(u
s)

Native
VM_side
Hypervisor_side

(b) Latency distributions
of 4KB randread at the
IOPS of 5000.

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

Throughput: IOPS (K)

P
ow

er
 c

on
su

m
pt

io
n 

(w
at

ts
) Native

VM_side
Hypervisor_side

(c) Power consumption of
4KB randread at various
IOPS.

Fig. 29. fio benchmark on DRAM-based Caches. Native denotes fio directly runs on

the host machine and hits the host OS page cache; VM side denotes fio runs

on the VM and hits the guest OS page cache; Hypervisor side denotes fio runs

on the VM, misses the guest OS page cache but hits the host OS page cache.

ting hypervisor-side caches. fio reports benchmark performance such as IOPS and

latency distribution. We measure the power of the whole machine, because the cache

access in virtualization platform involves intensive activities of multiple resources,

including cache devices and CPUs. A Watts Up? Pro ES meter shown in Figure 28

is used to measure the wall power of the machine.

Our system is equipped with an AMD Phenom II X4 B95 Quad-core 3.0 GHz

processor with AMD-V virtualization support. The host OS is a 64-bit Ubuntu 15.04

with Linux kernel version 3.19.0-30-generic. QEMU emulator version 2.4.1 and KVM

are used as the hypervisor. An official Ubuntu 15.04 64-bit Server Cloud Image is

run on the VM as the guest operating system with 2 VCPUs and 2GB memory.

We choose random read as the I/O pattern of the fio benchmark to minimize

the interference caused by potential data prefetching of operating systems. For each

cache setting, we report the maximum throughput, latency distributions, and energy

consumption of the benchmark. For latency distribution, we focus on the I/O size of

4KB, which is the default page management unit of most Linux operating systems.

Observation 1 (on DRAM cache):
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The performance of VM-side caches is very close to the native caches in throughput

and per I/O response time; while the hypervisor-side caches have an up to 97%

performance penalty.

Observation 2 (on DRAM cache):

For 4KB small I/O requests, the maximum throughput of hypervisor-side caches is

only about 3% of the VM-side caches; for 1MB large I/O requests, the maximum

throughput of hypervisor-side caches is nearly the same as the VM-side caches.

Observation 3 (on DRAM cache):

For same I/O throughput, hypervisor-side caches consume about 3x the power of

VM-side caches.
As it’s shown in Figure 29(a), with various I/O sizes, the VM-side cache consis-

tently achieves near-native performance with a gap of less than 15%. In contrast, the

hypervisor-side cache has a performance penalty of up to 97%. In Figure 29(b), the

VM-side cache consistently achieves a near-native per I/O response time. In contrast,

the hypervisor-side cache has a response time penalty of nearly 65 µs for a single 4KB

read request. In Figure 29(c), for a same I/O throughput, the hypervisor-side cache

consumes up to 3x the power of VM-side cache.

For DRAM, VM-side caches perform better and consumes less power than hypervisor-

side caches. We believe the main reason is that the VM-side cache hit bypasses the

I/O virtualization layer. Memory virtualization is implemented in the KVM kernel

module, which is efficient with the support of hardware-assisted virtualization tech-

niques such as Intel VT-x and AMD-V. In contrast, the I/O virtualization, including

virtual I/O operations and disk emulation, is mainly managed by QEMU, which

is a userspace process. The execution of virtual I/O requires frequent CPU mode

switches, such as switches between user and kernel as well as kernel to guest mode,

which are expensive in CPU cycles. As it’s shown in Figure 27, when cache hits at

1a (VM-side DRAM cache), virtual I/O and disk emulation are bypassed, the disk
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Table 6. perf system-event statistics during a 30-second cache access period with an

IOPS of 5k. We ensure the cache hit at VM-side and hypervisor-side, re-

spectively. fio is running on the VM; perf is running on the host OS to

probe the system events caused by the VM process. For a direct compari-

son, the percentages of system events are normalized to the total number of

hypervisor-side events. The units of Count and Percent are million and %,

respectively.

Event Source
Cache hit location

Hypervisor VM
Count Percent Count Percent

kernel 17545 60.90 1569 5.45
qemu 3295 11.44 0 0.00
kvm 2714 9.42 1478 5.13

kvm amd 1811 6.29 1176 4.08
libglib 1220 4.23 0 0.00

libpthread 936 3.25 0 0.00
vdso 675 2.35 0 0.00
libc 609 2.12 0 0.00

Total 28809 100 4225 14.66

I/O operation is actually transformed to virtual memory access which is managed by

KVM. When cache hits at 2a (hypervisor-side DRAM cache), it implies a cache miss

at 1a, although the disk access can be avoided, the virtual I/O and disk emulation

operations are still involved, thus, longer response time is observed by applications

running on the VM, as well as a higher system power consumption.

To further verify our explanation, we conduct system event statistics during

cache access under different caching schemes. fio benchmark is running inside a VM,

and perf utility is employed to monitor the system events caused by the VM process.

The perf statistic results are shown in Table 6. Generally, for a same amount of I/O

requests, in hypervisor-side cache scheme, the total number of VM caused system

events is 6x of the VM-side cache scheme. Specifically, in VM-side cache scheme,

there are few userspace events caused, while, in hypervisor-side cache scheme, there

are considerable user space system events such as events caused by qemu process and
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Fig. 30. Virtual I/O batch submission.

GLib library, etc.. This statistical analysis explains why hypervisor-side cache access

is more costly than VM-side cache access.

From Figure 29(a) we can observe that as the I/O size increases, the throughput

gap between VM side and hypervisor side cache schemes narrows down. We believe

the reason is that for virtual I/O requests, the communication time between the front-

end (VM) and the back-end (Hypervisor) is almost constant, thus for small requests

the response time is dominated by the virtual I/O round trip time (RTT) between

the VM and the hypervisor. When the request size increases, the real data transfer

time dominates and the RTT becomes ignorable, thus, the throughput gap between

VM side and hypervisor side cache narrows down.

Differing from Figure 29(a) and Figure 29(b) in which the VM side and Native

lines are almost overlapping, in Figure 29(c) there is an obvious gap between the

VM side and Native lines. The reason is that although VM-side memory access has

a close-to-native performance, memory virtualization involves intensive activities of

KVM module, which consumes extra power compared with native memory access.
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4.1.3 Existing Virtual I/O Optimizations and Their Limitations

4.1.3.1 I/O batch submission

Virtual I/O batch submission has been proposed to enable SSDs achieving max-

imum throughput in virtualization environments [38]. I/O batch submission is an

optimization for amortizing the I/O virtualization costs. The processing of a virtual

I/O request requires the involvement of the userspace process such as QEMU as well

as incurs user-kernel and kernel-guest CPU mode switches. Since these costs are

per I/O based, I/O virtualization layer mainly limits the I/O request rate, instead

of the data transfer rate. As a result, I/O batch submission can improve the overall

system throughput. As an example, let’s assume that 1) requests arrive evenly; 2) the

request arrival rate is two times of the system processing rate; 3) every five adjacent

requests are submitted in batch. As it’s demonstrated in Figure 30, if batch submis-

sion is not employed, the fifth request R5 will complete at time point C5. That’s the

five requests are completed in C5 time. If batch submission is used, R1 will not be

served until the arrival of R5, and the five requests will complete at time point F1,

which slightly lags C3. That’s the the five requests are completed in F1 time. Since

F1 leads C5, the system overall throughput is increased. However, batch submission

has a potential problem, that’s part of the requests may observe prolonged response

time. For example, without batch submission, R1 is assumed to complete at C1, but

it’s actually complete at F1 which lags C1 and make R1 undergoes long response

time. Another potential problem for I/O batch submission is that not all applications

welcome asynchronous response. For web structure mining applications, the content

of a page must be return before the subsequent read request could be made, since the

link of next read request is contained in the response result of its predecessor request.
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4.1.3.2 Virtual I/O backend prefetching

Traditional data prefetching focuses on applications running on bare metal sys-

tems using hard drives. SSDs have become popular alternatives over hard drives for

data-intensive applications running on virtualized servers. Considering that prefetch-

ing in every VM may cause too much overhead and the I/O blending effect in vir-

tualization storage stack, VIO-prefetching [19] implements a prefetcher in the host

system with the guest I/O process identification as the hint to accurately recognize

I/O patterns. More specifically, instead of only taking the block address into consid-

eration to recognize I/O patterns, VIO-prefetching also utilizes the PID information

to limit the pattern recognition in a separate I/O stream of an application so as to

avoid the interference caused by disk sharing. As it’s demonstrated in Figure 31,

VIO-prefetching improves the virtual I/O performance since part of read requests

originally target SSDs can be served by the faster host-side DRAM caches. However,

the host-side prefetching does not bypass the costly virtual I/O operations, because

the virtual I/O path is above the host-side cache. In other words, even data are pro-

moted into the host-side cache by prefetching, access the host-side cache still involve
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Fig. 32. The impact of virtual I/O front-end prefetching on VM storage performance

of Google Compute Engine. fio benchmark runs in a VM, issuing 4KB ran-

dread requests on a 5GB file. Direct denotes fio requests bypass the VM-side

cache and arrive the virtual block device; Buffered is similar to Direct, but the

requested data will also be brought into the VM-side cache; Prftch2 GB de-

notes the VM block device read ahead is enabled, but the cache size is limited

at 2GB. Similarly, Prftch 5GB denotes the cache size is set as 5GB.

the virtual I/O path, which is expensive in latencies and CPU cycles [51].

4.1.4 Optimizing Virtual I/O: Chances and Challenges

For large requests, instead of the communication overheads, data transfer dom-

inates the virtual I/O response time. Thus, for workloads with intensive small re-

quests, front-end prefetching, which has a chance to merge a batch of small requests

into fewer larger ones, enables the communication overheads to be amortized. Even

for the case that caches are built at the hypervisor side (virtio backend), the virtio

frontend prefetching can further improve the VM storage performance and system

energy efficiency. For instance, block device read-ahead of the guest OS can be set

to prefetch data upon each block I/O request. The result is that for a 4KB vir-

tual I/O request, a larger bulk of data such as 128 KB can be read ahead into the

VM buffer. This will benefit subsequent read requests targeting prefetched pages. A

similar method has been employed by network file systems such as NFS, in which

the default block size is 1MB instead of 4KB, so as to avoid frequent network com-
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munication between clients and servers. Moreover, our tests on virtual I/O energy

consumption with various I/O rates show that as the IOPS increases the virtual I/O

caused power has a Logarithmic growth. For example, an IOPS of 3k causes the

machine power increasing by 10w. While the IOPS is 6k and 9k, the power consump-

tions are 19w and 21w, respectively. This implies that a more intensive I/O rate has

a lower per I/O energy consumption. Unlike on-demand I/O that an I/O request will

only be issued upon its arrival, prefetching can predict which I/O requests will come

and issue them in advance of their arrival. In other word, virtual I/O prefetching

can shape the I/O issuing patterns. Thus, during the prefetching period in which the

I/O request rate is high, the system will have a lower per I/O energy consumption

than no prefetching is employed. As a result, virtual I/O prefetching may improve

the system energy efficiency.

We conduct a group of tests on n1-standard-1 VM instances of Google Computer

Engine to evaluate the impact of front-end prefetching on VM storage performance.

We utilize the default Linux OS block device read ahead mechanism as the prefetching

implementation. From Figure 32 we have four observations. First, prefetching im-

proves the VM I/O throughput. When the cache is 5GB, it can be guaranteed that all

of the prefetched data will be reused before eviction, thus, it’s an optimal case. From

the figure we can see that the VM throughput increases by 200% when prefetching

is enabled and the cache is large enough to ensure all prefetched data being reused.

Second, prefetching imposes costs which are related to the prefetching granularity.

The costs mainly come from two sources: read data from the disk and bring data into

the cache. Comparing with direct I/O, which bypasses the cache and directly read

disk, buffered I/O, which bring the read data into the cache, incurs 2% degradation

of throughput. When prefetching becomes more aggressive, the prefetching overhead

may also becomes more obvious. In the case that the prefetching cache size is set as
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2GB, which cannot ensure all of the prefetched data being reused, if the default guest

OS prefetching is enabled, the VM throughput degrades by more than 40%. Third,

the size of prefetching buffer has important impact on the prefetching effects. Larger

cache implies that data can reside longer in the cache before being flushed out, thus,

higher possibility that prefetched data will be reused before eviction. Our test has

shown the dramatic performance difference between the cache size of 2GB and 5GB.

The main challenges for efficient virtual I/O front-end prefetching are twofold.

First, improving the prefetching accuracy is hard but important for VM storage per-

formance. This is especially true when the size of the prefetching buffer is limited. As

it’s demonstrated, when the buffer size is limited, the native sequential prefetching

may dramatically degrade the VM storage performance due to considerable fruitless

but costly prefetches. Since the main memory is one of the most expensive resources

in cloud platforms, less memory usage for prefetching buffer means less costs for ten-

ants. This also makes an accurate prefetching crucial. Second, reducing the number of

prefetching requests is important for improving system energy efficiency. Prefetching

accuracy can improve VM storage performance, but the system energy consumption

mainly depends on the I/O rate. If a sequence of I/O requests is prefetched at the

granularity of per I/O, the total number of I/O requests will not be reduced, thus,

we cannot expect improved system energy efficiency. For a given workload, it’s im-

portant to merge the requests so as to reduce the number of prefetching requests as

well as to improve system energy efficiency.

We conduct trace analysis to investigate the block I/O patterns of practical

workloads. The insights can direct accurate prefetching for the design of the VIP

algorithm.
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Fig. 33. Bi-block correlations mined from block I/O traces. X axis represents a block

address; Y axis represent the next address. The occurrence count of a sequence

xy is demonstrated using various fill gradients. A red spot (x,y) in the figures

implies a high occurrence frequency of the sequence xy. Here, x and y can be

ranges instead of single points.

4.2 Trace Analysis

We investigate the block traces of various servers to identify temporal and spatial

access features which can direct efficient virtual I/O prefetching. I/O predictability is

important for the prefetching accuracy. For example, if I/O requests in a sequence are

fully random without any patterns, it’s impossible to achieve an accurate prefetching

because upon the arrival of an I/O it’s very hard to predict which I/O will follow

it. Fortunately, block device access is usually not fully random, because the files

or database records all contain semantic information which makes the accessing to
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these data follow some patterns. For example, in OLTP systems, transactions may

be conducted repeatedly and each transaction involves multiple records. Since the

block positions of these records are relatively invariable, it’s highly possible that the

accessed block addresses will follow some patterns and these patterns are constant in

a relatively long time. As a result, block device I/Os could be predictable.

Virtual I/O front-end prefetching mainly focuses on optimizing workloads dom-

inated with small read requests. To choose the block I/O traces, we select workloads

with the following features: read dominant, small I/O dominant, and I/O intensive.

More specifically, we choose the workloads with a read ratio of more than 60%, an

average read size of less than 16KB, and an average inter-arrival time of less than

15ms.

4.2.1 Spatial Correlation Behavior

Since stable patterns of block accesses are the basic premises for effective prefetch-

ing, we investigate the spatial correlation behavior of various workloads. We begin

our trace analysis by asking the following question. Given an LBA x, is the subse-

quent LBA y statistically predictable?

We first investigate the spatial correlation behavior of block I/O accesses. Figure

33 plots the block correlations recognized from UMASS Traces and MSR-C Traces

[55]. We plot dual-block correlations in this figure. In a sequence of block accesses,

we plot a corresponding point at (x,y) if block x is accessed instantly after block y.

From the figure, we observe that there exists frequent dual-block sequences shown as

dark areas in the figures. In all of these sub-figures, there are a few extremely hot

spots, which imply stable and frequent access patterns. Given a block I/O address,

the repetition of I/O patterns provides chances to predict its subsequent blocks for

prefetching.
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Fig. 34. CDFs of 8-gram I/O sequence occurrence counts.

Trace Observation 1:

For an LBA x in an access sequence, its subsequent LBA y usually falls into a few

LBA ranges. We call this observation statistical predictability of block accesses.

Trace Implication 1:

Statistical predictability of block accesses provides chances for effective prefetch-

ing.

4.2.2 Spatial Distances between Adjacent Block Accesses

As it’s demonstrated in Figure 33, every sub-figure has a dark diagonal line,

which implies spatial locality. Sequential prefetching is the default block prefetching

mechanism of most operating systems. However, sequential locality is a special case

of spatial locality. Even though a workload shows spatial locality, if it is not strongly

sequential, traditional sequential prefetching may not be effective. We continue our

trace analysis by investigating the following question. Is sequential prefetching effec-

tive for production workloads?

The dual-block correlation pattern of spatial locality can be represented as x→
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Table 7. Spatial distance (in blocks) of adjacent I/O accesses of the selected I/O work-

loads.

%th distance
Trace Repository

MSRC UMASS
prxy1 proj2 usr1 src1 1 F2 Web3

10 32 32 128 128 6 64
20 128 104 128 264 36 96
30 384 128 256 11k 1898 317k
40 560 128 384 334k 4708 1108k
50 1024 176 384 1637k 8372 2439k
60 2136 256 640 4344k 16k 7313k
70 629k 512 896 9215k 201k 10600k
80 9850k 1024 1408 19913k 644k 13109k
90 26827k 89402k 3343k 45658k 654k 29830k
99 57240k 697659k 770137k 446271k 664k 33830k

x± k. MSR-C traces have strong spatial locality, while the UMASS traces have rela-

tively weak spatial locality. Spatial locality potentially validates sequential prefetch-

ing. However, sequential prefetching is effective only if the value of k is small. There-

fore, we further investigate the spatial distances between adjacent block accesses.

Percentile distances between adjacent block accesses of each trace are listed in Table

7. For example, the 10th, 20th, and 50th percentile spatial distance between adja-

cent block accesses of prxy1 workload is 32, 128, and 1024 blocks, respectively. It

implies that sequential prefetch of 32 blocks only provides a 10% possibility making

a subsequent block included in the prefetch sequence. To increase the possibility to

20% and 50%, the prefetch length needs to be 128 and 1024 blocks. The common

default maximum block read ahead parameter of modern Linux operating systems is

256 blocks, which can provide a possibility of only about 25%, 60%, 30%, 20%, 20%,

and 25% to make the prefetch useful for subsequent block I/O for prxy1, proj2, usr1,

src1 1, F2, and Web3 trace, respectively. Aggressive prefetch may increase the hit

possibility, but it imposes high system pressure. Moreover, a same block may involve

in multiple patterns. In figures such as Figure 33(a) and 33(b), an x point may cor-

respond to more than one “hot” y points. The one-to-many mapping between x and

y implies that a block element can be contained in multiple patterns, which can be
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out of reach by sequential prefetching.

Trace Observation 2:

Spatial distances between most adjacent accesses can be relatively large; a single

LBA may involve multiple access patterns.

Trace Implication 2:

Sequential prefetching is not effective; advanced prefetching algorithms are de-

sired.

4.2.3 Recurrence of I/O Sequence Patterns

Spatial locality is an important hint for prefetching, but it’s not the sole hint.

Taking the OLTP application for example, a database select transaction may in-

volve multiple records which need to be read in a logically consistent order from the

disk but these records are not stored sequentially in the disk. In other word, for a

dual-block access sequence AB, it’s possible that B frequently follows A but B is not the

in-disk neighbor of A or even close to A. In this case, spatial locality based sequential

prefetching cannot make a correct decision to preload B into the cache upon the access

of A.

The ineffectiveness of sequential prefetching in the above case is caused by the

starkness of the prefetching algorithm, which only works for the specific sequential

access mode. We finalize our trace analysis by investigating the following question.

Which access characteristics hidden in production workloads can be used to direct in-

telligent prefetching?

Analyzing block I/O traces, we find that a lot of block access sequences recur

frequently in the access history. We take a sequence of eight continuous I/O requests
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as a unit, and count its occurrence in the access history. Figure 36 demonstrates that

for F2 trace only about 20% 8-gram sequences are only accessed once in a 10-hour

period; more than 78% 8-gram sequences are repeatedly accessed. Some sequences

even recur up to 50 times. For Prxy1 trace, about 42% 8-gram sequences are only

accessed once in a 1-week period; more than 58% sequences are repeatedly accessed.

Some sequences even recur more than 400 times.

Trace Observation 3:

Ensembles of LBA sequences frequently recur in block I/O history.

Trace Implication 3:

Access history based prediction can potentially be effective for intelligent

prefetching.

To predict the relation between the I/O characteristics of an application and its

LBA sequence recurrence, a thumb rule is that if the spatial accesses of the applica-

tion are skew such as 80% I/Os target 20% LBAs, the average I/O size is small such

as several KBs, and the average I/O arrival rate is high such as hundreds per second,

then the application may have frequent LBA sequence recurrence.

4.3 Virtual I/O Prefetching (VIP) Algorithm

Based on the insights we gain in Section 4.2, we design a virtual I/O prefetching

algorithm. We take the block correlation recognition, prefetch buffer size, and buffer

replacement algorithm into consideration. We use a prefetch simulator with differ-

ent configurations to compare the cache hit ratio of sequential prefetching and our

prefetching algorithm VIP. The goal is to investigate the effectiveness of our algorithm

81



for different workloads.

4.3.1 Recognizing Block Correlations

The rationale behind sequential prefetching is that if a data element is accessed,

its next data element will locate within relatively close storage locations. This ratio-

nale can be represented as a block access association rule x→ x± k, and k is a small

number. However, our quantitative analysis on spatial distances between adjacent

block accesses in Section 4.2.2 demonstrates that k is not always small enough for a

sequential prefetch to take effects. Therefore, more advanced block correlation mining

algorithms are desired. Fortunately, our analysis in Section 4.2.3 shows the chances

for designing access history-aware block correlation mining algorithms.

A computer system event such as a file I/O operation can cause one or more

block accesses. Assuming an I/O event A causes multiple block accesses a1-a2-a3

which happen in a predefined order. Then, every time the event A happens, the block

sequence a1-a2-a3 recurs. As a result, in the block I/O access history, the block

sequence a1-a2-a3 repeatedly happens. We call this intra-event block correlation.

Assuming I/O event A only accesses a single block a and event B accesses b. If there

exists a strong correlation between A and B, it means that when A happens, B has a

high possibility to happen. As a result, if A is a frequent event, the block sequence

a-b will repeatedly happen in the block access history. We call this inter-event block

correlation. In both cases, as far as a sequence repeatedly happens, a history-aware

block correlation mining algorithm can recognize a1-a2-a3 and a-b as frequent se-

quences, and discover a1→ a2 and a→ b as association rules.

A storage system can be considered as a discrete-time dynamical system. The

storage space with LBA set consists of a state space. The arrival time of a request

and the LBA of the request correspond to time and state of the dynamical system.
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Table 8. The conceptual correspondence between a storage system and a general dis-

crete-time dynamical system.
Storage System Discrete-time Dynamical System

LBA set State space
LBA State

Request arrival time Time
Transitions from one LBA to another Markov chain

Spatial locality Clumping

The transitions from one LBA to another in the storage space can be modeled as a

Markov chain. The spatial locality of a storage system can be seen as state space

clumping in a dynamical system. The conceptual similarities between a storage sys-

tem and a general discrete-time dynamical system are listed in Table 8.

Our trace analysis has demonstrated the visual predictability of one block I/O

request to its subsequent request. Also, the block accesses of a storage system have

the following characteristics:

(1) At a specific time point t, system is accessing block at LBA t.

(2) State set E={LBA 1, LBA 2, ...} is finite.

(3) “time” is discrete.

(4) There are probabilistic transitions between states (LBAs).

(5) Morkov property: future LBA f of the access process depends only upon the

present state LBA p.

Considering the storage access process perfectly fits the Markov process, we

model the storage access using Markov chain. We observe that the transitions from

one LBA to another are not strictly memoryless. For example, assuming there are

two frequent sequences a-b-c and b-d in the block access history, if only knowing

the present access is state b, the next state can be c or d. However, if knowing the

preceded state was a and present state is b, then it’s highly possible that the next

state will be c instead of d. Therefore, we believe an n-order Markov chain is more

accurate for modelling the block I/O process.
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4.3.2 Core Algorithm

For a sequence of historical LBA accesses, VIP employs Markov chain to rec-

ognize the LBA correlations. The core algorithm mainly consists of 3 stages: (1)

generating Markov chains for all unique LBAs; (2) indexing the Markov chains; and

(3) recognizing LBA correlations based on the Markov chains with predefined support,

confidence thresholds, and maximum correlated sub-sequence length parameters. The

algorithm is described as follows.
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Algorithm: VIPCandidate(s,sup,conf,length)

Input: LBA access sequence s,

support threshold sup,

confidence threshold conf,

maximum correlated sub-sequence length length.

Output: The correlated LBA sequences set L.

Procedure:

1: for each k in [1...length] do

MarkovChain[k] ← NGram(s, n=k)

2: for each unique LBA in s do

seq ← LBA

for each k in [1...length] do

n ← MarkovChain[k].search(seq)

if support(seq → n) ≥ sup and

confidence(seq → n) ≥ conf and

k < length

seq ← seq � n

else

add seq into L

continue

add seq into L

3: return L

Note: � denotes concatenating an LBA to a sequence.

In the first stage, the algorithm generates the 1 -order to n-order Markov chains
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Fig. 35. Possible paths of one-step and two-step transitions from state A to other states

for a three-state Markov chain.

of all unique LBAs. Here, n equals the predefined maximum correlated sub-sequence

length. All of the generated Markov chains are indexed as sorted sets to accelerate

searching. Currently, we use Redis in-memory key-value database as the storage en-

gine of Markov chains. As an example, for a sequence {A B C A B A B C}, its

1-grams and 2-grams are:

A: B {3}

B: C {2} | A {1}

C: A {1}

A B: C {2} | A {1}

B C: A {1}

C A: B {1}

B A: B {1}

Future access prediction can be considered as a multi-step state transition from

present state to a possible future state for a Markov chain. We can construct the
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state transitions of the Markov chains in the above example as Figure 35. Upon a

block I/O request, to predict its future two accesses VIP first searches the 1 -order

Markov chains, also shown as 1-grams and their possible subsequent elements, to gain

the next LBA which has the highest possibility to be accessed. Then, with the two

elements, the 2 -order Markov chains are searched to gain the third element. During

this process, proper support and confidence thresholds can be used to make the results

accurate. Considering the above sequence, if the present LBA is A with support and

confidence thresholds of 2 and 0.5, the prediction results of the future two accesses

will be the sequence {B C}.

For a sequence consists of L elements, constructing its n-order Markov chains has

a time complexity of O(L), which has very little optimization space. However, con-

structing n-order Markov chains has a spatial complexity of O(nL). In other word,

the memory consumed to save the Markov chains is proportional to the order of

the chains. We observed that for workloads with large working set sizes, saving the

Markov chains can consume GBs of space. We make an optimization and a tradeoff

to save space. First, we observed that most n-grams only occur once in the access

history. Since these n-grams are not informative for prefetching, pruning them from

the result set will save considerable space without harming the prefetching accuracy.

Second, we limit the maximum order of the Markov chains. Empirically, we construct

the chains with a maximum order of eight. Although it’s possible that an correlated

sequence contains more than eight elements, this sequence will be split into multiple

8-grams. This will slightly increase the prefetch request counts, but will considerably

decrease the space costs.

87



10000 6000 2000 800 400 100 20 10

0.0

0.2

0.4

0.6

0.8

1.0

Prefetch buffer size (x 3KB)

B
uf

fe
r h

it 
ra

tio

VIP-LRU
Sequential-LRU

VIP-FIFO
Sequential-FIFO

(a) Umass F2 trace.

40000 18000 14000 10000 6000 2000 100 10

0.0

0.2

0.4

0.6

0.8

1.0

Prefetch buffer size (x 8KB)

B
uf

fe
r h

it 
ra

tio

VIP-LRU
Sequential-LRU

VIP-FIFO
Sequential-FIFO

(b) MSRC Prxy1 trace

1e+05 60000 20000 8000 4000 1000 20 10

0.0

0.2

0.4

0.6

0.8

1.0

Prefetch buffer size (x 64KB)

B
uf

fe
r h

it 
ra

tio

VIP-LRU
Sequential-LRU

VIP-FIFO
Sequential-FIFO

(c) MSRC Usr1 trace

Fig. 36. Sequential prefetching vs. VIP. We replay traces using various combinations

of prefetching algorithms and buffer replacement policies. VIP and NAIVE

denote our prefetching and sequential prefetching, respectively. LRU and

FIFO denote the buffer replacement policies.

4.3.3 Simulation Description

We replay block I/O traces using a prefetch buffer simulator with the sequential

prefetching and our VIP prefetching algorithms. We use FIFO and LRU as buffer re-

placement policies for each case. So we can comprehensively measure the performance

of each one out of four combinations of prefetching algorithms and buffer management

policies. We split each trace into two halves. Sequential prefetching only replay the

second half with fixed prefetching rules. That’s upon the access of LBA A, data lo-

cated from LBA A+1 to LBA A+n will be prefetched. VIP block correlation recognition

algorithm uses on the first half of a trace to generate rules, which are used to guide

prefetching when replaying the second half of the trace. Upon the access of LBA A, the

block correlation algorithm of VIP will recognize an LBA sequence which includes

the LBAs correlated to LBA A with support and confidence values higher than the

predefined thresholds.
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4.3.4 Result Analysis

Based on trace simulation we have the following findings.

Simulation Finding 1:

VIP improves the buffer hit ratio by up to 73% compared to the commonly used

sequential prefetching scheme.

We first compare buffer hit ratios of VIP prefetching and sequential prefetch-

ing. Our tests demonstrate that VIP always performs better than the sequential

prefetching and improves the buffer hit ratio by up to 73%. When the buffer size is

relatively large, for example hundreds of MB for MSR-C Prxy1 trace and several GB

for MSR-C Usr1 trace, sequential prefetching may also have a good cache hit ratio.

However, in the case that VM DRAM is a scarce resource and the available buffer

size is as small as several MB, VIP demonstrates huge comparative advantages over

sequential prefetching.

Simulation Finding 2:

VIP achieves high buffer hit ratios even with extremely small buffer sizes.

Even when the buffer size is only 1MB, VIP can achieve a cache hit ratio of up

to 75% for MSR-C Prxy1 workloads. In comparison, sequential prefetching can only

achieve a hit ratio of 18% with an 1MB buffer size. Even with tiny buffer sizes of

30KB, 80KB, and 640KB for F2, Prxy1, and Usr1 workload, respectively, VIP can

achieve a cache hit ratio of 60%, 64%, and 52% accordingly. In comparison, the hit

ratios of sequential prefetching are 0, 12%, and 13%, respectively. So VIP achieves

high buffer hit ratios even with extremely small buffer sizes. Assuming the DRAM

space consumed by VIP is taken from the cache space, VIP can ensure a high buffer

hit ratio with ignorable impact on the cache hit ratio.

Simulation Finding 3:
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The effectiveness of VIP doesn’t depend on the buffer replacement policies.

The hit ratios of traditional buffers or caches depend on the replacement policies.

FIFO and LRU are two most widely used cache replacement policies. We evaluate

the effectiveness of VIP and sequential prefetching under FIFO and LRU cache re-

placement policies. Tests show that the hit ratio of sequential prefetching depends on

cache replacement policies. In all the three cases, LRU performs better than FIFO

in sequential prefetching. But for VIP, FIFO and LRU performs similarly. So VIP is

independent from cache replacement policies, which can potentially make the cache

management simple.

Our simulation results verify that VIP can improve the cache hit ratio by more

than 70% with a cache size of tens of MB. The average I/O throughput increases by

more than 3x. VIP requires ignorable cache space to achieve high hit ratio. Since the

virtual I/O cost is per I/O based, reducing the total number of I/O requests is crucial

for high energy efficiency. Current I/O framework lacks the interface to merge non-

sequential I/O requests. New prefetching interfaces are required to achieve efficient

I/O merging and as a result virtual I/O energy efficiency. To implement new I/O

prefetch interfaces and integrate VIP framework in real systems is our future work.
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CHAPTER 5

RELATED WORK

In this chapter, we discuss systems, mechanisms, and other research efforts that are

related to this dissertation. First, we survey VM migration including persistent stor-

age. Then, we discuss host-side caching and the impact of runtime context changing

on cache performance. Finally, we present various research efforts for QoS-aware

storage management in cloud environments.

5.1 VM migration including persistent storage

Migration consumes considerable CPU, memory, and network resources. As a re-

sult, migrating a VM can slow down other collocated VMs [45]. If disk storage needs

to be migrated, intensive read I/O incurred by migration will cause I/O contention.

Resources like disk and network I/O bandwidth are not strictly partitionable, due to

the nature of the hardware resource, or the limitations of current resource partitioning

mechanisms. Consequently, resource contention may lead to unexpected performance

fluctuation [42]. Migrating a VM including the local storage across WAN usually

takes tens of minutes, if a large group of VMs are migrated, the period during which

applications experience severe performance degradation is prolonged.

Given the complexity and variability of WAN, it’s challenging to perform VM

migration outside a local data center. The requirements of wide area migration differ

greatly from that of LAN migration [20], the storage back-end associated with the

VMs must also be migrated in wide area migration scenarios [1, 73, 59]. As the stor-

age is the elephant in the data center, the storage migration will dominate the latency
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of VM migration across WAN. To shorten the total migration time, data deduplica-

tion based methods are employed to mitigate transferring duplicated blocks among

images [1, 73, 59]. The methods proposed in VMFlock, CloudNet, and Shrinker [1,

73, 59] reduce size of the data migrated, as a result shorten the total migration time

considerably. However, they don’t take the affinity among VMs into consideration

during the live migration of a group of VMs. Clique Migration can be used as an op-

timization component and incorporated into the migration manager of these systems.

To meet the QoS of applications, instead of migrating the VMs one by one,

LIME [36] migrates the network, VMs, and the management system as an ensemble.

However, large scale virtual machine clusters contain thousands of VM nodes, the

limited bandwidth of the WAN link may not be able to support migrating all of these

VMs in parallel. Pacer [78] aims at synchronizing the migration progress of multiple

VMs with dependencies. Pacer coordinates the migration of multiple VMs based on

a prediction model, and dynamically allocates bandwidth as necessary. As a result,

all the VMs complete migrating at nearly the same time. Coordinated migration can

avoid the segmentation of application components over distant data centers, allevi-

ating unacceptable application performance degradation. Pacer assumes each VM

holds a single application component, and all components of an application will be

migrated in parallel. In practice, an application may contain thousands of VMs, it’s

impractical to migrate all these VMs simultaneously. Both LIME and Pacer don’t

propose a grouping mechanism for further partitioning the related VMs. COMMA

[77], on the other hand, empirically proposed algorithms to direct grouping and mi-

gration.

Starling [64], and AAGA [18] employ affinity-aware migration and grouping

mechanism to minimize communication overhead in virtualized computing platforms,

so as to improve the application performance. Meng’s work [54] aims to improve the
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scalability of data center network via optimizing the VM placement.

5.2 Caching in Virtualization Environments

Host-side caches have important impacts on the performance of virtualization

systems. Various optimizations have been proposed. Eviction-based cache place-

ment [35], hypervisor exclusive cache [48], and page deduplication [62] are proposed

to mitigate memory waste of double caching. Considering the over-provisioning of

DRAM resource in some systems, Mortar [31] implements spare memory pooling and

global content-based shared cache, respectively, to fully utilize the idle memory re-

source and improve the VM storage performance. As server flash cache solutions are

gaining adoption, flash-based caches are integrated into virtualization systems such

as vSphere [70] and Mercury [15]. Write policies for host-side flash caches [41] are

proposed to enable write-back on the host-side flash cache. Flash cache management

mechanisms such as S-CAVE [52], client-side flash caching [4], vCacheShare [53], Cen-

taur [40], and FVP [10] are implemented to maximize cache utilization, control VM

storage performance, or tolerate host and flash failures. All these projects shed light

on the importance of host-side caches.

The cold snap of caches that happen in new cache creation, running entities

restart, and runtime context switching scenarios degrades application performance

dramatically due to the plunge of the cache hit ratio. Cache warm-up is a process

during which hot data are preloaded, usually in an aggressive manner, into caches

to reduce access latency of succedent read requests. Restoring micro-architectural

CPU-level caches in thread migration and core switch scenarios is discussed in [34,

14, 23, 74]. Restoring disk caches in new cache creation and server restart scenarios

is discussed in Bonfire [75].

VM migration activities are considerable in production datacenters [12]. VM
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migration [20, 56, 13] doesn’t transfer host-side cache state, thus changes VM run-

time contexts and degrades VM storage performance. Cache pooling [31, 10] is a

coldness-avoidance mechanism, since after migration, hot data of a VM still reside in

the cache of a remote machine. However, cache pooling commonly employs remote

paging, which is not as efficient as accessing local caches due to network latency.

Migrating the host-side cache [70] is another method to maintain the cache warm-

ness after migration. However, it prolongs the total VM migration time. Bonfire-like

mechanisms can be employed to warm up host-side caches in VM migration contexts.

Nevertheless, VMs will undergo ultra-low storage performance during Bonfire cache

warm-up period, which can be tens of minutes when the cache is tens of GB. Com-

pared with these existing work, our work Successor aims to achieve a generic cache

warm-up solution in VM migration contexts.

5.3 Virtual I/O Prefetching

Host-side caches have important impacts on the performance of virtualization

systems. Various optimizations have been proposed. Eviction-based cache place-

ment [35], hypervisor exclusive cache [48], and page deduplication [62] are proposed

to mitigate memory waste of double caching. Considering the over-provisioning of

DRAM resource in some systems, Mortar [31] implements spare memory pooling and

global content-based shared cache, respectively, to fully utilize the idle memory re-

source and improve the VM storage performance. As server flash cache solutions are

gaining adoption, flash-based caches are integrated into virtualization systems such

as vSphere [70] and Mercury [15]. Write policies for host-side flash caches [41] are

proposed to enable write-back on the host-side flash cache. Flash cache management

mechanisms such as S-CAVE [52], client-side flash caching [4], vCacheShare [53], Cen-

taur [40], and FVP [10] are implemented to maximize cache utilization, control VM
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storage performance, or tolerate host and flash failures. All these projects shed light

on the importance of host-side caches.

Comparing with accessing the local hard disks or remote network storage, host-

side caching improves the VM storage performance. Host-side caches, however, are

under virtual I/O back-ends. As a result, accessing the host-side cache involves the

complete virtual I/O path, which is expensive in RTT and CPU cycles. Linux kernel

community continuously optimizes the virtio drivers. Virtio-blk [27], Virtio-blk-data-

plane [30], and Virtio-blk Multi-queue [43] have been successively implemented to

improve the virtio performance. DID [68] was proposed to reduce the I/O virtual-

ization caused interrupt delivery overheads so as to improve the virtual I/O perfor-

mance. Study on virtio [60] with network transactions shows that a busy virtualized

web-server may consume 40% more energy, due to 5x more CPU cycles to deliver a

packet, than its non-virtualized counterparts [63]. Adaptive packet buffering is em-

ployed for processing packets in batch to amortize the interrupt cost and CPU time,

so as to reduce energy consumption. To mitigate the performance degradation of

multi-queue SSDs under virtual I/O, Kim et. al. [38] also implemented I/O batch

submission via modifying the virtio [60] frontend and backend drivers. I/O batch

submission is efficient for amortizing the overheads of I/O virtualization and improv-

ing system throughput and energy efficiency. However, employing batch submission

to serve live requests will considerably prolong the response time of part of the re-

quests due to the relatively long polling interval. To avoid requests undergoing long

latency, instead of employing batch submission to serve live requests, our work VIP

uses batch submission to serve prefetching requests, which are not latency sensitive

but enable system to gain performance and energy efficiency benefits as well.

Data prefetching is widely used to reduce storage access latency. To achieve
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optimal design, data prefetching needs to consider the performance characteristics

of underlying storage devices. Flashy prefetching [69] harnesses the high bandwidth

and salient random access characteristics of SSDs to enable prefetching for multiple

simultaneous accesses. ASP [6] provides methods that resolve both independency loss

and parallelism loss due to prefetching that may arise in striped disk arrays. VIO-

prefetching [19] improves the virtual I/O performance through prefetching. However,

VIO-prefetching adopts virtual I/O backend prefetching, which is conducted inside

virtualization hosts, and mainly focuses on fully utilizing the SSD bandwidth to sup-

port prefetching. We recognize that the performance of virtual block devices is not

only decided by the underlying storage media, but also limited by the virtual I/O

driver, which conflicts with small requests. Being different from the existing work,

our work VIP suggests implementing prefetching at the virtual I/O front-end so as

to avoid the I/O virtualization overheads for cache access.

An FIFO history buffer, which naturally contains the page access sequences as

well as the freshness of pages, has been used to hold the most recent miss addresses

of main memory for effective data cache prefetching [57]. I/O access patterns and

block correlations have been investigated to improve the effectiveness of storage cache

prefetching [44, 19]. The key hint for correlation based prefetching is an address

sequence, which is recognized to direct prefetching. In each prefetching, blocks con-

tained in the sequence will be read ahead into the cache with the hope that they will

serve and accelerate future requests. VIP adopts the similar idea to conduct prefetch-

ing. Current VIP algorithm is Markov chain based, and we have demonstrates its

effectiveness.
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CHAPTER 6

FUTURE WORK AND CONCLUSIONS

Fully exploiting the flexibilities brought by server virtualization ease the resource

management and infrastructure maintenance of cloud platforms. However, it’s im-

portant to mitigate the negative side-effects caused by virtualization features such

VM mobility and I/O virtualization.

We started by investigating the impact of storage migration on virtual machine

cluster performance. We focused on measuring the VM affinity in terms of network

traffic. We found that the grouping and order in which VMs are migrated hugely

affect cluster performance during migration. However, previous works don’t take the

VM affinity into consideration when making migration policies. Therefore, we pre-

sented our solution Clique Migration, a new VM migration mechanism that exploits

inter-VM network traffic to partition VMs into subgroup, migrate VMs in same sub-

groups in parallel, to minimize the wide area communication traffic during migration

so as to maximally maintain the virtual machine cluster performance during migra-

tion. We also found that migration degrades the performance of VMs which have

host-side caching deployed. Therefore, we propose Successor, a new data prefetch

mechanism to accelerate the host-side cache warm-up in migration contexts. I/O vir-

tualization incurs additional overheads. Our tests on KVM virtualization platforms

show that the virtual I/O sub-path adds an additional latency of about 60 µs. As

high-performance NVM devices such as phase change memory (PCM) emerge, the

overheads of virtual I/O become unacceptable. Finally, We propose VIP, an adaptive

virtual I/O front-end prefetching mechanism for avoiding the frequent involvement of
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virtual I/O stacks.

In this chapter, we first summarize the contributions of this dissertation. We

then discuss several possible future research directions.

6.1 Summary

This dissertation is mainly comprised of two parts. In the first part, we in-

vestigated the impact of VM migration on VM system performance. We devised

mechanisms to mitigate the impact and optimize system performance in VM migra-

tion contexts. In the second part, we fully exploited the software-defined performance

feature of virtualization platforms to build a I/O tuning framework, which enables

elastic storage volume performance in multi-tenancy environments.

6.1.1 Mitigating the Impact of VM Migration on System Performance

Affinity is common among Virtual Machines (VMs) in cloud environments. If

VMs collaborating on a job are split in geographically distributed clouds, the low

bandwidth and high latency inter-cloud communication via a wide area network

(WAN) will dramatically degrade the system performance. A potential solution is

migrating all of the VMs collaborating on a job in parallel, so as to avoid wide area

communication. However, if the job is too large, it becomes impractical to migrate

all of the VMs simultaneously due to limited WAN bandwidth and high block dirty

rate. We present a migration optimization mechanism called Clique Migration for

inter-cloud VM migration. First, the traffic monitor collects the traffic information

between VM pairs. Then, the grouping mechanism profiles the traffic affinities, and

makes a migration decision to decide which VMs should be migrated simultaneously,

as well as the order in which each subgroup of VMs should be migrated. Analysis of

the traffic trace of 68 VMs in an IBM production cluster shows that Clique Migration
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can reduce inter-cloud traffic by 25% to 60%, when the degree of parallel migration

is from 2 to 32. Tests of MPI multi-PingPing benchmark running on simulated inter-

cloud environments, show that Clique Migration can significantly shorten the period

during which applications undergo performance degradation. Tests of MPI Reduce

scatter benchmark show that R-Min-Cut can keep the performance during migration

at 26% to 75% of the non-migration scenario. Our tests also show that a synchro-

nization mechanism like Pacer [78] is necessary in the migration manager to avoid

wide area communication of VMs in the same subgroups caused by the out of step

parallel migration.

In virtualization platforms, host-side storage caches can serve virtual machines

(VM) disk I/O requests, which originally target network storage servers. When these

requests hit host-side caches, network and disk access latencies are obviated, and

thus VMs perceive improved storage performance. However, VM migration does not

transfer host-side cache states. As a result, a newly migrated VM suffers perfor-

mance degradation until the cache is fully rebuilt. The performance degradation

period can be hours long if the cache is naturally warmed up. Employing existing

cache warm-up solutions such as migrating host-side cache and Bonfire, VMs may

either have a prolonged total migration time or undergo a performance degradation

period of tens of minutes due to the warm-up caused storage contention. We present a

host-side cache warm-up mechanism called Successor, which parallelizes cache warm-

up and VM migration to minimize VM-perceived performance degradation period.

Successor front-end snapshots cache state and logs VFS layer I/O requests. Com-

bining this information with the size of destination cache and the available warm-up

time, a candidate page set can be decided and used for the warm-up to maximize

post-migration VM storage performance. Tests on the QEMU/KVM virtualization

platform demonstrate that Successor can achieve optimal host-side cache warm-up in
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storage migration scenario. In unplanned memory-only migration scenario, achieving

optimal cache warm-up requires a longer migration time than warm-up time. I/O

log-based cache alignment is a best effort optimization if the prerequisites of optimal

cache warm-up cannot be met. Tests using Zipf workloads show that cache align-

ment can reduce the VM storage performance penalty. Through replaying IaaS VM

traces, we verify the benefits of Successor for production clouds. The overhead anal-

ysis shows that Successor incurs less than 2% performance degradation to co-locating

applications.

6.1.2 The System-level Optimization on Virtual I/O

In virtualization environments, hypervisor-side caches are deployed to improve

storage system performance. However, hypervisor-side caches locate at the lower layer

of VM disk filesystem, thus I/O virtualization stacks are still involved in the cache

access critical path. Virtual I/O is expensive in terms of round-trip time (RTT) of the

front-end and the the back-end, as well as CPU cycles, which cap the the throughput

(IOPS) of hypervisor-side caches and incurs additional energy consumption [51].

If VM I/O requests are served by VM-side DRAM caches, the requests do not

need go through I/O virtualization stacks, thus high I/O throughputs and low latency

can be achieved. A challenge to implement an efficient front-end cache is bringing

disk data into the cache in an efficient way. Our tests demonstrate that traditional

sequential prefetching is not efficient for prefetch if I/O patterns are not sequential.

Our trace analysis shows that block accesses are statistically predictable, which pro-

vides chances for effective prefetching. Also, our traces analysis shows that spatial

distances between adjacent accesses are relatively long and a single LBA may involve

multiple access patterns. Therefore, sequential prefetching is not effective and ad-

vanced prefetching algorithms are desired. Another observation is ensembles of LBA
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sequences frequently recur in block I/O history. So access history based prediction

can be effective for intelligent prefetching.

We propose virtual I/O front-end prefetching algorithm VIP, which employs

Markov chains to recognize the LBA correlations. VIP generate Markov chains for all

unique LBAs, index the Markov chains, and recognize LBA correlations based on the

Markov chains with predefined support, confidence thresholds. The LBA correlations

are utilized for cache prefetching. Our trace based simulation demonstrates that VIP

improves the cache hit ratio by up to 73% compared with the widely used sequential

prefetching. The high hit ration of VIP can be achieved even with less than 1MB

cache space. And the effectiveness of VIP is independent from cache replacement

policies.

6.2 Future Work

Virtualization promotes hardware resource utilizations and brings flexibilities to

resource management and infrastructure maintenance in data centers. As we have

pointed out, these benefits are not obtained for free. From the viewpoint of infras-

tructure management, VM migration changes the machine runtime contexts, thus

degrades VM performance. We initiated research topics including VM grouping [49]

for optimizing cluster performance in wide-area migration contexts and cache warm-

up [50] in both wide-area and local-area contexts. Further research are expected to

cover more contexts.

Virtualization adds additional layers to system software stacks. For example, due

to the existence of both guest and host operating systems, the storage and network

stacks become deeper. I/O forwarding has to go through more hops, thus higher

latencies are common for I/O requests in virtualization environments. Our study

on the impact of cache locations on storage performance and energy consumption
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of virtualization systems [51] has verified the huge impact of virtualization layers on

storage cache performance. Although reducing virtualization overheads is not a new

topic, there remains huge unexploited research space.
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