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List of Figures 

Fig. 2.1 Schematic representation of the AWI over a coating made of a layer of equally sized 

hydrophobic particles as a function of pressure difference (increasing from top to down) is 

presented in (a). Four particles with a square arrangement representing a unit-cell for our 

COPDs along with an arbitrary AWI between them produced by SE for 𝑑 = 100 μm, 𝐿𝑠 =

162 μm, and 𝑃ℎ = 548 kPa, 𝜃1 = 80o, and 𝜃2 = 120o (b). Force balance diagrams for the 

case of positive pressure difference across the AWI are given in (c). The AWI radius of 

curvature at the center of the unit-cell and at the symmetry boundary is shown in (d) and also 

the volume confined between the curved AWI and the horizontal plane slicing through the 

particles at contact points (gray-shaded volume) is approximated with a spherical cap added to 

a cuboids is shown. 

Fig. 2.2 CHP predictions, obtained from FB and SE calculations for COPDs comprised of particles 

with YLCAs of 80o and 120o and diameters of 100 μm and 1 μm, are shown in (a) along with 

their immersion angles from the FB method in (b). Percent relative error between the FB and 

SE calculations is given in (c) for coatings with different SVFs. The critical negative 

hydrostatic pressures are shown in (d) for the same COPDs. 

Fig. 2.3 
Variations of wetted area with hydrostatic pressure obtained from FB and SE calculations for 

COPDs having a solid volume fraction of 𝜀 = 0.4, particle diameters of 100 μm and 1 μm, 

and YLCAs of 60o and 120o are shown in (a). The effects of SVF on wetted area is shown in 

(b) for the case of 𝜃 = 120o and 𝑑 = 100 μm. Estimations of the dimensionless slip length 

versus hydrostatic pressure obtained from the expressions of Refs. (1) and (2) for COPDs with 

𝜃 = 120o and 𝜀 = 0.5 in (c).  

Fig. 2.4 
Examples of the critical AWI for bi-component COPDs with different microstructural and 

wetting properties (given below each sub-figure) (a). Wetted area (b) and dimensionless slip 
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length (c) as a function of hydrostatic pressure for COPDs with different population fractions 

of particles with 𝜃1 = 100o and 𝜃2 = 120o for an SVF of  𝜀 = 0.4 and a particle diameter of 

𝑑 = 100 μm. 

Fig. 2.5 The equivalent contact angle concept shown schematically with the relationship between the 

angles and directions. 

Fig. 2.6 CHP predictions, obtained from FB and SE calculations for bi-component COPDs comprised 

of particles with 𝜃1 = 100o and 𝜃2 = 120o and diameters of 𝑑 = 100 μm and 𝑑 = 1 μm. (a) 

and (b) show the case with positive and negative pressures, respectively. 

Fig. 2.7 Variations of wetted area with hydrostatic pressure obtained from FB and SE calculations for 

COPDs having 𝜃1 = 100o, 𝜃2 = 120o with 𝑑 = 100 μm for 𝑛1
𝑐 = 0.25. 

Fig. 2.8 An example Voronoi diagram produced for a CRPD with an SVF of 𝜀 = 0.25 comprised of 

34 particles is shown in (a). The AWI for the case of particles with a YLCA of 𝜃 = 120o at 

positive and negative CHPs of 𝑃ℎ = 169 kPa and 𝑃ℎ = −40 kPa are shown in (b) and (c) along 

with their height contour plots in (d) and (e) 𝑃ℎ = −40 kPa, respectively. The corresponding 

critical immersion angles are plotted for each particle and shown in (f) and (g). Note the 

location of the failure point shown with an arrow in (f) and (g). 

Fig. 2.9 CHP predictions, obtained from FB and SE calculations for CRPDs and their ordered 

counterparts are shown in (a) and (b) for positive and negative pressures, respectively, along 

with their corresponding bubble volume ratios in the offset. 

Fig. 2.10 CHP predictions vs. SVF, obtained from FB and SE calculations for bi-component CRPDs 

having 𝜃1 = 100o  and 𝜃2 = 120o with population fractions of 𝑛1
𝑐 ≅ 0.5, are given in (a). 

Wetted area as a function of hydrostatic pressure obtained using from SE for CRPDs is shown 

in (b). Wetted area for CRPDs and their ordered counterparts are given in (c). Dimensionless 

slip length as a function of hydrostatic pressure for CRPDs having 𝜃 = 120o and bi-

component CRPDs having 𝜃1 = 100o, 𝜃2 = 120o and 𝑛1
𝑐 ≅ 0.5 are presented in (d). 
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Fig. 3.1 (a): an AWI example over a bi-dispersed coating obtained using the SE code; (b): a 2-D 

diagram showing an AWI between two particles; (c): a schematic representation of AWI over 

a bi-dispersed coating under different hydrostatic pressures; and (d): 2-D representation of two 

mono-dispersed coatings with identical SVF but different particle diameters overlaid on top of 

one another. 

Fig. 3.2 (a): different arrangements of particles in a unit cell of a bi-dispersed coating; (b): the AWI in 

Regime II over a bi-dispersed coating can be modeled as AWIs over two different mono-

dispersed coatings; and (c): comparison between bi-dispersed particles’ center-to-center 

distance 𝐿𝑏 obtained from of Eqs. (3.6) and (3.8) for coatings with a coarse particle diameter 

of 𝑑1 = 100 μm with SVFs of 𝜀𝑚,1 = 0.2 and 0.3, YLCAs of 𝜃 = 120o and 80o, and different 

coarse-to-fine diameter ratios of 𝜂 = 2.0 and  2.5. 

Fig. 3.3 Schematic presentation of an AWI over a bi-dispersed coating (a) and over its mono-dispersed 

equivalent (b). 

Fig. 3.4 Mono-dispersed equivalent diameter a function of capillary pressure from Eq. 10 is compared 

with that of Eq. 11 for bi-dispersed coatings with 𝑑1 = 100 μm and 𝑛1 = 0.5; (a): coatings 

with different SVFs; (b): coatings with different coarse-to-fine particle diameter ratios; and 

(c): coatings with different YLCAs. A Comparison between the immersion angles obtained 

from SE simulations and our ED analytical method is given in (d) for coatings with different 

coarse particle number fractions. 

Fig. 3.5 An example coating with randomly distributed bi-dispersed particles shown with its Voronoi 

diagram. Note the particles surrounding particle i in the center of the largest Voronoi cells. 

Particles arranged in an ordered configuration present a special case for the analysis presented 

in this in this article. 

Fig. 3.6 A schematic presentation of the AWI in Regime I is shown in (a). Transition from Regime I 

to Regime II takes place when the AWI comes into contact with smaller particles at a higher 
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pressure (b). A new stable AWI forms in Regime II (c). Further increase in the hydrostatic 

pressure causes the AWI to penetrate deeper into the coating as shown in (d). 

Fig. 3.7 Critical capillary pressure predictions obtained from FB and SE calculations for mono-

dispersed coatings comprised of particles with 𝑑1 = 100 µm and 𝑑2 = 1 µm. 

Fig. 3.8 The minimum points for an AWI are shown with 𝑧1 and 𝑧2 at the cell boundary and cell center, 

respectively in (a). Maximum coarse-to-fine particle diameter ratio versus SVF for mono-

dispersed coatings with different YLCAs is shown in (b). 

Fig. 3.9 CCP values obtained from FB and SE calculations for bi-dispersed coatings having a coarse 

particle diameter of 𝑑1 = µm and an YLCA of 𝜃 = 120o are given in (a) and (b) for with 

𝜂 =1.75 and 𝜂 =2.5, respectively.  CHPs for coatings of figure (a) are shown in (c). 

Fig. 3.10 Wetted area versus hydrostatic pressure obtained from ED and SE calculations for bi-dispersed 

coatings having 𝜀𝑏=0.2 and 𝜂 =1.57 are shown in (a) for 𝑛1 = 0.75, in (b) for 𝑛1 = 0.50, and 

in (c) for 𝑛1 = 0.25. Dimensionless slip length is presented as a function of hydrostatic 

pressure for bi-dispersed coatings having SVF of 0.2 and 𝜂 =1.57 in (d). 

Fig. 3.11 CCP (a) and CHP (b) predictions from FB and SE calculations for poly-dispersed coatings 

with ordered particle arrangements having different SVFs and YLCAs. 

Fig. 3.12 Wetted area (a) and dimensionless slip length (b) versus hydrostatic pressure obtained from 

VED and SE calculations for bi-dispersed coatings with random particle distributions having 

𝜀𝑏=0.25, 𝑛1 = 0.5, 𝑑1 = 100 μm or 175 µm, and 𝜂 = 1.75 or 2.5 in Regime II. AWI examples 

over these coatings are shown in (c) at a hydrostatic pressure of 𝑃ℎ = 80 kPa. 

Fig. 3.13 Our CCP and CHP predictions are presented in (a) and (b) along with the SE results for poly-

dispersed coatings with randomly distributed particles, respectively. The coatings consist of 

particles with diameters and YLCAs of 𝑑1 = 100 μm, 𝜃1 = 120o, 𝑑2 = 57 μm, 𝜃2 =

100o, 𝑑3 = 40 μm, 𝜃3 = 80o, 𝑑4 = 31 μm, and 𝜃4 = 60o. Wetted area and dimensionless slip 

length are reported for poly-dispersed coatings with 𝜀𝑝 = 0.2 in (c) and (d), respectively. 
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Fig. 3.14 Flowchart for calculating critical pressure and wetted area for a coating comprised of poly-

dispersed randomly distributed particles of different diameters and YLCAs. 

Fig. 3.15 Results of our CCP and CHP calculations for a set of parameters where the predictions are 

expected to be least accurate. The results of SE simulations are presented for comparison. 

Fig. 4.1 Sample simulation domain after refining mesh density and solving for the minimum energy 

shape and wetted area calculated by SE at different capillary pressures (a–e). The AWI is at 

its critical pressure when 𝑝 = 4.6 kPa. This critical AWI is shown in (e) and (f) from two 

different viewpoints. Note that the AWI is approaching the symmetry boundary in (f). 

Fig. 4.2 (a) Critical pressure and wetted area fraction as a function of SVF for fibers with equal spacing 

on all layers. Top inset: AWI is four layers deep before meeting symmetry boundary.  Bottom 

inset: AWI is only three layers deep before meeting symmetry boundary. (b) Dimensionless 

slip length as a function of SVF at the critical pressure for fibrous coatings with a fiber diameter 

of 10 μm and an YLCA of 120°. 

Fig. 4.3 Sample domain for a coating with bimodal fiber diameter distribution. Structure has an SVF 

of 10%, fine and coarse fiber diameters of 10 and 50 µm respectively, and a coarse fiber 

number fraction 𝑛𝑐 of 0.4.Coating has an SVF of 10%, fine and coarse fiber diameters of 10 

and 50 µm respectively, and a coarse fiber number fraction nc of 0.1. 

Fig. 4.4 Meniscus configuration at critical pressure for various bimodal coatings varying in coarse fiber 

number fraction  𝑛𝑐 .  Coatings have an SVF of 10%, fine and coarse fiber diameters of 10 µm 

and 40 µm, and an YLCA of 120°. 

Fig. 4.5 Critical pressure, wetted area fraction, and slip length as a function of coarse fiber number 

fraction nc for bimodal fibrous coatings varying in fiber size ratio Rcf from 2 to 5 are shown 

in (a),(b), and (c) for when fine fibers are on the top layer, and (d), (e), and (f) for when coarse 

fibers are on the top layer, respectively. Other properties shared by all coatings are shown in 

the figures. 
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Fig. 4.6 Four layers of fibers with orientation angle of  (a) 𝛾 = 15° , (b) 𝛾 = 45° and (c) 𝛾 = 75°. 

Fig. 4.7 Sample simulation results showing the AWI under different hydrostatic pressures in (a) and 

(b). Failure due to AWI sagging is shown in (c). Failure due to AWI breakup at the 

breakthrough pressure is shown in (d). Here 254 μmwd   and 458 μmws  . 

Fig. 4.8 Effects of hydrostatic pressure on wetted area.  

Fig. 5.1 Side and cross-sectional views of our virtual rough fiber is shown in (a). An example droplet 

shape on a rough fiber with  𝑟𝑓 = 15 μm, 𝜃𝑌𝐿 = 30° and 𝜔 = 15 is shown in (b) along with 

overlaid images of droplet profiles corresponding to different local minimum energies (droplet 

volume is 𝑉 =0.84 nL). Droplet surface energy is plotted versus apparent contact angle in (c) 

for droplets with volume of  𝑉 =0.84 nL (black symbols) and 𝑉 =3.37 nL (blue symbols). This 

figure is intended for color reproduction on the Web and in print. 

Fig. 5.2 SEM image of PP fiber is shown in (a). One-on-one comparison between droplet shape and 

apparent contact angles on a smooth fiber with 𝑟𝑓 = 15 μm obtained from experiment and 

numerical simulation for an ULSD droplet with 𝑉 =1.35 nL and 𝜃𝑌𝐿 ≃ 10° in (b), a PG droplet 

with 𝑉 =1.54 nL and 𝜃𝑌𝐿 = 22° in (c), and an ULSD droplet with 𝑉 =0.215 μL and 𝜃𝑌𝐿 ≃

10°in (d). 

Fig. 5.3 Asymmetry factors from experiment and numerical simulation are shown versus droplet 

volume in (a) for ULSD droplets on a smooth PP fiber (𝜃𝑌𝐿 ≃ 10°, 𝑟𝑓 = 15 μm). Asymmetry 

factor is shown in (b) for droplets on rough fibers with a radius of 𝑟𝑓 = 15 μm and an YLCA 

of 𝜃𝑌𝐿 = 30° but three different roughness amplitudes of 𝑏 =0, 0.01, and 0.10. The inset figure 

shows the maximum droplet volume attainable on the same fibers but with different roughness 

amplitudes. 

Fig. 5.4 A phase diagram showing different possible conformations for a droplet on a rough fiber. 

Square, delta, and circle represent symmetric barrel drop, coexistence of symmetric barrel and 



xiv 
 

 
 

clamshell droplets, and coexistence of asymmetric barrel and clamshell droplets, respectively. 

Here, 𝑟𝑓 = 15 μm, 𝜔 = 15 and 𝜃𝑌𝐿 = 30°. The asymmetry factor is given next to some of the 

symbols for comparison. 

Fig. 5.5 Apparent contact angle is shown versus fiber roughness amplitude for examples of symmetric 

barrel shaped droplets in (a), clamshell droplets in (b), and asymmetric barrel shaped droplets 

in (c). For the clamshell droplets both upper (black hollow symbols) and lower (blue filled 

symbols) apparent contact angles are reported. Here, 𝑟𝑓 = 15μm, 𝜔 = 15,  and 𝜃𝑌𝐿 = 30°. 

This figure is intended for color reproduction on the Web and in print. 

Fig. 5.6 Effects of roughness frequency on apparent contact angle is shown using a barrel shaped 

droplet with a volume of 𝑉 =3.37 nL on a rough fiber with a radius of 𝑟𝑓 = 15μm and a YLCA 

of 𝜃𝑌𝐿 = 30°.   

Fig. 5.7 The force per unit mass required to detach droplets with different volumes from a rough fiber 

with a radius of 𝑟𝑓 = 15μm and a roughness frequency of 𝜔 = 15, but different roughness 

amplitudes ranging from 𝑏 = 0  to 𝑏 = 0.1. The inset shows the equilibrium shape under an 

increasing external body force perpendicular to the fiber axis for a droplet with a volume ratio 

of  
𝑉

𝑟𝑓
3 = 250 on a fiber with 𝑟𝑓 = 15μm and 𝑏 = 0.1. 

Fig. 6.1 The experimental setup comprised of a 3-D printed fiber holder placed on a sensitive scale and 

a permanent magnet mounted on a digital height gauge. As can be seen in the SEM image, the 

fiber used in the experiment seems appears to be smooth. 

Fig. 6.2 Schematic view of the fiber described in Eq. 6.1. 

Fig. 6.3 Droplet profiles from simulation and experiment for two different volumes of 0.5 (inset figure) 

and 1 μL. 

Fig. 6.4 Droplet shapes for different body forces of 𝑔 = -9.8, 30, 50, and 55 N/kg (from left to right) 

are obtained via numerical simulation (top) and experiment (bottom) and are shown in (a). 
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Detachment force obtained from experiment and numerical simulation for a single fiber is 

shown in (b). Droplet shape change in response to magnetic force is shown in (c) and (d) for 

droplets with a volume of 2.5 µL and 0.5 μL, respectively. The images on the left are taken in 

the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg), images on the right show the droplet 

residual on the fibers after detachment. 𝜃𝑌𝐿 = 50°. 

Fig. 6.5 Droplet shape from top (top row) and side (bottom row) views for 𝛼 = 45°and 90° is given in 

(a). The images in the top row are taken in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) 

while the images in the bottom row show the droplet influenced by an out-of-plane magnetic 

force before detachment. Out-of-plane detachment force is shown in (b) as a function of the 

relative angle between the fibers. Experimental and computational data are shown with red and 

black symbols, respectively. Square, circle, diamond, gradient, and delta represent droplet 

volumes of 0.5 µL, 1 µL, 1.5 µL, 2.0 µL, and 2.5 µL, respectively. 𝜃𝑌𝐿 = 50°. 

Fig. 6.6 Droplet shape from side view is given in (a) for 𝛼 = 60°and 150°. The images in the top row 

are taken in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) while the images in the bottom 

row show the droplets influenced by an in-plane magnetic force in the upward direction 

(direction bisecting the relative angle between the fibers) before detachment. In-plane 

detachment force is shown in (b) as a function of the relative angle between the fibers. 

Experimental and computational data are shown with red and black symbols, respectively. 

𝜃𝑌𝐿 = 50°. 

Fig. 6.7 Droplet shape from side view is given in (a) for 𝛼 = 90°. The images in the top row are taken 

in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) while the images in the bottom row show 

the droplets influenced by an in-plane magnetic force in the upward direction with 𝜙 = 20° 

and 40° before detachment. In-plane detachment force is shown in (b) and (c) as a function of 

𝜙 for 𝜙 + 𝜓 = 90°and +𝜓 = 150° , respectively. Experimental and computational data are 

shown with red and black symbols, respectively. 𝜃𝑌𝐿 = 50°. 
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Fig. 6.8 Force per mass required to detach a droplet from a single fiber. The filled symbols show the 

data obtained from simulating droplets on a fiber with a radius of 𝑟𝑓 = 5 μm. The hollow 

symbols represent data produced by scaling the data given in Fig. 6.4b for droplets (with the 

same volume to fiber radius cubed ratios) on a fiber with a radius of 𝑟𝑐 =107.5 μm. 

Fig. 7.1 (a): Side-view and cross-sectional view of a trilobal fiber. (b): Overlap of cross-sectional view 

of the fibers with different lobe height. 

Fig. 7.2 (a): Different plane going through the droplet. (b): upper and lower apparent contact angle 

obtained by plane of 𝑥 = 0. 

Fig. 7.3 (a): Apparent contact angle is shown versus fiber lobe height for droplets for barrel shape 

droplet with 𝜑 = 90° (black symbols) and  𝜑 = −90°(blue symbols). (b):The change in 

contact line and wetted area of the droplet as a function of lobe height is shown. Here 𝑉 =

0.84 nL and 3.37 nL, 𝑟 = 15μm and 𝜃𝑌𝐿 = 30°. 

Fig. 7.4 (a): The shape of a clamshell droplet with  𝑉 = 0.84 nL on a trilobal fiber with 𝑎 = 0.3 is 

shown for two different 𝜑. (b): Apparent contact angle is shown versus fiber lobe height for 

droplets with  = 0.84 nL and 3.37 nLfor clamshell droplet. (c): Upper (hollow symbols) and 

lower (filled symbols) apparent contact angles are shown versus fiber lobe height for droplets 

with 𝑉 = 54 nL  (circle) and 𝑉 = 216 nL  (square). Here 𝜑 = 90° (black symbols)  𝜑 =

−90°(blue symbols), 𝑟 = 15μm and 𝜃𝑌𝐿 = 30°. 

Fig. 7.5 (a):The maximum force per unit mass required to detach droplets with different volumes from 

a fiber with 𝑟 = 15μm but different lob heights ranging from 𝑎 = 0  to 𝑎 = 0.3 are given for 

an YLCA of 𝜃𝑌𝐿 = 30° for 𝜑 = 90° (black symbols) and  𝜑 = −90°(blue symbols). The 

shape of a 𝑉 = 0.84 nL droplets under gravity and maximum force before detachment is shown 

for (b)  𝜑 = 90° and (c) 𝜑 = −90°. 

Fig. 7.6 semi-angle 𝛼 is shown for (a): wedge-shaped cross-section and trilobal fiber with (b) 

𝑎 = 0.4, (c) 𝑎 = 0.1 and (d) 𝑎 = 0.5. 
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Fig. 7.7 The asymmetry factor is obtained for droplets deposited on a trilobal fiber with a radius of 𝑟 =

15 μm, and YLCAs of 𝜃𝑌𝐿 = 30° for two different lobe heights of 𝑎 =0 (squares), and 0.4 

(diamonds) for 𝜑 = 90° (black) and 𝜑 = −90° (blue). 
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Understanding the interactions between a body of liquid and a curvy surface is important for many 

applications such as underwater drag force reduction, droplet filtration, self-cleaning, and fog 

harvesting, among many others. This study investigates ways to predict the performance of 

granular and fibrous surfaces for some of the above applications. More specifically, our study is 

focused on 1) modeling the mechanical stability of the air-water interface over submerged 

superhydrophobic (SHP) surfaces and their expected drag reduction benefits, and 2) predicting the 

mechanical stability of a droplet on a fiber in the presence of an external body force. For the first 

application, we modeled the air–water interface over submerged superhydrophobic coatings 

comprised of particles/fibers of different diameters or Young–Laplace contact angles. We 

developed mathematical expressions and modeling methodologies to determine the maximum 

depth to which such coatings can be used for underwater drag reduction as well as the magnitude 

of the depth-dependent drag reduction effect of the surface. For the second application, we studied 

the force required to detach a droplet from a single fiber or from two crossing fibers. The results 

of our numerical simulations were compared to those obtained from experiment with ferrofluid 



 
 

 
 

droplets under a magnetic field, and excellent agreement was observed. Such information is of 

crucial importance in design and manufacture of droplet–air and droplet–fluid separation media, 

fog harvesting media, protective clothing, fiber-reinforced composite materials, and countless 

other applications. 
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Chapter 1. Introduction 
 

1.1 Background Information 

The interaction between liquid and a solid happens everywhere on a daily basis and its description is one 

of the important aspects of fluid dynamics. In this research we limit ourselves to study the interaction 

between the air-water interface (AWI) and different surfaces (granular coating, fibrous coating, surface of 

a single fiber and surface of crossing fibers). The shape of AWI over these surfaces is controlled by 

capillarity force -the cohesive forces among liquid molecules- in balance with other external forces. The 

AWI is deformable i.e., is free to change the shape in order to minimize the free energy which makes the 

physics of AWI sitting over media very complex (3).  

On the other hand, the interaction between fiber and small droplets is another aspect of predicting the 

interaction of liquid and fibers. Drop on flat surfaces are widely discussed (4–8) but fewer researches have 

been focused on drop on fibers. In the following subsections the background information about capillarity 

force, fluid interactions with particles and with fibers are presented.  

1.1.1 Capillarity Force 

Capillarity is the physical mechanism resulted by surface, or interfacial forces which establish the 

conditions of two immiscible fluids i.e., shape and position of the deformable interface between them (3). 

The surface tension over the interface, for example, a droplet in midair causes the droplet to conform to a 

spherical shape within the constraints of forces such as air resistance and gravity. Concept of surface tension 

was first introduced by Young and Laplace in 1800s (9). Young formulated the wettability of a substrate in 

terms of contact angle between the liquid-gas and solid-liquid interface as  
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𝜎 𝑐𝑜𝑠𝜃 = 𝜎𝑆𝐺 − 𝜎𝑆𝐿                                                                                                                                               (1.1) 

Where 𝜎, 𝜎𝑆𝐺 and 𝜎𝑆𝐿 represent the interfacial tensions of liquid-gas, solid-gas, and solid-liquid, 

respectively. 

The result of the work of Laplace on capillary action states that the pressure difference across the interface 

–capillary pressure ∆𝑃𝑐𝑎𝑝- is proportional to the interfacial tension 𝜎 and depends on the curvature of 

surface at the considered point and can be written as a function of principal radii 𝑅1
∗ and 𝑅2

∗ as 

 ∆𝑃𝑐𝑎𝑝 = 𝜎(
1

𝑅1
∗ +

1

𝑅2
∗)                                                                                                                                                 (1.2) 

Since then, many researchers have worked on the interface shape and stability over different surfaces (10–

15). 

 

 

1.1.2 Fluid Interactions with Granular/Fibrous Coatings 

Fluid interaction with a surface is affected by the wetting behavior of the solid surface which is 

determined by both the chemical composition and the geometrical attributes of the surface. 

Substrate topology can potentially alter the wetting behavior of the substrate of a given chemical 

composition (16). Thus, it is important to study the role of substrate topology on the spreading 

mechanism of a droplet.  

Surface wetting behavior is categorized into two categories: hydrophobic surface (contact angle 

above 90◦) and hydrophilic surface (contact angle below 90◦).  Superhydrophobicity could be 

achieved by a combination of low surface energy and micro- or nanoscale surface structure. 

Therefore, a hydrophilic substrate surface will be altered to a superhydrophobic (SHP) substrate 

by topographical modifications e.g., adding granular or fibrous coating to the surface. The 

https://en.wikipedia.org/wiki/Interfacial_tension
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Superhydrophobicity is known for having static contact angles exceeding 150° and low contact-

angle hysteresis and been subject of many studies (17–20). Examples of such surfaces in nature 

are the self-cleaning lotus leaves and water striders. The self-cleaning properties of Lotus leaves 

have motivated many studies in the past decade to investigate the superhydrophobicity effect (14). 

Superhydrophobic surfaces are often produced by imprinting micro- or nano-scale structures on a 

hydrophobic substrate or by chemically treating the surface of a substrate with the desired 

roughness (see e.g., among many others) as mentioned before (21,22). An alternative, perhaps 

more cost-effective, approach to micro-fabrication is to coat the substrate with a porous 

hydrophobic material, e.g., Polystyrene electrospun nanofibers or pulverized aerogel particles, 

where the pores of the coating serve as the above-mentioned roughness (23–27). In addition, SHP 

surfaces may also be used to reduce the drag force on an object submerged in moving water due 

to its ability to entrap air (10,12,15,22,28–31). When the pores in an SPH surface are completely 

filled with air, the surface is considered to be at the Cassie state. If the hydrostatic pressure over 

the surface is too high, water starts penetrating into the pores compressing the entrapped air (the 

case of closed pores) and finally fully wets the surface (Wenzel state) (32,33). The hydrostatic 

pressure at which a SHP surface starts departing from the Cassie state is referred to as the critical 

hydrostatic pressure (CHP) (34). This definition is often used in the context of pores with sharp-

edged entrance where the AWI can anchor (pin) itself to the edges of the pore. In this case, the 

slope of the AWI at the wall increases by increasing the hydrostatic pressure up to the slope 

corresponding to the Young–Laplace contact angle (or an advancing contact angle) while the AWI 

is pinned. Increasing the hydrostatic pressure beyond this pressure can only result in the AWI 

detachment from the edges and moving downward into the pore with a fixed profile (while 

pressurizing the air entrapped below it). The AWI may reach the bottom of the pore, instantly if 
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the hydrostatic pressure is high enough, or as the entrapped air eventually dissolves into water. 

Note that the entrapped air continuously dissolves in the ambient water, and the rate of dissolution 

increases with hydrostatic pressure (34). The definition of CHP is less clear when the pore entrance 

is round. This is because in this case, the AWI cannot anchor itself to any sharp corner, and has to 

conform to a shape that maintains YLCA at any point along the curved wall of the pore. Therefore, 

it is hard to define a fully dry (Cassie) state as the AWI has already entered the pore. Obviously, 

the AWI moves further down into the pore in response to any increase in the hydrostatic pressure. 

For the lack of a better alternative, we define critical pressure for a pore with round entrance, to 

be the hydrostatic pressure at which the AWI moves down into the pore to reach a highest capillary 

pressure (35,36). A transition to the Wenzel state can also occur if the AWI touches the bottom of 

the pore (either with sharp of round entrance) before reaching the critical pressure. This has been 

identified in the literature as failure due to AWI sagging or the lack of “robustness height” (11). In 

addition, the entrapped air continuously dissolves in the ambient water which causes Wenzel state 

with time (34,37). 

To predict the drag-reduction achievable from a given SHP surface in a specific hydrodynamic 

condition, Navier–Stokes equations should be solved simultaneously with the equation for the 

transient shape of the AWI. This is a multi-scale 3-D unsteady-state two-phase flow problem, and 

the solution depends strongly on the microstructure of the surface. Given the complexity of the 

problem, the current study is limited to the effects of hydrostatic pressure on the wetted area of 

granular/fibrous SHP coatings. This is because even without solving the Navier–Stokes equations, 

one can disqualify a large group of coatings or operating conditions using relevant information 

about the wetted area of the coating.  
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Two different approaches are available to solve for 3-D shape of the AWI: 1) the balance of the 

forces that act on the interface and 2) the energy minimization approach. The force balance 

equation will be used for theoretical part of the work whenever is possible. For the numerical part 

the energy minimization approach has been used. For numerical simulations we used public 

domain software called the Surface Evolver (SE). The SE code is able to solve for the minimum-

energy shape of an interface between two immiscible fluids. The general form of the energy 

equation 𝐸 being integrated in the code can be expressed as (38,39): 

𝐸 = 𝑝∭𝑑𝑣 + ∬𝜎𝑑𝐴𝐿𝐺 − ∑𝜎𝑐𝑜𝑠𝜃𝑖 ∬𝑑𝐴𝑖                    (1.3) 

where 𝑝 is the applied pressure difference across the interface which is being integrated over 

volume element 𝑑𝑉. 𝐴𝐿𝐺  represents the liquid-gas area. The summation refers to the surface energy 

contributed by the wetted area of each particle/fiber associated with the interface 𝑑𝐴𝑖e. To ensure 

proper calculation of the particle\fibers’ energy contribution, the integrand 𝑑𝐴𝑖
 
must be derived 

for each AWI face and applied explicitly in the code. This approach will give us the shape of the 

interface and consequently the ability to calculate the wetted area 𝐴𝑤 which is the solid-liquid area 

per unit area of a flat surface. Drag reduction is often characterized in terms of slip length; the 

imaginary distance below the slip-generating surface at which the water velocity extrapolates to 

zero (10). The slip length on a SHP surface is related to 𝐴𝑤, and is therefore pressure dependent. 

While there are several studies proposing an explicit relationship between slip length and 𝐴𝑤 for 

internal flows over SHP surface comprised of streamwise or transverse sharp-edged grooves, the 

literature is scarce when it comes to slip length correlations for SHP surfaces made of particles. A 

relevant work to be used here in studying the slip length over granular\fibrous SHP surfaces is that 
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of Srinivasan et al., who proposed an expression for the slip length over SHP monofilament woven 

screens in flow between two parallel plates (1): 

𝑏 =
𝐿𝑠

3𝜋
𝑙𝑛 (

2(1+√1−𝐴𝑤)

𝜋 𝐴𝑤
)                            (1.4) 

Note that above was originally developed with the assumption that the woven screens have planar 

structures, i.e., 𝐴𝑤 never exceeds 1. This assumption, however, is not accurate for granular 

coatings. Nevertheless, in the absence of a better alternative, we use this expression here as a means 

of discussing the effects of pressure on slip length, but only as long as 𝐴𝑤 ≤ 1. 

Section 1.3 presents more details of how to predict air-water interface shape and stability over 

superhydrophobic coating comprised of poly-dispersed particles or fibers with different diameter 

and wettabilities. 

1.1.3 Droplet Interactions with Fibers 

The dynamics of wetting has received significant attention for years and still is an important topic. 

Wettability of the fibers is important to many industries such as coating processes, textile 

fabrication, self cleaning processes and filtration of fluids. In liquid-liquid filtration understanding 

the droplet displacement over the fiber surface and the dynamics of wetting behavior is crucial 

(40,41). Previous work has considered droplet on flat surfaces or fibrous coatings (42–45). Due to 

the cylindrical shape of the fiber, the wetting behavior of droplets on fibers differs from the wetting 

of flat surfaces. Early studies on the wetting phenomena of droplet-on-fiber systems have reported 

on determining the droplet shape and on extracting the contact angle accurately (46). These works 

details the measurement of the contact angle of a droplet on a cylindrical fiber (which is different 
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from the contact angle that the same liquid would form on a flat plate). A number of previous 

studies of the droplets on fibers have dealt with the stability of droplet conformations, contact 

angles, and droplet geometry (47,48). Depending on the fiber radius, droplet volume and the 

surface energy of the fiber, two fundamentally different conformations of macroscopic droplets 

has been found (i.e., barrel and clam-shell conformations). Barrel shapes occur for large droplets 

relative to the fiber radius or for low contact angles. Clam-shell shapes occur for small droplets or 

high contact angles. However, for some certain droplet volume and fiber radius coexistence of 

both conformations has been observed (49). Droplet profile for barrel shape conformation for a 

known contact angle was also been described. Few studies also described the shape of the droplet 

in gravity field (50,51). Motion of the drop due to temperature gradient, gradient of cross-sectional 

radius of the fiber (conical fibers), and rolling motion of the contact line due to droplet spreading 

has also been studied experimentally (52–54). Despite the prevalence of such technology in 

industry, few researches investigated the drop motion on fibers due to external forces (e.g., drag 

force or magnetic force). Such motion can be described by time-dependant shape of the droplet, 

contact angle hysteresis (the difference between advancing and receding contact angle), internal 

viscous fluid motion, moving advancing and receding contact lines and boundary layer separation 

at a drop surface. Semi-empirical correlations have been reported to relate droplet mobility (along 

the fiber or perpendicular to the fiber) to volume of the droplet, surface tension, Reynolds number 

and capillary number (relative effect of viscous forces versus surface tension) which are applicable 

only over a narrow set of parameters (55–58). Contact angle hysteresis is the dominant factor to 

describe droplet motion over non-ideal fibers. Two different approaches have been proposed to 

explain the mechanism of contact angle hysteresis: adhesion hysteresis and mechanical pinning by 

defect. Adhesion hysteresis is due to dissipation of energy due to irreversibility of the motion. 
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While mechanical pinning is due to the inhomogenrities on a microscopic level, therefore, cannot 

happen for ideally smooth surfaces.  

1.2 Overall Objectives of This Thesis  

This dissertation develops necessaey models to predict fluid interactions with granular and fibrous 

surfaces for two distinct applications: 1) modeling the stability of the air-water interface over 

submerged superhydrophobic (SHP) surfaces, and the expected drag reduction effect generated by 

the surface, and 2) predicting droplet-fiber wettability and modeling droplet motion along\normal 

to fibers and fiber assemblies.  

First, we model the air-water interface over submerged superhydrophobic coatings comprised of 

particles/fibers at differene pressures. We also studiy the effect of diameters and Young-Laplace 

contact angles. Our goal here is to develop simple ways (mathematical expressions or modeling 

strategies) to determine whether or not such coatings can be applied to a submersible vehicle for 

drag reduction (or similar) purposes by predicting how the solid-liquid area -and consequently 

surface slip length- varies with the depth at which the vehicle operates. Obviously, the 

formulations and methodologies that developed in this study can also be applied to granular/fibrous 

superhydrophobic coatings used in air for self-cleaning applications, among many others.   

For the second application, we develop a computational method for predicting the force required 

to detach a droplet from a smooth\rough\trilobal fiber. This information is crucially important for 

understanding the dynamics, coalescence, and migration of liquid droplets in fibrous structures. 

The work begins with studying the interactions between a droplet and a single fiber and moves on 

to include additional fibers. The effect of different parameters (such as the fiber diameter, fiber 

wettabilities, the relative angles between fibers, relative size of fiber and droplet) on the force 
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required to move the droplet along (or normal to) the fibers are studied thoroughly using numerical 

simulation and also experiment with ferrofluid in magnetic field. 

The effect of hydrostatic pressure on air-water interface stability and wetted area of submerged 

monodispersed granular coating is provided in Chapter 2. We develop simple ways (mathematical 

expressions and modeling strategies) to determine slip length for a randomly distributed particle 

arrangemet to find out whether or not such coatings can be applied to a submersible vehicle for 

drag reduction (or similar) purposes. Effects of particle diameter, particle contact angles, particle 

packing fraction, and spatial distribution on positive and negative critical hydrostatic pressures and 

their corresponding wetted area are predicted and discussed in detail. 

Chapter 3 is the extension of the work of chapter 2 to poly-disperesed coatings. Drag reduction 

associated to such coatings is calculated by introducing a simple analytical model to find the 

stability of the air-water interface and wetted area at a given pressure.  

Chapter 4 establishes a model for predicting the resistance of superhydrophobic fiberous coatings 

to hydrostatic pressures. We generate simulation domains which represent orthogonal distribution 

of fibers, coatings with oriented finers and also wire screen coatings. We determine the shape and 

surface area of the minimum-energy state of air–water interface that exists between the fibers at 

some given pressure. 

Chapter 5 reports on our investigation of the effects of surface roughness on the equilibrium shape 

and apparent contact angles of a droplet deposited on a fiber. In particular, the shape of a droplet 

deposited on a roughened fiber is studied. Sinusoidal roughness varying in both the longitudinal 

and radial directions is considered in the simulations to study the effects of surface roughness on 
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the most stable shape of a droplet on a fiber (corresponding to droplet’s global minimum energy 

state). A phase diagram that includes the effects of fiber roughness on droplet configurations––

symmetric barrel, clamshell, and asymmetric barrel––is presented for the first time. The results 

presented in our study have been compared with experiment whenever possible, and good 

agreement is observed. 

In chapter 6 a novel technique is developed to measure the force required to detach a droplet from 

a fiber or fiber crossovers experimentally by using ferrofluid droplets in a magnetic field. Unlike 

previous methods reported in the literature, our techniques does not require an air flow or a 

mechanical object to detach the droplet from the fiber(s), and therefore it simplifies the experiment, 

and also allows one to study the capillarity of the droplet–fiber system in a more isolated 

environment. In this chapter, we investigate the effects of the relative angle between intersecting 

fibers on the force required to detach a droplet from the fibers in the in-plane or out-of-plane 

direction. The in-plane and through-plane detachment forces are also predicted via numerical 

simulation and compared with the experimental results. Good agreement was observed between 

the numerical and experimental results. 

The equilibrium shape of droplet on fibers with trilobal cross-section is studied in chapter 7 via 

numerical simulation. Special attention has been paid to droplet shape on trilobal fibers having 

different lobe amplitude. In addition, the effects of droplet volume and fiber crossectional 

orientation with respect to direction of gravity are investigated.  

Finally, we will close with our overall conclusions in Chapter 8. 
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Chapter 2. Effects of Hydrostatic Pressure on Wetted Area of Submerged monodispersed 

Superhydrophobic Granular Coatings 
 

 

 

2.1 Introduction 

The self-cleaning properties of Lotus leaves have motivated many studies in the past decade to 

investigate the superhydrophobicity effect––a phenomenon which may arise from combining 

hydrophobicity with roughness (59–62). In addition, SHP surfaces may also be used to reduce the 

drag force on an object submerged in moving water (10,12,14,15,22). This is owing to the fact that 

a SHP surface can entrap the air in the surface-pores, which is in contact with water, thereby 

reducing the contact area between water and the solid surface. Depending on the conditions and 

surface morphology, the Wenzel state (fully wetted), the Cassie state (fully dry), or a series of 

transition states in between the two extreme states can be expected to prevail over a submerged 

SHP surface (11,13,19,32–34,63–67). While many studies have been conducted to better our 

understanding of the Cassie and Wenzel states, not much attention has been paid to the transition 

states despite their importance. Depending on the microscale geometry of the surface (i.e., 

roughness) and the hydrostatic/hydrodynamic pressure field, the air–water interface (AWI) may 

significantly ingress into the pores of the surface. The AWI may stay intact or even become 

impaled by the peaks of the surface. When the AWI is impaled, even when there is still air in the 

pores, an SHP surface may no longer provide a reduced solid–water contact area (referred to here 

as the wetted area), and hence, offers no drag reduction (68–71). In fact, it is quite possible that 
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such a surface increases the drag force in certain hydrodynamic conditions (see the next 

paragraph).  

When the pores in an SPH surface are completely filled with air, the surface is considered to be at 

the Cassie state. If the hydrostatic pressure over the surface is too high, water may start penetrating 

into the pores compressing the entrapped air (the case of closed pores). The forces acting on an 

AWI are due to hydrostatic pressure 𝑃ℎ, ambient pressure 𝑃∞, pressure of the entrapped air, referred 

to here as the bubble pressure, 𝑃𝑏𝑢𝑏 , and the capillary pressure 𝑃𝑐𝑎𝑝. The balance of static forces 

requires that 

𝑃𝑐𝑎𝑝 + 𝑃𝑏𝑢𝑏 = 𝑃∞ + 𝑃ℎ           (2.1) 

The bubble and capillary pressures (if positive) tend to resist against the hydrostatic pressure. The 

hydrostatic pressure at which a SHP surface starts departing from the Cassie state is referred to as 

the critical hydrostatic pressure (CHP) (16,72–74). This definition is often used in the context of 

pores with sharp-edged entrance where the AWI can anchor (pin) itself to the edges of the pore. In 

this case, the slope of the AWI at the wall increases by increasing the hydrostatic pressure up to 

the slope corresponding to the Young–Laplace contact angle (YLCA) (or an advancing contact 

angle) while the AWI is pinned (34). Increasing the hydrostatic pressure beyond this pressure can 

only result in the AWI detachment from the edges and moving downward into the pore with a 

fixed profile (while pressurizing the air entrapped below it). The AWI may reach the bottom of 

the pore, instantly if the hydrostatic pressure is high enough, or as the entrapped air eventually 

dissolves into water. Note that the entrapped air continuously dissolves in the ambient water, and 

the rate of dissolution increases with hydrostatic pressure (34,37). The definition of CHP is less 

clear when the pore entrance is round. This is because in this case, the AWI cannot anchor itself 

to any sharp corner, and has to conform to a shape that maintains YLCA at any point along the 
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curved wall of the pore. Therefore, even at a zero hydrostatic pressure, it is hard to define a fully 

dry (Cassie) state as the AWI has already entered the pore, as can be seen in Fig. 2.1a. Obviously, 

the AWI moves further down into the pore in response to any increase in the hydrostatic pressure 

(13,75–79). For the lack of a better alternative, we define CHP for a pore with round entrance, to 

be the hydrostatic pressure at which the AWI moves down into the pore to reach a critical 

immersion angle of 𝛼 = 𝛼𝑐𝑟. This angle is defined as the immersion angle for which the capillary 

pressure 𝑃𝑐𝑎𝑝 is maximum (13,24).  

A transition to the Wenzel state can also occur if the AWI touches the bottom of the pore (either 

with sharp of round entrance) before reaching the critical immersion angle 𝛼𝑐𝑟. This has been 

identified in the literature as failure due to AWI sagging or the lack of “robustness height” (11), 

and has also been observed in the current study to be the dominant cause of AWI failure when the 

SVF of the surface is very small (less than about 8% for the set of parameters considered here).  

To predict the drag-reduction achievable from a given SHP surface in a specific hydrodynamic 

condition, Navier–Stokes equations should be solved simultaneously with the equation for the 

transient shape of the AWI. This is a multi-scale 3-D unsteady-state two-phase flow problem, and 

the solution depends strongly on the microstructure of the surface. Given the complexity of the 

problem, the current study is limited to the effects of hydrostatic pressure on the wetted area of 

granular SHP coatings. This is because even without solving the Navier–Stokes equations, one can 

disqualify a large group of coatings or operating conditions using relevant information about the 

wetted area of the coating.  

The remainder of this chapter is organized as follows. Our force balance (FB) formulations for 

calculating the critical hydrostatic pressure (CHP) and wetted area of a granular SHP coating is 

given in Sec. 2.2. In Sec. 2.3, we present examples of existing analytical expressions for calculating 
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the slip length of a granular SHP surface in terms of wetted area. The results of our analytical 

formulation regarding the effects of coatings’ microstructural and wetting properties on CHP and 

wetted area are compared and discussed along with those obtained from Surface Evolver (SE) code 

in Sec. 2.4. In this section, we also discuss the effects of randomness in the spatial distribution of 

the particles in SHP coatings of identical properties. The conclusions drawn from our work are 

given Sec. 2.5.  
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Fig 2.1 Schematic representation of the AWI over a coating made of a layer of equally sized hydrophobic 

particles as a function of pressure difference (increasing from top to down) is presented in (a). Four particles 

with a square arrangement representing a unit-cell for our COPDs along with an arbitrary AWI between 

them produced by SE for 𝑑 = 100 μm, 𝐿𝑠 = 162 μm, and 𝑃ℎ = 548 kPa, 𝜃1 = 80o, and 𝜃2 = 120o (b). 

Force balance diagrams for the case of positive pressure difference across the AWI are given in (c). The 

AWI radius of curvature at the center of the unit-cell and at the symmetry boundary is shown in (d) and 

also the volume confined between the curved AWI and the horizontal plane slicing through the particles at 

contact points (gray-shaded volume) is approximated with a spherical cap added to a cuboids is shown. 
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2.2 Critical Hydrostatic Pressure and Wetted Area 

Consider a layer of four particles with identical diameters but different contact angles deposited 

on a flat substrate in a square cell, as shown in Fig. 2.1b. Predicting the critical pressure and wetted 

area for a particle coating is a challenge as it requires detailed information about the 3-D shape of 

the AWI (both the direction and the magnitude of the capillary force vary depending on the vertical 

position of the contact-line around a particle). The problem becomes more complicated when the 

coating is comprised of particles with different YLCAs or when the particles are distributed 

randomly. In this chapter, the SE code is used to numerically obtain the 3-D shape of the AWI as 

a function of pressure (see (38,39) for more information about SE code). Figure 2.1b also shows 

an example of such calculations conducted for a coating with 𝑑 = 100 μm, 𝐿𝑠 = 162 μm, 𝜃1 =

80o, and 𝜃2 = 120o when 𝑃𝑐𝑎𝑝 = 0.30 kPa. With the 3-D shape of the AWI available, one can 

easily calculate the wetted area. 

To circumvent the need for running a numerical simulation for each and every combination of 

parameters, we developed an analytical method that can be used to approximate the CHP and 

wetted area of a SHP granular coating without actually producing a 3-D shape for the AWI. 

Considering a force balance (FB) approach for the AWI at equilibrium,  

∆𝑃 (𝐿𝑠
2 −

𝜋𝑑2

4
∑ 𝑛𝑖𝑠𝑖𝑛

2𝛼𝑖
4
𝑖=1 ) = 𝜋𝜎𝑑 ∑ 𝑛𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠 (

3𝜋

2
− 𝜃𝑖 − 𝛼𝑖)

4
𝑖=1     (2.2)  

where ∆𝑃 = 𝑃ℎ + 𝑃∞ − 𝑃𝑏𝑢𝑏. The main simplifying assumption in deriving Eq. 2.2 is that the 

contact-line between the AWI and the solid particles (shown with dashed line in Fig. 2.1c) remains 

in a horizontal plane. As will be shown later in Sec. 2.3, where we compare the results of our 

analytical formulations with the numerical results of SE, the error associated with this assumption 
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is generally negligible but increases with increasing the coating’s SVF defined as  𝜀 =
𝜋𝑑2

6 𝐿𝑠
2 with 

𝜀𝑚𝑎𝑥 =
𝜋

6
. We denote this position with an immersion angle 𝛼𝑖 for each particle (13). For a given 

geometry and surface wettability (contact angle), the immersion angle 𝛼𝑖 is only a function of the 

pressure difference across the AWI. By setting the derivatives of Eq. 2.2 calculated with respect 

to 𝛼𝑖 equal to zero (
𝜕∆𝑃

𝜕𝛼𝑖
)|

𝛼𝑖=𝛼𝑖
𝑐𝑟

= 0, one can obtain the critical capillary pressure (CCP) ∆𝑃𝑐𝑟 and 

critical immersion angle 𝛼𝑐𝑟. Note that 𝛼-values greater or smaller than 90o correspond to negative 

or positive CCPs, respectively. The bubble pressure 𝑃𝑏𝑢𝑏 can be obtained assuming that the 

entrapped air undergoes an isentropic compression,  

 𝑃𝑏𝑢𝑏 = 𝑃∞ (
𝑉∞

𝑉
)
1.4

            (2.3) 

where 𝑉∞ and 𝑉 are the volume of the entrapped air at the zero hydrostatic pressure and at any 𝑃ℎ, 

respectively. Note that, 𝑃𝑏𝑢𝑏|𝑃ℎ=0 = 𝑃∞, and AWI has a flat profile which reaches equilibrium at 

a position 𝛼∞ = 𝜋 − 𝜃 (as shown in Fig. 2.1a for particles having identical YLCAs). The volume 

of the trapped air can then be estimated as, 

 𝑉∞ =
𝑑

2
[1 − cos𝜃]𝐿𝑠

2 − [
𝜋𝑑3

6
− 𝜋

(
𝑑

2
+

𝑑

2
𝑐𝑜𝑠𝜃)

2

3
(𝑑 −

𝑑

2
𝑐𝑜𝑠𝜃)]     (2.4) 

Accurate calculation of 𝑉 requires numerical values for the 3-D shape of the AWI. While such 

information can readily be obtained from the SE’s numerical calculations, the above analytical 

derivation can only continue if this volume is approximated with a combination of some basic 

geometric volumes. Assuming that the volume under the actual (curved) AWI is the volume under 
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a flat AWI minus the volume shown with gray color in Fig. 2.1d, we can develop an analytical 

expression to approximate the volume of the entrapped air as,  

𝑉 = 𝑉𝑓 − 𝑉𝑐 = ℎ𝐿𝑠
2 −

𝜋

3
ℎ2 (

3

2
𝑑 − ℎ) − (𝑎2𝐿𝑠

2 +
𝜋 𝑎3

2

3
(3𝑅2

∗ − 𝑎3))     (2.5) 

where 𝑉𝑓 = ℎ𝐿𝑠
2 −

𝜋

3
ℎ2 (

3

2
𝑑 − ℎ) and 𝑉𝑐 = 𝑎2𝐿𝑠

2 +
𝜋 𝑎3

2

3
(3𝑅2

∗ − 𝑎3) are the volume under the flat 

AWI and the volume of the gray-shaded region (the volume between a spherical cap with a radius 

of R2
∗  placed at the center of the cell and a cuboids) in Fig. 2.1d, respectively. In these equations 

𝑎2 = 𝑅1
∗ − √𝑅1

∗2 − 𝑎1
2 = 𝑅1

∗ − √𝑅1
∗2 − (

𝐿𝑠

2
−

𝑑

2
 𝑠𝑖𝑛𝛼)2 and 𝑎3 = 𝑅2

∗ −

√𝑅2
∗2 − (

𝐿𝑠√2

2
−

𝑑√2

2
 𝑠𝑖𝑛𝛼)2 where 𝑅1

∗ and 𝑅2
∗ are the principal radii of curvature of the AWI and 

are equal to 
𝜎

∆𝑃
  and  

2𝜎

∆𝑃
 , respectively, according to the Laplace pressure equation (see Fig. 2.1d). 

The volumes of the above spherical cap and cuboids are  
𝜋

3
𝑎3

2(3𝑅2
∗ − 𝑎3) and 𝑎2𝐿𝑠

2, respectively. 

Similar method will be used later for bi-component coatings and coatings with randomly arranged 

particles in Sec. 2.4. Substituting Eqs. 2.4 and 2.5 into Eq.2.3, one can obtain 𝑃𝑏𝑢𝑏 and 

consequently 𝑃ℎ. With 𝛼 being available for all particles, one can then easily calculate a 

dimensionless wetted area  𝐴𝑤 (assuming a planar contact line around the particles) as,  

𝐴𝑤 =
𝐴𝑆𝐿

𝐿𝑠
2 =

𝜋 𝑑2

2𝐿𝑠
2 ∑ 𝑛𝑖(1 − 𝑐𝑜𝑠𝛼𝑖) 

4
𝑖=1          (2.6) 

In Sec. 2.4, we present a comparison between the results for CHP and 𝐴𝑤 calculated using our 

simple analytical expressions and SE.  
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2.3. Slip Length for Internal Flows 

As mentioned earlier, reducing the friction drag is one of the most attractive properties of SHP 

surfaces. Drag reduction is often characterized in terms of slip length; the imaginary distance 

below the slip-generating surface at which the water velocity extrapolates to zero (60). The slip 

length on a SHP surface is related to 𝐴𝑤, and is therefore pressure dependent. While there are 

several studies proposing an explicit relationship between slip length and 𝐴𝑤 for internal flows 

over SHP surface comprised of streamwise or transverse sharp-edged grooves (71,80–85). A 

relevant work to be used here in studying the slip length over granular SHP surfaces is that of 

Srinivasan et al. (1), who proposed an expression for the slip length over SHP monofilament woven 

screens in flow between two parallel plates: 

𝑏 =
𝐿𝑠

3𝜋
𝑙𝑛 (

2(1+√1−𝐴𝑤)

𝜋 𝐴𝑤
)         (2.7)  

Note that Eq. 2.7 was originally developed with the assumption that the woven screens have planar 

structures, i.e., 𝐴𝑤 never exceeds 1. This assumption, however, is not accurate for granular 

coatings. Nevertheless, in the absence of a better alternative, we use this expression here as a means 

of discussing the effects of pressure on slip length, but only as long as 𝐴𝑤 ≤ 1. On a parallel track, 

Butt et al. (2) proposed an expression for slip length over an ordered array of spherical particles in 

a cylindrical capillary tube, as 

𝑏 =
𝐿𝑠

2

3𝜋𝑑𝑓
                                            (2.8) 

with 𝑓 = 0.5 or 1 for when particles are half or completely wetted. This equation is derived simply 

on the basis of the Stokes drag on an isolated particle (i.e., Reynolds numbers near 1), which is 

obviously not the case when a coating is comprised of closely packed particles. Therefore, we 
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modify this equation by replacing 𝑓 with a more representative expression, and compared it with 

Eq. 2.7 (see the next section). 

 
𝑓

𝐿𝑠
2 =

𝐴𝑠𝐿
𝜋 𝑑2

𝐿𝑠
2  = 

𝐴𝑠𝐿

𝐿𝑠
2

1

𝜋𝑑2 =
𝐴𝑤

𝜋𝑑2                          (2.9) 

Substituting Eq. 2.9 in Eq. 2.8, we obtain 

𝑏 =
𝑑

3𝐴𝑤
                                    (2.10) 

Eqs. 2.7 and 2.10 will be later used in Sec. 2.4 to study the effects of hydrostatic pressure on slip 

length. 

2.4. Results and Discussion 

In this section, we study how granular coatings perform under different hydrostatic pressures. We 

combine and compare the results of analytical and numerical calculations, and discuss the effects 

of contact angle dissimilarity and particles’ spatial distributions on the coatings’ performance. 

Before we proceed to our results, we first studied the effects of mesh density on the accuracy of 

the SE simulations. We therefore, varied the interval size of the grid on the perimeter of the 

particles 𝜆 and monitored its effects on the resulting CHP and 𝐴𝑤. In our study, the SE results 

reached a state of mesh-independence at a mesh density of about  
𝑑

𝜆
= 25. For the numerical results 

presented here, a mesh density of  
𝑑

𝜆
 = 50 or greater was used. 
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Fig. 2.2 CHP predictions, obtained from FB and SE calculations for COPDs comprised of particles with 

YLCAs of 80o and 120o and diameters of 100 μm and 1 μm, are shown in (a) along with their immersion 

angles from the FB method in (b). Percent relative error between the FB and SE calculations is given in (c) 

for coatings with different SVFs. The critical negative hydrostatic pressures are shown in (d) for the same 

COPDs. 

2.4.1 Coatings with Uniform Wettability 

A series of virtual coatings with ordered particle distribution (COPDs) having similar YLCAs but 

different SVFs are considered here. CHPs for these surfaces are predicted using the FB 

formulations, and are compared with those obtained from SE. For comparison, two very different 

diameters of 100 μm and 1 μm are considered with their SVFs ranging from 0.3 to 0.5. We also 

considered two arbitrary YLCA of 120o and 80o, as examples of highly and slightly hydrophobic 
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materials, respectively. Figure 2.2a shows CHP vs. SVF. It can be seen from both the analytical 

and SE results that CHP first decreases with increasing SVF, and then increases for the small 

particles (i.e., 1 µm). For 𝑑 = 100 µm on the other hand, CHP monotonically decreases. This 

behavior is due to the interplay between the capillary forces and the forces generated by the 

compressed air bubble (which vary with SVF and particle diameter). The capillary forces are 

proportional to the length of the three-phase contact line. By increasing SVF, the capillary pressure 

plays a greater role in balancing the hydrostatic pressure as the ratio of the three-phase contact line 

to the area of the AWI increases. Therefore, while 𝛼𝑐𝑟 is the same for particles of different 

diameters (see Eq. 2.2), the corresponding capillary pressure is greater for smaller particles. The 

compression forces, on the other hand, are proportional to the compression ratio of the entrapped 

air 𝐶 =
𝑉∞

𝑉
, which being independent of particle diameter, is a function of immersion angle ratio  

𝛼∞

𝛼𝑐𝑟 
. As can be seen in Fig. 2.2b, 𝛼𝑐𝑟 decreases as SVF increases, causing the compression ratio to 

decrease with increasing SVF. Therefore, increasing SVF decreases the resistance of the entrapped 

air in balancing 𝑃ℎ. Therefore, if capillary forces are small in comparison to the compression forces 

(for 𝑑 = 100 µm), increasing SVF decreases CHP. However, when capillary forces are on the 

same order of magnitude of the compression forces, the increase in capillary forces at high SVFs 

may compensate for the decrease in the contribution of the compression forces (𝑑 =1 µm). To 

better examine the error associated with our approximate volume calculations (Sec. 2.2), we 

plotted the percent error for predictions obtained from our FB equation relative to those of SE in 

Fig. 2.2c. It can be seen that the results of our simple analytical FB method are in relatively good 

agreement with the more rigorous numerical calculation of the SE code, especially at lower SVFs 

(at high SVFs, the planar contact line assumption becomes less accurate). It is also worth 

mentioning that our SE calculations are in perfect agreement with those reported by Slobozhanin 
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et al. (86) obtained for infiltration of water in closely packed spherical particles which coincide 

with the case of 𝜀𝑚𝑎𝑥 =
𝜋

6
 in our simulation (the comparison is not shown for the sake of brevity).  

Figure 2.2d shows CHP values of the coatings when the AWI is exposed to negative pressures, 

such as the condition caused by a flow-induced suction (Venturi effect), for instance. Here again, 

for coatings comprised of large particles, the bubble pressure plays the dominant role in balancing 

the negative hydrostatic pressure, while for surfaces with smaller particles, the capillary forces 

determine the critical suction pressure. Here the AWI shape is concave and the capillary force 

component is in the same direction as hydrostatic force (𝛼𝑐𝑟 < 𝛼∞). Note that critical suction 

pressures below the water vapor pressure is unphysical and so not shown. 

The SE and FB predictions of 𝐴𝑤 for SHP surfaces comprised of particles with different diameters, 

YLCA, and SVFs are presented in Fig. 2.3a and 2.3b. These figures indicate that, other parameters 

being constant, 𝐴𝑤 increases with 𝑃ℎ, although the increase is not monotonic. The increase in 𝐴𝑤 

is because of the AWI moving further down into the pore space between the particles as 𝑃ℎ 

increases. It can be seen in Fig. 2.3a that 𝐴𝑤 > 1 for coatings with the smaller contact angle (i.e., 

𝜃 = 60o). Note in this figure that, despite the very different range of operating pressures for large 

and small particles, the range of variation of 𝐴𝑤 is identical for both particle diameters. This is 

simply due to the fact that 𝛼𝑐𝑟is independent of particle diameter.The effects of 𝑃ℎ on 

dimensionless slip length for flow over a granular SHP surface inside a capillary tube (calculated 

using Eqs. 2.7 and Eq. 2.10) are shown in Fig. 2.3c. It can be seen that predictions of Eq. 2.7 and 

2.10 are not in perfect agreement, as they were derived on the basis of two very different sets of 

physics (see Sec. 2.3). In the remainder of this chapter, we only use Eq. 2.7 but only as long as 
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𝐴𝑤 < 1. It can be seen that 
𝑏

𝐿𝑠
 decreases with increasing 𝑃ℎ. Using Eq. 2.7 along with 𝐴𝑤 from Fig. 

2.3b, it can be expected that 
𝑏

𝐿𝑠
 is smaller for coatings with higher SVFs at constant 𝑃ℎ. 

 

Fig. 2.3 Variations of wetted area with hydrostatic pressure obtained from FB and SE calculations for 

COPDs having a solid volume fraction of 𝜀 = 0.4, particle diameters of 100 μm and 1 μm, and YLCAs of 

60o and 120o are shown in (a). The effects of SVF on wetted area is shown in (b) for the case of 𝜃 = 120o 

and 𝑑 = 100 μm. Estimations of the dimensionless slip length versus hydrostatic pressure obtained from 

the expressions of Refs. (1) and (2) for COPDs with 𝜃 = 120o and 𝜀 = 0.5 in (c). 
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2.4.2 Coatings with Dissimilar Wettabilities: Equivalent Contact Angle 

In this section, we consider bi-component coatings, i.e., coatings composed of particles with two 

different contact angles. Four different arrangements are considered for these four particles. Here 

we define 𝑛1
𝑐 and 𝑛2

𝑐 = 1 − 𝑛1
𝑐 to refer to the number fraction of particles with contact angles of 

𝜃1 = 100o and 𝜃2 = 120o, respectively. The case of 𝑛1
𝑐 = 0.5 can have two different 

configurations in which particles of the same contact angles can be arranged in line or diagonal 

with respect to one another. Sample AWI profiles obtained from SE are shown in Fig. 2.4a for 

𝑛1
𝑐 = 0.25 and 𝑛1

𝑐 = 0.75  with 𝑑 =100 µm (note that the particle diameter does not affect the 

AWI profile). The two extreme conditions of  𝑛1
𝑐 = 0 and 𝑛1

𝑐 = 1.00 are also shown for 

comparison. Note that the equilibrium position of the AWI under both positive and negative CHP 

is lower when 𝑛1
𝑐 is lower. The reason for this is that as 𝑛1

𝑐 increases the coating becomes less 

hydrophobic. Also note that 𝐴𝑤 increases with increasing 𝑛1
𝑐 for the same reason.  

Figure 2.4b shows 𝐴𝑤 for bi-component coatings comprised of particles with YLCAs of θ1 =

100o and 𝜃2 = 120o as a function of 𝑃ℎ. In this figure 𝑑 = 100 μm and SVF of 𝜀 = 0.4. 

Obviously, increasing 𝑃ℎ increases 𝐴𝑤 . More importantly, comparing coatings of different 𝑛1
𝑐 

shows that 𝐴𝑤 increases with increasing 𝑛1
𝑐. This is due to the fact that water tends to penetrate 

deeper into the coating as 𝑛1
𝑐 increases. Note that for 𝑛1

𝑐 = 0.5, the choice of diagonal or in-line 

arrangement does not matter (see the offset of Fig. 2.4b) as the choice of particle configuration 

does not affect the net capillary pressure generated by the particles.  

The other interesting, yet expected, result in this figure is that the maximum and minimum values 

of 𝐴𝑤 are associated with the highest and lowest values of 𝑛1
𝑐, respectively. The slip length values 
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corresponding to 𝐴𝑤 of Fig. 2.4b are calculated using Eq. 2.7 and are shown in Fig. 4c. As 

expected, slip length is less for coatings with higher 𝐴𝑤. 

   
Fig. 2.4 Examples of the critical AWI for bi-component COPDs with different microstructural and wetting 

properties (given below each sub-figure) (a). Wetted area (b) and dimensionless slip length (c) as a function 

of hydrostatic pressure for COPDs with different population fractions of particles with 𝜃1 = 100o and 𝜃2 =
120o for an SVF of  𝜀 = 0.4 and a particle diameter of 𝑑 = 100 μm. 
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Fig. 2.5 The equivalent contact angle concept shown schematically with the relationship between the angles 

and directions. 

The analytical formulations given in Sec. 2.2 can be used to produce predictions for the CCP, 

critical immersion angle, and critical wetted area for a bi-component coating. However, they need 

to be modified before they can be used to predict the CHP (or 𝛼𝑖 and 𝐴𝑤 for capillary pressures 

other than the CCP) for a coating comprised of particles with more than one contact angle. We 

therefore, defined an equivalent contact angle 𝜃𝑒𝑞 to simplify the otherwise complicated 

calculations needed to estimate the volume of the entrapped air under the 3-D AWI. In order to 

calculate 𝜃𝑒𝑞, we define an equivalent height for the AWI as the weighted average of the AWI 

height at each particle ℎ𝑒𝑞 = 𝑛1
𝑐ℎ1 + 𝑛2

𝑐ℎ2 where ℎ1 =
𝑑

2
(1 − 𝑐𝑜𝑠𝛼1) and ℎ2 =

𝑑

2
(1 − 𝑐𝑜𝑠𝛼2) as 

shown in Fig. 2.5.  Therefore,  

ℎ𝑒𝑞 =
𝑑

2
(1 − 𝑐𝑜𝑠𝛼𝑒𝑞)                                   (2.11) 

Obviously, the equivalent AWI height corresponding to an equivalent immersion angle 𝛼𝑒𝑞 can be 

expressed as  

 𝑐𝑜𝑠𝛼𝑒𝑞 = 𝑛1
𝑐𝑐𝑜𝑠𝛼1 + 𝑛2

𝑐𝑐𝑜𝑠𝛼2                    (2.12) 
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𝛼𝑒𝑞 is a function of 𝑃ℎand is related to the angle between the vertical direction and the capillary 

force (x) as 𝛼(∆𝑃) =
3𝜋

2
− 𝑥(∆𝑃) − 𝜃 (see Fig. 2.5). For the special case of zero hydrostatic 

pressure, 𝑥(∆𝑃 = 0) =
𝜋

2
and therefore 𝛼(∆𝑃 = 0) = 𝜋 − 𝜃.  Rewriting Eq. 2.12, we obtain 

𝑐𝑜𝑠𝜃𝑒𝑞 = 𝑛1
𝑐𝑐𝑜𝑠𝜃1 + 𝑛2

𝑐𝑐𝑜𝑠 𝜃2                  (2.13) 

Equation 2.13 can be substituted into Eq. 2.2 for pressure calculation. Although Eq. 2.13 was 

derived using ∆𝑃 = 0, this equation is valid for every 𝑃ℎ as the contact angle is a material property 

independent of operating pressure.  

Figure 2.6a shows our CHP predictions for coatings comprised of particles having contact angles 

of 𝜃1 = 100o and 𝜃2 = 120o with different 𝑛1
𝑐. For these calculations, 𝜃𝑒𝑞 (Eq. 2.13) was used to 

estimate the volume of the entrapped air. Predictions of the SE code are also added for comparison. 

Our results indicate that for coatings made of smaller particles (𝑑 = 1 μm), the CHP is higher 

when all particles have a higher contact angle, i.e., 𝑛1
𝑐 = 0, when the coatings have an SVF of 𝜀 >

0.3. Interestingly however, for coatings with an SVF of 𝜀 < 0.3, the trend is reversed. A similar 

effect is also observed for the coatings with the larger particles (𝑑 = 100 μm), but with the 

transition SVF moved to about 𝜀 = 0.3. For the larger particles however, the dependence of the 

CHP on particle’s hydrophobicity is negligible for 𝜀 > 0.4 (see also Fig. 2.2 for the effects of 

particle diameter on CHP). Figure 2.6b shows similar results for when the AWI is exposed to 

negative pressures. Note again that the negative critical pressures are limited to the vapor pressure 

of water in this figure. Figures 2.6a and 2.6b both indicate that our simple FB analytical 

formulations can produce predictions in reasonable agreement with the significantly more rigorous 

calculations of the SE code.  
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Fig. 2.6 CHP predictions, obtained from FB and SE calculations for bi-component COPDs comprised of 

particles with 𝜃1 = 100o and 𝜃2 = 120o and diameters of 𝑑 = 100 μm and 𝑑 = 1 μm. (a) and (b) show 

the case with positive and negative pressures, respectively. 
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Fig. 2.7 Variations of wetted area with hydrostatic pressure obtained from FB and SE calculations for 

COPDs having 𝜃1 = 100o, 𝜃2 = 120o with 𝑑 = 100 μm for 𝑛1
𝑐 = 0.25. 

Figure 2.7 shows 𝐴𝑤 versus 𝑃ℎ for 𝑛1
𝑐 = 0.25 obtained from both the FB formulations and SE. 

Good general agreement between the two methods is evident. Similar behavior but slightly higher 

in magnitude is observed for 𝑛1
𝑐 = 0.50  and 𝑛1

𝑐 = 0.75  but not shown for the sake of brevity. One 

can also estimate the slip length for the flow over a granular SHP surface under different 𝑃ℎ (using 

Eq. 2.7 or any other relevant explicit expression) without needing to run a numerical calculation 

(results not shown but are similar to Fig. 2.4c). 

2.4.3 Randomly Distributed Particles 

In this section, we discuss the effects of randomness in the spatial distribution of the particles. We 

consider 𝑑 = 1 μm and 𝑑 = 100 μm with YLCA equals 120o. The virtual coatings with random 

particle distributions (CRPDs) were generated via an in-house MATLAB code. In generating these 

virtual coatings, we enforced a minimum particle-to-particle distance of 𝑑/8 to prevent the 

formation of pendular rings and to also ease the subsequent meshing process in SE.  
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We chose a simulation domain eight times greater than the particle diameter in length and width 

with periodic boundaries. The simulation size was found to be large enough to reduce the statistical 

uncertainty of the results without requiring excessive CPU time. We produced a Voronoi diagram 

for each CRPD to produce the input data files needed for SE simulations (see Fig. 2.8a). These 

data files contain information about the AWI geometry described in a descretized form comprised 

of vertices, edges, and faces. To generate the information, we first placed vertices around the 

perimeter of each particle in the domain, and then produced a list of neighbors for each particle in 

the coating using Voronoi diagram. We then connected the vertices to make edges between the 

neighboring particles, and finally produced faces from these edges. To calculate CHP in these 

simulations, the pressure was incrementally increased until  𝛼𝑖 reached 𝛼𝑐𝑟for one of the particles 

in the coating, or until the AWI touched the bottom of the pore space between the particles. For 

the range of SVFs considered in this chapter, the former has been observed to be the failure mode, 

although the latter is expected to be the sole cause of failure at very low SVFs. Note that for 

CRPDs, one should distinguish between local failure and overall failure. The former is failure at 

some specific locations in the coating with perhaps a low local particle number density and used 

in this work to define the CHP, while the latter is failure at all points in the coating (26).  

Figure 2.8b shows the AWI over a coating with 𝑑 = 100 μm, 𝜃 = 120o, and 𝜀 = 0.25 under 𝑃ℎ =

169.4 kPa (∆𝑃 = 0.86 kPa). Figure 2.8c shows the AWI under a negative CHP of  𝑃ℎ = −40.36 

kPa (∆𝑃 = −0.30 kPa) for the exact same virtual coating. Note that the three-phase contact-line 

around the particles is smaller in Fig. 2.8c when compared to that of Fig. 2.8b. This is because the 

AWI in Fig. 2.8c is farther away from the equator of the particles. This can be seen more clearly 

in Figs. 2.8d and 2.8e where contour plots of the AWI height are shown (the numeric values 

corresponding to the colors are presented in the color bar).  
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Fig. 2.8 An example Voronoi diagram produced for a CRPD with an SVF of 𝜀 = 0.25 comprised of 34 

particles is shown in (a). The AWI for the case of particles with a YLCA of 𝜃 = 120o at positive and 

negative CHPs of 𝑃ℎ = 169 kPa and 𝑃ℎ = −40 kPa are shown in (b) and (c) along with their height contour 

plots in (d) and (e) 𝑃ℎ = −40 kPa, respectively. The corresponding critical immersion angles are plotted 

for each particle and shown in (f) and (g). Note the location of the failure point shown with an arrow in (f) 

and (g). 
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It can be seen that in regions where the distances between the particles is larger, the AWI height 

is low (high), for the positive (negative) CHP. Note in Fig. 2.8d that nowhere in the domain does 

the AWI contact the bottom surface (i.e., the minimum AWI height is greater than -50 µm). Also, 

note in Fig. 2.8e that the maximum AWI height is greater than particle radius (50 µm from center). 

Figures 2.8f and 2.8g show 𝛼𝑖 of the particles in the coating under the above-mentioned CHPs 

(note the numeric values corresponding to the colors in the color). The 𝛼𝑐𝑟 corresponding to CHP 

values also reported in the figures. We again used Voronoi diagrams in the FB method for CHP 

prediction (referred to here as FB–Voronoi method). In particular, the Voronoi diagram is used to 

locate the weakest point in a coating; the Voronoi cell with the largest area (corresponding to the 

lowest local SVF). That area is then used to construct a square unit-cell with the same surface area  

𝐿𝑠
2 to be used in Eq. 2.2 to predict the CCP (as well as 𝛼𝑐𝑟) for the whole coating. Predicted CCP 

is then used to obtain the CHP for the coating after incorporating the compression pressure of the 

entrapped air (see Sec. 2.2). Fortunately, the latter is a straightforward calculation as the pressure 

of the entrapped air is not specific to any Voronoi cell, i.e., it is the same for all cells in the domain. 

Therefore, the compression ratio for the CRPD can be approximated (using the same formulations 

given in Sec. 2.2) with that of a COPD having the same overall SVF under the above-mentioned 

CCP (note that this pressure, CCP of the CRPD, should not be confused with the CCP of the 

COPD).  

Figure 2.9a shows CHP for CRPDs in comparison to their ordered counterparts. In this figure, the 

predictions of SE are also included for comparison. To decrease the statistical uncertainty of the 

results obtained for the CRPDs, each case was repeated at least three times. It can be seen that, for 

both particle diameters, CHP decreases with SVF for 0 < 𝜀 < 0.3. The decrease is sharp for 
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COPDs and slow for CRPDs (note that when 𝑑 = 1 µm and 0.3 < 𝜀, CHP increases with 

increasing SVF as has been shown and discussed in Fig. 2.2). 

 

Fig. 2.9 CHP predictions, obtained from FB and SE calculations for CRPDs and their ordered counterparts 

are shown in (a) and (b) for positive and negative pressures, respectively, along with their corresponding 

bubble volume ratios in the offset. 
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Figure 2.9a shows a striking difference between CHPs obtained for CRPDs and their ordered 

counterparts (COPDs). The reason for this is that in response to an increasing pressure, 𝛼𝑖 can 

rapidly increase to reach 𝛼𝑐𝑟 in certain regions of a CRPD (where local SVFs is low) resulting in 

a relatively low CCP for the coating. A low CCP consequently results in a less overall AWI 

deflection, i.e., a lower compression ratio for the entrapped air and so a lower CHP for CRPDs. 

The inset in Fig. 2.9a shows the critical compression ratio 𝐶𝑐𝑟 =
𝑉∞

𝑉𝑐𝑟 for CRPD and COPD at their 

corresponding CHPs, supporting the above argument. Note that these results are shown only for 

one particle size as they are independent of particle diameter (same as 𝛼𝑐𝑟, Sec. 2.4.1). Figure 2.9b 

shows negative CHPs for the above coatings. Interestingly, here CRPDs and COPDs have almost 

identical CHPs. This is only because the compression ratios are about the same for both cases. 

Also, note that for coatings with larger diameters, the critical suction pressure is almost 

independent of SVF, while for the coatings made of smaller particles, the balance of capillary and 

bubble pressure leads to a decrease in the critical suction pressure with SVF as discussed earlier 

for the results shown in Fig. 2.2d. Figure 2.9 indicates that predictions of FB–Voronoi method are 

in good relative agreement with the results of SE for CRPDs, while being significantly simpler.  

 

For completeness of the study, we also considered coatings comprised of particles with two 

different YLCAs (𝜃1 = 100o and 𝜃2 = 120o) distributed randomly over the surface with an 

almost equal population (𝑛1
𝑐 ≅ 0.5). Figure 2.10a shows the SE and FB–Voronoi predictions of 

CHP for such bi-component CRPDs. It can be seen that CHP generally decreases with increasing 

SVF, which is in agreement with the results of Fig. 2.6a for 0 < 𝜀 < 0.3. For the analytical 

calculations, we used the equivalent contact-angle concept of Eq. 2.12 to extend the utility of our 
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FB–Voronoi method to CRPDs of dissimilar YLCA. The difference between CRPDs and their 

ordered counterparts is similar to those discussed for Fig. 2.9 and so is not repeated here (see Fig. 

2.6 for CHP values given for COPD).  

 

Fig. 2.10 CHP predictions vs. SVF, obtained from FB and SE calculations for bi-component CRPDs having 

𝜃1 = 100o  and 𝜃2 = 120o with population fractions of 𝑛1
𝑐 ≅ 0.5, are given in (a). Wetted area as a function 

of hydrostatic pressure obtained using from SE for CRPDs is shown in (b). Wetted area for CRPDs and 

their ordered counterparts are given in (c). Dimensionless slip length as a function of hydrostatic pressure 

for CRPDs having 𝜃 = 120o and bi-component CRPDs having 𝜃1 = 100o, 𝜃2 = 120o and 𝑛1
𝑐 ≅ 0.5 are 

presented in (d). 
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Figure 2.10b shows 𝐴𝑤 versus 𝑃ℎ for bi-component CRPDs with 𝑑 = 100 μm and two different 

SVFs (𝜀 = 0.25 and 0.3), obtained from SE and FB–Voronoi method. Similar to the case of 

COPD, 𝐴𝑤 increases with 𝑃ℎ raise. It can also be seen that for a constant 𝑃ℎ, the wetted area 

increases with SVF due to the increase in the number of particles in the coating. In Fig. 2.10c 𝐴𝑤 

is shown as a function of 𝑃ℎ, for CRPDs and their corresponding COPDs to investigate the effect 

of the distribution of the particles on 𝐴𝑤 (and so perhaps on 
𝑏

𝐿𝑠
). It can be seen that at a given 𝑃ℎ 

the distribution of the particles in a coating does not affect 𝐴𝑤 (only the SE results are shown for 

the clarity of the presentation). 
𝑏

𝐿𝑠
 for CRPDs follows a trend similar to COPDs (Fig. 2.4b), i.e., it 

decreases with increasing 𝑃ℎ (see Fig. 2.10d). 

2.5. Conclusions 

A The skin-friction drag on a submerged object is related to the area of contact between the solid 

surface of the object and water––the wetted area of the surface. Properly designed SHP coatings 

can reduce the area of contact between water and solid surface. Although, the relationship between 

the wetted area and drag-reduction is complicated and reducing the wetted area does not 

necessarily guarantee a reduction in the drag force, the ability to predict the wetted area of a surface 

allows one to better engineer the microstructure of SHP surfaces. In regard, we have developed a 

force balance analytical method to predict the stability (CHP) and wetted area of a SHP surface 

made of a single layer of ordered or randomly distributed particles of dissimilar wettabilities. Our 

simple analytical method was benchmarked using more accurate calculations of the SE code and 

reasonable agreement was observed.  

Our results indicate that CHP of COPDs made of hydrophobic large particles (e.g., 100 µm) 

decreases with SVF but shows a U-shaped behavior if the particles are smaller (e.g., 1 µm). Our 
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results also revealed that, depending on SVF and contact angle, dimensionless wetted area can 

exceed 1 at hydrostatic pressures much smaller than the CHP of the surface. Such quantitative 

information is very relevant in designing a SHP coating for a given application. Similar results but 

with greater or smaller magnitude were also obtained for CRPDs and coatings comprised of 

particles with different YLCAs under positive or negative hydrostatic pressures, and discussed in 

detail. More specifically, it was observed that CHP of CRPDs can be much smaller than that of 

their ordered counterparts (COPDs) because of the heterogeneity in the particle distribution 

allowing for regions with low local SVF to fail rather quickly under elevated pressures. It was also 

found that, at a given hydrostatic pressure, randomness in the distribution of the particles does not 

affect the wetted area.  
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Chapter 3. Effects of Hydrostatic Pressure on Wetted Area of Submerged polydispersed 

Superhydrophobic Granular Coatings 

 

3.1 Introduction 

The reduced cost of manufacturing has played an important role in making spray-on granular 

superhydrophobic coatings attractive alternatives to superhydrophobic surfaces produced via 

microfabrication (see e.g., (87–89)). Such surfaces can be used for applications ranging from self-

cleaning and drag reduction to corrosion resistance and heat transfer (12,22,60,90). The essential 

attribute of superhydrophobic (SHP) surfaces is the reduced water–solid contact area (wetted area), 

which helps to reduce the friction between a moving body of water and the surface (12,14,15,60). 

An analytical force balance method to approximate the wetted area of a SHP surface comprised of 

particles of equal size but different Young–Laplace contact angles (YLCAs) was presented in the 

first part of this two-part publication (chapter 2 of this dissertation) (35). In current chapter, we 

extend our formulations to the most general case of SHP coatings made up of particles of different 

diameters and YLCAs. As in Chapter 2, the instantaneous shape and position of the air–water 

interface (AWI) between the particles is also used to predict the effective slip length of the surface, 

when used in a microchannel for instance. An introductory discussion along with a thorough 

literature review is given in Chapter 2 to put this study in the proper context of prior studies, and 

so it will not be repeated here (see (11,13,24,73,76,77,80,81) for additional information). Here we 

present a condensed overview of the background information needed for the continuity of our 

discussion. 
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The shape and position of the AWI over a SHP surface may be explained using the balance of the 

forces that act on the interface. For a submerged SHP surface, these forces are due to hydrostatic 

pressure 𝑃ℎ, ambient pressure 𝑃∞, pressure of the air trapped in the pore, referred to here as the 

bubble pressure 𝑃𝑏𝑢𝑏 , and the pores’ capillary pressure 𝑃𝑐𝑎𝑝. The bubble and capillary pressures, 

if positive, tend to balance the hydrostatic pressure (35). A submerged SHP surface may not always 

be in the Cassie state (fully-dry); depending on the hydrostatic pressure and the surface 

morphology, the surface may move to the Wenzel state (fully-wetted) or to a transition state 

between the two extreme states (63,67,71,91). There are two main paths by which a submerged 

SHP surface may reach a transition state: a gradual transition from the Cassie state over a certain 

period of time under a moderate hydrostatic pressure, or a sudden transition upon exposure to an 

elevated pressure. The former takes place due to the dissolution of the entrapped air in the ambient 

water, whereas the latter occurs because of the imbalance of the mechanical forces acting on the 

air–water interface (63,67,71,73,76,77,91). Therefore, the drag-reduction effect generated by a 

SHP surface varies depending on both the operating pressure and the time in service. The 

hydrostatic pressure at which a SHP surface starts departing from the Cassie state (where the 

capillary pressure is at its highest value) is referred to as the critical hydrostatic pressure (CHP) 

(16,34,63) for a SHP surface with sharp-edged pores/grooves. We assume the CHP for a pore with 

round entrance to be the hydrostatic pressure at which the AWI reaches the maximum capillary 

pressure, unless the AWI deflects enough to touch the bottom of the pore at a lower pressure (92). 

In that case, the latter pressure will be considered as the CHP.  
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In the following section, we first start with a force balance (FB) formulation for an AWI formed 

between the particles of a submerged granular SHP coating. This is followed by a simple method 

to relate the hydrostatic pressure of water above the surface to the capillary pressure of the 

coating’s pores in Sec. 3.2.2. In Sec. 3.2.3, we propose mono-dispersed equivalent diameter 

definitions for bi-dispersed and poly-dispersed coatings to be used for critical capillary pressure 

(CCP) and wetted area predictions. Comparison between the predictions of our analytical method 

and those from the numerical simulations carried out using the Surface Evolver (SE) finite element 

code are given in Sec. 3.3. This section also contains detailed analyses for the effects of 

randomness in the spatial distribution of the particles, amongst many other parameters, in a poly-

dispersed SHP coating. The condensed summary of the calculation procedure developed in our 

work is given in Sec. 3.4 in the form of a flowchart.  The conclusions drawn from the work are 

given in Sec. 3.5.  

3.2 Analytical Formulation 

3.2.1 Critical Capillary Pressure 

Consider an idealized condition for a single-layer bi-dispersed granular coating in which the 

particles with identical YLCAs are arranged in a square pattern as shown in Fig. 3.1a. Predicting 

the critical pressure and wetted area for the AWI over such coatings is a challenge, as it requires 

detailed information about the 3-D shape of the AWI. More specifically, one needs to keep track 

of both the instantaneous direction and the magnitude of the capillary force 𝐹𝜎𝑖 = 𝜎𝜋𝑑𝑖𝑠𝑖𝑛𝛼𝑖 as 

the AWI adjusts itself in the pore space between the particles. Obviously, the problem becomes 

even more complicated when the particles are distributed randomly. In this chapter, the SE code 

is used to numerically obtain the 3-D shape of the AWI as a function of pressure (see (38,39) for 
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more information about SE). Figure 3.1a shows an example of such numerical calculations 

conducted for a coating with 𝑑1 = 100 μm, 𝑑2 = 57 μm, 𝜀 = 0.3, and 𝜃 = 120o at a capillary 

pressure of ∆𝑃 = 0.50 kPa. One can easily calculate the wetted area of a coating once the 3-D 

shape of the AWI is available. Writing the balance of forces acting on an AWI in the vertical 

direction for a positive ∆𝑃 (in the negative 𝑧-direction), we obtain (13,24)  

∆𝑃 (𝐿2 − ∑ 𝑛𝑖
𝜋𝑑𝑖

2

4
𝑠𝑖𝑛2𝛼𝑖

2
𝑖=1 ) = ∑ 𝑛𝑖𝜋𝜎𝑑𝑖𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠 (

3𝜋

2
− 𝜃 − 𝛼𝑖)

2
𝑖=1                                                 (3.1) 

where 𝑛𝑖 is the number fraction of the particles with the diameter 𝑑𝑖. 

 

Fig. 3.1 (a): an AWI example over a bi-dispersed coating obtained using the SE code; (b): a 2-D diagram 

showing an AWI between two particles; (c): a schematic representation of AWI over a bi-dispersed 

coating under different hydrostatic pressures; and (d): 2-D representation of two mono-dispersed coatings 

with identical SVF but different particle diameters overlaid on top of one another.  

1d
2d

air

water

(b)

1
2

2F

1F

 

( )h bubP P P P   

(d)

*

2dR

2d
1d

,1mL

,1 ,2

1 2

m m

cr cr

 

 





1

cr

2

cr

*

1dR

1C

2C

,2mL

(a)

1d

2d
o

1

2

0.30

120

0.50 kPa

100 μm 

57 μm

capP

d

d









 




Fully

Wetted

c YL 

c

cr

b YL 

b

F
u
ll

y
 w

et
te

d
(c)

a

Fully

Wetted

c YL 

c

cr

b YL 

b

a
a

a YL 

R
eg

im
e 

I

Fully

Wetted

c YL 

c

cr

b YL 

b

b
b

b YL 

Fully

Wetted

c YL 

c

cr

b YL 

b

c

cr
c YL 

R
eg

im
e II

Increasing 

pressure

L

L

LL



 
  

43 
 

We denote the average vertical position of the contact line around a particle in a granular coating 

with an immersion angle (IA) 𝛼𝑖 for each particle (see Fig. 3.1b). The main simplifying assumption 

in deriving Eq. (3.1) is that the contact line between the AWI and the particles (shown with dotted 

line in Fig. 3.1b) remains in a horizontal plane. We expect the error associated with this assumption 

to be generally negligible, but it may become considerable if the solid volume fraction (SVF) is so 

high that the particles touch one another. For a single-layer bi-dispersed coating, we define SVF 

as 𝜀𝑏 =
𝜋

6

∑ 𝑛𝑖𝑑𝑖
32

𝑖=1

𝐿𝑏
2𝑑𝑐

 where 𝑑𝑐 is the diameter of the coarse particles (similarly 𝜀𝑝 =
𝜋

6

∑ 𝑛𝑖𝑑𝑖
34

𝑖=1

𝐿2𝑑𝑐
 for 

our poly-dispersed coatings as will be seen later in this chapter). By setting the derivative of Eq. 

(3.1) with respect to 𝛼𝑖 equal to zero, (
𝜕∆𝑃

𝜕𝛼𝑖
)|

𝛼𝑖=𝛼𝑖
𝑐𝑟

= 0, one can obtain the maximum (i.e., critical) 

pressure difference ∆𝑃𝑐𝑟 and consequently, the CHP of the coating. Note that the values of 𝛼 

smaller or greater than 90° correspond to negative or positive critical pressure differences, 

respectively.  

 

Equation (3.1) can be used for both a mono-dispersed and bi-dispersed (or poly-dispersed) coating, 

as long as the AWI is in contact with all of the particles. However, it is not impossible for an AWI 

over a bi-dispersed (or poly-dispersed) coating to reach an equilibrium position without coming 

into contact with the smaller particles when the hydrostatic pressure is low. In such conditions, the 

AWI may move down into the void between the coarse particles to reach the smaller particles if 

the hydrostatic pressure is increased (see Fig 3.1c). To better formulate the behavior of bi-

dispersed coatings under pressure, we define two different pressure regimes, referred to here as 

Regime I and Regime II. Regime I is when the hydrostatic pressure is so low that the AWI wets 

the coarse particles only. Regime II, on the other hand, describes the range of pressures at which 
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the AWI is in contact with both the coarse and fine particles. Note that as the hydrostatic pressure 

increases, some fine particles may come into contact with the AWI sooner than others, depending 

on their relative population in a coating. Regime II, therefore, starts when at least one fine particle 

comes into contact with the AWI. Excessive hydrostatic pressures can lead to failure (wetting) 

either due to the AWI sagging deep enough to touch the substrate or becoming mechanically 

unstable. Equation (3.1) can be rearranged for a mono-dispersed coating at its CCP to read as 

∆𝑃𝑚
𝑐𝑟 =

4 𝑠𝑖𝑛𝛼𝑐𝑟  𝑐𝑜𝑠(
3𝜋

2
−𝜃−𝛼𝑐𝑟 )

𝑑[
2

6𝜀𝑚
− 𝑠𝑖𝑛2𝛼𝑐𝑟 ]

                                                                                                                                      (3.2) 

where 𝜀𝑚 =
𝜋

6
(

𝑑

𝐿𝑚
)2 is the SVF of the mono-dispersed coating. As mentioned in Chapter 2, for 

mono-dispersed coatings with constant YLCAs, the critical IA, 𝛼𝑐𝑟, is independent of particle size 

(depends only on the SVF) (35). Equation (3.2) also shows that at a constant SVF, capillary 

pressure is inversely proportional to 𝑑. Therefore, capillary pressure increases with decreasing 

particle size. The inverse relationship between the particle size and capillary pressure at a constant 

SVF can also be explained in terms of the AWI radii of curvature. Figure 3.1d shows the critical 

AWI over two mono-dispersed coatings with a constant SVF of 𝜀𝑚,1=𝜀𝑚,2 but different particle 

diameters 𝑑1 and 𝑑2. As can be seen in Fig. 3.1d, the AWI over the coating with smaller particles 

has a smaller radius of curvature and consequently, a higher CCP ( ∆𝑃𝑚,1
𝑐𝑟 =

𝜎

𝑅𝑑1
∗ < ∆𝑃𝑚,2

𝑐𝑟 =
𝜎

𝑅𝑑2
∗  ) 

even though 𝛼1
𝑐𝑟 = 𝛼2

𝑐𝑟. We use this to predict the CCP of bi-dispersed coatings in the next 

sections. 

3.2.2 Hydrostatic Pressure 

As explained before, the forces acting on an AWI are due to hydrostatic pressure, ambient pressure, 

bubble pressure, and the capillary pressure. Therefore,  
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𝑃𝑐𝑎𝑝 + 𝑃𝑏𝑢𝑏 = 𝑃∞ + 𝑃ℎ                          (3.3) 

One can obtain the CCP and 𝛼𝑐𝑟 using Eq. (3.1). The bubble pressure, on the other hand, should 

be obtained separately, assuming that the entrapped air undergoes an isentropic compression as 

the AWI penetrates into the pore, i.e.,   

 𝑃𝑏𝑢𝑏 = 𝑃∞ (
𝑉∞

𝑉
)
𝛾

                                      (3.4) 

where 𝑉∞ and 𝑉 are the volumes of the entrapped air at a hydrostatic pressure of zero (𝑃𝑏𝑢𝑏|𝑝ℎ=0 =

𝑃∞) and at any arbitrary pressure of 𝑃ℎ, respectively, and 𝛾 is the ratio of the specific heats. The air 

volumes 𝑉∞ and 𝑉 can be obtained numerically (using the SE code as will be shown later in Sec. 

3.3) or approximated analytically, the way we described in Chapter 2 (35). With volumes 𝑉∞ and 

𝑉 substituted into Eqs. (3.4) and (3.3), one can obtain the bubble and hydrostatic pressures using 

the capillary pressure information for a mono-dispersed coating. One can also calculate a 

dimensionless wetted area  𝐴𝑤 (assuming a planar contact line around the particles) knowing the 

IA,   

𝐴𝑤 =
𝐴𝑆𝐿

𝐿2 =
𝜋 𝑑𝑖

2

2𝐿2
∑ 𝑛𝑖(1 − 𝑐𝑜𝑠𝛼𝑖) 

2
𝑖=1                          (3.5) 

In Sec. 3.3, we present a comparison between our CHP and wetted area predictions using our 

simple analytical expressions and those obtained from numerical simulations conducted using SE.  

3.2.3 Mono-Dispersed Equivalent Coating of a Bi-Dispersed Coating 

Consider a unit cell of a bi-dispersed coating as shown in Fig. 3.2a. The red and blue colors 

represent coarse and fine particles, respectively, and the parameter 𝑛𝑖 denotes the number fraction 

of particles with diameter 𝑑𝑖. Here, we present a simple method to predict the capillary pressure 
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of such coatings using the analytical formulations developed originally for mono-dispersed 

coatings. For the sake of simplicity, we discuss the concept of equivalent mono-dispersed coating 

using a 2-D cross-section of the unit cell. Consider a system of two particles supporting an AWI 

as shown in Fig. 3.2b (e.g., a bi-dispersed coating with 𝑛1 = 0.5). We define the mono-dispersed 

equivalent of this bi-dispersed system to be a system with the same capillary pressure (i.e., the 

mono-dispersed system that supports an AWI with the same radius of curvature). Assume the CCP 

for a mono-dispersed coating with a SVF of 𝜀𝑚,1 comprised of particles with a diameter of 𝑑1 to 

be ∆𝑃𝑚,1
𝑐𝑟 . Using Eq. 3.2, one can find another mono-dispersed coating comprised of particles with 

a diameter of 𝑑2 that has the same CCP, i.e., ∆𝑃𝑚,1
𝑐𝑟 = ∆𝑃𝑚,2

𝑐𝑟 . The second coating however, will 

have a different SVF 𝜀𝑚,2 that can be obtained iteratively. Now consider a bi-dispersed coating 

comprised of particles with diameters 𝑑1 and 𝑑2. In a similar fashion, one can find the SVF 𝜀𝑏 of 

the bi-dispersed coating that provides the same CCP, i.e.,    

∆𝑃𝑚,1
𝑐𝑟 = ∆𝑃𝑚,2

𝑐𝑟 = ∆𝑃𝑏
𝑐𝑟                                                                                                                                            (3.6) 

Recall that SVFs 𝜀𝑚,1, 𝜀𝑚,2, and 𝜀𝑏 are related to particles’ center-to-center distances 𝐿𝑚,1, 𝐿𝑚,2, 

and 𝐿𝑏 , respectively. On the other hand, from the 2-D geometric representation of the equal 

capillary pressure concept of Fig. 3.2b one can conjecture that  

𝐿𝑏 =
𝐿𝑚,1+𝐿𝑚,2

2
                                                                                                                                                           (3.7) 

Or in a more general form, 

𝐿𝑏 = 𝑛1𝐿𝑚,1 + 𝑛2𝐿𝑚,2                                                                                                                                             (3.8) 
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Fig. 3.2 (a): different arrangements of particles in a unit cell of a bi-dispersed coating; (b): the AWI in 

Regime II over a bi-dispersed coating can be modeled as AWIs over two different mono-dispersed coatings; 

and (c): comparison between bi-dispersed particles’ center-to-center distance 𝐿𝑏 obtained from of Eqs. (3.6) 

and (3.8) for coatings with a coarse particle diameter of 𝑑1 = 100 μm with SVFs of 𝜀𝑚,1 = 0.2 and 0.3, 

YLCAs of 𝜃 = 120o and 80o, and different coarse-to-fine diameter ratios of 𝜂 = 2.0 and  2.5.  
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The comparison between the center-to-center distance for bi-dispersed coatings 𝐿𝑏 calculated from 

the force balance equation of Eqs. (3.2) and (3.6) and those from the conjectured Eq. (3.8) are 

given in Fig. 3.2c for coatings with a coarse particle diameter of 𝑑1 = 100 μm, different SVFs of 

𝜀𝑚,1 = 0.2 and 0.3, different YLCAs of 𝜃 = 120o and 80o and different coarse-to-fine diameter 

ratios of 𝜂 = 2.0 and  2.5. The encouraging agreement shown in Fig. 3.2c was in fact a motivation 

to use Eq. (3.8) in the remainder of this chapter.  

We can now propose a simple method to find a mono-dispersed equivalent coating in terms of the 

geometric and hydrostatic parameters of bi-dispersed structures as shown in Figs. 3.3a and 3.3b 

with  𝐿𝑏 = 𝐿𝑒𝑞. In these figures, 𝑂1𝑂0 = 𝑆1 and 𝑂2𝑂0  = 𝑆2  where 𝑂1: |

𝐿𝑚,1

2
𝑑1

2

, 𝑂2: |
−

𝐿𝑚,2

2
𝑑2

2

  are the 

center of the particles and 𝑂0: |
0
𝑧0

 is the center of the meniscus. Considering the triangles ⊿𝑀1𝑂0𝑂1 

and ⊿𝑀2𝑂0𝑂2, 

 

Fig. 3.3 Schematic presentation of an AWI over a bi-dispersed coating (a) and over its mono-dispersed 

equivalent (b). 
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we can write,  

{ 

  

(
𝑑1

2
)2 + 𝑅∗2 − 2

𝑑1

2
𝑅∗𝑐𝑜𝑠𝜃 = (

𝐿𝑚,1

2
)2 + (𝑧0 −

𝑑1

2
)
2

         

(
𝑑2

2
)2 + 𝑅∗2 − 2

𝑑2

2
𝑅∗𝑐𝑜𝑠𝜃 = (𝐿𝑏 −

𝐿𝑚,1

2
)2 + (𝑧0 −

𝑑2

2
)2 

                                                                        (3.9) 

Now assume that the same interface (with 𝑂0: |
0
𝑧0

) is formed over a coating having an equivalent 

diameter 𝑑𝑒𝑞
𝑐𝑐  (the superscript cc denoting the constant curvature concept) with 𝑂4: |

−
𝐿𝑒𝑞

2

𝑑𝑒𝑞
𝑐𝑐

2

 as shown 

in Fig. 3.3b. One can now solve Eq. (3.9) for 𝑧0 and  𝐿𝑚,1 and use this information in similar 

system of algebraic equations developed using Fig. 3.3b to obtain 𝑑𝑒𝑞
𝑐𝑐  as (note that 𝑅∗ = 

𝜎

∆𝑃
), 

𝑑𝑒𝑞
𝑐𝑐 =

𝐿𝑒𝑞
2 −4𝑅∗2+4𝑧0

2

4(𝑧0−𝑅∗𝑐𝑜𝑠𝜃)
                                                                                                                                                 (3.10)  

The results of such calculations for a bi-dispersed system with 𝑑1 = 100 μm and a coarse-to-fine 

particle diameter ratio of 𝜂 = 1.75 are shown in Fig. 3.4a. Note that in this figure, 𝑑𝑒𝑞
𝑐𝑐  is almost a 

constant value that can be approximated with 𝑑𝑒𝑞 =
𝑑1+𝑑2

2
. In Fig. 3.4b, we investigated the effects 

of varying the particles’ YLCA on the proposed equivalent mono-dispersed diameter for coatings 

with 𝜂 = 1.75 and a constant SVF of 𝜀𝑏 = 0.2. It can again be seen that 𝑑𝑒𝑞 can be a good 

approximation for the equivalent mono-dispersed diameter 𝑑𝑒𝑞
𝑐𝑐 . Figure 3.4c shows the equivalent 

mono-dispersed diameter for bi-dispersed coatings with 𝜀𝑏 = 0.2 and a YLCA of 𝜃 = 120o but 

with different coarse-to-fine particle diameter ratios. It can be seen that the mismatch between 

𝑑𝑒𝑞
𝑐𝑐  and the suggested 𝑑𝑒𝑞 value somewhat increases with increasing the coarse-to-fine particle 

diameter ratio. Nevertheless, the simplicity of the definition 𝑑𝑒𝑞 =
𝑑1+𝑑2

2
 makes it an appealing 
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proposal for obtaining an equivalent mono-disperse counterpart for a bi-disperse coating. In fact 

in a more generalized form one can write 

𝑑𝑒𝑞 = 𝑛1𝑑1 + 𝑛2𝑑2                                                                                                                                                (3.11) 

 

Fig. 3.4 Mono-dispersed equivalent diameter a function of capillary pressure from Eq. 10 is compared with 

that of Eq. 11 for bi-dispersed coatings with 𝑑1 = 100 μm and 𝑛1 = 0.5; (a): coatings with different SVFs; 

(b): coatings with different coarse-to-fine particle diameter ratios; and (c): coatings with different YLCAs. 

A Comparison between the immersion angles obtained from SE simulations and our ED analytical method 

is given in (d) for coatings with different coarse particle number fractions. 
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To further examine the accuracy of such a simple equivalent diameter definition, we compared the 

IA values obtained from SE simulation of bi-dispersed coatings with those of mono-dispersed 

equivalent coating from analytical formulations in Fig. 3.4d.  In this figure in particular, we 

considered a bi-dispersed coating with 𝑑1 = 100 μm and 𝜂 = 1.75 but with different number 

fraction for the coarse particles. We then used Eq. (3.1) along with Eq. (3.11) to calculate the IA. 

Good agreement between the two predictions is evident from Fig. 3.4d.  

The above-mentioned equivalent diameter can actually be modified and used for bi-dispersed 

coatings with particles having random spatial distributions (see Fig. 3.5).  

 

Fig. 3.5 An example coating with randomly distributed bi-dispersed particles shown with its Voronoi 

diagram. Note the particles surrounding particle i in the center of the largest Voronoi cells. Particles 

arranged in an ordered configuration present a special case for the analysis presented in this in this article.  
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Each cell in a Voronoi diagram marks the points whose distance to the particle in the center of the 

cell is less than or equal to their distance to the other particles in the domain. For a cell-hosting 

particle 𝑖 surrounded by 𝑘 different particles, one can write 

𝑑𝑒𝑞 =
2𝜋𝑑𝑖+∑ 𝛽𝑗𝑖𝑑𝑗 

𝑘
𝑗=1

𝑘𝜋
                                                                                                                (3.12) 

where 𝛽𝑗𝑖 is the angle at which particle 𝑗 sees particle 𝑖. For particles with ordered arrangements, 

Eq. (3.12) reduces to Eq. 3.11 as shown in the lower figures in Fig. 3.5. CHP and the wetted area 

of a submerged bi-dispersed coating can now be predicted via simple analytical formulations using 

the equivalent diameter expressions given in Eq. (3.12). This analytical calculation method is 

hereon referred to as Equivalent Diameter (ED) method and its predictions are compared with 

those of SE simulations later in Sec. 3.3 for validation. 

3.2.4 Pressure Regimes 

As mentioned earlier, we consider two different pressure regimes for the performance of 

submerged bi-dispersed granular coatings. Figure 3.6a shows the AWI in Regime I. Increasing the 

hydrostatic pressure forces the AWI to penetrate into the pore space between the particles. At some 

hydrostatic pressure, the AWI comes into contact with the smaller particles and the surface starts 

to transition to Regime II, as can be seen in Fig. 3.6b. At the hydrostatic pressure where the 

transition from Regime I (Fig.3. 6b) to Regime II (Fig. 36.6c) takes place, one can assume that 

𝑃𝑐𝑎𝑝 + 𝑃𝑏𝑢𝑏 is a constant value as 𝑃∞ + 𝑃ℎ is a constant (see Eq. (3.3)). For the new interface 𝐴′𝐵′ 

(with the coordinates of the 𝐴′: |
𝑥𝐴′

𝑧𝐴′
 and 𝐵′: |

𝑥𝐵′

𝑧𝐵′
), we can use a similar method as discussed in Fig. 

3.3a to calculate 𝑥𝐴′ , 𝑥𝐵′ , 𝑧𝐴′ and 𝑧𝐵′.  

In addition, considering an isentropic compression for the volumes 𝑉𝐴′𝐵′ and 𝑉𝐴𝐵, we obtain  
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𝑃𝑏𝑢𝑏,𝐴′𝐵′ = 𝑃𝑏𝑢𝑏,𝐴𝐵(
𝑉𝐴𝐵

𝑉𝐴′𝐵′
)𝛾                                                                                                                                   (3.14) 

where the subscripts 𝐴𝐵 and  𝐴′𝐵′ denote to the quantities associated with interfaces 𝐴𝐵 and 𝐴′𝐵′. 

Finally  

∆𝑃𝐴′𝐵′ = 𝑃∞ + 𝑃ℎ−𝑃𝑏𝑢𝑏,𝐴′𝐵′                                                                                                                                (3.15) 

 

 

Fig. 3.6 A schematic presentation of the AWI in Regime I is shown in (a). Transition from Regime I to 

Regime II takes place when the AWI comes into contact with smaller particles at a higher pressure (b). A 

new stable AWI forms in Regime II (c). Further increase in the hydrostatic pressure causes the AWI to 

penetrate deeper into the coating as shown in (d). 
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Examining Eqs. (3.13) through (3.15), one can show that ∆𝑃𝐴′𝐵′ < ∆𝑃𝐴𝐵 and therefore, 

𝑃𝑏𝑢𝑏,𝐴′𝐵′ > 𝑃𝑏𝑢𝑏,𝐴𝐵, i.e. the bubble pressure increases at the moment when the AWI comes into 

contact with the smaller particles. Both our analytical and numerical calculations indicate that the 

change in the IA at the moment of transition from Regime I to Regime II is relatively small, i.e. 

𝛼𝐼 ≅ 𝛼𝐼𝐼 (points 𝐵 and 𝐵′in Fig 3.6c are very close to one another). Obviously, further increase in 

the hydrostatic pressure causes the AWI to penetrate deeper into the coating as shown in Fig. 3.6d. 

The surface will transition to the fully wetted Wenzel state if the AWI touches substrate or become 

unstable under excessive pressures. Note that transition from Regime I to Regime II is irreversible, 

i.e. decreasing the hydrostatic pressure does not necessarily result in the formation of an AWI that 

is in contact with the larger particles only. 

 

3.3 Results and Discussion 

In this section, we study how granular coatings perform under different hydrostatic pressures. For 

the sake of continuity, we start this section with a study on mono-dispersed coatings with ordered 

particles. Figure 3.7 shows the variation of CCP with SVF for different mono-dispersed coatings 

with particle diameters of 𝑑1 = 1 μm and 𝑑2 = 100 μm and YLCAs of 𝜃 = 120oand 80o(all 

parameters are chosen arbitrarily for demonstration purposes). Figure 3.7 shows that for a constant 

diameter and a constant YLCA, increasing the SVF increases the capillary forces leading to higher 

CCPs. Note also that from Eq. (3.2), for constant YLCAs and particle diameter, the maximum 

capillary pressure depends only on the coating’s SVF and increases as SVF increases. On the other 

hand, for a specific SVF and particle diameter, the critical pressure decreases with decreasing 

YLCA.  
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Fig. 3.7 Critical capillary pressure predictions obtained from FB and SE calculations for mono-dispersed 

coatings comprised of particles with 𝑑1 = 100 µm and 𝑑2 = 1 µm. 

 

This is because by decreasing the YLCA, the capillary forces decrease and the AWI penetrates 

deeper into the pores of the coating. Finally, for a constant SVF and YLCA, critical pressure is 

higher for smaller diameters as capillary forces become stronger when the particles are smaller. 

Figure 3.7 also shows perfect agreement between the results of our FB analytical calculations and 

those of SE simulations, verifying the accuracy of our calculations. As mentioned in Chapter 2, 

the small discrepancy between the analytical and SE results at high SVFs is because the variation 

of the IA along the perimeter of the particles is neglected in our analytical formulations.  

3.3.1 Bi-Dispersed and Poly-Dispersed Coatings with Ordered Particle Distributions 

As discussed before, the AWI over a bi-dispersed coating may only be in contact with the large 

particles if the hydrostatic pressure is low (Regime I). With increasing hydrostatic pressure, 

however, water starts penetrating into the pore space between the particles until it comes into 

contact with the smaller particles (Regime II) or touches the hydrophilic bottom surface. In fact, 

when the coarse-to-fine particle diameter ratio 𝜂 is high, the AWI may fail before transitioning to 
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Regime II. Therefore, one can determine a maximum coarse-to-fine particle diameter ratio 𝜂𝑚𝑎𝑥 

below which the coating experiences Regime II before transitioning to the fully-wetted state.  

Consider a 3-D AWI over a bi-dispersed coating with the coarse and fine particles having 

diameters of 𝑑1 and 𝑑2, respectively (see Fig. 3.8a). Figure 3.8a shows the interface over the large 

particles with 𝑅1
∗= 

𝜎

∆𝑃
 being the radius of curvature of the AWI on the symmetry boundary of the 

unit cell (assume for a moment that the fine particles did not exist). Therefore, using the 

information given in the previous sections, one can obtain the distance between the AWI and the 

substrate at the CCP, Δ𝑃𝑐𝑟, calculated for a mono-dispersed coating made of the coarse particles 

(i.e., 𝑧𝑚𝑖𝑛
𝑐𝑟 = 𝑧𝑚𝑖𝑛|∆𝑃𝑚=∆𝑃𝑐𝑟).  

For a bi-dispersed coating to experience Regime II before failure, the minimum distance between 

the AWI and substrate should be smaller than the diameter of the fine particles, i.e.  𝑧𝑚𝑖𝑛|∆𝑃=∆𝑃𝑐𝑟 <

𝑑2. In other words, if  𝜂 =
𝑑1

𝑑2
> 𝜂𝑚𝑎𝑥 = 

𝑑1

𝑧𝑚𝑖𝑛
𝑐𝑟 , then the smaller particles cannot contribute to the 

stability of the AWI under pressure, as the interface fails before reaching them. However, note that 

depending on whether the smaller particle happens to be on the boundary of the cell or in the 

middle of it, different 𝑧𝑚𝑖𝑛 values should be considered in the analysis, i.e., 𝑧1 or 𝑧2 (minimum 

AWI height at the boundary or in the center of the cell, respectively). Here for simplicity we define 

𝜂𝑚𝑎𝑥 assuming that the smaller particle is at the cell boundary. 

𝜂𝑚𝑎𝑥 =
𝑑1

𝑧1
𝑐𝑟              (3.16) 

From Fig. 3.8a, we can obtain 𝑏1 = 𝑅1
∗ − √𝑅1

∗2 − 𝑏2
2 and finally we can write 
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𝑧1 =
𝑑1

2
−

𝑑1

2
𝑠𝑖𝑛𝛼 − (𝑅1

∗ − √𝑅1
∗2 − (

𝐿𝑏

2
− 𝑅1

∗𝑠𝑖𝑛𝛼)2)                                                                                  (3.17) 

Figure 3.8b shows 𝜂𝑚𝑎𝑥 versus SVF for bi-dispersed coatings with different YLCAs. As can be 

seen, 𝜂𝑚𝑎𝑥 decreases with increasing SVF. Based on the above discussion, we chose 𝜂=1.75 and 

2.5 with a contact angle of 120o for our simulations.  

 

Fig. 3.8 The minimum points for an AWI are shown with 𝑧1 and 𝑧2 at the cell boundary and cell center, 

respectively in (a). Maximum coarse-to-fine particle diameter ratio versus SVF for mono-dispersed coatings 

with different YLCAs is shown in (b).  
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The critical IA on coarse particles in Regime I (i.e., when the AWI is in contact with coarse 

particles only) is always greater than that in Regime II (i.e., when the AWI is in contact with both 

particle types). Therefore, if a bi-dispersed coating is expected to fail in Regime I due to AWI 

going beyond the critical IA, it will also fail in Regime II. In other words, presence of the fine 

particles cannot improve the stability of such an AWI.   

Figure 3.9a shows a comparison between the CCP values obtained from SE simulations and those 

from our ED method. As can be seen in this figure, CCP increases with increasing SVF. As 

expected, the critical pressure values associated with bi-dispersed particles are bounded by their 

corresponding limiting cases of mono-dispersed coatings made of coarse or fine particles. It can 

also be seen that predictions of our simple analytical formulation are in good agreement with the 

results of the more rigorous calculations of SE code. To further examine the accuracy of our 

equivalent particle diameter definition for predicting the CCP of a bi-dispersed coating, we 

repeated the results of Fig. 3.9a for when the coarse-to-fine particle diameter ratio is 2.5. Good 

agreement can again be observed between the SE results and those of our ED method. 

Figure 3.9c shows the CHP versus SVF for bi-dispersed coatings with different number fractions. 

Good agreement between our equivalent diameter formulations and the SE results can again be 

observed in this figure. It can be seen that CHP first decreases with increasing SVF, and then 

increases. This behavior is due to the interplay between the capillary forces and the forces 

generated by the compressed air bubble. To better understand this behavior, one should pay close 

attention to how the capillary forces and air resistance vary with SVF. By increasing the SVF, the 

capillary pressure plays a greater role in balancing the hydrostatic pressure as the ratio of the three-

phase contact line to the area of the AWI increases.  
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Fig. 3.9 CCP values obtained from FB and SE calculations for bi-dispersed coatings having a coarse 

particle diameter of 𝑑1 = µm and an YLCA of 𝜃 = 120o are given in (a) and (b) for with 𝜂 =1.75 and 

𝜂 =2.5, respectively.  CHPs for coatings of figure (a) are shown in (c). 
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The compression forces, on the other hand, are proportional to the compression ratio of the 

entrapped air 𝐶 =
𝑉∞

𝑉
, which is a function of IA ratio 

𝛼∞

𝛼𝑐𝑟 
. As explained before, the critical IA 

decreases as SVF increases, causing the compression ratio to decrease when SVF increases. 

Therefore, increasing SVF decreases the resistance of the entrapped air against the hydrostatic 

pressure but increases the capillary force. The outcome, therefore, varies depending on the SVF 

and size of the particles.  

We also checked the validity of our equivalent particle diameter definition in conditions where it 

was expected to be least accurate according to Fig. 3.8b and Fig. 3.5, i.e., coatings with 𝜀𝑚,1 = 0.1 

and 𝜂 = 3.3, or coatings with  𝜀𝑚,1 = 0.5 and 𝜂 = 2.85. Table 1 compares the results of our 

calculations with those of SE simulations.  

Figures 3.10a–3.10c show the wetted area 𝐴𝑤 as a function of hydrostatic pressure for three bi-

dispersed coatings with 𝜀𝑏 = 0.2, 𝑑1 = 1 μm, and 𝜂 = 1.75 but different 𝑛1 values of 0.75, 0.5, 

and 0.25, respectively. Note that the wetted area for mono-dispersed coatings comprised of coarse-

only or fine-only particles are identical (the case of 𝑛1 = 0 and 𝑛1 = 1). This is because for mono-

dispersed coatings with constant SVFs, the AWI shape is independent of the particle diameter (35). 

As expected, wetted area increases with hydrostatic pressure. It is interesting to note in Figs. 3.10a–

3.10c that, at small hydrostatic pressures (e.g., 40 kPa), the wetted area for the coating with 𝑛1 =

0.25 is quite smaller than that of the two other coatings with 𝑛1 = 0.5  and 𝑛1 = 0.75. This trend, 

however, does not remain the same at higher hydrostatic pressures (e.g., 380 kPa) as shown with 

red dashed lines on the figures. To better understand this, one should pay close attention to the 

number of particles in contact with the AWI in each coating. For bi-dispersed coatings, the AWI 

is only in contact with the coarse particles when the hydrostatic pressure is low (Regime I), but it 
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penetrates into the coating and eventually makes contact with smaller particles as pressure 

increases (see the insets in Fig. 3.10c). In contrast, the AWI is always in contact with two and three 

coarse particles in the case of coatings with 𝑛1 = 0.5  and 𝑛1 = 0.75, respectively (see the insets 

in Fig. 3.10b and 3.10a). Therefore, one can expect a lower wetted area (and perhaps a lesser skin 

friction) from a bi-dispersed coating with 𝑛1 = 0.25 at low hydrostatic pressures.  

 

Fig. 3.10 Wetted area versus hydrostatic pressure obtained from ED and SE calculations for bi-dispersed 

coatings having 𝜀𝑏=0.2 and 𝜂 =1.57 are shown in (a) for 𝑛1 = 0.75, in (b) for 𝑛1 = 0.50, and in (c) for 

𝑛1 = 0.25. Dimensionless slip length is presented as a function of hydrostatic pressure for bi-dispersed 

coatings having SVF of 0.2 and 𝜂 =1.57 in (d). 
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At higher pressures, the wetted areas for coating with different population of coarse particles are 

comparable to one another. It is also interesting to report that an increase in the wetted area is 

observed when the AWI comes into contact with the fine particles, at an almost constant 

hydrostatic pressure (see the insets in Fig. 3.10a–3.10c). This happens once for coatings with 𝑛1 =

0.5 and 𝑛1 = 0.75 but two times for the coating with 𝑛1 = 0.25. As can be seen in Figs. 3.10a–

3.10c, our analytical formulations can successfully predict a coating’s wetted area in Regime II. 

However, note that our equivalent diameter equation was derived using constant center-to-center 

distance between the particles. In other words, the wetted area of a bi-dispersed coating is obtained 

using an equivalent mono-dispersed coating with the same center-to-center distance (not the same 

SVF).  

As mentioned earlier, one of the main attributes of SHP surfaces is their ability to reduce the water 

skin-friction drag. The reduction in the skin-friction drag is often characterized by the so-called 

slip length, the imaginary distance below the surface at which the water velocity extrapolates to 

zero (60). As discussed in Chapter 2, there are only a few explicit formulas that relate the slip 

length and wetted area to one another (see for instance (82–85) for internal flows over SHP 

surfaces comprised sharp-edged grooves in the stream-wise or transverse directions). The slip 

length for flow between two parallel plates over SHP monofilament woven screens is given as (1): 

𝑏 =
𝐿

3𝜋
𝑙𝑛 (

2(1+√1−𝐴𝑤)

𝜋 𝐴𝑤
)                                            (3.18)  

As discussed in Chapter 2, Eq. (3.18) assumes a planar structure for the surface (i.e., where 𝐴𝑤 

never exceeds 1), and so it is not very accurate for the coatings considered in this chapter. 

Nevertheless, in the absence of a better alternative, we use this expression here as a means of 

demonstrating the effects of hydrostatic pressure on slip length, but only for coatings with 𝐴𝑤 ≤
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1. Figure 3.10d shows the dimensionless slip length as a function of hydrostatic pressure for a bi-

dispersed coating with 𝜀𝑏 = 0.2. One can easily detect the changes in the slip length values 

corresponding to those shown in Figs. 3.10a–3.10c for wetted area. 

 

To study coatings comprised of poly-dispersed particles with ordered distribution, we study the 

case of having four different particle diameters in a unit cell. We propose a mono-dispersed 

equivalent diameter for coatings with poly-dispersed particles having ordered arrangements, 

𝑑𝑒𝑞 = ∑ 𝑛𝑖𝑑𝑖
4
𝑖=1                                                                                                                                                      (3.19) 

Figure 3.11a shows our critical pressure predictions obtained for a series of arbitrarily chosen 

granular coatings with different SVFs and YLCAs comprised of particles with diameters of 𝑑1 =

100 μm, 𝑑2 = 57 μm, 𝑑3 = 40 μm, and 𝑑4 = 31 μm.  

 

Fig. 3.11 CCP (a) and CHP (b) predictions from FB and SE calculations for poly-dispersed coatings with 

ordered particle arrangements having different SVFs and YLCAs. 
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It can be seen that, CCP increases with SVF and YLCA, as expected. The CHP, on the other hand, 

varies with SVF and YLCA very differently as shown in Fig. 3.11b (see Chapter 2 for more 

information). The predictions of SE simulations are also added to both Fig. 3.11a and 3.11b for 

comparison. Good agreement between the two calculation methods is evident. 

3.3.2 Bi-Dispersed and Poly-Dispersed Coatings with Random Particle Distributions  

In this section, we examine the effectiveness of our equivalent mono-dispersed particle diameter 

method in representing coatings having particles with random spatial distributions. For the clarity 

of the presentation, we start with coatings comprised of randomly distributed bi-dispersed particles 

and then move on to the more general case of poly-dispersed particles. In generating the virtual 

coatings with random particle distributions, we considered an  8𝑑1 × 8𝑑1 domain with periodic 

boundary condition and enforced a minimum distance of 𝑑1/16 between the particles to prevent 

them from touching one another (see Chapter 2 for more detailed information). These virtual 

coatings were generated using an in-house MATLAB program and exported to SE.  

It is important to note that we have assumed here that surfaces with bi-dispersed (or poly-

dispersed) particles will exhibit a single failure pressure that can be equated to that of an equivalent 

surface with mono-dispersed particles. This assumption is justified for when the surface on which 

the particle coating is deposited is hydrophilic. Therefore, if water comes in contact with the 

hydrophilic underlying surface, it will follow the surface and practically wets the entire coating. 

This is not necessarily the case with the underlying surface being hydrophobic. In the latter case, 

a bi-dispersed (poly-dispersed) coating will exhibit a poly-dispersed transition from Cassie to 

Wenzel state (i.e., AWI will collapse at lower pressures where the particles are farther apart and/or 

more wettable, and particles that are closer together and more hydrophobic will delay penetration).  
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As described in Chapter 2, for a submerged coating with randomly distributed particles, the failure 

takes place where the particles are locally farther away from one another (35). The CCP of such a 

coating can be calculated using our ED analytical method but with the help of a Voronoi diagram. 

We therefore refer to this method as VED method. As explained before, CCP was found to increase 

with SVF as more particles contribute to the capillary pressure of a coating at a higher SVF. On 

the contrary, the CCP appeared to decrease with increasing the particle diameter when the SVF 

was kept constant (see Fig. 2.7 and related discussion in chapter 2).  

We also observed that CCP decreases with increasing the coarse-to-fine particle diameter ratio 

𝜂 from 1.75 to 2.5 (we increased the coarse-to-fine particle diameter ratio while maintaining both 

the SVF and number fraction of coarse particles constant). Increasing 𝜂 increases the presence of 

coarse particles, and so it weakens the capillary pressure of the coating. For the same reason, CCP 

also decreases with increasing the number fraction of the coarse particles 𝑛1 (the results of these 

calculations are not shown for the sake of brevity). It is worth mentioning that the date generated 

here for coatings with fixed number fractions can be presented in terms of particle’s mass fraction, 

if needed for practical applications. 

The CCP values and the volume under the AWI were used in Eq. (3.3) and (3.4) to predict CHP. 

To do this analytically, one can calculate the volume under the AWI across the entire coating by 

knowing the CCP and applying that pressure to the mono-dispersed equivalent of the bi-dispersed 

coating at hand. This allows us to find a representative mono-dispersed IA for the system and 

thereby the volume under the AWI. It was found that CHP decreases with SVF increasing, due to 

the decrease in the compression forces (the changes in the capillary forces are comparatively 

negligible). Similarly, CHP decreases when 𝑛1 increases (see Fig. 3.9 for related information). The 
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results of our simple analytical method were found to be in good relative agreement with those of 

the numerical calculation of the SE code leading to an average error of less than 35% (the actual 

data are not shown for the sake of brevity). 

The effect of increasing the coarse-to-fine particle diameter on CHP is somewhat different than 

that on CCP. In fact, CHP increases with increasing coarse-to-fine particle diameter ratio. This is 

because the capillary pressure of the coating with 𝜂 = 2.5 is smaller than that of the coating with 

𝜂 = 1.75 and therefore at the critical point, the AWI penetrates deeper into the pores of the coating 

with 𝜂 = 2.5, and so generates a greater air compression (i.e., a higher CHP). We also predicted 

the wetted area and the slip length of these coatings under different hydrostatic pressures (see Figs. 

3.12a and 3.12b). As expected, the wetted area increases, and so the slip length decreases, with 

increasing the hydrostatic pressure. Interestingly, it can be seen that the wetted area decreases with 

increasing 𝜂. Figure 3.12c shows the AWI shape and position for coatings with different coarse-

to-fine particle diameter ratios but a constant coarse number fraction of 𝑛1=0.5 at a hydrostatic 

pressure of 𝑃ℎ = 80 kPa. For better comparison, we have also reported the changes of the volume 

of the entrapped air 
𝑉

𝑉∞
 in each case. For the same reason, the coating with 𝜂 = 2.5 can withstand 

a higher hydrostatic pressure (i.e., has a higher CHP). 

Finally, we consider a more general case in which both the YLCA and particle diameters change 

from one particle to another. We consider arbitrary coatings with four different particle diameters 

of 𝑑1 = 100 μm, 𝑑2 = 57 μm, 𝑑3 = 40 μm, and 𝑑4 = 31 μm with different YLCA of 𝜃1 =

120o, 𝜃2 = 100o, 𝜃3 = 80o and 𝜃4 = 60o.  
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Fig. 3.12 Wetted area (a) and dimensionless slip length (b) versus hydrostatic pressure obtained from VED 

and SE calculations for bi-dispersed coatings with random particle distributions having 𝜀𝑏=0.25, 𝑛1 = 0.5, 

𝑑1 = 100 μm or 175 µm, and 𝜂 = 1.75 or 2.5 in Regime II. AWI examples over these coatings are shown 

in (c) at a hydrostatic pressure of 𝑃ℎ = 80 kPa. 
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We use the equivalent particle diameter of Eq. (3.12) along with the general form of equivalent 

contact angle of chapter 2 (35):  

{
𝑑𝑒𝑞 =

2𝜋𝑑𝑖+∑ 𝛽𝑗𝑖𝑑𝑗 
𝑘
𝑗=1

𝑘𝜋
                      

cos𝜃𝑒𝑞 =
2𝜋𝑐𝑜𝑠𝜃𝑖+∑ 𝛽𝑗𝑖𝑐𝑜𝑠𝜃𝑗 

𝑘
𝑗=1

𝑘𝜋
   

                                                                                          (3.20) 

Figures 3.13a and 3.13b report CCP and CHP for these coatings obtained from our VED method 

and the SE simulations, respectively.  

Very good agreement between the SE simulations and our VED analytical calculations is evident 

in Fig. 3.13a and 3.13b. Figures 3.13c and 3.13d show the wetted area and the slip length of the 

above-mentioned coatings under different hydrostatic pressures for an SVF of 0.20, respectively. 

As expected, the wetted area increases with hydrostatic pressure, as the AWI penetrates further 

down into the pores between the particles. It can also be seen that wetted area decreases with 

increasing the YLCA. Figure 3.13d shows the slip length versus SVF. As expected, slip length 

decreases with increasing the hydrostatic pressure. 

Once again, note that we have assumed that the surface on which the particle coating is deposited 

is hydrophilic. Therefore, if water comes in contact with the hydrophilic underlying surface, it will 

follow the surface and practically wets the entire coating. This is not necessarily the case with 

hydrophobic underlying surfaces. 
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Fig. 3.13 Our CCP and CHP predictions are presented in (a) and (b) along with the SE results for poly-

dispersed coatings with randomly distributed particles, respectively. The coatings consist of particles with 

diameters and YLCAs of 𝑑1 = 100 μm, 𝜃1 = 120o, 𝑑2 = 57 μm, 𝜃2 = 100o, 𝑑3 = 40 μm, 𝜃3 =
80o, 𝑑4 = 31 μm, and 𝜃4 = 60o. Wetted area and dimensionless slip length are reported for poly-dispersed 

coatings with 𝜀𝑝 = 0.2 in (c) and (d), respectively.  
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3.4 Summary 

This section summarizes the methodology that we have developed for predicting the critical 

pressure and wetted area of poly-dispersed granular coatings with randomly distributed particles 

having different diameters of 𝑑𝑖, YLCAs of 𝜃𝑖, and number fractions of 𝑛𝑖 in a flowchart (see Fig. 

3.14). This flowchart shows how a mono-dispersed equivalent coating having 𝑑𝑒𝑞 and 𝜃𝑒𝑞 can 

virtually be produced and used to estimate the behavior of the original poly-dispersed coating.  

In order to calculate 𝑑𝑒𝑞 and 𝜃𝑒𝑞 for a poly-dispersed coating a Voronoi diagram should be 

generated. The Voronoi cell with the maximum area and its neighboring particles are then marked. 

The center-to-center distance between these 𝑘 neighboring particles, 𝐿𝑙𝑗, are then obtained from 

the Voronoi diagram. If at the given pressure the AWI comes into contact with all these k particles, 

by using Eq. 3.20 the Voronoi cell can be converted into a square unit cell with mono-dispersed 

particles with a diameter of 𝑑𝑒𝑞 and an YLCA of 𝜃𝑒𝑞. However, if only some of these k particles 

come into contact with the AWI, then the untouched particles should be removed from this 

calculation. 

For any two particles on the Voronoi cell with center-to-center distance 𝐿𝑙𝑗 the height of the AWI 

𝑧1 over particles with a diameter of 𝑑𝑙 can be found using Eq. 3.17. If  𝑧1 > 𝑑𝑗, it means that the 

AWI is not in touch with this particle, therefore, the particle with diameter 𝑑𝑗 should be removed 

from the calculation. After excluding all the dry particles (i.e., those not in contact with the AWI) 

from the calculations, 𝑑𝑒𝑞 and 𝜃𝑒𝑞 can be calculated using Eq. 3.20. This can then be used to find 

𝛼 (Eq. 3.2), wetted area (Eq. 3.5), volume under the AWI (Ref. (35)) and the critical hydrostatic 

pressure (Eq. 3.3). 
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Fig. 3.14 Flowchart for calculating critical pressure and wetted area for a coating comprised of poly-

dispersed randomly distributed particles of different diameters and YLCAs. 
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3.4 Conclusions 

This chapter builds on the foundation that was developed in the first part of this two-part 

publication, but also extends our previous formulations to become applicable to superhydrophobic 

coatings of arbitrary particle size and contact angle distributions. In this chapter, we first studied 

simulated coatings with mono-dispersed particles to conclude that critical capillary pressure 

increases with increasing SVF. We also showed that unlike capillary pressure, wetted area is 

independent of particle diameter.  We then investigated the effects of bi-dispersed and poly-

dispersed diameter distributions on coatings’ critical pressure and wetted area. We developed a 

mono-dispersed equivalent diameter definition that can be used to predict the critical pressure and 

wetted area of coatings with such particle size or contact angle distributions. The formulation 

developed here can be applied to coatings with random or ordered spatial particle distributions. At 

every step, we examined the accuracy of our analytical formulations with the more sophisticated 

and accurate numerical simulations conducted using the Surface Evolver code. 
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Chapter 4. Wetting Resistance of Superhydrophobic Fibrous Coatings with Layered Fibers  

 

4.1 Introduction 

superhydrophobicity ––a phenomenon which may arise from combining hydrophobicity with 

roughness (59–62) have been used to reduce the drag force on an object submerged in moving 

water (10,12,14,15,22). The reason for that is SHP surface can entrap the air in the surface-pores, 

which is in contact with water, thereby reducing the contact area between water and the solid 

surface. Depending on the microscale geometry of the surface (i.e., roughness) and the 

hydrostatic/hydrodynamic pressure field, the air–water interface (AWI) may significantly ingress 

into the pores of the surface. The AWI may stay intact or even become impaled by the peaks of 

the surface. When the AWI is impaled, even when there is still air in the pores, an SHP surface 

may no longer provide a reduced solid–water contact area (referred to here as the wetted area), and 

hence, offers no drag reduction (68–71). In fact, it is quite possible that such a surface increases 

the drag force in certain hydrodynamic conditions as discussed in previous chapters.  

Fabricating micro- or nano-roughness to generate SHP surfaces is a costly process, and applying 

them to geometries with arbitrary curvatures is very difficult. An alternative is to achieve the 

desired roughness by applying a hydrophobic material to the surface in the form of electrospun 

nanofibers (23,93–95) or apply a coating on the surface of a fibrous material (96–98). It has been 

shown that the conventional electrospinning process can be modified to produce coatings with 

some additional control over the orientation of the fibers and their spacing (e.g., (99–104).  
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It is worth mentioning that the methodology presented here can also be used in applications 

involving oil–water separation (105–109), water transport in fuel cells (110–113), waterproof 

barriers for underwater devices (114), and self-cleaning (e.g., (1,115)) among many others. 

In the remainder of this chapter, we will first establish the method we use to simulate the fiber and 

also define criteria for critical pressure (Section 4.2). We will then explain the results of our 

simulation for orthogonal fibrous coating, oriented fibrous coating and wire screen coating in 

Section 4.3. Finally, we state our conclusions in Section 4.4. 

 

4.2 Modeling Air-Water Interface on Fibrous Coating 

In this section we present a numerical simulation conducted via Surface Evolver (SE) code to find 

the 3D shape of air-water interface, slip length and critical pressure. The SE code is able to solve 

for the minimum-energy shape of an interface between two immiscible fluids. The general form 

of the energy equation being integrated in the code can be expressed as (3): 

𝐸 = 𝑝∭𝑑𝑣 + ∬𝜎𝑑𝐴𝐿𝐺 − ∑𝜎𝑐𝑜𝑠𝜃𝑖 ∬𝑑𝐴𝑖                      (4.1) 

where 𝑝 is pressure difference across the interface which is being integrated over volume element 

𝑑𝑉. 𝐴𝐿𝐺  represents the liquid-gas area. The summation refers to the energy contributed by the 

wetted area of each fiber associated with the interface. To ensure proper calculation of the fibers’ 

energy contribution, the integrand 𝑑𝐴𝑖 must be derived for each fiber and applied explicitly in the 

code.  

The reduction in the skin-friction drag is often described by slip length (22). After finding the 3D 

shape of the interface, solid-liquid area can be easily found and used to calculate the slip length as 
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a function of pressure. An expression for slip length over SHP monofilament woven screens is 

suggested in ref. (1) as: 

𝑏 =
𝐿𝑠

3𝜋
𝑙𝑛 (

2(1+√1−𝐴𝑤)

𝜋 𝐴𝑤
)             (4.2) 

where 𝐴𝑤 is dimensionless wetted area (ratio of curved solid-liquid area to the projected area). 

Note that Eq. 4.2 was originally developed for planar structures, i.e., 𝐴𝑤 never exceeds 1. 

Nonetheless, in the lack of a better alternative, we apply this formula as a means of studying the 

effects of pressure on slip length, but only as long as 𝐴𝑤 ≤ 1. 

At higher pressure air-water interface penetrates more into the pore between the fibers. At critical 

pressure the interface cannot tolerate the elevated the pressure and breaks through the fibers. This 

pressure is known as critical pressure. Analytically predicting critical pressure is only possible for 

a coating with fibers being highly oriented in a certain direction as will be discussed next.  

For two parallel fibers the capillary pressure can be derived from the balance of forces acting on 

the AWI between the fibers (116), 

𝑝 = −
2𝜎sin (𝜃+𝛼)

𝑙−𝑑sin 𝛼
                                    (4.3) 

where the center-to-center distance 𝑙 is related to the coating’s SVF𝜀, 

𝑙 =
𝜋𝑑

4𝜀
                                                            (4.4) 

The critical capillary pressure 𝑝𝑐𝑟 can then be obtained by differentiating Eq. 4.3 with respect to 

𝛼, setting it equal to zero. Thus, critical capillary pressure across a set of parallel fibers, expressed 

in terms of SVF and critical immersion angle 𝛼𝑐𝑟, can be written as (117,118) 
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𝑝𝑐𝑟 = −
2𝜀

𝑑
 
𝜎sin (𝜃+𝛼𝑐𝑟)

𝜋−4𝜀 sin 𝛼𝑐𝑟                    (4.5) 

It is worthy to note that as will be shown later our study indicates that an AWI that straddles across 

two or more layers of fibers most often does not reach such a mechanical breaking point before it 

deflects laterally so as to meet itself under the fibers (across the symmetry boundaries). At this 

point, the AWI would probably coalesce with itself and break away from the first layer of fibers, 

nullifying the SHP characteristics of the coating by submerging the first layer. In such conditions, 

the capillary pressure right before the AWI coalesces with itself is taken in this work as the critical 

pressure. Another alternative for critical pressure can also be defined when the distance between 

fibers are large if the air-water interface touches the substrate before reaching the critical pressure.  

4.3 Results and Discussion 

4.3.1 Coatings with Orthagonal Fiber Distributions 

While a fibrous coating generally consists of many layers, we only considered the first four layers 

of staggered fibers in our study. This is because, according to our preliminary calculations, for the 

given range of SVFs considered here, an AWI cannot penetrate into the coating more deeply than 

four layers before the surface transition to the Wenzel state. Our model represents a cell from a 

coating comprised of four orthogonally layered fibers. 𝑙 represents the center-to-center spacing 

between adjacent fibers in the same layer. The layers have a staggered pattern, in order to better 

characterize the spaces through which an AWI would penetrate into the coating. The domain has 

symmetry boundary conditions around the outer fibers. 

Figures 4.1a–4.1e show AWI examples obtained from our SE calculations for a coating with an 

SVF of 10% and a fiber diameter of 10 µm at different pressures. The red and blue fibers have a 
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Young–Laplace contact angle (YLCA) of 130° and 100°, respectively. The initial setup has the 

AWI in contact only with fibers on first layer. As pressure increases the AWI penetrates deeper 

into the pore space between the fibers and wets fibers of the lower layers.  As can be seen in Fig. 

4.4e, for a given pressure of 4.60 kPa, the AWI has deflected sufficiently to come into contact with 

the fourth fiber layer without breaking off from the first layer. Figure 4.4f shows the same AWI 

but from a view that better illustrates the failure condition.  

 

 

Fig. 4.1 Sample simulation domain after refining mesh density and solving for the minimum energy shape 

and wetted area calculated by SE at different capillary pressures (a–e). The AWI is at its critical pressure 

when 𝑝 = 4.6 kPa. This critical AWI is shown in (e) and (f) from two different viewpoints. Note that the 

AWI is approaching the symmetry boundary in (f). 

 

 

Figure 4.2a shows critical capillary pressure and wetted area values for coatings comprised 10-µm 

fibers and a YLCA of 120°. Note that Aw = 1 is the surface area of the substrate as if the coatings 

were not applied. As shown graphically in the insets of Fig. 4.2a, at low SVFs the AWI is in contact 

with four fiber-layers at the moment of failure (when the AWI swells laterally to cross the 
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symmetry boundary). At higher SVFs however, the failure occurs when the AWI is in contact with 

three fiber-layers only, and that is the reason why there is a slight change in the slope of the wetted 

in Fig. 4.2a for SVFs greater than about 10%. Note in this figure that, critical pressure rises in a 

relatively linear fashion as SVF increases. This linear rise is in spite of the number of layers in 

contact with the AWI. It can be seen that, while a less porous SHP coating has a higher critical 

pressure for a given fiber size and YLCA, this effect comes at the expense of increased wetted 

area, i.e., potentially more friction with water.  

 

Fig. 4.2 (a) Critical pressure and wetted area fraction as a function of SVF for fibers with equal spacing on 

all layers. Top inset: AWI is four layers deep before meeting symmetry boundary.  Bottom inset: AWI is 

only three layers deep before meeting symmetry boundary. (b) Dimensionless slip length as a function of 

SVF at the critical pressure for fibrous coatings with a fiber diameter of 10 μm and an YLCA of 120°.  
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Figure 4.2b shows the dimensionless slip length as a function of SVF for the same coatings. It can 

be seen slip length decreases with increasing the coating’s SVF. As expected, slip length is smaller 

for coatings with larger wetted area. Note that Eq. 4.2 is only valid for when 𝐴𝑤 < 1.  

We also examine the performance of orthogonally laid SHP fibrous coatings when alternating 

layers are comprised of fibers with different diameters. Figure 4.3 shows an AWI example in which 

fiber layers alternate in size for each layer. For such coatings, SVF must be defined over two layers 

(one fine fiber layer and one coarse). The ordered nature of such structures allows one to observe 

that the center-to-center spacing between the coarse and fine fibers 𝑙𝑐 and 𝑙𝑓 in a unit cell can be 

related to their corresponding number densities in the whole coating as to 
𝑙𝑓

𝑙𝑐
=

𝑛𝑐

𝑛𝑓
  . Where 𝑛𝑐 and 

𝑛𝑓 are respective number fractions for coarse and fine fibers (e.g., for 𝑛𝑐= 0.1, 10% of all fibers in 

an area of the coating are coarse fibers).  

 

Fig. 4.3 Sample domain for a coating with bimodal fiber diameter distribution. Structure has an SVF of 

10%, fine and coarse fiber diameters of 10 and 50 µm respectively, and a coarse fiber number fraction 𝑛𝑐 

of 0.4.Coating has an SVF of 10%, fine and coarse fiber diameters of 10 and 50 µm respectively, and a 

coarse fiber number fraction nc of 0.1.  
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Fig. 4.4 Meniscus configuration at critical pressure for various bimodal coatings varying in coarse fiber 

number fraction  𝑛𝑐 .  Coatings have an SVF of 10%, fine and coarse fiber diameters of 10 µm and 40 µm, 

and an YLCA of 120°. 

Figure 4.4a (fine fibers on top) and Fig. 4.4b (coarse fibers on top) show examples of the AWI 

over bimodal coatings with a coarse-to-fine fiber diameter ratio of 𝑅𝑐𝑓 = 4 and different coarse 

fiber number fractions at the moment of failure. It can be seen in Fig. 4.4a that the AWI is in 

contact with two layers of fibers when  𝑛𝑐 = 0.1 and 0.2, but comes into contact with the third and 

fourth layers for 𝑛𝑐 ≥ 0.3. For coatings with the coarse fibers on top (Fig. 4.4b), the AWI remains 

in contact with three or four layers unless  𝑛𝑐 is very close to one (greater than at least 𝑛𝑐 = 0.9, 

not shown). 

Figures 4.5a–4.5f show the critical pressure, wetted area, and slip length for bimodal coatings with 

different coarse fiber number fractions and coarse-to-fine fiber diameter ratios. Fine fiber diameter, 

0.2cn 

0.1cn 

0.3cn 

0.4cn 

a) b)Fine fibers on top Coarse fibers on top
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SVF, and YLCA are all held at 10 µm, 10%, and 120°, respectively. Figs. 4.5a, 4.5b, and 4.5c 

present the results for when the first layer is made of fine fibers, and Figs. 4.5d, 4.5e, and 4.5f 

show the results with the coarse fibers on top. For better comparison between the critical pressure 

of bimodal and unimodal coatings, the critical pressure of the unimodal coating comprised of fibers 

with a diameter of 10 µm and the same YLCA and SVF (i.e., 𝑝𝑐𝑟 ≅ 4.8 kPa) is shown in Fig. 4.5a 

and 4.5d with red dashed line. It can be seen that adding larger fibers (either by increasing 𝑅𝑐𝑓 

or 𝑛𝑐) to a coating comprised of finer fibers results in a decrease in the coatings resistance against 

elevated pressures. This conclusion is in agreement with our previous observation reported in 

(116). Figures 4.5b and 4.5e show the corresponding wetted area Aw for each of the coatings 

shown in Fig. 4.5a and 4.5d (note that the area of the coating’s unit cell (i.e., 𝑙𝑓𝑙𝑐) increases 

with 𝑛𝑐). Recall that for a unimodal coating with an SVF of 10%, fiber diameter of 10 µm, and an 

YLCA of 120°, a critical wetted area fraction of 𝐴𝑤 ≅ 0.8was reported. This value is shown in 

Figs. 4.5b and 4.5e for comparison. It can be seen that, adding larger fibers (either by increasing 

𝑅𝑐𝑓or 𝑛𝑐) to a coating comprised of finer fibers affects the coatings’ wetted area fraction in a 

somewhat more complicated manner.  
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Fig. 4.5 Critical pressure, wetted area fraction, and slip length as a function of coarse fiber number fraction 

nc for bimodal fibrous coatings varying in fiber size ratio Rcf from 2 to 5 are shown in (a),(b), and (c) for 

when fine fibers are on the top layer, and (d), (e), and (f) for when coarse fibers are on the top layer, 

respectively. Other properties shared by all coatings are shown in the figures. 
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For coatings with the top layer comprised of finer fibers, the critical wetted area is significantly 

smaller at low coarse fiber number fractions but it increases with  𝑛𝑐 as can be seen in Fig. 4.5b. 

For coatings with the coarse fibers on top, the critical wetted area fraction generally decreases 

with 𝑛𝑐. Exceptions to this trend are coatings for which the AWI transitions from wetting three 

layers to wetting four layers when the coarse number fraction is increases (see the AWIs shown in 

Fig. 4.5b and the inset images in Fig. 4.5e). From these results, one can generally conclude that 

adding larger fibers to a unimodal coating comprised of small fibers can adversely affect the 

coating’s critical pressure but improve its critical wetted area fraction if the coarse fibers are not 

added to the first layer. It is worth mentioning that while ℎ𝑐𝑟decreases with increasing𝑅𝑐𝑓 Aw is 

fixed across all applicable scales. Thus, 𝑝𝑐𝑟 can be raised by using smaller fibers, but Aw will be 

preserved. The slip length results shown in Fig. 4.5c and Fig. 4.5f correspond to coatings with their 

first layer on top made of fine and coarse fibers, respectively. It can be seen that slip length is 

bigger at lower  𝑛𝑐values for coatings with the top layer comprised of the finer fibers. On the other 

hand, for coatings with the coarse fibers on top, dimensionless slip length generally increases 

with 𝑛𝑐. As explained before, exceptions to these trends are when the AWI transitions from wetting 

three layers to wetting four layers, as the coarse number fraction is increased. 
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4.3.2 Coatings with Oriented Fiber Distributions 

A fibrous coating generally consists of several layers of fibers on top of each other as discussed 

before. These fibers generally have random in-plane orientation but they can be made with 

orthogonal, or slanted orientation respect to another. In this subsection we have a brief look at 

critical pressure of the coating comprised of fibers with orientation angle 𝛾. It is worthy to note 

that 𝛾 = 0° will provide the orthogonal coating discussed in previous section.  

To model the air-water interface on orientated fibers symmetry boundary condition cannot be used 

anymore. Therefore, we used periodic boundary condition for these simulation. Here again our 

simulation results show that the air-water interface fails by touching the neighbouring cell and 

only four layers of fibers (or less) gets wet at the time of failure. 

Figure 4.6 shows the 3D shape of interface achieved by SE simulation for different orientation 

angle at critical pressure. The air-water interface is shown with green color. Color white marks the 

interface touches the neighbouring cell.  

 

Fig. 4.6 Four layers of fibers with orientation angle of (a) = 15° , (b) 𝛾 = 45° and (c) 𝛾 = 75°. 

x

y
z
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It can be seeb that as 𝛾 increses the white area (weak part of the interface) moves toward the 

corner of the cell.  Our simulation shows that as 𝛾 increases critical pressure decreases. The 

reason for that is as 𝛾 increases the diagonal distances between the fibers, therefore fibers can 

provide less support for the interface. 

 

4.3.3 Wire Screen Coating 

Woven screens enhanced with functional surface treatments/coatings have recently be considered 

as a cost-effective alternative for producing a SHP porous surface in many applications including 

but not limited to drag reduction, oil–water separation, self-cleaning and anti-icing, and device 

manufacturing among many others. Similar approach for obtaining an accurate estimate of a 

screen’s critical pressure and wetted area can be used to calculate the drag reduction benefit (slip 

length) of such surfaces. 

Figures 4.7a–4.7d show the simulated AWI over a wire screen under different hydrostatic 

pressures. The wires have an YLCA of 123  , a spacing of 458 μmws  , and a diameter of 

254 μmwd  . At low pressures, the meniscus merely touches the surface of the wires, but it 

penetrates deeper into the spacing between the wires as the pressure increases. The sagging 

pressure sagP is defined here as the pressure at which the AWI touches the flat substrate underneath 

the wire screen (Fig. 4.7c). The breakthrough pressure 
brkP  on the other hand, is defined here as 

the highest pressure that the AWI can tolerate before the AWI break up allowing water to flow 

through the screens (the maximum capillary pressure) as shown in Fig. 4.7d.  

Note that the dimensions presented here is very different from previous chapters because we used 

the dimensions which are commercially available. 
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Fig. 4.7: Sample simulation results showing the AWI under different hydrostatic pressures in (a) and (b). 

Failure due to AWI sagging is shown in (c). Failure due to AWI breakup at the breakthrough pressure is 

shown in (d). Here 254 μmwd   and 458 μmws  .  

 

 
Fig. 4.8: Effects of hydrostatic pressure on wetted area.  
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Figure 4.8 shows the effects of pressure on wetted area of wire screens with different geometries. 

The data are generated for constant wire diameter spacing. As expected, wetted area increases with 

pressure. More interestingly, at a constant pressure (say, 150 PaP  ), wetted area fraction is found 

to be larger for screens with smaller wire diameters. 

 

4.4 Conclusions 

Our results show that, for a constant fiber diameter as SVF increases both critical pressure and 

wetted area increase. We also showed that bimodality in fiber size has positive impact on the 

performance of orthogonal coatings. We also showed that changing the orientation of the fibers 

from orthogonal to other angles weakens the coating. We also showed that the method presented 

in this chapter can be used to predict the critical pressure and wetted area of a wire screens. We 

showed that for a constant wire spacing wetted area is higher for smaller wire diameter. 
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Chapter 5. On the Apparent Contact Angle and Detachment Force of Droplets on Rough 

Fibers 

 

5.1 Introduction 

Understanding the interactions between a droplet and a fiber is of great importance to many 

applications. These applications include, but are not limited to, droplet filtration/separation, spray 

coating, electronic cooling, health and safety, fog harvesting, protective clothing, and medicine 

(46–48,50,119,120) . A simple manifestation of this effect in nature is the dew formation on spider 

webs or cactus spines, where life relies on the interactions between a droplet and a fiber in arid 

climate. Droplet–fiber interactions have been studied in many pioneering studies, and it has been 

shown that the apparent contact angle (ACA) 𝜃𝑎𝑝𝑝 of a droplet with a fiber can be quite different 

from the Young–Laplace Contact Angle (YLCA) obtained for a small droplet of the same liquid 

deposited on a flat surface made from the same material (46–48,50,119,120). Depending on fiber 

diameter, fiber surface energy, droplet volume, and droplet surface tension, two different 

conformations have been observed for a droplet deposited on a fiber. The first conformation, the 

barrel shape, tends to occur for larger droplets (relative to fiber), or for when the YLCA is 

relatively small. The second conformation, the clamshell, is mostly observed with small droplets, 

or when the YLCA is relatively high. In the former conformation, the droplet wets the fiber 

symmetrically while in the latter, the fiber is wetted on one side only. There are also droplet–fiber 

systems where both of these conformations can be observed (47,49–51,120–123). Roughness has 
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been shown to affect the wettability of a surface. Wenzel proposed a relationship between YLCA 

𝜃𝑌𝐿 and a droplet’s ACA of on a rough flat surface as cos 𝜃𝑎𝑝𝑝 = 𝑟 𝑐𝑜𝑠𝜃𝑌𝐿 where 𝑟 is the ratio of 

the actual to the projected area of the rough surface (32). However, due to a variety of factors, the 

measured contact angles may significantly differ from the predictions of this simple relationship, 

and in fact, predicting a droplet ACA on a rough surface has remained an active area of research 

for the past decades (see e.g.,  (59,124–129)). The knowledge gap is even wider when it comes to 

droplet contact angle on rough fibers (see e.g., (58,119,130–132)), and this has been the motivation 

for undertaking the work presented here.  

The remainder of this chapter is structured as follows. First, we introduce our rough fiber equation 

and discuss the numerical modeling approach used to simulate the 3-D shape of a droplet on such 

a fiber (Sec. 5.2). We then present a validation study where we compare the predictions of our 

numerical simulations with the experiment for a few simple configurations in Sec. 5.3. Our 

investigations of the effects of surface roughness, fiber diameter, and droplet volume on the shape 

and ACAs of a droplet deposited on a rough fiber are reported in Sec. 5.4.  In this section, we also 

study the transverse forces required to detach a droplet from a rough fiber for different droplet–

fiber configurations. Finally, the conclusions drawn from the work are given in Sec. 5.5. 

5.2 Numerical Simulation 

The surface energy minimization method implemented in the Surface Evolver (SE) finite element 

code is used to simulate the 3-D shape of a droplet deposited on a rough fiber. SE has been shown 

to be accurate in predicting the air–water interface stability (see e.g., (35,36,117)). In this section, 

we first present the equations for producing a fiber having an arbitrary 3-D roughness, and then 

derive an equation for the energy of a droplet deposited on such a fiber. Although real roughness 
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is in random shape and arrangement it is impossible to draw universal conclusion from random 

roughness. Therefore, to investigate the effect of fiber roughness on droplet shape and detachment 

force we considered a sinusoidal roughness. Consider a fiber in the x-direction with a sinusoidal 

roughness in the axial and preferential directions, described as  

𝑅(𝑥, 𝛼) − 𝑟𝑓 [1 + 𝑎 sin (
2𝜋

𝜆𝑟𝑓
𝑥) sin(𝜔𝛼)] = 0                                                                                                   (5.1) 

where 𝑟𝑓 is the smooth fiber radius, 𝑅(𝑥, 𝛼) = √𝑦2 + 𝑧2 is the local radius of the rough fiber at 

any point, and 𝛼 = 𝐴𝑟𝑐𝑡𝑎𝑛
𝑧

𝑦
 is angular position. In this equation, 𝑎 is roughness amplitude, 𝜆 is 

roughness wavelength and 𝜔 =
2𝜋

𝜆
 is the angular frequency of the roughness peaks (see Fig. 5.1a). 

For the sake of convenience we define dimensionless roughness amplitude as =
𝑎

𝑟𝑓
 . SE is used in 

this study to obtain the equilibrium 3-D shape of a droplet deposited on a rough fiber by 

minimizing the total energy of the droplet–fiber system. For a single-droplet–single-fiber system, 

the total free energy 𝐸 can be written as  

𝐸 = 𝜎𝐿𝐺𝐴𝐿𝐺 − 𝜎𝐿𝐺 ∫ 𝑐𝑜𝑠𝜃𝑌𝐿𝑑𝐴
𝐴𝑆𝐿

+ ∫𝜌ℎ𝑔𝑑𝑉                                                                                                  (5.2) 

where 𝜎𝐿𝐺 is the surface tension of the liquid and 𝐴𝐿𝐺  and 𝐴𝑆𝐿  are liquid-gas area and solid-liquid 

area respectively. Here, ℎ represents the vectorial change in the droplet’s centroid position due to 

body forces (zero in the absence of external forces), 𝑔 stands for the body force per unit mass, 𝜌 

is density of the liquid and 𝑑𝐴 and 𝑑𝑉 are area and volume elements respectively .  

Our simulations start by placing a droplet with an arbitrary shape, but a fixed volume 𝑉, over the 

fiber and allowing it to evolve to reach an equilibrium shape and position while maintaining a 
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fixed YLCA at the three-phase contact line. To ensure that the results presented here are 

independent of the choice of the mesh-size considered for the simulations, we made sure that the 

mesh on the contact line is dense enough to capture the curvature of the fiber (i.e., 
𝜆

12
).  

 

 

Fig. 5.1 Side and cross-sectional views of our virtual rough fiber is shown in (a). An example droplet shape 

on a rough fiber with  𝑟𝑓 = 15 μm, 𝜃𝑌𝐿 = 30° and 𝜔 = 15 is shown in (b) along with overlaid images of 

droplet profiles corresponding to different local minimum energies (droplet volume is 𝑉 =0.84 nL). Droplet 
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surface energy is plotted versus apparent contact angle in (c) for droplets with volume of  𝑉 =0.84 nL 

(black symbols) and 𝑉 =3.37 nL (blue symbols).  

We also calculated the mean curvature of the droplet at each point on the droplet surface (same at 

all points) for a few cases, and used it in Laplace equation to obtain the droplet pressure. This 

pressure was then compared with that calculated by SE and very good agreement was observed in 

all cases. 

Figure 5.1b shows an example of our simulation results obtained for a fiber with a radius of  𝑟𝑓 =

15 μm, droplet volume of 𝑉 =0.84 nL, 𝜃𝑌𝐿 = 30°, and 𝜔 = 15 with the gravitational force per 

unit mass given as 𝑔𝑧 =9.8 N/kg. As was extensively discussed in the literature, there are infinite 

number of ACAs (each corresponding to a local minimum energy) that a droplet can exhibit 

depending on the position of its contact line on a surface (59,124–129). Figure 5.1b shows some 

of the possible shapes that a droplet can retain on a fiber. Figure 5.1c shows the energy of the 

droplet as a function of ACA for 𝑏 =0.1 and 𝑉 =0.84 nL and 3.37 nL. The ACA corresponding to 

the global minimum energy is then taken as the ACA (32° and 42° for 𝑉 =0.84 nL and 3.37 nL, 

respectively, for the case shown in Fig. 5.1). In the remainder of this chapter, we only report the 

ACA corresponding to the droplet’s global minimum energy for each droplet–fiber combination. 

In the absence of a universally accepted method for measuring droplet contact angle on a fiber, we 

used the so-called inflection point method to read the contact angles from droplet images (48). It 

is worthy to note that when the fiber is smooth for some volumes there are maximum two local 

minimum energy shape i.e., barrel shape and clamshell droplets.  
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5.3 Experiment  

A series of experiments has been conducted for validation purposes, and are reported throughout 

the chapter whenever possible (for smooth fibers only). The experiments were conducted using 

smooth Polypropylene (PP) fibers supplied by Minifibers Inc. Two different liquids were tested to 

obtain a wider range of droplet contact angles. Propylene Glycol (PG) was obtained from Fisher 

scientific, and Ultra-Low Sulfur Diesel (ULSD) was purchased locally. Surface tension, density, 

and contact angle with PP are 28 nN/m, 830 g/L and 10° for ULSD and 32.5 nN/m, 980 g/L, 

and 22° for PG, respectively. Note that the contact angle reported here is the contact angle 

measured on flat surface of similar material.  

The same experimental set up as Reference (133) were used for the experiment. The size of the 

droplets deposited on the fibers was controlled using the syringe approach (133,134). In this 

method, two additional fibers with the same material as the test fiber were used. The first fiber was 

partially inserted into the needle of the syringe while the second fiber was curled to form a loop 

and brought into contact with the tip of the needle. When the syringe plunger is pushed, a droplet 

with a known volume is formed and was transferred to the looped fiber. When the droplet is trapped 

inside the loop, it can then be easily transferred to the test fiber upon contact. While this method 

allows placing small droplets on a fiber fairly accurately, it is still possible to leave a small droplet 

at the needle’s tip or the auxiliary fibers. The droplets were imaged using an Olympus DP25 

camera (a 5-mega pixel digital color microscope camera). The droplets’ volume were estimated 

by using a micro-syringe in the experiments and also by weighing the droplet. Since none of these 

methods is accurate enough for very small droplets, we also used an image-based method for 

axisymmetric droplets. In this method, the digitized image of the droplet is used to produce a 

mathematical fit to the upper half of its profile. This mathematical function is then used to obtain 
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the droplet’s volume via a simple integration in the axisymmetric domain (135).  To make sure 

that the experiment was repeatable the experiment were done three times, however it was 

impossible to get the exact amount of volume each time, but the volumes were in close 

neighborhood of the volume represented here.  

5.4 Results and Discussion 

In this section, we first investigate the 3-D shape of a droplet deposited on a roughened fiber, and 

then, we study the forces required to detach the droplet from the fiber in the transverse direction. 

 

Fig. 5.2 One-on-one comparison between droplet shape and apparent contact angles on a smooth fiber with 

𝑟𝑓 = 15 μm obtained from experiment and numerical simulation for an ULSD droplet with 𝑉 =1.35 nL 

and 𝜃𝑌𝐿 ≃ 10° in (a), a PG droplet with 𝑉 =1.54 nL and 𝜃𝑌𝐿 = 22° in (b), and an ULSD droplet with 

𝑉 =0.215 μL and 𝜃𝑌𝐿 ≃ 10°in (c). 

 

5.4.1 Droplet Equilibrium Shape on a Rough Fiber 

Generally speaking, the possible droplet shapes on a fiber are the barrel (symmetric and 

asymmetric) and clamshell shapes. These configurations have been discussed in the form of phase 

diagrams in many previous studies for droplets on smooth fibers (see e.g., (49)). We start this 
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subsection by first presenting a comparison between experimental and computational data obtained 

for an ULSD or PG droplet shape on a supposedly smooth Polypropylene fiber in terms of its 

volume for the purpose of examining the accuracy of our numerical simulations. We then move 

on to produce a phase diagram for droplet shape on a rough fiber. 

Figure 5.2a shows ULSD droplets with volumes of 𝑉 =1.35 nL, deposited on a PP smooth fiber 

next to its computational counterpart. The YLCA for ULSD with a flat PP surface was measured 

to be 𝜃𝑌𝐿 = 10°. The ACAs measured from the imaged and simulated droplets are presented in 

the figure and are in good agreement with one another. Figure 5.2b compares a real and virtual PG 

clamshell droplets having a volume ratio of  𝑉 =1.54 nL on a PP fiber with a YLCA of 𝜃𝑌𝐿 = 22°. 

The experimental and numerical contact angle values were observed to be 40° and 44°, 

respectively. Similar comparison is given in Fig. 5.2c for an ULSD droplet with 𝑉 =0.215 μL. 

When the droplet volume is large, the gravity affects the shape of the droplet and apparent contact 

angles at the upper side of the droplet is different from the lower part. The upper and lower ACAs 

𝜃𝑎𝑝𝑝
𝑢  and 𝜃𝑎𝑝𝑝

𝑙  are measured from the experimental images to be 41° and 84°, respectively, which 

are close to their numerical counterparts of 𝜃𝑎𝑝𝑝
𝑢 = 43°and 𝜃𝑎𝑝𝑝

𝑙 = 83°. Note that similar 

agreement between contact angle values obtained from experiment and numerical simulation has 

been observed for many other droplet volumes, but not reported here for the sake of brevity.  

Increasing the volume of a droplet causes a symmetric barrel-shaped droplet to start becoming 

asymmetric with respect to the fiber axis due to gravitational effects. To quantify this here, we 

define an asymmetry factor 𝜀 to represent the ratio of the distance between the fiber axis and the 

upper side of the droplet ℎ1 and lower ℎ2 one i.e., 𝜀 = ℎ1/ℎ2. Figure 5.3a shows the asymmetry 

factor versus droplet volume for a ULSD droplet deposited on a PP smooth fiber (𝜃𝑌𝐿 ≈ 10°) with 
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a radius of 𝑟𝑓 = 15 μm. In this chapter, we arbitrarily choose an asymmetry factor of  𝜀 =0.85 as 

the lower limit for a barrel shaped droplet to be referred to as symmetric. As can be seen in this 

figure, experimental and numerical results are in good general agreement with one another. The 

slight mismatch between the experimental and numerical results seems to originate from 1) the 

assumption of 𝜃𝑌𝐿 ≈ 10° for ULSD with PP surface, and 2) the difficulties in measuring the 

volume of a clamshell droplet on a fiber accurately.  
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Fig. 5.3 Asymmetry factors from experiment and numerical simulation are shown versus droplet volume 

in (a) for ULSD droplets on a smooth PP fiber (𝜃𝑌𝐿 ≃ 10°, 𝑟𝑓 = 15 μm). Asymmetry factor is shown in (b) 

for droplets on rough fibers with a radius of 𝑟𝑓 = 15 μm and an YLCA of 𝜃𝑌𝐿 = 30° but three different 

roughness amplitudes of 𝑏 =0, 0.01, and 0.10. The inset figure shows the maximum droplet volume 

attainable on the same fibers but with different roughness amplitudes.  
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The sudden decrease (from 𝜀 ≈ 0.1 to 𝜀 = 0) in the data obtained from simulations at a droplet 

volume of about 𝑉 = 0.83 µL indicates that the asymmetric barrel-shaped droplet has transformed 

to a clamshell droplet. Figure 5.3b shows the effects of fiber roughness on droplet shape obtained 

for a fiber with a diameter of 𝑟𝑓 = 15 μm, a roughness frequency of 𝜔 = 15 and YLCA of 𝜃𝑌𝐿 =

30° but different fiber roughness amplitudes of 𝑏 = 0, 0.01 and 0.1. These results indicate that for 

rougher fibers, the transition from a symmetric barrel shape to an asymmetric barrel shape takes 

place at a larger droplet volume.  In other words, the barrel shape droplet tends to remain 

symmetric when the fiber is rougher. Interestingly, the largest droplet (maximum volume) that can 

remain attached to a fiber before falling under gravity increases when the fiber roughness increases 

(see the inset in Fig. 5.3b). These results are in consistent with Wenzel equation –roughness makes 

a philic surface more philic-.  

Figure 5.4 shows a phase diagram obtained numerically for possible configurations of a droplet on 

a rough fiber. Here, we considered a fiber with a radius of 𝑟𝑓 = 15μ𝑚, a YLCA of 𝜃𝑌𝐿 = 30°, and 

a roughness frequency of 𝜔 = 15. In this figure, the squares, triangles, and circles represent the 

conditions where the possible droplet configurations are symmetric barrel shape, coexistence of 

symmetric barrel shape and clamshell, and coexistence of asymmetric barrel and clamshell 

droplets, respectively. Symmetric barrel seems to be the dominant droplet shape when the droplet 

volume is small or when the fiber roughness amplitude is high. With increasing the droplet volume 

or decreasing the roughness amplitude (on a relative basis), clamshell shape also becomes a 

possibility. To quantify the degree of asymmetry in barrel-shaped droplets, the asymmetry factor 

𝜀 (not applicable to clamshell droplets) is obtained and is presented in Fig. 5.4. It can be seen that  
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Fig. 5.4 A phase diagram showing different possible conformations for a droplet on a rough fiber. Square, 

delta, and circle represent symmetric barrel drop, coexistence of symmetric barrel and clamshell droplets, 

and coexistence of asymmetric barrel and clamshell droplets, respectively. Here, 𝑟𝑓 = 15 μm, 𝜔 = 15 and 

𝜃𝑌𝐿 = 30°. The asymmetry factor is given next to some of the symbols for comparison. 

 

𝜀 increases with increasing fiber roughness 𝑏 indicating that a droplet can better retain its 

symmetric barrel shape on a fiber when the fiber is rough.  

5.4.2 Apparent Contact Angle of a droplet on a Rough Fiber 

In this subsection, In this subsection, we investigate numerically how droplet ACA on a fiber varies 

with fiber roughness. Figure 5.5a shows how varying 𝑏 from 0.01 to 0.1 affects a droplet’s ACA 

on a fiber. It can be seen that ACA decreases with increasing the amplitude of surface roughness 

for both droplet volumes considered, although the effect seems to be stronger for the smaller 

droplet. Note also that droplet ACA increases with increasing droplet volume. Droplets forming a 

clamshell shape are studied in Fig. 5.5b. It can be seen that ACA for a clamshell droplet decreases 

with increasing fiber roughness. Similar to the results given in Fig. 5.5a, the rate of decrease in 

ACA is lower for the larger droplet.  
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Fig. 5.5 Apparent contact angle is shown versus fiber roughness amplitude for examples of symmetric 

barrel shaped droplets in (a), clamshell droplets in (b), and asymmetric barrel shaped droplets in (c). For 

the clamshell droplets both upper (black hollow symbols) and lower (blue filled symbols) apparent contact 

angles are reported. Here, 𝑟𝑓 = 15μm, 𝜔 = 15,  and 𝜃𝑌𝐿 = 30°. This figure is intended for color 

reproduction on the Web and in print. 
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Figure 5.5b also shows that ACA increases with increasing volume of the droplet on a given fiber. 

Furthermore, comparing the results given in Fig. 5.5b to those in Fig. 5.5a, one can see that the 

ACA is higher for clamshell droplets. Figure 5.5c shows that two ACAs can be defined for 

asymmetric droplets as discussed before: an upper ACA 𝜃𝑎𝑝𝑝
𝑢  and a lower ACA 𝜃𝑎𝑝𝑝

𝑙  . This figure 

shows the upper and lower ACAs for two droplets with different volumes versus fiber roughness 

amplitude. It can be seen that 𝜃𝑎𝑝𝑝
𝑙  (blue symbols) slightly decreases with increasing fiber 

roughness, as increasing fiber roughness works against droplet shape becoming asymmetric. The 

effect of roughness on 𝜃𝑎𝑝𝑝
𝑢  however, seems to be negligible.  

To investigate how surface roughness frequency 𝜔 can affect a droplet’s ACA on a fiber, we 

considered a barrel shape droplet with a volume ratio of  𝑉 =3.37 nL in Fig. 5.6.  

 

Fig. 5.6 Effects of roughness frequency on apparent contact angle is shown using a barrel shaped 

droplet with a volume of 𝑉 =3.37 nL on a rough fiber with a radius of 𝑟𝑓 = 15μm and a YLCA of 

𝜃𝑌𝐿 = 30°.    
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This figure shows the most stable ACA (corresponding to droplets with the global minimum 

energy) as a function of fiber roughness frequency 𝜔. It can be seen that ACA decreases as 𝜔 

increases, but the change in ACA tends to become negligible at higher roughness frequencies. This 

observation is consistent with that reported in (59,124) for the effects of frequency of variation of 

a surface chemical heterogeneity (or droplet volume relative to heterogeneity length scale) on 

ACA. Although, Cassie equation is not correct for rough fiber, our simulation shows that at higher 

frequency the most stable shape of the droplet is independent of roughness frequency. Our 

numerical simulations indicate that roughness amplitude has generally a greater effect on a droplet 

ACA than roughness frequency for the range of the dimensions studied in this chapter. 

5.4.3 Detachment Force of a Droplet from a Rough Fiber 

Our study in this section is aimed at numerically predicting the force required to detach a droplet 

from a fiber in the direction normal to the fiber axis (see e.g., (54,133,136)). To do this, we applied 

an external body force on the droplet and obtained an equilibrium shape for the droplet under the 

imposed external force. We then increased the force incrementally with an arbitrary increment of 

∆𝑔𝑧 = 9.8 N/kg (one gravity) until no stable shape could be obtained for the droplet on the fiber. 

The largest body force under which a stable droplet shape could be obtained plus an increment of 

∆𝑔𝑧 was then taken as the force required to detach the droplet from the fiber. It should be noted 

that for the YLCA range considered in our study, it is quite possible for a detaching droplet to 

break up into a large portion leaving the fiber and a small portion remaining on the fiber (leaving 

a residue behind on the fiber). With the current simulation method, one cannot simulate the 

dynamics of droplet detachment (or break up) or the droplet volume after the detachment. The 
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simulated detachment forces in this work correspond to the maximum body forces for which an 

equilibrium shape was obtained for a droplet on a fiber plus an increment of ∆𝑔𝑧.  

Figure 5.7 shows the force required to detach a droplet from a fiber versus droplet volume for 

different surface roughness amplitudes. The inset in Fig. 5.7 shows a droplet with a volume of 

𝑉 =0.84 nL under different body forces. It can be seen that the droplet’s original symmetric barrel 

shape transforms first to an asymmetric profile and then to a clamshell configuration upon 

increasing the body force. The droplet eventually detaches from the fiber with an elongated 

clamshell shape. The simulation results given in Fig. 5.7 indicate that detachment force per unit 

mass increases with increasing fiber roughness. It can also be seen that detachment force per unit 

mass is less when the droplet is large, as expected. It is worthy to note that here at first no external 

force has been added to the droplet i.e., no gravity effect. 

 

Fig. 5.7 The force per unit mass required to detach droplets with different volumes from a rough fiber with 

a radius of 𝑟𝑓 = 15μm and a roughness frequency of 𝜔 = 15, but different roughness amplitudes ranging 

from 𝑏 = 0  to 𝑏 = 0.1. The inset shows the equilibrium shape under an increasing external body force 

perpendicular to the fiber axis for a droplet with a volume ratio of  
𝑉

𝑟𝑓
3 = 250 on a fiber with 𝑟𝑓 = 15μm 

and 𝑏 = 0.1. 
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5.5 Conclusions 

The wetting behavior of a droplet deposited on a rough fiber is investigated in this chapter. The 

results of our study is condensed into a phase diagram that, unlike those reported previously (49), 

includes the effects of fiber roughness on droplet configurations. Our results indicate that the 

occurrence of different droplet shape configurations on a fiber (symmetric barrel, clamshell, and 

asymmetric barrel) depends on fiber roughness, droplet volume, and fiber radius. In particular, it 

was shown that roughness increases the tendency of a droplet to remain in the symmetric barrel 

shape configuration as droplet volume is increased. Following the established knowledge for a 

droplet on a flat surface comprised of 2-D roughness or chemical heterogeneity (126), we 

quantified the effects of surface roughness on the most stable apparent contact angle 

(corresponding to droplet’s global minimum energy) attainable for a droplet deposited on a fiber 

with 3-D roughness. It was found that apparent contact angle decreases with fiber roughness, 

however the effect becomes less significant by increasing the droplet volume relative to roughness 

amplitude or frequency (126,129).  

We also calculated the force per unit mass required to detach a droplet from a rough fiber, and 

showed that this force increases with increasing fiber roughness or decreasing droplet volume. 
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Chapter 6. Novel Approach to Measure Droplet Detachment Force from Fibers 

 

6.1 Introduction 

Understanding the underlying physics of droplet movement inside fibrous media is a challenging 

problem of crucial importance to many engineering applications such as liquid–liquid separation, 

liquid–gas filtration, textiles, microfluidics, water transport in fuel cells, and even water 

harvesting, to name a few (105,137–142). A simple manifestation of the role of droplet–fiber 

interactions in nature is the dew formation on spider webs or cactus spines where life in arid 

climate relies on the capillarity of fibrous structures (130,143). Early studies on the interactions 

between a droplet and a single fiber have mostly been focused on predicting the equilibrium shape 

of a droplet (47–49,51,120,123,144). A few studies have also been dedicated to measuring the 

force needed to move a droplet along a fiber (e.g., (52,53,55,130,145–147)), detach it from the 

fiber in the perpendicular direction (e.g., (54,122,134,148), see also (121,149)), or detach it from 

two intersecting fibers (e.g., (133,150–152)). In most of these studies, droplet motion along or 

away from the fiber(s) has been caused by an air flow, surface wetting heterogeneity, or an external 

mechanical device like a modified cantilever tip of an atomic force microscope (AFM). The 

experimental method developed in the work presented here on the other hand circumvents many 

complications that arise from the use of air or an external device to detach or move a droplet. For 

instance, when air is used as the driving mechanism to detach a droplet from a fiber, the resulting 

force can become somewhat dependent on the aerodynamic field around the droplet–fiber 

assembly (e.g., laminar vs. turbulent, dependent on the flow orientation with respect to fibers) as 
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well as the geometry of the test chamber used for the experiment (53,54,133,134). Likewise, 

bringing an AFM cantilever tip (even treated with a phobic coating) into contact with the droplet, 

while being an ingenious approach, may change the original problem of a droplet interacting with 

a fiber to a new problem of a droplet interacting with a fiber and a cantilever tip (and its associated 

droplet shape changes) (55,148). The use of AFM microscope for such measurements also comes 

with additional limitations with regards to imaging the droplet during the experiment, and of course 

the cost of modifying the cantilever tip, and the inconvenience of working with a sophisticated 

instrument design for measuring atomic force rather than moving a droplet on a fiber. The method 

developed in this chapter is based on using ferrofluid droplets in a magnetic field. It is quite easy 

to implement and is very flexible with regards to varying the direction in which the force 

measurement is being conducted. Nevertheless, like most other experimental methods, the method 

proposed here has some limitations as will be discussed later in this chapter.  

The remainder of this chapter is structured as follows. First, our experimental setup and the method 

to measuring the force required to detach a droplet from intersecting fibers are discussed in Sec. 

6.2. Our numerical simulations conducted using the finite element Surface Evolver code are 

described in Sec. 6.3. Our experimental and computational results obtained for detachment of a 

droplet from a single fiber or from two intersecting fibers are presented in Sec. 6.4 and are 

discussed in relation to previously reported investigations. This is followed by our conclusions 

given in Sec. 6.5. 
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 Fig. 6.1 The experimental setup comprised of a 3-D printed fiber holder placed on a sensitive scale and a 

permanent magnet mounted on a digital height gauge. As can be seen in the SEM image, the fiber used in 

the experiment seems appears to be smooth. 

6.2 Experimental Setup 

Our experimental setup is shown in Fig. 6.1. Two pieces of Trilene XL smooth casting fishing line 

with a diameter of 215 μm were mounted on a holder designed to control the relative angle between 

the fibers. The holder was placed on a Mettler Toledo AG104 balance with accuracy of 0.1 mg. A 

New Era NE-300 syringe pump with an infusion rate ranging from 0.73 μL/hr to 1200 μL/hr was 

used to produce a droplet with the desired volume. The droplets were placed directly on the fiber 

crossover, and the balance was zeroed after depositing the droplet. The fluid used in the experiment 

was a water-based ferrofluid (EMG508, Ferrotech, USA) with about 1% Fe3O4 nanoparticles 

(volumetric) and a density of 𝜌=1.05g/cm3 at 25℃. Droplet evaporation was minimized by using 

the draft shields of the balance (no measureable change in droplet weight was observed in the 15-

20 seconds duration of each experiment). 

A Nickel-plated axially-magnetized cylindrical permanent magnet with a diameter of 4.7 mm and 

a length of 51 mm (purchased from K&J magnetics) was used to exert external force on the 

droplets. The magnet was installed on a Mitutoyo Electronic Height Gauges (series 570) and was 
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move toward or away from the droplet during the experiment. Attention was paid to move the 

magnet normal to the plane of the fibers and align its center with the fiber crossover. The droplets 

were imaged using a Nikon D3100 camera with an AF-S micro Nikkor 105 mm lens connected to 

a PC to save the images.  The magnet was incrementally moved toward the droplet until the droplet 

was detached from the fibers. As the magnet pulls the droplet upward, the scale shows negative 

values on the account of droplet experiencing an additional force (magnetic force) in the direction 

opposite to the gravity (droplet becomes lighter). At the moment of droplet detachment from the 

fibers, the scale reading reaches a peak value that is taken here as the force required to detach the 

droplet. To reduce the error associated with the experiment (either operator or instrument error), 

each experiment was repeated five times. 

6.3 Modeling Droplet Detachment  

In this section, we present the numerical method that was used to predict the shape of a droplet 

and also the force required to detach it from a fiber crossover. For the sake of simplicity, we only 

consider droplets which wrap around both fibers at their crossover (clam-shell configuration is not 

considered here). The fibers make an angle 𝛼𝑖 with the 𝑦-axis where 𝑖 = 1 and 2 refer to the first 

and second fibers, respectively. Assuming the fibers to be cylindrical, they can each be described 

mathematically as (see Fig. 6.2), 

 

Fig. 6.2 Schematic view of the fiber described in Eq. 6.1. 
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(𝑧 − ℎ𝑖)
2 + (−𝑥 sin 𝛼𝑖 + 𝑦 cos𝛼𝑖)

2 = 𝑟𝑖
2       (6.1) 

where 𝑟𝑖 is the radius of the 𝑖𝑡ℎ fiber. The Surface Evolver (SE) finite element code is used in this 

chapter to simulate the interactions of a droplet with the fibers (38). SE minimizes the total energy 

of a droplet-fiber system at its equilibrium state using the gradient decent method 

(39,47,51,120,153,154). For a droplet deposited on fibers, the total free energy 𝐸 can be written as  

𝐸 = 𝜎𝐿𝐺𝐴𝐿𝐺 − 𝜎𝐿𝐺 ∫ 𝑐𝑜𝑠𝜃𝑌𝐿𝑑𝐴
𝐴𝑆𝐿

+ ∫𝜌𝑔ℎ𝑑𝑉      (6.2) 

in which 𝐴, 𝜎, 𝜃𝑌𝐿 and 𝑉 are the area, surface tension, Young–Laplace contact angle (YLCA) and 

volume respectively. The subscript LG and SL denote liquid–gas and solid–liquid interaction, 

respectively. In this equation,  𝑔 represents external body force per unit mass, ℎ denotes the 

vectorial change in droplet’s centroid position due to the external body force, and 𝜌 is density of 

the liquid (35,36,117). Our simulations start by placing a barrel-shaped droplet with a fixed volume 

at the intersection point of two fibers and evolve to reach equilibrium shape and position. After 

reaching the equilibrium state (shape and position), an external force (in a desired direction) is 

exerted on the droplet and its magnitude is increased gradually until the droplet is about to detach 

from the fibers. 

6.4 Results and Discussion 

In this section, we study the force required to detach a droplet from a fiber or the intersection point 

of two crossing fibers. As the surface tension of the water-based ferrofluid used in our experiments 

was not reported by the manufacturer, we measured it to be 0.0649 ∓ 0.0011 N/m via the pendant 

droplet method using Drop Shape Analyzer DSA25E. Since the fiber used in our experiment was a 

commercial fishing line (treated with manufacturer’s surface treatment/spin-finish), an additional 
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experiment was needed to find the YLCA of the ferrofluid on the fiber. To do so, two ferrofluid 

droplets with different volumes of 𝑉 = 1.0 and 0.5 μL, was placed on a single fiber and their 

shapes were compared to those obtained from SE simulations conducted with different YLCAs 

but matching droplet volumes. It was found that an YLCA of 𝜃𝑌𝐿 = 50° results in a virtual droplet 

with a shape that matches the droplet shape from experiment. To do this, droplet images from 

simulations and experiments were imported to GetData Graph Digitizer software and their profiles 

were extracted and compared (see Fig. 6.3). 

 

 

 

 

 Fig. 6.3 Droplet profiles from simulation and experiment for two different volumes of 0.5 (inset figure) 

and 1 μL. 
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6.4.1 Out-of-Plane Detachment Force  

We start this section by studying the force needed to detach a droplet from a single fiber. Figure 

6.4a shows the shape of a 1.5 µL droplet on a fiber with a diameter of 215 µm and an YLCA of 

𝜃𝑌𝐿 = 50°obtained from numerical simulation and experiment. The body force here increases from 

a downward force of 9.8 N/kg (gravitational force) to an upward force of about 55 N/kg. It can 

be seen that droplet shape changes as force increases and relatively good agreement can be 

observed between the predictions of numerical simulation and experimental images. It is important 

to note that the droplet shape obtained from our SE simulations should not be expected to perfectly 

match the droplet shape observed in our experiment with a ferrofluid and a magnet. This is because 

the Fe3O4 nanoparticles inside a ferrofluid droplet tend to migrate toward the magnet creating a 

non-homogenous particle spatial distribution inside the droplet that tends to stretch the droplet 

profile to a somewhat conical shape (155–158). In contrast, the droplets in our SE simulations 

treated as a homogenous fluid exposed to a uniform body force like gravity. Despite the 

acknowledged differences between the nature of droplet shape deformation in the simulations and 

experiments, the predicted and measured detachment forces (the main objective of the current 

study) are in good relative agreement (see Fig. 6.4b). The only noticeable discrepancy between the 

predicted and measured detachment forces is for the case of droplets with a volume of 0.5 µL 

(about 25%), which we believe it is due to experimental errors involved in capturing the moment 

of detachment when the droplet is very small (see the percent relative error e in the inset figure). 

Overall, it can be seen from Fig. 6.4b that, detachment force per unit mass of droplet decreases 

with increasing the droplet volume.  
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Fig. 6.4 Droplet shapes for different body forces of 𝑔 = -9.8, 30, 50, and 55 N/kg (from left to right) are 

obtained via numerical simulation (top) and experiment (bottom) and are shown in (a). Detachment force 

obtained from experiment and numerical simulation for a single fiber is shown in (b). Droplet shape change 

in response to magnetic force is shown in (c) and (d) for droplets with a volume of 2.5 µL and 0.5 μL, 

respectively. The images on the left are taken in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg), images 

on the right show the droplet residual on the fibers after detachment. 𝜃𝑌𝐿 = 50°. 
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It is worth mentioning that for a droplet moving perpendicular to the axis of a single fiber, we did 

not observe a behavior that could be considered a hysteresis effect (contact angle hysteresis is 

generally observed and reported for droplet motion along a surface, or along the fiber axis, in our 

case). This is probably because the forces required for moving a droplet perpendicular to a fiber is 

much larger than those needed to move the same droplet along the same fiber masking any contact 

angle hysteresis effect. Nevertheless, to check how a lower contact angle mighty affect our 

detachment force predictions, we considered a contact angle of 30° degrees (instead of  𝜃𝑌𝐿 = 50°) 

and repeated our simulations. As can be seen in Fig. 6.4b, the results obtained with a lower contact 

angle are still in reasonable agreement with the experimental data, although they indicate that when 

the fiber becomes more hydrophilic, detaching a droplet from it becomes somewhat harder.  

 

 

Figures 6.4c and 6.4d show the process of droplet detachment from a single fiber for two droplets 

with volumes of 2.5 µL and 0.5 µL, respectively. These figures show that a larger percentage of 

the droplet volume may remain on the fiber after detachment (i.e., a larger residue) when the 

droplet is smaller. It can also be seen that formation of a conical droplet shape is more probable 

when the droplet is smaller. The latter is due to the fact that a stronger force per unit mass is needed 

to detach a smaller droplet and so the magnet has to come very close to the droplet for detachment 

to occur (i.e., stronger magnetic field gradient acting on the Fe3O4 particles).   

Figure 6.5a shows a ferrofluid droplet with a volume of 2 µL deposited on intersecting fibers with 

relative angles of 45 and 90 degrees. SE simulation results are also added to this figure for 

comparison. The droplets shown in the top row are imaged from top and are taken in the absence 

of the magnetic force (downward gravity is the only external force). The droplets in the bottom 
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row are imaged from an isometric view and are exposed to upward magnetic force. The minimum 

force required to detach the droplet from the fiber intersections with different angles is measured 

for droplets with different volumes and reported in Fig. 6.5b. Predictions of SE simulations are 

also added to this figure for comparison. Reasonable agreement can be seen between the 

experimental (red solid symbols) and numerical (black hollow symbols) data.  

 

 

Fig. 6.5 Droplet shape from top (top row) and side (bottom row) views for 𝛼 = 45°and 90° is given in (a). 

The images in the top row are taken in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) while the images 

in the bottom row show the droplet influenced by an out-of-plane magnetic force before detachment. Out-

of-plane detachment force is shown in (b) as a function of the relative angle between the fibers. 

Experimental and computational data are shown with red and black symbols, respectively. Square, circle, 

diamond, gradient, and delta represent droplet volumes of 0.5 µL, 1 µL, 1.5 µL, 2.0 µL, and 2.5 µL, 

respectively. 𝜃𝑌𝐿 = 50°. 
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While the predictions and measurements are in good general agreement, occasional discrepancies 

of about 15% can be seen for some droplet volume or fiber relative angles, which is believed to be 

due chiefly to the error in reading the scale at the exact moment of droplet detachment during the 

experiment. It should also be noted that SE only can predict the equilibrium shape of a droplet. 

Therefore, the predictions given in this figure are the maximum force for which an equilibrium 

droplet shape was achieved as the body force was increased incrementally. Obviously increasing 

the body force with a very small increment increases the accuracy of the predictions but at the 

expense of CPU time. One should also consider the aforementioned change in the spatial 

distribution of Fe3O4 nanoparticles inside a droplet as another source of error in the experiment as 

it can affect the shape of the droplet and so the capillary forces holding the droplet on the fiber. 

Furthermore, Fe3O4 distribution within the droplet can be non-uniform and not necessarily 

mapping the shape of the droplet when the droplet is influenced by a magnet. Predicting the 

distribution of the within the droplet and their impact on droplet shape is a coupled magnetics-

body force-fluid problem, which is beyond the scope of this chapter. In fact, in addition to 

measuring the magnetic force using our test setup, we also predicted the magnetic force acting on 

the droplets by measuring the magnetic field and using this information in analytical formulations 

written for magnetic force (see the Supplementary Materials). The predictions however were about 

an order of magnitude smaller than expected due perhaps to the above-mentioned intertwined 

factors.  

The results presented in Fig. 6.5b indicate that the in-plane relative angle between the fibers has 

no significant impact on the out-of-plane force required to detach the droplet from the intersection. 

This figure also shows that the detachment force per unit mass decreases with increasing the 

droplet volume. Moreover, comparing the detachment forces given in Fig. 6.5b with those in Fig. 
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6.4b, it can be seen that the force needed to detach a droplet from two intersecting fibers is higher 

than that from a single fiber as was observed previously in (151). 

6.4.2 In-Plane Detachment Force 

In this section, we study the forces required to detach a droplet from intersecting fibers in a given 

direction lying in the plane of the fibers. We start by considering the case where the external force 

bisects the fibers’ relative angle (symmetric with respect to the fibers). We then move on to the 

more general case where the external force makes an angle 𝜑 with one of the fibers and 𝜓 with the 

other, while the fibers relative angle is kept constant, i.e., 𝜑 + 𝜓 =𝛼. Figure 6.6a shows side views 

of a ferrofluid droplet with a volume of 1 µL deposited on intersecting vertical fibers with relative 

angles of 𝛼 = 60 and 150 degrees, respectively. SE simulation results are also added to this figure 

for comparison. The droplets on the top row are taken in the absence of magnetic force (downward 

gravity is the only external force) while the droplets in the bottom row are exposed to an upward 

magnetic force. Figure 6.6b shows the detachment force obtained from experiment (red solid 

symbols) and simulation (black hollow symbols), for different relative fiber angles and droplet 

volumes. It can be seen that, detachment force increases with increasing the relative angle between 

the fibers, especially when the droplet is small. This is because at smaller relative angles, the 

droplet tends to detach from the intersection point to move on to one the fibers before complete 

detachment takes place. Note that increasing the volume of the droplet does not significantly 

increase the droplet’s contact line (and so the capillary forces), and therefore, the importance of 

fibers and their orientation becomes less significant when the droplet is larger (detachment force 

decreases with increasing droplet volume).  
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Fig. 6.6 Droplet shape from side view is given in (a) for 𝛼 = 60°and 150°. The images in the top row are 

taken in the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) while the images in the bottom row show the 

droplets influenced by an in-plane magnetic force in the upward direction (direction bisecting the relative 

angle between the fibers) before detachment. In-plane detachment force is shown in (b) as a function of the 

relative angle between the fibers. Experimental and computational data are shown with red and black 

symbols, respectively. 𝜃𝑌𝐿 = 50°. 
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Figure 6.7a shows side views of a ferrofluid droplet with a volume of 1 µL on intersecting vertical 

fibers with a relative angle of 𝛼 = 90 degrees. The droplets on the top row are taken in the absence 

of magnetic force (downward gravity is the only external force) while the droplets in the bottom 

row are exposed to an upward magnetic force in directions 𝜑 = 20° and 40 with respect to one of 

the fibers. SE simulation results are also added to this figure for comparison. It can be seen that 

droplet shape is not symmetrical for 𝜑 = 20°but it becomes more symmetric as 𝜑 tends to 

45°(bisector). As mentioned earlier, simulated droplet shapes should not be expected to perfectly 

match those obtained from experiment due to migration of Fe3O4 nanoparticles inside the droplet. 

Figure 6.7b shows the detachment force for different 𝜑 angles for the case of 𝛼 = 90 degrees.  It 

can be seen that detachment force increases with increasing 𝜑 until it reaches a maximum at 𝜑 =

𝜓 =𝛼/2 (bisector). Note that the force required to detach a droplet with a force in the direction 𝜑 

is the same as that in the direction 𝛼 − 𝜑. Figure 6.7c shows the droplet detachment force for when 

the relative angle between the fibers is of 𝛼 = 150 degrees. It can again be seen that the force 

required to detach the droplet increases with increasing 𝜑 until it reaches a maximum at 𝜑 = 𝜓 

=𝛼/2. Interestingly, at 𝜑 = 𝜓 =𝛼/2 the force is significantly higher than the other values. This is 

because the droplet tends to move to one of the fibers before detaching from the assembly, and 

this is easier when 𝜑 is smaller (i.e., direction of the force is close to the fiber direction). On the 

other hand, as the force direction becomes closer to the direction of the bisector, it becomes harder 

for the droplet to move on to one of the fibers and detach. 
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Fig. 6.7 Droplet shape from side view is given in (a) for 𝛼 = 90°. The images in the top row are taken in 

the absence of magnetic force (i.e., 𝑔 = -9.8 N/kg) while the images in the bottom row show the droplets 

influenced by an in-plane magnetic force in the upward direction with 𝜙 = 20° and 40° before detachment. 

In-plane detachment force is shown in (b) and (c) as a function of 𝜙 for 𝜙 + 𝜓 = 90°and +𝜓 = 150° , 

respectively. Experimental and computational data are shown with red and black symbols, respectively. 
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6.4.3 Size Dependence and Industrial Applications 

An important application of the study conducted here is droplet filtration from air using a fibrous 

media (among many other applications). The fibers used in a filter are generally one or two orders 

of magnitudes smaller in diameter than the fishing line used in our experiment. However, the 

outcomes of our study can be scaled to droplet-fiber system much smaller than those considered 

here. Consider a barrel-shaped droplet on a fiber. In the absence of external forces, droplets with 

the same volume to fiber radius cubed ratio attain the same geometric profile on a fiber10. In the 

presence of external forces (e.g., a magnetic force), Bond number 𝐵𝑜 =
𝜌 𝑔 𝑟2

𝜎
 (ratio of the external 

body forces acting on a droplet to the forces generated due capillarity) defines the shape of a 

droplet on a fiber (159). For a constant Bond number and a constant volume to fiber radius cubed 

ratio, decreasing the fiber radius from a coarse radius 𝑟𝑐 to a fine radius 𝑟𝑓, increases the force per 

mass required to detach the droplet g by a factor of (
𝑟𝑐

𝑟𝑓
)
2

. In other words, the detachment forces 

reported in this chapter for a large droplet on a large fiber can be post-processed to predict the 

forces required to detach a small droplet on a small fiber. To confirm this, detachment force for 

droplets with volumes of 0.05, 0.1, 0.15, 0.2 and 0.25nL deposited on a fiber with a radius of rf =

5 μm is predicted using numerical simulation, and compared with that obtained by scaling the 

results of an identical but larger system (droplet volumes of 0.5,1, 1.5, 2 and 2.5μL on a fiber with 

a radius of 𝑟𝑐 = 107.5 𝜇𝑚 ) by a factor (
𝑟𝑐

𝑟𝑓
)
2

= 462.25 (see Fig. 6.8). Similar scaling properties 

were observed for a droplet with a clamshell profile on a fiber or intersecting fibers, e.g., near the 

detachment moment (not shown for the sake of brevity).  
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Fig. 6.8 Force per mass required to detach a droplet from a single fiber. The filled symbols show the data 

obtained from simulating droplets on a fiber with a radius of 𝑟𝑓 = 5 μm. The hollow symbols represent data 

produced by scaling the data given in Fig. 6.4b for droplets (with the same volume to fiber radius cubed 

ratios) on a fiber with a radius of 𝑟𝑐 =107.5 μm. 

6.5 Conclusions 

A novel technique is developed in this work to measure the force required to detach a droplet from 

a fiber or from a fiber assembly. The method relies on the use of ferrofluid droplets in a magnetic 

field in a setup placed on a sensitive scale. The proposed method eliminates the need for using air 

or an external object to move or detach the droplet from the fiber(s), and therefore it allows one to 

study the capillarity of the droplet–fiber system in a more isolated environment.  

The results of our study indicate that the force per unit mass required to detach a droplet from a 

single fiber is higher when the droplet is small, and it decreases by decreasing the volume of the 

droplet. Studying intersecting fibers with different relative angle with respect to one another, it 

was found that the relative angle between the fibers has negligible effect on the force required to 

detach the droplet in the out-of-plane direction. This angle however, can greatly influence the 

detachment force in the in-plane direction; increasing the relative angle between the fibers 
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increases the droplet detachment force in the in-plane direction especially for smaller droplets. It 

was also found that it is harder to detach a droplet from intersecting fibers when the force is applied 

in the direction of the bisector of the angle between the fibers. Our experimental study was 

accompanied by numerical simulations conducted using the Surface Evolver CFD code. Good 

general agreement has been observed between the experimental and computational results.  
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Chapter 7. Modeling Droplet Equilibrium Shape on Fibers with Trilobal Cross-section 

7.1 Introduction 

Understanding and controlling droplet movement inside fibrous media is important in predicting 

the performance of various engineering mechanisms such as liquid–liquid separation, liquid–gas 

filtration, textiles fabrication, water transport in fuel cells, and water harvesting (137). Early 

studies on droplet-fiber interactions were focused on obtaining droplet profile and finding a 

relationship between Young-Laplace contact angle (YLCA) and apparent contact angle (ACA) for 

barrel shape droplets (axi-symmetric droplet) (48,144). Droplet conformations also attracted a lot 

of investigation; barrel shape droplet usually form at smaller YLCA and higher droplet volume 

while clamshell droplet (droplet sits only on one side of the fiber) forms at larger YLCA and 

smaller volume (160). However, both barrel shape and clamshell droplets may coexist depending 

on YLCA, surface tension, fiber diameter and droplet volumes (49). More recent studies are 

focused on finding the force required to move a droplet along a smooth fiber, detach it from smooth 

or rough fibers and detach it from two intersecting smooth fibers (52–55,130,134,145,151).  

 

Although circular fiber is the most common shape manufactured by synthetic fiber producers, 

other shapes such as elliptical, lobed, and wedge-shaped cross-sections,  are beginning to emerge 

for a variety of reasons—performance, bulkiness, tactility, processing, etc. (161,162). Filters made 

from these various fibers may be configured as pads, pleated papers, bonded webs, nettings, or 

composites (163–167). The only research on droplet-fiber interaction on non-circular fibers 
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considers wedge-shaped cross-sections (119) but does not explain the effect of the shape of the 

fiber –e.g., number and size of the wedges- or volume of the droplets on fibers’ wettability 

explicitly. Our objective in this work is to highlight the importance of a fiber's cross-sectional 

shape on ACA and droplet detachment force from the fibers. We predicted the 3D shape of the 

droplet and ACA of a droplet on a trilobal fiber. We also calculated the force required to detach 

the droplet from a trilobal fiber for different lobe height and fiber orientation. 

 

The remainder of this chapter is structured as follows. First, we introduce the numerical modeling 

approach conducted to simulate the 3D shape of the droplet on trilobal fiber in Sec. 7.2. Our 

investigations of the effects of lobe height and droplet volume on the shape and ACA(s) of droplet 

deposited on a trilobal fiber are reported Sec. 7.3.  In this section, we also study the force required 

to detach a droplet from a trilobal fiber for different droplet sizes. Finally, the conclusions drawn 

from the work are given in Sec. 7.4. 

7.2 Modeling Droplet Detachment from aTrilobal Fiber 

The numerical simulations presented in this paper are conducted via Surface Evolver (SE) code. 

SE is a finite element code which minimizes the energy of surfaces formed by surface tension and 

other energies subjected to various constraints (38). SE is used in this study to obtain the 

equilibrium 3-D shape of a droplet deposited on a trilobal fiber.  Consider a fiber with its centerline 

placed on the y-axis having a radius that is described by a sinusoidal wave, as shown in Fig. 7.1,  

𝑅(𝛼) = 𝑟[1 + 𝑎 sin(𝜔𝛼 + 𝜑)]                                                                                                                 (7.1) 

where 𝑅 is the circular radius of the fiber, 𝑅(𝛼) = √𝑥2 + 𝑧2 is the local radius of the trilobal fiber 

at any point, 𝛼 = 𝐴𝑟𝑐𝑡𝑎𝑛
𝑥

𝑧
 is angular position, and 𝜑 is azimuthal orientation with respect to 𝑥-
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axis -perpendicular to gravity direction.  The number of lobes is given with 𝜔, which in the case 

of a trilobal fiber is set equal to 3. The parameter 𝑎 in Equation 1 controls the lobes’ height as can 

be seen with an example in Figure 7.1b for a trilobal geometry with 𝑟 = 15 μm and 𝜑 = 90°, but 

𝑎 varying from 0 to 0.4.  

 

 

Fig. 7.1 (a): Side-view and cross-sectional view of a trilobal fiber. (b): Overlap of cross-sectional 

view of the fibers with different lobe height.  

 

For a single-droplet–single-fiber system, the total free energy can be written as  

𝐸 = 𝜎𝐴𝐿𝐺 − 𝜎 ∫ 𝑐𝑜𝑠𝜃𝑌𝐿𝑑𝐴
𝐴𝑆𝐿

+ ∫𝜌ℎ𝑔𝑑𝑉                                                                                                      (7.2) 

where 𝜎 is the surface tension and the subscripts 𝐿𝐺 and 𝑆𝐿 stand for liquid–gas and solid–liquid 

interfaces respectively. In this equation, ℎ represents the vectorial change in the droplet’s centroid 

position in response to a body force (zero in the absence of external forces). 𝐴, 𝑔, 𝜌, and 𝑉 stand 

for area, body force per unit mass, liquid density, and the volume of the droplet, respectively. To 

find the equilibrium shape of a droplet on a fiber, an arbitrary initial shape with constant volume 
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𝑉 is considered for the droplet, and its shape is allowed to evolve as the systems’ free energy is 

being minimized iteratively. The input to the simulations is YLCA at the three-phase contact line 

as well as the surface tension and density of the liquid (in addition to droplet volume).  

To ensure the that the curvature of the lobes (i.e., 
𝑟

2ω
) is accurately captured in the simulations, the 

mesh density was increased by a power of 2 near the tip of the lobes. We also calculated the mean 

curvature of the droplet at each point 𝐻 on the droplet surface to make sure that the simulation 

results satisfy the Laplace equation 𝑃 = 𝜎𝐻 (i.e., the pressure 𝑃 obtained from the Laplace 

equation matching that obtained from SE simulations). 

 

7.3 Results and Discussion 

In this section, we present how lobe height may affect the shape and apparent contact angle of a 

droplet on a trilobal fiber ACA and the force required to detach the droplet. Here, we used Ultra-

Low Sulfur Diesel (ULSD) with a surface tension of 28 nN/m and a density of 870 g/L. We 

consider a fiber with a YLCA of 𝜃𝑌𝐿 = 30° and a radius of 𝑟 = 15 μm. 

7.3.1 Droplet Equilibrium Shape and Apparent Contact Angle  

As explained before, the barrel and clamshell conformations are the two primary shapes expected 

from droplets deposited on a fiber. Under the influence of gravity however, a symmetric barrel-

shaped droplet will become asymmetric with increasing the droplet volume.   

We start this section by studying the effects of lobe height on a droplet’s ACA. As expected, ACA 

varies around the perimeter of a trilobal fiber (see Fig. 7.2a). Figure 7.2a also shows possible 

planes that can go through the cross-section of the fiber to define ACA. Here planes of 𝑧 = 0, 𝑧 =
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𝑥tan𝛼 and 𝑥 = 0 is shown as examples. Before measuring ACA for each of these planes it is 

worthy to note that each of these plane cuts the droplet in upper and lower part; which results in 

two separate ACA: 𝜃𝑎𝑝𝑝
𝑢 and 𝜃𝑎𝑝𝑝

𝑙  as shown in Fig 7.2b. We studied the variation of the ACA along 

the perimeter of trilobal fibers with lobe heights 𝑎 = 0.4 having identical 𝑟 = 15 μm, 𝜃𝑌𝐿 = 30° 

, 𝜑=90° and  𝑉 = 0.84 nL. We found that that although 𝜃𝑎𝑝𝑝
𝑢 and 𝜃𝑎𝑝𝑝

𝑙  are not equal, the change in 

𝜃𝑎𝑝𝑝
𝑢 and 𝜃𝑎𝑝𝑝

𝑙  is negligible. For this case ACA is 28° ± 1.85°. Hereon we only will present ACA 

of 𝑥 = 0 plane because with the gravity being in the negative 𝑧-direction, one can expect the major 

ACA variations to take place in this plane when the droplet volume increases.  

 

Fig. 7.2 (a): Different plane going through the droplet. (b): upper and lower apparent contact angle 

obtained by plane of 𝑥 = 0. 
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Figure 7.3a shows that as lobe height increases ACA decreases. This finding is consistent with 

Wenzel’s finding: roughness makes a philic surface more philic. This figure also shows the small 

effect due to change in 𝜑. It is worthy to note that for the range of the volume used in this figure 

the droplet is barrel shape and the difference in ACA due to 𝜑 is because of the difference in fiber 

axial intersection shape with the plane 𝑥 = 0. 

To explain why ACA increases with increase in lobe height we report three-phase contact line and 

solid liquid area. For the sake of convenience we define non-dimensionalized contact length 𝐿 and 

wetted area 𝐴𝑤 as the ratio of the same parameter of a trilobal fiber to that of circular fiber. Figure 

7.3b shows the change in 𝐿 and 𝐴𝑤 as a function of lobe height. As can be seen in this figure both 

𝐿 and 𝐴𝑤 increase as lobe height increases. The increase in 𝐴𝑤 can explain the increase in ACA 

in terms of Wenzel equation. 
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Fig. 7.3 (a): Apparent contact angle is shown versus fiber lobe height for droplets for barrel shape 

droplet with 𝜑 = 90° (black symbols) and  𝜑 = −90°(blue symbols). (b): The change in contact 

line and wetted area of the droplet as a function of lobe height is shown. Here 𝑉 = 0.84 nL and 

3.37 nL, 𝑟 = 15μm and 𝜃𝑌𝐿 = 30°. 

 

Figure 7.4a shows the shape of the droplet with 𝑉 = 0.84 nL on a trilobal fiber for 𝜑 = 90° (upper) 

and 𝜑 = −90° (lower). It can be seen that the position of the droplet is greatly affected by 𝜑 which 

influences ACA with plane 𝑥 = 0 significantly. The change in ACA as a function of lobe height 
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are shown in Fig. 7.4b. This figure shows that as the lobe height increases ACA decreases. Here 

again, this finding is in agreement with Wenzel equation i.e., roughness makes a philic surface 

more philic. This figure also shows that the trend is the same for different 𝜑. In addition, this figure 

shows that when volume of the droplet is higher the effect of lobe height becomes smaller. The 

reason for that can be explained in the relative size of lobe height to the droplet. When droplet has 

higher volume, the lobe height becomes comparatively smaller which has smaller effect in ACA.  

Two ACA can be defined for an asymmetric droplet as well; upper and lower apparent contact 

angles 𝜃𝑎𝑝𝑝
𝑢  and 𝜃𝑎𝑝𝑝

𝑙 . Figure 7.4c shows the upper and lower apparent contact angles for droplets 

with volume of 𝑉 = 54 nL and 216 nL hanging from fibers with different lobe heights. It can be 

seen that both 𝜃𝑎𝑝𝑝
𝑙  (empty symbols) 𝜃𝑎𝑝𝑝

𝑢  (filled symbols) are almost constant as lobe height 

increases. As explained before when droplet is large the lobe height becomes comparatively 

smaller which has smaller effect in ACA. The effect of 𝜑 has also shown in this figure (blue) and 

found to be trivial because the size of the droplet is much larger than the fiber so that the fiber 

shape cannot affect the droplet shape.  
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Fig. 7.4 (a): The shape of a clamshell droplet with  𝑉 = 0.84 nL on a trilobal fiber with 𝑎 = 0.3 is 

shown for two different 𝜑. (b): Apparent contact angle is shown versus fiber lobe height for 

droplets with  = 0.84 nL and 3.37 nL for clamshell droplet. (c): Upper (hollow symbols) and lower 

(filled symbols) apparent contact angles are shown versus fiber lobe height for droplets with 𝑉 =
54 nL (circle) and 𝑉 = 216 nL  (square). Here 𝜑 = 90° (black symbols)  𝜑 = −90°(blue 

symbols), 𝑟 = 15μm and 𝜃𝑌𝐿 = 30°. 
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7.3.2 Droplet Detachment Force 

In this section, we calculated the force required to detach the droplet. It is worthy to note that our 

numerical method is only able to simulate the equilibrium shape. Therefore we reported the 

maximum force at which the droplet can be found in equilibrium state as the force required to 

detach the droplet.  

Figure 7.5a shows the force per mass required to detach a droplet from a trilobal fiber for different 

volumes. It can be seenthat as the volume increases the force per mass required to detach the 

droplet decreases. This figure also shows the effect of lobe height and 𝜑 on detachment force. For 

a constant volume and 𝜑 = −90° as lobe height increases detachment force also increases. 

However, this effect will gets smaller as volume increases because the relative size of the lobe 

height to the size of the droplet become insignificant at higher volume. On the other hand for 𝜑 =

90°, the force required to detach the droplet is not significantly different from smooth fiber even 

at smaller volume. Therefore, one can conclude that detachment force is a strong function of 𝜑 at 

small volumes but as volume of the droplet increases the effect of lobe height and 𝜑 becomes less 

significant. Figure 7.5b and 7.5c shows clamshell droplets with 𝑉 = 0.84 nL on a fiber with 𝜑 =

90° and 𝜑 = −90°respectively. It can be seen that for 𝜑 = 90° the droplet is at the side of the fiber 

at gravitational force but at higher force before the detachment it moves bellow the fiber and 

becomes symmetric with respect to 𝑧-zxis. Comparing fig. 7.5a and 7.5b shows that the solid-

liquid area of 𝜑 = −90°is higher so as the detachment force. This explains why at smaller volume 

Fig. 7.5a shows higher detachment force for 𝜑 = −90°. 
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Fig 7.5 (a):The maximum force per unit mass required to detach droplets with different volumes 

from a fiber with 𝑟 = 15μm but different lob heights ranging from 𝑎 = 0  to 𝑎 = 0.3 are given for 

an YLCA of 𝜃𝑌𝐿 = 30° for 𝜑 = 90° (black symbols) and  𝜑 = −90°(blue symbols). The shape of 

a 𝑉 = 0.84 nL droplets under gravity and maximum force before detachment is shown for (b)  𝜑 =
90° and (c) 𝜑 = −90°.  
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7.3.3 Spreading Droplet 

Carroll reports that for a wedge-shaped cross-section with semi-angle 𝛼 (see Fig. 7.6a), the droplet 

tends to spread axially over the cylinder surface if 𝜃𝑌𝐿 < 90 − 𝛾 [23]. We conducted some 

simulation to find the validity of this assumption for trilobal fiber. For a trilobal fiber with 𝑎 = 0.4 

we can assume 𝛾 = 60° (Fig. 7.6b). In the previous sections we used 𝜃𝑌𝐿 = 30° and showed that 

droplets with such YLCA exist on a trilobal fiber. On the other hand for a trilobal fiber with 𝑎 =

0.1 we can estimate 𝛾 = 90° (Fig. 7.6c) therefore all the droplets should be stable. This is also in 

agreement with our simulation results. It is worthy to mention that we were not able to conduct the 

simulation for 𝜃𝑌𝐿 = 30° and 𝑎 = 0.5 because as Fig. 7.6d shows 𝛾 ia about 45° and the droplet 

spreads on the fiber. 

 

 

 

 

Fig. 7.6 semi-angle 𝛼 is shown for (a): wedge-shaped cross-section and trilobal fiber with (b) 𝑎 =
0.4, (c) 𝑎 = 0.1 and (d) 𝑎 = 0.5. 
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7.3.4 Effect of Gravity on the Shape of Droplet 

Asymmetric factor 𝜀 is defined as the criteria of transition between symmetric barrel shape and 

asymmetric one. Asymmetric factor can be calculated by the ratio of the upper part of the droplet 

ℎ1 to the lower part ℎ2 (see inset of Fig. 7.7) ranging from 1 (completely barrel shape) to 0 

(completely asymmetric). Here we arbitrarily categorized a droplet as a barrel shape droplet when 

𝜀 ≥ 0.85 and as an asymmetric droplet when 𝜀 < 0.85. The change in 𝜀 under the gravity effect 

for different volume of a droplet on a trilobal fiber with different lobe height and 𝜑 is shown in 

Fig. 7.7. It can be seen that as volume of the droplet increases 𝜀 decreases, however increasing 

lobe height delays that. This figure also shows that the effect of 𝜑 orientation is negligible on 𝜀 

except for very small volumes. At smaller volume for 𝜑 = −90° the effect of lobe height in 𝜀 is 

smaller comparing to 𝜑 = 90°. 

 

Fig 7.7 The asymmetry factor is obtained for droplets deposited on a trilobal fiber with a radius of 

𝑟 = 15 μm, and YLCAs of 𝜃𝑌𝐿 = 30° for two different lobe heights of 𝑎 =0 (squares), and 0.4 

(diamonds) for 𝜑 = 90° (black) and 𝜑 = −90° (blue).  
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7.4 Conclusions 

A Droplet apparent contact angle on a trilobal fiber was studied for the first time and found to be 

a function of droplet volume, lobe height and lobe direction. We showed that when volume of the 

droplet is small ACA decreases as lobe amplitude increases but when the droplet volume is large 

the lobe amplitude does not significantly affect ACA. In addition, the lobe direction has a great 

effect on ACA especially for clamshell droplets. We also showed that lobe direction can effect the 

position of the clamshell droplet and that is why it affects ACA of clamshell droplet significantly. 

The detachment force from a trilobal fiber is also calculated and it was shown that the lobe 

amplitude and lobe direction has significant role in detachment force when droplet volume is small. 

However, the effect of lobe direction and lobe amplitude becomes negligible on detachment force 

when droplet volume is high.  
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Chapter 8. Overall Conclusion 
 

The main goal of this thesis is to predict the interaction between liquid and curved surfaces. We 

first presented analytical and numerical methods to estimate the air-water interface stability over 

fibrous and also granular superhydrophobic coatings under elevated pressures and the efficiency 

of such surfaces in drag reduction for underwater applications. Then the wetting behavior of a 

droplet deposited on a fibrous media and the force required to detach the droplet from such media 

are investigated. A novel technique based on using ferrofluid in a magnetic field is also designed 

to measure force required to detach a droplet from fiber(s). 

 

The proposed numerical and analytical models give us the ability to predict the performance of 

surfaces comprised of fibers/particles with dissimilar size and wettabilities. We also developed a 

mono-dispersed equivalent diameter definition that can be used to predict the critical pressure and 

wetted area of coatings with dissimilar particle size and wettability distributions. The formulation 

developed here can be applied to coatings with random or ordered spatial particle distributions. 

Our results showed that critical pressure –air-water interface stability– improves with increasing 

solid volume fraction, but there is a limitation on this due to increase in wetted area for higher 

solid volume fractions, which causes significant slip length reduction. 
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The wetting behavior of a droplet deposited on a rough fiber or a trilobal fiber is also investigated 

numerically. Our results indicate that increasing fiber roughness or lobe height increases the 

wettability of droplet so the occurrence of different droplet shape configurations on a fiber 

(symmetric barrel, clamshell, and asymmetric barrel) depends on fiber roughness or lobe height, 

droplet volume, and fiber radius. In particular, it was shown that when roughness or lobe height 

increases so as the tendency of a droplet to remain in the symmetric barrel shape configuration at 

higher droplet volume. We also found that the effect of fiber roughness or lobe height becomes 

less significant on large droplet volume relative to roughness amplitude or frequency.  

A novel technique is also developed to measure the force required to detach a droplet from a fiber 

or from a fiber assembly. The method relies on the use of ferrofluid droplets in a magnetic field in 

a setup placed on a sensitive scale. The proposed method eliminates the need for using air or an 

external object to move or detach the droplet from the fiber(s), and therefore it allows one to study 

the capillarity of the droplet–fiber system in a more isolated environment. The results of our study 

indicate that the force per unit mass required to detach a droplet from a single fiber is higher when 

the droplet is small, and it decreases by decreasing the volume of the droplet. Studying intersecting 

fibers with different relative angle with respect to one another, it was found that the relative angle 

between the fibers has negligible effect on the force required to detach the droplet in the out-of-

plane direction. This angle however, can greatly influence the detachment force in the in-plane 

direction; increasing the relative angle between the fibers increases the droplet detachment force 

in the in-plane direction especially for smaller droplets. It was also found that it is harder to detach 

a droplet from intersecting fibers when the force is applied in the direction of the bisector of the 

angle between the fibers. Our experimental study was accompanied by numerical simulations. 

Good general agreement has been observed between the experimental and computational results.  
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Appendix A: Formulation for Magnetic Force Calculation 

Magnetic force exerted on a droplet by a magnet 𝐹𝑚 can be estimated from the distance between 

the droplet and the pole of the magnet, x. However, this method is only accurate for calculating 

the magnetic force exerted on a solid object whose shape and concentrations of magnetic material 

do not change during the experiment. The net body force acting on a droplet at the time of 

detachment (the body force required to overcome the capillary forces), can be expressed as, 

𝐹𝐷 = 𝐹𝑚(𝑥𝐷) − 𝜌𝑉𝑔                                                                                                               (A1) 

where 𝑥𝐷 is the distance between the droplet and magnet at the time of detachment. The magnetic 

force exerted on the droplet can be written as, 

𝐹𝑚⃗⃗ ⃗⃗  = 𝑉𝑝(�⃗⃗� . 𝛻�⃗� + �⃗� . 𝛻�⃗⃗� )                                                                                                        (A2) 

in which 𝑉𝑝 (cm3) is the volume of the ferrofluid droplet, �⃗⃗�  (emu/cc) is the magnetic moment, and  

�⃗�  (G) is magnetic flux density of the magnet. We used Lake Shore Model 475 Gaussmeter to 

measure the magnetic flux density as a function of distance from one of the poles of the magnet 

(see Fig. A1). The gradient of the magnetic field was then calculated from the data given in Fig. 

A1. Note that diameter of the magnet used in the experiment was much larger than the dimensions 

of the droplet, and so the magnetic field applied to the droplet was taken to be uniform in the lateral 

directions (normal to the direction of magnetic force). 

 

Magnetic characterization of the ferrofluid was performed using the Quantum Design Versalab™ Vibrating 

Sample Magnetometer (VSM). A 0.1 mL droplet of the ferrofluid was deposited on to a substrate and placed 

in an oven to evaporate its water content. The dried Fe3O4/polymer mixture (mass of 9.3 mg) was then 

placed in a powder sample holder (P125E) and inserted into the VSM. To account for the variation in the 
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ferromagnetic Fe3O4 nanoparticle volume fraction in the ferrofluid droplet [Manufacturer data sheet: Fe3O4 

~ 0.4 – 1.1% (by vol.), polymer ~ 0.5 – 1.5%], we plot a range for magnetization, M, for various volume 

fractions (See Fig. A2). 

 

 
Figure A1: Magnetic flux density changes with distance to the magnet. 

 

 

Figure A2: A range for M-H plot for the Fe3O4 powder. 
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Using 𝐵 = 𝜇𝐻 we can calculate 𝐻. Knowing �⃗⃗�  (applied magnetic field) one can calculate �⃗⃗�  from 

�⃗⃗� -�⃗⃗�  diagram. Consequently,  

𝐹𝐷
⃗⃗ ⃗⃗ = 𝑉𝑝 (�⃗⃗� . 𝛻�⃗⃗� + �⃗⃗� . 𝛻�⃗⃗� ) − 𝜌𝑉𝑔                                                                                                            (A3)        

It is worthy to mention that although a rangeis given for �⃗⃗� -�⃗⃗�  diagram due to the unavailability of 

volume fraction of magnetic particle, when calculating force this effect will be cancelled when 

multiplying by 𝑉𝑝. Note also that, we report force per unit mass, and so the force values were 

divided by 𝜌𝑉. Figure A3 compares the detachment forces obtained from our numerical 

simulations with those from Eq. A3 after demagnetization correction factor for M-H data and 

demagnetization correction factor for ferrofluid droplet shape are applied (see Appendix-A-1 and 

Appendix-A-2). Note that our numerical simulation results are in good quantitative agreement with 

our experimental (see Fig. 6.4b). As can be seen in Fig. A3, predictions of Eq. A3 are not in close 

agreement with the simulation results, although the show a correct trend for detachment force vs. 

droplet volume. As explained in chapter 6, to obtain accurate predictions from Eq. A3, one should 

incorporate the droplet shape change due to nanoparticle spatial distribution within the droplets. 

This however, is beyond the scope of chapter 6 as it involves solving a bi-directionally coupled 

magnetics, particle force and fluid problem. As explained in chapter 6, we decided to measure the 

detachment force directly by placing the test setup on a scale. After depositing the droplet on the 

setup we set the scale to zero to exclude the weight of the droplet. We then moved the magnet 

toward the droplet and read the scale until the droplet was detached. The reading that the scale 

showed right before the detachment was taken as the detachment force. Note that, we subtracted 

the gravity force as it acted in a direction opposite to the magnetic force. 
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Figure A3: Force per unit mass required to detach ferrofluid droplets with different volumes from a fiber 

with a diameter of 215 µm. Comparison between predictions of Eq. A3 (red circles) and numerical 

simulation (black squares). 

 

Appendix-A-1: Demagnetization correction factor for M-H data 

When an external magnetic field is applied to a body, in addition to the induced magnetization, a 

demagnetizing field is generated within the material, which opposes the applied magnetic field, as 

given by the equation A4 (168) 

𝐻𝑑 = 𝑁 ∙ 𝑀                                                                                                                                                (A4) 

where Hd is the demagnetizing field (Oe in CGS units), M is the induced magnetization (emu/cc 

in CGS units), and N is the demagnetization coefficient which is largely a shape-dependent factor. 

In the CGS units, the demagnetization factors along the three orthogonal axes is a constant, given 

by 

𝑁𝑎 + 𝑁𝑏 + 𝑁𝑐 = 4𝜋                                                                                                                                    (A5) 
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For the Fe3O4 powder, we approximate its volume to be that of the cylindrical powder holder (semi- 

major/minor axes, a, b = 0.145 cm, c = 0.075 cm, and m = a/c) as an oblate spheroid (major and 

minor axes, a = b) (169),  

𝑁𝑎 = 𝑁𝑏 =
1

2(𝑚2−1)
{𝑚2(𝑚2 − 1)−

1

2 × 𝑠𝑖𝑛−1[
(𝑚2−1)

1
2

𝑚
] − 1}                                                                  (A6) 

The demagnetization factor N was calculated along the in-plane axis of the applied magnetic field 

and found to be 0.2411. The demagnetizing field Hd, which opposes the applied magnetic field H, 

results in a lower effective magnetic field within the material/body, 

𝐻𝑖𝑛 = 𝐻 − 𝑁 ∙ 𝑀                                                                                                                        (A7) 

 

Appendix-A-2: Demagnetization correction factor for ferrofluid droplet influenced by a 

magnet 

As in section Appendix-1, one also needs to correct the demagnetization coefficient to account for 

the change in droplet shape when influenced by a magnet (i.e., droplet elongation toward the 

magnet before detachment).  

The demagnetization coefficient, Ndroplet, is given by (170) 

𝑁𝑑𝑟𝑜𝑝𝑙𝑒𝑡 = 𝐾2(−2𝜖 + 𝑙𝑛((1 + 𝜖)/(1 − 𝜖)))/2𝜖3                                                                             (A8) 

where K = b/a is the aspect ratio of the droplet (a and b are the semi-major and semi-minor axes 

of an ellipse, respectively), and 𝜖 =  (1 − 𝐾)
1

2 is the ellipse eccentricity. We acknowledge that this 

is a simple approximation, as in reality the droplet shape may not be elliptical, and the Fe3O4 

nanoparticle distribution within the droplet may be very non-uniform (not mapping the shape of 
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the droplet). These factors can affect the demagnetization field significantly. Incorporating these 

effects and their ramification on the demagnetizing factor however is beyond the scope of chapter 

6. 
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