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Abstract

An n-dimensional halved cube is a graph whose vertices are the binary strings of length

n, where two vertices are adjacent if and only if they differ in exactly two positions. It

can be regarded as the graph whose vertex set is one partite set of the n-dimensional

hypercube, with an edge joining vertices at hamming distance two.

In this thesis we compute the automorphism groups of the halved cubes by embed-

ding them in Rn and realizing the automorphism group as a subgroup of GLn(R). As an

application we show that a halved cube is a circulant graph if and only if its dimension

of is at most four.



Chapter 1

Introduction

This thesis will present and discuss the automorphism groups of a family of graphs

known as halved cubes. We will use these groups to characterize which halved cubes

are isomorphic to circulants. Specifically, we will use characteristics of elements of the

autormorphism group of halved cubes to show that a halved cube is isomorphic to a

circulant graph if and only if the dimension of the halved cube is less than or equal

to four. Before this proof can be presented we must first present definitions for the

structures used throughout this thesis.

1.1 Graphs

Since this thesis deals largely with graphs, we begin with some fundamental definitions

and examples of graphs.

Definition 1. A graph G is an ordered pair (V(G),E(G)) where V(G) is a finite set called the

vertices of the graph G, and E(G) is a set of unordered pairs of elements of V(G), which are

called edges. We call the number of vertices in the graph G the order of G, and the number of

edges in the graph G the size of G. Let u and v be vertices of a graph G. The vertices u and v

are adjacent if there exists an edge uv ∈ E(G). If uv 6∈ E(G) then u and v are nonadjacent.
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Figure 1.1: Two examples of graphs G, and H.

Similarly, if u and v are adjacent then u is a neighbor of v and vice a versa [1] (pg. 3).

Figure 1.1 shows two graphs G and H. Given Definition 1 we see that

V(G) = {a,b, c,d, e} and E(G) = {ab,ac,bc, cd,ae, ce}. Observe that G is a graph of

order five and size six. Next, observe that V(H) = {00, 01, 11, 10} and

E(H) = {(00, 01), (01, 11), (11, 10), (10, 00)}. Also observe that H is of order and size four.

Clearly, vertices do not have to be letters or numbers, but can take on any particular

identity. In this thesis we will discuss graphs with vertices which are binary strings of

a specified length. Figure 1.1 provides examples of graphs, the last of which has binary

strings as the vertices. Constructions of graphs from binary strings will serve as an

important idea throughout this thesis.

Definition 2. Let G be a graph, a graph H is a subgraph of G, written G ⊆ H, if and only if

V(H) ⊆ V(G) and E(H) ⊆ E(G). The subgraph induced by H, denoted G[H] is the subgraph

of H where if u, v ∈ H and uv ∈ E(G) then uv ∈ E(G[H]).

The bulk of this thesis deals with demonstrating the similarity between graphs us-

ing mappings between their vertex sets. In particular, we will examine isomorphisms

between graphs.

Definition 3. The graphs G and H are isomorphic, written G ∼= H, if there exists a bijective

mapping φ : V(G) → V(H) such that two vertices are adjacent in G if and only if their images

are adjacent in H. That is, xy ∈ E(G) if and only if φ(x)φ(y) ∈ E(H).

2



a

b

c

d

e

G

a

b

c

dH

a

b

c

d

e

K

Figure 1.2: A graph G and two of its sub-graphs H and K.

The notion of isomorphism helps avoid the mistake of thinking of graphs as “equal” if

they are simply drawn in a different manner. Consider the two different representations

of the graphs shown in Figure 1.3 below: the graphs P and Q seem to be the same

graph drawn in different ways, but there are edge-crossings in G while no edges cross

in Q. While this difference may seem subtle, this is only one example of why “equality”

between graphs needs a more abstract definition, hence isomorphism. Figure 3 explicitly

presents one of these possible mappings φ : V(P)→ V(Q).

a b

cd

e

P

1 2

34

5

Q

u φ(u)

a 1
b 2
c 4
d 3
e 5

Figure 1.3: Two isomorphic graphs P and Q, and an isomorphism φ.
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1.2 Halved Cubes and Circulants

This thesis will focus on the graphs known as “halved cubes.” Before these graphs can

be discussed we begin with the notion of hamming distance.

Definition 4. Let u and v be binary strings each of length n where n is a positive integer, the

hamming distance of u and v is the number of digits in which the strings u and v differ. Strings

u and v are binary inverses if and only if they have a hamming distance of n.

As an example, let u and v be binary strings of length four and u = 0011 and v = 0101.

The strings u and v only differ in the second and third digits, thus the hamming distance

between u and v is two. We would say that w = 1100 is the binary inverse of u in that u

and w have a hamming distance of four.

An example of a construction of a graph from the hamming distance of binary digits

is Qn, or the Hypercube, which is defined below:

Definition 5. An n-dimensional hypercube graph, called Qn, is constructed by the set of all

n-digit binary numbers as V(Qn) where u and v are adjacent if and only if u and v have a

hamming distance of one. [3] (pg. 18).

Before any discussion of Qn, we define k-regular graphs below:

Definition 6. A graph G is k-regular if and only if every vertex of G has exactly k neighbors.

Observe that Qn is of order 2n, and is n-regular in that each vertex has n neigh-

bors with a hamming distance of one. From here we see that Qn is of size 2n−1n. In

Figure 1.4, the graphs Q2,Q3, and Q4 are displayed. Notice that the hypercube in the

n-th dimension can have a representation reminiscent of an n-th dimensional cube in

the geometric sense.

Say that you are now going to define the vertices of a graph to be the set of all n

digit binary strings and let two vertices be adjacent if and only if their associated binary

strings have a hamming distance of two. Observe that this graph will be of order 2n

4
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Figure 1.4: Q2, Q3 and Q4
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and will be
(
n
2

)
regular. In examining these constructions in the figure below, notice

that each construction yields two sub-graphs which share no vertices and edges, and are

isomorphic. For a given n, the graph resulting from the above construction is denoted

Γn.

00 10

0111

001 010

100111

110 101

011000

Figure 1.5: Γ2 and Γ3

Let u and v be n-digit binary strings with a hamming distance of two. Suppose that

the digit sum of u is k. In the two digits where u and v differ, either u has two ones in

the digits where v has two zeros (the digit sum of v is two less than k), u has a one in

place of a zero in v and u has a zero in place of a one in v (the digit sum of v is k), or

u has two zeros in the digits where v has two ones (the digit sum of v is two more than

k). Thus, if u has an even digit sum then all of its neighbors will also have even digit

sum, and likewise if u had an odd digit sum then all its neighbors will have odd digit

sums. Below we will prove that there are exactly two components of Γn and they are

isomorphic with one another.

Proposition 1. For all n ∈ N there are exactly two components of Γn and these components are

isomorphic.

Proof. Let n ∈ N and define the sequence 〈a0, ...,a2n−1〉 such that ai is the binary ex-

pression of i with n digits, thus i ∈ {0, ..., 2n − 1}, the terms of this sequence will also

be the vertex set of Q ′
n. Next, define V0 to be the set binary digits from the sequence

above having an even digit sum and V1 to be the set of binary digits from the sequence

above with odd digit sum. We will now show that given a vertex in V1 and a vertex in

6



V0 there will not be a path between them in Γn. Let ap ∈ V1 and aq ∈ V2 and suppose

that ap and aq are adjacent, then the hamming distance of ap and aq is two. Observe

that if the digit sum of ap is k, then the digit sum of aq is either k or k ± 2. Thus, ap

and aq have the same parity, a contradiction. From here, it is clear that vertices in V1 can

only be adjacent with vertices of V1 then there will be no path from a vertex in V1 to any

vertex in V0, thus Γn is disconnected. Further, by this construction we see that if there

were more than two components of Γn then the subgraph induced by V0 or the subgraph

induced by V1 is disconnected.

Consider the subgraph induced by V0. Clearly, we have that a0 ∈ V0, and for any

vertex ak 6= a0 then there is a 2r 1s in ak where r ∈ {1, ..., bn
2
c}. Define a sequence

〈b1, ...,br−1, 0000〉 to be the sequence of vertices of V0 such that bi is ak with 2i 1s from

ak changed to 0s. Observe that the vertices bi and bi−1 will be adjacent and that this

sequence defines a path from ak to a0. Since ak was chosen arbitrarily then there exists

a path from an vertex of V0 to the vertex a0, so there must be a path from any vertex

in V0 to any other vertex in V0. Similarly, for am ∈ V1 if we define a similar sequence

where 〈c1, ..., cr−1〉 then cr−1 would have a singular 1 in its binary expression, thus would

either be adjacent to a1 = 0...1 or cr−1 = a1. By this logic we have also shown that V1 is

connected.

Next we need to show that the subgraph induced by V0 and the subgraph induced

by V1 are isomorphic. Where n is fixed, define f : V0 → V1 such that u→ f(u) if and only

if f(u) is u with its last digit changed form a 0 to a 1 or from a 1 to a 0. First, we will

show that f is a bijection. Suppose that f(u) = f(v), then by changing the last digits in

f(u) and f(v) then we have u and v. Obviously, we have that u = v and f is an injection.

Clearly, since |V0| = |V1| then f is a bijection.

Finally, we need to show that adjacency is preserved under the function f. Let u, v ∈

V0 such that u and v are adjacent, thus u and v differ in two digits. Suppose they differ

in the i-th and j-th digit where i, j ∈ {1, ...,n}. If we suppose that j = n then we have that

7



u and v differ in their n-th digit, thus f(u) and f(v) differ in their n-th digit as well. Since

f(u) and f(v) also differ in their i-th digit, then f(u) and f(v) have a hamming distance

of two and thus are adjacent. Further, if neither i nor j are equal to n, then u and v have

the same n-th digit, therefore f(u) and f(v) will also have the same n-th digit and differ

in the i-th and j-th digit, thus they are adjacent. Next, suppose that f(u) and f(v) are

adjacent, and they differ in their n-th digit. Then we have that they also differ in their

i-th digit where i ∈ {1, ...,n − 1}, and we have that u and v will differ in their i-th digit

and n-th digit, thus u and v will be adjacent. If f(u) and f(v) do not differ in their n-th

digit, then u and v will have the same n-th digit, and will differ in the same two places

as f(u) and f(v) do, and will be adjacent. Thus, adjacency is preserved by this mapping

f. Therefore, the subgraph induced by V0 is isomorphic with the subgraph induced by

V1 and the proof is complete.

From here, we can clearly define a halved cube and we will make a connection be-

tween specific dimensions of halved cubes and complete graphs:

Definition 7. Let G with a graph and V(G) be the set containing all n-length binary strings

with even digit sum. Next, let u, v ∈ V(G) and uv ∈ E(G) if and only if u and v have a

hamming distance of two, then G is a halved cube with dimension n and is denoted Q ′
n.

Definition 8. A graph is a complete graph on n vertices and is denoted as Kn if and only if for

any arbitrary u, v ∈ V(Kn) we have that uv ∈ E(Kn).

Trivially, Q ′
1 is a graph of order one, with size of zero. Using the definition above, it’s

clear from the figure below that Q ′
2 and Q ′

3 are both complete graphs; more generally

Q ′
2
∼= K2 and Q ′

3
∼= K4. Another interesting connection that will be discussed later in this

thesis is the connection between Q ′
n and graphs which are called circulants.

Definition 9. Let G be a graph of order n with V(G) = {a1, ...,an}. Then G is a circulant of

the form Cn(k1, ...,km) if aiai+kjmod(n) ∈ E(G) for all i, j ∈ {1, ...,n}.

8
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001111 1111 1001

1010
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0110 0000
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Figure 1.6: Q ′
2, Q ′

3, and Q ′
4

As an example, consider the circulant C6(1, 2). This graph has six vertices, namely

a1 through a6. By our definition, we have that k1 = 1 and k2 = 2. The term k1 induces

a cycle consisting of all vertices in the graph with vertices being adjacent if and only if

they are of the form aimod(6) and a(i+1)mod(6). Next, k2 induces two cycles of length

three on the vertex sets {a1,a3 a5} and {a2,a4,a6}. This graph is pictured in Figure 1.7.

The study of halved cubes is not a new mathematical endeavor. In particular, one

paper from Wilfred Imrich, and Sandi Klavzar demonstrates a characterization of all

halved cubes [6]. This result gives a specific series of properties that if an arbitrary graph

meets, then it is some dimension of a halved cube. These same mathematicians, with the

addition of Aleksander Vesel, developed an algorithm for recognition of a halved cube

with a constant time per edge as well [7]. Seeing that Q ′
n is a highly structured graph

then it is not difficult to find powerful results describing the nature of Q ′
n.

a1

a2

a3

a4

a5

a6

Figure 1.7: The circulant graph C6(1, 2).
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1.3 Automorphism Groups

At its core, this thesis presents a collection of algebraic objects which act on the vertices

of Q ′
n in such a way that each object permutes the vertices of Q ′

n while still preserving

the adjacency structure of Q ′
n. Background in algebra is required in order to describe

the structures of these objects, and the global behavior of the collection of these objects.

We will begin with the definition a group and present examples, and finish with a

presentation of semidirect products.

Definition 10. Let A be a non-empty set. A set A together with a binary operation ? : A×A→

A is a group if the following occur:

1. The operation ? is associative in that (a ? b) ? c = a ? (b ? c) for all For all a,b, c ∈ A.

2. There exists some I ∈ A such that I ? a = a ? I = a for all a ∈ A. We call this element I

the identity element of A.

3. For any a ∈ A there exists some element b ∈ A such that a ? b = b ? a = I. The element

b is called the inverse element of a, and is denoted as a−1.

A group G is a abelian if x ? y = y ? x for all x,y ∈ G [2] (pg. 6).

Let Sn be the set of all bijections from {1, ...,n} to itself. We will set out to show that this

set is a group under the operation of composition.

Proposition 2. The set Sn forms a group under the operation of composition.

Proof. As a standard fact, composition of a bijection is a bijection. Thus, Sn is closed un-

der composition. Observe also that the composition operation of functions is associative.

Now we set out to show that there exists an identity element in Sn under composition.

Let I : {1, ...,n} → {1, ...,n} such that for all x ∈ {1, ...,n} the mapping I(x) = x. Clearly,

for any φ ∈ Sn the mapping I(φ(x)) equals φ(x) for all x ∈ {1, ...,n}, thus I is the identity

element of Sn under composition.

10



u φ(u)

1 1
2 3
3 4
4 5
5 2

φ = (2345)


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0



Figure 1.8: An element S5, its cycle permutation representation, and its permutation
matrix.

Observe that since φ is a bijection, then this function has an inverse φ−1 which is also

a bijection thus, is an element of Sn. From here, we see that φ−1 is the group inverse of

φ.

A useful expression of an element of Sn is a permutation. An example of φ, a

bijection, and its cyclic permutation representation is presented in Figure 1.8. Consider

φ ∈ Sn, then we could think of the element x to be permuted to φ(x). In this thesis we

will be working with an alternate form of Sn, which is the set of permutation matrices,

which we will define below:

Definition 11. The set of permutation matrices, denoted as Pn, is the set of n! matrices con-

structed by permuting rows of the n× n identity matrix.

In Figure 1.8, the permutation matrix of φ is derived from taking the 5 × 5 identity

matrix and permuting the i-th row to the φ(i)-th row. With the operation of matrix

multiplication over Pn, observe that the groups Sn and Pn are isomorphic. We will

demonstrate an important fact of Pn below:

Proposition 3. Let P ∈ Pn. Then where PT is the transpose of P we have that P−1 = PT .

Proof. Let P ∈ Pn. Clearly, PT ∈ Pn and since Pn is closed under multiplication then we

have that PPT ∈ Pn.

11



PPT =


(PPT )11 ... (PPT )1n

... ...
...

(PPT )n1 ... (PPT )nn


In general, where i, j ∈ {1, ...,n} we have that (PPT )ij =

∑n
k=1 PikP

T
kj =

∑n
i=1 PikPjk.

Since PPT ∈ Pn then there exists some a,b ∈ {1, ...,n} such that Pab = Pba = 1. Since

every row has only one non-zero entry and every column has only one non-zero entry

then we have that (PPT )ij = 1 when i = j and that (PPT )ij = 0 when i 6= j. By definition

PPT is the identity matrix, so PT = P−1 so PPT = PP−1 = P−1P = PTP = I.

Definition 12. The group GLn(R) is the group of invertible n × n matrices with real-valued

entries. This group is called the general linear group. Its operation is standard matrix multipli-

cation.

For a construction of Q ′
n to be presented later, an important fact to observe is that

Pn ⊆ GLn(R). We will be using the permutation matrices to permute column vectors

which will be representative of vertices in Q ′
n in an embedding (to be discussed later) in

Rn.

Definition 13. Let G be a graph, and H be a group. The set Aut(G) is the collection of all

isomorphisms from G → G. We call an element of Aut(G) an automorphisms. Under the

operation of composition, this set forms a group (because the composition of two automorphisms

is an automorphism) called the automorphism group of G [3] (pg. 201).

Now we will present a graph and its automorphism group. Before we express this

graph and its automorphism group, we will set out some critical definitions.

Definition 14. Let G be a group and H ⊆ G. We call H a subgroup of G if the elements of H

form a group under the operation induced by G. We denote that H is a subgroup of G by H 6 G.

Definition 15. Let G be a group under multiplication and S ⊆ G where S = {s1, ..., sn} then

the subgroup generated by S is the subgroup consisting of products of powers of elements of S.

12



This subgroup is denoted as G = 〈S〉. If the subgroup generated by S is abelian then each element

of 〈S〉 is of the form
∏n
i=1 s

αj
i where αj ∈ {1, ...,n}.

Definition 16. Let G and H be groups. Then we define the direct product of G and H and its

group operation as follows:

G×H = {(g,h) : g ∈ G,h ∈ H}

Let g,g ′ ∈ G and h,h ′ ∈ H, then the operation associated with this group is given below:

(g,h)(g ′,h ′) = (gg ′,hh ′)

Definition 17. Let G be a group and g ∈ G. The order of g, denoted as |g| is the smallest

positive integer k such that gk = IG where IG is the identity element of G.

1

2

3

4

5

8 7

6

a

b c

e d

f

h

g

i

j k

m

K

Figure 1.9: A graph K with Aut(K) ∼= 〈(24), (5678)〉 ∼= Z2 × Z4.

For the graph K in Figure 1.9 we see that in permuting the vertices 2 and 4 that this

will form an isomorphism with itself, or more plainly the permutation of these vertices

do not change the appearance of K. Similarly, if we permute the collection of vertices

5, 6, 7 and 8 in such a manner that we “rotate” the cycle containing these vertices one

position clockwise (along with the respective sets of vertices a,b, c,d, e, f,g,h and i)
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then the collection of these four permutations would also be automorphisms. Clearly,

these are the only automorphisms of the graph K since an automorphism cannot permute

vertices 2 and 4 with any other vertices of degree two. Similarly 5, 6, 7, and 8 are the only

vertices of degree three which can be permuted and this can only be done by rotations

of the cycle containing these vertices. Similarly, if 5, 6, 7, or 8 permute with 1,b, e,h or k

then this wouldn’t be an automorphism since none of the vertices 5 − 8,b, e,h or k are

adjacent with 2 and 4. By similar logic, since 3 is the only vertex of degree seven, then

any permutation of 3 with any other vertex would not be an automorphism.

If we consider S8 to be the set of all permutations of the vertices of K, then we see

that Aut(K) = 〈(24), (5678)〉. From here, we see that an element of Aut(K) is defined

to be the set of elements of the form (24)α(5678)β where α ∈ Z2 (since |(24)| = 2) and

β ∈ Z4 (since |(5678)| = 4). If we fix two elements, say (24)α1(5678)β1 and (24)α2(5678)β2

and compose them, we use the fact that disjointed cycles commute so their composition

is (24)α1+α2(5678)β1+β2 . Let the set Zn = {0, 1, ...,n− 1}. Note that the exponents α1 +α2

and β1 + β2 are elements of Z2 and Z4 respectively. From here it is clear that Aut(K) ∼=

Z2 × Z4. Since Z2 × Z4 is a simpler group to visualize than 〈(24), (5678)〉 we would say

that Aut(K) ∼= Z2 × Z4.

While the graph K has a very straightforward automorphism group, Aut(Q ′
n) has an

expression which requires a different group product than a direct product. The direct

product of groups G and H is a rather non-homogeneous combination of elements of

G and H in that they do not interact with each other. We found that Aut(Q ′
n) had an

expression which was a semidirect product, which while less intuitive, has more inter-

action between the elements of the sets in the product. Note that all of these definitions

are in the context of groups, and not graphs as previously mentioned.

Definition 18. Let G and H be groups under multiplication. The mapping φ : G → H is a

homomorphism if for all x,y ∈ G we have that φ(xy) = φ(x)φ(y). An isomorphism is an

injective homomorphism. An automorphism of G is an isomorphism from G to itself, and the
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collection of all automorphisms is denoted as Aut(G) which is a group under composition.

Definition 19. Let G and H be groups and let ψ : H→ Aut(G) be a homomorphism. We define

the semidirect product of G by H via ψ as the following:

Goψ H = {(g,h) : g ∈ G,h ∈ H}

under the binary operation defined by (g1,h1)(g2,h2) = (g1ψh1
(g2),h1h2) [2] (pg. 177).

Note that if G and H are groups and ψ is the identity mapping, then GoψH ∼= G×H.

In this regard, the direct product could be referred to as the trivial semidirect product.

15



Chapter 2

Aut(Q ′n) Where n 6= 4

In constructing the automorphism group of Q ′
n, we will first describe an embedding of

Q ′
n in Rn which re-expresses the binary strings in the vertex set of Q ′

n as vectors. Next,

we will define and describe the groups used in the semidirect product which yields our

automorphism group. For brevity, whenever addressing Q ′
n in this chapter we assume

that n 6= 4. The case where n = 4 will be addressed separately as it is a special case.

Now we can define our embedding of Q ′
n in n-dimensional space. First, we let G to

be the set of column vectors as follows:

G = {〈v1, ..., vn〉 : vi ∈ {−1, 1},∀i ∈ {1, ...,n}}

Now, let u be an n-digit binary string in V(Q ′
n) and let f : V(Q ′

n) → G be such that

f(u) = #»u where every 0 in the i-th position of u is a negative one in the i-th component of

#»u and every 1 in the j-th position of u is a 1 in the j-th component of #»u . To demonstrate

this mapping, let u = 010010 in V(Q ′
6), then #»u = 〈−1, 1,−1,−1, 1,−1〉 in G. Next, in Rn

we let #»u and #»v be adjacent if and only if u and v are adjacent in Q ′
n. Henceforth, when

referring to V(Q ′
n) we will be referring to the images of the function f.

Before we can describe the necessary groups to define the automorphism group of

Q ′
n, we must show that with our embedding of Q ′

n into n-dimensional space, every

automorphism of Q ′
n is the restriction of an invertible linear transformation of Rn. We
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will first prove a lemma and then we will have sufficient machinery to prove that that

f ∈ Aut(Q ′
n) is the restriction of M ∈ GLn(R).

Lemma 1. Suppose
#»

V ∈ Rn and B = {x1, ..., xn} is a basis of Rn. Then #»v = 0 if and only if

#»v • #»xi = 0 for all 1 6 i 6 n.

Proof. Let #»v ∈ Rn and B = {x1, ..., xn} be a basis of Rn. It is trivial that if #»v = 0 then

#»v • #»xi = 0 for all 1 6 i 6 n. Suppose now that #»v • #»xi = 0 for all 1 6 i 6 n. Then we have

that |v|2 = v • v = v •
∑n
i=1 aixi =

∑n
i=1 aiv • xi = 0. Since the square of the norm of #»v is 0

then it is clear that #»v = 0.

Theorem 1. Any f ∈ Aut(Q ′
n) is the restriction of M ∈ GLn(R).

Proof. First, define B ⊆ V(Q ′
n) where B = {b1, ...,bn} is the set of vectors given below:

b1 = 〈1, 1, ..., 1〉

b2 = 〈−1,−1, 1, 1, ..., 1〉

b3 = 〈−1, 1,−1, 1, ..., 1〉
...

...

bn = 〈−1, 1, 1, 1, ...,−1〉

We set out to show that B is a basis of Rn. To do this, we only need to show that

the collection of vectors in B are linearly independent since a collection of n linearly

independent vectors in Rn spans Rn. Suppose that a1b1 + ...+ anbn = 0. Then we have
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the system of equations given below:

0 = a1 − a2 − a3 − · · ·− an

0 = a1 − a2 + a3 + · · ·+ an

0 = a1 + a2 − a3 + · · ·+ an
...

...
...

0 = a1 + a2 + a3 + · · ·− an

If we add the first equation to the i-th equation we have that 2(a1 − ai) = 0, so a1 = ai

for all i ∈ {1, ...,n}. Thus, for all distinct p,q ∈ {1, ...,n} we have that ap = aq. By

substituting ai in for every term of the first equation we have that (n−1)ai = 0, therefore

ai = 0 and all constants are equal to zero. Thus, the collection of vectors in B are linearly

independent so B is a basis of Rn.

We will now prove that the collection {f(b1), ..., f(bn)} also forms a basis over Rn. Let

bi,bj ∈ B be arbitrary; observe that the hamming distance of bi and bj is two. Since

f ∈ Aut(Q ′
n) then we have that f(bi) and f(bj) have a hamming distance of two. Define

each f(bk) = 〈pk1, ...,pkn〉 and let c1, ..., cn be a collection of constants. Then we have the

system of equations given below:

0 = c1p11 + c2p21 + · · ·+ cnpn1

0 = c1p12 + c2p22 + · · ·+ cnpn2

0 = c1p13 + c2p23 + · · ·+ cnpn3
...

...
...

0 = c1p1n + c2p2n + · · ·+ cnpnn
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Since each f(bi) and f(bj) have hamming distance of two, then by subtracting the i-th

and j-th equation we have that 2(ci − cj) = 0. By the same argument used to show that

B is a basis, we see that {f(b1), ..., f(bn)} forms a basis of Rn.

Now, given #»x , #»y ∈ V(Q ′
n), then dist(x,y) = | #»x − #»y | = 2

√
d( #»x , #»y ) where d( #»x , #»y ) is

the hamming distance between #»x and #»y . Then we have that dist( #»x , #»y )2 = | #»x − #»y |2 =

( #»x − #»y ) • ( #»x − #»y ) = 4d(x,y). Now let f ∈ Aut(Q ′
n) and note that |f(x)| = |x| for

all #»x ∈ V(Q ′
n). From here, we compute the square of dist(f( #»x ), f( #»y )) to show that

f( #»x ) • f( #»y ) = #»x • #»y for all x,y ∈ V(Q ′
n).

dist(f( #»x ), f( #»y ))2 = dist( #»x , #»y )2

(f( #»x ) − f( #»y )) • (f( #»x ) − f( #»y )) = ( #»x − #»y ) • ( #»x − #»y )

f( #»x ) • f( #»x ) − 2f( #»x ) • f( #»y ) + f( #»y ) • f( #»y ) = #»x • #»x − 2 #»x • #»y + #»y • #»y

|f( #»x )|2 − 2f( #»x ) • f( #»y ) + |f( #»y )|2 = | #»x |2 − 2 #»x • #»y + | #»y |2

−2f( #»x ) • f( #»y ) = −2 #»x • #»y

f( #»x ) • f( #»y ) = #»x • #»y (2.1)

Now, with B = {b1, ...,bn} as a basis of Rn then let M ∈ GLn(R) such that f(
#»

bi) =

M
#»

bi. Next, let #»v ∈ V(Q ′
n) so #»v =

∑n
i=1 ai

#»

bi, and we have the following equation:

M #»v =

n∑
i=1

aiM
#»

bi =

n∑
i=1

aif(
#»

bi) (2.2)

Note that
#»
0 = #»v −

∑n
i=1 ai

#»

bi and therefore for each bi ∈ B we have that
#»
0 •

#»

bj =
(

#»v −
∑n
i=1 aibi

)
•

#»

bj. Now, we will employ equation 2.1 to show that
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f( #»v ) =
∑n
i=1 aif(

#»

bi) below; and therefore f( #»v ) =M #»v by 2.2.

#»
0 = #»v •

#»

bj −

n∑
i=1

aibi •
#»

bj

#»
0 = f( #»v ) • f(

#»

bj) −

n∑
i=1

aif(
#»

bi) • f(
#»

bj)

#»
0 =

(
f( #»v ) • f(

#»

bj) −

n∑
i=1

aif(
#»

bi)
)
• f(

#»

bj)

Since f(
#»

bj) 6=
#»
0 then we have that f( #»v ) −

∑n
i=1 aif(

#»

bi) = 0. From Lemma 1 and the fact

that {f(b1), ..., f(bn)} is a basis of Rn, we have that f( #»v ) =
∑n
i=1 aif(

#»

bi). Here we have

shown that for any #»v ∈ V(Q ′
n) we have that f( #»v ) =M #»v and the proof is complete.

Given this embedding, we show (rather trivially) that Aut(Q ′
2) = {±I} where I is the

2× 2 identity matrix below:

Proposition 4. Aut(Q ′
2) = {±I}.

Proof. First, it is obvious that I ∈ Aut(Q ′
2). Since Q ′

2 consists of the adjacent vertices with

associated vectors 〈−1,−1〉 and 〈1, 1〉, then −I transposes both of these vertices which is

clearly the only other automorphism of Q ′
2.

Next, we define the set Gen below, which we will later show is Aut(Q ′
n):

Definition 20. Let An be the set of diagonal n × n matrices with the non-zero entries being

either 1 or −1. Next, let Aen be the subset of An consisting of matrices with an even number of

−1’s on their diagonal. Analogously, Aen can be defined as follows:

Aen = {A ∈ An : det(A) = 1}

Further, let Gen = {AP : A ∈ Aen,P ∈ Pn}.
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Note that An and Aen are clearly groups under matrix multiplication since matrix

multiplication is associative, the set (which contains I, the identity element) is closed

under multiplication, and any element of An is its own inverse, or analogously for all

A ∈ An, the order of A is two.

Now we will show that Gen forms a group under matrix multiplication, and will

proceed to show that Gen is isomorphic with a semidirect product of the groups Aen and

Pn. In order to do this, there will be a few minor results required, which will be proved

below.

Proposition 5. For any P ∈ Pn and A ∈ An the matrix PAP−1 is an element of An.

Proof. Let A ∈ An and P ∈ Pn with π ∈ Sn being the permutation which permuted the

rows of I to yield P. Then we have the following:

P ×


(A)11 ... (A)1n

... ...
...

(A)n1 ... (A)nn

× PT =


(A)π(1)1 ... (A)π(1)n

... ...
...

(A)π(n)1 ... (A)π(n)n

× PT

=


(A)π(1)π(1) ... (A)π(1)π(n)

... ...
...

(A)π(n)π(1) ... (A)π(n)π(n)


Since A was a diagonal matrix then (A)ij = ±1 if and only if i = j. Since there exists

some k ∈ {1, ...,n} such that π(k) = i, then we have that (A)π(k)π(k) = ±1 and PAPT is a

diagonal matrix with non-zero entries being either 1 or −1.

Theorem 2. Every element G ∈ Gn has a unique decomposition as G = AP where A ∈ An and

P ∈ Pn.

Proof. Let A,A ′ ∈ An and P,P ′ ∈ Pn and suppose that AP = A ′P ′. Then we have the
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following:

AP = A ′P ′

A = A ′P ′P−1

A ′A = P ′P−1

Since A ′A ∈ An then AA ′ is a diagonal matrix with non-zero entries equal to either one

or negative one and since P ′P−1 ∈ Pn is a permutation matrix then its non-zero entries

can only equal one. Thus AA ′ = I, so P ′P−1 = I, and A = A ′ and P = P ′.

Observe that both of these results apply for Aen and Gen as well. Now we can prove

that Gen is a group, and that it is isomorphic to a semidirect product of Aen and Pn.

Theorem 3. Under matrix multiplication Gen is a group and it is isomorphic to a semidirect

product Aen oψ Pn.

Proof. First, we set out to show that Gen is a group under matrix multiplication. First,

let AP,BQ ∈ Gen with A,B ∈ Aen and P,Q ∈ Pn. Notice that APBQ = APBPTPQ and

PBPT ∈ Aen. Since A(PBPT ) ∈ Aen and PQ ∈ Pn then we have that APBQ ∈ Gen, thus Gen

is closed by matrix multiplication. Note that matrix multiplication is a binary associative

operation.

Next, by definition, I ∈ Aen where I is the n × n identity matrix, and I ∈ Pn, so if

G = AP where A = P = I then I ∈ Gen. Finally, let H ∈ Gen where H = CR where C ∈ Aen

and R ∈ Pn. Since C ∈ Gen and RT = R−1 ∈ Gen then RTC = R−1C = (CR)−1 ∈ Gen and we

have demonstrated that Gen is a group under matrix multiplication.

Let ψ : Pn → Aut(Aen) where ψ(X)(Y) = XYX−1. We claim that Gen ∼= Aen oψ P4.

Now we will show that |Gen| = |Aen oψ Pen|. Since Gen = AP with A ∈ Aen and P ∈ Pn

and this decomposition is unique then we have that |Gen| = |Aen||Pn| = 2n−1n!. Thus,
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|Gen| = |Aen oψ Pn|.

Next, let φ : Aen oψ Pn → Gen be φ(A,P) = AP. Let (B,Q) ∈ Aen oψ Pn. By Theorem

2 and the definition of φ we see that if φ(A,P) = φ(B,Q) then A = B and P = Q, thus

(A,P) = (B,Q) and φ is injective. Below we demonstrate that φ is a homomorphism

which completes the proof.

φ((P,Q), (R,S)) = φ(Pψ(Q)(R),QS)

= φ(PQRQ−1,QS)

= PQRQ−1QS

= PQRS

= φ(P,Q)φ(R,S)

Now we remind the reader that we have embedded Q ′
n into Rn, and by Theorem 1

we have that Aut(Q ′
n) 6 GLn(R). This result gives us the final employment of structure

required to prove that Aut(Q ′
n)

∼= AenoψPn. Before we do this, we will prove one lemma

which will serve us well in showing that Aut(Q ′
n) 6 Gen.

Proposition 6. If {a1, ...,an} is a collection of real numbers where n = 3 or n > 5 with the

following properties:

1.
∑n
i=1 an = ±1

2. After negating any two elements of {a1, ...,an} the sum of the elements is ±1.

Then the collection {a1, ...,an} contains n − 1 elements equal to zero and one element equal to

±1.
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Proof. First, let n = 3, then we have the following two equations from the properties

above:

a1 + a2 + a3 = ±1 (2.3)

a1 − a2 − a3 = ±1 (2.4)

In summing equation 2.3 and equation 2.4 we have that 2a1 ∈ {−2, 0, 2} thus a1 ∈

{−1, 0, 1}. Without loss of generality, we also have that a2,a3 ∈ {−1, 0, 1}. Observe that

if more than one value of a1,a2 and a3 is non-zero and satisfies property 1, then all

three must be non-zero. If we suppose that a1,a2 and a3 are all non-zero then by the

pigeonhole principle since a1,a2,a3 ∈ {±1} then two of these elements are equal to each

other, so without loss of generality let a1 = a2. By property 1 we have that a3 = −a1. If

we employ property 2 and negate a1 and a2 we have that −3ai = ±1, a contradiction.

Thus, there is exactly one non-zero element of {a1,a2,a3} and that value must be ±1.

Next, suppose that n > 4 and let i, j ∈ {1, ...,n} such that i 6= j. Given properties 1

and 2 we have the following equations:

a1 + · · ·+ an = ±1 (2.5)

a1 + · · ·− ai + · · ·− aj + · · · = ±1 (2.6)

By subtracting equation 2.6 from equation 2.5 then we have that 2(ai + aj) ∈ {−2, 0, 2},

thus ai + aj ∈ {−1, 0, 1}. Since i and j were chosen arbitrarily then for all x,y ∈ {1, ...,n}

with x 6= y we have that ax + ay ∈ {−1, 0, 1}. Since n > 4 then for unique m,p,q, r, s ∈

{1, ...,n} where m is fixed, then we have that am + ap,am + aq,am + ar, and am + as

are elements of the set {−1, 0, 1}. By pigeonhole principle there exists a pair of equations

which are equal, without loss of generality let am + ap = am + aq. Thus we have that

ap = aq. Since ap + aq ∈ {−1, 0, 1} then ap = ±1
2

or ap = aq = 0.

Suppose that ap = ±1
2
, then am = ±1

2
and for all z ∈ {1, ...,n} we have that az = ±1

2
.
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From property 1, suppose that
∑n
i=1 an = 1. Observe that in there are dn

2
e− 1 entries of

{a1, ...,an} which equal −1
2

and since n > 4 there we have at least two of these values.

Suppose aj,ak ∈ {a1, ...,an} such that aj = ak = −1
2
, then we have that the sum of the

elements of the set {a1, ...,−aj, ... − ak, ...,an} is 3, a contradiction. This same argument

holds if
∑n
i=1 an = −1 in that if we negate two of the dn

2
e− 1 entries of {a1, ...,an} which

equal 1
2
, then this sum will now be −3, a contradiction.

Thus, for all w 6= m we have that aw = 0, so for property 1 to hold, we have that

am = ±1 and the proof is complete.

The proposition above had clear restrictions on n with a sensitivity for the two cases

where n = 2 and n = 4. To cite these, we see that the sets {a1 = ±1
2
,a2 = ±1

2
} and

{b1 = ±1
2
,b2 = ±1

2
,b3 = ±1

2
,b4 = ∓1

2
} provide these cases. We will see that the exis-

tence of these sets create an important distinction in establishing that when n = 4 the

automorphism group of Q ′
n is not Gen. The case of n = 2 can be disregarded since we

already have that Aut(Q ′
2) = {±I}. We now have all necessary machinery to show that

Aut(Q ′
n)

∼= Gen where n 6= 4 below:

Theorem 4. Let n 6= 4 and n > 2, and define M ∈ Gen to be the map sending #»v ∈ V(Q ′
n) to

M #»v , then Aut(Q ′
n)

∼= Gen.

Proof. Let n ∈ N and M ∈ GLn(R) such that M = AP where A ∈ Aen and P ∈ Pn. Define

the function M : Rn → Rn such that where #»a ∈ Rn then M( #»a) = M #»a . Note that the

mapping M is a bijection over Rn → Rn. We must now show that if #»a ∈ V(Q ′
n) that

M #»a ∈ V(Q ′
n).

Suppose that #»a ∈ V(Q ′
n). Then we have that #»a = 〈a1, ...,an〉 where |ai| = 1 for all

i ∈ {1, ...,n}. Further, let p be a non-negative integer and k1, ...,k2p be the components

of #»a such that where j ∈ {1, ..., 2p} we have that akj = −1. Clearly, P #»a ∈ V(Q ′
n) since

permuting the coordinates of a vertex ofQ ′
n will still yield a vertex ofQ ′

n. Now let q be a

non-negative integer (obviously less than or equal to bn
2
c) such that there are a 2q entries
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of −1 in A. Then we have that AP #»a will have a 2p − 2q negative entries. Clearly, for all

r ∈ {1, ...,n} we have that for r ∈ {1, ...,n} we have that a ′
r = ±1 where AP #»a = 〈a ′

1, ...,a
′
n〉.

Thus, we have that M : V(Q ′
n)→ V(Q ′

n).

Now, let #»x #»y ∈ E(Q ′
n). In order to prove that Gen 6 Aut(Q ′

n) we need to show

that M #»xM #»y ∈ E(Q ′
n). Note that if we permute the coordinates of #»x and #»y then the

two vectors will still differ in exactly two positions, thus P #»xP #»y ∈ E(Q ′
n). Next, recall

that let A has 2q negative ones where q ∈ {0, 1, ..., bn
2
c}. In negating the 2q coordinates

of P #»x and P #»y note that the two vectors will still differ in exactly two positions, thus

AP #»xAP #»y ∈ E(Q ′
n) so by definition M #»xM #»y ∈ E(Q ′

n) and Gen 6 Aut(Q ′
n).

Now we set out to show that Aut(Q ′
n) 6 Gen. Let #»v ∈ V(Q ′

n), then as seen above

M #»v ∈ V(Q ′
n). We now set out to show that an arbitrary M ∈ Aut(Q ′

n) will be an

element of Gen, thus Aut(Q ′
n) 6 Gen.

Let [ak1...akn] be an arbitrary k-th row ofM and #»a = 〈1, ..., 1〉 then in calculatingM #»a

we have that ak1 + · · ·+akn = ±1. Notice that in negating any two components of #»a we

still have an element of Q ′
n. Without loss of generality let

#»

a ′ have −1 entries in it’s i-th

and j-th position, then the k-th entry of M
#»

a ′ is ak1 + · · ·− aki + · · ·− akj · · ·+ akn = ±1.

Observe that both properties of the set outlined in Proposition 6 are met by {ak1...akn}

so we have that when n = 3 or n > 4 every row of M has exactly one non-zero entry

and that entry is ±1.

Since the rows of M are linearly independent by definition, then M ∈ Gen. Note that

we also have that we can say the same of columns of M as we can the rows of M since

it is obvious that if M ∈ Gen then MT ∈ Gen. Therefore, Aut(Q ′
n) 6 Gen so Aut(Q ′

n) = Gen

when n = 3 and n > 5 and the proof is complete.

In essence, we have shown that the elements of Aut(Q ′
n) can be described as n × n

(of course, when n 6= 4) permutation matrices where an even number of 1s are replaced

with −1s. Figure 2.1 demonstrates the vertices Q ′
3 being acted upon by an element of
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Aut(Q ′
3) by left multiplication.

100

010

001

111 〈1, 1, 1〉

〈−1,−1, 1〉

〈−1, 1,−1〉

〈1,−1,−1〉

R =

0 −1 0
1 0 0
0 0 −1



001

111

010

100 〈1,−1,−1〉

〈−1, 1,−1〉

〈1, 1, 1〉

〈−1,−1, 1〉

Figure 2.1: The graph Q ′
3 and Q ′

3 with R, an element of Aut(Q ′
3), acting on V(Q ′

3).
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Chapter 3

The Fourth Dimension

Observe in Figure 3.1 that each vertex in Q ′
4 is adjacent to every other vertex except its

binary inverse. It is now obvious that a transposition of a vertex in Q ′
4 with its binary

inverse is an automorphism. Since there are four pairs of non-adjacent vertices then

we have 24 automorphisms which transpose pairs of non-adjacent vertices. Similarly,

observe that if we permute the vertices 0000 and 1100 then we have also permuted

1111 and 0011 respectively. By extension, any permutation the vertices 0000, 1100, 1010,

and 1001 produces and automorphism, and these permutations force a permutation of

the vertices not mentioned. Thus, we have 4! of these automorphisms which coupled

with the transpositions mentioned earlier yields a total of 4!24 automorphisms. This

calculation is verified by Brouwer, Cohen, and Neumaier in their text Distance Regular

1111 1001

1010

1100

0110 0000

0011

0101

1111 1001

1010

1100

0110 0000

0011

0101

Figure 3.1: The graph Q ′
4 and it’s complement.
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Graphs [4].

We will begin the exposition of Aut(Q ′
4) with an embedding in R4. Again, we do this

so that we can realize Aut(Q ′
4) 6 GL4(R).

First we lay out an embedding of Q ′
4 into R4 different from our previous embedding.

This is done because the automorphism group of Q ′
4 in our usual embedding is more

complicated in nature and will require machinery which will be laid out later. In R4

define the set G below:

G = {±〈1, 0, 0, 0〉,±〈0, 1, 0, 0〉,±〈0, 0, 1, 0〉,±〈0, 0, 0, 1〉}

Next, we define the mapping f : V(Q ′
4)→ G below:

x f(x) x f(x)

0000 〈1, 0, 0, 0〉 = v1 1111 〈−1, 0, 0, 0〉 = v5

1100 〈0, 1, 0, 0〉 = v2 0011 〈0,−1, 0, 0〉 = v6

1010 〈0, 0, 1, 0〉 = v3 0101 〈0, 0,−1, 0〉 = v7

1001 〈0, 0, 0, 1〉 = v4 0110 〈0, 0, 0,−1〉 = v8

Next, we let the images of f be the terminal points on the vectors given in R4. These

points will be the vertices of our embedding of Q ′
n in R4. Next, let two vectors #»u , #»v ∈ G

be adjacent if and only if #»u 6= − #»v . From here, it is obvious that f is an isomorphism in

R4; from henceforth when referring to V(Q ′
4) we will be referring to the images of the

function f: Next, define the set G4 below:

Definition 21. Let A4 be defined as the set of diagonal 4× 4 matrices with the non-zero entries

being either 1 or −1. Next, let P4 be defined as the set of 4× 4 permutation matrices. Further, let

G4 = {AP : A ∈ A4,P ∈ P4}. We will call the elements G4 signed permutation matrices.

Now we will prove that the set of signed permutation matrices form a group under

matrix multiplication and that G4 is isomorphic with a semi-direct product of the groups

A4 and P4. In order to do that, we will first demonstrate that every 4 × 4 signed per-
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mutation matrix has a unique decomposition into a products of an elements of A4 and

P4.

Theorem 5. Every element G ∈ Gn has a unique decomposition as G = AP where A ∈ An and

P ∈ Pn.

Proof. First, G has such a decomposition by the definition of G4. Next, let A,A ′ ∈ An

and P,P ′ ∈ Pn and suppose that AP = A ′P ′. Then we have the following:

AP = A ′P ′

A = A ′P ′P−1

A ′A = P ′P−1

Since A ′A ∈ An then AA ′ is a diagonal matrix with non-zero entries equal to either one

or negative one and since P ′P−1 ∈ Pn is a permutation matrix then its non-zero entries

can only equal one. Thus AA ′ = I, so P ′P−1 = I, and A = A ′ and P = P ′.

Theorem 6. Under matrix multiplication G4 is a group and it is isomorphic to a semidirect

product A4 oψ P4.

Proof. First, we set out to show that G4 is a group under matrix multiplication. First,

let A,B ∈ A4 and P,Q ∈ P4 and AP,BQ ∈ G4. Notice that APBQ = APBPTPQ and

PBPT ∈ A4. Since A(PBPT ) ∈ A4 and PQ ∈ P4 then we have that APBQ ∈ G4, thus

G4 is closed by matrix multiplication, which is also known to be an associative, binary

operation. Next, by definition, I ∈ A4 where I is the 4× 4 identity matrix, and I ∈ P4, so

if G = AP where A = P = I then I ∈ G4. Finally, let H ∈ G4 where H = CR where C ∈ A4

and R ∈ P4. Since C ∈ G4 and RT = R−1 ∈ G4 then RTC = R−1C = (CR)−1 ∈ G4 and we

have demonstrated that G4 is a group under matrix multiplication.

Let ψ : P4 → Aut(A4) where ψ(X)(Y) = XYXT . We claim that G4
∼= A4 oψ P4.
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Now we will show that |G4| = |A4 oψ P4|. Since G4 = AP with A ∈ A4 and P ∈ P4

and this decomposition is unique then we have that |G4| = |A4||P4| = 244!. Thus, |G4| =

|A4 oψ P4|.

Next, let φ : A4 oψ P4 → G4 be φ(F,P) = FP. Let (H,Q) ∈ A4 oψ P4. By Theorem 5

and the definition of φ we see that if φ(A,P) = φ(B,Q) then A = B and P = Q, thus

(A,P) = (B,Q) and φ is injective. Below we demonstrate that φ is a homomorphism

which completes the proof.

φ((P,Q), (R,S)) = φ(Pψ(Q)(R),QS)

= φ(PQRQ−1,QS)

= PQRQ−1QS

= PQRS

= φ(P,Q)φ(R,S)

Now, let G4 act on the vertices of Q ′
n by left multiplication. For example, given the

signed permutation matrix R below, we will demonstrate how R is a unique representa-

tive of an automorphism of Q ′
4.

R =



−1 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 1


=



−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


×



1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


= AP

Observe that since the cyclic permutation associated with the given permutation ma-

trix P is (23), then by multiplying each vector in V(Q ′
4) on the left by R we permute

the second and third components of the vectors. Naturally, the vectors ±〈1, 0, 0, 0〉 and
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±〈0, 0, 0, 1〉 will not be changed in permuting their second and third components, so

the vertices associated with these vectors will not be permuted by P in the decompo-

sition of R. However, the vertices associated with the vectors 〈0, 1, 0, 0〉 and 〈0, 0, 1, 0〉,

and the vertices associated with the vectors 〈0,−1, 0, 0〉 and 〈0, 0,−1, 0〉 will be permuted

by P in the decomposition of R. Next, when A acts on the vectors associated with the

vertices of V(Q ′
4) then we will clearly be negating the first and third component. This

will leave vertices associated with the vectors ±〈0, 1, 0, 0〉 and ±〈0, 0, 1, 0〉 unaffected,

but will transpose the non-adjacent vertices associated with the vectors ±〈1, 0, 0, 0〉 and

±〈0, 0, 1, 0〉. Figure 3.2 presents a juxtaposition of the original graph of Q ′
4 and Q ′

4 with

R acting on V(Q ′
4).

We will now set out to show that the automorphism group of Q ′
4 is isomorphic with

G4. Before we do this, first note that we are embedding Q ′
4 into R4 so that we can realize

Aut(Q ′
4) 6 GL4(R).

Theorem 7. Aut(Q ′
4)

∼= G4.

Proof. LetM ∈ G4 such thatM = AP where A ∈ A4 and P ∈ P4. Next, define the function

M : V(Q ′
4) → V(Q ′

4) such that M( #»a) =M #»a where #»a ∈ V(Q ′
n). Let #»a ,

#»

b ∈ V(Q ′
n) such

that M #»a = M
#»

b . By multiplying both sides of this result on the left by M−1 we have

that #»a =
#»

b which implies the function is injective. Since M maps V(Q ′
4) to itself, then

we have the set of pre-images of M has the same cardinality as the set of its images,

thus M is a bijection. Next, let #»u and #»v be adjacent vertices in V(Q ′
4). By the adjacency

rule of our embedding since #»u and #»v are adjacent then #»u 6= − #»v so when we multiply

both sides of this equation by M we have that M #»u 6= −M #»v . Therefore M #»u and M #»v are

adjacent. Now suppose that M #»u and M #»v are adjacent. Then we have that M #»v 6=M #»u ,

and by multiplying both sides of this inequality by M−1 we have that #»u 6= #»v . Therefore

we have that #»u and #»v are adjacent. Since adjacency is preserved by the function M then

G4 6 Aut(Q ′
4).

Finally, since |G4| = |Aut(Q ′
4)| = 4!24 and G4 6 Aut(Q ′

4) then we have that G4
∼=
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Aut(Q ′
4) and the proof is complete.

In the process of finalizing the above results another interesting expression ofAut(Q ′
4)

presented itself which allows us to return to the first embedding of Q ′
4 into R4. Figura-

tively speaking, the semidirect product presented in the preceding portion of this chap-

ter is more “heavy handed” in its expression of the automorphisms of Q ′
4 in that the

product is between the set of objects which flip the P2 components of Q ′
4 and the set of

objects which permute the P2 components of Q ′
4 (the group P4). Before we will expose

the nature of this group, we must recall our original expression of the vectors of Q ′
4 in

R4.

Let g : V(Q ′
4)→ H where H is the set of vectors in R4 with given below:

H = {h : h = 〈±1,±1,±1,±1〉, and h has an even number of components that equal − 1}

The function g maps the vertex x to the vector #»x where every 1 in the i-th position of x

results in a 1 in the i-th components in #»x and every 0 in the j-th position of x results in

a −1 in the j-th component in #»x . This mapping is demonstrated below:

x g(x) x g(x)

0000 〈−1,−1,−1,−1〉 = v1 1111 〈1, 1, 1, 1〉 = v5

1100 〈1, 1,−1,−1〉 = v2 0011 〈−1,−1, 1, 1〉 = v6

1010 〈1,−1, 1,−1〉 = v3 0101 〈−1, 1,−1, 1〉 = v7

1001 〈1,−1,−1, 1〉 = v4 0110 〈−1, 1, 1,−1〉 = v8

As in the previous example of the embedding, we will further refer to H as V(Q ′
4).

As in the previous embedding we also see that two vertices #»u and #»v are adjacent if and

only if #»u 6= − #»v .

In order to define the set of objects which transpose sets of non-adjacent vertices in

Q ′
n we need to establish some machinery. First, let 1 be the 4× 4 matrix with 1 in every

entry. Next, let P1,P2 and P3 be the permutation matrices associated with the cyclic
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permutations (12)(34), (13)(24), and (14)(23) respectively. These matrices are shown

below:

P1 =



0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


P2 =



0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


P3 =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


Let P = {I,P1,P2,P3} for shorthand.

Now, let f1 : V(Q ′
4)→ V(Q ′

4) be defined as f1( #»x ) = I− 1
2
1 #»x . This mapping is shown

below:

#»x f1(
#»x ) #»x f1(

#»x )

〈−1,−1,−1,−1〉 〈1, 1, 1, 1〉 〈1, 1, 1, 1〉 〈−1,−1,−1,−1〉

〈−1,−1, 1, 1〉 〈−1,−1, 1, 1〉 〈1, 1,−1,−1〉 〈1, 1,−1,−1〉

〈−1, 1,−1, 1〉 〈−1, 1,−1, 1〉 〈1,−1, 1,−1〉 〈1,−1, 1,−1〉

〈−1, 1, 1,−1〉 〈−1, 1, 1,−1〉 〈1,−1,−1, 1〉 〈1,−1,−1, 1〉

Observe that f1 transposed the vertices associated with the vectors 〈1, 1, 1, 1〉 and 〈−1,−1,−1,−1〉

and left all over vertices fixed. For shorthand we will let F1 = I − 1
2
1, so f1( #»x ) = F1

#»x .

Further, we define F2, F3, and F4 below:

F2 = −(P1 −
1
2
1) F3 = −(P2 −

1
2
1) F4 = −(P3 −

1
2
1)

Let f2 : V(Q ′
4)→ V(Q ′

4) be the function f2( #»x ) = F2
#»x . This mapping is shown below:

#»x f2(
#»x ) #»x f2(

#»x )

〈−1,−1,−1,−1〉 〈−1,−1,−1,−1〉 〈1, 1, 1, 1〉 〈1, 1, 1, 1〉

〈−1,−1, 1, 1〉 〈1, 1,−1,−1〉 〈1, 1,−1,−1〉 〈−1,−1, 1, 1〉

〈−1, 1,−1, 1〉 〈−1, 1,−1, 1〉 〈1,−1, 1,−1〉 〈1,−1, 1,−1〉

〈−1, 1, 1,−1〉 〈−1, 1, 1,−1〉 〈1,−1,−1, 1〉 〈1,−1,−1, 1〉

34



In the same way that f1 only transposed one pair of non-adjacent vertices and fixed

the rest of the vertices, f2 will do the same but the permuted pair of vertices will be the

ones with associated vectors 〈−1, 1,−1, 1〉 and 〈1,−1, 1,−1〉. Now we define f3 : V(Q ′
4)→

V(Q ′
4) to be f3( #»x ) = F3

#»x and f4 : V(Q ′
4) → V(Q ′

4) to be f4( #»x ) = F4
#»x and display these

mappings below:

#»x f3(
#»x ) #»x f3(

#»x )

〈−1,−1,−1,−1〉 〈−1,−1,−1,−1〉 〈1, 1, 1, 1〉 〈1, 1, 1, 1〉

〈−1,−1, 1, 1〉 〈−1,−1, 1, 1〉 〈1, 1,−1,−1〉 〈1, 1,−1,−1〉

〈−1, 1,−1, 1〉 〈1,−1, 1,−1〉 〈1,−1, 1,−1〉 〈−1, 1,−1, 1〉

〈−1, 1, 1,−1〉 〈−1, 1, 1,−1〉 〈1,−1,−1, 1〉 〈1,−1,−1, 1〉

#»x f4(
#»x ) #»x f4(

#»x )

〈−1,−1,−1,−1〉 〈−1,−1,−1,−1〉 〈1, 1, 1, 1〉 〈1, 1, 1, 1〉

〈−1,−1, 1, 1〉 〈−1,−1, 1, 1〉 〈1, 1,−1,−1〉 〈1, 1,−1,−1〉

〈−1, 1,−1, 1〉 〈−1, 1,−1, 1〉 〈1,−1, 1,−1〉 〈1,−1, 1,−1〉

〈−1, 1, 1,−1〉 〈1,−1,−1, 1〉 〈1,−1,−1, 1〉 〈−1, 1, 1,−1〉

From the mappings above we see that f3 only permuted the vertices associated with

the vectors 〈−1, 1,−1, 1〉, and 〈1,−1, 1,−1〉, and similarly f4 only permuted the pair of

vertices associated with the vectors 〈−1, 1, 1,−1〉, and 〈1,−1,−1, 1〉. In order to use the

matrices F1, ..., F4 to form a group, we establish relations between these matrices below:

Proposition 7. The matrices F1, F2, F3 and F4 are all of order two.

Proof. Let Fi = ±(P − 1
2
1) where P ∈ P and i ∈ {1, ..., 4}. Since P ∈ P then we have that
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P2 = I. Now we complete the proof by calculating (Fi)
2 below:

(Fi)
2 = (P −

1

2
1)(P −

1

2
1)

= P2 −
1

2
P1−

1

2
1P +

1

4
41

= I−
1

2
1−

1

2
1+ 1

= I

Now, if the set {F1, ..., F4} is used as generators coupled with the relations that |Fi| = 2

and that FiFj = FjFi for all i, j ∈ {1, ..., 4} then we can define the group F, and with

another definition characterize its elements:

Definition 22. Let F = 〈{F1, F2, F3, F4}〉. A matrix F ∈ F is called a flip matrix.

Definition 23. A matrix X is symmetric if and X = XT .

We will now demonstrate relationships between flip matrices which will serve in

presenting another representation of Aut(Q ′
4), this one using the embedding we first

presented in Chapter 2.

Proposition 8. The matrices F1, F2, F3 and F4 commute with one another.

Proof. Let and k1,k2 ∈ P, so k1k2 = k2k1. Let i and j be distinct elements of {1, ..., 4} and
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define Fi = ±(k1 − 1
2
1) and Fj = ±(k2 − 1

2
1), then we complete the proof below:

FiFj = ±(k1 −
1

2
1)(k2 −

1

2
1)

= ±(k1k2 −
1

2
k11−

1

2
1k2 +

1

4
41)

= ±(k1k2 −
1

2
1−

1

2
1+ 1)

= ±(k1k2)

= ±(k2k1 −
1

2
1−

1

2
1+ 1)

= ±(k2k1 −
1

2
k21−

1

2
1k1 +

1

4
41)

= ±(k2 −
1

2
1)(k1 −

1

2
1)

= FjFi

Since the matrices F1, ..., F4 commute with one another, then F is abelian. Thus each

element of F is of the form
∏n
i=1 F

αj
i where i ∈ {1, ..., 4} and αj ∈ Z2. This expression of

flip matrices will serve us in the proposition below:

Proposition 9. Every flip matrix is symmetric.

Proof. First, we will show that for all Fi where i ∈ {1, ..., 4} that Fi = FTi . In the case of F1

we have that FT1 = (I−1
2
1)T = IT−1

2
1T = F1. Note that P1,P2, and P3 are their own inverses

and since they are permutation matrices then their inverses are their transpositions. Thus

for i ∈ {1, ..., 3} we have the following:

−(Pi −
1

2
1)T = −(PTi −

1

2
1T ) = −(Pi −

1

2
1)T

Let F ∈ F such that F = Fα1
1 F

α2
2 F

α3
3 F

α4
4 where αj ∈ {0, 1} for all j ∈ {1, ..., 4}. We
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complete the proof below:

FT = (Fα1
1 F

α2
2 F

α3
3 F

α4
4 )T

= (Fα4
4 )T (Fα3

3 )T (Fα3
2 )T (Fα4

2 )T

= Fα4
4 F

α3
3 F

α2
2 F

α1
1

= Fα1
1 F

α2
2 F

α3
3 F

α4
4 = F

From here, we now set out to show that for all P ∈ P4, the element PFPT where

F ∈ F is contained in F. Before we do this, we will show that the set {I,P1,P2,P3} forms

a normal subgroup in P4 by showing that their associated permutations for a normal

subgroup in S4.

Definition 24. Let G be a group and N 6 G. The subgroup N is a normal subgroup of G if

gng−1 ∈ N for all n ∈ N and all g ∈ G.

Proposition 10. The set K = {I, (12)(34), (13)(24), (14)(23)} forms a normal subgroup in S4.

Proof. First, we will show that the set K is closed under composition. We will demon-

strate this with the Cayley Table below:

I (12)(34) (13)(24) (14)(23)

I I (12)(34) (13)(24) (14)(23)

(12)(34) (12)(34) I (14)(23) (13)(24)

(13)(24) (13)(24) (14)(23) I (12)(34)

(14)(23) (14)(23) (13)(24) (12)(34) I

Now we set out to show that for any k ∈ K and g ∈ G that gkg−1 ∈ K. Clearly, if k = I

then gIg1 = gg−1 = I ∈ K. Now suppose that k 6= I. Let k = (ab)(cd) where a,b, c, and

d are unique elements of {1, ..., 4}. Then we have that gkg−1 = (g(a) g(b))(g(c) g(d)).
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Since g ∈ S4 then g(a),g(b),g(c), and g(d) are unique elements of the set {1, ..., 4} and

gkg−1 ∈ K.

From this result we can conclude that the set P = {I,P1,P2,P3} forms a normal sub-

group of P4 under matrix multiplication. We will use this fact in the proposition below:

Proposition 11. For all P ∈ P4 and F ∈ F the matrix PFPT is contained in F.

Proof. First, let P ∈ P4, the we will prove that PFiPT ∈ {F1, ..., F4} for all i ∈ {1, ..., 4}. In

the case that i = 1 we have that PFiPT = P(I − 1
2
1)PT = (PPT − 1

2
1) = Fi. Note from

proposition 8 we have that PPi−1P
T = Pk ∈ P where k ∈ {2, 3, 4} and i 6= 1. Now we

calculate PFiPT below:

P[−(Pi−1 −
1

2
1]PT = −(PPi−1P

T −
1

2
P1PT )

= −(Pk −
1

2
1)

Since Pk ∈ P where k ∈ {2, 3, 4} then we have that PFiPT ∈ {F1, ..., F4} for all P ∈ P4. Now

we will show that where for some F ∈ F where F = Fα1
1 F

α2
2 F

α3
3 F

α4
4 where αj ∈ {0, 1} for all

j ∈ {1, ..., 4}. We calculate PFPT below:

P(Fα1
1 F

α2
2 F

α3
3 F

α4
4 )PT = PFα1

1 P
TPFα2

2 P
TPFα3

3 P
TPFα4

4 P
T

= (PFα1
1 P

T )(PFα2
2 P

T )(PFα3
3 P

T )(PFα4
4 P

T )

Since PFαii P
T ∈ {F1, ..., F4} for all i ∈ {1, ..., 4} and αi ∈ {0, 1} and F is closed under

multiplication then we have that PFPT ∈ F for all P ∈ P4 and F ∈ F.

We can now examine the specific elements of F as products of F1, F2, F3 and F4. From

Proposition 7 we see that FiFj = ±kikj where ki,kj ∈ P and i, and j are unique elements

of {1, ..., 4}. Thus, for all P ∈ P, the matrices P and −P are matrices in F. Using this,

we see that the matrices of F which are products of three of the matrices F1, ..., F4 is
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calculated below (let m ∈ {1, ..., 4} with m 6= i 6= j):

FiFjFm = ±(kikj)(km −
1

2
1)

= ±(kikjkm −
1

2
kikj1)

= ±(kikjkm −
1

2
1)

Here we see that the product of three of the matrices of F1, ..., F4 is either one of the

F1, ..., F4 matrices or it’s negation, so for all w ∈ {1, ..., 4} we have that ±Fw ∈ F. Finally,

observe that the product of all four matrices F1, ..., F4 will be equal to −(k1k2k3k4) = −I.

In short, we can exhaustively list all sixteen elements of F accordingly:

F = {±I,±F1,±F2,±F3,±F4,±P1,±P2,±P3}

From here, we can now define H4, which we will eventually prove is isomorphic to

Aut(Q ′
4).

Definition 25. Let Hn = {FP : F ∈ F,P ∈ Pn} be the set of dihedral matrices.

We now set out to show that every element of Hn has a unique decomposition of a

flip matrix and a permutation matrix. This will be an important result in showing that

H4
∼= F oψ P4. This result will also be pivotal in showing that H4

∼= Aut(Q ′
4) in that we

will be able to use the fact that |H4| = |F oψ P4| = 4!24.

Theorem 8. Every element G ∈ H4 has a unique decomposition as G = FP where F ∈ F and

P ∈ P4.

Proof. Let F, F ′ ∈ F and P,P ′ ∈ P4 and suppose that FP = F ′P ′. Then we have the

following:

FP = F ′P ′

PTFP = PTF ′P ′
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Since PTFP ∈ F then PTF ′P ′ ∈ F, thus PTF ′P ′ is symmetric. Since PTF ′P ′ is symmetric

then P ′ = (PT )T = P. Thus we have that F = F ′ and the proof is complete.

Theorem 9. Under matrix multiplication H4 is a group and it is isomorphic to a semidirect

product F oψ P4.

Proof. First, we set out to show that H4 is a group under matrix multiplication. First, let

F,H ∈ F and P,Q ∈ P4 and FP,HQ ∈ H4. Notice that FPHQ = FPHPTPQ and PHPT ∈ F.

Since F(PHPT ) ∈ F and PQ ∈ P4 then we have that FPHQ ∈ H4, thus H4 is closed by

matrix multiplication, which is also known to be an associative, binary operation. Next,

by definition, I ∈ F where I is the 4 × 4 identity matrix, and I ∈ P4, so if G = FP where

F = P = I then I ∈ H4. Finally, let H ∈ F where H = CR where C ∈ F and R ∈ P4. Since

C ∈ H4 and RT = R−1 ∈ H4 then RTC = R−1C = (CR)−1 ∈ H4 and we have demonstrated

that H4 is a group under matrix multiplication.

Let ψ : P4 → Aut(F) where ψ(X)(Y) = XYXT . We claim that H4
∼= F oψ P4.

Now we will show that |H4| = |F oψ P4|. Since H4 = FP with F ∈ F and P ∈ P4

and this decomposition is unique then we have that |H4| = |F||P4| = 4!24. Thus, |G4| =

|A4 oψ P4|.

Next, let φ : F oψ P4 → H4 be φ(F,P) = FP. Let (H,Q) ∈ F oψ P4. By Theorem 8,

and the definition of φ we see that if φ(A,P) = φ(B,Q) then F = H and P = Q, thus

(F,P) = (H,Q) and φ is injective. Let J,K ∈ F and L,M ∈ P4. Below we demonstrate
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that φ is a homomorphism which completes the proof.

φ((J,L), (K,M)) = φ(Jψ(L)(K),LM)

= φ(JLKL−1,LM)

= JLKL−1LM

= JLKM

= φ(J,L)φ(K,M)

We now show that H4
∼= Aut(Q ′

4) below:

Theorem 10. Aut(Q ′
4)

∼= G4.

Proof. Let M ∈ H4 such that M = FP where F ∈ F and P ∈ P4. Next, define the function

M : V(Q ′
4) → V(Q ′

4) such that where #»a ∈ V(Q ′
n), M( #»a) = M #»a . Since M ∈ GL4(R)

then we have that the function M is injective. Since M maps V(Q ′
4) to itself, then we

have the set of pre-images of M has the same cardinality as the set of its images, thus

M is a bijection. Next, let #»u and #»v be adjacent vertices in V(Q ′
4). By the adjacency rule

of our embedding since #»u and #»v are adjacent then #»u 6= − #»v . From here, we multiply

both sides of this equation by M we have that M #»u 6= −M #»v , therefore M #»u and M #»v are

adjacent. Now suppose that M #»u and M #»v are adjacent. Then we have that M #»v 6=M #»u ,

and by multiplying both sides of this inequality by M−1 we have that #»u 6= #»v . Therefore

we have that #»u and #»v are adjacent. Since adjacency is preserved by the function M then

H4 6 Aut(Q ′
4).

Finally, since |H4| = |Aut(Q ′
4)| = 4!24 and H4 6 Aut(Q ′

4) then we have that H4
∼=

Aut(Q ′
4) and the proof is complete.
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Figure 3.2: The graph Q ′
4 and Q ′

4 with R acting on V(Q ′
4).
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Chapter 4

A Connection Between Halved Cubes

And Circulants

An interesting relationship between halved cubes and circulants can be proven given our

representation of Aut(Q ′
n). The forthcoming theorem states that Q ′

n is a circulant if and

only if n 6 4.

Proving the converse requires only depictions of the specific circulants which have

an isomorphism to Q ′
n when n ∈ {1, 2, 3, 4}. The proof of the forward direction of this

theorem is more involving: the core idea of the proof is that the order of an element in

Aut(Q ′
n) never gets large enough to equal the number of vertices in Q ′

n when n > 4.

Given research from Eric Weisstein [5] we have the following:

A graph G is a circulant if and only if the automorphism group of G contains at least one

permutation consisting of a minimal cycle of length |V(G)|.

Using this result we will show that when n > 4 there is no M ∈ Aut(Q ′
n) such that

|M| = 2n−1. This will require proving a few key lemmas which will give structure to the

maximal orders of elements of Aut(Q ′
n) where n > 4 which will provide the necessary

machinery to prove that Q ′
n is a circulant if and only if n 6 4.
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Theorem 11. The halved cube Q ′
n is a circulant if and only if n 6 4.

Proof. First, we prove that if Q ′
n is a circulant then n 6 4 by proving its contrapositive.

First, we suppose that n > 4, and we set out to show that Q ′
n is not a circulant. Let

(A,P) ∈ Aen oψ Pn, then will show that the order of (A,P) is either |P| or 2|P| below.

Lemma 2. Let (A,P) ∈ Aen oψ Pn such that |P| = k, then |(A,P)| = k or |(A,P)| = 2k.

Consequently, if AP ∈ Gen then |AP| = |P| or |AP| = 2|P|.

Proof. First, let A ∈ Aen and P ∈ Pn and let r 6 n. First, we will show by induction that

(A,P)r = ((AP)r−1AP1−r,Pr).

Beginning r = 1, we trivially have the following:

(A,P)1 = ((AP)1−1AP1−1,P1)

= (A,P)

Next, suppose that for all r > 1, (A,P)r = ((AP)r−1AP1−r,Pr). Now we check the (r+ 1)-

st case below:

(A,P)r+1 =(A,P)[(A,P)r]

= (A,P)((AP)r−1AP1−r,Pr)

= (AφP((AP)
r−1AP1−r),Pr+1)

= (AP[(AP)r−1AP1−r]P−1,Pr+1)

= ((AP)rAP−r,Pr+1)

= ((AP)(r+1)−1AP1−(r+1),Pr+1)

and this portion of the proof is complete.

Note: (AP)r−1A = A(PA)r−1 so we also have that (A,P)r = (A(PA)r−1P1−r,Pr). Now,

let |P| = k then we see that P1−k = P, so we have the following:
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(A,P)k = (A(PA)k−1P1−k,Pk) = (A(PA)k−1P, I)

In the case that (PA)1−k = APk−1 we have that (A,P)k = (I, I) and the order of (A,P) is

k. Rather, we have that if (PA)1−k = APk−1 then the order of (A,P) will be the same as

the order of P. We will now show that any element of Aen oψ Pn raised to the 2k power

is the identity element. This implies that any element of Aen oψ Pn which isn’t of order

|P| is of order 2|P|.

We now prove that (A,P)2k is the identity. We calculate (A,P)2k below (note that

P1−2k = PP−2k = P(P−2)k = P):

(A,P)2k = (A(PA)2k−1P1−2k,P2k)

= (A(PA)2k−1P, I)

= ((AP)2k, I)

We now set out to show that (AP)2k = I. Below, we calculate (AP)2k and re-express our

calculation in such a way that we have a product of elements of Aen.

(AP)2k = A(PAP−1)(P2AP−2)(P3AP−3)...(PkAP−k)...(P2k−1AP1−2k)P2k

= A(PAP−1)(P2AP−2)(P3AP−3)...(PkAP−k)...(P2k−1AP1−2k)

By Proposition 3 we have that PrAP−r ∈ Aen for all r ∈ {1, ...,k} and Aen is commutative

(since every element of Aen is of order two), then we can commute all of the terms of

the product above. We commute the terms in parentheses in such a way that we have

the terms PAP−1 next to PkAP−k, P2AP−2 next to Pk+1AP−k−1, and for we continue this

process such that where t ∈ {3, ..., 2k− 1} we have terms PtAP−t commuted to be next to
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Pk+tAP−k−t. Note that underlined terms are multiplied in the proceeding line:

(A,P)2k = A(PkAP−k)(PAP−1)(Pk+1AP−k−1)...(PtAP−t)(Pk+tAP−k−t)...

= A(A)(P1AP−1)(Pk+1AP−k−1)(P2AP−2)(Pk+2...(PtAP−t)(Pk+tAP−k−t)...

= P(APk)(AP−k+1)(APk)(AP−k+1)...(AP−k+1)

= P(A)(AP−k+1))(A)((AP−k+1))...(AP−k+1)

= P(AA)P−k+1(AA)P−k+1...(AA)P−k+1

= P(P−k+1)2k−1

= P(P)2k−1

= P2k

= I

Therefore, given a permutation matrix of order k, in multiplying this permutation matrix

by an element of Aen then either the order of the initial permutation matrix is preserved,

or the the order of the resulting matrix is twice that of the initial permutation matrix.

Next, we set out to show that the any element of Pn with a power of two order will

have an order less than or equal to n, so the any element of Aen oψ Pn will have order

less than or equal to 2n. This fact, coupled with the previous lemma, gives us critical

information about the order of elements of AenoψPn where n > 4 to complete this proof.

Lemma 3. Let π ∈ Pn, such that there exists some k ∈ N where |π| = 2k. Then 2k 6 n.

Proof. Let π ∈ Sn such that |π| = 2k where k ∈ N with 2k > n. Since π ∈ Sn, if π is a

single cycle then we have a contradiction in that the length of the cycle is larger than n.

Suppose instead that π has a cycle decomposition of t cycles (where t > 1) with cycle

lengths |a1|, ..., |at| respectively. Since π ∈ Sn then |π| = 2k = lcm(|a1|, ...|at|) then for
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some ai ∈ {a1, ...,at}, we have that |ai| = 2k. Thus, there is some cycle of length 2k in the

cycle decomposition of πwith order larger than n, a contradiction. Observe that equality

holds when n is a power of two and k ∈ N, such that n = 2k.

By Lemma 1, and Lemma 2, we have that given an element of Gen with a power of two

order can have an order of at most 2n. Lemma 4 states that where n > 4 then 2n < 2n−1.

Contextually, a proof of Lemma 4 demonstrates that the maximal order of an element of

Aut(Q ′
n) is less than the order of the graph Q ′

n. Thus, where n > 4 we have that Q ′
n will

not be isomorphic to a circulant. In proving Lemma 4 we complete the proof below:

Lemma 4. If n ∈ N and n > 4, then 2n < 2n−1

Proof. We will prove this by induction. First, consider the case where n = 5, then trivially

10 < 16 and the base case holds. For our induction hypothesis suppose that 2n < 2n−1

for all n > 5. Now we set out to show that 2(n + 1) < 2n. Since 2(n + 1) = 2n + 2 and

2 < 2n−1 then by induction hypothesis we have that 2n+2 < 2n−1+2 < 2n−1+2n−1 = 2n

and the lemma has been proven and the proof is complete.

First, in proving the converse, note that Q ′
1 is trivially a circulant. In examining

Figures 4.1, 4.2, and 4.3 we see that the graphs Q ′
2, Q ′

3, and Q ′
4 are isomorphic with the

circulant graphs C2(1), C4(1, 2), and C8(1, 2, 3) respectively.

Though this is a negative result, it serves as an example of an application of the

automorphism groups of a graph. In particular, a more intuitive and streamlined ex-

pression of the automorphism groups of a family of graphs could aid in demonstrating

a connection to a separate family of graphs. The advent of an algorithmic calculus for

determining the automorphism group of any arbitrary graph would help draw parallels

between specific families of graphs which otherwise would remain undiscovered. Un-

fortunately, the question of how to find an arbitrary graph’s automorphism group is one

which hasn’t yet been answered. Further, this problem fits into a category of problems
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4 and C8(1, 2, 3)

in mathematics which cannot be solved without significant progress in the field of algo-

rithmic graph theory. While our result is a specific representation of the automorphism

group of a very specific and structured family of graphs, Charles Caleb Colton, the En-

glish cleric and writer once said: “the study of mathematics, like the Nile begins in minuteness

but ends in magnificence.”
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