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Abstract

High-dimensional data are becoming increasingly available as data collection tech-

nology advances. Over the last decade, significant developments have been taking place

in high-dimensional data analysis, driven primarily by a wide range of applications in

many fields such as genomics, signal processing, and environmental studies. Statistical

techniques such as dimension reduction and variable selection play important roles in

high dimensional data analysis. Sufficient dimension reduction provides a way to find

the reduced space of the original space without a parametric model. This method has

been widely applied in many scientific fields such as genetics, brain imaging analysis,

econometrics, environmental sciences, etc. in recent years.

In this dissertation, we worked on three projects. The first one combines local

modal regression and Minimum Average Variance Estimation (MAVE) to introduce

a robust dimension reduction approach. In addition to being robust to outliers or

heavy tailed distribution, our proposed method has the same convergence rate as the

original MAVE. Furthermore, we combine local modal base MAVE with a L1 penalty

to select informative covariates in a regression setting. This new approach can ex-

haustively estimate directions in the regression mean function and select informative

covariates simultaneously, while being robust to the existence of possible outliers in the

dependent variable. The second project develops sparse adaptive MAVE (saMAVE).

SaMAVE has advantages over adaptive LASSO because it extends adaptive LASSO

to multi-dimensional and nonlinear settings, without any model assumption, and has

advantages over sparse inverse dimension reduction methods in that it does not require



any particular probability distribution on X. In addition, saMAVE can exhaustively es-

timate the dimensions in the conditional mean function. The third project extends the

envelope method to multivariate spatial data. The envelope technique is a new version

of the classical multivariate linear model. The estimator from envelope asymptotically

has less variation compare to the Maximum Likelihood Estimator (MLE). The current

envelope methodology is for independent observations. While the assumption of inde-

pendence is convenient, this does not address the additional complication associated

with a spatial correlation. This work extends the idea of the envelope method to cases

where independence is an unreasonable assumption, specifically multivariate data from

spatially correlated process. This novel approach provides estimates for the parameters

of interest with smaller variance compared to maximum likelihood estimator while still

being able to capture the spatial structure in the data.
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Chapter 1

Introduction and Literature Review

1.1 Introduction

Regression analysis is a standard statistical approach to study the relationship between a

univariate response variable, y ∈ R, and a set of p explanatory variables X ∈ Rp. Two

important goals for this method are: first finding relevant explanatory variables and second

having high prediction accuracy (Zou, 2006). To achieve these goals, one must estimate

the regression function that best describes the relationship between dependent and explana-

tory variables. Without any prior knowledge of the form of the relationship, the regression

function is g(x) = E(y|X = x) is often estimated nonparametrically.

With the technological advancements in last decade, it is much easier to collect informa-

tion on a large pool of variables. Due to the well-known “Curse of dimensionality” (Bellman,

1961) analyzing these types of datasets is challenging. The curse of dimensionality refers

to various phenomena that arise when analyzing and organizing data in high-dimensional

1
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spaces. One of the common themes of this problem is that when the dimensionality increases,

the sample size required to make inferences will increase exponentially.

Since the pioneering work of Li (1991), Sufficient Dimension Reduction (SDR) has re-

ceived considerable attention as an efficient tool for analyzing high dimensional data. The

basic idea of SDR is to replace the original high dimensional predictor with an appropriate

low dimensional projection without losing regression information (Cook, 1998). The goal of

SDR is to find a subspace S of the predictor space such that

y X|PSX, (1.1)

where denotes independence and P(·) represents an orthogonal projection operator with

respect to the standard inner product. Thus, if d =dim(S) and B = (β1, . . . ,βd) is a basis

for S, the predictor X can be replaced by the linear combinations βT1 X, . . . ,βTd X, often

d << p, without losing regression relationship information. When the intersection of all

subspaces, S, satisfying (1.1) also satisfies (1.1), it is called the central subspace (CS; Cook,

1994) and is denoted by Sy|X. When our primary interest is the conditional mean function

i.e. g(x) = E[y|X], the objective of sufficient dimension reduction is to find a d-dimensional

subspace S such that

y E(y|X)|PSX. (1.2)

Subspaces satisfying condition (1.2) are called mean dimension reduction subspaces (Cook

and Li, 2002). When the intersection of all subspaces satisfying condition (1.2) also satisfies

condition (1.2), it is called the central mean subspace (CMS) and is denoted by SE(y|X). As

shown in Cook (1998) and Yin et al. (2008), under mild conditions, the CS and the CMS

exist and are unique. Knowledge of the CS or the CMS is very useful for parsimoniously
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characterizing the conditional distribution of Y |X or E(Y |X). In other words, SDR provides

an effective starting point for the regression. Based on their results, we assume the existence

of the CS and the CMS throughout the study.

1.2 Literature review

1.2.1 Dimension reduction

Principal components analysis (PCA) is a general method for the reduction of multivariate

observations (Adcock, 1878) to a smaller subspace. PCA was established as the first reductive

method for regression by the mid-1900s. While PCA seems to be the dominant method of

dimension reduction across the applied sciences, there are many other well established and

recent statistical methods that might be used to address large-p regressions, including factor

analysis (Fruchter, 1954), Inverse Regression Estimation (IRE; Cook and Ni, 2005), Partial

Least Squares (PLS; Wold, 1985), projection pursuit (Friedman and Stuetzle, 1981; Huber,

1985), seeded reductions (Cook et al., 2007), kernel methods (Fukumizu et al., 2009) and

sparse methods that are based on penalization.

Cook (2007) defined sufficient reduction as follows:

Definition 1: A reduction R : RP → R
q, q ≤ p is sufficient if it satisfies one of the

following three statements:

1. Inverse approach X|(Y,R(X)) ∼ X|R(X),

2. Forward approach, Y |X ∼ Y |R(X),
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3. Joint approach, X Y |R(X),

where indicates independence, ∼ means identically distributed and A|B refers to the

random vector A given the vector B.

If we assume B = (β1, . . . ,βd) with d ≤ p is the reduction subspace then so is span(B0,B)

for any p× q matrix B0. If span(B0) and span(B1) are both dimension-reduction subspaces,

then under mild conditions so is their intersection i.e. span(B0)∩span(B1) (Cook, 1996 and

2009). Consequently, the inferential target in sufficient dimension reduction is often taken to

be the central subspace SY |X, defined as the intersection of all dimension-reduction subspaces

(Cook, 1994; 1996, and 2009). The two major approaches of sufficient dimension reduction

and finding the central subspace are forward approach and inverse approach (Adragni and

Cook, 2009).

1.2.1.1 Inverse approach

Inverse regression deals with the (inverse) conditional distribution of X|Y i.e. FX|Y . Inverse

reduction based sufficient dimension reduction methods provide estimates of the minimal

sufficient linear reduction. Sliced Inverse Regression (SIR; Li, 1991) and Sliced Average

Variance Estimation (SAVE; Cook and Weisberg, 1991) were the first methods proposed

for dimension reduction using inverse regression. These methods can estimate the central

subspace under two key conditions: linearity and constant covariance. Both SIR and SAVE

provide
√
n consistent estimators of central subspace under certain regularity conditions, but

by itself consistency does not guarantee good performance in practice.

SIR has difficulty finding directions that are associated with certain types of nonlinear

trends in E(Y |X). For instance, SIR misses the directions when the dependence between y
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and X is symmetric. SAVE was developed to address and solve this limitation, but its ability

to find linear trends is generally less than SIR’s (Adragni and Cook, 2009). Several methods

have been developed in an effort to improve on the estimates of the central subspace provided

by SIR and SAVE. Cook and Ni (2005) developed an asymptotically optimal method of esti-

mating SY |X called Inverse Regression Estimation (IRE). Ye and Weiss (2003) and Zhu et al.

(2007) attempted to combine the advantages of SIR and SAVE by using linear combinations

of them. Cook and Forzani (2009) used a likelihood-based objective function to develop a

method called Likelihood Acquired Directions (LAD) that is based on the same population

foundations as SIR and SAVE. These methods have been developed and studied mostly in

regressions where p << n, although there are some results for other settings (Li, 2007; Li

and Yin, 2008). SIR, SAVE, IRE and LAD come with a range of inference capabilities,

including methods for estimating d and tests of conditional independence hypotheses such

as Y is independent of X1 given X2, where we have partitioned X = (XT
1 ,X

T
2 )T . Some other

examples of this approach are Principal Hessian Directions (PHD; Li, 1992) and Contour

Regression (CR; Li and et al., 2005).

1.2.1.2 Forward approach

Forward regression methods study the conditional distribution of Y |X, FY |X. Examples for

this approach are Ordinary Least Squares (OLS; Li and Duan, 1985), Average Direction

Estimation (ADE; Hardle and Stoker, 1989; Samarov, 1993), Structure Adaptive Method

(SAM; Hristache et al., 2001), Minimum Average Variance Estimation (MAVE; Xia et al.,

2002), Fourier methods (FM; Zhu and Zeng 2006), and Sliced Regression (SR; Wang and

Xia, 2008).
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Minimum Average Variance Estimator (MAVE) is one of the most popular methods for

dimension reduction in forward regression setting. MAVE is an adaptive approach based

on semiparametric models, which combines the projection pursuit regression and the local

linear smoothing nicely. The regression-type model of interest in MAVE can be written as

y = g(BT
0 X) + ε, (1.3)

where g(·) is an unknown smooth link function, B0 = (β1, . . . ,βD) is an orthogonal matrix

(BT
0 B0 = ID) with the structural dimension D < p and E(ε|X) = 0. Following the idea of

local linear smoothing, Xia et al. (2002) proposed MAVE such that the parameter B0 can

be estimated by minimizing the following objective function

E{y − E(y|BTX)}2 = E{y − g(BTX)}2 = E{σ2
B(BTX)}, (1.4)

where σ2
B(BTX) = E[{y − g(BTX)}2 | BTX] is the conditional variance and BTB = Id for

identifiability. Let {(yi,Xi), 1, . . . , n} be a random sample from (y,X) according to (3.1).

For any given X0 and Xi close to X0, a local linear approximation gives

yi − g(BTXi) ≈ yi − g(BTX0)− {5g(BTX0)}TBT (Xi −X0)

≡ yi − a− bTBT (Xi −X0), (1.5)

where 5 means the first derivative. Thus,

σ2
B(BTX0) = min

a,b

n∑
i=1

{yi − a− bTBT (Xi −X0)}2wi0, (1.6)
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where wi0 ≥ 0 are kernel weights with
∑n

i=1wi0 = 1. From (1.4) and (1.6), an estimate of

the B is the solution of

min
B,aj ,bj ;j=1,...,n

n∑
j=1

n∑
i=1

[
yi −

{
aj + bTj BT (Xi −Xj)

}]2
wij. (1.7)

where θ ={B,(aj,bj), j = 1, 2, . . . , n}, aj ∈ R, bj ∈ Rd and BTB = Id. Furthermore, wij

are kernel weights defined as a function of the distance between Xi and Xj, i.e. wij =

Kh(Xi−Xj)∑n
l=1Kh(Xl−Xj)

where Kh(·) is a multidimensional kernel function and h refers to the band-

width. This minimization can be solved iteratively with respect to {(aj,bj), j = 1, . . . , n}

and B separately. The estimation of MAVE is very efficient since only two quadratic pro-

gramming problems are involved and both have explicit solutions. To improve the estimation

accuracy, a lower dimensional kernel weight w̃ij as a function of B̃
T

(Xi −Xj) can be used

after an initial estimate B̃ was obtained. The use of a smaller bandwidth in the refined

procedure can also improve the consistency rate. More details can be found in the Xia et al.

(2002) and the references therein.

Wang and Yin (2008) considered sufficient dimension reduction and variable selection

on the mean function E(Y |X) only. Focusing on the central mean subspace that was in-

troduced by Cook and Li (2002), they combined MAVE with a LASSO variable selection

method (1996) and propose a new dimension reduction and variable selection method, sparse

MAVE (SMAVE). SMAVE has advantages over LASSO because it extends lasso to multi-

dimensional and nonlinear settings, without any model assumption. Furthermore, it has

advantages over sparse inverse dimension reduction methods introduced by Li (2007) in that

is it does not require any particular distribution on X and it can exhaustively estimate the

dimensions in the conditional mean function.
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Despite its popularity in dimension reduction, MAVE is not robust under heavy tailed

error distributions and/or outliers because it uses least squares criterion. Č́ıžek and Härdle

(2006) gave a comprehensive study of the sensitivity of MAVE to outliers and proposed

a robust enhancement to MAVE by replacing the local least squares with local L- or M-

estimation. Yao and Wang (2013) extended the robust estimation to variable selection and

proposed a robust sparse MAVE. Wang and Yao (2012) introduced an adaptive estimation

for MAVE (aMAVE) which combines the kernel density estimation and MAVE that can

adapt to different error distributions.

1.2.2 Variable selection

When the number of covariates is large, it is reasonable to expect only some of the ex-

planatory variables to be relevant to predict the response variable (Yao and Wang, 2013).

SDR provides a way to find sufficient dimensions without the need for a parametric model.

However, each reduced variable is a linear combination of all of the original variables. There-

fore, these reduced variables are difficult to interpret. As a result, variable selection is very

important not only for better model interpretation, but also for higher prediction accuracy

(Zou, 2006). Traditionally, variable selection is performed using an information criterion such

as Akaike information criterion (AIC., Akike, 1973), Bayesian information criterion (BIC.,

Schwarz, 1978), etc. These criterion measure the quality of a statistical model by penalizing

the model if unimportant variables are added. However, these traditional variable selection

methods may suffer from instability with respect to small changes in the data set because

of their inherent discreteness (Breiman, 1995). In order to solve this problem, a number

of regularization approaches such as Nonnegative Garrote (Breiman, 1995 and 1996), Least
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Absolute Shrinkage and Selection Operator (LASSO; Tibshirani, 1996), Smoothly Clipped

Absolute Deviation (SCAD; Fan and Li, 2001), Least Angle Regression (LARS; Efron et

al., 2004), and Elastic Net (Zou and Hastie, 2005) were proposed to automatically select

informative variables through continuous shrinkage.

Breiman (1995) introduced regression models under direct influence of non-negative gar-

rote which is a combination between the ridge regression and best subset selection method.

Instead of using normal equations, the following loss function was proposed to estimate the

regression coefficients:

min
n∑
i=1

(
yi −

∑
j

cjxijβ̂j

)2

subject to

cj ≥ 0,
∑
j

cj ≤ t.

(1.8)

where β̂js are the regression coefficients. Least Absolute Shrinkage and Selection Operator

(LASSO) was introduced by Tibshirani (1996)

min
n∑
i=1

(
yi −

∑
j

xijβj

)2

+ λ
∑
j

|βj|1, (1.9)

where | · |1 is the L1 norm. LASSO solution can be viewed as the Bayesian maximum

posteriori estimation when parameters are apriori independent from each other and each

parameter has a double exponential prior distribution. LASSO continuously shrinks the

coefficients toward 0 as λ increases and some coefficients are shrunk to exactly 0 if λ is large

enough. Asymptotic performance for LASSO-type estimators was study by Knight and Fu

(2000). At the time that LASSO was introduced, there was not a lot of interest in using

this method because the computational resources were lacking compared to today and large
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data problems (in n, p or both) were rare (Tibshirani, 2011). LASSO is useful for fitting

a wide variety of models such as regression (Tibshirani, 1996), generalized linear model

(Guisan et al., 2002; Van de Geer, 2008; Zhang and Huang, 2008), classification (Ghosh and

Chinnaiyan, 2005), spatial filtering (Seya et al., 2015), etc. Newly developed computational

algorithms allow application of these models to large data sets, exploiting sparsity for both

statistical and computation gains (Wang et al., 2007). Meinshausen and Buhlmann (2006)

showed variable selection with LASSO can be consistent if the underlying model satisfies

some conditions. They also showed the conflict of optimal prediction and consistent variable

selection in LASSO. Meinshausen and Buhlmann (2006) proved the optimal λ for prediction

gives inconsistent variable selection results. This conflict can become more understandable

by considering an orthogonal design model (Leng et al., 2006). Zou (2006) proved selecting

variables via LASSO could be inconsistent and proposed an adaptive method to achieve

consistent estimation. The adaptive LASSO solves the following minimization problem:

min
N∑
i=1

(
yi −

∑
j

xijβ̂j

)2

+ λ
∑
j

wj|βj|, (1.10)

where wj are known weights.

Fan and Li (2001) introduced another method for variable selection called Smoothly

Clipped Absolute Deviation (SCAD). SCAD penalties are non-convex and this non-convexity

is necessary for unbiasedness of estimated coefficients. Fan and Li (2001) and Fan and Peng

(2004) introduced oracle procedure for variable selection. The oracle property means that

the penalized estimator is asymptotically equivalent to the Oracle estimator that is the ideal

estimator obtained only with independent variables without penalization. Fan and Li (2001)

and Fan and Peng (2004) argued any good procedure should have oracle properties. Candes
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(2006) gave a comprehensive summary on how to perform statistical estimation via oracle

inequalities. Zou (2006) showed if the weights are data-dependent, then the adaptive LASSO

can have the oracle properties.

The L1 loss does not distinguish the source of coefficients and treats all the coefficients

equally, no matter whether they correspond to the same variable or different variables, or

they are more likely to be relevant or irrelevant. Furthermore, L1 loss is efficient when we

have error with heavy tailed distribution and/or outliers, but it loses its efficiency when the

data are normally distributed. Zhang et al. (2008), proposed a new technique for more

effective variable selection in Multicategory Support Vector Machine (MSVM) using L∞ loss

instead of L1. In contrast to the L1 loss, which imposes a penalty on the sum of absolute

values of all coefficients, MSVM penalizes the sup-norm of the coefficients associated with

each variable. Moreover, MSVM studied if the sup-norm approach encourages more sparse

solutions than the L1, and identifies important variables more precisely. This is because

with a sup-norm, a noise variable will be removed if and only if all corresponding estimated

coefficients are 0. On the other hand, unlike the L1 penalty, if a variable is important

sup-norm penalty does not put any additional penalties on the other coefficients.

Another method for the variable selection in linear model is Dantsing selector (Candes

and Tao, 2007). This method establishes optimal L2 norm properties under a sparsity

scenario when number of covariates, p, is much larger than sample size, n. Bickel et al.

(2009) showed that under a sparsity scenario, LASSO and Dantzing selector have similar

behavior for both linear and nonparametric regression models, for L2 prediction loss and for

Lp loss in the coefficients. Koltchinskii (2009) studied the sparsity and oracle properties of

Dantzing selector and found general oracle inequalities for the Dantzig selector.
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Usually error with heavy tailed distribution and/or outliers cause difficulties in statistical

analysis. A common method is to use a robust regression with a L1 norm weight (Fan et al.,

2014). Fan et al., (2014) introduced Weighted Robust LASSO (WR-LASSO) which combines

the penalized quantile regression with the weighted L1 penalty for robust regularization by

considering the following weighted L1-regularized quantile regression:

min
β∈Rp

{
n∑
i

ρτ (yi − xTi β) + nλn|d ◦ β|1

}
,

where ρτ (u) = u(τ − 1{u ≤ 0}) is the quantile loss function, d = (d1, . . . , dp)
T is the vector

of nonnegative weights, ◦ is the Hadamard product, that is, the component-wise product of

two vectors, and λn ≥ 0 is a regularization parameter. The weights are used to reduce the

bias induced by the L1 penalty. Flexibility of the choice of the weights provides flexibility in

shrinkage estimation of the regression coefficient. WR-LASSO is very similar to the folded-

concave penalized quantile-regression which was introduced by Zou (2008) and Wang et al.

(2012). The main difference between WR-LASSO and other variable selection methods is

that it avoids the non-convex optimization problem. Fan et al. (2014) establish conditions on

the error distribution in order to successfully recover the true underlying sparse model with

an asymptotic probability of one. The required condition for this model is weaker than the

sub-Gaussian assumption in Bradic et al. (2011). A random variable x ∈ R is subgaussian

if for some b > 0 and every t ∈ R: E[etx] ≤ e
b2t2

2 . The only conditions imposed are that

the density function of error should have the Lipschitz property in a neighborhood around

0. This includes a large class of heavy-tailed distributions such as the stable distributions,

including the Cauchy distribution. It also covers the double exponential distribution whose

density function is non-differentiable at the origin.
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Due to the penalized nature of the penalized least-square estimator, the resulting esti-

mation of WR-LASSO is biased. In order to reduce the bias, the weights need to be chosen

adaptively according to the magnitudes of the unknown true regression coefficients, which

makes the bias reduction infeasible for practical applications. To make the bias reduction

feasible, Fan et al. (2014) introduce the adaptive robust LASSO (AR-LASSO). AR-LASSO

first runs robust LASSO to obtain an initial estimate, and then computes the weight vector

of the weighted L1 penalty according to a decreasing function of the magnitude of the initial

estimate. After that, adaptive robust LASSO runs weighted robust LASSO with the new

computed weights. Fan et al. (2014) showed the oracle property of AR-LASSO with no

assumptions on the distribution of the error and established the asymptotic normality of the

AR-LASSO.

Most of the previous mentioned methods are model-based. Sufficient dimension reduc-

tion provides a way to select informative predictors without assuming a model. Recently, Ni,

Cook and Tsai (2005) and Li and Nachtsheim (2006) combined the sliced inverse regression

estimation and the shrinkage variable selection procedure LASSO to produce sparse dimen-

sion reduction directions. Based on these two pioneering works, Li (2007) successfully trans-

formed a common eigen-decomposition problem in the inverse dimension reduction methods

into a regression-type optimization problem, and proposed a unified estimation strategy com-

bining dimension reduction and variable selection. Wang and Yin (2008) combined MAVE

with LASSO and propose sparse MAVE (SMAVE). Yao and Wang (2013) extended the

robust estimation to variable selection and proposed a robust sparse MAVE. Wang et al.

(2013) proposed penalized MAVE which combined the MAVE and regularization in variable

selection.
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1.3 The Envelope Approach

In many research areas such as health science (Lave and Seskin, 1973; Liang et al. 1992),

epidemiology (Lekkou et al. 2014), business (Cooper et al. 2003), etc. it is common to

observe multiple outcomes. The traditional multivariate linear regression has proved to

be useful in these cases to understand the relationships between response variables and

regressors. Mathematically, this model is typically given as:

Y = α + βX + ε, (1.11)

where Y ∈ Rr denotes the response vector, X ∈ Rp is a vector predictor, α ∈ Rr denotes

vector of intercept coefficients, β ∈ R(r×p) is the matrix of regression coefficients, and ε ∼

N(0,Σ) is an error vector with Σ ≥ 0 being an unknown covariance matrix (Christensen,

2001). In order to completely specify a multivariate linear model, there are r unknown

parameters to specify the intercept, p × r unknown parameters to specify the matrix of

regression coefficients, and r(r+1)
2

unknown parameters to specify an unstructured covariance

matrix. Therefore, one must estimate r + pr + r(r+1)
2

parameters which can be large when

either r or p or both are large. Therefore, one need a large number of samples to be able to

estimate the parameters. The large number of parameters also leads to other problems such

as identifiability of the model, instability of the model, and the computational expense to

estimate the parameters.

One unique case that may arise in multivariate regression is when some of the regression

coefficients are zero for all predictors on a few of the response variables. This means those
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responses do not depend on any of the predictors. Mathematically, this model is given as:

Y1

Y2

 =

α1

α2

+

 0

β∗

X +

ε1

ε2

 ,

which means the distribution of Y1 does not depend on any of the predictors in X. Extend-

ing this setting, there are cases where the distribution of some linear combinations of the

response vector Y do not depend on any of the predictors in X which are called immaterial

to the regression. The other linear combinations of Y which their distribution depend on X

are called material to the regression. Based on this idea, Cook et al. (2010) proposed the

envelope method as a new version of the classical multivariate linear model. This approach

separates the Y into material and immaterial, thereby allowing gains in efficiency by reduc-

ing the variance of the estimate of the parameters of interest compared to the maximum

likelihood estimate (Cook et al., 2010). The envelope approach constructs a link between

the mean function and covariance matrix using a minimal reducing subspace such that the

resulting number of parameters will maximally reduce. Cook et al. (2010) showed that the

envelope estimator has asymptotically less variation compared to the standard maximum

likelihood estimator (MLE).

For model (1.11), suppose that we can find an orthogonal matrix (Γ,Γ0) ∈ Rr×r that

satisfies the following two conditions: (i) span(β) ⊆ span(Γ), and (ii) ΓTY is conditionally

independent of ΓT
0 Y given X. Together, these conditions imply that ΓT

0 Y is marginally

independent of X and conditionally independent of X given ΓT
0 Y. In this setting, we can

write Σ as follows

Σ = PΓΣPΓ + QΓΣQΓ, (1.12)
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where PΓ is the projection onto span(Γ) and QΓ = Ir − PΓ. Cook et al. (2010) used this

idea to construct the unique smallest subspace span(Γ) that satisfies (1.12) and contains

span(β). Therefore, the goal is to find a subspace S ⊆ Rr such that

QSY|X ∼ QSY, (1.13a)

QSY PSY|X, (1.13b)

where P(·) represents an orthogonal projection operator with respect to the standard inner

product and Q(·) = Ir − P(·). This minimal subspace is called the Σ-envelope of span(β)

in full and the envelope for brevity. Figure 1.1 provides a graphical display of the envelope

model. In both panels, the two ellipses represent two normal populations and we want to

find if there is a difference between two populations. The left panel shows the analysis under

the standard model (OLS) and the right panel shows the analysis using envelope model.

The red and green curves in the left panel stand for the two projected distributions from the

two populations. As it can be seen from the right panel, since there is considerable overlap

between the two projected distributions, we need a large sample size to infer that these

populations are different under the OLS. While using envelope, the left panel, it is obvious

that the same inference can be done using much smaller sample size.

Following the envelope idea, equation (4.1) can be rewritten as follows

Y = α + ΓηX + ε, (1.14)

where β = Γη, η ∈ Ru×p, and Σ = ΓΩΓT + Γ0Ω0Γ
T
0 where Ω ∈ Ru×u, and Ω0 ∈

R
(r−u)×(r−u) are unknown positive definite matrices where 0 < u ≤ r is the dimension of the

envelope subspace. Here, one only has to estimate r+pu+ r(r+1)
2

parameters. The difference
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Figure 1.1: A graphical display of the envelope model.

in the number of parameters between the envelope and classical multivariate regression is

p(r − u) parameters.

Su and Cook (2011) proposed the partial envelope method for situations where a set of

predictors are of special interest. The goal of the partial envelope is to improve the efficiency

of the estimated coefficients corresponding to these particular predictors by partitioning the

predictors space into two subspaces where one contains the set of the predictors of interest

and another contains the remaining predictors. Since the span of any subsets of the predictor

space is often a proper subset of span of the original predictor space, the partial envelope ap-

proach leads to a gain in the efficiency of the estimates. Cook,et al., (2013) used the envelope

to study predictor reduction in multivariate linear regression and established a connection

between the envelope and partial least squares regression. Su and Cook (2013) then adapted

the envelope for the estimation of multivariate means with heteroscedastic errors by freeing

the constant covariance structure assumption in the original envelope method and proposing

a more general covariance structure. Furthermore, Su and Cook (2012) introduced a different

type of envelope construction, called inner envelope, that can produce efficiency gains when

the ordinary envelope offers no gains. This method partitions response space into three sub-
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spaces instead of partitioning into two subspaces. The distribution of the first two partition

can depend on X while the distribution of the third projection is independent from X. This

generalization comes from the relaxation of the assumptions (1.13a) and (1.13b). Cook et al.

(2013) built a connection between envelope methodology and partial least squares (PLS),

allowing PLS to be addressed in a traditional likelihood-based framework called the Scaled

Predictor Envelopes (SPE). This approach incorporates predictor scaling into PLS-type ap-

plications. Cook and Zhang (2015a) proposed a more general definition of the envelope and

adapted the envelope methods to weighted least squares, generalized linear models, and Cox

regression. Cook and Zhang (2015c) introduced the envelope for simultaneously reducing

the predictors and responses in multivariate linear regression. Cook et al., (2015) combined

the idea of envelopes and reduced-rank regression and introduced the reduced-rank envelope

model. The total number of parameters for this model is no more than either of the reduced-

rank regression or envelope regression. Cook and Zhang (2015b) provide a MATLAB package

which implements different proposed frameworks for envelope estimators. Cook and Zhang

(2016) proposed a more efficient algorithm for envelope methods.

1.4 Spatial statistics

Classical statistics always assumes observations on a phenomena are taken under identical

conditions and each observation is independent. Independence is very convenient assumption

but data that involves dependency are more realistic (Cressi, 2015). Sometimes the depen-

dency in the observed value on the phenomena is related to their spatial location i.e. the

dependency is such that observations that are closer to each other in space are more similar

than observations far apart in space. In the literature, this type of dependency is often called
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spatial autocorrelation and the set of statistical techniques that are used to analyze this type

of data is called spatial statistics. Spatial data appears in a wide range of application do-

mains including contexts that have a very large data sets, such as, computer-aided design

(CAD), robotics, environmental science, and image processing (Rigaux et al., 2001). This

section introduces some of the basic components of spatial statistics methodology.

1.4.1 Spatial data

Spatial data are a type of data that the correlation between the data depends on their

location in the study area. Mathematically this type of data is denoted by {Y (s); s ∈ Rd

where d is usually equals 2 (Banerjee et al., 2014). The set of the data is called a field and

each of the complete set of samples is called a realization of the field.

1.4.2 Random field

Random fields are a standard framework in which to understand spatial data. A random

field is a set of random variables such as Y (·) = {Y (s) : s ∈ D} where D is the domain of

the random field and s denotes the location of the study area. The domain of a random field

can be continuous i.e. D can be a subset of Euclidean space Rd; d ≥ 1. The domain also

can be discrete which mean D is a subset of Zd (Adler and Taylor, 2009). Mathematically

the mean, variance, variogram, covariance, and correlation function of a random field Y (·)
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are defined as follows (Khoshnevisan, 2002):

Mean: µ(s) = E[Y (s)],

Variance: V ar(Y (s)) = σ2(s) = E[Y (s)− E(Y (s))]2,

Variogram: 2γ(si, sj) = V ar(si − sj),

Covariance function: Cov(si, sj) = C(si, sj) = E [(Y (si)− E(Y (si))) (Y (sj)− E(Y (sj)))] ,

Correlation function: Corr(si, sj) = ρ(si, sj) =
C(si, sj)

σ(si)σ(sj)
.

µ(·) shows large scale variation or trend. Usually researchers use a linear model like βX for

µ(·). If the variance of difference in responses is only a function of the difference in their

locations, then this function is called variogram.

Two important characteristics of a random field are their continuity and differentiability

(Stein, 2012). A random field {Y (s) : s ∈ D} is continuous in mean square if

lim
||si−sj ||→0

E[Y (si)− E(Y (sj))]
2 = 0, (1.15)

where || · || denotes Euclidean distance. Since

E[Y (si)− E(Y (sj))]
2 = C(si, si) + C(sj, sj)− 2C(si, sj) + (µ(si)− µ(sj))

2,

therefore it can be concluded that Y (·) is second order continuous in mean square if and

only if it has continuous mean and covariance function. A random field {Y (s) : s ∈ D} is

differentiable in mean square if there exists a random field Y ′(·) such that for every s ∈ D,
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we have

lim
||h||→0

E

[
Y (s+ h)− Y (s)

||h||
− Y ′(s)

]2

= 0.

Stein (2012) proved the following Theorem that shows a relationship between differen-

tiability of a random field and its covariance function.

Theorem: A second order stationary random field Y (·) is differentiable of order q in

mean square if C(h) is differentiable of order 2q at h = 0.

The order of differentiability of a random field is also called its order of smoothness. Every

random field can be divided to the summation of two components: large scale variation and

small scale variation, i.e.

Y (s) = µ(s) + δ(s),

where µ(·) shows large scale variation or trend and δ(·) shows small scale variation or error.

In spatial statistics, usually stationarity and isotropy are assumed to simplify the problem.

A random field Y (·) is second order stationary if it has a constant mean and its covariance

is only a function of the difference of the locations, i.e.

Cov(Y (si), Y (sj)) = C(si − sj); si, sj ∈ D. (1.16)

A random field is intrinsic stationary if in addition to constant mean, variance of Y (si)−Y (sj)

is only a function of the distance of the locations, i.e.

V ar(Y (si)− Y (sj)) = 2γ(si − sj); si, sj ∈ D. (1.17)
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A second order stationary random field is intrinsic stationary but the reverse relation is not

necessary true. If C(·) or γ(·) in (1.16) and (1.17) are only a function of the distance and

they are the same in every direction, then Y (·) is said to be an isotropic random field.

Many of the phenomena in nature or a transformation of their distribution follows normal

distribution. A Gaussian spatial process (random field), {Y (s) : s ∈ R2}, is a stochastic

process (random field) where for any collection of locations s1, . . . , sn, the joint distribution

of S = {Y (s1), . . . , Y (sn)} is multivariate Gaussian. Any process of this kind is completely

specified by its mean function, µ(s) = E[Y (s)], and its covariance function, γ(si, sj) =

Cov(Y (si), Y (sj)). The following theorem is very important for analyzing a Gaussian random

field.

Theorem (Mardia et al., 1979): If Y1 and Y2 follows a joint multivariate normal

distribution then Y1|Y2 has a normal distribution with following mean and variance:

E(Y1|Y2) = E(Y1) + Cov(Y1, Y2)V ar(Y2)−1(Y2 − E(Y2))

V ar(Y1|Y2) = V ar(Y1)− Cov(Y1, Y2)V ar(Y2)−1Cov(Y2, Y1),

(1.18)

where

Cov(Y1, Y2) = E
[
(Y1 − E(Y1))(Y2 − E(Y2))T

]
.

One can make predictions using this theorem if the random field is Gaussian.

1.4.3 Variogram

In spatial statistics, the variogram is a function describing the spatial dependence of a spatial

random field. The variogram is defined as the variance of the difference between field values
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Figure 1.2: A graphical display for the nugget, sill and range parameters.

at two locations, s and s+ h, across realizations of the field (Cressie, 2015):

2γ(h) = V ar (Y (s+ h)− Y (s)) .

Nugget effect, sill, and range are the parameters often used to describe variograms. The

Nugget effect is the jump of the variogram when h tends to zero, i.e. h → 0. From a

theoretical point of view, since two responses are observed at the same location, the nugget

should be zero. But in application due to the sampling errors this does not happen. The sill

is the limit of the variogram when h tends to infinity. The range is the distance in which the

difference of the variogram from the sill becomes negligible. Figure 1.2 provides a graphical

display for the nugget, sill and range parameters.

Modeling the spatial dependency structure in spatial statistics is very important and

is typically done via a correlation function. The correlation function, ρ(si, sj), shows the

similarity of variation of the obesrvations Y (si) and Y (sj) at two sites. But estimating the

correlation function solely from the data is not possible. Therefore, usually it is assumed

that the form of the correlation function is a known function but it has unknown parameters
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θ where θ control range, smoothness, and other characteristics of the correlation function.

One flexible correlation function is Matern correlation function which is given by:

ρ(h;θ) =
1

2θ2−1Γ(θ2)

(
||h||
θ1

)θ1
κθ2

(
||h||
θ1

)
,

where θ = (θ1, θ2), here θ1 > 0 is range parameter and θ2 is smoothness parameter and κθ2 is

the modified Bessel function of the second kind of order of θ2 (Abramowitz and Stegun, 1964).

Cressie (2015) provides a comprehensive review on the estimation of the θ using Ordinary

least squares (OLS), Generalized least squares (GLS), and Weighted least squares (WLS).

Furthermore, Kitanidis (1983) and Mardia and Marshall (1984) proposed a likelihood-based

approach to estimate the θ.

1.4.4 Multivariate spatial statistics

In spatial statistics, there exist a large number of situations that have a multivariate response.

For example, if we want to study the air pollution of a city, pollutants such as ground

level ozone, carbon monoxide, sulfur, etc. are measured simultaneously at each location.

Observed values from these experiments produce multivariate spatial data which usually has

two spatial correlations: A spatial autocorrelation which is within the observation of each

variable in different locations and a cross spatial correlation which shows the relationship

between two different variables in same and/or different locations. Joint modeling of both

of these correlations is very important and adds significant difficulty to the data analysis.

A multivariate random field such as Y(·) = {Y(s), s ∈ D} is called second order
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stationary if for all s, h ∈ Rd and for i, j = 1, 2, . . . , p

E(Yi(s)) = mi, Cov(Yi(s),Yj(s+ h)) = Cij(h) (1.19)

where Cij(h) is called direct variogram where i = j and indirect cross variogram for i 6= j.

Furthermore, C(h) = [Cij(h)] is called multivariate variogram and it should be positive

definite. In other words, for every vector of locations such as s = (s1, . . . , sn) and every

vector ai ∈ Rp; i = 1, . . . , n, we have

V ar

(∑
i

aTi Y(si)

)
=

n∑
i,j=1

aTi C(si − sj)aj > 0.

With this condition, determination of a multivariate variogram that can capture the spatial

structure while not being so complicated to estimate is a difficult task. However, there

exist a large number of different methods to create a joint variogram. Wackernagel (2013)

provide a comprehensive discussion on creating a multivariate spatial covariance function

and introduced several different methods to analyze these types of data.

The Linear Coregionalization Model (LCM; Zahng, 2007, Banerjee et al., 2014) is one

method that has received a lot of attention in the recent literature. The most basic LCM uses

the intrinsic specification which assumes Y(·) can be represented as a linear combination of

independent and identical random fields ω(s) i.e. Y(s) = Aω(s). If ωk(s), k = 1, 2, . . . , p

is a stationary random field with mean 0 and variance of 1 and correlation function of ρ(h)

then E(Y(s)) = 0 and its covariance matrix is

ΣY(si),Y(sj) = C(si − sj) = ρ(si − sj)AAT , i, j = 1, 2, . . . , n.
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Suppose that V = AAT , then we have a separable covariance matrix. Intrinsic means for

model specification only the first and second moment of subtracted value vector are needed.

Furthermore, the first moment is zero and second moment is related to the location only

through the distance vector i.e. si − sj. In fact

E(Y(si)−Y(sj)) = 0

1

2
ΣY(si)−Y(sj) = G(si − sj),

where G(si − sj) = C(0)−C(si − sj) = V− ρ(si − sj)V = γ(si − sj)V where γ(·) is a valid

variogram.

The covariance matrix for observation vector using (1.16) is:

ΣY = R⊗V

where A = (ρ(si − sj)) and ⊗ shows Kronecker products. If V and R are positive definite

then ΣY is positive definite as well. Working with ΣY is very easy in separable model because

|ΣY| = |R|p|V|n where | · | denotes the determinant of a matrix and Σ−1
Y = R−1 ⊗ V−1.

This means for updating ΣY, instead of working with a pn × pn matrix one only needs to

work with two p× p and n× n matrices. In addition, by relocating the rows of Y such that

we have Ỹ = (Y1(s1), . . . , Y1(sn), . . . , Yp(s1), . . . , Yp(sn)), we have ΣY = T ⊗ R. A more

general extension of LCM can also be defined where the covariance matrix is indivisible. For

instance, assume Y(s) = Aω(s) where ωj(s) are independent but not identically distributed.

In fact, ωj(s) are processes with mean of µj, variance of 1 and correlation function ρj(h).

In this case, E(Y(s)) = Aµ where µ = (µ1, . . . , µp) and covariance matrix of Y(s) is

ΣY(si),Y(sj) = C(si − sj) =
∑p

k=1 ρk(si − sj)Vk where Vk = aka
T
k where ak is k-th row of
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A and
∑

k Vk = V. As another extension, the model can be define such that the process

has a nested covariance model. In other words, Y(s) =
∑r

u=1 Y(u)(s) =
∑r

u=1 A(u)ω(u)(s)

where Y(u)(s) are independent intrinsic LCM with ω(u) as their components with correlation

function ρu. Covariance matrix of this model is C(si − sj) =
∑r

u=1 ρu(si − sj)V
(u) where

V(u) = A(u)(A(u))T .

Goulard and Voltz (1992) studied least squares estimators for some of the LCM pa-

rameters using the empirical multivariate variogram, under the assumption that some other

parameters in the model are known. Zhang (2007) developed an EM algorithm for the

maximum-likelihood estimation for the parameters in the LCM. Fasso and Finazzi (2012)

extend this model to heterotopic data. Genton and Kleiber (2015) provide a comprehensive

review on the main approaches to building cross-covariance models for multivariate spatial

and spatiotemporal, including the linear model of coregionalization, convolution methods,

the multivariate Matern and nonstationary and space-time extensions of these among others.

1.5 Summary

As discussed above, the development of sufficient dimension reduction in theory and method-

ology has provided a powerful tool to tackle the high dimensional data analysis. It has been

widely applied into many scientific fields in recent years, such as in micro array data analysis

(Bura and Pfeiffer, 2003) and gene expression data analysis (Antoniadis et al., 2003). All

the methods discussed above have their own advantages, and disadvantages. For instance,

the inverse methods are easy to implement and have good asymptotic properties, but they

requires some probabilistic assumptions. On the other hand, the forward methods do not

require strong probabilistic assumptions, but are computationally more expensive than the
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inverse regression approach.

In this dissertation, we study three projects. The first one, as shown in Chapter 2, we

combine local modal regression and MAVE to introduce a robust dimension reduction ap-

proach. In addition to being robust to outliers or heavy tailed distributions, our proposed

method has the same convergence rate as original MAVE. In addition, we combine local

modal base MAVE with an L1 penalty to select informative covariates. This new approach

can exhaustively estimate directions in the regression mean function and select informative

covariates simultaneously, while being robust to the existence of possible outliers in the de-

pendent variable. The second project, which is detailed in Chapter 3, is to develop sparse

adaptive MAVE (aMAVE). For this project, we combined aMAVE with adaptive LASSO

(Zou, 2006). Sparse adaptive MAVE (saMAVE) has advantages over adaptive LASSO be-

cause it extends adaptive LASSO to multi-dimensional and nonlinear settings, without any

model assumption, and has advantages over sparse inverse dimension reduction methods (Li,

2007) in that it does not require any particular distribution on X and it can exhaustively

estimate the dimensions in the conditional mean function. The third project, as discussed

in Chapter 4, is to extend the envelope idea to multivariate response problems with spatial

correlation.



Chapter 2

Robust Estimation and Variable

Selection in Sufficient Dimension

Reduction

Dimension reduction and variable selection play important roles in high dimensional data

analysis. Minimum Average Variance Estimation (MAVE) is an efficient approach among

many others. However, because of using the least squares criterion, MAVE is not robust

to outliers or errors with heavy tailed distributions. In this paper, we propose a robust

extension of MAVE which can adapt to different error distributions. Our proposed estimate

is shown to have the same convergence rate as the original MAVE. Furthermore, we combine

our proposed method with adaptive LASSO to select the informative variables. This new

approach is illustrated through simulation studies and a data analysis on air quality of Hong

29



Hossein Moradi Rekabdarkolaee Chapter 2. Sparse Local Modal MAVE 30

Kong1.

2.0.1 Local modal regression

Modal regression (Yao et al., 2012) is an alternative approach for usual regression where

instead of modeling conditional mean, it models the conditional mode of y give X, i.e.

Mode(y|X) = XTβ. The logic behind using local modal regression is that the conditional

mode can reveal structure possibly missed by the conditional mean. For a univariate non-

parametric regression model

y = m(x) + ε, (2.1)

the local modal regression estimates m(x) and its derivative by maximizing

Q(β0, β1) ≡ 1

n

n∑
i=1

Kh1(xi − x)φh2{yi − β0 − β1(xi − x)}, (2.2)

where β0 is intercept, β1 is slope, Kh1(t) is a weight function and φh2(t) = h−1
2 φ(t/h2) is

a kernel density function. If we treat −φh2(·) as a loss function, the resulting M-estimator

is a local modal regression estimator. As mentioned in Yao et al. (2012), the bandwidth

h2 corresponds to the standard deviation in the normal density. A small h2 results in an

outlier-resistant loss function, while a large h2 produces a loss function similar to L2 loss.

The estimator is asymptotically as efficient as the least squares estimators for normally

distributed error. Since modal regression focuses on modeling the mode of Y |X, it is robust

to outliers and heavy tailed errors. When the conditional distribution of ε|X is symmetric

about the origin, the estimates from modal regression and mean regression coincide. For

1Moradi Rekabdarkolaee H., Boone E. L., and Wang Q., 2016, Computational Statistics and Data Anal-
ysis.
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more detail see Yao et al. (2012).

2.1 Local modal MAVE (lmMAVE)

Note that in (1.7) the least squares criterion is used. So, if the regression error has a heavy

tail distribution or suffers from severe outliers, the finite-sample performance of the MAVE

can be poor. Our suggestion is to replace the local least squares with local modal estimation.

Finding B is equivalent to maximization of the following problem

Q(θ) =
n∑
j=1

n∑
i=1

wij log φh2
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
, (2.3)

where θ ={B, (aj,bj), j = 1, 2, . . . , n} and φh2 = h−1
2 φ(t/h2) is a kernel density function.

For ease of computation, we use the standard normal density for φ(·) throughout this paper.

Note that, similar to most nonparametric regression, the choice of the kernel function is not

very crucial in terms of estimation efficiency.

Given an initial value for θ denoted by θ(0), we adopt the modal expectation-maximization

(EM) algorithm proposed by Yao et al. (2012) to maximize (2.3). The EM algorithm is

designed to find (locally) maximum likelihood parameters of a model in cases where the

equations cannot be solved directly (Dempster et al., 1977). The EM iteration alternates

between an expectation (E) step and a maximization (M) step. At the E step, the algorithm

creates a function for the expectation of the log-likelihood evaluated using the current es-

timate for the parameters. At the M step, the algorithm computes parameters maximizing

the expected log-likelihood found at the E step. The parameters that are estimated in the

M step will be used in the following the E step. In our problem, the (k+ 1)st step of the EM
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algorithm is as follows:

E-step: find the classification probabilities

p
(k+1)
ij =

wijφh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}]

∑n
l=1 φh2

[
yl −

{
a

(k)
j + b

(k)T

j B(k)T (Xl −Xj)
}] . (2.4)

M-step: update parameter estimates of θ by maximizing

n∑
j=1

n∑
i=1

p
(k+1)
ij log φh2

[
yi −

{
aj + bTj BT (Xi −Xj)

}]
. (2.5)

The above EM algorithm monotonically increases the local log-likelihood (2.3) after each

iteration, as shown in the following theorem.

Theorem 1: Each iteration of the above E and M steps will monotonically increase the

local log-likelihood (2.3), i.e. Q(θ(k+1)) ≥ Q(θ(k)), for all k, where Q(·) is defined as in (2.3).

Theorem 2: Suppose the conditions (C1-C9) in the appendix hold. Let B be the

direction estimated from the local modal MAVE. If nhp/log(n) → ∞, h → 0, d ≥ D and

h2 = h/ log(n) then

||(I −BBT )B0|| = Op(h
3 + hδn + h−1δ2

n), (2.6)

where δn = {log(n)/(nhp)}1/2. It can be seen that the local modal regression based MAVE

achieves the same convergence rate as the traditional MAVE. The bandwidth condition

h2 = h/ log(n) is used in Wang and Yao (2012) for the simplicity of the proof. As they also

indicated, a wider range of bandwidth for h2 can be used without changing the convergence

rate but with a more complicated proof. A sketch of the proofs for the above two results is

provided in the Appendix.
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Remark: We focus on the robustness against the outliers in the dependent variable,

but not on the leverage points. As discussed in Č́ıžek and Härdle (2006) and Yao and Wang

(2013), the leverage points have limited influence on MAVE since the estimation is based on

local linear regression and high leverage points are less likely to appear in a local window

determined by the bandwidth and the kernel function. Our numerical studies confirmed this

conclusion (not included in the paper due to the space limitation).

To select the informative covariates robustly, an L1 penalty can be introduced into the

expression (2.3),

max
B,aj ,bj ,j=1,...,n

(
n∑
j=1

n∑
i=1

pij log φh2
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
−

d∑
k=1

λk||βk||1

)
. (2.7)

where || · ||1 represents the L1 norm and {λk, k = 1, 2, . . . , d} are the non-negative regular-

ization parameters. Adding L1 penalty on B to the formula (3.5) may shrink some elements

of B to exact zeros.

2.2 Implementation

In this section, we introduce the computation algorithm for our method and related tuning

parameter selection.

2.2.1 Computation Algorithm

For a given sample {(yi,Xi), i = 1, 2, . . . , n},

1. Obtain an initial estimator {B̂, (âj, b̂j), j = 1, 2, . . . , n} from the original MAVE.
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2. For a given B̂, update (aj,bj) where j = 1, 2, . . . , n, from the following maximization

problem

max
aj ,bj ,j=1,...,n

n∑
j=1

n∑
i=1

pij log φh2
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
. (2.8)

3. For given (âj, b̂j), j = 1, 2, . . . , n, solve B from the following maximization problem

max
aj ,bj ,j=1,...,n

(
n∑
j=1

n∑
i=1

pij log φh2
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
−

d∑
k=1

λk||βk||1

)
. (2.9)

4. Iterate between step 2 and 3 until convergence in the estimation of B.

The closed form solution for θ(k+1) is one of the benefits of using the Gaussian kernel

function φh2(·) in Equation (2.3). More details can be found in Yao et al. (2012) and Wang

and Yao (2012). Based on our empirical experience, the proposed algorithm is not sensitive to

the initial estimator. Furthermore, the algorithm usually converges within 10−20 iterations.

However, one might further speed up the computation based on the one-step M-estimation

as discussed in Fan and Jiang (2000), Welsh and Ronchetti (2002), and Č́ıžek and Härdle

(2006).

2.2.2 Tuning Parameter Selection

We employed a very efficient Lasso algorithm recently proposed by Friedman et al. (2010)

to solve the L1 regularized maximization (2.7). Cyclical coordinate descent methods were

used to calculate the solution path for a large number of λ at once. We used the Matlab

package glmnet in all the simulation studies. More details can be found at http://www-

stat.stanford.edu/∼tibs/glmnet-matlab/. A BIC criterion was used to select the optimal λ′s



Hossein Moradi Rekabdarkolaee Chapter 2. Sparse Local Modal MAVE 35

in the Lasso estimation,

BICλ = n log

(
Qλ(B̂)

n

)
+ log(n)pλ,

where Qλ(B̂) =
∑n

j=1

∑n
i=1 pij log φh2

[
yi −

{
âj + b̂

T

j B̂
T

(Xi −Xj)
}]

is the residual sum of

squares from the LASSO fit, and pλ denotes the number of non-zero coefficients.

The estimation of the structural dimension d is another important task in sufficient

dimension reduction. In this section, we adopt a robust cross-validation (CV) procedure

proposed in Yao and Wang (2013) to determine the optimal dimension d. Once we have an

estimated B̂ for a given dimension k, we can calculate the corresponding CV value as

CVk = n−1

n∑
i=1

ρ

yi − ∑j 6=i yjKh{B̂
T

(Xj −Xi)}∑
l 6=iKh{B̂

T
(Xl −Xi)}

 , (2.10)

where ρ(·) is the Tukey’s bisquare loss function defined as

ρ(t) =

 1− [1− (t/c)2]3 if |t| ≤ c;

1 if |t| > c.

Then the structural dimension d can be estimated by

d̂ = argmin
0≤k≤p

CVk.

The tuning constant c = 4.685σ̂ is proportional to the scaled estimate of σ̂, and controls the

balance between robustness and the estimation efficiency. More details can be found in Yao

and Wang (2013) and the references therein.
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2.3 Simulation study

In this section, we carried out the simulation study to evaluate the finite sample performance

of the proposed local modal MAVE (lmMAVE) and its sparse version (slmMAVE). We

compare them with sliced inverse regression (SIR; Li, 1991), the traditional refined MAVE

(rMAVE; Xia et al., 2002), sparse MAVE (sMAVE, Wang and Yin 2008), robust MAVE

(rtMAVE; Č́ıžek and Härdle, 2006), and robust sparse MAVE (rsMAVE; Yao and Wang,

2013).

The data {(X1, y1), . . . , (Xn, yn)} were generated from the model

Y =
βT1 X

0.5 + (βT2 X + 1.5)2
+ 0.5ε, (2.11)

where Xi ∈ R10 and β1 = (1, 0, . . . , 0)T , β2 = (0, 1, . . . , 0)T . Four error distributions of ε

were investigated:

1. N(0,1), the standard normal errors. This density serves as a benchmark with no out-

liers;

2. t3/
√

3, the scaled t-distribution with 3 degree of freedom;

3. 0.95N(0, 1) + 0.05N(0, 102), the standard normal errors contaminated by 5% normal

errors with mean 0 and standard deviation 10;

4. 0.95N(0,1)+0.05U(−50,50), the standard normal errors contaminated by 5% errors

from a uniform distribution in between −50 and 50.

Sample size was chosen as 100, 200 and 400, and 200 data replicates were drawn in each
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setup. We considered both independent and correlated cases for X: (a) X ∼ N10(010, I10),

and (b) X ∼ N10(010,Σ), where Σ = [σij] with σij = 0.5|i−j|.To compare different estimators,

we used vector correlation coefficient r2 as in Ye and Weiss (2003). Let S(A) and S(B) denote

two d-dimensional spaces where A and B are orthonormal bases, respectively. The vector

correlation coefficient is defined as r2 = 1
d
trace(BTAATB). To measure the effectiveness

of variable selection, we employ the true positive rate (TPR): the ratio of the number of

correctly identified active predictors to the number of truly active predictors, and the false

positive rate (FPR): the ratio of the number of falsely identified active predictors to the

number of inactive predictors. Ideally, the TPR should be close to 1 and the FPR should be

close to 0 simultaneously.

Tables 2.1 and 2.2 summarize the vector correlation coefficients from independent and

correlated data, respectively. Tables 2.3 and 2.4 show the results from variable selection for

sMAVE, rsMAVE, and slmMAVE. We chose Gaussian kernel in the weights wij and used the

so-called normal reference bandwidth as h = 1.06n−0.2σ̂ where σ̂ = min {(q0.75 − q0.25)/1.34, σ̂ε}

with σ̂ε and qi being the standard deviation and the i-th quantile of the error ε, respectively.

For more details, we refer readers to Silverman (1986).

From the summary of all four different error distributions, we have the following obser-

vations.

1. For the standard normal errors, local modal MAVE gave broadly comparable results

as the least squares based methods. The performance of SIR was not affected by the

outliers in the y-space since only the rank of the response values was used, but SIR

does require some strong probabilistic assumptions on the predictor space.

2. rMAVE did show some robustness when the errors were from the scaled t-distribution,
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Table 2.1: Mean (standard deviation) of the vector correlation coefficient r2 for independent pre-
dictors from 200 data replications

ε n SIR rMAVE sMAVE rtMAVE rsMAVE lmMAVE slmMAVE
1 100 0.8566 0.9474 0.9842 0.9317 0.9683 0.9180 0.9452

(0.079) (0.101) (0.152) (0.114) (0.148) (0.132) (0.124)
200 0.9382 0.9819 0.9933 0.9760 0.9896 0.9746 0.9922

(0.026) (0.076) (0.084) (0.095) (0.083) (0.057) (0.037)
400 0.9725 0.9922 0.9973 0.9900 0.9956 0.9906 0.9992

(0.011) (0.019) (0.009) (0.030) (0.008) (0.028) (0.008)
2 100 0.8644 0.9474 0.9830 0.9366 0.9645 0.8910 0.9300

(0.072) (0.115) (0.154) (0.121) (0.142) (0.148) (0.142)
200 0.9347 0.9819 0.9937 0.9788 0.9895 0.9649 0.9751

(0.028) (0.087) (0.097) (0.089) (0.067) (0.074) (0.073)
400 0.9689 0.9921 0.9976 0.9912 0.9956 0.9884 0.9943

(0.012) (0.038) (0.023) (0.042) (0.012) (0.027) (0.017)
3 100 0.8197 0.7224 0.8461 0.9038 0.9437 0.9148 0.9455

(0.088) (0.144) (0.251) (0.113) (0.163) (0.184) (0.182)
200 0.9175 0.8171 0.8865 0.9332 0.9698 0.9545 0.9831

(0.036) (0.113) (0.217) (0.106) (0.128) (0.098) (0.082)
400 0.9613 0.8762 0.8974 0.9494 0.9759 0.9707 0.9984

(0.016) (0.100) (0.204) (0.059) (0.041) (0.039) (0.024)
4 100 0.8026 0.5190 0.6601 0.9128 0.9393 0.9020 0.9244

(0.090) (0.169) (0.276) (0.117) (0.184) (0.134) (0.167)
200 0.9121 0.5444 0.7934 0.9353 0.9596 0.9416 0.9731

(0.036) (0.154) (0.257) (0.104) (0.102) (0.087) (0.096)
400 0.9591 0.6343 0.9075 0.9497 0.9854 0.9680 0.9940

(0.020) (0.128) (0.243) (0.068) (0.038) (0.041) (0.039)
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Table 2.2: Mean (standard deviation) of the vector correlation coefficient r2 for correlated predic-
tors from 200 data replications

ε n SIR rMAVE sMAVE rtMAVE rsMAVE lmMAVE slmMAVE
1 100 0.7398 0.6880 0.8658 0.6627 0.7731 0.7011 0.8197

(0.118) (0.112) (0.158) (0.111) (0.148) (0.123) (0.146)
200 0.9132 0.8510 0.9652 0.8347 0.9019 0.7708 0.8652

(0.045) (0.098) (0.118) (0.092) (0.083) (0.073) (0.067)
400 0.9621 0.9331 0.9814 0.9293 0.9748 0.9015 0.9726

(0.018) (0.073) (0.081) (0.083) (0.024) (0.071) (0.033)
2 100 0.8045 0.6981 0.8390 0.7134 0.7969 0.6604 0.7736

(0.098) (0.126) (0.184) (0.135) (0.128) (0.157) (0.137)
200 0.8925 0.8385 0.9377 0.8794 0.9423 0.7953 0.8564

(0.054) (0.086) (0.104) (0.096) (0.076) (0.107) (0.097)
400 0.9549 0.9045 0.9699 0.9384 0.9707 0.8559 0.9684

(0.021) (0.056) (0.094) (0.061) (0.039) (0.046) (0.041)
3 100 0.7385 0.5273 0.6579 0.6530 0.7648 0.6918 0.7941

(0.113) (0.176) (0.196) (0.159) (0.134) (0.125) (0.127)
200 0.8716 0.5315 0.6783 0.8091 0.8929 0.7603 0.8384

(0.074) (0.126) (0.134) (0.125) (0.093) (0.098) (0.087)
400 0.9463 0.5946 0.7790 0.9233 0.9722 0.9021 0.9644

(0.024) (0.106) (0.092) (0.094) (0.068) (0.053) (0.043)
4 100 0.7169 0.3193 0.3835 0.6543 0.7471 0.6589 0.7602

(0.123) (0.196) (0.184) (0.145) (0.123) (0.135) (0.137)
200 0.8710 0.3301 0.4226 0.8165 0.8845 0.7814 0.8730

(0.069) (0.146) (0.124) (0.129) (0.098) (0.087) (0.064)
400 0.9409 0.3443 0.4528 0.9219 0.9646 0.8991 0.9552

(0.026) (0.136) (0.094) (0.085) (0.071) (0.072) (0.040)

Table 2.3: True positive rate and false positive rate for independent predictors.

ε n sMAVE rsMAVE slmMAVE
1 100 (0.875, 0.175) (0.821, 0.179) (0.815, 0.165)

200 (0.954, 0.074) (0.948, 0.083) (0.947, 0.083)
400 (1.000, 0.038) (1.000, 0.042) (1.000, 0.043)

2 100 (0.883, 0.204) (0.861, 0.187) (0.817, 0.155)
200 (0.956, 0.127) (0.954, 0.092) (0.937, 0.094)
400 (1.000, 0.079) (1.000, 0.089) (0.995, 0.086)

3 100 (0.790, 0.346) (0.842, 0.196) (0.875, 0.135)
200 (0.847, 0.197) (0.946, 0.105) (0.998, 0.101)
400 (0.893, 0.163) (1.000, 0.063) (1.000, 0.065)

4 100 (0.615, 0.543) (0.857, 0.189) (0.878, 0.124)
200 (0.649, 0.476) (0.963, 0.088) (0.925, 0.076)
400 (0.642, 0.424) (1.000, 0.056) (0.995, 0.048)
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Table 2.4: True positive rate and false positive rate for correlated predictors.

ε n sMAVE rsMAVE slmMAVE
1 100 (0.795, 0.143) (0.767, 0.151) (0.750, 0.180)

200 (0.965, 0.114) (0.949, 0.139) (0.817, 0.103)
400 (1.000, 0.050) (1.000, 0.099) (0.945, 0.061)

2 100 (0.899, 0.196) (0.908, 0.216) (0.830, 0.204)
200 (0.943, 0.142) (1.000, 0.125) (0.905, 0.164)
400 (1.000, 0.113) (1.000, 0.122) (0.975, 0.114)

3 100 (0.885, 0.437) (0.952, 0.210) (0.742, 0.234)
200 (0.917, 0.383) (0.985, 0.156) (0.802, 0.147)
400 (0.985, 0.345) (1.000, 0.131) (0.945, 0.098)

4 100 (0.725, 0.557) (0.872, 0.228) (0.802, 0.216)
200 (0.662, 0.469) (0.947, 0.165) (0.875, 0.155)
400 (0.692, 0.408) (1.000, 0.139) (0.967, 0.115)

as mentioned in the original MAVE paper. However, with the inclusion of larger

outliers in the response as in the error distributions 3 and 4, the least squares based

methods, rMAVE and sMAVE, failed to estimate the true directions and to select the

informative covariates.

3. In the error distributions 2 − 4, the robust estimation procedures performed almost

equally as well as they did in the cases without outliers. By selecting the informative

covariates, the slmMAVE outperformed the lmMAVE in terms of estimation accuracy

and also eased the subsequent model building. In addition, slmMAVE provide compa-

rable results as rsMAVE and both of these methods outperformed sMAVE, especially

in the error distributions 3 and 4 where relatively large outliers appear.

4. As one reviewer pointed out, the proposed slmMAVE had lower TPR compared to

rsMAVE for the correlated predictors (Table 2.4). This might be due to the use of

numerical estimation (EM algorithm) in slmMAVE instead of the trimmed least squares

used in rsMAVE, and also the selection of h2.

Based on the above findings, we can conclude that the proposed lmMAVE and slmMAVE
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procedures provided very consistent estimates with good direction estimation and variable

selection accuracy in all error distributions considered.

2.4 Real data analysis

Air pollution is the existence of one or several pollutant elements such as dust, gases, or smoke

in air that has a serious impact on the health of plants and animals (including humans).

Substances that are not naturally found in the air or at greater concentrations than usual

are referred to as pollutants.

The pollutant and weather data that we used in this study are the daily average lev-

els of nitrogen dioxide (NO2), sulphur dioxide (SO2), respirable suspended particulates

(rsp), temperature (temp) and relative humidity (hum). The data were collected daily in

Hong Kong from January 1, 1994, to December 31, 1997. This data set can be found at

http://www.stat.nus.edu.sg/∼staxyc/.

We are interested in studying the statistical relation between ground level Ozone (y)

and the levels of other pollutants and weather conditions. In addition to the main effects,

all two way interactions were also included in the model. Each variable was standardized

individually for the ease of interpretation. We initially used LASSO to analyze the data

and we find out that LASSO fails to capture the nonlinear behavior of the ozone. The

corresponding direction estimates from both lmMAVE and slmMAVE are listed in Table

2.5.

By checking the estimated coefficients (directions), we can see all the main effects are

important in first direction. Except the interaction between NO2 and SO2, all other interac-
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Table 2.5: The estimated directions for Hong Kong air pollution data.

slmMAVE lmMAVE

β̂1 β̂2 β̂1 β̂2
NO2 0.02 0 0.01 -0.04
SO2 -0.04 0 -0.05 -0.07
rsp 0.02 0 0.01 -0.14
temp 0.11 0 0.11 -0.01
hum -0.12 0 -0.12 0.10
NO2 × SO2 0 0 0.02 0.08
NO2×rsp 0.45 0 0.44 0.06
NO2×temp 0.41 0 0.42 0.23
NO2×hum -0.07 0 -0.09 -0.22
SO2×rsp 0.05 0 0.06 0.02
SO2×temp 0.16 0 0.20 0.05
SO2×hum -0.63 0.77 -0.62 0.56
rsp×temp 0.36 0 0.36 0.34
rsp×hum 0.12 0 0.10 -0.07
temp×hum -0.15 -0.64 -0.15 -0.64

tions are important, especially the interaction between those primary pollutants and weather

conditions. The second direction includes the interactions between two weather conditions

and the interaction between SO2 and humidity. These findings support the chemical claim

that ozone level is affected by chemical reactions between weather conditions and pollutant

such as oxides of nitrogen or sulfur in the presence of sunlight. Fig 2.1 shows the scatter

plots between the ground level ozone vs. the two estimated directions.

2.5 Theoretical results

2.5.1 Regularity conditions

The following technical conditions are imposed in this section:

(C1) {(Xi, yi), i = 1, . . . , n} are i.i.d. samples from the joint density fX,y(x, y).
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Figure 2.1: Ground level ozone plotted against (a) the first direction (b) the second direction from
slmMAVE.

(C2) {εi} are i.i.d. with E(εi) = 0, E(|εi|3) < ∞. The probability density function of ε,

fε(·), is symmetric about the origin.

(C3) {Xi} and {εi} are mutually independent. Additionally, the predictor X has a bounded

support.

(C4) The kernel density function φh2(·) has bounded continuous derivatives up to order 4.

Let `(·) = log φh2(·). Assume `′′′(·) is bounded and E{`′(ε)2 + |`′′(ε)|+ |`′′′(ε)|} <∞.

(C5) E|y|k <∞ and E||X||k <∞ for all k > 0.

(C6) The density function fy(·) of y has bounded derivative and is bounded away from 0 on

a compact support.

(C7) g(·) has bounded, continuous 3rd derivatives.

(C8) E(X|y) and E(XXT |y) have bounded, continuous 3rd derivatives.
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(C9) K(·) is a spherical symmetric density function with a bounded derivative and support.

All the moments of K(·) exist and
∫
UUTK(U)dU = I.

The above conditions are imposed to facilitate the proof and most of them are similar to

Xia et al. (2002) and Wang and Yao (2012). They are not the weakest possible conditions.

We require the error density function fε(·) being symmetric so that the proposed method

targets on the central mean subspace. which makes the comparison with original MAVE

meaningful.

2.5.2 Proof of Theorem 1

Note that

Q(θ(k+1))−Q(θ(k)) =
n∑
j=1

log


∑n

i=1 φh2

[
yi −

{
a

(k+1)
j + b

(k+1)T

j B(k+1)T (Xi −Xj)
}]

∑n
l=1 φh2

[
yl −

{
a

(k)
j + b

(k)T

j B(k)T (Xl −Xj)
}] wij


=

n∑
j=1

log{
n∑
i=1

 φh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}]

∑n
l=1 φh2

[
yl −

{
a

(k)
j + b

(k)T

j B(k)T (Xl −Xj)
}]


×

φh2
[
yi −

{
a

(k+1)
j + b

(k+1)T

j B(k+1)T (Xi −Xj)
}]

φh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}] wij

}
=

n∑
j=1

log


n∑
i=1

p
(k+1)
ij

φh2

[
yi −

{
a

(k+1)
j + b

(k+1)T

j B(k+1)T (Xi −Xj)
}]

φh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}]

 ,

where

p
(k+1)
ij =

wijφh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}]

∑n
l=1 φh2

[
yl −

{
a

(k)
j + b

(k)T

j B(k)T (Xl −Xj)
}] .
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From the Jensen’s inequality, we have

Q(θ(k+1))−Q(θ(k)) ≥
n∑
j=1

 n∑
i=1

p
(k+1)
ij log

φh2
[
yi −

{
a

(k+1)
j + b

(k+1)T

j B(k+1)T (Xi −Xj)
}]

φh2

[
yi −

{
a

(k)
j + b

(k)T

j B(k)T (Xi −Xj)
}]


 .

Based on the property of M-step of (2.5), we have Q(θ(k+1))−Q(θ(k)) ≥ 0

2.5.3 Proof of Theorem 2

The θ̂ = {âj, b̂j, j = 1, 2, . . . , n, B̂} is obtained by maximizing the following objective func-

tion

max
B,aj ,bj ,j=1,...,n

(
n∑
j=1

n∑
i=1

log φh2
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
wij

)
, (2.12)

where φh2 = h−1
2 φ(t/h2). Let G denote the gradient of g(·) with respect to its arguments,

therefore Gk(u1, . . . , uD) = ∂g(u1, . . . , uD)/∂uk, G2
k,l(u1, . . . , uD) = ∂2g(u1, . . . , uD)/(∂uk∂ul),

and G3
k,l,m(u1, . . . , uD) = ∂3g(u1, . . . , uD)/(∂uk∂ul∂um), where 1 ≤ k, l,m ≤ D. Let B0 =

(β01, . . . ,β0D), then based on the Taylor expansion of g(BT
0 Xi) for Xi close to x, we have

g(BT
0 Xi) = g(BT

0 x) + (Xi − x)TB0G(BT
0 x) + h2Ah,i(x) +Ri(x), (2.13)
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where

Ah,i(x) =
1

2

D∑
k,l=1

G2
k,l(B

T
0 x)

{
βT0k

(
Xi − x

h

)}{
βT0l

(
Xi − x

h

)}

+
h

6

D∑
k,l,m=1

G3
k,l,m(BT

0 x)

{
βT0k

(
Xi − x

h

)}{
βT0l

(
Xi − x

h

)}{
βT0m

(
Xi − x

h

)}
,

and Ri(x) is defined as the remainder.

Since yi = g(BT
0 Xi) + εi, we have

yi = XT
h,i(B,x)Ψ(x, h) + (Xi − x)T (I −BBT )B0G(BT

0 x) + h2Ah,i(x) +Ri(x) + εi, (2.14)

where, Ψ(x, h) =

 g(BT
0 x)

BTB0G(BT
0 x)h

 and XT
h,i(B,x) = (1, (Xi−x)TB/h)T . Let Kh,i(x) =

Kh(Xi − x) and considering the local modal likelihood based on local linear kernel smooth,

we have

Sn(B,x) =
n∑
i=1

`
{
yi −XT

h,i(B,x)Ω
}
Kh,i(x), (2.15)

where `(·) = log φh2(·) and Ω =

 a(x)

b(x)h

. Let ri = yi −XT
h,i(B,x)Ψ(x, h), then, based

on the Taylor expansion of Sn(B,x) close to Ψ and the bounded third order derivative of

`(·), we have

Ω̂ = Ψ(x, h) + T−1
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi)

+ T−1
n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′′(εi)(ri − εi),
(2.16)
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where

Tn(B,x) = n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)XT
h,i(B,x)`′′(εi)(1 +Op(h

2 + δn)), (2.17)

with δn = (nhp)−1/2(log n)1/2.

Let

Ξn,i(B,x) = XT
h,i(B,x)T−1

n (B,x)n−1

n∑
i=1

Kh,i(x)Xh,i(B,x)`′(εi),

Pn,i(B,x) = XT
h,i(B,x)T−1

n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)Ah,i(x),

Rn,i(B,x) = XT
h,i(B,x)T−1

n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)Ri(x),

γn,i(B,x) = (Xi − xi)
T −XT

h,i(B,x)T−1
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)Xh,i(B,x)(Xi − x)T .

By replacing Ω̂ in Sn(B,x), we have

n∑
j=1

Sn(B,Xj)

n−1
∑n

i=1 Kh,i(Xj)
=

n∑
j=1

n∑
i=1

ξh,i(Xj)(`(γn,i(B,x)(I −BBT )B0G(BT
0 Xj) + ∆ij(B)

=
n∑
j=1

n∑
i=1

`{γn,i(B,Xj)(I −BBT )β0kGk(B
T
0 Xj)

+
∑
l 6=k

γn,i(B,Xj)(I −BBT )β0lGl(B
T
0 Xj) + ∆ij(B)}ξh,i(Xj).

(2.18)

where ξh,i(x) =
Kh,i(x)

n−1
∑n
i=1Kh,i(x)

, and

∆ij(B) = εi + h2Ah,i(Xj) +Ri(Xj)− Pn,i(B,Xj)h
2 − Ξn,i(B,Xj)−Rn,i(B,Xj).
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Following Xia et al. (2002), we have

(I −BBT )β0k =

ν−1
k,k

n∑
j=1

n∑
i=1

{
`′

(∑
l 6=k

γn,i(B,Xj)(I −BBT )β0lGl(B
T
0 Xj) + ∆ij(B)

)
ξh,i(Xj)Gk(B

T
0 Xj)γ

T
n,i(B,Xj)

}
,

(2.19)

where

n−2νk,l = −n−2

n∑
j=1

n∑
i=1

`′′

(∑
l 6=k

γn,i(B,Xj)(I −BBT )β0lGl(B
T
0 Xj) + ∆ij(B)

)

× ξh,i(Xj)Gk(B
T
0 Xj)Gl(B

T
0 Xj)γ

T
n,i(B,Xj)γn,i(B,Xj)

= −h2n−1

n∑
j=1

Gk(B
T
0 Xj)Gl(B

T
0 Xj)(I −BBT )E{`′′(ε)}+Op(h

3 + hδn).

(2.20)

We have

`′

(∑
l 6=k

γn,i(I −BBT )β0lGl + ∆ij(B)

)

=`′(εi) + `′′(εi)
∑
l 6=k

γn,i(B,Xj)(I −BBT )β0lGl(B
T
0 Xj) + `′′(εi) {∆ij(B0)− εi} ,

therefore,

−(I −BBT )
D∑
l=1

β0l

{
n−1h2

n∑
j=1

Gk(B
T
0 Xj)Gl(B

T
0 Xj)E{`′′(ε)}+Op(h

3 + hδn)

}

= n−2

n∑
j=1

n∑
i=1

`′(εi)ξh,i(Xj)Gk(B
T
0 Xj)γ

T
n,i(B,Xj)

+ n−2

n∑
j=1

n∑
i=1

`′′(εi)ξh,i(Xj)Gk(B
T
0 Xj)γ

T
n,i(B,Xj){∆ij(B0)− εi} = A1 + A2.

(2.21)
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Now, we are going to check the order of A1 and A2, respectively. For the order of A1, note

that,

n−1

n∑
i=1

Kh,i(x)γTn,i(B,x)`′(εi) = n−1

n∑
i=1

Kh,i(x)(Xi − x)`′(εi)

− n−1

n∑
i=1

`′′(εi)Kh,i(x)(Xi − x)XT
h,i(B,x)T−1

n (B,x)n−1

n∑
i=1

Kh,i(x)`′(εi)Xh,i(B,x)

= (I −BBT )n−1

{
n∑
i=1

Kh,i(x)(Xi − x)`′(εi)−
h2

φh2(x)
∆φh2(x)

n∑
i=1

Kh,i(x)`′(εi)

}
+Op(h

3δn + hδ2
n)

= Op(h
3δn + hδ2

n),

(2.22)

Next, we will check the order of A2. First, we have,

n−1

n∑
i=1

`′′(εi)Kh,i(x)γTn,i(B,x)Ξn,i(B,x)

=

{
T−1
n (B,x)n−1

n∑
i=1

`′′(εi)Kh,i(x)XT
h,i(Xi − x)T

}T

× n−1

n∑
i=1

XT
h,i`
′(εi)Op(an)

= Op(h
3δn + hδ2

n),

and

n−2

n∑
j=1

n∑
i=1

`′′(εi)ξh,i(Xj)Gk(B
T
0 Xj)γ

T
n,i(B,Xj)Ξn,i(B,Xj) = Op(h

3δn + hδ2
n). (2.23)



Hossein Moradi Rekabdarkolaee Chapter 2. Sparse Local Modal MAVE 50

Secondly,

n−2h2

n∑
j=1

n∑
i=1

`′′(εi)ξh,i(Xj)Gk(B
T
0 Xj)γ

T
n,i(B,Xj)[Ah,i(x)− Pn,i(B,x)]

= (I −BBT )B0n
−1

n∑
j=1

φ−1
h2

(Xj)

{
Ḡ(Xj)−

1

2

D∑
l=1

G2
l,l(B

TXj)B05 φh2(x)

}
E{`′′(ε)}h4

+Op(h
5 + h3δn).

(2.24)

where Ḡ(BT
0 x) = G̃

2
(BT

0 x)BT
0 5 φh2(x) + G̃

3
(BT

0 x) with G̃
2
(BT

0 x) being D ×D matrix of

the upper left part of
∑D

m,l=1

{
G2
m,l(B

T
0 x)

∫
K(U)UUTulumdU

}
, κ4 =

∫
u4K(u)du and

B0G̃
3
(BT

0 x) =
1

6

{
D∑
l=1

G3
l,l,l(B

T
0 x)κ4β0l +

∑
m 6=l

G3
m,m,l(B

T
0 x)β0l

}
.

Similarly, we have

n−1

n∑
i=1

`′′(εi)Kh,i(x)γTn,i(B,x)[Ri(x)−Rn,i(B,x)] = Op(h
5).

Hence,

A2 = (I −BBT )B0n
−1

n∑
j=1

φ−1
h2

(Xj)

{
Ḡ(Xj)−

1

2

D∑
l=1

G2
l,l(B

TXj)B05 φh2(x)

}
E{`′′(ε)}h4

+Op(h
5 + h3δn + hδ2

n).

(2.25)
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Form (2.22) and (2.25), for k = 1, . . . , D, we have

−(I −BBT )
D∑
l=1

β0l

{
n−1h2

n∑
j=1

Gk(B
T
0 Xj)Gl(B

T
0 Xj)E{`′′(ε)}+Op(h

3 + hδn)

}

= (I −BBT )B0n
−1

n∑
j=1

φ−1
h2

(Xj)

{
Ḡ(Xj)−

1

2

D∑
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l,l(B

TXj)B0∆φh2(x)

}
E{`′′(ε)}h4

+Op(h
5 + h3δn + hδ2

n),

therefore,

(I −BBT )B0n
−1

n∑
j=1

G(BT
0 Xj)G

T (BT
0 Xj)E{`′′(ε)} = Op(h

3 + hδn + h−1δ2
n).

Since n−1
∑n

j=1 G(BT
0 Xj)G

T (BT
0 Xj) = Op(1), we have

||(I −BBT )B0|| = Op(h
3 + hδn + h−1δ2

n).



Chapter 3

Sparse Adaptive MAVE

Due to the explosion of massive data in the last decades, high dimensional data analysis

has attracted considerable attention in many scientific fields. There exists a large number

of model-based variable selection approaches in literature, such as Cp, AIC, BIC, etc. These

criteria measure the quality of a statistical model by penalizing the model complexity if non-

informative variables were added. To deal with the instability that effects these traditional

measures (Breiman, 1996), several regularization methods, such as Nonnegative Garrote

(Breiman, 1995), LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), Lars (Efron et

al., 2004) and Elastic Net (Zou and Hastie, 2005), were proposed to automatically select

informative variables through continuous shrinkage. However, due to the so-called “curse of

dimensionality” it is very difficult or even infeasible to formulate and validate a parametric

model with a large number of variables.

Li et al. (2005) proposed a model-free variable selection method through sufficient di-

mension reduction (SDR). The basic idea of SDR is to replace the original high dimensional

predictor with an appropriate low dimensional projection without losing regression informa-
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tion (Li 1991; Cook 1998). By incorporating shrinkage estimation into SDR, we can achieve

dimension reduction and variable selection simultaneously without assuming any particu-

lar model. Along this line, many methods have been proposed recently, such as Ni, Cook

and Tsai (2005), Li and Nachtsheim (2006), Li (2007), Zhou and He (2008), Wang and Yin

(2008), and Bondell and Li (2009).

Minimum average variance estimation (MAVE; Xia et al., 2002) is a popular SDR method

for both dimension reduction and nonparametric function estimation. Wang and Yao (2012)

introduced an adaptive estimation for MAVE (aMAVE), which combines the kernel density

estimation and MAVE such that aMAVE can be adaptive to different error distributions.

Although aMAVE is efficient under non-normal error distributions, each reduced variable is

still a linear combination of all the original predictors. In this work, we combine aMAVE with

shrinkage estimation to propose a new variable selection method, sparse aMAVE (saMAVE).

SaMAVE extends shrinkage estimation to multi-dimensional and nonlinear settings, without

any particular model assumption.

3.1 A Brief review of adaptive MAVE

The regression-type model of interest in adaptive MAVE can be written as

y = g(BT
0 X) + ε, (3.1)

where g(·) is an unknown smooth link function, B0 = (β1, . . . ,βd) is an orthogonal matrix

(BT
0 B0 = Id) with d ≤ p and E(ε|X) = 0. Here, B0 forms a basis of the central mean

subspace in SDR literature and d is called the structural dimension. In most real world
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applications, the error may not be normally distributed. Therefore, it will be logical to treat

the error density as another unknown parameter similar to the link function. Under this

setting, Wang and Yao (2012) proposed the adaptive MAVE (aMAVE) to estimate the B0

assuming d is known. Let fε(ε) be the density function of ε. If fε is known, the direction B0

can be estimated via

max
B:BTB=Id
aj ,bj ;j=1,...,n

n∑
j=1

n∑
i=1

log fε
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
wij, (3.2)

where wij are some weights defined as a function of the distance between Xi and Xj. In

practice, fε is usually unknown but can be estimated by

f̃ε(ε) =
1

2
Kh1(ε− ε̃i), (3.3)

where Kh1(ν) = h−1
1 K(ν/h1) with K(ν) being a kernel function and h1 being the bandwidth.

Thus, based on some initial residual estimate {ε̃i, i = 1, . . . , n}, aMAVE maximizes the

following objective function

n∑
j=1

n∑
i=1

log

(
n∑
l=1

Kh1

[
yi −

{
aj + bTj BT (Xi −Xj)

}
− ε̃l

])
wij. (3.4)

Wang and Yao (2012) proposed an efficient EM algorithm to estimate B. The choice of a

Gaussian kernel for K(·) gives the nice quadratic function from (3.4) such that the least

squares based MAVE estimation can be adopted here. More details can be found in Wang

and Yao (2012) and the references therein.



Hossein Moradi Rekabdarkolaee Chapter 3. Sparse adaptive MAVE 55

3.2 Sparse adaptive MAVE (saMAVE)

To select the informative covariates, a bridge penalty can be added to the expression (3.4)

following the suggestion in Wang et al. (2013). That is, we maximize the following objective

function

n∑
j=1

n∑
i=1

log

(
n∑
l=1

Kh1

[
yi −

{
aj + bTj BT (Xi −Xj)

}
− ε̃l

])
wij − λn

p∑
k=1

||βk||γ1 , (3.5)

where βk is the kth row of B, || · ||1 represents the L1 norm, λn is the nonnegative regulariza-

tion parameter, and γ ∈ (0, 1). By adopting a bridge penalty for the L1 norms of the rows of

B, it is possible to carry out variable screening and element screening simultaneously. More

details can be found in Wang et al. (2013).

3.2.1 Computation Algorithm

For a given sample {(yi,xi), i = 1, 2, . . . , n},

1. obtain an initial estimator {B̂, (âj, b̂j), j = 1, 2, . . . , n}. This initial estimate can be

obtained from the traditional MAVE method;

2. for a given B̂ and corresponding {ε̃i, i = 1, . . . , n}, update {(aj,bj), j = 1, 2, . . . , n}

from the following maximization problem

n∑
j=1

n∑
i=1

log

(
n∑
l=1

Kh1

[
yi −

{
aj + bTj B̂

T
(Xi −Xj)

}
− ε̃l

])
wij; (3.6)

3. for given {(âj, b̂j), j = 1, 2, . . . , n}, solve B from the following constrained maximiza-
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tion problem

n∑
j=1

n∑
i=1

log

(
n∑
l=1

Kh1

[
yi −

{
aj + bTj BT (Xi −Xj)

}
− ε̃l

])
wij − λn

p∑
k=1

||βk||γ1 , (3.7)

4. iterate between the previous step 2 and 3 until convergence in the estimation of B.

Through the EM algorithm in aMAVE (Wang and Yao, 2012) and the equivalent form of

the above group bridge penalty (Wang et al., 2013), we can adopt the least squares based

MAVE estimation and the LASSO algorithm to implement our proposed method.

3.2.2 Tuning Parameter Selection

We employed a very efficient Lasso algorithm recently proposed by Friedman et al. (2010)

to solve the L1 regularized maximization (3.5). Cyclical coordinate descent methods were

used to calculate the solution path for a large number of λ at once. We used the Matlab

package glmnet in all the simulation studies. More details can be found at http://www-

stat.stanford.edu/∼tibs/glmnet-matlab/. A BIC criterion was used to select the optimal λ

in the Lasso estimation,

BICλ = n log

(
Qλ

n

)
− log(n)pλ (3.8)

where

Qλ =
n∑
j=1

n∑
i=1

log

(
n∑
l=1

Kh1

[
yi −

{
âj + b̂

T

j B̂
T

(Xi −Xj)
}
− ε̃l

])
wij

is similar to the residual sum of squares from the Lasso fit, and pλ denotes the number of

non-zero coefficients in B̂.
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Suppose, without loss of generality, assume that only the first q < p predictor are

relevant to the response variable and let A1 = {1, 2, . . . , q} denotes the relevant predictors

and A2 = {q + 1, q + 2, . . . , p} denotes the irrelevant predictors. Therefore, we can define

βA1 = βkI(k ∈ A1) and βA2 = βkI(k ∈ A2) for k = 1, 2, . . . , p where I(·) shows the indicator

function.

In order to prove theorem 1, we need the following condition to hold:

B̃ = B0 +Op

(
1√
n

)
, (3.9)

where B̃ is an initial estimate for B0.

Theorem : Assume γ ∈ (0, 1), d ≤ 3, and the regularity condition in the appendix

condition holds. Then we have the followings:

(i) If λnn
1/2 = O(1), then there exists a local maximizer B̂ for Q(θ) such that

||B̂−B0||2 = Op

(
1√
n

)
, (3.10)

where || · ||2 represents the L2 norm.

(ii) If λnn
1/2 = O(1) and λnn

−γ/2 →∞, then P (β̂A2 = 0)→ 1 as n→∞.

Proof can be found in the Appendix.
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3.3 Simulation study

In this section, we carried out the simulation study to evaluate the finite sample performance

of the proposed sparse adaptive MAVE (saMAVE) and to compare it with the traditional

refined MAVE (rMAVE; Xial et al., 2002), sparse MAVE (sMAVE; Wang and Yin, 2008),

and adaptive MAVE (aMAVE; Yao and Wang, 2012).

The data {(x1, y1), . . . , (xn, yn)} were generated from the model

Y =
βT1 X1

0.5 + (βT2 X2 + 1.5)2
+ 0.5ε, (3.11)

where Xi ∈ Rp where p=5 and 10 and β1 = (1, 0, . . . , 0)T , β2 = (0, 1, . . . , 0)T . Four error

distributions of ε were investigated:

1. N(0,1), the standard normal errors. This density serves as a benchmark with no out-

liers;

2. t3/
√

3, the scaled t-distribution with 3 degree of freedom;

3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);

4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42);

Sample size was chosen as n = 50, 100, 200 and we drew 500 data replicates in each case.

We considered both independent and correlated cases for X: (a) X ∼ Np(0p, Ip) and (b) X ∼

Np(0p,Σ), where Σ = [σi,j] where σi,j = 0.5|i−j|. In order to compare different estimators,

we used vector correlation coefficient r2 defined by Ye and Weiss (2003). Consider S(A)

and S(B) denote two d-dimensional spaces where A and B are orthonormal bases of the two
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spaces, respectively. The vector correlation coefficient is defined as r2 = 1
2
trace(BTAATB).

Furthermore, we employ the true positive rate (TPR): the ratio of the number of correctly

identified active predictors to the number of truly active predictors, and the false positive

rate (FPR): the ratio of the number of falsely identified active predictors to the number of

inactive predictors, for measuring the performance in selecting active variables. Table 3.1 to

3.4 represent the results of these simulation for i.i.d and correlated data, respectively. In our

simulation, we used our bandwidth as h = 1.06n−0.2σ where σ = min {(q0.75 − q0.25)/1.34, σε}

where qi is i-th quantile of the distribution of ε and σε shows the standard deviation of the

error. More details can be found in Wang et al. (2007) and references therein.

Table 3.1: Estimation accuracy comparison based on the vector correlation coefficient defined as
r2 = 1

2 tr(B
TAATB) for independent predictors when p=5.

ε n Estimation accuracy based on mean TPR & FPR
rMave SMAVE aMAVE saMAVE sMAVE saMAVE

1 50 0.8064 0.9076 0.8015 0.9035 ( 0.923 , 0.094 ) ( 0.756 , 0.105 )
100 0.9397 0.9850 0.9418 0.9699 ( 0.940 , 0.074 ) ( 0.889 , 0.037 )
200 0.9822 0.9951 0.9816 0.9898 ( 0.940 , 0.068 ) ( 0.900 , 0.037 )

2 50 0.8387 0.9236 0.8396 0.9138 ( 0.926 , 0.094 ) ( 0.799 , 0.104 )
100 0.9344 0.9816 0.9356 0.9623 ( 0.938 , 0.075 ) ( 0.881 , 0.049 )
200 0.9781 0.9947 0.9765 0.9818 ( 0.940 , 0.070 ) ( 0.920 , 0.059 )

3 50 0.9549 0.9786 0.9546 0.9861 ( 0.939 , 0.115 ) ( 0.861 , 0.055 )
100 0.9873 0.9930 0.9871 0.9970 ( 0.940 , 0.099 ) ( 0.906 , 0.042 )
200 0.9941 0.9962 0.9939 0.9914 ( 0.940 , 0.089 ) ( 0.924 , 0.046 )

4 50 0.9477 0.9720 0.9471 0.9782 ( 0.938 , 0.110 ) ( 0.868 , 0.061 )
100 0.9851 0.9921 0.9849 0.9847 ( 0.940 , 0.095 ) ( 0.913 , 0.040 )
200 0.9938 0.9963 0.9937 0.9954 ( 0.940 , 0.085 ) ( 0.934 , 0.040 )

Tables 3.1 to 3.4 report the estimation accuracy comparison based on the average r2,

TPR, and FPR for simulated model with different combinations of sample size and dimen-

sions and various error distributions fε, respectively. The first four horizontal blocks in these

tables show the results under measures r2 and it shows that saMAVE are consistently better

than rMAVE, sMAVE, and aMAVE. High TPR and low FPR again illustrate the accuracy

of saMAVE. TPR and FPR are not defined for rMAVE and aMAVE since they do not select
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Table 3.2: Estimation accuracy comparison based on the vector correlation coefficient defined as
r2 = 1

2 tr(B
TAATB) for correlated predictors when p=5.

ε n Estimation accuracy based on mean TPR & FPR
rMave SMAVE aMAVE saMAVE sMAVE saMAVE

1 50 0.7232 0.8158 0.7178 0.8361 ( 0.930 , 0.147 ) ( 0.774 , 0.104 )
100 0.8492 0.9417 0.8504 0.9439 ( 0.940 , 0.142 ) ( 0.909 , 0.088 )
200 0.9331 0.9741 0.9308 0.9724 ( 0.940 , 0.166 ) ( 0.958 , 0.108 )

2 50 0.7454 0.8362 0.7446 0.8366 ( 0.929 , 0.150 ) ( 0.832 , 0.123 )
100 0.8562 0.9278 0.8540 0.9078 ( 0.940 , 0.154 ) ( 0.894 , 0.120 )
200 0.9201 0.9667 0.9191 0.9593 ( 0.940 , 0.169 ) ( 0.961 , 0.106 )

3 50 0.8947 0.9353 0.8964 0.9466 ( 0.939 , 0.177 ) ( 0.922 , 0.136 )
100 0.9495 0.9621 0.9495 0.9823 ( 0.940 , 0.197 ) ( 0.963 , 0.169 )
200 0.9587 0.9634 0.9583 0.9809 ( 0.940 , 0.222 ) ( 0.980 , 0.180 )

4 50 0.8777 0.9227 0.8781 0.9454 ( 0.939 , 0.175 ) ( 0.925 , 0.127 )
100 0.9448 0.9622 0.9444 0.9809 ( 0.940 , 0.190 ) ( 0.970 , 0.162 )
200 0.9578 0.9637 0.9575 0.9810 ( 0.940 , 0.223 ) ( 0.979 , 0.174 )

Table 3.3: Estimation accuracy comparison based on the vector correlation coefficient defined as
r2 = 1

2 tr(B
TAATB) for independent predictors when p=10.

ε n Estimation accuracy based on mean TPR & FPR
rMave SMAVE aMAVE saMAVE sMAVE saMAVE

1 50 0.5541 0.7687 0.5534 0.7350 ( 0.885 , 0.190 ) ( 0.618 , 0.087 )
100 0.7931 0.9661 0.7897 0.9211 ( 0.949 , 0.093 ) ( 0.738 , 0.048 )
200 0.9389 0.9937 0.9367 0.9746 ( 0.960 , 0.083 ) ( 0.886 , 0.014 )

2 50 0.6089 0.7915 0.6064 0.7617 ( 0.893 , 0.207 ) ( 0.658 , 0.084 )
100 0.8210 0.9583 0.8079 0.8780 ( 0.953 , 0.106 ) ( 0.740 , 0.066 )
200 0.9301 0.9915 0.9313 0.9607 ( 0.959 , 0.086 ) ( 0.857 , 0.025 )

3 50 0.8332 0.9311 0.8292 0.9448 ( 0.957 , 0.275 ) ( 0.767 , 0.033 )
100 0.9557 0.9842 0.9560 0.9881 ( 0.960 , 0.238 ) ( 0.853 , 0.020 )
200 0.9834 0.9930 0.9831 0.9925 ( 0.960 , 0.236 ) ( 0.914 , 0.017 )

4 50 0.7950 0.9312 0.7929 0.9298 ( 0.956 , 0.249 ) ( 0.754 , 0.035 )
100 0.9464 0.9840 0.9470 0.9806 ( 0.960 , 0.217 ) ( 0.863 , 0.030 )
200 0.9815 0.9935 0.9814 0.9926 ( 0.960 , 0.215 ) ( 0.909 , 0.013 )
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Table 3.4: Estimation accuracy comparison based on the vector correlation coefficient defined as
r2 = 1

2 tr(B
TAATB) for correlated predictors when p=10.

ε n Estimation accuracy based on mean TPR & FPR
rMave SMAVE aMAVE saMAVE sMAVE saMAVE

1 50 0.5128 0.6503 0.5058 0.6940 ( 0.814 , 0.172 ) ( 0.626 , 0.100 )
100 0.6767 0.8264 0.6798 0.8026 ( 0.878 , 0.161 ) ( 0.775 , 0.097 )
200 0.8452 0.9654 0.8414 0.9308 ( 0.880 , 0.145 ) ( 0.921 , 0.106 )

2 50 0.5458 0.6860 0.5486 0.7303 ( 0.841 , 0.183 ) ( 0.656 , 0.104 )
100 0.6786 0.8338 0.6730 0.7831 ( 0.875 , 0.160 ) ( 0.754 , 0.109 )
200 0.8370 0.9482 0.8369 0.8998 ( 0.878 , 0.144 ) ( 0.907 , 0.112 )

3 50 0.7180 0.8231 0.7133 0.8782 ( 0.879 , 0.228 ) ( 0.808 , 0.104 )
100 0.8877 0.9541 0.8834 0.9520 ( 0.880 , 0.221 ) ( 0.942 , 0.128 )
200 0.9440 0.9666 0.9429 0.9829 ( 0.880 , 0.192 ) ( 0.978 , 0.105 )

4 50 0.6895 0.8071 0.6857 0.8683 ( 0.879 , 0.219 ) ( 0.797 , 0.096 )
100 0.8631 0.9481 0.8666 0.9453 ( 0.880 , 0.206 ) ( 0.915 , 0.129 )
200 0.9409 0.9701 0.9401 0.9877 ( 0.880 , 0.177 ) ( 0.971 , 0.073 )

individual variables. As expected, results for all methods improve as n increases from 50 to

100 to 200. From the summary of these tables, we can see that the proposed saMAVE is

comparable to the rMAVE, sMAVE, and aMAVE for normal errors but more efficient than

them when the error is non-normal.

3.4 Real data analysis

This data set concerns the salary of 263 baseball hitters in 1987 and their performance.

The question of interest is “Are they paid based on their performance?”. This data set was

analyzed by many statisticians. Chaudhuri et al. (1994) proposed a piecewise polynomial

regression tree (SUPPORT) approach. Li et al. (2000) proposed a dimension reduction based

regression tree, PHDRT, and identified several outliers. Xia et al. (2002) applied MAVE to

find the low dimensional projection and chose a partially linear model to fit the data. All

previous studies suggested using different models to fit different parts of the data. Wang

and Yao (2012) used adaptive MAVE to analyze this data set. Similar to other authors, we
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Figure 3.1: Baseball hitter’s salary data against (a) Junior (b) Veterans.

split the data into two groups (junior/veteran) based on the years in the major leagues and

the cutoff is chosen to be 7 as suggested by Chaudhuri et al. (1994). The response variable

is the logarithm of the annual salary in 1987 as in all previous studies, and the 13 predictors

used in our analysis are listed in Table 3.5. We apply the sparse adaptive MAVE to both

groups, and one significant direction is identified for each group as shown in Table 3.5.

Table 3.5: The estimated CS directions for baseball hitters data.

Performance β̂junior β̂veterans
1986 x1 time at bat -0.017 0.2999

x2 hits 0 0
x3 home runs -0.1343 0
x4 runs 0.1727 0
x5 runs batted 0 0
x6 walks -0.0192 0

Up to 1986 x7 years in major leagues 0.9728 -0.3214
x8 time at bat -0.0083 0
x9 hits 0.0152 0.9267
x10 home runs 0 0
x11 runs 0.0095 0.2264
x12 runs batted 0.0657 0
x13 walks 0.021 0

As we can see in table 3.5, for juniors’ time at bat, home runs, runs, walks, and years in

the major leagues are important in 1986. Furthermore, time at bat, hits, runs, runs batted,
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and walks are important factor for up to 1986. For veterans, time at bat and years in major

leagues are important in 1986. In addition, the number of hits and runs are important for up

to 1986. The sign change of the coefficient estimates for the variable x7 (years in the major

league) between the two groups supports the existence of an aging effect as discovered by Li

et al. (2000), Xia et al. (2002) and Wang and Yao (2012)

3.5 Theoretical result

3.5.1 Regularity conditions

The following technical conditions are imposed in this section:

(A1) {(Xi, yi), i = 1, . . . , n} are i.i.d. samples from the joint density fX,y(x, y).

(A2) {εi} are i.i.d. with E(εi) = 0, E(|εi|3) <∞. {Xi} and {εi} are mutually independent.

Additionally, the predictor X has a bounded support.

(A3) E|y|k <∞ and E||X||k <∞ for all k > 0.

(A4) E(X|y) and E(XXT |y) have bounded, continuous 3rd derivatives.

(A5) Kh(·) is a spherical symmetric density function with a bounded derivative and support.

Specifically, we used Gaussian kernel with bandwidth h ∝ n−
1
d+4 .

(A6) The density fε(·) has bounded continuous derivatives up to order 4. Let `(·) = log fε(·).

Assume `′′′(·) is bounded and E{`′(ε)2 + |`′′(ε)|+ |`′′′(ε)|} <∞.
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(A7) The smallest eigenvalue of JT
β
(1)
0

Wg0Jβ(1)
0

is larger than ρ amd the largest eigenvalue of

Wg0 is less than ρ∗ for some positive constant ρ and ρ∗ where Wg0 = E
[
{(µB0(X)− x)(µB0(X)− x)T} ⊗ {5g(BT

0 X)5T g(BT
0 X)}

]
where µB0(X) = E(X|BT

0 X = BT
0 x) and J

β
(1)
0

is defined in the proof.

The above conditions are imposed to facilitate the proof and most of them are similar

to Xia et al. (2002), Wang and Xia (2008), Wang et al. (2013), and Wang and Yao (2012).

3.5.2 Proof of Theorem 1

Note that the estimate θ ={B,(aj,bj), j = 1, 2, . . . , n} is the maximizer of the following

objective function

max
B,aj ,bj ;j=1,...,n

n∑
j=1

n∑
i=1

log fε
[
yi −

{
aj + bTj BT (Xi −Xj)

}]
wij − λn

p∑
k=1

||βk||γ1 . (3.12)

where

f̃ε(ε) =
1

2
Kh1(ε− ε̃i)

is the kernel density estimate of fε(·) and ε̃i is the residual based on the traditional MAVE

estimate. Based on the adaptive nonparametric regression result of Linton and Xiao (2007),

the convergence rate of θ̂ in (3.12) is the same as the true density fε(·) is used. Since the

basic idea of our proof is very similar to Wang et al. (2013), we adopt the same notations for

the ease of readers to follow. Therefore, we will mainly prove the theorems assuming fε(·)

is known. Furthermore, let `(·) = log fε(·) and let β = vec(BT ) where vec(·) is a matrix

operator that stacks all columns of a matrix into a vector. Using vec operator, we can rewrite

(3.12) as follow,

Q(θ) = L(θ)− λn
p∑

k=1

||βk||γ1 . (3.13)
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where L(θ) =
∑n

j=1

∑n
i=1 `

(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β
}]

wij.

Since ||β0||2 = 1, therefore g (β0X) does not have a derivative at point β0. Using “delete-

one-component” method, we define J
β
(1)
0

where β
(1)
0 consists of all free parameters in β0. Let

β∗
(1)

= β
(1)
0 +n−1/2η, where ||η||2 = C for some positive constant C. Using Taylor expansion

on L(β0) around β∗0 and substituting into the Q(·) , we have

1

n
(Q(β∗)−Q(β0)) = −n1/2ηTJT

β
∗(1)
0

1

n2

n∑
j=1

n∑
i=1

Ωij`
′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β0

})
wij

+
1

2
ηTJT

β∗
(1)

0

J
β∗

(1)
0

η
1

n2

n∑
j=1

n∑
i=1

Ωij`
′′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β0

})
ΩT
ijwij

+ λn

p∑
k=1

(||β0k||γ1 − ||β∗k||
γ
1) + oP

(
1√
n

)
= T1 + T2 + T3 + oP

(
1√
n

)
,

(3.14)

where Ωij =
(

(Xi −Xj)
T ⊗ bTj

)
and β∗

(1)

0 is between β
(1)
0 and β∗

(1)
.

Following Wang and Xia (2008), we have

T1 = −n1/2ηTJT
β
∗(1)
0

1

n

n∑
j=1

n∑
i=1

Ωij`
′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β0

})
wij

= −n1/2ηTJT
β∗

(1)
0

[
E
[{
νβ0(X)νTβ0

(X)
}
`′′(ε)

]
(β̃ − β0) + n−1

n∑
i=1

{νβ0(xi)`
′(ε)}εi

]

+ oP

(
1√
n

)
(3.15)

where νβ0(x) = µ(x) − x with µ(x) = E(X|βT0 X = βT0 x) and β̃ is an initial estimator of
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β0). Furthermore, we have

T2 = ηTJT
β∗

(1)
0

J
β∗

(1)
0

η
n∑
j=1

n∑
i=1

Ωij`
′′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β0

})
ΩT
ijwij

= ηTJT
β∗

(1)
0

[
E
[{
νβ0(X)νTβ0

(X)
}
`′′(ε)

]
+ oP (1)

]
J
β∗

(1)
0

η

(3.16)

By assuming that the smallest eigenvalue of JT
β∗

(1)
0

E
[{
νβ0(X)νTβ0

(X)
}
`′′(ε)

]
J
β∗

(1)
0

is larger

than ρ where ρ is some positive number, we have T2 ≥ ρ||η||22. Furthermore, since we

assumed ||β̃ − β0||2 = OP

(
1√
n

)
, we have

n1/2ηTJT
β∗

(1)
0

[
E
[{
νβ0(X)νTβ0

(X)
}
`′′(ε)

]
(β̃ − β0) + n−1

n∑
i=1

{νβ0(xi)`
′(ε)}εi

]
= OP

(
1√
n

)
(3.17)

Thus, by choosing a sufficiently large C, T1 is dominated by T2. By the Cauchy-Schwarz

inequality, we have

T3 = λn

q∑
k=1

(||β0k||γ1 − ||β∗k||
γ
1) ≤ 2λn

q∑
k=1

(
||β0k||γ−1

1 ||β0k − β∗k||1
)

≤ 2
√
dλn

q∑
k=1

(
||β0k||γ−1

1 ||β0k − β∗k||2
)

≤ 2
√
d

q∑
k=1

||β0k||γ−1
1 λn

(
q∑

k=1

||β0k − β∗k||22

) 1
2

= O(1)λn
||η||2√
n

= O(||η||2)

(3.18)

where the last equality holds because λn = O(n1/2). Therefore, if C is sufficiently large,

then T3 is also dominated by T2. Thus, with a large probability, we have Q(β∗0) ≥ Q(β0)

when {η : ||η||2 = C} which means there exists a local maximizer of Q(β) in the ball

{η : ||η||2 ≤ C} such that ||β̂−β0||2 = OP

(
1√
n

)
. This proves the first part of the theorem.
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In the second part of the theorem, we want to prove the variable selection consistency of

the proposed method. Suppose, with no loss of generality, only the first q < p predictor are

relevant to the response variable and let A1 = {1, 2, . . . , q} denotes the relevant predictors

and A2 = {q + 1, q + 2, . . . , p} denotes the irrelevant predictors. Then, we can define β̄k =

β̂kI(k ∈ A1) for k = 1, 2, . . . , p where I(·) shows the indicator function. Following Wang et

al., (2013) and the Karush-Kuhn-Tucker condition, we have

n∑
j=1

n∑
i=1

Ωl
ij`
′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wij = ψ̂1− 1
γ sgn(β̂lk), β̂

l
k 6= 0, (3.19)

where Ωl
ij is the lth component of Ωij, ψ =

(
1−γ
τγ

)γ
||βk||γ1 where τ is defined in Wang et al.

(2013), and sgn(·) denotes the sign function which is defined as follow

sgn(x) =


-1 if x < 0

0 if x=0

1 if x > 0

Since ψ̂1− 1
γ ||β̂k||1 = γλn||β̂k||γ1 , we have

n∑
j=1

n∑
i=1

Ωl
ij`
′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wij = γλn||β̂k||γ1sgn(β̂lk), β̂
l
k 6= 0. (3.20)



Hossein Moradi Rekabdarkolaee Chapter 3. Sparse adaptive MAVE 68

Therefore, we have

n∑
j=1

n∑
i=1

`′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

=
n∑
j=1

n∑
i=1

`′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wij
∑

k,l:β̂lk 6=0

Ωl
ij(β̂

l
k − β̄lk)

=
∑

k,l:β̂lk 6=0

γλn||β̂k||γ1sgn(β̂lk)(β̂
l
k − β̄lk) =

∑
k,l

γλn||β̂k||γ1sgn(β̂lk)(β̂
l
k − β̄lk)

=
∑
k∈A2

γλn||β̂k||γ−1
1

d∑
l=1

|β̂lk| =
p∑

k=1

γλn||β̂k||γ−1
1 (||β̂lk||1 − ||β̄lk||1),

where the last two equality holds because (β̂lk − β̄lk)sgn(β̂lk) = |β̂lk|I(k ∈ A2). Furthermore,

because for 0 ≤ a ≤ b we have γbγ−1(b− 1) ≤ bγ − aγ, thus

γ||β̂k||γ−1
1 (||β̂lk||1 − ||β̄lk||1) ≤ ||β̂lk||

γ
1 − ||β̄lk||

γ
1 .

Therefore, we have

∣∣∣∣∣
n∑
j=1

n∑
i=1

`′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

∣∣∣∣∣
≤ λn

q∑
k=1

(||β̂lk||
γ
1 − ||β̄lk||

γ
1) + γλn

p∑
k=q+1

||β̂lk||
γ
1 .
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Since by definition of β̂, we have Qλn(β̂) ≤ Qλn(β̄), then

∣∣∣∣∣
n∑
j=1

n∑
i=1

`′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

∣∣∣∣∣+ (1− γ)λn

p∑
k=q+1

||β̂lk||
γ
1

≤ λn

q∑
k=1

(||β̂lk||
γ
1 − ||β̄lk||

γ
1) ≤ λn

q∑
k=1

||β̂lk||
γ
1 − λn

q∑
k=1

||β̄lk||
γ
1

≤
n∑
j=1

n∑
i=1

`′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

− 1

2
(β̂ − β̄)T

n∑
j=1

n∑
i=1

Ωij`
′′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

Therefore, in probability, we have

(1− γ)λn

p∑
k=q+1

||β̂lk||
γ
1 ≤

1

2
(β̂ − β̄)T

n∑
j=1

n∑
i=1

Ωij`
′′
(
yi −

{
aj +

[
(Xi −Xj)

T ⊗ bTj

]
β̂
})

wijΩ
T
ij(β̂ − β̄)

≤ nρ∗||β̂ − β̄||22 = nρ∗
p∑

k=q+1

||β̂k||22

≤ nρ∗||β̂ − β0||22.

From the result of the first part of the theorem, we have

(1− γ)λn

p∑
k=q+1

||β̂lk||
γ
1 ≤ nρ∗

p∑
k=q+1

||β̂k||22 = OP (1), (3.21)

and
p∑

k=q+1

||β̂k||22 ≥

(
p∑

k=q+1

||β̂k||1

)γ

≥

(
p∑

k=q+1

||β̂k||1

)γ/2

. (3.22)

From (3.21) and (3.22), if
∑p

k=q+1 ||β̂k||22 > 0 then

(1− γ)λn ≤ nρ∗

(
p∑

k=q+1

||β̂k||22

)1−γ/2

= nρ∗OP (1)(nρ∗)−1+γ/2 = OP (nγ/2).
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Since, λnn
−γ/2 →∞, we have

P (

(
p∑

k=q+1

||β̂k||22 > 0

)
→ 0 as n→∞. (3.23)

This result completes the proof.



Chapter 4

Spatial Envelope

In many research areas such as health science (Lave and Seskin, 1973; Liang et al. 1992),

epidemiology (Lekkou et al. 2014), business (Cooper et al. 2003), etc. it is common to

observe a large number of simultaneous outcomes. The traditional Multivariate Linear Re-

gression (MLR) has proved to be the standard analysis for this type of data to understand

the relationship between response variables and regressors. Mathematically, the MLR model

is typically given as:

Y = α + βX + ε, (4.1)

where Y ∈ Rp denotes the response vector, X ∈ Rr is a vector predictor, α ∈ Rp denotes

vector of intercept coefficients, β ∈ R(p×r) is the matrix of regression coefficients, and ε ∼

Np(0,Σ) is an error vector with Σ ≥ 0 being an unknown covariance matrix (Christensen,

2001). In order to completely specify the MLR, there are p unknown parameters to specify

the intercept, r×p unknown regression coefficient parameters, and p(p+1)
2

unknown variance-

covariance parameters in an unstructured covariance matrix. Therefore, in practice, one must

71
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estimate p+ pr+ p(p+1)
2

model parameters which will necessitate a large number of samples.

The large number of parameters also leads to other problems such as the computational time

required to estimate the parameters.

There are cases where the distribution of some linear combinations of the response vector

Y do not depend on any of the predictors in X, which are called immaterial. While the

distribution of the other linear combinations of Y depend on X which are called material.

For instance, one unique case that may arise in multivariate regression is when some of the

regression coefficients are zero for all predictors on a few of the response variables. This

means those responses do not depend on any of the predictors. Mathematically, this model

is given as: Y1

Y2

 =

α1

α2

+

 0

β∗

X +

ε1

ε2

 ,

which means the distribution of Y1 does not depend on any of the predictors in X.

Based on this idea, Cook et al. (2010) proposed the envelope method as a new version of

the classical multivariate linear model to account for the material and immaterial structure

in the data. This approach separates Y into material (Y∗1) and immaterial (Y∗0). For the

immaterial responses only the intercept is needed and hence one can reduce the number of

parameters needed. This approach allows for gains in efficiency by reducing the variance

of the estimate of the regression coefficients compared to the standard maximum likelihood

estimates of the full model (Cook et al., 2010). The envelope attempts to construct a link

between the mean function and covariance matrix using a minimal reducing subspace such

that the resulting number of parameters will maximally reduce. This mean the reduced

subspace is the smallest subspace on which one can project the original space without losing

regression information. Cook et al. (2010) showed that the envelope estimator for the re-
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gression coefficients has asymptotically smaller variance compared to the standard maximum

likelihood estimator (MLE) of MLR.

Current envelope methodology assumes observations are taken under identical conditions

where independence is assured. While models based on the independence assumption are

extremely useful, their use is limited in applications where the data has inherent dependency

(Cressie, 2015). Spatially correlated data are one example and found in a wide range of

application domains such as network screening in highway safety (Jonathan et al., 2016),

ecology (Rota, 2016), forensic science (Proença et al., 2016), image processing (Rigaux et

al., 2001), etc. In many of these settings, there is an increasing need to analyze multivariate

measurements obtained at spatial locations (Latimer et al., 2009). An example for these

types of data is environmental monitoring where each station collects data concerning several

pollutants such as ozone, carbon monoxide, nitrogen dioxide, etc. The goal of this work is to

extend the envelope methodology to situations where spatially correlated data are the norm.

4.1 Spatial Envelope

Suppose Y(s) is a multivariate response taken at site s. We assume that the data generating

process is second order stationary and the covariance of the response vectors Y(si) and Y(sj)

at two sites si and sj is given by a function of distance between the two sites. Namely the

covariance can be written as:

Cov(Y(si),Y(sj)) = Cij(h), h = ||si − sj|| ∈ Rd, (4.2)
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where || · || denotes Euclidean distance. Cij(·) is called the direct covariogram if i = j and the

cross-covariogram if i 6= j and the matrix-valued function C(h) = [Cij(h)] is the multivariate

covariogram.

One simple model for the covariogram of a multivariate spatial response is the propor-

tional correlation model (Chiles and Delfiner, 1999) given by:

C(h) = Vρ(h),

where V is a p × p positive definite matrix and ρ(h) is any valid correlation function. The

proportional covariogram is also known as the intrinsic covariogram (Wackernagel, 2013).

Using this covariance model, the covariance of response variables i.e. ΣY can be written as

V⊗ ρ(h,θ), where ρ(h,θ) is the n× n matrix with the (i, j)-th entry ρ(||si − sj||,θ), and

⊗ denotes the Kronecker product.

Suppose the response vector can be decomposed into the material and immaterial part,

Y1 and Y0, respectively. Using the envelope idea, V can be written as V0 + V1 where

V0V1 = 0 where V0 denotes the covariance matrix associated with the immaterial part of

response and V1 denotes the covariance matrix associated with the material part. Hence,

the covariance matrix of Y can be written as follows:

ΣY = V⊗ ρ(h,θ)

= V0 ⊗ ρ(h,θ) + V1 ⊗ ρ(h,θ), h ∈ Rd.

This fact will be used later in derivation for different formulas in the appendix. For simplicity

of notation, ρ(h,θ) is denoted by ρ(θ). The multivariate spatial linear model can be written
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as:

Y(s) = α + βX(s) + ε(s). (4.3)

where

α =


α1

...

αp

 , β =


β1

...

βp

 , X(s) =


X 0

. . .

0 X

 = Ip ⊗X(s), Y(s) =


YT

1

...

YT
p


The likelihood function of this model will be as follows:

L(α,β,V,θ) = [det(V⊗ ρ(θ))]−
1
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β)T (V⊗ ρ(θ))−1(Y−α⊗ 1n − (Ip ⊗X)β)

}
.

(4.4)

Following the envelope idea by Cook et al., (2010), this likelihood for fixed dimension u,

where 0 < u < r denotes the dimension of the envelope, can be rewritten as follows

L(u)(α,β,V0,V1,θ) = L
(u)
1 (α,β,V1,θ)× L(u)

2 (α,V0,θ), (4.5)

where

L
(u)
1 (α,β,V1,θ) = [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β))T

(
V†1 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n − (Ip ⊗X)β))

}
,

L
(u)
2 (α,V0,θ) = [det0(V0)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(Y−α⊗ 1n)T

(
V†0 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n)

}
,

(4.6)

where † denotes the Moore-Penrose inverse and det0(A) denotes the product of non-zero
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eigenvalues of A where A is a non-zero symmetric matrix. The likelihood can be factored

because the span(β) ⊆ span(V1), therefore V0β = 0 and V = V0 + V1. This factorization

is detailed in the appendix.

The objective is to maximize the likelihood in (4.5) over β,V0,V1, and θ subject to the

constraints:

span(β) ⊆ span(V1), (a)

V0V1 = 0, (b).

(4.7)

The coordinate free version of this maximization is detailed in the theoretical results section.

Here, we are presenting the coordinate version of the algorithm.

The optimization depends on being able to maximize the logarithm of D over the Grass-

mann manifold Gp×u, where

D = det(PV1Σ̂resPV1 + QV1
Σ̂YQV1

)

As mentioned by Cook et al. (2010), the gradient-based algorithms for Grassmann opti-

mization (Edelman et al., 1998; Liu et al., 2004) require a coordinate version of the objec-

tive function which must have continuous directional derivatives. Let Γ̂1 and be the semi-

orthogonal bases for span(V1) and Γ̂0 be the semi-orthogonal bases for span(V0). Then

η̂ = Γ̂T
1 β̂, Ω̂1 = Γ̂T

1 Σ̂resΓ̂1 and Ω̂0 = Γ̂T
0 Σ̂YΓ̂0. Let log det(·) denote the composite function

log ◦ det(·). Then, the coordinate form of the log D

log D = log det
(
ΓT

1

(
HT ρ̂(θ)H−HT ρ̂(θ)G

(
GT ρ̂−1(θ)G

)−1
GT ρ̂(θ)H

)
Γ1 + ΓT

0 (HT ρ̂(θ)H)Γ0

)
(4.8)

where H = Y − Ȳ ⊗ 1n, U = vec(H), G = X − X̄ ⊗ 1n, and F = I ⊗G. The objective
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function (4.8) can be maximized by the coordinate version of spatial envelope using following

algorithm.

Algorithm

1. Obtain an initial value for Σ̂Y, Σ̂res, and β̂MLE, the marginal covariance matrix of Y,

the residual covariance matrix, and the maximum likelihood estimate for β from the

fit of the full model (4.3).

2. Estimate PV1 by minimizing the objective function (4.8) over the Grassmann manifold

G
(r×u), and estimate PV0 by P̂V0 = I− P̂V1 .

3. Fix θ and estimate V0 and V1 by V̂0 = P̂V0Σ̂YP̂V0 and V̂1 = P̂V1Σ̂resP̂V1 .

4. Fix V0 and V1 and maximize L(u)(α,β,V0,V1,θ) over θ by solving the following

maximization problem:

θ̂ = argmax
θ

{
−p

2
det(ρ(θ))

− 1

2
tr

((
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

V†1

(
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)T

+ ρ(θ)−
1
2 HV†0H

Tρ(θ)−
1
2

)
.

(4.9)

5. Update Σ̂Y and Σ̂res.

6. Iterate between step (2) through step (5) until the matrix norm between mth and

(m+ 1)th iteration can be used to compare with some pre-specified tolerance value i.e.

||Θm+1 −Θm|| < δ where Θ = {θ,V0,V1}.

7. Estimate β by β̂ = P̂V1β̂MLE.
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As mentioned in Cook et al., (2010) it is possible for an objective function that is defined

on Grassmann manifolds to have multiple local optimal points. One way to check this is to

run the simulation with different starting values and compare their results. However, after

using this approach we have not found the local optima to be a problem for our method.

4.2 Asymptotic Variance

The parameters of spatial envelope model in equation (4.3), without loss of generality α is

not included, can be combined into the vector as follows:

φ =



vec(η)

vec(Γ1)

vech(Ω1)

vech(Ω0)


≡



φ1

φ2

φ3

φ4


(4.10)

where the vec(·) denotes the vector operator and vech(·) denotes vector half operator. For

background on these operators, see Seber (2008) and Harville (2008). Here we focus on the

following estimable functions under the spatial envelope model:

ψ(φ) =

 vec(β)

vech(Σ)

 =

 vec(Γ1η)

vech
(
(Γ1ΩΓT

1 + Γ0Ω0Γ
T
0 )⊗ ρ(θ)

)
 ≡

ψ1(φ)

ψ2(φ)

 (4.11)

Let

Ψ =

∂ψ1

φT1
. . . ∂ψ1

φT4

∂ψ2

φT1
. . . ∂ψ2

φT4

 (4.12)
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denote the gradient matrix. Following Cook et al., (2010) and using the result of Shapiro

(1986), we have following theorem.

Theorem 1: Suppose X̄ = 0 and J is the Fisher information for ψ(φ) in the model

(4.3):

J =

ΣX ⊗V−1 ⊗ ρ(θ)−1 0

0 1
2
ET
r

(
V−1 ⊗ ρ(θ)−1 ⊗V−1 ⊗ ρ(θ)−1

)
Er

 (4.13)

where ΣX = limn→∞
1
n

∑n
i=1 XiX

T
i , and Er ∈ Rr2×r(r+1)/2 is expansion matrix which is

defined such that for a given matrix such as A, vec(A) = Ervech(A). Let Λ = J−1 be the

asymptotic variance of the MLE under the full model. Then

√
n(φ̂− φ)→ N(0,Λ0) (4.14)

where Λ0 = Ψ(ΨTΛΨ)†Ψ. Furthermore, Λ−
1
2 (Λ−Λ0)Λ−

1
2 ≥ 0, so the spatial envelope model

decreases the asymptotic variance. Proof of this theorem may be found in the appendix. �

This theorem shows that using the spatial envelope will lead to an estimate of the

parameters with smaller variance compared to the ML estimator.

4.3 Prediction

Prediction of the response variables at a new unsampled location is often a major objective of

a study. Let Ynew be the vec(Ynew) of the new multivariate response at unsampled location.
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The model in this case can be written as:

Ynew

Y

 =

α⊗ 1nnew + Γ1η(Ip ⊗Xnew)

α⊗ 1n + Γ1η(Ip ⊗X)

+

εnew

ε

 ∼ N

α + Γ1η

Xnew

X

 ,Σ

 .

(4.15)

where Σ is as follows

Σ =

Σ11 Σ12

Σ21 Σ22

 =

(V0 + V1)⊗ ρnew,new(θ) (V0 + V1)⊗ ρnew,Y(θ)

(V0 + V1)⊗ ρY,new(θ) (V0 + V1)⊗ ρY,Y(θ)

 . (4.16)

The conditional distribution of the normal distribution is used to find Ynew|Y which is

Ynew|Y,α,η,V0,V1,θ ∼ N
(
µ1 + Σ12Σ

−1
22 (Y− µ2),Σ11 −Σ12Σ

−1
22 Σ21

)
, (4.17)

where µ1 = α⊗ 1nnew + Γ1η(Ip ⊗Xnew) and µ2 = α⊗ 1n + Γ1η(Ip ⊗X). Using (4.17), we

can make prediction for an unsampled location.

4.4 Simulation

To evaluate the finite sample performance of the proposed spatial envelope and compare it

with the traditional ordinary least squares multivariate regression (MLR), linear coregional-

ization model (LCM; Zhang, 2007), and envelope (Cook et al., 2010).

The data {(X1,Y1), . . . , (Xn,Yn)} were generated from the model

Y = Xβ + ε, (4.18)
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where Yi ∈ R5, Xi ∈ R6, and the structural dimension of two i.e. u = 2. The matrix

(Γ1; Γ0) is obtained by orthogonalizing an 5 × 5 matrix of random uniform (0, 1) variables,

and the elements in η were sampled from a standard normal population. We generated

ΣY =
(
Γ1Ω1Γ

T
1 + Γ0Ω0Γ

T
0

)
⊗ρ(θ) where Ω1 = [ω1

i,j] where ω1
i,j = (−0.9)|i−j| and Ω0 = [ω0

i,j]

where ω0
ij = (−0.5)|i−j|. Three error distributions of ε were investigated:

1. N(0,Σ), where Σ =
(
Γ1Ω1Γ

T
1 + Γ0Ω0Γ

T
0

)
. This density serves as a benchmark where

the error are independent from each other;

2. ε follows a Matern covariance function with θ1 = 0.5 and θ2 = 1; This case represents

a spatial correlation in the data with a small range of dependency. We call this case

as an example of weak spatial correlation.

3. ε follows a Matern covariance function with θ1 = 0.5 and θ2 = 5; This case represents

a spatial correlation in the data with a large range of dependency. We call this case as

an example of strong spatial correlation.

Sample size was chosen as 100, 225, and 400. There are two different ways that we

took these samples. One is based on 10 × 10, 15 × 15 and 20 × 20 evenly spaced grids on

[0, 1]2, respectively. The second method that that we took the sample was as follows. First

we made a 101 × 101 grid on [0, 1]2, and then we chose n = 100, 225 and 400 locations.

All results reported here were based on 200 replications from the simulation model in each

case. In order to compare the different estimators, we used Leave One Out Cross Validation

(LOCV) method which provides a convenient approximation for the prediction error under

squared-error loss given by

MSPE =

∑n
i=1(Ŷ (−i)(si)− Y (si,obs))

2

n
, (4.19)
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where Y (si,obs) is the observed value for response in location s and Ŷ (−i)(si) is the predicted

values of Y (si) computed with the ith row of the data removed. Tables 4.1 and 4.2 summarize

the results of these simulations. These tables provide the LOCV for different methods and

different errors and smaller LOCV shows better performance.

Table 4.1: Prediction accuracy comparison based on the mean (standard deviation) of leave one
out cross validation (LOCV) for all 200 data sets for equally spaced samples. Smaller
LOCV shows better estimation.

ε n MLR LCM Envelope Spatial Envelope
1 100 19.02 (1.537) 20.01 (1.754) 13.71 (1.547) 14.28 (1.644)

225 18.49 (1.153) 19.75 (1.659) 11.49 (1.124) 12.51 (1.234)
400 18.27 (0.828) 19.02 (1.002) 10.37 (0.812) 10.87 (0.989)

2 100 102.79 (35.570) 22.54 (3.246) 91.98 (36.379) 20.21 (1.988)
225 101.57 (32.495) 20.46 (2.897) 89.24 (33.083) 18.34 (1.450)
400 99.98 (32.185) 18. 89 (2.051) 88.95 (31.855) 17.68 (1.056)

3 100 117.79 (48.834) 24.19 (4.125) 119.08 (47.852) 21.36 (2.353)
225 103.22 (39.065) 21.78 (3.278) 104.73 (39.023) 20.76 (2.012)
400 99.08 (37.718) 19.45 (3.001) 100.39 (36.896) 18.10 (1.651)

Table 4.2: Prediction accuracy comparison based on the mean (standard deviation) of leave one
out cross validation (LOCV) for all 200 data sets for random location samples. Smaller
LOCV shows better estimation.

ε n MLR LCM Envelope Spatial Envelope
1 100 20.12 (1.613) 21.01 (1.863) 14.32 (1.699) 14.98 (1.722)

225 19.34 (1.231) 19.68 (1.542) 13.12 (1.234) 13.19 (1.201)
400 17.83 (0.804) 18.22 (1.101) 11.73 (0.718) 12.37 (0.819)

2 100 104.02 (36.702) 23.32 (4.111) 93.02 (30.433) 19.21 (2.004)
225 102.41 (34.521) 21.41 (3.758) 91.34 (27.211) 17.34 (1.352)
400 100.39 (30.822) 19.20 (3.201) 89.21 (25.581) 16.68 (1.110)

3 100 116.34 (45.089) 25.21 (4.821) 97.01 (43.021) 20.79 (2.115)
225 108.15 (34.211) 22.35 (3.555) 95.52 (31.774) 18.92 (1.944)
400 101.54 (32.102) 20.44 (2.998) 90.94 (30.234) 17.03 (1.234)

From the summary of all three different error distributions, in both scenarios, it can

be seen that for the standard normal errors, where the data are actually independent from
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each other, the spatial envelope provides a comparable result to the envelope method and

both of these methods provide better results compared to MLR and LCM. Furthermore, in

error distributions 2 and 3, where there exists spatial dependency in the data, the spatial

envelope method performed almost equally as well as they did in the cases without spatial

dependency. The spatial envelope method performs drastically better than the original

envelope. In addition, spatial envelope outperformed LCM in both of the cases that there

exists spatial dependency in the data. Therefore, we can conclude that the proposed spatial

envelope model provided consistent estimates with good prediction accuracy in all error

distributions considered.

4.5 Real data

Air pollution is the existence of one or several pollutant elements such as dust, gases, smoke,

etc. in the air that has a serious impact on the health of plants and animals (including

humans). There is evidence that shows exposure to air pollutions such as particulate mat-

ter (PM) and nitrogen dioxide has significant effect on human health. For instance PM is

associated with increases in cardiopulmonary disease (Pope et al., 2002; Pope et al., 2004).

Furthermore, nitrogen dioxide increases allergic responses to inhaled pollens, risk of respi-

ratory symptoms such as acute bronchitis and cough and phlegm, particularly in children,

and decreases lung function (World Health Organization, 2003). Most of the air pollutant

are study concentrate on one of the pollutant in the air but since a relation among these

pollutant seems to exist, it would be interesting to study the behavior of all of these pollu-

tants together. Here, we are going to apply the proposed methodology to the air pollution

data in the northeastern United States. This dataset has drawn much attention from statis-
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ticians and other scientists. These researchers looked at this data from different points of

view including but not restricted to climate change (Phelan et al., 2016), health science

(Kioumourtzoglou et al., 2016; Zeng et al., 2016), and air quality (Battye et al., 2016).

The pollutant and weather data that we used in this study are the average levels of the

following variables in January 2015. In this study, the response variables are:

1. Criteria Gases: ozone, sulfur dioxide (SO2), carbon monoxide (CO), and nitrogen

dioxide (NO2).

2. Particulates: particulate matter which are PM2.5 FRM/FEM Mass, PM2.5 non FR-

M/FEM Mass, PM10 Mass, and PM2.5 speciation. PM10 includes particles less than

or equal to 10 micrometers in diameter. Similarly, PM2.5 includes particles less than

or equal to 2.5 micrometers and is also called fine particle pollution.

3. Toxics: core Hazardous Air Pollutants (HAPS) and Volatile Organic Compounds

(VOCs). Hazardous air pollutants (HAPs) (also called toxic air pollutants or air tox-

ics) are pollutants that are known or suspected to cause serious health problems such

as cancer.

This data is combined with the following meteorological variables: wind, temperature, and

relative humidity as our regressors. Along with this information, latitude and longitude of

the monitoring locations were used to model the spatial structure in the data. Our study area

consists of 9 states in the northeast of the United States of America which are: Connecticut,

Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island,

and Vermont. This dataset can be found at http://aqsdr1.epa.gov/aqsweb/aqstmp/airdata.

Figure 4.1 shows the study area in red.
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Figure 4.1: Study area in the United States of America. States of interest are shaded in red.

The study area contains 270 sites which measure the air quality data. Figure 4.2 shows

the location of these sites on the map. The results of the cross-validation showed that

best choice for the dimension is 3. The Matern’s covariance parameter for this data set

are estimated to be 0.51 and 0.92 for θ1 and θ2 respectively. The corresponding direction

estimates using the spatial envelope are shown in Table 4.3. In addition, Table 4.4 shows the

regression coefficients and their asymptotic standard deviation (in parenthesis) using spatial

envelope.

Table 4.3: The corresponding direction estimates using spatial envelope for the air pollution data
in northeastern United States of America.

Variable Direction 1 Direction 2 Direction 3
Ozone -0.0001 0.0009 0.0003
Carbon monoxide -0.0006 -0.0041 -0.0011
Nitrogen dioxide 0.0643 -0.9615 -0.1195
Sulphur dioxide 0.0110 0.0076 -0.0116
PM10 Mass -0.9754 -0.0319 -0.1164
PM2.5 FRM/FEM Mass -0.1304 -0.1732 -0.1811
PM2.5 FRM/FEM non Mass 0.0992 -0.1350 -0.0358
PM2.5 Speciation 0.1302 0.1601 -0.9684
Hazardous Air Pollutants -0.0014 -0.0018 0.0006
Volatile Organic Compounds 0.0238 0.0247 0.0125
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Figure 4.2: Location of different sites in the study area. It can be seen that there is a higher
number of sites in places with larger population compare to other palaces in the study
area.

Table 4.4: Regression coefficients (asymptotic standard deviation) using spatial envelope the air
pollution data in northeastern United States of America.

Variable Wind Temperature Relative humidity
Ozone -0.0008 (0.010) 0.0015 (0.012) 0.0007 (0.010)
Carbon monoxide 0.0066 (0.061) -0.0128 (0.040) -0.0079 (0.030)
Nitrogen dioxide 0.8911 (0.435) -1.8826 (0.382) -0.9927 (0.317)
Sulphur dioxide -0.1372 (0.147) 0.2748 (0.101) 0.2278 (0.078)
PM10 Mass 3.298 (0.904) -5.9855 (0.975) -5.1187 (0.769)
PM2.5 FRM/FEM Mass 0.2905 (0.473) -0.4577 (0.442) -0.2823 (0.349)
PM2.5 FRM/FEM non Mass -0.1804 (0.243) 0.3048 (0.166) 0.3617 (0.077)
PM2.5 Speciation -0.0063 (0.016) 0.011 (0.006) 0.0105 (0.004)
Hazardous Air Pollutants 0.0094 (0.014) -0.0187 (0.007) -0.0141 (0.005)
Volatile Organic Compounds 0.0157 (0.102) -0.0439 (0.069) -0.041 (0.053)
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By checking the estimated coefficients (directions), we can see PM10 mass, PM2.5 mass,

and PM 2.5 speciation are important in the first direction. As it can be seen, this direction

mainly involves with particulates. Among these particulates, PM10 mass has the largest

impact in this direction. In the second direction, nitrogen dioxide, PM2.5 FRM/FEM mass,

PM2.5 FRM/FEM non mass, and PM2.5 speciation are important. In this direction nitrogen

dioxide has the largest effect. In the third direction, nitrogen dioxide, PM2.5 FRM/FEM

mass, and PM2.5 speciation are important. In the third direction, PM 2.5 speciation has

the largest effect.

Using fossil fuels creates nitrogen monoxide and nitrogen dioxide. The nitrogen monoxide

will also become nitrogen dioxide in the atmosphere. Almost 80 percent of nitrogen dioxide

in the urban areas is because of motor vehicles. The rest comes from the oil industry,

metals industry, and plants that use fossil fuels such as coal power plants. The amount of

the released nitrogen dioxide from one ton of fossil fuel is 36 kilograms (Laegreid, 1999).

Therefore, because there exists a lot of industry and crowded centers in the northeastern of

the United States the amount of this pollutant is high. On the other hand, in January, due

to the extremely low temperature in the the United States there is a high use of the fossil

fuels for warming the houses and buildings which will increase the amount of the nitrogen

dioxide. This explains the importance of the nitrogen dioxide that we found in this study.

Temperature decreases in the troposphere with increasing altitude. This Phenomena is

called lapse rate. In cases where the atmospheric layer near the earth surface loses heat en-

ergy due to the night radiation resulting from the contact of atmosphere with warm ground,

the track of temperature decreases with height adjustment and the temperature rarely rises.

This phenomena is called inversion and it happens in cold season which leads to the increas-

ing of the pollutant close to earth surface. There the inversion is a common phenomena
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in the winter in different continents (Byers, 1959). Therefore in the northeastern United

States which has cold winter, there exist more favorable conditions for the occurrence of

the inversion. The inversion layer is very close to earth surface such that it will vanish in

1 kilometer altitude on the oceans and 2 kilometers altitude on the continents. This layer

does not let the particulates go higher into the atmosphere and it keeps them close to the

earth surface which will support the founding of our statistical analysis.

In general, we find out that the most important pollutants in January are particulates

and nitrogen and other pollutants have small effect. These statistical conclusions support

the chemical claim that the reaction among gases is affected by chemical reactions between

weather conditions and pollutants in the presence of sunlight and heat which are not available

in January in the northeastern of the USA.
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4.6 Theoretical results and prediction maps

4.6.1 Derivation of the factorization of the likelihood function in

section 4.1

The likelihood function of the model (4.3) will be as follows:

L(u)(α,β,V0,V1,θ) = [det((V0 + V1)⊗ ρ(θ))]−
1
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β)T ((V0 + V1)⊗ ρ(θ))−1 (Y−α⊗ 1n − (Ip ⊗X)β)

}
= [det(V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ))]−

1
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β)T ((V0 + V1)−1 ⊗ ρ(θ)−1)(Y−α⊗ 1n − (Ip ⊗X)β)

}
= [det(V0 ⊗ ρ(θ) + V1 ⊗ ρ(θ))]−

1
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β)T

(
(V†0 ⊗ ρ(θ)−1) + (V†1 ⊗ ρ(θ)−1)

)
(Y−α⊗ 1n − (Ip ⊗X)β)

}
,

(4.20)

where † denotes Moore-Penrose inverse and V0 = Γ0Ω0Γ0 and V1 = Γ1Ω1Γ1. Since

span(β) ⊆ span(V1), therefore V0β = 0 and because V = V0 + V1, this likelihood can

be factored as:

L(u)(α,β,V0,V1,θ) = [det(V0 + V1)]−
n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β))T

(
V†1 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n − (Ip ⊗X)β))

}
× exp

{
−1

2
(Y−α⊗ 1n)T

(
V†0 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n)

}
= L

(u)
1 (α,β,V1,θ)× L(u)

2 (α,V0,θ),

(4.21)
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where

L
(u)
1 (α,β,V1,θ) = [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(Y−α⊗ 1n − (Ip ⊗X)β))T

(
V†1 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n − (Ip ⊗X)β))

}
,

L
(u)
2 (α,V0,θ) = [det0(V0)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(Y−α⊗ 1n)T

(
V†0 ⊗ ρ(θ)−1

)
(Y−α⊗ 1n)

}
,

(4.22)

where det0(A) denotes the product of non-zero eigenvalues of A where A is a non-zero

symmetric matrix.

4.7 Coordinate free version of the algorithm of the spa-

tial envelope

The objective is to maximize the likelihood in (4.21) over β,V0,V1, and θ subject to the

constraints:

span(β) ⊆ span(V1), (a)

V0V1 = 0, (b).

(4.23)

Based on this factorization given in equation (4.21), we can decompose the likelihood maxi-

mization into the following steps:

1. Fix β,V0, V1, and θ, and maximize L(u) in (4.4) over α which will be:

α̂ = Ȳ− X̄β.



Hossein Moradi Rekabdarkolaee Chapter 4. Spatial Envelope 91

Let H = Y− Ȳ⊗ 1n, U = vec(H), G = X− X̄⊗ 1n, and F = I⊗G. Therefore, the

profile likelihood can be written as the following:

L
(u,p)
1 (β,V1,θ) = [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
(U− Fβ)T

(
V†1 ⊗ ρ(θ)−1

)
(U− Fβ)

}
,

(4.24)

and

L
(u,p)
2 (α,V0,θ) = [det0(V0)]−

n
2 exp

{
−1

2
UT

(
V†0 ⊗ ρ(θ)−1

)
U

}
. (4.25)

2. Fix V1, and θ and maximize the function L
(u,p)
1 over β, subject to (4.23a), to obtain

L
(u,p)
21 (V1,θ). Since vec(Xβ) = (I⊗X)vec(β) and

tr(DT (CTBTAT )) = (vec(D))T (A⊗CT )(vec(B))T ,

we have

(U− Fβ)T
(
V†1 ⊗ ρ(θ)−1

)
(U− Fβ) = tr

(
(H−Gβ)Tρ(θ)−1(H−Gβ)V†1

)
= tr

(
(H−Gβ)Tρ(θ)−

1
2ρ(θ)−

1
2 (H−Gβ)V†1

)
= tr

(
ρ(θ)−

1
2 (H−Gβ)V†1(H−Gβ)Tρ(θ)−

1
2

)
= tr

((
ρ(θ)−

1
2 H− ρ(θ)−

1
2 Gβ

)
V†1

(
ρ(θ)−

1
2 H− ρ(θ)−

1
2 Gβ

)T)
= tr

((
ρ(θ)−

1
2 H− ρ(θ)−

1
2 GβIp

)
V†1

(
ρ(θ)−

1
2 H− (ρ(θ)−

1
2 GβIp

)T)
(4.26)

where tr(·) denotes the trace of the matrix. The last equality in equation (4.26) is
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from Lemma 4.1 in Cook et al., (2010). Thus, the optimal ρ(θ)−
1
2 GβIp is

P
ρ(θ)−

1
2 G

(
ρ(θ)−

1
2 H
)

PT

Ip(V†1)
= P

ρ(θ)−
1
2 G

(
ρ(θ)−

1
2 H
)

PV1 ,

where P(·) is the projection onto the subspace indicated by its argument. This implies

following

βT =
(
GTρ(θ)G

)−1
Gρ(θ)HPV1 ⇒ β = PV1β̂,

where β is the MLE estimate of β from the full model (4.1). Substituting this into

(4.25), and using the relation PV1V
†
1 = V†1, we see that the maximum of L

(u,p)
2 for

fixed V1 over β is

L
(u,p)
11 (V1,θ) = [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
tr

((
ρ(θ)−

1
2 H−P

ρ(θ)−
1
2 G

ρ(θ)−
1
2 HPV1

)
V†1

(
ρ(θ)−

1
2 H−P

ρ(θ)−
1
2 G

ρ(θ)−
1
2 HPV1

)T)}
= [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
tr

((
ρ(θ)−

1
2 H−P

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

V†1

(
ρ(θ)−

1
2 H−P

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)T)}

= [det0(V1)]−
n
2 [det(ρ(θ))]−

p
2 exp

{
−1

2
tr

((
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

V†1

(
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)T)}

(4.27)

where Q
ρ(θ)−

1
2 G

= In −P
ρ(θ)−

1
2 G

.

3. Maximize L(u)(α,β,V0,V1,θ) over all V0, V1, and θ. Since L(u)(α,β,V0,V1,θ) =
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L
(u,p)
1 (β,V1,θ)× L(u,p)

2 (α,V0,θ), we have

L(u)(α,β,V0,V1,θ) = [det0(V0)]−
n
2 [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
tr

((
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

V†1

(
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)T)}

× exp
{
−1

2
UT

(
V†0 ⊗ ρ(θ)−1

)
U

}
= [det0(V0)]−

n
2 [det0(V1)]−

n
2 [det(ρ(θ))]−

p
2

× exp
{
−1

2
tr

((
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

V†1

(
Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)T)}

× exp
{
−1

2
tr
(
ρ(θ)−

1
2 HV†0H

Tρ(θ)−
1
2

)}
.

(4.28)

This maximization can be as follows:

(a) Fix V0 and V1 and maximize L(u)(α,β,V0,V1,θ) over θ by solving the following

maximization problem:

θ̂ = argmax
θ

{
−
p

2
det(ρ(θ))−

1

2
tr

((
Q

ρ(θ)
− 1

2 G
ρ(θ)−

1
2 H

)
V†1

(
Q

ρ(θ)
− 1

2 G
ρ(θ)−

1
2 H

)T
+ ρ(θ)−

1
2 HV†0HTρ(θ)−

1
2

)}
(4.29)

(b) Fix the θ and maximize L(u)(α,β,V0,V1,θ) over V0 and V1. This means

maximize L
(u,p)
11 (β,V1,θ) over V1 and L

(u,p)
12 (α,V0,θ) over V0. Maximization

L
(u,p)
11 (PV1) over V1 is

L
(u,p)
11 (PV1) ∝

[
det0

(
PV1

(
HTρ(θ)−

1
2 Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

PV1

)]−n
2

(4.30)

and maximization L
(u,p)
12 (PV0) over V0 is

L
(u,p)
12 (PV0) ∝

[
det0

(
PV0H

Tρ(θ)−1HPV0

)]−n
2 . (4.31)
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Therefore, maximization L(u)(α,β,V0,V1,θ) over V0 and V1 is equivalent to

maximization of L
(u,p)
11 (PV1)× L

(u,p)
12 (PV0) which is proportion to

D =
[
det0

(
PV1

(
HTρ(θ)−

1
2 Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

PV1

)]−n
2 ×

[
det0

(
PV0H

Tρ(θ)−1HPV0

)]−n
2

=
[
det0

(
PV1

(
HTρ(θ)−

1
2 Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

PV1 + PV0H
Tρ(θ)−1HPV0

)]−n
2

=
[
det0

(
PV1

(
HTρ(θ)−

1
2 Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H
)

PV1 + QV0
HTρ(θ)−1HQV0

)]−n
2

(4.32)

where QV0
= Ip −PV1 . Since Σ̂Y = HTρ(θ)H and

Σ̂res = HTρ(θ)−
1
2 Q

ρ(θ)−
1
2 G

ρ(θ)−
1
2 H

= HTρ(θ)H−HTρ(θ)G
(
GTρ−1(θ)G

)−1
GTρ(θ)H.

(4.33)

Therefore we have D = det(PV1Σ̂resPV1 + QV1
Σ̂YQV1

) and V̂1 = argmax
V1

(D)

and PV̂0
= I−PV̂1

Repeat (a) and (b) until it converges.

4.7.1 Proof of Theorem 1

In this section, we derive the an explicit expression for Ψ as given by (4.37). In order to find

these expression, we need to find expressions for the eight partial derivatives ∂Ψi
∂φTj

for i = 1, 2

and j = 1, 2, 3, 4. Before starting the derivation, the following properties hold:
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1. Suppose A and X are both n× n, and X is symmetric, then

vech
(
AXAT

)
= Mnvec(AXA)

= Mn(A⊗A)vec(X)

= Mn(A⊗A)Envech(X)

= Cvech(X),

where for a given matrix such as A, vech(A) = Mnvec(A), vec(A) = Envech(A), and

C = Mn(A⊗A)En, a k × k matrix where k = n(n+1)
2

.

2. If Y = AXB, then vec(Y) =
(
BT ⊗A

)
vec(X) and

∂Y

∂ (vec(X))T
= BT ⊗A

3. If Y = AXTB, and X is m × n then vec(Y) = (BT ⊗A)vec
(
XT
)

where vec(XT ) =

I(m,n)vec(X), where I(m,n) is the mn×mn permutation matrix and

∂Y

∂ (vec(X))T
=
(
BT ⊗A

)
I(m,n).

4. If X is m× n and Y = XBXT where B is symmetric then

∂Y

∂ (vec(X))T
=
(
Im2 + I(m,m)

)
(XB⊗ Im).

5. Let F and G be m×n and p× q matrices, respectively, which are functions of x, then
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we have

∂ (vec(F)⊗ vec(G))

∂vec(x)T
=

(
vec(F)⊗ ∂vec(G)

∂vec(x)T

)
+

(
∂vec(F)

∂vec(x)T
⊗ vec(G)

)

and

∂vec (F⊗G)

∂vec(x)T
=
(
In ⊗ I(m,q) ⊗ Ip

) ∂ (vec(F)⊗ vec(G))

∂vec(x)T

Proof of above properties can be found in Seber (2008).

Theorem 1: Suppose X̄ = 0 and J is the Fisher information for ψ(φ) in the model

(4.3):

J =

ΣX ⊗Σ−1 0

0 1
2
ET
r (Σ−1 ⊗Σ−1) Er


=

ΣX ⊗V−1 ⊗ ρ(θ)−1 0

0 1
2
ET
r

(
V−1 ⊗ ρ(θ)−1 ⊗V−1 ⊗ ρ(θ)−1

)
Er


(4.34)

where ΣX = limn→∞
1
n

∑n
i=1 XiX

T
i , and Er ∈ Rr2×r(r+1)/2 is expansion matrix which is

defined such that for a given matrix such as A, vec(A) = Ervech(A). Let Λ = J−1 be the

asymptotic variance of the MLE under the full model. Then

√
n(φ̂− φ)→ N(0,Λ0) (4.35)

where Λ0 = Ψ(ΨTΛΨ)†Ψ and Ψ is as follows:

Ip ⊗ Γ1 ηT ⊗ Ir 0 0

0 Ψ22 Ψ23 Ψ24

 (4.36)
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where

Ψ22 = Mrn(Ir ⊗ Irn ⊗ In)

×
{[(

Γ1(Ω1 + Ω0)T ⊗ Ir
)

+ (Iu ⊗ Γ1(Ω1 + Ω0))−Ω0 ⊗ Ir − (Iu ⊗Ω0)Iru
]
⊗ vec(ρ(θ))

}
,

Ψ23 = Mrn(Ir ⊗ Irn ⊗ In) [(Γ1 ⊗ Γ1)Gu ⊗ vec(ρ(θ))] ,

Ψ24 = Mrn(Ir ⊗ Irn ⊗ In) [(Γ0 ⊗ Γ0)Gr−u ⊗ vec(ρ(θ))] ,

(4.37)

where Mrn ∈ Rrn(rn+1)/2×(rn)2 is the contraction matrix which is defined such that for a

given matrix such as A, vech(A) = Mrnvec(A). Furthermore, Λ−
1
2 (Λ − Λ0)Λ−

1
2 ≥ 0, so

the spatial envelope model decreases the asymptotic variance.

The partial derivatives ∂Ψi
∂φTj

for i = 1, 2 and j = 1, 2, 3, 4 derivations are presented as

follow:

In order to calculate ∂Ψ1

∂φT
, first we have:

∂vec(Ψ1(φ))

∂φ1

=
∂vec(Γ1η)

∂vec(η)T
=
∂(Ip ⊗ Γ1)vec(η)

∂vec(η)T
= Ip ⊗ Γ1

Similarly, we have:

∂vec(Ψ1(φ))

∂φ2

=
∂vec(Γ1η)

∂vec(Γ1)T
=
∂(ηT ⊗ Ir)vec(Γ1)

∂vec(Γ1)T
= ηT ⊗ Ir

Clearly, ∂Ψ1

∂φT3
= 0, ∂Ψ1

∂φT4
= 0.
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In order to compute ∂Ψ2

∂φT
, since Ψ2 does not depend on φ1, therefore ∂Ψ2

∂φT1
= 0. For ∂Ψ2

∂φT2
,

we have

∂vec(Ψ2(φ))

∂φ2
=
∂vec

[(
Γ1Ω1Γ

T
1 + Γ0Ω0Γ

T
0

)
⊗ ρ(θ)

]
∂vec(Γ1)

=
∂vech

[(
Γ1Ω1Γ

T
1 + (I− Γ1)Ω0(I− Γ1)T

)
⊗ ρ(θ)

]
∂vec(Γ1)

=
Mrn∂vec

[(
Γ1Ω1Γ

T
1 + (I− Γ1)Ω0(I− Γ1)T

)
⊗ ρ(θ)

]
∂vec(Γ1)

= Mrn(Ir ⊗ I(r,n) ⊗ In)

[
∂vec

[(
Γ1Ω1Γ

T
1 + (I− Γ1)Ω0(I− Γ1)T

)]
∂vec(Γ1)

⊗ vec(ρ(θ))

]

= Mrn(Ir ⊗ I(r,n) ⊗ In)

×
{[(

Γ1(Ω1 + Ω0)T ⊗ Ir
)

+ (Iu ⊗ Γ1(Ω1 + Ω0))−Ω0 ⊗ Ir − (Iu ⊗Ω0)I(r,u)

]
⊗ vec(ρ(θ))

}

For ∂Ψ3

∂φT2
, we have

∂vec(Ψ2(φ))

∂φ3

=
∂vech(Γ1Ω1Γ

T
1 ⊗ ρ(θ))

∂vech(Ω1)T

=
Mrn∂vec(Γ1Ω1Γ

T
1 ⊗ ρ(θ))

∂vech(Ω1)T

= Hrn(Ir ⊗ I(r,n) ⊗ In)

[
∂vec(Γ1Ω1Γ

T
1 )

∂vech(Ω1)T
⊗ vec(ρ(θ))

]
= Mrn(Ir ⊗ I(r,n) ⊗ In) [(Γ1 ⊗ Γ1)Eu ⊗ vec(ρ(θ))]
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Similarly, for ∂Ψ4

∂φT2
, we have

∂vec(Ψ2(φ))

∂φ4

=
∂vech(Γ0Ω0Γ

T
0 ⊗ ρ(θ))

∂vech(Ω0)T

=
Mrn∂vec(Γ0Ω0Γ

T
0 ⊗ ρ(θ))

∂vech(Ω0)T

= Mrn(Ir ⊗ I(r,n) ⊗ In)

[
∂vec(Γ0Ω0Γ

T
0 )

∂vech(Ω0)T
⊗ vec(ρ(θ))

]
= Mrn(Ir ⊗ I(r,n) ⊗ In)

[
(Γ0 ⊗ Γ0)E(r−u) ⊗ vec(ρ(θ))

]

Having these derivatives together lead to obtain (4.37).

The asymptotic distribution (4.35) follows from Shapiro (1986, Proposition 4.1). In order

to prove that Λ0 ≤ Λ, we have

Λ0 −Λ = J−1 −Ψ(ΨTΛΨ)†Ψ = J−
1
2

[
Ipr+r(r+1)/2 − J

1
2 Ψ(ΨTΛΨ)†ΨJ

1
2

]
J−

1
2

Since the matrix Ipr+r(r+1)/2− J
1
2 Ψ(ΨTΛΨ)†ΨJ

1
2 is the projection on to orthogonal comple-

ment of span(J
1
2 Ψ), it is positive semidefinite, which implies that Λ0 − Λ is also positive

semidefinite. In addition, we have

Λ−
1
2 (Λ−Λ0)Λ−

1
2 = Ipr+r(r+1)/2 − J

1
2 Ψ(ΨTΛΨ)†ΨJ

1
2

which proves the last statement of the theorem.

4.7.2 Prediction Plot for Response Variables
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Figure 4.3: Prediction plot of carbon monoxide for the study area. As it can be seen, the carbon
monoxide is high in Rhodes Island, New York, New Jersey, and Buffalo which are
highly populated and therefore there will be a lots of car and usage of fossil fuels which
leads to high concentration of carbon monoxide in the air.

Figure 4.4: Prediction plot of the log of the ground level Ozone for the study area. as it can be
seen, the Ozone level is not high in the study area.
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Figure 4.5: Prediction plot of the log of the Sulfur dioxide for the study area. as it can be seen,
the Sulfur dioxide is low for the most part of the study area. However, it is high in
Johnstown where there exists a lot of defense manufacturing.

Figure 4.6: Prediction plot of the log of the Nitrogen dioxide for the study area. as it can be seen,
the Nitrogen dioxide is high in Newark, New York, Philadelphia, and Rhodes Island
which are all highly populated areas.
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Figure 4.7: Prediction plot of the log of the PM 10 Mass for the study area. as it can be seen,
the PM 10 Mass is low for most part of the study area. However, it is high in New
Jersey and Concord.

Figure 4.8: Prediction plot of the log of the PM 2.5 Mass for the study area. as it can be seen,
the PM 2.5 Mass is moderate in almost every place in the study area except for
Philadelphia where it is high.
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Figure 4.9: Prediction plot of the PM 2.5 non Mass for the study area. as it can be seen, the PM
2.5 non Mass is moderately high in almost every place in the study area especially in
Rhodes Island, Massachusetts, and New York.

Figure 4.10: Prediction plot of the log of the PM 2.5 speciation for the study area. as it can be
seen, the PM 2.5 speciation is high in almost every place in the study area.
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Figure 4.11: Prediction plot of Hazardous air pollutants (HAPs) for the study area. As it can be
seen, the HAPs is high in Rochester.

Figure 4.12: Prediction plot of Volatile organic compounds (VOCs) for the study area. As it can
be seen, the VOCs is high in Rhodes Island and Massachusetts.
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23. Č́ıžek, P., and Härdle, W. (2006). Robust estimation of dimension reduction

space. Computational Statistics and Data Analysis. 51 545–555.

24. Cook, R. D. (1994). On the interpretation of regression plots. Journal of the Amer-

ican Statistical Association. 89 177–189.

25. Cook, R. D. (1994). Using dimension-reduction subspaces to identify important

inputs in models of physical systems. Proceedings of the section on Physical and En-

gineering Sciences. 18–25.



Hossine Moradi Rekabdarkolaee References 108

26. Cook, R. D. (1996). Graphics for regressions with a binary response. Journal of the

American Statistical Association, 91 983–992.

27. Cook, R. D. (1998). Regression Graphics: Ideas for Studying Regressions Through

Graphics. Wiley, New York.

28. Cook, R. D. (2007). Fisher lecture: Dimension reduction in regression. Statistical

Science 1–26.

29. Cook, R. D., and Forzani, L. (2009). Likelihood-based sufficient dimension re-

duction. Journal of the American Statistical Association. 104, 197–208.

30. Cook, R. D., Forzani, L. and Zhang, X. (2015). Envelopes and reduced rank

regression. Biometrika. 102 439–456.

31. Cook, R. D., Helland, I. and Su, Z. (2013). Envelopes and partial least squares

regression. Journal of the Royal Statistical Society, B. 75 851–877.

32. Cook, R. D., Li, B. (2002). Dimension reduction for the conditional mean in regres-

sion. The Annals of Statistics. 30 455–474.

33. Cook, R. D., Li, B., and Chiaromonte, F. (2007). Dimension reduction in

regression without matrix inversion. Biometrika. 94 569–584.

34. Cook, R. D., Li, B. and Chiaromonte, F. (2010). Envelope models for parsimo-

nious and efficient multivariate linear regression (with discussion). Statistica Sinica.

20 927–1010.

35. Cook, R. D., and Ni, L. (2005). Sufficient dimension reduction via inverse regres-

sion. Journal of the American Statistical Association. 100, 410–428.



Hossine Moradi Rekabdarkolaee References 109

36. Cook, R. D. and Su, Z. (2013). Scaled envelopes: Scale invariant and efficient

estimation in multivariate linear regression. Biometrika. 100 939–954.

37. Cook, R. D., and Su, Z. (2015). Scaled predictor envelopes and partial least squares

regression. Technometrics. To appear.

38. Cook, R. D., and Su, Z. (2016). Scaled predictor envelopes and partial least squares

regression. Technometrics, 58, 155–165.

39. Cook, R. D., Su, Z. and Yang, Y. (2015b). envlp: A MATLAB Toolbox for Com-

puting Envelope Estimators in Multivariate Analysis. Journal of Statistical Software.

62 1–20.

40. Cook, R. D., and Weisberg, S. (1991). Comment. Journal of the American

Statistical Association. 86 328–332.

41. Cook, R. D., and Weisberg, S. (2009). An introduction to regression graphics.

John Wiley and Sons.

42. Cook, R. D., and Yin, X. (2001) Theory and Methods: Special Invited Paper:

Dimension Reduction and Visualization in Discriminant Analysis (with discussion)

Australian and New Zealand Journal of Statistics. 43, 147–199.

43. Cook, R. D. and Zhang, X. (2015a). Foundations for envelope models and meth-

ods. Journal of the American Statistical Association. 110 599–611.

44. Cook, R. D. and Zhang, X. (2015c). Simultaneous envelopes for multivariate linear

regression. Technometrics. 57 11-25.



Hossine Moradi Rekabdarkolaee References 110

45. Cook, R. D., and Zhang, X. (2016). Algorithms for envelope estimation. Journal

of Coputational and Graphical Statistics. 25, 284–300.

46. Cooper, D. R., Schindler, P. S., and Sun, J. (2003). Business research methods.

McGraw-Hill/Irwin New York, NY.

47. Cressie, N. (2015). Statistics for spatial data. John Wiley and Sons.

48. Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood

from Incomplete Data via the EM Algorithm, with Applications. Journal of the Royal

Statistical Society, Series B. 39 1–38.

49. Duan, N., and Li, K. C. (1985). The Ordinary Least Squares Estimation for the

General-Link Linear Models, with Applications. Technical Report.

50. Edelman, A., Tomas, A. A., and Smith, S. T. (1998). The geometry of algo-

rithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Appli-

cations. 20, 303–353.

51. Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle

regression. The Annals of Statistics. 32 407–499.

52. Einbeck. J. and Tutz. G. (2006). Modelling beyond regression functions: an

application of multimodal regression to speedflow data. Journal of the Royal Statistical

Society: Series C. 55(4) 461–475.

53. Fan, J., and Jiang, J. (2000). Variable bandwidth and one-step local M-estimator.

Science in China Series A: Mathematics. 43 65–81.



Hossine Moradi Rekabdarkolaee References 111

54. Fan, J., and Li, R. (2001). Variable selection via nonconcave penalized likelihood

and its oracle properties. Journal of the American Statistical Association. 96 1348–

1360.

55. Fan, J., and Peng, H. (2004) Nonconcave penalized likelihood with a diverging

number of parameters. The Annals of Statistics. 32, 928–961.

56. Fan, J., and Li, R. (2006). Statistical challenges with high dimensionality: Feature

selection in knowledge discovery. arXiv preprint math/0602133.

57. Fan, J., Fan, Y., and Barut, E. (2014). Adaptive robust variable selection. The

Annals of Statistics. 42, 324–351.

58. Friedman, J. H., and Stuetzle, W. (1981). Projection pursuit regression. Journal

of the American statistical Association. 76, 817–823.

59. Friedman, J. H. (1994). An overview of computational learning and function ap-

proximation. From Statistics to Neural Networks. Theory and Pattern Recognition

Applications. 1.

60. Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). Regularization paths

for generalized linear models via coordinate descent. Journal of Statistical Software.

33 1–22.

61. Fruchter, B. (1954). Introduction to factor analysis. Van Nostrand

62. Fu, W. J. (1998). Penalized regressions: the bridge versus the lasso. Journal of

Computational and Graphical Statistics. 7 397–416.



Hossine Moradi Rekabdarkolaee References 112

63. Fukumizu, K., Bach, F. R., and Jordan, M. I. (2009). Kernel dimension reduc-

tion in regression. The Annals of Statistics. 1871–1905.

64. Ghosh, D., and Chinnaiyan, A. M. (2005). Classification and selection of biomark-

ers in genomic data using LASSO. BioMed Research International. 2005:2 147–154.

65. Guisan, A., Edwards, T. C. and Hastie, T. (2002). Generalized linear and gen-

eralized additive models in studies of species distributions: setting the scene. Ecological

modelling. 157:2 89–100.
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