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Increased alcohol consumption over time is one of the characteristic symptoms of Alcohol Use 

Disorder (AUD). The molecular mechanisms underlying this escalation in intake is still the 

subject of study. However, the mesocortical and mesolimbic dopamine pathways, and the 

extended amygdala, because of their involvement in reward and reinforcement are believed to 

play key roles in these behavioral changes. Multiple gene expression studies have shown that 

alcohol affects the expression of thousands of genes in the brain. The studies discussed in this 

document use the systems biology technique of co-expression network analysis to attempt to find 



	 x	

patterns within genome-wide expression data from two animal models of chronic, high-dose 

ethanol exposure. These analyses have identified time-dependent and brain-regions specific 

patterns of expression in C57Bl/6J mice after multiple exposures to intoxicating doses of ethanol 

and withdrawal. Specifically, they have identified the PFC and HPC as showing long-term 

ethanol regulation, and identified Let-7 family miRNAs as potential gene expression regulators 

of chronic ethanol response. Network analysis also indicates neurotransmitter release and 

neuroimmune response are very correlated to ethanol intake in chronically exposed mice. 

Examining gene expression response to chronic ethanol exposure across a variable genetic 

background revealed that, although gene expression response may show conserved patterns, 

underlying differences in gene expression influence by genetic background may be what truly 

underlies voluntary ethanol consumption. Finally, combined network analysis of gene expression 

in the prefrontal cortex (PFC) of mice and macaques following prolonged ethanol exposure 

demonstrated that neurotransmission, myelination, transcription, cellular respiration, and, 

possibly, neurovasculature are affected by chronic ethanol across species. Taken together, these 

studies generate several new hypothesis and areas of future research into the continued study of 

druggable targets for AUD



 1 

Chapter 1: Introduction 
 
Alcohol Use Disorder (AUD) is a chronic relapsing disorder of problematic alcohol drinking [1]. 

Symptoms include steadily increasing consumption, tolerance to the intoxicating effects of 

alcohol, loss of control over alcohol intake; preoccupation with and craving for alcohol; and 

alcohol seeking to the detriment of other areas of life. Diagnostic symptoms of AUD also include 

taking part in activities that endanger one’s physical safety such as swimming, driving, and 

operating machinery while intoxicated; continued drinking in spite of negative effects on 

professional activities and/or personal relationships; and unsuccessful attempts to cut down on or 

stop drinking [1, 2]. The presence of withdrawal symptoms is also characteristic of AUD and 

indicates physiological dependence on the drug. Withdrawal symptoms range from 

psychological, such as anxiety, depression, irritability, and restlessness, to physical symptoms, 

such as insomnia, heart palpitations, sweating, shortness of breath, diarrhea, nausea and vomiting 

[1]. Symptoms of severe alcohol withdrawal can be dangerous and even fatal. These include 

delirium tremens, hallucinations, seizures, stroke, and heart attack [1, 3].  

 

Alcohol drinking is extremely common worldwide. Almost all cultures have a sense of alcohol’s 

potential for abuse. The 2014 National Survey on Drug Use and Health showed that in the 

United States approximately 87% of adults over the age of 18 reported drinking alcohol in their 

lifetime [4]. In this survey 24.6% of adults also reported having consumed 5 or more alcoholic 

drinks on at least one occasion within the past month, and 6.7% reported consuming 5 or more 

drinks on five or more occasions within the past month [4]. Studies from 2010 to 2015 estimate 

that excessive alcohol consumption costs the United States 250 billion dollars per year, with an 

average cost to each American taxpayer of $746 [5]. A 2010 study found 72% of the costs of 
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excessive alcohol use stem from negative impact on workplace productivity [6]. This study also 

found 11% of alcohol-related costs attributable to the cost of healthcare to treat the effects of 

excessive alcohol use, and 9% related to costs associated with criminal offenses committed while 

under the influence [6]. At the societal level, excessive alcohol use is known to increase 

incidences of criminal activity, personal injury, traffic accidents and fatalities, vandalism, 

destruction of property, domestic disputes, and other high risk behaviors [1, 2, 7].  

 

In addition to the socioeconomic costs, excessive alcohol consumption is also considered a major 

public health issue. In the United States abusive alcohol use has been estimated to be the 3rd to 

4th leading cause of preventable death [2, 8]. Using morbidity and mortality data from 11 

American states from 2006-2010, the Centers for Disease Control estimates approximately 

88,000 alcohol related deaths in the United States every year [8]. Worldwide, that number jumps 

to 3.3 million deaths, making it the 5th highest cause of death among people between the ages of 

15 and 49 [2]. The World Health Organization reports that alcohol consumption has been 

identified as a causal factor in over 200 disease and injury conditions [2]. 

 

One of the most well known alcohol-associated disease conditions is cirrhosis of the liver. AUD 

is, in fact, considered one of the highest risk factors for liver cirrhosis in the United States [9-11]. 

Long-term, heavy alcohol use is also associated with increased risk for, or worsening of, 

pancreatitis [2, 12-17], gastroesophageal reflux disease (GERD) [18, 19], esophageal damage 

and bleeding [20], gastritis [21, 22], and intestinal malabsorption [23-25]. The impact of chronic 

alcohol use on the large intestine has not been studied as much as its upper GI effect, though, 

some studies suggest that alcohol exposure may cause altered bowel motility [18]. 
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In addition, heavy alcohol consumption has been documented to increase risk for several types of 

cancers including oral, esophageal, gastric, colorectal, liver, pancreatic, and breast cancer [2, 26-

35]. A recent review of existing epidemiological data has shown that even light-to-moderate 

alcohol consumption may increase cancer risk, most specifically breast cancer risk in women 

[36]. The link between alcohol consumption and cancer risk is so well documented that the 

International Agency for Research on Cancer declared alcoholic beverages a Class 1 carcinogen 

in 1988 [37]. Acetaldehyde, the main ethanol metabolite, has also been linked to increased risk 

for cancers, particularly of the head and neck, and is itself classed as a Class 1 carcinogen [38-

40]. 

 

Although studies since the mid-20th century have suggested light-to-moderate alcohol 

consumption may have a cardio-protective effect [41, 42], chronic heavy drinking has repeatedly 

been associated with significantly increased risk for hypertension [43], heart disease [41, 42], 

and ischemic stroke [41, 44, 45]. Heavy drinking may also increase risk for the development of 

type 2 diabetes mellitus [46-48], and be detrimental to disease control and progression in both 

type 1 and 2 diabetics [2, 49-51]. Heavy alcohol consumption also appears to impair immune 

system function [52, 53]. AUD is also a risk factor in the development of pneumonia, 

tuberculosis, and other infectious diseases [2]. Chronic heavy drinking has also been linked to 

increased risk for complications associated with HIV/AIDS [54, 55].  

 

The most widely studied consequences of excessive alcohol consumption, however, are those 

associated with the central nervous system. Seizures are a known symptom of alcohol 
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withdrawal [56]. Indeed, withdrawal seizures have been so frequently described in medical 

literature that it is a common treatment protocol to prophylactically administer benzodiazepines 

when individuals known to have a history of alcohol dependence (or risk thereof) are 

hospitalized, in order to decrease the risk for seizures and other withdrawal symptoms [3, 57]. 

There is also some evidence to suggest that AUD is associated with an increased risk for epilepsy 

outside of withdrawal-induced seizures, though the relationship has not been conclusively 

demonstrated [2, 58]. Heavy alcohol consumption has also been linked to an increased risk for 

Alzheimer's disease, and other forms of dementia and age-related cognitive decline [2], though 

some evidence exists that light-to-moderate drinkers may have lower risk for dementia later in 

life than non-drinkers, suggesting a protective effect [59-61]. One form of dementia frequently 

observed in individuals with alcohol use disorder is Wernicke–Korsakoff syndrome, resulting 

from co-morbid severe alcohol abuse and vitamin B1 deficiency [25, 62, 63]. Chronic alcohol 

abuse has also been associated with the demyelinating disorders Marchiafava–Bignami disease 

and osmotic demyelinating syndrome [64, 65]. A relationship has also been observed between 

alcohol use disorder and psychiatric disorders such as anxiety, depression, and bipolar disorder 

[2, 66]. The association between AUD and psychiatric disorders has long been considered to be a 

“chicken and egg” relationship with competing hypotheses as to whether individuals with 

psychiatric conditions are more vulnerable to developing AUD or whether alcohol use may 

contribute to the development of psychiatric illness, with compelling evidence in support of both 

ideas [66]. 

 

Underlying the myriad negative socioeconomic and health consequences of excessive alcohol 

consumption is, of course, its addictive nature. Long-term heavy alcohol use leads to behavioral 



 5 

changes such as increased consumption in order to avoid withdrawal symptoms, and in order to 

gain the rewarding effects of alcohol after tolerance has developed [67]. In some individuals, this 

sort of long term alcohol use results in the physiological dependence, and loss over control of 

intake that are characteristic of AUD [1]. One of the major challenges in the field of alcohol 

research is identifying strategies for treating AUD. This is due to the fact that treatment options 

for AUD remain limited. Treatment for AUD may include medically assisted withdrawal in 

severe cases, but often focuses on behavioral interventions designed to facilitate cognitive 

restructuring in relation to alcohol use and seeking behavior, and enhancement of coping-skills to 

deal with the negative effects of cessation of alcohol use [68]. Pharmacotherapeutic treatments 

include the opioid antagonists naltrexone and nalmefene [69, 70]. These agents are believed to 

block the rewarding effects of alcohol, and, thus, decrease desire to drink [71] . Another type of 

treatment is the administration of acetaldehyde dehydrogenases inhibitors, such as disulfiram, 

which produce a strong sensitivity to alcohol by inhibiting the metabolism of ethanol’s first 

byproduct [72]. Acamprosate is another drug approved for the treatment of alcohol use disorder, 

though its mechanism of action is uncertain [73, 74]. Another common AUD disorder treatment, 

often initiated by the individual outside of medical intervention, is the use of self-help and faith-

based support groups such as Alcoholics’ Anonymous [75]. All of these strategies have shown 

limited efficacy [76-79], highlighting the need for identification of new therapeutic targets. 

 

The need for new therapeutic targets for the treatment of alcohol use disorder led to the 

experiments described in this document. The over-arching hypothesis of these studies was that 

chronic ethanol induced gene expression changes are key to the pathogenesis of alcohol 

dependent behaviors such as excessive drinking. Furthermore, I propose that network analysis of 
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gene expression changes, measured genome-wide by DNA microarrays, will identify such 

molecular underpinnings of AUD and potentially lead to new therapeutic targets for treating this 

disorder. 

 

Employing C57BL/6J mice (Mus musculus) as model organisms we examined the transcriptome-

level effect of chronic, high-dose alcohol exposure with the chronic intermittent ethanol (CIE) by 

vapor chamber paradigm (to be discussed in detail in chapter 2). The gene expression effect of 

multiple cycles of CIE on five different brain-regions within the mesocorticolimbic system and 

extended amygdala was studied. The first experiment was a time-course looking at gene 

expression at four different time-points after multiple cycles of CIE. This experiment provided 

insight into the short-term and long-term effect of chronic, high-dose ethanol exposure on brain 

gene expression [80]. The second C57BL/6J mouse experiment combined multiple cycles of 

vapor chamber CIE with intermittent two-bottle choice drinking. The purpose of combining two 

means of exposure, involuntary exposure to ethanol vapor and voluntary ethanol drinking, came 

from previous studies which have demonstrated that repeated cycles of CIE by vapor chamber 

led to a sustained increase in voluntary two-bottle choice consumption [81]. By examining 

genome-wide gene expression changes after multiple cycles of CIE, we have attempted to 

uncover the molecular mechanisms underlying the behavioral effects of chronic, high-dose 

ethanol exposure. 

 

We also began to explore the influence of genetic background on ethanol responsive gene 

expression networks in the brain. C57BL/6J mice are an extremely inbred laboratory mouse 

strain [82]. We, therefore, asked whether gene expression networks identified in C57BL/6J mice 
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after CIE are present on a more diverse genetic background. To do this we used multiple strains 

from the BXD recombinant inbred panel. The BXD panel is a cohort of mice bred from two 

laboratory mouse strains: C57BL/6J and DBA/2J (to be discussed in detail in chapter 2). The 

resulting panel consists of several mouse strains whose genetic make-up contains alleles 

originating from progenitor strains in unique proportions and combinations. Multiple strains of 

BXD mice, as well as C57BL/6J and DBA/2J progenitors, underwent repeated cycles of CIE by 

vapor chamber with intermittent drinking, and gene expression assessed with Affymetrix 

microarrays, similar to the study conducted in C56BL/6J mice. Unlike the C57BL/6J, however, 

the BXD study looked only at prefrontal cortex (PFC). This brain-region is of particular interest 

because of its involvement in executive function [83] and impulse control [84], suggesting it has 

significant influence on voluntary alcohol intake [85]. This region has also been shown to be 

differentially affected by ethanol exposure between C57BL/6J and DBA/2J mice [86]. 

 

Our final approach was to study gene expression networks associated with chronic ethanol 

consumption in two different species. This entailed a co-analysis of gene expression in the PFC 

of C57BL/6J mice after CIE and intermittent drinking with gene expression in PFC of rhesus 

macaques (Macaca mulatta). Macaques used in this study were exposed to prolonged, voluntary 

ethanol drinking (to be discussed in detail in chapter 6). This analysis tested the hypothesis that 

ethanol responsive networks, and highly connected hub genes within these networks, that are 

present in both species could represent a conserved response to chronic ethanol that may also 

occur in humans. This cross-species approach could aid in the identification of hub genes that 

may represent therapeutic targets for the treatment of AUD. 
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Chapter 2: Background 

Molecular Mechanisms of Ethanol Action on Neurons 

Ethanol was long considered a nonspecific agent whose pharmacologic and behavioral effects 

were thought to result from disruption of neural cells through interaction with cellular lipids [87]. 

During the second half of the 20th century, however, empirical evidence from new studies 

supported what was known as the “protein hypothesis,” which stated that the effects of ethanol 

were due to direct or indirect interaction between ethanol molecules and cellular proteins [87]. 

Such studies eventually led to the identification of specific ethanol targets [88]. These include 

the N-methyl-D-aspartate (NMDA) receptor [89], γ-aminobutyric acid (GABA) receptors [90], 

neuronal nicotinic acetylcholine receptors (nAChR) [91], 5-HT3 receptors [92], L-type Ca2+ 

channels [93], and G-protein-activated inwardly rectifying K+ channels (GIRKs) [88, 94, 95]. 

 
GABAA receptors are pentameric ligand-gated ion channels [96] that act as one of the main 

inhibitory neurotransmitters in the central nervous system [97]. Ethanol acts as a positive 

allosteric regulator of GABAA receptors [98, 99]; meaning ethanol enhances the inhibitory action 

of GABA binding to GABAA receptors. Ethanol has been shown by electrophysiology studies in 

Xenopus oocytes to enhance the inhibitory effects of GABA binding, at concentrations as low as 

3mM, by binding to the δ subunit of extrasynaptic GABAA receptors [100]. There is also 

substantial evidence that genetic alteration of α, β, and γ GABAA subunits alters ethanol 

response in animal models [97, 101]. GABAA receptor subunits have also shown significant 

brain-region differences in gene and protein level expression, as well as differences compared to 

matched controls in post-mortem tissue from human alcoholics [102-107]. Genetic differences in 

the structure or expression of GABAA receptor genes have also been shown to affect gene 

expression and behavioral response to ethanol exposure. In human studies SNPs in the GABRA2 
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gene have been associated with reduced acute alcohol tolerance [108], alcohol dependence [109], 

and alcohol-related cue induced activation, measured by functional magnetic resonance imaging 

(fMRI), in medial prefrontal cortex and ventral tegmental area [110]. Multiple single nucleotide 

polymorphisms (SNPs) in the GABRG3 gene were found to be associated with alcohol 

dependence [111]. Further studies have shown that a GABBR1 SNP that may be associated with 

reduced risk for alcoholism [112]. Chronic ethanol exposure has been demonstrated, in rats, to 

significantly alter GABAA receptor subunit expression [113]. Behavioral studies in rodents into 

the effect of GABAergic response to chronic ethanol exposure have mostly focused on 

withdrawal symptoms, particularly withdrawal seizures [97], however, chronic high-dose ethanol 

exposure has been shown to produce tolerance to the GABA-mediated effects of ethanol such as 

sedation, motor impairment, and cognitive impairment [114, 115]. Animal models have also 

shown that sequence variation and gene expression of several other genes may affect GABAA 

receptor subunits in the presence of ethanol, indicating interactions between multiple gene 

products affect the GABAergic response to ethanol exposure [106, 116, 117].  

 

NMDA receptors are another type of multi-subunit ligand-gated ion channels that bind glutamate 

and glycine to potentiate excitatory neurotransmission by facilitating the flow of positively 

charged ions [118]. NMDA receptors are a vital component of the molecular mechanisms 

underlying synaptic plasticity and learning, as evidenced by their role in the electrophysiological 

component of memory known as long-term potentiation. Ethanol acts as a negative allosteric 

modulator, decreasing the excitatory effect of NMDA receptors in neurons [89]. Acute ethanol 

exposure decreases the excitatory effect of NMDA receptors in cultured neurons [87], as well as 

slices from rodent hippocampus [119-121], amygdala [122, 123], cingulate cortex [124], dorsal 
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striatum [125], and nucleus accumbens [126]. The exact site of physical interaction with ethanol 

molecules and the NMDA receptor is still a subject of study, however, experimental evidence 

indicates that GluN1 (NR1) receptor subunits are far less sensitive to ethanol’s effect compared 

to GluN2A (NR2A) subunits [127], indicating ethanol’s NMDA modulating effects are mediated 

by interactions with GluN2. In behavioral studies using rodent models, ethanol has been shown 

to block long-term potentiation in the hippocampus [121, 128, 129] and dorsal striatum at 

concentrations relevant to intoxication [130, 131]. Further, ethanol impaired performance on 

short-term memory tests in human subjects [132] indicating ethanol's effect on NMDA-mediated 

neurotransmission may play a role in ethanol associated cognitive impairment. Pharmacologic 

and genetic manipulations of NMDA receptor subunits have also indicated a role for NMDA-

mediated transmission on behaviors such as sedation [133, 134], sensitization [135], and reward 

[136, 137]. Due to ethanol’s effect on NMDA-mediated long-term potentiation, it has been 

hypothesized that, in humans, modulation of NMDA-mediated neurotransmission may underlie 

alcohol-related blackouts [127, 138] and amnesia associated with binge drinking [127, 138]. In 

contrast to ethanol’s acute effect, chronic ethanol exposure has been shown to upregulate NMDA 

receptor subunit expression [138], most likely representing an adaptive mechanism to 

compensate for the inhibitory effects of ethanol on NMDA receptor function. There is also 

evidence for interaction between glutamatergic ethanol response and expression of downstream 

regulators of neuronal activity and plasticity such as BDNF [139] and DARPP-32 [140]. BDNF, 

a major of regulator central nervous system development and plasticity related to learning and 

memory [141], has been shown to be affected by ethanol exposure at the mRNA and protein 

level in rodents [86, 142] and humans measured by peripheral blood levels [143, 144]. DARPP-

32 is a protein phosphatase with an established role in regulation of dopaminergic 
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neurotransmission [145] in response to NMDA activation. In addition, it has been shown that this 

gene’s expression is regulated by ethanol exposure in rodents [146-148].  

 

The nicotinic acetylcholine receptor (nAChR) is a pentameric ligand gated ion channel that is 

widely expressed in the central nervous system [149]. Along with the GABAA receptor, another 

ethanol target, nAChRs are members of the Cys-loop family of ligand gated ion channels [149]. 

nAChRs are widely expressed in the mesocorticolimbic system where they respond to 

acetylcholine binding to allow cation flux into neurons, leading to depolarization, neuronal 

excitation, and neurotransmitter release [149]. Genetic studies in rodents have shown that 

knockout of the α4 nAChR subunit decreases acute ethanol consumption in mice [150], and 

decreases dopamine release in the VTA [151] revealing that nAChR activation modulates the 

rewarding effects of ethanol, and that ethanol molecules may directly interact with the α4 

subunit. However, deletion of other nAChR subunits has also been shown to alter drinking 

behavior in transgenic mice [152]. Similar findings using pharmacologic manipulation have been 

demonstrated in rats [153-155]. Some attempts have been made to study the effect of nAChR 

targeting in human subjects using nAChR antagonists. A few studies found that nAChR 

antagonist treatment lead to a self-reported reduction in desire to drink alcohol [156, 157] 

however, findings in these studies are mixed [158] highlighting the complexity of alcohol’s 

effect on the brain, and of humans’ motivation to consume alcohol.  

 

5-HT3 receptors, along with nicotinic acetylcholine receptors and GABAA receptors, are also 

members of the Cys-loop family of pentameric ligand-gated ion channels [159, 160]. 5-HT3 

receptors are expressed the central and peripheral nervous system, particularly in the cortex, 



 12 

hippocampus, nucleus accumbens, substantia nigra, and ventral tegmental area [160, 161]. When 

activated by serotonin binding, 5-HT3 receptors allow cations to pass through the channel, 

leading to cellular depolarization [92]. Ethanol exposure enhances this receptor’s excitatory 

effect [92, 161]. Most studies on the effect of ethanol exposure on 5-HT3 receptors relates to the 

resulting release of dopamine from neurons that connect the VTA and NAc [161]. Inhibition of 

5-HT3 receptors in the presence of ethanol has been shown to decrease dopamine release in the 

NAc [162], and to decrease ethanol self-administration, conditioned place preference (a model of 

drug rewarding properties), and locomotor activation in rodent models [161] - thus strongly 

suggesting ethanol’s modulation of neuroexcitation via interaction with the 5-HT3 receptor 

influences the drug’s behavioral effects.  

 

L-type Ca2+ channels are voltage-gated ion channels that allow Ca2+ cation influx into the cell in 

response to membrane depolarization [163, 164]. These channels are expressed in cardiac 

muscle, smooth muscle, skeletal muscle, retinal neurons, hair cells, neuroendocrine cells, and 

central nervous system neurons [163]. In neurons, L-type Ca2+ channels are believed to enhance 

the neuroexcitatory actions of activation of NMDA receptors by glutamate binding [163]. Acute 

ethanol acts as a blocker of L-type Ca2+ channels [93]. Chronic ethanol exposure has been shown 

to increase expression of L-type Ca2+ channel subunits at the protein level in cultured mouse 

cortical neurons [165]. Calcium channel antagonists have also been shown to decrease 

withdrawal seizures in rats exposed to chronic ethanol [166]. Calcium channel antagonists also 

decrease activity, as measured by electrophysiology, in hippocampal sections from chronic 

ethanol exposed mice [167]. These finding indicate a role for changes in L-type Ca2+ channel 
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expression in the negative reinforcing effects of ethanol, particularly as related to the occurrence 

of withdrawal symptoms.  

 

G-protein-activated inwardly rectifying K+ channels (GIRKs) are ion channels that are activated 

by ligand binding to a G-protein coupled receptor which, in turn, releases G proteins that bind to 

GIRKS, and allow K+ ion flux leading to hyperpolarization of neurons, and inhibition of 

neuronal activity [168]. Expression of GIRK types vary by brain-region [168]. Functionally, 

these channel types are involved in neuroplasticity, learning and memory, and motor 

coordination [168]. Ethanol has been shown to enhance the opening of GIRKs [94, 95]. Human 

gene association studies have found SNPs in the promoter region of the GIRK2 gene, KCNJ6, to 

be associated with alcohol dependence in adults, and stress-related alcohol abuse during 

adolescence [169]. GIRK2 has also been shown to alter ethanol behaviors including analgesia 

[170], open-field activity [170], locomotor activation [171], taste aversion [172], and conditioned 

place preference [172] in knockout mice. Animal model studies also indicate a role for GIRK3 in 

ethanol behavioral response. GIRK3 knockout mice show fewer withdrawal seizures, increased 

binge-like consumption in a limited access paradigm, reduced neuronal activation in the VTA, 

and blunted dopamine release in NAc following ethanol administration [173]. A more recent 

study also demonstrated that Girk3 null mice show enhanced conditioned place preference 

following ethanol administration [174], indicating a role for Girk3 in association-based learning 

related to the development of addiction. The mouse Girk3 gene, Kcnj9, shows significant 

differential expression between C57BL/6J and DBA/2J mice [175], two mouse strains with 

widely divergent behavioral responses to ethanol. Kcnj9 is also located at the genomic position 

of a quantitative trait locus (QTL) on chromosome 1 that is associated with withdrawal from 
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multiple drugs, including ethanol [175], as well as several other ethanol related behaviors in 

mouse models [168]. Together these findings strongly suggest that ethanol enhances GIRK 

signaling in neural tissue, and variation in GIRK expression may contribute to the development 

of AUD. 

 

Ethanol Actions on Non-Neuronal Cells 

In addition to primary receptor targets in neurons, ethanol exposure also affects glial cells [176]. 

Glial cells are the most abundant cell type in the brain [177] and include astrocytes, 

oligodendrocytes, and microglia. Astrocytes perform a number of functions including structural 

and metabolic support of neurons aiding in repair of neural injuries, modulation of 

neurotransmission, and promoting myelination by oligodendrocytes [178]. Astrocytes are 

particularly important in glutamatergic neurotransmission by regulating concentration of 

glutamate, glycine, and K+ ions in the extracellular space [178]. Ethanol has been demonstrated 

to modify astrocyte density in rodent models and human alcoholics with an overall empirical 

trend toward increased astrocyte density with prolonged ethanol exposure, and decrease with 

abstinence, though results are mixed [176, 178]. Ethanol may disrupt the function of astrocytes 

in regulating glutamatergic neurotransmission both by its effect on neuronal NMDA receptors, 

and by modulating expression of the glutamate transporters GLAST and GLT-1 in astrocytes 

themselves [176]. Indeed, it has been shown that, in cell culture models, ethanol treatment 

increases glutamate uptake by glial cells [178]. GLT-1 expression has been shown to be 

significantly increased in the NAc of drinking rats [176, 179, 180] and pharmacologic and 

genetic manipulations of GLT-1 and GLAST in mice result in altered ethanol behavioral 

response [176]. Less research has been done on the influence of astrocytes on GABAergic 



 15 

neurotransmission, though there is some evidence that GABA receptors are expressed in 

astrocytes [177, 181]. Further, the role of astrocytes in the neuro-inflammation response may act 

in ethanol-related neurotoxicity [176]. The effect of both acute and chronic ethanol exposure on 

astrocytes is an area in need of further study; however, experimental evidence indicates that 

ethanol-regulated gene expression in astrocytes may affect cell-cell signaling with neurons and 

other glial cell types, such as oligodendrocytes, possibly contributing the behavioral effects of 

ethanol [176]. 

 

Oligodendrocytes are crucial in nervous system function due to their role in structural and 

functional support of neurons by myelin ensheathment [178]. Indeed, diseases of reduced 

myelination often have debilitating clinical effects [178]. There are a few demyelinating diseases 

in particular that are associated with AUD including Wernicke-Korsakoff syndrome. Wernicke-

Korsakoff syndrome is seen in the presence of heavy alcohol consumption and vitamin B1 

deficiency, and results in brain atrophy of both white and gray matter in PFC, mammillary 

bodies, thalamus, hypothalamus, and cerebellum [65]. Marchiafava–Bignami syndrome is also 

linked to heavy alcohol use, and is characterized by demyelination in corpus callosum, middle 

cerebellar peduncles, and periventricular white matter [65]. Another disease of demyelination, 

osmotic demyelinating syndrome is characterized by white matter loss in the pons, basal ganglia, 

thalamus, and deep cerebral white matter, and is strongly linked to AUD [65]. Outside of 

clinically defined myelin disease states, decreased volume of the corpus callosum, the major 

white matter tract of the brain, has been observed in human alcoholics [182]. Human studies also 

indicate that white matter loss associated with heavy alcohol use may be reversible with 

prolonged abstinence [183]. There is also a multitude of experimental evidence indicating that 
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ethanol exposure affects myelination at all developmental stages, and that the PFC, which, in 

humans, continues to myelinate into early adulthood [184], may be a particularly vulnerable 

region. Rodent models studies have shown decreased expression of structural constituents of the 

myelin sheath, and regulators of myelination, with acute [86] and chronic [185, 186] ethanol 

exposure. 

 

Neurocircuitry Actions of Ethanol 

As outlined above, ethanol has widespread effects on the brain; however, the majority of focus in 

research on AUD is on areas within the mesocorticolimbic system and extended amygdala. The 

mesocorticolimbic system refers to pathways of dopamine producing neurons in the cerebral 

cortex originating in the midbrain [187]. Of particular interest are dopaminergic neurons with 

cell bodies that originate in the ventral tegmental area. These neurons have projections to the 

amygdala, cingulate gyrus, hippocampus, and olfactory bulb, however the major connections are 

to the prefrontal cortex, and shell of the nucleus accumbens where dopamine is released in 

response to a variety of stimuli [187]. The extended amygdala includes the bed nucleus of the 

stria terminalis, central and medial nuclei of the amygdala, ventral pallidum, and substantia 

innominata [188]. These pathways are a major part of the limbic system and are involved in 

reward processing, motivation, learning, and memory [189]. Along with other drugs of addiction, 

ethanol stimulates the release of dopamine to the NAc and PFC, as well as other brain-regions in 

this system, from neurons originating in the VTA [65]. This response to acute ethanol exposure 

is hypothesized to mediate the positive reinforcing effects of ethanol consumption such as 

euphoria and hedonia [67]. Models of the development of AUD hypothesize that repeated 

exposure leads to tolerance and increased consumption in order to achieve the same rewarding 
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effects [67, 190]. Prolonged exposure and increased consumption eventually results in the 

development of the negative reinforcing properties of ethanol such as preoccupation, craving, 

and withdrawal causing individuals to continue to drink in order to avoid the negative effects of 

stopping eventually leading to altered brain function, physiological dependence, and addiction 

[190]. The extended amygdala’s connections to mesocorticolimbic structures is believed to play 

an important role in the negative reinforcing effects of prolonged exposure [190]. For this reason, 

brain-regions within these pathways are the focus of the analyses outlined in this dissertation.  

 

Experimental findings over the course of decades of research into the effect of both acute and 

chronic alcohol exposure have demonstrated that the actions of ethanol on known targets such as 

GABAA receptors, NMDA receptors, etc., and interaction between these targets, as well as the 

effects on downstream signaling cascades are all involved in the way alcohol changes brain 

activity. Alcohol’s effect is brain-region dependent and cell-type dependent. Signaling between 

cells, both between neurons and glial cells at the synapse, as well as communication between 

neurons with connections to more distant brain-regions, is disrupted by ethanol exposure. Gene 

expression studies of chronic alcohol exposure indicate that prolonged ethanol exposure, 

particularly at high-doses, leads to sustained changes in expression of certain genes. As outlined 

above, manipulation of the expression of certain genes, such as by knockout mouse models, 

leads to significant changes in ethanol behaviors. Finally, electrophysiology studies have shown 

that ethanol alters neuronal activity in the mesocorticolimbic systems and extended amygdala. 

Taken together, this research supports the hypothesis that ethanol-related behavioral changes 

observed with prolonged use, such as increased consumption, are the result of synaptic plasticity. 
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Further, that changes in gene expression mediate synaptic plasticity in response to ethanol 

exposure. Therefore, changes in gene expression lead to behavioral changes (Figure 1). 

 

Figure 1: Regions of brain reward system, and neurobiological changes that occur with 
repeated ethanol exposure. a) Brain-regions of the mesocorticolimbic system and extended 
amygdala. Ethanol exposure stimulates dopamine release from the VTA to NAc, PFC, and 
AMY. NAc receives glutamatergic input from PFC, HPC, and AMY. VTA receives GABAergic 
inhibitory signals from NAc. These signaling pathways are involved in reward and 
reinforcement. Communication between the centromedial nuclei of the AMY, BNST, and NAc 
are involved in reward-based processing and learning. PFC=prefrontal cortex, NAc=nucleus 
accumbens, AMY=amygdala including central nucleus of the amygdala, BNST=bed nucleus of 
the stria terminalis, VTA=ventral tegmental area, HPC=hippocampus. Red lines=dopamine 
signaling pathays. blue lines=GABAergic pathways, pink lines=glutamatergic pathways, orange 
lines=extended amygdala circuit.  
b) Beginning with acute ethanol exposure, gene expression in the mesocorticolimbic system and 
extended amygdala is altered, resulting in behavioral changes. As ethanol exposure continues, 
lasting changes in gene expression occur, leading to synaptic plasticity. Chronic exposure 
eventually leads to loss of control over ethanol intake and addiction. Figure adapted from Miles 
et al. - manuscript in preparation. 
 

Gene Expression 

Early research on the effect of ethanol in gene expression began in cultured neural cells. These 

studies demonstrated that ethanol could directly regulate expression of specific genes such as 

GABAA receptor proteins, G-protein coupled receptor subunits, and stress response proteins such 
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as Hsc70 [113, 191-193]. Completion of the Human Genome Project led to the advent of new 

research methods, such as gene expression microarrays and RNA-sequencing (RNAseq), that 

allow for genome-wide RNA quantification. These technologies have proven highly useful in 

starting to demystify ethanol’s effect on the brain. Transcriptome studies using microarrays have 

demonstrated that ethanol significantly affects gene expression in the central nervous system at 

the level of hundreds to thousands of genes [86, 194]. Such studies began in cultured cells [195], 

and expanded to model organisms ranging from C. elegans to non-human primates [86, 196-

203]. Transcriptome studies have identified specific gene expression patterns in ethanol 

preferring rats, with both long-term [196] and shorter-term ethanol exposure [204, 205], in genes 

involved in synaptic transmission and cellular homeostasis. Similar results have been found in 

mice, and, further indicate that ethanol’s effect on gene expression is brain-region specific [206], 

varies with genetic background [86, 207], and occurs with a single [86] or repeated exposures to 

ethanol [200, 208]. Similar pathways have been identified in zebrafish [197, 201] suggesting a 

conserved neurogenomic response to ethanol exposure. This hypothesis is also supported by 

meta-analyses that integrate gene expression data after ethanol exposure across multiple animal 

models and human subjects [203, 209]. 

 
Gene expression has also been studied directly in humans using brain tissue, collected by 

autopsy, of individuals diagnosed with AUD [85, 194, 210-212]. These studies have 

demonstrated that the gene expression patterns of alcoholics can be distinguished from those of 

non-alcoholics [210], and have identified genes involved in known biological processes such as 

neuron ensheathment by myelin, synaptic transmission, and regulation of cellular proliferation 

[194, 210] indicating that ethanol disrupts specific biological processes in the brain. 

Transcriptome studies in human tissue, however, present a number of difficulties. Brain tissue 
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from humans is difficult to obtain in large numbers. There is also a lack of ability to control the 

amount, frequency, and duration of alcohol exposure over an individual’s lifetime. Further, 

information about these factors may be limited, inaccurate due to reliance on self-reported data, 

or missing entirely. Controlling for other lifestyle factors that may contribute to changes in brain 

gene expression, such as age at death, presence of co-morbid neuropsychiatric conditions, use of 

other drugs of abuse, and history of neural injury and disease, is also not possible with human 

subjects, and may be limited in availability and accuracy [206, 213]. Furthermore, in animal 

model studies neural tissue is rapidly collected and frozen immediately after death. In human 

postmortem tissue there is usually considerable variation in the interval between death and 

harvesting of brain tissue, which may interfere with the accuracy of mRNA quantification [85, 

194, 210-212]. For these, and other reasons, gene expression data from model organisms, mainly 

mice, are used in the analyses described in this dissertation. Microarrays were chosen over 

RNAseq for these studies because my advisor, Dr. Michael Miles, has extensive experience in 

the use of microarrays to quantify gene expression, appropriate equipment and protocols for 

processing large numbers of Affymetrix microarrays were in place at the Miles laboratory at 

Virginia Commonwealth University and the Medical University of South Carolina Proteomics 

Core, and arrays were still more cost-effective than RNAseq at the time these experiments were 

performed. Some of the disadvantages to microarrays over RNAseq include greater reliance on 

existing genomic sequences, greater background noise, loss of sensitivity in detecting very high 

or very low expressed genes, and less efficacy in detecting spice variants [214]. Even with these 

downsides, however, microarrays were the better choice for the purposes of the experiments 

discussed in this dissertation. 
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That ethanol exposure has been repeatedly shown to affect expression of hundreds to thousands 

of genes presents unique challenges to the analysis of ethanol transcriptome studies. Based on 

the fact that gene expression studies have identified clusters of genes involved in known 

biological processes whose expression are significantly altered by ethanol exposure [86, 194-

196, 198, 200], one may hypothesize that these genes represent several different biological 

processes, some of which are regulated independently of each other, and some of which show 

co-regulation between pathways. Network analysis provides tools to identify more biological 

processes disrupted by ethanol exposure, and to pinpoint important regulators of these processes. 

 

Network Analysis 

The field of systems biology provides tools for identification of groups of genes that are 

coordinately regulated with the hypothesis that clusters of regulated genes represent biological 

processes that occur within the cell [215]. Systems biology uses mathematical and computational 

methods to model biological systems, and identify how perturbing factors, such as high dose 

ethanol exposure, affect those systems [216]. The studies outlined in this thesis extensively 

utilize one systems biology technique, that of network analysis. Network analysis involves the 

application of network theory, the analysis of graphs as representations of connections between 

discrete objects [216, 217]. In the case of transcriptome studies, each mRNA transcript 

represents a discrete object. Connections between mRNA transcripts can be determined in a 

variety of ways depending on the relational factor of interest. For the purposes of these studies, 

correlations in gene expression, measured by Affymetrix microarrays, are the relationship of 

interest, and are determined using the Weighted Gene Correlated Network Analysis method 

(WGCNA or Weighted Gene Co-Expression Network Analysis) [218].  
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WGCNA is an analysis method that builds networks based on scale-free topology [218]. Scale-

free topology is theorized to be relevant to biological systems due to a few key observations: i) 

biological data such as those from proteomic, metabolomic, and transcriptomic studies behave 

similar to other types of large complex networks in showing high degree of self-organization, 

and the probability of a single node interacting with a certain number k of other nodes decays as 

a power law: P(k) ∼ k−γ, indicating a small number of highly connected nodes within the 

network [219] ii) cellular functions depend on a small number of proteins that have been 

described as ‘master regulators’ [217]. Master regulators are highly connected proteins that have 

been experimentally demonstrated to be necessary for a certain cellular process, usually 

development, differentiation, or continued metabolic function [220]. Yeast protein-protein 

interaction networks have shown that the most highly connected nodes are often proteins 

essential to life [221]. Using a variety of cultured cells, Weintraub et al. identified MyoD as a 

master regulator gene/protein in muscle differentiation [222], and in vivo and in vitro 

manipulation of cancer cell-lines with genetic techniques identified specific genes as master 

regulators of metastasis [223]. In network analysis with WGCNA master regulators are referred 

to as “hub genes,” and are identified using the property of connectivity [218]. Connectivity is 

quantified by the sum of correlation to other nodes in the network [224]. This approach 

hypothesizes that important regulatory genes will be among the most highly connected [218]. 

(Figure 2). 
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Figure 2: Diagram example of a scale-free network. Black lines=edges representing 
connectivity between nodes, black circles=nodes representing genes, red circles=highly 
connected nodes representing hub genes. 
 

WGCNA has been applied to a variety of biological problems, and used to identify networks 

related to complex traits. Gene expression studies employing WGCNA have ranged from those 

on diseases such as obesity [225], Alzheimer's disease [226], Amyotrophic Lateral Sclerosis 

[227], cancer [228, 229], and alcohol use disorder [80, 212, 230]; to gene expression similarities 

and differences between different rodent strains [231], or two closely genetically related species 

(Homo sapiens and Pan troglodytes) [232]; to identifying expression networks underlying 

specific behaviors in rodent models [233]. For the purposes of these studies, WGCNA is used to 

identify gene expression networks that respond to chronic, high-dose ethanol delivered by vapor 

chamber. These analyses were performed with the hypothesis that such correlated changes in 

gene expression underlie ethanol related behaviors, in this case a sustained escalation in 

drinking; and that the most highly connected hub genes may represent new therapeutic targets. 

 

Chronic Intermittent Ethanol by Vapor Chamber 
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The chronic intermittent ethanol by vapor chamber paradigm was developed as a rodent model of 

ethanol dependence [234]. In this model mice, after being given a priming dose of ethanol 

intraperitoneally, were placed, in their home cages, in a Plexiglass chamber for 16 to nearly 24 

hours a day with ethanol delivered in vapor form at a concentration of 10-16 mg/L [234, 235]. In 

the vapor chambers mice achieved blood ethanol concentrations (BECs) between 1.25 and 3.00 

mg/mL. Human blood alcohol concentrations (BACs) are measured in g/dL, making the BECs 

achieved in the vapor chambers equivalent to human BACs of 0.125 to 0.3. During their time in 

the vapor chamber mouse BECs were stabilized using the alcohol dehydrogenase inhibitor 

pyrazole to maintain intoxicating blood ethanol levels at a steady state [234]. The CIE paradigm 

was first demonstrated to cause withdrawal seizures, establishing it as a model of ethanol 

dependence. Studies of CIE induced withdrawal seizures demonstrated that longer duration [234] 

and repeated cycles of vapor chamber exposure interspersed with periods of abstinence [235, 

236] resulted in significantly more withdrawal seizures than control groups that received no 

ethanol vapor exposure in the Plexiglass chambers or only received a single session, or a shorter 

session [234-236]. In addition to a model of chronic ethanol exposure that demonstrably leads to 

physiological dependence, CIE by vapor chamber is a powerful model because, when used over 

multiple cycles, it involves prolonged periods of intoxicating BECs with intermittent periods of 

abstinence. Our laboratory, and collaborators through the INIA Stress Consortium, selected this 

model of ethanol exposure because this cyclic pattern of high-dose ethanol followed by 

abstinence is similar to observations from previous studies of human alcoholics [237] and rat 

models [238], demonstrating that ethanol self-administration in dependent subjects often occurs 

in an episodic fashion. In addition, repeated cycles of CIE by vapor chamber have been 

combined with intermittent voluntary ethanol consumption in order to experimentally explore the 
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link between ethanol dependence and increased drinking. Exposure to chronic, high-dose ethanol 

by vapor chamber lead to a significant increase in ethanol intake [239], that, with repeated cycles 

of CIE, was maintained for several weeks after final vapor chamber session [81, 240]. 

Additionally, multiple cycles of CIE lead to a reduction in condition taste aversion to ethanol 

[241]. In addition to the increase in ethanol intake, repeated cycles of CIE have recently been 

shown to lead to decreased myelination and axon degeneration in multiple regions of the central 

nervous system [242], and to significantly alter gene expression in a time and brain-region 

dependent manner in multiple regions of the mesocorticolimbic system and extended amygdala 

[208, 243]. The analyses outlined in this dissertation build on these previous findings using 

network analyses techniques to identify patterns in gene expression in the mesocorticolimbic 

system and extended amygdala in response to multiple cycles of CIE by vapor chamber to 

identify biological processes disrupted by chronic high-dose ethanol that may underlie increased 

ethanol consumption.  
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Chapter 3: Time-course Gene Expression and Network Analysis in C57BL/6J Mice after 

CIE by Vapor Chamber 

Introduction 

Alcohol abuse and dependence have significant health and social consequences. Alcohol Use 

Disorder (AUD) is characterized by chronic excessive alcohol consumption, often alternating 

with periods of abstinence [237, 244]. Previous studies over the last two decades have suggested 

that neuroplasticity occurring in the brain’s reward and stress pathways contributes to the 

development of AUDs, and that changes in gene expression may be an important molecular 

mechanism underlying such neuroadaptations [1, 67, 86, 190, 245]. 

 

Genomic approaches involving microarrays or RNAseq, together with scale-free network 

analyses, have shown that gene networks of highly correlated expression patterns are associated 

with acute or chronic ethanol exposure in brain tissue derived from animal models and human 

autopsies [86, 212, 246, 247]. Such networks often have conserved biological functions or 

regulatory mechanisms [246, 248, 249] providing novel mechanistic information about the 

neural actions of ethanol and other drugs of abuse [248, 250]. Additionally, network topology 

analysis allows the identification of highly connected “hub genes” that have been shown to 

provide key regulatory functions over expression networks [212, 246, 247, 249]. Applying such 

approaches to animal models of alcohol dependence could thus provide new understanding of 

mechanisms underlying associated neuroplasticity, and identify new therapeutic targets for 

intervention in AUDs. 
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Animal models to more accurately model development of AUDs have recently shown 

considerable progress in providing predictive validation for new therapeutic targets [187, 212, 

250]. One such widely used model is the chronic intermittent ethanol vapor (CIE) paradigm 

where rodents are exposed intermittently to cycles of ethanol vapor such that they experience 

repeated cycles of exposure and withdrawal [81, 251, 252], as seen in alcoholics [237, 244]. This 

model has been shown to produce lasting increases in ethanol consumption as well as 

neurochemical, physiological and synaptic structural changes [81, 187, 252-254]. Earlier 

genomic studies of CIE exposure in mice indicated brain regional and time-dependent changes in 

gene expression that may contribute to the behavioral and physiological plasticity evoked by 

chronic intermittent ethanol exposure [81, 208]. However, a detailed network level analysis of 

gene expression adaptations with CIE has not been performed. Such an approach may identify 

key regulatory hubs that may play a significant role in mediating behavioral and physiological 

consequences of CIE treatment. 

 

Here we use the Weighted Gene Correlated Network Analysis (WGCNA) scale-free network 

algorithm to analyze a detailed time-course study of CIE-evoked changes in gene expression 

across multiple brain regions comprising the mesolimbocortical dopamine and extended 

amygdala pathways. These neural pathways are thought to have a pivotal role in the development 

of excessive ethanol consumption associated with dependence [67, 190, 245]. We show that 

shortly after cessation of ethanol vapor exposure, both conserved and region-specific waves of 

expression network changes occur across multiple brain regions. However, following prolonged 

withdrawal (7 days), the hippocampus and the prefrontal cortex show persistent expression 

network alterations. The functional and network topology analysis of such networks provides 
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key targets for future studies aimed at elucidating mechanisms of behavioral plasticity occurring 

with CIE. In particular, we implicate a Bdnf-containing network in prefrontal cortex as a 

potentially important contributor to the neurobiology of progressive ethanol consumption 

associated with dependence. 

 

Materials and Methods 

Animals and Chronic Intermittent Ethanol (CIE) Exposure 

Adult male C57BL/6J mice purchased from Jackson Laboratories (Bar Harbor, ME, USA) were 

individually housed in an AAALAC-accredited animal facility under a 12-hour light/dark cycle. 

Mice were given free access to food and water during all experimental procedures. After a 2-

week acclimation period, mice (n=48) were exposed to chronic intermittent ethanol vapor or air 

in inhalation chambers, as previously described [81, 239, 240]. Mice were divided into two 

groups of 24. One group (CIE) received ethanol vapor exposure for 16 hours/day for 4 days 

while the other group was similarly handled but received only air exposure in the inhalation 

chambers (Control; Ctrl). For CIE mice, ethanol was volatilized by passing air through an air 

stone submerged in 95% ethanol. Chamber ethanol concentrations were monitored daily and air 

flow was adjusted to maintain ethanol concentrations within a range (10-13 mg/l air) that has 

been shown to yield stable blood ethanol concentrations (175-225 mg/dl) in C57BL/6J mice [81]. 

Before each chronic ethanol exposure cycle, intoxication was initiated in the CIE group by 

administration of ethanol (1.6 g/kg), and blood ethanol concentration was stabilized by injection 

of the alcohol dehydrogenase inhibitor pyrazole (1 mmol/kg). Both ethanol and pyrazole were 

administered intraperitoneally (i.p.) in a volume of 0.02 ml/g body weight. Ctrl mice were 

handled similarly, but administered saline and pyrazole (i.p.) prior to being placed in control 
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chambers that delivered only air (no ethanol vapor). Thus, all mice received the same number 

and timing of pyrazole injections prior to final removal from the inhalation chambers. Following 

4 days in the inhalation chamber, mice underwent 7 days of complete abstinence from ethanol. 

At the end of the abstinence period, mice were returned to the inhalation chamber to begin the 

next cycle of CIE. This pattern of 4 days CIE (or control air) exposure followed by 7 days 

abstinence was repeated for four complete cycles (Figure 3). 

 

 

Figure 3: Overview of time-course CIE experiment. 

 

Tissue Harvesting and RNA Isolation 

Immediately following the last cycle of air or ethanol exposure as above, mice were removed 

from the inhalation chambers and euthanized at the appropriate time point by decapitation. Time 

points collected were 0, 8, and 72 hours (h) and 7 days (d), with n=6 for each treatment/time 

group (Figure 3). Following decapitation, mouse brains were immediately extracted from the 

skull, chilled on ice and dissected by brain punch microdissection. Tissue samples were frozen 

on dry ice and stored at -80oC until processed for RNA isolation. Total RNA was isolated using 

the RNeasy Mini Kit (Qiagen, Valencia, CA) as described previously [208]. 
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Gene Expression Microarrays 

The MUSC ProteoGenomics Core Facility processed RNA samples for microarray analysis 

using standard procedures as described by the manufacturer (Affymetrix, Santa Clara, CA). 

Samples were processed as a group by brain region with treatment groups and time points 

randomized to minimize batch effects. Gene expression was quantified with Affymetrix 

GeneChip® Mouse Genome 430, type 2 arrays. Scanning data was stored in CEL file format 

using Affymetrix Expression Console software, and these data files were transferred to Virginia 

Commonwealth University (VCU) for further analysis. Raw data files (CEL files) and RMA 

normalized expression values for all brain regions have been submitted to the Gene Expression 

Omnibus (GEO) database under accession number GSE72517. 

 

Microarray Analysis 

Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were analyzed using The R Project 

for Statistical Computing (http://www.r-project.org/). RNA degradation, average background, 

and percent present probesets were used to assess array quality, and inspect for outlier arrays. 

Quality of each microarray was also assessed primarily by principal component analysis. Plots of 

first principal component by second principal component allowed for visual identification of 

outliers and batch effects between arrays. Background correction and normalization were 

performed using the affy package for R [255]. Due to batch effects noted in principal component 

plots, microarrays were separated by RNA hybridization batch for initial normalization. Each 

batch was background corrected with the Robust Multi-array Average (RMA) technique and 

normalized by quantile normalization [256]. The second step involved subjecting all microarrays 
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together to another round of quantile normalization. Finally, ComBat with hybridization group as 

the batch effect was used to remove any remaining batch effects reflected in the data [257]. The 

only exception to this procedure was the prefrontal cortex where repeat group was used as only 

the batch effect correction factor (Figure 4). 

 

Figure 4: Multidimensional scale plots showing 1st and 2nd principal component of all 
arrays for each brain-region before (left panel) and after (right panel) quantile 
normalization and ComBat. A) PFC, B) NAc, C) HPC, D) BNST, E) CeA 
 



 32 

CIE Responsive Genes 

CIE regulated genes were identified using the limma package for R [258]. Comparisons were 

made between CIE and Ctrl groups at each time point (0h, 8h, 72h, and 7d), and overall 

significance was determined by ANOVA. The Benjamini and Hochberg false discovery rate 

method (FDR) [259], was used to account for multiple testing. For the purposes of these studies, 

false discovery rates equal to or less than 0.01 were considered indicative of significant 

differences in gene expression between CIE and Ctrl mice. 

 

Weighted Gene Correlated Network Analysis 

Weighted Gene Correlated Network Analysis (WGCNA) was used for scale-free network 

topology analysis of microarray expression data [246]. WGCNA was performed on each brain 

region independently with the WGCNA package for R [260]. Probesets were selected for 

WGCNA based on overall significance by ANOVA (FDRs equal to or less than 0.01). Any 

probeset found to be significant by ANOVA in any brain region was included, resulting in a total 

of 10,072 probesets used for WGCNA. Standard WGCNA parameters were used for analysis, 

with the exceptions of soft-thresholding power and deep split. A soft-thresholding power of 6 

was used for all brain regions; this power was selected using methods described by Langfelder 

and Zhang [260]. WGCNA was performed with deep-split values of 0-3. Deep-split value was 

selected based on a multi-dimensional scaling (MDS) plot, which displayed first and second 

principal components. The criterion for deep-split value selection was that no modules showed 

overlap with each other by the MDS plot. Deep-split values of 3 were selected for all brain 

regions, except the nucleus accumbens, where a deep-split value of 2 was chosen. 
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Overlap Analysis 

Overlap was determined between WGCNA modules and genes differentially expressed, as 

indicated by LIMMA FDR values equal to or less than 0.01 at each time-point. Fisher’s Exact 

Test [261] was then used to quantify the significance of overlap. WGCNA modules with Fisher’s 

Exact Test p-values ≤ 0.005 combined with odds ratios greater than 3 were determined to be 

significantly over-represented for differentially expressed genes at a certain time-point. 

 

To compare differentially expressed genes under CIE to those regulated by acute ethanol 

exposure, the results of a previous gene expression study at the Miles’ Laboratory was used. This 

study looked at the gene expression response in the prefrontal cortex, nucleus accumbens, and 

ventral tegmental area in various strains of mice from the BXD recombinant inbred mouse panel 

after an intraperitoneal injection of 1.8 g/kg ethanol. Gene expression was then measured using 

Affymetrix GeneChip 430, type 2 arrays. Differential gene expression across the panel was 

determined using Fisher’s Combined Probability Test and S-Scores as previously described 

[247]. Differentially expressed genes between CIE and control at each time-point in PFC and 

NAC were compared to genes significantly regulated across the BXD RI panel with acute 

ethanol exposure within the same brain-regions using Fisher’s Exact Test. Similar to overlap 

between CIE WGCNA modules and LIMMA results for each time-point for the CIE data, odds 

ratios and p-values were used to determine whether there was significant overlap between genes 

regulated at each time-point with CIE and genes regulated across the BXD RI panel with acute 

ethanol.  

 

Bioinformatics 
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Modules identified by WGCNA were examined for function using publicly available 

bioinformatics resources. The Functional Annotation Chart tool from DAVID 

(http://david.abcc.ncifcrf.gov/) [262, 263] was used to identify biological pathways highly 

represented by genes grouped into each module. GeneMANIA (http://www.genemania.org/) 

[264] was also utilized for functional analysis through use of constituent genes in each module as 

query lists for validation in GeneMANIA derived networks driven by previously published 

biological data sources (microarray, protein-protein interaction and others) [264]. The 

miRvestigator Framework application (http://mirvestigator.systemsbiology.net/) [265] was then 

used to identify microRNAs that may regulate modules that significantly overlap with 

differentially expressed genes at 0h and 7d in the PFC and HPC. The PFC and HPC were chosen 

for microRNA target analysis because these regions showed an appreciable level of regulation 

with CIE at 7d. A complete workflow of microarray analysis from tissue collection through 

bioinformatics is represented in Figure 5. 
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Figure 5: Workflow diagram of all analyses performed on C57BL/6J mice after 4 cycles of 
CIE by vapor chamber. 
 

Candidate Gene Identification 

The prefrontal cortex and hippocampus were chosen for detailed candidate gene characterization 

because these brain regions showed both immediate and long-term (7d) CIE induced changes in 

gene regulation (Table 1). Previous studies have shown a sustained increase in ethanol 

consumption at 7d post multiple CIE cycles [81], indicating that expression differences found at 

this time-point may contribute to the alteration in ethanol consumption. We reasoned that 

prolonged ethanol exposure-induced changes in gene expression (0h) might induce long-lasting 

structural or functional components of synaptic plasticity and contribute to elevated ethanol 

consumption, even if those genes mRNA expression patterns decayed to baseline over the 7d 
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withdrawal period. Therefore, we restricted our detailed bioinformatics analysis and candidate 

gene identification to genes that were included in WGCNA, and showed significant differential 

gene expression by LIMMA at 0h or at 7d (FDRs equal to or less than 0.01). Genes fitting these 

criteria were then ranked by scaled within module connectivity (kIM) as described by Langfelder 

and Horvath [260]. 

 

Quantitative RT-PCR 

To verify the presence of mmu-let-7c-1 in the B6 mouse, PFC samples from male and female B6 

mice that underwent 5 cycles of CIE by vapor chamber and drinking as part of a larger 

experiment on the effect of CIE with intermittent 2-bottle choice drinking on gene expression in 

the PFC of BXD recombinant inbred mice and their progenitors. This study will be discussed in 

greater detail in Chapter 5 of this dissertation. RNA from these samples was extracted using the 

Qaigen miRNeasy Mini Kit (Qiagen, Valencia, CA), which preserves small RNAs. For this 

reason, these samples rather than those from the B6 time-course mice, were used because the B6 

time-course RNA used for gene expression network analysis was extracted with the mRNeasy 

Mini Kit (Qiagen, Valencia, CA). This kit does not preserve RNAs shorter than 200nt in length. 

Primers for mmu-let-7c-1 were designed using NCBI’s Primer BLAST primer design tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast), and supplied by Eurofins Genomics (Eurofins 

Scientific, Luxembourg). Three primer pairs were tested for efficiency, and the pair with the 

highest efficiency was chosen: forward primer-GTGCATCCGGGTTGAGGTAG, reverse 

primer-AGTGTGCTCCAAGGAAAGCTA. 

RNA was transcribed into cDNA using the iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA) 

according to manufacturer instructions. qRT-PCR was run on a CFX Connect Real-Time PCR 
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Detection System (Bio-Rad, Hercules, CA) using iQ SYBR Green Supermix (Bio-Rad, Hercules, 

CA). Ublcp1 and Ppp were used as reference genes. let-7c-1 expression was calculated relative 

to both Ublcp1 and Ppp for male and female mice in each treatment group, CIE and Air, and 

examined for significance using a t-test. 

 

Results 

Time-Course Gene Expression with CIE 

Gene expression analysis with LIMMA identified significant differential expression between 

CIE and Ctrl groups. The majority of gene regulation in all brain regions was observed during 

the first 8h after the final cycle of chronic intermittent ethanol. The prefrontal cortex (PFC) or 

hippocampus (HPC) showed the greatest number of CIE-regulated genes at any particular time 

point and they were the only regions to show expression changes at all time points. The 

contrasting response in PFC and HPC was particularly striking at the 7d time point where they 

each showed hundreds of post-CIE regulated genes while other brain regions were virtually 

quiescent (Table 1, Suppl. Table S1). Interestingly, the number of CIE-responsive genes at 7d 

in PFC and HPC were both greater than the numbers seen at 72h, suggesting a possible late 

withdrawal response or an unmasking of chronic CIE regulated genes following recovery from 

acute withdrawal.  

Table 1: LIMMA results. Number of significantly differentially expressed probesets at each 
time-point, LIMMA FDR ≤ 0.01
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Comparison of overlaps in CIE-regulated gene sets either across time points within a brain 

region or across brain regions within a single time point revealed patterns of co-regulation. In all 

brain-regions, the greatest amount of overlap across time periods was seen between 0h and 8h, 

but these patterns largely decayed by 72h in most brain regions (Suppl. Table S2). Only PFC 

showed significant temporal overlaps across all time points. In both the PFC and HPC, there 

were over 100 probesets with overlapping regulation at both 0h and 7d, indicating that many 

genes responding to CIE showed persistent changes following a prolonged withdrawal period 

(Suppl. Table S2). Across brain regions, there was overlap in gene sets most prominently at the 

0 and 8h time points (Figure 6). However, across brain-regions at 7d, only three genes 

overlapped between the PFC and HPC and one gene between PFC and CeA (Figure 6). This 

finding shows long-term gene regulation after CIE was specific to individual brain regions. 

There was also no overlap seen between the PFC and BNST at 72h, suggesting that gene 

expression changes during late withdrawal were also brain-region specific (Figure 6). Thus, four 

cycles of CIE induced robust changes in gene expression across multiple brain regions that 

steadily decreased over a 72h withdrawal period, except for PFC and HPC where region-specific 

persistent changes were seen. 
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Figure 6: Overlap between CIE- regulated probesets at each time-point across brain 
regions. Table documents number of probesets significantly regulated by CIE (FDR ≤ 0.01) at 
each time point within individual brain regions (shaded cells) and overlap with same time-points 
across other brain regions. 
 

In comparing those genes significantly differentially expressed at each time-point in the PFC and 

NAC to genes significantly regulated by acute ethanol exposure in a previous study of the gene 

expression effect of a single i.p. injection of 1.8 g/kg ethanol [247], no overlaps were found with 

sufficiently high odds ratios and p-values ≤ 0.05 (Suppl. Table S3).  

 

Weighted Gene Correlated Network Analysis 

WGCNA identified expression modules in each of the 5 brain regions studied. Similar to 

differential gene expression analysis, the PFC (n=31) and HPC (n=27) had the largest number of 

modules and CeA (n=18) the least (Figure 7). Module sizes varied from over 3000 probesets to 
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less than 35 (Figure 7, Suppl. Table S4). Of these modules, 31 were significantly over-

represented with genes regulated by CIE at 0h, 23 at 8h, 9 at 72h, and 13 at 7d (Figure 7, and 

Suppl. Table S5). When genes within modules were summarized as “eigengenes” (first principal 

component of expression patterns for all genes in the module), a variety of temporal profiles 

were identified (Figure 8, Suppl. Figures S1-S5). The topology of kinetic profiles was most 

diverse in PFC and HPC while other brain regions mainly displayed module eigengene profiles 

that decayed to control levels by 8 or 72h post withdrawal (Figure 8). PFC and HPC were the 

exception with some modules displaying persistent or de novo expression changes at 7d in CIE-

treated animals. 
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Figure 7: Overlap between CIE-regulated probesets and modules identified by WGCNA. 
Cell numbers indicate number of overlapping probe-sets, Cell color indicates significant overlap. 
Significant overlap: p-value ≤ 0.005 and Odds Ratio ≥ 3. Names and number of genes for each 
module are listed at far left columns within each brain region. 
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Figure 8: Representative kinetic profiles for module eigengenes. Module eigengene 
expression vs. time plots (hours) for the black, greenyellow, blue, and magenta modules in PFC, 
pink module in NAC, salmon module in CEA, darkturquoise module in BNST, and turquoise 
module in HPC. (Detailed discussion of module functions in Results section). Triangle = CIE, 
Circle = Air. 
 

Commonly Occurring Biological Processes 

Modules that significantly overlapped with differentially expressed genes at the 0h and 7d time 

points were chosen to discuss further bioinformatics analyses because these time points represent 

the initial and sustained responses to chronic ethanol exposure (Figure 7, Suppl. Table S4). 

However, over-representation analysis of all modules for all brain regions is contained in Suppl. 

Tables S6-S10. At the 0h and 7d time points, a number of gene ontology categories showed 

significant over-representation (p ≤ 0.05) across modules in multiple brain regions. This suggests 

more global functional changes produced by CIE being elicited at those time points. Gene 

Ontology categories were considered “commonly occurring” if they showed significant overlap 
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with 10% or more of all WGCNA modules across brain-regions (≥12 modules). 10 GO 

categories were represented in 12 or more modules, and all of these were represented in all brain-

regions studied (Table 2, Suppl. Tables S11). Functionally, these 10 fell into 4 general 

categories: RNA processing (GO:0006397~mRNA processing, GO:0008380~RNA splicing), 

DNA damage response (GO:0006511~ubiquitin-dependent protein catabolic process, 

GO:0010942~positive regulation of cell death, GO:0006974~cellular response to DNA damage 

stimulus, GO:0006457~protein folding), development and differentiation 

(GO:0045596~negative regulation of cell differentiation, GO:0048732~gland development, 

GO:0051301~cell division), and chromatin (GO:0000785~chromatin) (Table 2). Of note, 

ubiquitination and RNA-splicing were two gene ontology functional categories identified in our 

earlier global study of CIE-regulated gene expression [208]. The two categories related to RNA 

processing contained several DEAD box proteins (Suppl. Tables S6-S10, and Suppl. Tables 

S5). These proteins are known to function as RNA helicases [266]. Serine/arginine matrix 

proteins (Srrm1, Srrm2, Srrm3) were also represented in these categories. Functionally, 

serine/arginine matrix proteins are involved in mRNA splicing [264-269]. These three genes 

have also been found to be regulated by ethanol in multiple brain-regions in mice and human 

alcoholics or correlated with ethanol consumption in previous genomic studies. Many genes 

were represented within the categories related to DNA damage. Usp1, Ube2d3, and Tecb1 are 

just a few examples of genes within these categories that have also been found to be regulated by 

ethanol in cultured cells, mice, and rats [194, 196, 209, 212, 246, 268-270]. These results may in 

part be indicative of the genotoxic effects seen with high-dose ethanol exposure [271].  
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Table 2: Top 10 commonly occurring biological processes across time-points and brain-
regions. 

 

Prefrontal Cortex 

Overlap analysis between WGCNA modules and CIE-regulated gene sets revealed 9 modules 

enriched for genes regulated by chronic intermittent ethanol at 0h in PFC (Figure 7). Many of 

these modules contained genes involved in regulation of the cell cycle and apoptosis (Suppl. 

Table S6). The salmon and green modules showed several GO hits related to neuronal 

development, differentiation, and neuronal function. Genes within these GO categories included 

Bdnf, c-fos, Bcor, Ppp2r3a, Hdac9 (green module), and Notch1, Sox21, Sema3f, Gata2, Hdac2, 

Bmpr1a, Mkks (salmon module) (Suppl. Tables S4 and S6). A highly significant number of 

genes in the green module contained potential base pairing motifs (68% with 8 base motif; 92% 

with 6 base-pairing match) for mmu-let-7c-1 (Figure 9). Bdnf occupied a highly interconnected 

central position in the green module (Figure 9), while showing significant expression changes 

only at the 0h time point (Figure 9). The salmon module similarly had 68% of the genes with 8 
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base-pairing motifs for sequences within the miR-181 family and the let-7 family (Suppl. Table 

S12). These motifs were also contained in miR-543, miR-318, and miR-539-3p. 

 

 

Figure 9: Bioinformatic analysis of PFC green module containing Bdnf. A) miRvestigator 
results of top miRNA motifs with complementary binding sequences in the PFC Green module. 
B) Network representation of the PFC Green module based on adjacency. Edge transparency 
indicates Pearson correlation coefficient. Node size reflects within-module connectivity 
determined by WGCNA. Node color indicates log-ratio of gene expression at 5 days CIE vs. 
Ctrl. Genes with mmu-let-7c-1 complementary sequences are highlighted. C) Average RMA 
value (log2 scaled, ±S.E.) expression of Bdnf at each time-point and treatment condition in the 
prefrontal cortex. (* = LIMMA FDR ≤ 0.05) 
 

Mmu-let-7c-1 expression was verified by qPCR, in the PFC of C57BL/6J mice that underwent 5 

cycles of CIE by vapor chamber with intermittent 2-bottle choice drinking as part of a gene 

expression study in BXD recombinant inbred mouse panel. A significant reduction in mmu-let-

7c-1 expression was seen in male C57BL/6J mice after multiple-cycles of CIE (p-value ≤ 0.05). 

Interestingly, results from female C57BL/6J  mice that also underwent multiple-cycles of CIE 
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suggested an opposite effect. Mmu-let-7c-1 expression levels in females after multiple-cycles of 

CIE were higher than those of air controls; however, the difference between treatment groups in 

females was not significant (Figure 10). 

 

Figure 10: Bar graph of qRT-PCR results Let-7c-1. Let-7c-1 expression quantified (n=4 
mice/group) relative to reference gene Ublcp1, error bars=standard error. * = p-value ≤ 0.05. 
 

Given the potential role of Bdnf in mediating long-term plasticity underlying increased ethanol 

consumption after CIE [208, 272, 273], we performed further network analysis of the green 

module (Figure 11). Strikingly, while many genes in the green module show significant changes 

in expression at the 0h time point, there was also a group of genes that showed changes at 0h and 

7d (Figure 11). Looking solely at genes within the green module that were significantly 

regulated at 7d, network connectivity analysis within control vs. CIE samples showed that this 

group showed a striking increase in connectivity in the CIE samples at 7d versus 0h, or 

compared to the control samples at 0h or 7d (Figure 11). Module eigengene expression values 
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for the green module genes significantly regulated at 7d reflected the bimodal pattern, with 

decreased expression in CIE samples versus control at 0h and 7d (Figure 11). 
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Figure 11: Figure 6: Network level analysis of PFC green module. A) Disruption of co-
expression with CIE in genes regulated at 5 days (LIMMA FDR ≤ 0.05). Node size=within 
module connectivity. Ordered by within module connectivity at 5 days in Ctrl mice. B) 
Histograms for FDR of genes in PFC Green module at each time point. Dark grey = overlap of 
genes regulated at 5 days (LIMMA FDR ≤ 0.05). C) Eigengene expression time course for green 
module genes in control or ethanol (CIE) treated animals. 
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Two additional modules, lightyellow and yellow, were enriched for genes that showed 

significant differential expression between CIE and Ctrl at both the 0h and 7d time-points, but 

not at 8h or 72h (Figure 7, Suppl. Figure S1). This functional overlap mirrors the overlap 

between the 0h and 7d time points seen with gene lists by LIMMA analysis (Figure 6, Suppl. 

Table S2). Contained in the lightyellow module were genes involved in cell cycle regulation, 

nerve cell development, and organization of cell projections (Suppl. Table S6). The yellow 

module also included several genes related to cell cycle regulation and vesicular trafficking. The 

latter group included Syn2, Syn3, Syt7, and Syt11 [270, 273-277]. These modules may thus 

include biological pathways relevant to both immediate and long-term neuroplasticity resulting 

from CIE exposure, but not the physiological effects of withdrawal, since there was no overlap 

with genes regulated at the 8h and 72h time points that cover the interval of peak withdrawal 

[274, 275, 278, 279]. The PFC yellow module also contained a high percentage of genes (70%) 

with 8 base-pairing motifs for mmu-let-7c-1-3p, another let-7 family microRNA (Suppl. Table 

S12). 

 

A total of 13 modules from PFC were enriched for genes regulated at the peak withdrawal time-

points of 8 and 72h post-CIE (Figure 7, Suppl. Table S4). Only 3 of these modules were 

enriched for genes significantly regulated both at 8h and 72h. These findings indicate that gene 

expression functional patterns changed significantly as withdrawal progressed. Those modules 

enriched for genes regulated at both withdrawal time-points contained genes involved in 

regulating cell proliferation and cell death (Suppl. Table S6). The black module, one of the 

modules significantly enriched at 8h but not 72h, contained genes involved in stress hormone 

response and hypothalamic-pituitary-adrenal signaling such as Sgk1, Sgk3, and Nfkbia. These 
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genes were also regulated by acute ethanol in our prior studies [86, 247]. Three modules, 

lightgreen, magenta, and tan, were over represented at both the 72h and 7d time-points. The tan 

and lightgreen modules showed significant overlap (p-value ≤ 0.05) with GO categories related 

to T-cell mediated immunity (Suppl. Table S6), including Il2, Il4, Igh-6, IGH-VJ558 and 

Cebpg. Regulation of these genes by ethanol has been demonstrated in mice and humans 

previously [85, 212, 246, 267, 269]. These modules may thus reflect biological processes having 

longer lasting regulation by withdrawal, or they may represent long-term functional adaptations 

to chronic ethanol exposure that are only apparent in the absence of ethanol. If the latter is the 

case, then such immunoregulatory-laden modules could have an important role in long-term 

behavioral consequences of CIE. 

 

Finally, 8 modules in the PFC were significantly overrepresented for genes differentially 

regulated only at 7d after the final cycle of CIE (Figure 7, Suppl. Table S4). All these modules 

contained genes associated with neurodevelopment or neurotransmitter release (Suppl. Table 

S6). The greenyellow, lightyellow, pink, and red modules also had several gene ontology (GO) 

hits related to calcium binding, and cytoskeletal organization and control. Similarly, GO hits 

related to the cell cycle and cell proliferation were identified in the pink, red, tan, and yellow 

modules. Finally, biological processes related to immune response were identified in the 

greenyellow and lightgreen modules. The gene co-expression networks identified by WGCNA in 

PFC and regulated by CIE, therefore appear to represent both the lasting neuroplasticity and 

neuroinflammatory responses to chronic ethanol exposure. 

 

Nucleus Accumbens 



 51 

Significant differences in gene expression between CIE and Ctrl mice in NAC were only found 

immediately after the final cycle of CIE exposure (0h) and during acute withdrawal (8h) (Table 

1). Seven WGCNA modules were enriched for genes expressed at the 0h time-point (Figure 7, 

Suppl. Figure S2). Several of these modules showed overlap with GO categories related to 

cellular stress response, metabolism, chromatin structure and regulation of gene expression 

(Suppl. Table S7). For example, the salmon module contained genes significantly differentially 

expressed at 0h in the NAC (Figure 7) and was over-represented for functions involved in 

chromatin structure (Suppl. Table S7). Several genes in this general functional group of the 

salmon module (Bptf, Mysm1 and Ube2b) all were previously shown to respond to acute ethanol 

in mice [86]. The brown module also showed significant expression changes at the 0h time point 

and had a striking enrichment for genes involved in RNA splicing and processing (Suppl. Table 

S7). 

 

Hippocampus 

Hippocampus showed the second greatest amount of differential gene expression between Ctrl 

and CIE mice. This brain region was also the only one, besides the PFC, to show significant 

differential gene expression at both 0h and 7d (Table 1). Furthermore, the HPC had the largest 

number of genes showing differential expression at 7d (604) with the vast majority of these 

residing within the turquoise module (408/604; Figure 7). Overall, 27 modules were identified 

by WGCNA in the HPC, and 5 of these were significantly overrepresented for genes regulated 

by CIE at 7d (Figure 7, Suppl. Table S4, Suppl. Figure S8). Furthermore, there was a highly 

significant overlap of genes regulated at 0h or 7d in HPC. The 0h and 7d time points showed 796 

and 556 genes, respectively, significantly regulated by CIE at FDR≤ 0.01 (Figure 7). These gene 
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sets showed an overlap of 104 genes (p≤ 2.2 x 10-16; Fisher’s Exact Test), with 89 of these 

residing in the turquoise module (Figure 7, Suppl. Table S4). 

 

The turquoise module in HPC was enriched for CIE-regulated genes at both the 0h and 7d time 

points and contained over 3000 genes, producing a complex bioinformatics analysis. Gene 

ontology analysis of the entire module showed strong over-representation for several functional 

groups potentially relevant to long term synaptic plasticity (Suppl. Table S8). These included 

extended groups of genes functioning in chromatin modification (Figure 12) such as histone 

acetylation (including Baz2a, Brd8, Hdac4, Hdac6, and Myst3), histone/DNA methylation 

(Kdm6b, Kdm5c, Suv38H1, Suv420H1, and Dnmt3a), chromatin remodeling (Baz1b, Smarca4, 

Smarca5, SmarcaL1, SmarcC1, SmarcE1), and histone/nuclear protein ubiquitination (Ube2b, 

Ube2n, Ubn1, Usp16, and Usp22). Similar results were found on over-representation analysis of 

only the genes showing CIE regulation (p≤ 0.05) at the 7d time point (Suppl. Table S8). 

Network connectivity analysis identified several highly connected hub genes in the HPC 

turquoise module, as discussed further in the Candidate Gene Identification section below. 
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Figure 12: GeneMANIA analysis of genes from HPC turquoise module related to 
chromatin modification.  Chromatin modification genes were identified from Gene Ontology 
analysis of the HPC turquoise module (Suppl. Table S6) and submitted to the GeneMANIA 
resource (www.genemania.org) for identification of network interactions using default criteria 
and databases. 
 

Other HPC modules over-represented for genes regulated by CIE at 7d included the brown 

module, the only other module containing genes regulated at both 0h and 7d (Figure 7). This 

module contained genes related to immunity and cellular stress responses, including several 

genes encoding components of the major histocompatibility complex (Suppl. Table S8). Three 

HPC modules, magenta, tan, and yellow, were enriched for genes regulated by CIE at only the 7d 

time-point. The magenta module contained genes functioning in neurodevelopment, 

neuroplasticity, and synaptic transmission. These include Vegfc, Notch1, Ppap2b, Scg2, and 
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several Sox family genes [276-284]. The yellow module also included genes known to be 

involved synaptic transmission such as glutamate receptors (Gria1, Grik2) and the D1 dopamine 

receptor gene (Suppl. Table S4 and Suppl. Table S8) [190, 281-287]. 

 

Of the HPC modules significantly overlapping with genes regulated by CIE only at 0h or 8h, 

most represented Gene Ontology hits seen in other brain regions such as immunity, cellular 

stress response, RNA splicing, transcription, and cell proliferation (Suppl. Table S8). Of note, 

preliminary genomic analysis of CIE responses in hippocampus showed very prominent 

expression changes during acute withdrawal (8h) that included over-representation of genes 

involved in RNA splicing [208]. 

 

Bed Nucleus of the Stria Terminalis 

The BNST was the only brain region other than PFC that showed significant gene regulation at 

72h post-CIE (Figure 7, Suppl. Figure S9). Three modules were significantly overrepresented 

for genes regulated at only the 72h time-point. Two of these modules, tan and lightgreen, 

contained several genes related to neurodevelopment, and synaptic transmission. These included 

Ndrg1, a myelin-related gene identified as an acute ethanol-responsive gene in our prior studies 

[86, 247, 288], (Suppl. Tables S4 and S9).  

 

The third 72h module, darkturquoise, contained genes related to the Ras GTPase intracellular 

signaling cascade. An additional 6 modules in the BNST (black, brown, green, midnightblue, 

pink, and yellow) were overrepresented for genes regulated by CIE at 0h, 8h, or both times 

(Figure 7, Suppl. Figure S9). Functionally, these modules contained genes overlapping with 
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GO categories related to immune response, chromatin organization, transcription regulation, cell 

cycle control, and development (Suppl. Table S9). 

 

Central Nucleus of the Amygdala 

The CeA showed the least amount of differential expression between CIE and Ctrl mice at all 

time-points (Table 1) and, subsequently, fewer modules were identified by WGCNA than in the 

other brain regions (Figure 7, Suppl. Table S4). The CeA magenta and salmon modules were 

significantly enriched for genes expressed at both 0h and 8h post-CIE (Figure 7, Suppl. Figure 

S10). Bioinformatics analyses revealed that the magenta module contained genes related to 

immune response, particularly those encoding components of the major histocompatibility 

complex (Suppl. Table S10). Analysis of the salmon module identified several GO hits related 

to cell proliferation through negative regulation of programmed cell death. NF-κB was also 

identified as binding partner to multiple genes within the salmon module (Suppl. Table S10). 

Thus, NF-κB represents a possible target for network modulation in the CeA. 

 

The CeA yellow module was overrepresented for genes regulated at the 0h time point only. This 

module contained multiple genes related to neurodevelopment and synaptic transmission. 

Individually, only Kif1b was significantly regulated by CIE treatment in the CeA, but multiple 

other yellow module genes (including Myo5a, Als2, Dlgap1, Egr3, Agtpbp1, Stx4a, Mecp2, 

Mylk2, Cacnb2, Lin7a, Psen1, Gria2, Trim9, Ssyn2, Chrna7, Ppp3ca, Bdnf, Grm5, Dlg4, Ncs1, 

Adra1a, and Lgi1) were contained in 4 Gene Ontology categories related to synaptic 

transmission (Suppl. Table S10). 
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Two modules, pink and tan, were overrepresented for genes regulated by CIE only at the 8h time 

point, a time of peak withdrawal. The tan module was enriched with genes related to cellular 

stress response, many of which have been previously been associated with ethanol response in 

mice and humans (Hsp5a, Cebpb, Dnajb9, Herpud1, Hes5, Creld2) [86, 209, 212, 246, 267]. 

Analysis of the pink module also identified biological pathways representing cellular stress 

response, and included several genes previously identified as ethanol-responsive in brain, such as 

Tsc22d3, Arrdc2, Htra1, Gclm, and Mt1 [86, 209, 246, 267] (Suppl. Tables S4 and Suppl. 

Tables S10). 

 

Candidate Gene Identification 

To identify candidate genes for future study as major regulators of CIE-associated increased 

ethanol consumption, we focused attention on PFC and HPC where CIE-responsive genes 

(FDR≤0.05) were identified at 7d after removal from the vapor chambers. Furthermore, we 

identified hub genes having the highest scaled intramodular connectivity (kIM) (Tables 3 and 4), 

to focus on potential major regulators of network function [289]. 
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Table 3: Top 30 Most Highly Connected Genes PFC. Top 30 most highly connected genes 
significantly differentially expressed at 7 days (LIMMA FDR ≤ 0.01) in the prefrontal cortex. 
Scaled module connectivity = within module connectivity/maximum number of connections 
possible as determined by WGNCA.
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Table 4: Top 30 Most Highly Connected Genes HPC. Top 30 most highly connected genes 
significantly differentially expressed at 7 days (LIMMA FDR ≤ 0.01) in the hippocampus. 
Scaled module connectivity = within module connectivity/maximum number of connections 
possible as determined by WGNCA. 

 

 

Genes regulated by CIE in PFC at 7d and within the top 30 highest kIM scores, included Myoz1 

and Sgsh (Figure 13), with the former only becoming significantly different from Ctrl at the 72h 

and 7d time points. This strongly supports a possible role for Myoz1 in longer term adaptations 

resulting from CIE. Previous studies from this laboratory have shown Myoz1 expression 
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correlates with individual variation in ethanol consumption in C57BL/6 mice [142]. Myoz1 is 

most highly expressed in skeletal muscle but brain microarray databases suggest widespread 

lower expression in brain (www.genenetwork.org). The protein associates with the actin 

cytoskeleton and may play a role in determining cell shape [290]. Sgsh has also been correlated 

with ethanol behaviors in previous studies [209, 291] and found to have altered expression in 

alcoholic brain postmortem tissue [212, 246, 267, 288]. Sgsh is involved in glycosaminoglycan 

degradation and mutations in the gene cause mucopolysaccharidosis IIIa. As two of the most 

highly connected genes within their respective modules, Myoz1 and Sgsh may represent 

important regulatory proteins within a biological pathway induced by chronic ethanol exposure. 

 

Figure 13: Expression patterns for representative candidate genes. A) Average RMA value 
(log2 scaled) expression of candidate genes at each time-point and treatment condition in the 
PFC cortex. (* = LIMMA FDR ≤ 0.05, ** = LIMMA FDR ≤ 0.01) B) Average RMA value (log2 
scaled) expression of candidate genes at each time-point and treatment condition in the HPC. (* 
= LIMMA FDR ≤ 0.05, ** = LIMMA FDR ≤ 0.01). 
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In the HPC, 1352 of the 10,072 probesets used for WGCNA were regulated by CIE (FDR≤ 0.05) 

at 7d. Interestingly, 60% (19/30) of the top 30 most highly connected genes in the HPC were 

within the turquoise module, even when within-module connectivity was scaled by the number 

of total genes in the module. The highly connected genes in the turquoise module represent a 

variety of biological functions from DNA processing to vesicle trafficking (Table 4, and Suppl. 

Table S8). Among the most highly connected genes in any HPC module were Vegfa, Parp9, and 

Dnmt3a (Table 4, Figure 13). All these genes have previously been associated with ethanol 

responses in the literature [208, 291, 292]. Perhaps most strikingly regarding the highly 

interconnected turquoise module was the large subgroup of genes involved in chromatin 

modification (Suppl. Table S8). Figure 12 illustrates an external validation of this subnetwork, 

where the chromatin modification-related genes of the turquoise module were analyzed using the 

GeneMania bioinformatics tool (www.genemania.org) to illustrate connectivity between these 

genes using external data sources. 

 
Discussion 

The investigation described in this manuscript employed a network-centric approach to identify 

brain region and time specific gene expression regulation by multiple cycles of chronic 

intermittent ethanol vapor exposure [81, 239, 251, 293]. Prior genomic studies have been 

conducted using similar vapor exposure models in mice and rats [208, 294]. This study 

represents a detailed network analysis of the time dependent effects on gene expression with this 

behavioral model. Network analysis with WGCNA revealed modules of co-expressed genes 

regulated by CIE that showed robust time and brain-region specific expression patterns, with 

PFC and HPC showing the most persistent, and largest number of gene expression changes. 

Functionally, chronic intermittent ethanol exposure and withdrawal caused time- and region-
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specific gene expression changes reflecting neuroplasticity, neuroimmunity, and neuroendocrine 

signaling responses to chronic ethanol. This analysis also suggests that possible mechanisms 

underlying persistent expression changes following chronic ethanol exposure may involve 

regulation by miRNAs and chromatin remodeling. Finally, overlap between results from this 

study and previous experiments exploring gene expression response to acute ethanol indicates 

that the hypothesis that acute ethanol paradigms are relevant to the brain’s biological response to 

long-term ethanol exposure is only applicable to a small number of genes [230]. All together, 

these results demonstrate that systems genetic analysis of genomic expression data is an effective 

means of teasing out the complex molecular and biological responses to chronic ethanol 

exposure. 

 

The prefrontal cortex and hippocampus, however, were most affected by chronic ethanol, both in 

terms of number of differentially expressed genes at all 4 time-points, and as indicated by 

sustained gene expression changes at 7d post-CIE (Table 1 and Suppl. Tables S1). Indeed, it 

was somewhat surprising that areas such as the BNST, CeA and particularly NAC did not show 

persistent changes induced by CIE. These regions did show strong responses at 0-8h after 

removal from the vapor chambers, particularly in regard to stress/inflammation-related functions, 

and it is certainly possible that these mRNA expression changes evoked long-lasting translational 

or post-translational alterations that were relevant to long-lasting behaviors, but this hypothesis 

will require additional study at the protein, structural or functional level. Additionally, the long-

term gene expression response in PFC and HPC, and lack of such in other brain-regions, may 

have implications for system level signaling in the brain. The NAC receives glutamatergic 

feedback from the PFC and HPC [190]. At 7 days post-CIE gene expression differences are seen 
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in the PFC and HPC, but not the NAC, indicating that long-term ethanol induced activity in the 

PFC does not alter activity in the NAC, or any other regions of the extended amygdala such as 

the CeA or BNST. These results may, in fact, indicate that long-term gene expression changes in 

the PFC and HPC in response to chronic ethanol do not change gene expression in other brain-

regions basally. One might hypothesize, however, that basal changes in gene expression induced 

by CIE could affect ethanol response in these other brain-regions. This effect may not be seen in 

the gene expression data presented in this chapter, because, with the exception of the 0 hour 

group, mice are not exposed to ethanol at the time of sacrifice. A future study in which mice are 

exposed to repeated cycles of CIE by vapor chamber, withdrawn from ethanol for 7 days, and 

then re-exposed and sacrificed for gene expression studies while they still have ethanol on board 

may be performed at a later date to investigate this hypothesis. 

 

The findings presented in this study strongly implicate prefrontal cortex and hippocampus as 

brain regions most strongly influenced in terms of genomic regulation by CIE exposure, both at 

immediate time-points (0h) and after long-term abstinence (7d). The long-term changes in gene 

expression (Table 1, Suppl. Table S1) were of most interest because these possibly underlie 

behavioral responses to repeated chronic intermittent ethanol exposure, such as escalation of 

voluntary consumption observed in previous studies [81, 239]. Chronic heavy, and even 

moderate, ethanol intake has been shown to impair memory and hippocampal neurogenesis in 

humans and rodents [85, 293, 295, 296]. The hippocampus has also been implicated in 

withdrawal seizures, though there are mixed findings about the relationship between 

hippocampal atrophy with chronic heavy drinking, and onset and severity of withdrawal seizures 

[296-302]. Gene expression changes in the prefrontal cortex in response to both acute and 
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chronic ethanol exposure have been demonstrated in mice and humans [86, 209, 212, 230, 247]. 

The prefrontal cortex's involvement in impulse control is hypothesized to underlie ethanol 

seeking behaviors, increased consumption, and lack of control over intake associated with 

alcohol use disorders [85, 303, 304]. 

 

In contrast to the long lasting changes noted for PFC and HPC gene expression, chronic ethanol 

exposure and acute withdrawal, represented by tissue collected at 0-72h, affected all brain 

regions studied (Figures 6-7, Table 1). The greatest amount of overlap in differential gene 

expression, across all brain regions, also occurred at 0 and 8h (Figure 6). This pattern of 

differential gene expression reflects the activation of the mesocorticolimbic system and extended 

amygdala by ethanol exposure, and ethanol withdrawal [86, 187]. Functional over-representation 

studies showed, across all brain regions, an over-representation of genes involved in 

development, cell stress, programmed cell death, and immune responses at the 0h time point 

(Suppl. Tables S6-S10).  

 

As discussed in the Results section, the BNST tan module was enriched for genes differentially 

regulated between CIE and control mice at 72 hours, and within this module there were genes 

related to neurodevelopment such as Ndrg1. This laboratory has previously showed that Ndrg1 is 

regulated by acute ethanol in the prefrontal cortex [86, 288]. In 2013, Farris and Miles [288] 

published data indicating that Ndrg1 is co-expressed with a group of myelin genes in the PFC. 

Recent work at this laboratory has also demonstrated that Ndrg1 is expressed both in neurons 

and oligodendrocytes (Park and Miles, publication pending), and cell type enrichment analysis 

showed that the tan module in the BNST is enriched both for genes expressed in neurons and 
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those expressed in oligodendrocytes (Suppl. Table S9). The data presented in this manuscript 

indicates that Ndrg1 is also regulated in the BNST during protracted withdrawal (Suppl. Table 

S4). Together with other genes significantly regulated by CIE in the BNST tan module such as 

Kif2a, Dgkg, Syn2, Ppfia2, Grim8, Cpne7, Pnoc, Prkacb [305], this leads to the hypothesis that 

CIE driven Ndrg1 regulation occurs primarily through neurons in the BNST. This hypothesis 

represented an area of future study that may lead to a greater understanding of the effect of 

chronic ethanol on the bed nucleus of the stria terminalis, and the role of Ndrg1 in specific brain 

regions.  

 

In the CeA, the yellow module contained several genes related to synaptic transmission. 

However, only one was significantly regulated by CIE (Suppl. Tables S4, and S10). That these 

genes are organized into the same module in the CeA indicates correlated mRNA expression, 

and that their gene products may interact at the molecular levels with gene products of those 

genes within the module significantly regulated by CIE. Therefore, at the post-translational level, 

regulation of the expression of a just few genes by chronic ethanol may influence the cellular 

activity of synaptic transmission within the CeA. Kif1b in in particular is a good candidate for 

influencing post-translational expression of other genes within the CeA yellow module because it 

is a kinesin family molecular motor involved in the transport of modules from the cell body to 

axons and dendrites [306]. Further study, is of course, needed to determine at the cellular level 

how Kif1b regulation by CIE influences the gene products of other module genes at the 

molecular level. 
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Previous studies at VCU have also shown that activation of the hypothalamic-pituitary-adrenal 

(HPA) axis with ethanol sensitization leads to regulation of gene expression in the prefrontal 

cortex [307]. Those NF-κB genes present in the CeA salmon module raise the possibility that 

ethanol mediated changes in HPA activity may also influence gene expression in the central 

amygdala through this pathway. Future studies may, therefore, focus on testing the hypothesis 

that CIE by vapor chamber influences the HPA axis which, through NF-κB signaling, alters gene 

expression in the central amygdala. 

 

Another CeA module, magenta, showed striking over-representation for genes related to MHC 

class 1 antigen responses with an over 2-fold up-regulation of H2-K1 and H2-L at 0h (Suppl. 

Tables S4 and S10). The HPC brown module showed similar results (Suppl. Table S10). While 

many of these responses resolved as withdrawal proceeded to 72h and 7d, both HPC and PFC 

showed persistent regulation of genes relating to immune responses at 7d. The strong presence of 

immune response genes across time points and brain regions in this study on CIE is consistent 

with observations from expression profiling of human autopsy brain material from alcoholics and 

subsequently validated in animal models [308]. Additionally, multiple recent studies have 

reported that intermittent ethanol exposure in adolescent animals can induce persistent changes 

in ethanol behaviors, including in adulthood, and that neuroinflammatory responses are a critical 

aspect of these responses to ethanol [52, 307]. Together, these studies have suggested that 

ethanol-evoked activation of brain inflammatory responses may not just be a toxic response to 

ethanol, but could also play an important role in neuroadaptations leading to compulsive 

consumption. Neuroimmune responses have previously been implicated in other forms of 

experience-induced or developmental plasticity [52]. 
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It was assumed, based on previous studies, that CIE would regulate networks of genes related to 

synaptic function, plasticity or development as part of the molecular events leading to 

progressive ethanol consumption following CIE. Indeed, gene modules over-represented with 

such functional groups were detected and showed regulation by CIE particularly at early time 

points (Suppl. Tables S6-S10). The PFC salmon module was significantly enriched for 

immediate early genes at the 0h time-point and several gene ontology hits related to 

neurodevelopment (Suppl. Table S6). Notch1, Sox2, and Bmpr1a are among the genes in the 

PFC salmon module with known roles in neurodevelopment. In particular, these genes have been 

shown to be important for the process of adult neurogenesis [281, 309-312]. Neurogenesis 

continues to occur into adulthood in the lateral ventricles and the dentate gyrus of the 

hippocampus [313-315]. Studies examining adult neurogenesis occurring in other areas of the 

brain, including the medial prefrontal cortex (mPFC), have had mixed results [315, 316]; but it 

has been shown that chronic stress and chronic alcohol exposure lead to observable structural 

and functional changes in the PFC [317-322]. The PFC salmon module in this data set, therefore, 

may represent the effect of CIE on neurogenesis in the PFC of adult mice. 

 

The PFC green module also contained genes related to neuroplasticity, notably Bdnf. Bdnf has 

previously been studied as a potential candidate gene for the genesis of alcohol use disorders. 

Previous studies have shown that Bdnf regulates neurodevelopment [323], synaptic plasticity 

[324], and is regulated by several drugs of addiction including ethanol [86, 247, 325-328]. In 

looking more closely at the time-course of Bdnf expression in the PFC after CIE, Bdnf was 

significantly down regulated with CIE at 0h, in agreement with several prior studies on either 
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CIE or intermittent oral ethanol consumption [208, 272, 273]. However, between 8h and 72h, 

Bdnf mRNA levels returned to control levels such that at 7 days, Bdnf gene expression was not 

significantly different between CIE and Ctrl mice (Figure 9, Suppl. Table S1). This does not 

exclude the possibility that changes in BDNF protein might persist for more prolonged 

withdrawal periods. Additionally, we found that a subgroup of genes in the PFC green module 

(not containing Bdnf) did show altered expression at both 0h and 7d post-CIE (Figure 11). This 

subgroup of PFC green module genes also showed network level increases in connectivity at 7d 

post-CIE (Figure 11). This may be further evidence for the role of a Bdnf-related gene network 

in the long-term neuroadaptive events leading to increased ethanol consumption following CIE 

exposure. 

 

Studies by two separate laboratories using the vapor chamber CIE model in rats [273] or the 

intermittent ethanol consumption model in B6 mice [272], recently showed that chronic 

intermittent ethanol down-regulates mPFC Bdnf expression via increasing expression of select 

microRNA species, with resultant increases in ethanol consumption. Using a 7-week ethanol 

vapor exposure model, Tapocek et al. showed that reduced Bdnf expression in mPFC was 

accompanied by region-selective persistent increases in expression of miR-206 and that viral 

vector over-expression of miR-206 could, in itself, decrease mPFC Bdnf, with subsequent 

increases in ethanol consumption [273]. Darcq et al. showed similar results in a mouse chronic 

intermittent binge ethanol model, including transient upregulation of miR-1. The miR-1 miRNA 

family includes miR-206. However, Darcq et al. also found involvement of miR-30a-5p, 

including that inhibition of miR-30a-5p action could reverse the increased consumption caused 

by intermittent ethanol access [272]. In our own analysis of miRNA binding site over-
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representation among genes of the PFC green module, binding sites for both miR-30a (p=0.003) 

and mmu-miR-1a/mmu-miR-206 (p= 0.04) showed nominally significant potential binding motifs 

among genes in the PFC green module using MiRvestigator Framework (Suppl. Table S12) 

suggesting that these miRNA families may be involved in regulation of green module genes 

beyond Bdnf alone. Future direct studies will be needed to confirm these findings. 

 

Additionally, our studies suggested that the PFC green module was over-represented with 

binding sites for the let-7c-1 group of miRNA, with 6 base motifs for let-7c-1 being found in 

over 90% of the green module genes (p< 0.00024; Figure 9). MiRvestigator Framework web-

software also revealed that 12 differentially regulated modules in the PFC and HPC were 

enriched for potential let-7 family target genes (Figure 9, Suppl. Tables S12 and S13). qRT-

PCR experiments confirm let-7c-1 expression in the mouse PFC, and show that expression of 

this miRNA is significantly downregulated by CIE in male B6 mice (Figure 10). Let-7 was one 

of the earliest microRNA's discovered, and is highly conserved in function across species [329]. 

In the brain, in addition to being a key regulator of cell differentiation in early development, 

previous studies have shown that let-7 expression is regulated by several types of 

neurodegenerative processes, from prion disease to ischemic brain injury [330-333]. CIE 

exposure may, therefore, increase long-term consumption through a miRNA-dependent 

regulation of the green module genes, including a role for the let-7 miRNA family, which could 

impact CIE regulation of other modules as well. This hypothesis complements the prior direct 

work on Bdnf and suggests that mechanisms underlying regulation of the green module by 

chronic ethanol could be a novel target for future therapeutic approaches in treatment of alcohol 

use disorders. Confirmation that let-7c-1 regulates genes of the PFC green module in vitro and in 
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vivo, and investigation of the behavioral and gene expression effect of modulating let-7c-1 

expression in vivo in the PFC by stereotactic delivery of plasmids to either knockdown or 

overexpress the miRNA represent an area of potential future studies based on the findings of this 

network analysis. 

 

Long-term gene expression and behavioral changes resulting from CIE exposure require a 

mechanism for persistence in the absence of further ethanol vapor exposure. Epigenetic 

mechanisms have lately been implicated as a causal factor for long-term functional and 

behavioral changes evoked by ethanol and other drugs of abuse [334, 335]. It is certainly 

possible that synaptic reorganization caused, for example, by miRNA-driven alterations in Bdnf 

expression, could subsequently produce persistent changes in synaptic function and behaviors. 

Our time course analysis of expression changes following CIE provided strong preliminary 

evidence for additional epigenetic mechanisms possibly influencing persistent changes in ethanol 

consumption following CIE exposure. The striking over-representation for chromatin 

modification in hippocampal turquoise module genes regulated by ethanol, suggests a 

mechanism for long-lasting shifts in transcriptional adaptations to CIE in hippocampus. Our 

candidate gene analysis for hub genes further emphasized the potential importance of these 

chromatin modification genes in CIE-associated expression network structure (Figure 13, Table 

4). Ongoing studies in our laboratories seek to identify such epigenetic signatures amongst 

hippocampal networks showing long-lasting expression changes following CIE. 

 

Finally, the small degree of overlap with acute ethanol expression (Suppl. Table S3) 

demonstrates that the principle of initial response to ethanol as a predictor of future behavior 



 70 

applies to gene expression response only for specific genes [335]. This finding has major 

implications for the alcohol research field because it indicates that genomic studies of animals 

exposed to acute ethanol are effective for the identification for some genes regulated with 

chronic ethanol exposure and, thus, may be useful for the identification of new therapeutic 

targets in the treatment of alcohol use disorders. However, comparison between chronic and 

acute ethanol exposure is important to determine whether targetable genes identified through 

acute ethanol studies also show long-term regulation by ethanol exposure. 

 

In conclusion, differential gene expression and scale-free network analysis has revealed region-

specific correlated changes in gene expression with chronic intermittent ethanol exposure in the 

mesolimbocortical dopamine and extended amygdala pathways. Bioinformatics investigation has 

shown some conservation of functional groups, both across brain regions and time points, among 

the differentially regulated networks. In general, neuroinflammatory responses were seen across 

multiple brain regions at early time points, while genes involved in development, neuroplasticity, 

and chromatin remodeling were found to be over-represented at 3-7d post ethanol vapor. 

Notably, PFC and HPC were the only regions of the five surveyed that showed expression 

changes at 7d after removal from the vapor chamber model of chronic ethanol exposure. Since 

animals offered oral ethanol intake at that time will show increased consumption, these PFC and 

HPC networks may have a significant mechanistic role in the neuroplasticity underlying 

progressive ethanol consumption. The Bdnf-containing green network from PFC is a major 

target for future confirmatory studies since other investigators have previously implicated a 

miRNA-directed regulation of Bdnf consequent to chronic ethanol exposure in the mechanisms 

of progressive ethanol consumption. Importantly, however, our studies suggest that members of 
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the green network other than Bdnf may also be involved in the long-lasting molecular 

mechanisms underlying increased ethanol consumption. Finally, our discovery of a striking 

subgroup of genes involved in chromatin modification having altered expression in HPC at 7d 

post ethanol vapor suggest future studies on chromatin structure as an important regulatory event 

contributing to long-term abusive ethanol consumption patterns as seen in alcoholism. Taken 

together, these findings provide novel and significant insight to the molecular neurobiology 

contributing to abusive alcohol consumption, and could thus eventually lead to development of 

new therapeutic strategies for AUD.  
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Chapter 4: Network Analysis of C57BL/6J Mice Under CIE with and without Intermittent 

Drinking  

Introduction 

One of the most well known symptoms of alcohol use disorder (AUD) is a steady upward trend 

in the amount of alcohol consumed over time [244]. This progressive increase in consumption 

has been attributed to the neurobiological adaptations brought on by repeated cycles of high-dose 

ethanol exposure and ethanol withdrawal [336]. Previous studies of physiological and structural 

changes in the brain after chronic alcohol exposure have lead to the hypothesis that changes in 

gene expression are a major molecular mechanism leading to physiological and behavioral 

changes observed with and leading to AUD [86, 194, 195, 207, 211]. 

 
Technologies such as microarrays have allowed for the study of the genome-wide effects of 

ethanol exposure on mRNA expression [86], and scale-free network analysis provides a means to 

organize transcriptome data into networks of co-expressed genes representing functional 

pathways [80, 212, 230, 246, 249]. Further, gene-phenotype correlations allow for the 

identification of both individual genes and gene networks associated with ethanol consumption. 

Using these approaches it may be possible to decipher which molecular effects play the most 

important role in increased drinking seen with chronic ethanol exposure, and to pinpoint 

candidate genes whose expression correlates with consumption; thus identifying new therapeutic 

targets for the treatment of AUD. 

 
Recent experimental studies provide substantial evidence for the use of animal models in the 

discovery of therapeutic targets for the treatment of AUD [187, 273, 288, 337]. Chronic 
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intermittent ethanol vapor is one such model of long-term intoxicating ethanol exposure. As a 

part of this paradigm, mice experience repeated cycles of high ethanol exposure followed by 

withdrawal similar to behavioral patterns seen in alcoholics [237]. The CIE by vapor chamber 

model has been shown to cause neurochemical and structural changes at the synapse, and, when 

combined with intermittent 2-bottle choice drinking, leads to significant increases in ethanol 

consumption [81, 254]. Previous studies of gene expression with CIE in C57BL/6J mice have 

focused on differential gene expression during early withdrawal [208], or on RNA networks 

during ethanol exposure and withdrawal associated with cell type-specific gene expression [243]. 

This study explores the relationship between high-dose ethanol vapor exposure, intermittent 

drinking, and withdrawal in an attempt to identify mechanisms by which this model leads to 

progressive increases in ethanol intake. 

 
This chapter includes a detailed analysis of the gene expression changes caused by CIE exposure 

with or without intermittent oral ethanol consumption, across multiple brain-regions, using 

Weighted Gene Correlated Network Analysis (WGCNA) [218]. The brain-regions studied have 

been associated in numerous studies with the development of AUD [67, 187, 190]. We show 

through these analyses that the gene expression changes elicited by repeated cycles of CIE by 

vapor chamber, withdrawal, and drinking correlate with increased ethanol consumption. We also 

show that some of the most strongly correlated genes are those related to synaptic transmission 

and synaptic plasticity. This study thus supports the hypothesis that changes in gene expression 

in the brain underlie the behavioral features of AUD via physiological and functional changes at 

the neuronal synapse. 

 
Materials and Methods 
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Animals 

Adult male C57BL/6J mice were purchased from Jackson Laboratories (Bar Harbor, ME, USA) 

at 10 weeks of age. Mice were kept under a 12-hour light/dark cycle and given free access to 

water and standard rodent chow (Harland, Teklad, Madison, WI). Mice were kept on corncob 

bedding (#7092a and #7902.25 Harland, Teklad, Madison, WI). All studies were conducted in an 

AALAC-accredited animal facility, and approved by the Institutional Animal Care and Use 

Committee at Medical University of South Carolina (MUSC). All experimental and animal care 

procedures met guidelines outlined in the NIH Guide for the Care and Use of Laboratory 

Animals. 

 
Chronic Intermittent Ethanol (CIE) 

Mice were divided into 4 groups: the CIE-Drinking group received inhaled ethanol in the vapor 

chambers followed by 2-bottle choice drinking, the Air-Drinking group received only air in the 

vapor chambers and 2-bottle choice drinking, the CIE-NonDrinking group received inhaled 

ethanol in the vapor chambers but did not drink in between CIE cycles, and the Air-NonDrinking 

group remained ethanol naïve both in and out of the inhalation chambers. Following a 2-week 

acclimation period, mice in the CIE-Drinking and Air-Drinking groups underwent 6-weeks of 2-

bottle choice drinking to establish baseline drinking levels. Mice were given access to 15% v/v 

ethanol for 2 hours per day. Ethanol and water intake for each individual mouse was measured 

daily. Following 6-weeks of baseline drinking, mice were placed in Plexiglass inhalation 

chambers (60x36x60 cm) 16 hours/day for 4 days. Ethanol was volatilized with an air stone 

submerged in 95% ethanol. Chamber ethanol concentrations were monitored daily and air flow 

was adjusted to ethanol concentrations within 10-13 mg/L air. This ethanol vapor concentration 

has been shown to yield stable blood ethanol concentrations (175-225 mg/dL) in C57BL/6J mice 
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[234]. Before each vapor chamber session, intoxication was initiated in the CIE group by 

administration of 1.6 g/kg ethanol and 1 mmol/kg pyrazole intraperitoneally (i.p.) at a volume of 

0.02 ml/g body weight. Pyrazole is an alcohol dehydrogenase inhibitor used to stabilize blood 

ethanol concentrations. All mice received the same number and timing of pyrazole injections 

prior to final removal from the inhalation chambers with control mice receiving saline and 

pyrazole (i.p.), also at a volume of 0.02 ml/g body weight, prior to being placed into control 

vapor chambers. Control vapor chambers delivered only air, no ethanol vapor. After 4 days in the 

inhalation chambers, mice underwent a 72-hour period of total abstinence from ethanol. 

Following the abstinence period, mice in the CIE-Drinking and Air-Drinking groups were given 

2-bottle choice drinking for 2 hours per day for 5 days. A total of 4 cycles of CIE-abstinence-

drinking were performed. After the end of the 4th cycle mice were sacrificed on the 5th drinking 

day at the time they received ethanol access on all previous drinking days (Figure 14). 

 

Figure 14: Overview of C57BL/6J CIE by vapor chamber with and without intermittent 2-
bottle choice drinking. 
 

Tissue Harvesting, RNA Isolation, and Microarray Hybridization 
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Mice were sacrificed by decapitation, brains were immediately removed from the skull, and 

brain-regions dissected as previously described [208]. Tissues were stored at -80°C until RNA 

isolation. Total RNA was extracted using the RNeasy Mini Kit (Qiagen Valencia, CA). 

Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were used to measure gene 

expression. Sample preparation, hybridization, and array scanning were performed at the MUSC 

ProteoGenomics Core Facility according to procedures optimized by Affymetrix (Santa Clara, 

CA, USA). Each brain-region was processed separately with treatment groups randomized to 

minimize batch effects. Array data was stored in CEL file format, and sent to Virginia 

Commonwealth University (VCU) for analysis. 

 
Microarray Analysis 

Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were analyzed with The R Project for 

Statistical Computing (http://www.r-project.org/). Microarray quality was assessed by RNA 

degradation, average background, percent present probesets, and multi-dimensional scale plots 

(first principal component by second principal component). Arrays showing low quality 

measures, or that appeared to be outliers, were removed from the dataset. Background correction 

using Robust Multi-array Average (RMA) and quantile normalization was performed using the 

affy package for R [255, 256]. Each brain-region was normalized separately. ComBat by RNA 

hybridization batch was used to correct for any batch effects present in the data [257]. 

 
CIE and Drinking Responsive Genes 

Statistical analysis to identify significantly regulated genes was performed using the limma 

package for R [258]. Two factor LIMMA looking at treatment and drinking, as well as 

interaction, was used for initial analysis. However, we also ran LIMMA with each treatment 
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group as independent. This was done based on the fact that, over the course of the study, each 

group received a different overall dose of ethanol, number of, and duration of exposure. Each 

possible comparison between the 4 treatment groups was performed leading to 6 total 

comparisons labeled 1 through 6. Overall significance was also measured by ANOVA. Multiple 

testing was adjusted using the Benjamini and Hochberg method, also known as false discovery 

rate (FDR) [259]. False discovery rates equal to or less than 0.01 were considered significant. 

 
Statistical Analysis of 2-Bottle Choice Drinking 

Average ethanol intake (g/kg) was calculated across 5 drinking days of each week during the 

baseline-drinking period. During the testing cycles, mice also drank for 5 days; therefore average 

drinking across these 5 days was calculated to represent drinking during each CIE cycle. 

Differences in drinking were determined by Two Way ANOVA with Repeated Measures using 

SigmaPlot 12.0 (Systat Software, San Jose, CA, USA). 

 
Weighted Gene Correlated Network Analysis 

Weighted Gene Correlated Network Analysis (WGCNA) was used to perform scale-free network 

topology analysis of microarrays [218]. Scale-free networks have been used previously to 

identify biological pathways influenced by acute ethanol exposure in mice [230]. WGCNA was 

performed on each brain-region separately using the WGCNA package for R [260]. Overall 

significance by one-way ANOVA comparing all groups (FDR equal to or less than 0.01) was 

used to select probesets to be included in network analysis. A probeset found to be significant by 

ANOVA in any brain region was included. Standard WGCNA parameters were used for analysis 

with the exceptions of soft-thresholding power and deep split. Appropriate soft-thresholding 

powers were selected using previously described methods [338]. A soft-thresholding power of 6 
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was used for all brain-regions except the PFC for which a soft-thresholding power of 8 was used. 

WGCNA was performed with deep-split values of 0-3. Deep-split value was selected by multi-

dimensional scaling (MDS) plot, which displayed first and second principal components. Deep-

split values of 3 were chosen for the prefrontal cortex (PFC), nucleus accumbens (NAC), and 

central nucleus of the amygdala (CeA). For the hippocampus (HPC) a deep-split of 2 was 

chosen, and a deep-split of 0 for the bed nucleus of the stria terminals (BNST). 

 
WGCNA-Drinking Correlation 

Modules identified by WGCNA were related to drinking data by Spearman Rank correlation 

using the module eigengene as previously described [339, 340]. Individual probesets were also 

correlated to drinking data with the Spearman Rank method. These correlations were then used 

to identify modules enriched in genes whose expression showed systemic relationships with 

drinking behavior across 4 cycles of CIE with 2-bottle choice drinking. 

 
Bioinformatics 

Modules identified by WGCNA were examined for function using publicly available 

bioinformatics resources. The Functional Annotation Chart tool from DAVID 

(http://david.abcc.ncifcrf.gov/) [262] was used to identify biological pathways highly represented 

by genes grouped into each module. Gene Ontology terms were then summarized by semantic 

similarity using REVIGO (http://revigo.irb.hr/). Co-expression modules identified in this dataset 

were also compared to those identified in corresponding brain-regions in the B6 CIE time-course 

study (Chapter 3) [80] using WGCNA’s userListEnrichment() function. This function uses 

hypergeometric overlap to determine significance of enrichment [260]. Hypergeometric overlap 

p-values were adjusted for multiple testing using false discovery rates [259]. Module overlaps 
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were considered significant at a false discovery rate ≤ 0.05. Since all brain-regions in this study 

used RNA from whole tissue samples, modules were also examined for enrichment for genes 

expressed in each specialized cell-type [341] found in brain (neurons, astrocytes, and 

oligodendrocytes) to demine whether any modules identified represented gene expression 

changes in a specific cell-type within a brain-region. This analysis was done because previous 

studies have shown that WGCNA can be used to identify cell-type specific modules [342]. The 

userListEnrichment() function was also used for cell-type enrichment analysis, Bonferroni 

corrected p-values ≤ 0.05 were considered significant. 

 
Results 

Gene Expression with CIE and Drinking 

Statistical analysis with LIMMA found more significant differences in gene expression when 

each treatment group was treated as an independent group (Table 5). Significant differences in 

gene expression were seen between each of the four treatment groups in the PFC. Other brain 

regions, however, showed very different patterns of differential gene expression. In the NAC, 

HPC, BNST, and CeA, significant differences in gene expression were seen only seen with 

comparisons 1 (CIE-Drinking vs. Air-Drinking), 3 (CIE-Drinking vs. CIE-NonDrinking), and 4 

(CIE-Drinking vs. Air-NonDrinking) (Table 6). Examining overlap between these comparisons 

revealed that a substantial number of genes were significant across all 3 comparisons, or between 

any combination of 2 comparisons in the PFC, BNST, and CeA. However, in the NAC and HPC, 

the majority of overlap was between CIE-Drinking vs. Air-NonDrinking and CIE-Drinking vs. 

Air-Drinking (Figure 15). Across NAC, HPC, BNST and CeA, the largest number of 

differentially expressed genes was seen between the CIE-Drinking group and the ethanol naïve 

Air-NonDrinking group. These four regions, however, showed less differential gene expression 
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in comparison 1 (CIE-Drinking vs. Air-Drinking), and comparison 3 (CIE-Drinking vs. CIE-

NonDrinking) (Table 6). This finding indicates an interaction between prolonged exposure to 

inhaled ethanol and voluntary intermittent drinking. Unique to the PFC, large expression 

differences were seen across all comparisons but comparison 4 (CIE-Drinking vs. Air-

NonDrinking) had the smallest number of changes, in contrast to other brain regions (Table 6, 

Suppl. Table S14). 

 
Table 5: Two factor LIMMA results. Number of significantly differentially expressed 
probesets by each factor: drinking and treatment group (numbers in parenthesis indicate number 
of unique genes represented by these probesets), LIMMA FDR ≤ 0.01, and 0.05. 
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Table 6: LIMMA results. Number of significantly differentially expressed probesets between 
each comparison of treatment groups (numbers in parenthesis indicate number of unique genes 
represented by these probesets), LIMMA FDR ≤ 0.01.  

 

 

Figure 15: VennDiagrams of 3 treatment/drinking group comparisons in all brain-regions. 
Overlap between all probesets significantly differentially expressed between CIE Drinking vs. 
CIE Non-Drinking, CIE Drinking vs. Air Non-Drinking, and CIE Drinking vs. Air Drinking 
(LIMMA FDR ≤ 0.01.) 
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2-Bottle Choice Drinking 

Consistent with previous behavioral studies of CIE combined with ethanol consumption [81], 

Two Way ANOVA with Repeated Measures revealed significant differences in ethanol intake 

(p-value ≤ 0.05) between the CIE-Drinking and Air-Drinking groups after the first, third, and 

fourth vapor chamber session. After the second vapor chamber cycle, the CIE-Drinking group 

decreased ethanol intake compared to the first vapor chamber cycle, therefore, at this time-point, 

there was no significant difference in amount of ethanol consumed between CIE-Drinking and 

Air-Drinking groups. However, after the third and fourth vapor chamber sessions, the CIE-

Drinking group drank significantly more ethanol than the Air-Drinking group (Figure 16). 

Interestingly, both the CIE-Drinking and Air-Drinking groups drank significantly more, 

compared to baseline, after only one session in the vapor chamber (Figure 16). This suggests 

that exposure to the inhalation chambers alone may affect ethanol consumption. However, 

animals exposed to ethanol vapor during inhalation chamber sessions consumed significantly 

more ethanol, indicating that prolonged exposure to intoxicating levels of ethanol is the major 

driver of changes in drinking behavior. 
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Figure 16: Bar graph of ethanol intake across study. Ethanol intake in g/kg over 6 weeks 
baseline, and 4 cycles of CIE. Columns = mean ethanol intake in g/kg, bars = standard error of 
mean.  Significance CIE-Drinking vs. Air-Drinking (n=12/group) by RMANOVA: * ≤ 0.05, ** 
≤ 0.01. 
 

Weighted Gene Correlated Network Analysis 

WGCNA identified modules of co-expressed genes in all brain-regions. Module sizes varied 

from over 3000 probesets to less than 35 (Table 6). Across brain regions, the highest correlation 

between drinking data and module eigengene expression was seen with ethanol intake after CIE 

cycle 4, and with change in ethanol intake between baseline and CIE cycle 4. This result is, 

perhaps, expected given that mice were sacrificed following cycle 4. The PFC and NAC showed 

the largest number of modules with highly significant correlation to drinking (Figure 17 and 20). 

The HPC, BNST, and CeA did not show as many strong correlations to drinking, but certain 

modules showed module-phenotype correlations with significant p-values (≤0.05) at specific 

time-points in the study (Figure 21-23). 
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Table 7: Sizes of WGCNA modules in all brain regions. 
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Prefrontal Cortex 

As previously noted, the strongest correlations between ethanol intake and modules in the PFC 

were seen after the 4th CIE cycle. The strongest correlations between WGCNA modules and all 

intake measures were between change from baseline drinking after CIE cycle 4 and the turquoise 

module (r=0.8, p-value = 1e-12), the magenta module (r=0.65, p-value = 6e-7), and the grey60 

module (r=-0.72, p-value = 9e-9) (Figure 17). The magenta and turquoise modules showed Gene 

Ontology (GO) hits related to neuron development and synaptic transmission (Suppl. Table 

S17). Specific genes within these GO categories include Ngfr, Ppp1r9a, Fgfr1, Sox1, Slc1a3 

(turquoise module), and Grin2b, Htt, Cacna1a, Ppp3ca, Rims1 (magenta module). All of these 

genes, individually, show significant correlation with change in drinking between baseline and 

CIE cycle 4 (Suppl. Table S16). The green module also showed significant correlation to 

ethanol intake after CIE cycle 4, and to percent change in ethanol intake between CIE cycle 4 

and baseline (r=0.49, p-value=6e-4 with ethanol intake, r=0.39, p-value=0.02 with percent 

change from baseline) (Suppl. Table S17). This module also showed significant enrichment for 

regulation of neurotransmission as indicated by several GO categories (Figure 18). In addition, 

this module was significantly enriched for genes involved in neuron ensheathment by myelin 

(GO: 0007272, GO: 0008366, GO: 0042552). Myelin genes within this module include Cd9, 

Lgi4, Cldn11, Olig2, Gjc3, Gas3st1, and Mbp (Suppl. Table S17). Using the myelin-related 

genes from the green module as an input list, GeneMANIA validated that those genes have 

shown co-expression, co-localization, or protein-protein interactions in previous published 

studies (Figure 18). The large turquoise module showed a strong GO hit for chromatin 

modification (GO:0016568). Genes in the turquoise module within this category include many 

well-known chromatin modification genes such as Dnmt1, Dnmt3b, Hdac8, Bcor, Crebbp, Ctcf, 
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Bptf, Smarca5, and Smarcc1 [343-348] (Figure 19). The grey60 module also showed a 

significant GO hit for chromatin (GO:0000785). Genes within this category were H1f0, Tcp1, 

and Klhdc3 (Suppl. Table S17). Of these genes, Hdac8, Bcor, Crebbp, Ctcf, Bptf, Smarca5, 

Smarcc1, H1f0, Tcp1, and Klhdc3 were significantly correlated with change in baseline intake 

after CIE cycle 4, or with ethanol intake after CIE cycle 4 (Suppl. Table S17). 

 

 

Figure 17: Heatmap of correlations between PFC modules and drinking data. Spearman 
rank correlation between PFC module eigengenes (1st principal component) and drinking 
measures during baseline period, and after each CIE cycle. 
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Figure 18: Network level and bioinformatics analysis of PFC green module containing 
myelin genes. A) Module eigenegene (1st principal component expression of each sample. 
Colored lines represent each treatment group: red = CIE Drinking, blue = Air Drinking, light red 
= CIE NonDrinking, light blue = Air NonDrinking. B) Revigo treemap of significant Gene 
Ontology biological processes. Significance: p-value ≤ 0.05. C) GeneMANIA network build 
from PFC green module myelin genes. 
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Figure 19: Network level plot 
of PFC turquoise module and 
connectivity plot of chromatin 
genes. A) Module eigenegene 
(1st principal component) 
expression of each sample. 
Colored lines represent each 
treatment group: red = CIE 
Drinking, blue = Air Drinking, 
light red = CIE NonDrinking, 
light blue = Air NonDrinking. 
B) Connectivity plots of genes 
in PFC turquoise module 
involved in chromatin 
remodeling. Line thickness and 
opacity represent pairwise 
connectivity between genes. 
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Nucleus Accumbens 

Patterns of module-ethanol intake correlations in the NAc were more scattered than those seen in 

the PFC, but the strongest correlations were still seen with intake after the 4th cycle of CIE 

(Figure 20). These modules were the royalblue (r=0.74, p-value = 3e-10 with ethanol intake, 

r=0.67, p-value = 6e-8 with percent change from baseline), and salmon modules (r=-0.79, p-

value = 8e-13 with ethanol intake, r=-0.47, p-value = 6e-4 with change in drinking from 

baseline). The royalblue module contained probesets for several subunits of the ribosomal 

complex (Rps7, Rsp10, Rps13, Rps17, Rps26, Rpl12, Rpl28, Rpl32, Rpl35, Rpl36, Rpl37a, Fau) 

indicating this module may play a role in regulation of protein synthesis (Suppl. Table S16 and 

Suppl. Table S18). Whereas GO hits for cellular metabolic processes, such as glucose, fumarate, 

glutamate, and aspartate processing, were seen in the salmon module (Suppl. Table S18). The 

lightyellow and yellow modules repeatedly showed significant correlation with both baseline 

drinking, and with drinking after each cycle of CIE. In both of these modules, however, this 

correlation decreased following the 4th CIE cycle. Finally, several modules (blue, lightyellow, 

tan, magenta, salmon, and yellow) showed very strong correlation to baseline drinking. Of these, 

the blue, lightyellow, magenta, and yellow showed GO hits related to synaptic transmission or 

synaptic plasticity (Suppl. Table S18). The magenta and tan modules contained genes related to 

chromatin modification (Magenta: Ing4, Ing3, Hdac1, Rbbp4, Kat5. Tan: Hdac9, Zbtb16), and 

development (Magenta: Rtn4, Sox9, Bmpr1b. Tan: Fgf9, Hdac9, Igfbp3, Zbtb16) (Suppl. Table 

S18). Together, these modules indicate that, in addition to alterations in mRNA expression, CIE-

induced changes in protein and metabolite populations in the NAC may be involved in the 

observed increase in ethanol intake (Figure 16) [81]. 
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Figure 20: Heatmap of correlations between NAc modules and drinking data. Spearman 
rank correlation between NAc module eigengenes (1st principal component) and drinking 
measures during baseline period, and after each CIE cycle. 
 

Hippocampus 

In the hippocampus, a noticeable pattern of module-intake correlation was also seen after the 4th 

cycle of CIE. In the greenyellow, black, purple, and yellow modules significant correlations were 

seen with change in intake from baseline to CIE cycle 4. All of these modules showed significant 

overlap with GO categories related to synaptic transmission (black, purple and yellow) or neuron 

development (purple, greenyellow, and yellow) (Figure 21, Suppl. Table S19). The pink and 

magenta modules showed significant correlation to percent change in intake from baseline after 

CIE cycle 3 (pink module: r=0.4, p-value = 0.009, magenta module: r=0.42, p-value = 0.006). 

Significant correlations with intake in CIE cycle 1, and percent change from baseline intake were 
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also seen in a few modules such as the yellow, cyan, and brown. Like the yellow module, the 

brown and magenta modules showed GO hits specifically for neuron development or synaptic 

transmission. GO analysis of the pink module showed many hits related to electron transport 

chain regulation, and cell motility. However, this module also showed significant overlap with 

two GO categories related to dendrite structure (GO:0043197, GO:0030425) (Suppl. Table 

S19). Genes from the pink module within these categories included Ppp1r9a, Fbxo2, and Gria3. 

Ppp1r9. These genes correlated significantly with ethanol intake after CIE cycle 1 and percent 

change from baseline to CIE cycle 1; and Fbxo2 and Gria3 significantly correlated with percent 

change from baseline to CIE cycle 3 and CIE cycle 4 (Figure 21). 

 

 

Figure 21: Heatmap of correlations between HPC modules and drinking data. Spearman 
rank correlation between HPC module eigengenes (1st principal component) and drinking 
measures during baseline period, and after each CIE cycle. 
 

 



 92 

Bed Nucleus of the Stria Terminals 

Fewer compelling intake correlations were seen in the BNST compared to other brain-regions. 

However, the turquoise and black modules showed very strong correlations to intake after the 

first cycle of CIE (black module: r=0.57, p-value = 4e-05 with ethanol intake, turquoise module: 

r=-0.55, p-value = 9e-05 with ethanol intake). Both of these modules showed multiple GO hits 

for synaptic transmission (Figure 22, Suppl. Table S20). The black module also contained 4 

gene ontology hits related to myelination (GO:0042552, GO:0008366, GO:0007272, GO: 

0019911) (Suppl. Table S20). Genes contained within these categories included some of the 

known myelin building blocks such as myelin basic protein (Mbp), myelin-associated 

oligodendrocyte basic protein (Mobp), galactose-3-O sulfotransferase 1 (Gal3st1), 

oligodendrocyte transcription factor (Olig2), and Cd9 (Cd9) [349, 350]. Although most of these 

genes correlated with ethanol intake after CIE cycle 1, and with percent change from baseline to 

CIE cycle 1 (Suppl. Table S16), very little change in mRNA expression, with any of the 6 

comparisons examined, was seen in the BNST (Suppl. Table S15). Compared to other brain-

regions, the BNST also showed fewer modules with strong correlations to intake after CIE cycle 

4. The red module is a notable exception, with a correlation coefficient of 0.55, and p-value of 

7e-05 with change in drinking from baseline. This module also showed significant overlap with 

several GO categories for synaptic transmission (Suppl. Table S20). Similar to the myelin-

related genes seen in the black module, however, most of the genes within these GO categories 

did not show significant differences in mRNA expression between treatment groups (Suppl. 

Table S15). In spite of these relatively level gene expression patterns, certain genes in this 

module did show significant correlation with ethanol intake after CIE cycle 4 and percent change 

in drinking from baseline to CIE cycle 4 (Figure 22). These genes included ionotropic glutamate 
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receptor subunits: Gria4, Grin2b and Grin3a. Metabotropic glutamate receptor 2 (Grm2) also 

correlated significantly with ethanol drinking at CIE cycle 4 and percent change from baseline. 

 

 

Figure 22: Heatmap of correlations between BNST modules and drinking data. Spearman 
rank correlation between BNST module eigengenes (1st principal component) and drinking 
measures during baseline period, and after each CIE cycle. 
 

 
Central Nucleus of the Amygdala 

Module-drinking correlations seen in the CeA were sporadic, with few noticeable trends for 

correlation to a specific drinking measure. The two strongest correlations observed were 

correlations between the blue module and percent change from baseline and CIE cycle 4, and the 

green module with intake with CIE cycle 4 (Figure 23). Functionally, the blue module contained 

several genes related to ion-mediated synaptic transmission such as Gria4, Grin2b, Grin1, Grid2, 

Kcnma1, Cacnb4, and Cacna1a (Suppl. Table S21). The green module, however, showed many 
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GO hits related to chromatin modification. Several of the genes in these categories were the same 

as those seen in the PFC turquoise module such as Bcor, Smarcc1, Smarca5, Bptf and Ctcf. Other 

known chromatin remodeling genes present in the CeA green module included Smarca4, Ncor1, 

Rcor1, and Rbbp4. All of these genes except Bptf, Rcor1, and Rbbp4 strongly correlated with 

ethanol intake after CIE cycle 4 (Suppl. Table S21). This finding is, perhaps, not surprising 

considering the green module as a whole (as indicated by module eigengene) also significantly 

correlated to ethanol drinking during the final CIE cycle (Figure 23). 

 

 

Figure 23: Heatmap of correlations between CeA modules and drinking data. Spearman 
rank correlation between CeA module eigengenes (1st principal component) and drinking 
measures during baseline period, and after each CIE cycle. 
 

 
Cell-type Enrichment Analysis 
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Cell-type enrichment analysis of WGCNA modules revealed that, across brain-regions, identified 

modules represented specific populations of central nervous system cells. In PFC, the brown, 

lightyellow, red, and tan modules were enriched for genes expressed in neurons, and darkred and 

green modules were enriched for astrocyte genes. The PFC green module was also enriched for 

oligodendrocyte genes. In NAC, the black, green, greenyellow, grey60, and pink modules were 

enriched for neuronal genes, and then red module for oligodendrocyte genes. The black, blue, 

brown, and magenta modules were overrepresented for neuronal genes in the HPC, and the 

yellow module for both astrocyte and oligodendrocyte genes. The BNST green and tan modules 

showed enrichment for astrocyte-expressed genes. The BNST green module, as well as the 

greenyellow, midnightblue, and turquoise modules, were also enriched for neuron genes. One 

module in the BNST, red, was enriched for oligodendrocyte genes. Finally, in the CEA, the 

brown, pink, and yellow modules were enriched for gene expressed in neurons. The lightcyan 

and red modules were overrepresented for oligodendrocyte genes. The CEA red module, and 

turquoise module, was also over-represented for astrocyte specific genes (Table 8, Suppl. Table 

S22). 
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Table 8: Cell-type enrichment for all WGCNA modules. Significant overlap, Bonferroni 
corrected p-values 0.05. 

 

 

Module Cell-type Bonferroni Corrected P-value 
PFC 
Green Oligodendrocyte 1.81e-36 
Green Astrocyte 5.23e-11 
Red Neuron 7.13e-22 
Brown Neuron 1.19e-09 
Tan Neuron 9.15e-04 
Darkred Astrocyte 1.19e-02 
Lightyellow Neuron 2.52e-02 
NAc 
Red Oligodendrocyte 2.73e-66 
Green Neuron 3.71e-46 
Greenyellow Neuron 2.89e-05 
Pink Neuron 5.70-05 
Grey60 Neuron 1.75e-04 
Black Neuron 4.58e-02 
HPC 
Yellow Astrocyte 1.42e-50 
Yellow Oligodendrocyte 7.23e-16 
Brown Neuron 2.59e-24 
Black Neuron 1.76e-09 
Blue Neuron 2.75e-06 
Magenta Neuron 4.57e-05 
BNST 
Red Oligodendrocyte 6.99e-37 
Turquoise Neuron 4.84e-16 
Green Neuron 1.17e-10 
Green Astrocyte 3.71e-02 
Greenyellow Neuron 1.21e-10 
Tan Astrocyte 3.58e-09 
Midnightblue Neuron 1.70e-06 
CeA 
Red Oligodendrocyte 4.10e-62 
Red Astrocyte 2.60e-04 
Yellow Neuron 1.37e-48 
Turquoise Astrocyte 4.77e-20 
Brown Neuron 1.96e-14 
Lightcyan Oligodendrocyte 1.00e-11 
Pink Neuron 3.30e-04 
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Time-course CIE Overlap 

WGCNA modules identified in C57BL/6J mice after 4 cycles of CIE with and without drinking 

were compared for overlap to WGCNA modules identified in corresponding brain-regions of 

C57BL/6J mice sacrificed at 4 time-points after 4 cycles of CIE without drinking (Chapter 3) 

[80]. The BNST, NAC, and HPC showed the greatest number of significant overlaps, while the 

NAC and PFC showed fewer significant overlaps (Figure 24, Suppl. Table S23).  
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Figure 24: Heatmap of overlap between WGCNA modules of C57BL/6J mice after CIE 
with and without drinking, and C57BL/6J time-course mice. Numbers indicate number of 
overlapping probesets. Cell color indicates false discovery rate determined by Fisher’s Exact 
Test. A) PFC, B) NAC, C) HPC, D) BNST. E) CeA. 
 

Discussion 

Through a systems biology approach we have characterized the transcriptome level response to 

chronic intermittent ethanol by vapor chamber with and without 2-bottle choice drinking, and 
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identified modules of co-expressed genes in 5 regions of the mesocorticolimbic system and 

extended amygdala. The CIE plus drinking model has been shown, both in this study and in 

previous ones, to increase ethanol consumption with each successive vapor chamber cycle 

(Figure 16) [81, 239]. 

 
Differential expression analysis with LIMMA showed that both CIE and drinking affect gene 

expression in the PFC. Through overlap analysis between all comparisons of all 4 treatment 

groups, our results further suggested that gene expression changes in the NAC and HPC are 

primarily regulated by CIE, whereas in the PFC, BSNT, and CeA an interaction effect between 

CIE and drinking is seen (Table 6, Figure 15). Differences across treatment categories might 

simply reflect a linear or non-linear response to the total amount of ethanol exposure. However, 

the nature of the CIE and drinking model also raises the possibility that withdrawal time 

influences gene expression differences between the 4 treatment groups. The drinking groups, at 

time of sacrifice, have been abstinent from ethanol for 22 hours, whereas the non-drinking 

groups have been abstinent for roughly 8 days. 

 
Network analysis with WGCNA revealed specific patterns of correlated gene expression in each 

brain region used in this study. This network-centric approach also allowed us to correlate both 

individual genes and modules of co-expressed genes directly to ethanol drinking. The strongest 

correlations between gene co-expression modules and drinking were seen in the PFC and NAC. 

These results suggest that these brain regions may have the strongest influence on the increase in 

drinking seen with CIE (Figure 15). The influence of the prefrontal cortex on behaviors 

associated with alcohol use disorders such as increased ethanol consumption and uncontrolled 

intake have been associated with this brain region’s role in impulse control and compulsivity [85, 
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304]. The nucleus accumbens, however, has been hypothesized to impact ethanol drinking 

behavior due to its involvement in reward [351, 352]. Therefore, ethanol-responsive gene 

expression changes in areas of the brain that control impulsivity and reward are implicated by 

network analysis in the increase in drinking seen following repeated exposure to intoxicating 

levels of ethanol. 

 
One particularly striking finding was that those modules most strongly correlated with drinking 

after CIE exposure were consistently overrepresented for genes involved in synaptic 

transmission and synaptic plasticity (Suppl. Tables S17-S21). This finding is not unexpected, as 

ethanol exposure has previously been shown to affect synaptic transmission, and synaptic 

architecture in several of the brain regions studied in these experiments [67, 187, 190, 325, 327]. 

These findings build on previous investigations into the molecular mechanisms of ethanol 

response in the brain to suggest that the effect of repeated, prolonged ethanol exposure on 

synaptic transmission and synaptic architecture may have a direct influence on behavior both in 

animal models and human alcoholics. Specifically, correlated changes in expression of genes 

involved in synaptic remodeling in the mesocorticolimbic system and extended amygdala, in 

response to repeated cycles of CIE by vapor chamber, may underlie the observed increase in 

voluntary ethanol intake (Figure 16). In fact, recent research utilizing neuroimaging 

technologies have explored the effect of alcohol addiction on brain structure and function, and 

the relation to drinking behavior in humans [353, 354]. These studies have linked reduced grey 

matter volume in the medial PFC with increased risk of relapse in people with AUD [355]. 

SPECT and PET scanning have also shown correlations between decreased basal activity in the 

medial PFC during alcohol abstinence, as indicated by blood flow and glucose metabolism 

respectively, with poor AUD treatment outcome [356, 357]. Neuroimaging studies in mouse 
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models are fewer; however, it is hypothesized based on previous comparative research, including 

those of the gene expression and behavioral response to ethanol [190, 212], that neuroplastic 

changes in response to chronic ethanol exposure are highly conserved between species. Indeed, 

such a hypothesis has been employed in recent work using neuroimaging in rodent models to 

study the effect of ethanol exposure during gestation on fetal brain structure [358-360]. The 

results of our microarray analyses, therefore, may help shed light onto the molecular mechanisms 

underlying both the sustained increase in drinking observed with the CIE model, and, potentially, 

neuroadaptations observed in the brains of humans. Further study is needed to establish such 

mechanisms, and will be the topic of future research by this group. 

 
Network analysis also identified modules in both the PFC and BNST enriched for myelin-related 

genes (Figure 18, Suppl. Table S17 and S20). In the prefrontal cortex, the green module 

showed significant overlap with 3 GO categories related to myelination. Previous studies at our 

laboratory, as well as anatomical observations of the brains of human alcoholics, have suggested 

a role for myelination in the PFC in response to both acute and chronic ethanol exposure [185, 

186, 242, 337, 361]. Fewer studies have taken place on myelination in the BNST; however, our 

analyses identified the BNST black module as one with significant correlations to ethanol intake 

after the 1st and 2nd CIE cycles. Although the BNST is a lesser-studied brain region in the myelin 

field, this region has previously been associated with the negative reinforcing properties of 

alcohol [190, 305]. Our findings suggest that repeated exposures to intoxicating ethanol may also 

have an effect on myelination in other brain regions that have, up to this point, not been 

examined as often as other regions more commonly associated with ethanol related 

demyelination, and that changes in myelin gene expression may be another mechanism 

underlying increased drinking. Future avenues of study will involve examining the effect of CIE 
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by vapor chamber on myelination in implicated brain regions, and on the effect of induced 

demyelination on voluntary ethanol intake with repeated exposures to prolonged levels of 

intoxicating ethanol. 

 
Bioinformatic analysis also pointed to chromatin remodeling as a potential regulator of the 

transcriptomic response to CIE. The PFC turquoise module and CEA green module both 

contained genes involved in both DNA methylation [362] and members of known chromatin 

remodeling complexes [363-365]. Smarcc1 has been associated with ethanol response in mouse 

whole brain meta-analyses [209], and Smarca5 was found to be associated with alcohol response 

in network analysis of post-mortem brain tissue from human alcoholics [212]. Indeed, ethanol’s 

effects on epigenetic modifications to chromatin have been an area of intense study, both in 

humans and rodent models, during recent years [142, 212, 366, 367]. These included a study 

from Dr. Jennifer Wolstenholme at the Miles laboratory which found that chromatin 

modification genes correlated with individual variation in ethanol consumption in C57BL/6 mice 

[142]. Based on our findings in the other brain-regions studied, we hypothesize that this reflects 

the transcription level response in the brain to chronic ethanol exposure leading to downstream 

transcriptional regulation such as the observed changes in genes related to synaptic transmission, 

synaptic plasticity, and myelination. 

 
In summary, differential gene expression and scale-free network analysis of microarray data after 

multiple cycles of CIE with and without intermittent access drinking has revealed brain region 

and treatment specific changes. Differential expression in the PFC, CEA, and BNST indicated an 

interaction effect between CIE and drinking; whereas in the NAC and HPC, the primary effect 

came from CIE. Analysis of drinking patterns across multiple cycles of CIE showed that both 
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CIE and air control mice increase their drinking, however, mice exposed to CIE drink 

significantly more than control. These results are in line with previous studies [81], and indicate 

that the CIE paradigm consistently produces progressive, lasting increases in voluntary ethanol 

intake in response to chronic high dose ethanol exposure. Furthermore, we have used the 

capabilities of network analysis through WGCNA to attempt to bridge the gap between gene 

expression and behavior by identifying co-expressed networks of genes in each brain region, and 

then correlating those networks to ethanol drinking. This strategy revealed that the most highly 

drinking correlated modules were seen in the PFC and NAC. In both brain-regions, as well as 

those with fewer significant drinking correlations, those modules with the strongest correlations 

to drinking, particularly after the 4th CIE cycle, were enriched for genes involved in synaptic 

transmission or synaptic plasticity. Modules from the PFC and BNST also indicated that changes 

in myelin gene expression also strongly correlate to changes in drinking. These results are of 

particular interest as previous studies from our group have observed significant changes in 

myelin gene expression with acute ethanol exposure [86]. Our results also suggest a role for 

chromatin remodeling, particularly in the PFC and CEA, in the gene expression response to 

chronic, prolonged ethanol exposure. Future studies will further explore the link between 

chromatin remodeling and altered synaptic transmission, possibly leading to structural changes in 

the brain, such as altered myelination. Such changes may be mechanistically important in the 

drinking behavior response to chronic intermittent ethanol exposure.   
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Chapter 5: Network Analysis of Prefrontal Cortex Gene Expression after CIE and 

drinking in BXD Recombinant Inbred Mice 

Introduction 

AUD is a complex, multifactorial disorder, risk for which has been attributed to both 

environmental and genetic factors [368]. The tendency of the disorder to run in families has long 

been observed in biomedical literature [369]. This tendency has seen been explored using family, 

twin, adoption, and population studies [370-373]. Overviews of these studies have found that 

about 40-60% of risk can be attributed to genetic factors [368, 374]. Genome wide association 

studies (GWAS) of human populations have attempted to identify specific genes that influence 

risk for AUD, however only a few candidate genes have been verified [375-378]. Transcriptome 

studies using microarrays have found that both acute and chronic alcohol exposure lead to 

widespread alterations in gene expression in the brain, particularly in prefrontal cortex [80, 86], 

and previous studies out of the Miles laboratory comparing two different mouse strains indicated 

that genetic background may play a substantial role in the effect of ethanol exposure on PFC 

gene expression [86]. 

 
Mice are powerful model organisms for genetic research. Their genome has been fully sequenced 

[379]. Their short lifespan, and ease of husbandry and breeding allows for extensive genetic 

manipulations that can help uncover the effect of genetic background on gene expression in the 

PFC, both basally and in response to environmental manipulations such as ethanol exposure. One 

such mouse genetic resource is the BXD recombinant inbred mouse panel [380]. This panel is a 

collection of mice strains bred from two inbred mouse strains, C57BL/6J and DBA/2J. After 

creating an isogenic F1 strain from the two progenitor strains, F1 mice underwent 20+ 
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generations of brother/sister matings leading to several BXD strains of mice, all of which had 

alleles from C57BL/6J and DBA/2J progenitors in different combinations [380] (Figure 25)  

 

 

Figure 25: Overview of breeding history of BXD recombinant inbred mice. Figure adapted 
from Emery et al. [381] 
 

The BXD panel is very useful for alcohol research because C57BL/6J and DBA/2J mice show 

very different behavioral and gene expression responses to ethanol. For example, C57BL/6J mice 

will voluntarily consume significantly more ethanol than DBA/2J [382, 383]. Reasons for this 

are still the subject of investigation [384, 385]. Previous studies have also shown that these two 

mouse strains show significantly different responses to ethanol’s hypnotic and ataxic effects 

[386]. Additionally, microarray studies found that acute ethanol exposure leads to highly variable 

gene expression responses across the BXD RI panel in three mesocorticolimbic regions including 
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PFC [230, 288]. Based on these findings, we undertook this analysis of multiple strains of BXD 

RI mice with the hypothesis that genetic variation may influence gene expression response to 

chronic ethanol exposure. 

 
Based on these findings, we collaborated with other members of the INIA Stress Consortium to 

investigate the effect of genetic background on voluntary ethanol intake, and gene expression 

response to chronic, high-dose ethanol exposure. Preliminary studies using Affymetrix 

GeneChip® Mouse Genome 430, type 2 arrays have shown similar gene expression effects in the 

PFC and NAc of BXD mice after multiple cycles of CIE with intermittent 2-bottle choice 

drinking (van der Vaart et al. 2016-in press). The analyses described in this chapter represent an 

expansion of that study to include more individual mice using a newer Affymetrix array type that 

includes deeper coverage, and probes that span exon junctions, thus allowing for alternative 

splice analysis.  

 
This chapter outlines an extensive gene-level analysis of a deep-coverage array type across 

several strains of BXD RI mice, C57BL/6J and DBA/2J progenitors, and F1 generation 

predecessors after multiple cycles of CIE with intermittent 2-bottle choice drinking. These 

analyses explore the gene expression response of chronic prolonged ethanol exposure in the PFC 

using the a well established meta-analysis technique [261], and Weighted Gene Correlated 

Network Analysis [218]. Using this approach, we show that correlated patterns of gene 

expression occur across the RI panel in response to chronic ethanol exposure. We also show that 

WGCNA modules correlate to ethanol intake as well as serum blood levels of endogenous 

neurosteroids that are known to modulate the known ethanol receptor GABAA. Finally, we have 
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also found that modules tend to either be enriched for genes that are ethanol responsive across 

the BXD panel, or correlated to ethanol intake, with almost no overlap between the two.  

 
Materials and Methods   

Animals 

Male and female BXD recombinant inbred (RI) mice were supplied by the University of 

Tennessee Health Sciences Center (Memphis, TN, USA) at 12-16 weeks of age. 10 week old 

male and female C57BL/6 and DBA/2 mice were purchased from Jackson Laboratories (Bar 

Harbor, ME, USA). All mice were house individually in an AALAC-accredited animal facility. 

Mice were kept in a 12-hour light/dark cycle (lights on at 0200 hr), and given free access to 

water and standard rodent chow (Harland, Teklad, Madison, WI.). All studies were approved by 

the Institutional Animal Care and Use Committee at Medical University of South Carolina 

(MUSC) and conducted in accordance with the guidelines outlined in the NIH Guide for the Care 

and Use of Laboratory Animals. 

    

Chronic Intermittent Ethanol (CIE) 

All chronic intermittent ethanol (CIE) experiments were performed at Medical University of 

South Carolina (MUSC) with approval of the Institutional Animal Care and Use Committee. All 

mice underwent 6 weeks of limited access drinking (2 hr/day) 15% v/v ethanol and water to 

establish baseline drinking. Mice were then divided into 2 groups: CIE and Control. For each 

BXD strain, at least one mouse, of the same sex, was assigned to the CIE group and one to the 

control group. CIE mice received ethanol vapor in Plexiglass inhalation chambers (60x36x60 

cm) for 16 hrs/day for 4 days. Control mice were also placed in the inhalation chambers for 16 

hrs/day for 4 days, but did not receive ethanol vapor. Mice then underwent 72 hrs of complete 
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ethanol abstinence, followed by 5 days limited access drinking (2-bottle choice 15% v/v ethanol 

and water, 2 hr/day) [81]. Ethanol levels in the inhalation chambers were set to produce blood 

ethanol concentrations of 200-300 mg/dL. Prior to each vapor chamber session, mice were 

injected intraperitoneally with 1mmol/kg of the alcohol dehydrogenase inhibitor pyrazole to 

stabilize blood ethanol concentration (BEC). Blood was collected for BEC measurement on the 

2nd and 4th inhalation chamber days of each inhalation chamber cycle. Mice surviving at the end 

of the study were sacrificed at 72 hrs after the 5th inhalation chamber session (Figure 26). A 

total of 487 male and female BXD RI underwent CIE by vapor chamber (Suppl. Table S24).  

 

 
Figure 26: Overview of BXD RI CIE by vapor chamber with intermittent 2-bottle choice 
drinking. 
 
Tissue Harvesting and RNA Isolation 

Brain regions were harvested using brain punch microdissection as previously described [86]. 

Brain tissues were immediately snap frozen in liquid nitrogen, and stored long-term at -80°C. 

Simultaneously, trunk blood was collected from mice and time of sacrifice, and sent to 

collaborators at University of North Carolina Chapel Hill School of Medicine where serum 
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3α,5α-tetrahydroprogesterone (3α,5α-THP), tetrahydrodeoxycorticosterone (3α,5α-THDOC), and 

pregnenolone levels were measured as previously described [387]. Neurosteroid data was then 

shared with the Miles laboratory for correlation to gene expression results. 

 
Prefrontal cortex tissue was homogenized using Stat 60 Extraction Reagent (AMS 

Biotechnology, Abingdon, UK), and RNA was extracted with the Qiagen miRNeasy Mini Kit. 

The RNA isolation reagents provided by this kit allowed for efficient isolation of RNA products 

< 200nt in length, as well as larger size mRNA, tRNA, rRNA. RNA quality was assessed by 

capillary electrophoresis with the ExperionTM Automated Electrophoresis System and RNA 

HighSens analysis kits (BioRad, Hercules, CA, USA). RNA yield was determined using a 

NanoDrop 2000 UV spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). 

 
Gene Expression Microarrays 

Gene expression was measured using Affymetrix GeneChip® Mouse Transcriptome Assay 1.0 

(Affymetrix, Santa Clara, CA, USA). Sample preparation was performed according to 

manufacturer instructions. All samples were randomized before RNA extraction, and then re-

randomized before array hybridization using a supervised randomization scheme that minimized 

dissection cohort, sex, and treatment effects as much as possible (Suppl. Table S24). Array 

hybridization and scanning were carried out with the assistance of the VCU Molecular 

Diagnostics Laboratory. 

 
Microarray Analysis 

Gene expression intensity was quantified by normalization and probe summarization using 

RMA. RMA values for all arrays were generated using Affymetrix Expression Console software 

using the Signal Space Transformation (SST) RMA algorithm with GC4 correction, and quantile 
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normalization (Expression Console User’s Guide: http://www.affymetrix.com). A batch effect of 

cohort was seen, ComBat was used to correct for this effect [257] (Figure 27).  

 

 

Figure 27: Multidimensional scale plot of BXD mice before (left panel) and after (right 
panel) ComBat to remove the batch effect of cohort. X and Y axes represent 1st and 2nd 
principal components of the data. 
 

To determine significance of gene expression between CIE and control mice, a method for meta-

analysis developed at the Miles laboratory was used [247] (Aaron Wolen PhD Thesis, 2012). 

Differential gene expression between CIE and control mice was determined using a variant of the 

S-Score method [388, 389] (Harris and Miles-publication pending) developed at the Miles lab for 

use with Affymetrix microarrays that do not have PM-MM probes for all probesets. S-Scores 

were run for all transcript cluster IDs for coding regions (those classed as complex or coding) on 

each BXD strain separately. For strains with more than one CIE and/or more than one control 

mouse, S-Scores were determined each CIE mouse was compared to each control mouse, and the 
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strain mean was then taken. For strains with both male and female mice, CIE males were only 

compared to control males, and CIE females were only compared to CIE females. In downstream 

analyses, however, the mean of male and female S-Scores was collapsed to find the strain mean 

in these initial analyses. Sex effects on gene expression response to CIE may be explored as a 

future study, but are beyond the scope of this dissertation. 

 
Fisher’s Combined Probability test was used to determine whether a gene was significantly 

differentially expressed across the BXD panel [261]. With this method, we treat each BXD strain 

as an independent test of the same null hypothesis (that there is no difference in gene expression 

between CIE and control), and p-values of S-scores are generated based on normal distribution 

and then compared to a random population of p-values built by randomly permuting S-scores 

1000 times to generate empirical p-values. False discovery rate (FDR) was then used to generate 

empirical q-values to adjust for multiple testing (R Script: Aaron Wolen PhD Thesis, 2012. 

Appendix A.1). Empirical q-values equal to or less than 0.2 were considered to indicate 

significant differential expression across the BXD panel. 

 
Weighted Gene Correlated Network Analysis 

WGCNA was run at the gene-level on all transcript cluster IDs classed, according to Affymetrix 

locus ID type, as being within coding regions of the genome. Transcript cluster IDs showing low 

expression were eliminated from network analysis by filtering out all transcript clusters with 

average expression less than or equal to an RMA value of 4. WGCNA was run using mostly 

standard parameters. A soft-thresholding power of 6 was chosen based on the fit of data to scale-

free topology. Biweight midcorrelation was used for network analysis due to this method’s 

resilience to outlier samples [390]. Deep-split values of 0-3 were used, and a deep-split value of 
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3 was chosen based on lack of overlap between modules as assessed by multidimensional scale 

plots of 1st and 2nd principal components. Modules were then correlated to ethanol intake data 

provided by collaborators at MUSC, and neurosteroid data provided by collaborators at UNC 

School of Medicine. Correlations to ethanol intake and neurosteroid levels were done using 

Spearman rank correlation.  

 
WGCNA-CIE Responsive Gene Overlap 

WGCNA modules were compared for overlap to the results of Fisher’s Combined S-Scores at a 

empirical q-values ≤ 0.2 using the userListEnrichment() function in WGCNA [260]. This 

function uses hypergeometric distribution to measure significance of overlap. Hypergeometric 

distribution p-values were corrected for multiple testing using Bonferroni correction. Overlaps 

with corrected p-values ≤ 0.05 were considered significant. 

 
Bioinformatics 

CIE responsive genes measured by Fisher’s Combined S-Scores, and each module identified by 

WGCNA were examined for function using DAVID Functional Annotation Chart tool 

(https://david.ncifcrf.gov/) [262]. Results were filtered to include Gene Ontology (GO) 

categories which contained between 3 and 1000 genes, and which significantly overlapped with 

the input list of genes, either those within a WGCNA module or the list of CIE responsive genes, 

at a p-value ≤ 0.05. Results were curated for semantic similarity using REVIGO 

(http://revigo.irb.hr/), and visualized using REVIGO’s treemap script. In REVIGO a medium 

(0.7) allowed similarity was used using the SimRel method, and limited to only mouse GO 

terms. 

 
Results 
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Gene Expression with CIE and Drinking  

1225 transcript cluster IDs, representing 1220 genes, were significantly differentially expressed 

across the BXD RI panel at an empirical q-value ≤ 0.2 (Suppl. Table S25). Functionally, these 

genes fell into the larger general categories of regulation of Ras signal transduction, cell 

development, synaptic vesicle transport, antigen processing, protein dephosphorylation, cell-

matrix adhesion, cytokinesis, locomotor behavior, regulation of hormone levels, and cell 

proliferation and activation (Figure 28). These CIE-regulated genes were further explored by 

overlapping them with co-expression modules identified through WGCNA, and then looking at 

those biological pathways represented by the modules. 

 
Figure 28: REVIGO Treemap of GO results of significant Fisher’s S-Scores. Gene Ontology 
categories are hierarchically grouped based on semantic similarity. Block size reflects number of 
GO categories in an overall group. 
 

Weighted Gene Correlated Network Analysis 

WGCNA identified 42 modules in the PFC of BXD RI mice after 5 cycles of CIE with 

intermittent drinking. These modules varied in size between 32 and 3735 transcript clusters 
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(Figure 29, Suppl. Table S26). Of these 10 were significantly enriched for transcript clusters 

that were CIE responsive across the BXD panel, and around 11 showed highly significant 

correlation to ethanol intake (Figure 30). Correlations to neurosteroid measurements were 

mixed, with the strongest correlations being those to THDOC (Figure 31). Those modules 

significantly enriched for CIE responsive transcript clusters, or significantly correlated to ethanol 

intake after CIE exposure, were further explored using bioinformatics resources. Modules 

significantly correlated to neurosteroid measures were also examined.  

 
Figure 29: BXD RI WGCNA module names and sizes. Highlighted cells indicate modules 
significantly enriched for genes significantly differentially expressed across the BXD RI panel. 
Significant = genes with empirical q-values ≤ 0.2 by Fisher’s Combined Probability Analysis. 
 

CIE Responsive Modules 

The black, brown4, greenyellow, lightcyan, magenta, orangered4, pink, salmon, tan, and yellow 

modules were significantly enriched for transcript clusters that were significantly CIE responsive 

across the BXD panel as determined by S-Scores with Fisher’s Combined Probability Analysis at 

q-value ≤ 0.2 (Figure 29, Suppl. Table S27). Of these, 9 showed significant enrichment for 

known biological processes.  

 
The yellow module was highly enriched for several GO processes related to development and 

differentiation including several neurodevelopment categories (Suppl. Table S28). Genes within 
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this module known to be involved in neurodevelopment included Fgfr1, a gene that has also 

previously been shown to differ in gene expression in whole brain samples of mouse and rat 

strains that vary in drinking behavior [209, 391]. The yellow module also contained Notch 

signaling genes (Notch1 and Notch2), and forkhead box (Fox) proteins (Foxc1, Foxc2, Foxd1, 

Foxf2). The role of notch proteins in brain development is well documented [392, 393]. Notch 

was also identified in modules of CIE responsive genes in PFC of C57BL/6J mice only as 

discussed in Chapter 3 [80]. Fox genes have also been shown to be very important in brain 

development. Further, the yellow module was also enriched for genes within GO categories 

related to behavior such as response to hypoxia (GO:0001666) and regulation of locomotion 

(GO:0040012) (Suppl. Table S28). One particular gene within the regulation of locomotion 

category, Clic4, was of particular interest because this gene has been found to affect acute 

ethanol behavioral response in a multi-species analysis [337]. Our findings here suggest that 

chronic ethanol exposure may affect Clic4 expression long-term.  

 
Neurodevelopment was a repeatedly observed process among those modules significantly 

enriched for CIE regulated genes. The black, orangered4, and pink modules also showed 

significant overlap with GO categories involved in neurodevelopment. The orangered4 module, 

like the yellow module, was enriched for genes involved blood vessel development and 

neurodevelopment such as Mef2c, Sema5a, and Fgf10 [394-396]. This module also contained 

some well-known ethanol associated genes such as Dopamine Receptor D1 (Drd1a) [397, 398], 

!-opiod receptor 1 (Oprm1) [397, 399], and two subunits of the nAChR (Chrna4 and Chrna5) 

[400-403]. The black module significantly overlapped with several GO categories involved in 

regulation of neurogenesis. Specific genes within these categories include Sema4f, Psen1, 

Syngap1 as well as others [404-407]. The pink module also showed significant enrichment for 
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GO categories related to both neurogenesis and gliogenesis. Genes within this module known to 

be involved in gliogenesis, specifically of oligodendrocytes include Sox10, Plp1, Erbb3, and Shh 

[408-411]. These results indicate that this module may represent the long-term gene expression 

effect of chronic ethanol on PFC white matter. 

 
Two modules, greenyellow and tan, showed significant enrichment for chromatin modification 

genes. These genes included some well-documented chromatin modifying genes such as Hdac8, 

Nsd1, Suv420h1, Epc1, and Baz1b in the greenyellow module, and Dnmt3a, Ehmt1, Hdac7, 

Kcnq1ot1, and Baz2a in the tan module. Chromatin remodeling factors have been associated 

with behavioral and gene expression response to ethanol [142, 367, 412]. Modules enriched for 

chromatin remodeling processes were also identified in both the CIE time-course, and CIE plus 

intermittent drinking studies in PFC of C57BL/6J mice as discussed in Chapters 3 and 4 [80]. 

This adds substantial validation to the finding of chromatin remodeling gene regulation by 

chronic ethanol exposure, since this functional group was identified across two different 

experiments conducted several years apart with differing types of microarrays and mouse strains 

of varied genetic background. 

 
WGCNA-Drinking Correlated Modules 

Of those modules significantly correlated to ethanol intake, one of the most functionally striking 

was the mediumpurple3 module (Figure 30). This module significantly overlapped with a GO 

category titled “behavioral response to ethanol” (GO:0048149) (Suppl. Table S28). This is, 

perhaps, not surprising as this module contained some genes that have been well documented to 

influence ethanol behavioral response such as dopamine receptor D2 (Drd2) and nAChR subunit 

alpha 7 (Chrna7). Repeated ethanol exposure has been shown to downregulate Drd2 expression 
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in adolescent rats [413]. Drd2 expression affects ethanol intake in mice under chronic stress 

[414, 415]. Network analysis of multiple ethanol exposure models also identified a cluster of 

genes containing Drd2 in the prefrontal cortex of chronic intermittent ethanol drinking mice 

[416]. This finding, in conjunction with findings from our BXD mice, strongly suggests that 

Drd2 expression affects PFC gene expression response to chronic ethanol. Chrna7 expression 

has also been associated with ethanol intake in knock-down experiments [417], gene association 

studies [418], and studies of gene expression in certain regions of the mesocorticolimbic system 

[419]. Relationships between Chrna7 expression in PFC and ethanol intake are not well 

documented. However, Chrna7 expression in PFC has been associated with nicotine preference 

in rats [420]. A microdeletion in the human chromosome 15 region that includes the CHRNA7 

gene has been associated with schizophrenia, and in mouse models has been shown to result in 

altered brain function in multiple brain-regions including PFC [421, 422]. These findings, 

together, suggest that Chrna7 is important in PFC function. As outlined in Chapters 3 and 4, 

multiple cycles of CIE have widespread effects on PFC gene expression in C57BL/6J mice. 

Chrna7 was significantly differentially regulated between control and CIE mice immediately 

after final exposure in the time-course experiment [80].  

 
The cyan module also significantly correlated to ethanol intake both baseline and after each cycle 

of CIE (Figure 30). Interestingly, this module was enriched for chemokine activity, suggesting 

that this module may represent a neuroimmune response to chronic ethanol exposure. Indeed, 

neuroimmune response genes have been shown to alter ethanol consumption, and recovery from 

the sedative effects of ethanol in a variety of mouse models [361, 423, 424]. The darkgreen 

module also significantly correlates to ethanol intake both baseline and after each cycle of CIE 

(Figure 30). Functionally, this module showed overlap with some unexpected GO categories: 
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GO:0007283~spermatogenesis, GO:0048232~male gamete generation, and 

GO:0007130~synaptonemal complex assembly (Suppl. Table S28, Suppl. Table S29). Genes 

within these categories included the transcriptional activator Creb3l4 [425]; a member of the 

tRNA-splicing endonuclease complex Tsen 34 [426]; Spata6 which is an important protein the 

structure of spermatozoa [427]; and Sycp3 and Syce1, genes which are involved synaptonemal 

complex assembly during meiosis [428-430]. This module also contained genes involved in 

glycoprotein generation in the Golgi apparatus. Overall, these findings suggest that these genes 

may have, as of yet, lesser-known roles in neural tissue that also impacts ethanol consumption. 

Indeed, Spata6 was differentially regulated in whole brain samples of ethanol preferring vs. non-

preferring mice [209], and Tsen34 in ethanol responsive networks in multiple regions from 

human brain samples including frontal cortex [212]. 
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Figure 30: Heatmap of ME correlations to ethanol intake. Module eigengene (1st principal 
component) correlated to each ethanol intake measure by Spearman rank correlation. 
 

WGCNA-Neurosteroid Correlated Modules 

 
The strongest correlations between WGCNA modules, and neurosteroid measurements were to 

THDOC (Figure 31). Among these was the mediumpurple3 module, which was significantly 

correlated to baseline and post-CIE ethanol intake, and enriched for genes involved in the 

behavioral response to ethanol (Figure 30). This finding suggests that THDOC levels may 

regulate the expression of genes whose expression influences ethanol intake. Of the other 

modules significantly correlated to THDOC expression, the darkgrey, lightyellow, and 
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midnightblue modules were enriched for genes involved in biosynthetic processes within the 

cell. The magenta module was enriched for genes involved in the mitogen-activated protein 

kinase cascade, and inflammatory response (Suppl. Table S28). 

 
Several modules also significantly correlated to pregnenolone (Figure 31). These included the 

darkslateblue module, which was enriched for Serpin family genes involved in protein 

processing [431], and the skyblue module, which was also enriched for GO categories involved 

in biosynthetic processes in the cell. The skyblue module also contained certain genes known to 

affect neurodevelopment such as Robo2, Sty1, and Nmnat1 [432-434] (Suppl. Table S28, Suppl. 

Table S29). Additionally, the yellow module was significantly correlated to serum pregnenolone 

levels. As discussed, this module was also highly enriched for CIE responsive genes. 
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Figure 31: Heatmap of ME correlations to endogenous neurosteriod levels. Module 
eigengene (1st principal component) correlated to neurosteroid levels by Spearman rank 
correlation. 
 

Discussion 

Through network analysis with WGCNA we have developed an extensive picture of the 

transcript-level response to repeated cycles of CIE by vapor chamber with intermittent 2-bottle 

choice drinking across a recombinant inbred mouse panel generated from two progenitor strains 

that differ widely in their gene expression response to ethanol exposure [86]. The CIE by vapor 

chamber model has been shown in previously published studies [81, 239], and in chapter 4 of 

this dissertation, to significantly increase ethanol intake when combined with intermittent 2-

bottle choice drinking. The analyses outlined in this chapter revealed the gene expression 



 126 

response to chronic intermittent ethanol exposure across a panel of genetically variable mice, and 

identified modules of co-expressed genes that correlated to ethanol intake measures, or to levels 

of active endogenous neurosteroids in mouse blood after multiple cycles of CIE. Additionally, 

modules significantly enriched for chronic ethanol responsive genes across the RI panel, 

revealing that those modules enriched for CIE responsive genes tended not to overlap with those 

significantly correlated to ethanol intake. This recapitulates findings discussed in Chapter 6 in a 

co-analysis of C57BL/6J mice and rhesus macaque PFC expression responses to chronic ethanol. 

 
Expression of each individual gene tended to vary considerably across the BXD RI panel, 

therefore meta-analysis was used to identify genes whose expression was significantly different 

between CIE and control mice across the panel. At a false discovery rate of 0.2, a little over 1200 

genes were significantly regulated by CIE across the BXD panel. Functionally, these genes 

showed a few overreaching patterns based on bioinformatics analysis. One category highly 

represented in CIE-regulated genes across the panel was processes involved in Ras signal 

transduction. Ras has been studied in a variety of fields, particularly cancer cell biology, due to 

its role in the regulation of cell proliferation and apoptosis [435]. In the brain, however, Ras 

signaling via the MAPK signaling pathway may play a significant role in synaptic plasticity, and 

memory formation. Particularly in the hippocampus, pharmacological and genetic manipulation 

of elements of the Ras signaling pathway have been shown to significantly affect long-term 

potentiation measured by electrophysiology in rats and mice, and to result in impaired 

performance on behavioral tests [436, 437] Specifically, deletion of the nucleotide exchange 

factors RasGRF has led to reduced performance on operant and classical conditioning tasks 

[436], and, in fact, two RasGRFs (Rasgrf1 and Rasgrf2) were significantly regulated across the 

BXD panel. Rasgrf2 has also been found to be highly expressed in heavy drinking mice [438]. 
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Another gene significantly regulated across the panel, Nf1, has been shown to affect 

hippocampal-dependent spatial memory in knock out mice [439]. Nf1 is a Ras GTPase that is the 

major Ras signaling inhibitor in dendritic spines [440], and has been found, in mouse forebrain, 

to be a structural component of the NMDA receptor complex [441]. Although many previous 

studies on the role of Ras signaling in the brain have focused on the hippocampus, some have 

also noted that modulation of parts of the Ras signaling cascade in the neocortex results in 

changes in long-term potentiation [439]. Results from BXD mice indicated that chronic ethanol 

exposure leads to altered Ras gene expression in the prefrontal cortex, and, based on the role of 

Ras in other mesocorticolimbic brain-regions, may alter synaptic plasticity in PFC. Further, 

studies will be needed to determine the behavioral effects, if any, of modulation of Ras gene 

expression in PFC by chronic ethanol. 

 
Several class I and class II major histocompatibility complex (MHC) genes were also 

significantly regulated across the BXD panel. MHC genes produce a set of cell-surface proteins 

that are essential to adaptive immune response [442]. In the central nervous system, however, 

MHC genes, particularly class I MHC genes, have been shown to be expressed in both the fetal 

and adult brain [443], and there is considerable evidence that these genes are involved in 

synaptic plasticity via regulation of neurite outgrowth, and synaptic density [443]. The role of 

class II MHC genes in the brain is less well known, although there is some evidence that MHC 

class II gene expression is altered in endothelial cells of the brain’s vascular system [444], 

suggesting that chronic ethanol exposure may have a neuroinflammatory effect on brain 

vasculature regardless of genetic background. 
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One of the modules identified by WGCNA also indicates a possible effect of CIE on vasculature 

in the PFC. The CIE responsive yellow module was enriched for a variety of Gene Ontology 

pathways related to development and metabolism including several Fox genes, may of which are 

recorded to play a role in the development and maintenance of the blood-brain barrier. Foxf2 is 

expressed in brain pericytes, and has been demonstrated to be important in blood-brain barrier 

formation during embryonic development [445]. Foxf2 loss has also been shown to result in 

blood-brain barrier degradation in conditional knockdown mice [445]. Foxc1 has been shown to 

be important in brain development, demonstrated in multiple brain regions [446, 447]. This gene 

has also been shown to be specifically expressed in pericytes, and essential for blood-brain 

barrier development [448]. Fox2c is known to play a role in cancer progression including 

gliomas [449], suggesting this gene is important in regulating turnover in glial cells. Foxd1 has 

also been shown to regulate glioma development and proliferation via mesenchymal glioma stem 

cells [450]. Our finding in BXD RI mice provides further evidence that chronic ethanol exposure 

may affect gene expression in vascular cells in PFC, and, possibly even lead to disruption of the 

blood-brain barrier. Additionally, Notch1, Notch2, and Bmp, three other genes within the yellow 

module, have been shown to be dysregulated in the heart with fetal ethanol exposure [451]. 

Additionally, angiogenesis factors have been shown to induce Notch signaling, and regulate 

angiogenic sprouting in developing mice [452]. These findings suggest that molecular 

components of cerebral vasculature may be significantly disrupted by chronic, high-dose ethanol 

exposure, and could have important implications on the more global impact of chronic ethanol 

on brain function, as seen with alcoholic dementia [2]. Furthermore, alcoholics are also known to 

be at increased risk for hemorrhagic stroke [41, 44, 45]. 
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In addition to differential gene expression and ethanol intake, this study also looked at the 

phenotype of endogenous neurosteroids. Serum 3α,5α-3-hydroxypregnan-20-one (THP) and 

3α,5α-3,21-dihydroxypregnan-20-one (THDOC), as well as one precursor steroid pregnenolone, 

levels after 5 cycles of CIE were correlated to each co-expression module as represented by the 

module’s first principal component. Functionally, very few modules that significantly correlated 

to neurosteroid measures were significantly enriched for any known biological processes. Of the 

ones that were, the magenta module, which significantly correlated to THDOC levels, was 

enriched for genes involved in the mitogen-activated protein kinase cascade, a cellular signaling 

process that has been implicated in PFC and HPC mediated learning and memory [453]. This 

suggests the magenta module may represent a group of genes whose expression regulates PFC 

neuroplasticity modulated by endogenous neurosteroids. No modules significantly correlated to 

THP expression, however, a few significantly correlated to pregnenolone expression. 

Pregnenolone is a precursor of THDOC and THP, both of which are allosteric modulators of 

known ethanol-sensitive receptors, GABAA and NMDA. Pregnenolone may, therefore, influence 

ethanol behavioral and molecular responses via THDOC and THP levels [387]. However, lack of 

overlap between THDOC and pregnenolone correlated modules suggests that gene expression 

results from CIE exposed BXD mice do not provide sufficient evidence to support this 

hypothesis. The pregnenolone correlated skyblue module contained known neurodevelopment 

genes, and the CIE-responsive yellow module also significantly correlated to serum 

pregnenolone levels. Pregnenolone’s sulfate form is a negative allosteric modulator of 

GABAergic neurotransmission and positive allosteric modulator of glutamatergic 

neurotransmission [454, 455], suggesting that the effects of pregnenolone sulfate oppose those of 

ethanol. This finding, therefore, may suggest that pregnenolone levels are altered in response to 
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chronic ethanol exposure, possibly representing a compensatory mechanism to attempt to return 

PFC gene expression levels to a more basal state. Future studies, therefore, may involve 

thoroughly quantifying both serum and brain levels of pregnenolone and pregnenolone sulfate, 

and investigating, either through transcriptomics or by targeted quantitative RT-PCR of specific 

genes, the effect of chronic intermittent ethanol by vapor chamber on gene expression in the 

PFC. 

 
One of the most interesting findings from network analysis of gene expression in the PFC of 

chronic intermittent ethanol exposed mice across the BXD recombinant inbred panel was that, of 

those modules significantly correlated to ethanol intake, relatively few were also significantly 

correlated to percent change from baseline (Figure 30). This is a somewhat unexpected finding 

given that the Becker laboratory has demonstrated that repeated cycles of CIE exposure leads to 

a significant escalation in ethanol intake [81]. Additionally, none of the modules that were 

significantly enriched for CIE-responsive genes were also significantly correlated to ethanol 

intake (Figure 30). This is also an unexpected finding given that these analyses were run with 

the hypothesis that gene expression changes in response to chronic ethanol exposure underlie the 

escalation in ethanol intake observed with repeated cycles of CIE. These new findings, however, 

may lead to a new hypothesis: that certain biological pathways are affected at the gene 

expression level by chronic ethanol exposure, but both basal and escalation of ethanol intake 

after CIE is regulated more by inborn or stable differences in the expression of genes in other 

pathways. To further investigate this hypothesis future studies will look at the expression of 

specific genes within those modules that correlate to ethanol consumption to identify specific 

candidate genes whose expression also correlates to intake, and look at whether these genes are 

differentially expressed at the basal level between C57BL/6J and DBA/2J mice. To get a true 
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measure of basal expression, the confound of vapor chamber exposure, with or without ethanol 

vapor, will need to be removed. This study may, therefore, be performed as a follow up 

experiment. Additionally, extensive genotype data from BXD mice available through the 

University of Tennessee’s GeneNetwork resource (http://www.genenetwork.org/webqtl/main.py) 

will allow for expression QTL (eQTL) mapping to be performed as a follow up study that may 

identify regions of the mouse genome that are associated with differences in gene expression 

across the BXD panel. If regions are identified that contain genes significantly correlated to 

ethanol consumption and show significant cis-eQTL (i.e. the gene is located at the same position 

as the eQTL, implying cis-regulation by CIE), such genes/regions may be robust candidates for 

regulators of the amount of ethanol mice will voluntarily consume given the chance. 

 
In conclusion, scale-free network analysis of microarray gene expression data of BXD RI mice 

revealed that modules of co-expressed genes that were significantly overrepresented for ethanol 

responsive genes across a genetically varying sample of mice, modules that significantly 

correlated to ethanol intake over the course of the study, and modules that correlate to 

endogenous neurosteroid measures. Further, bioinformatics analysis generated the hypothesis 

that chronic ethanol exposure may disrupt vasculature in prefrontal cortex, suggesting a lesser-

studied affect of ethanol-induced neurotoxicity. Correlating the results of network analysis with 

WGCNA to endogenous neurosteriod levels also suggests that the neurosteriod precursor 

pregnenolone may have a greater influence on ethanol’s long-term modulation of gene 

expression than previously thought. Differential expression analysis across the recombinant 

inbred panel revealed biological pathways that appear to be regulated in response to chronic high 

dose ethanol exposure across diverse genetic backgrounds. These pathways include the Ras 

signaling cascade, and Notch responsive signaling. Other biological pathways that may be 
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enriched among genes significantly differentially expressed across the BXD RI panel are 

neuroimmune response, and neuroplasticity mediated by the major histocompatibility complex. 

Finally, the finding that ethanol intake-correlated modules tended not to be enriched for ethanol 

responsive genes across the BXD panel provides support for what is known as the 

endophenotype hypothesis, which states that intrinsic biological differences, in this case basal 

gene expression levels, determine behavioral response to chronic ethanol exposure.  
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Chapter 6: Cross-Species Network Analysis 

Introduction 

One of ethanol’s most well studied actions is activation of the brain’s reward system through 

modulation of GABAergic and glutamatergic signaling. This system might be considered to 

control more primal behaviors such as pleasure, incentive salience, and positive reinforcement 

[456]. These neurotransmission pathways, their function, and response to rewarding stimuli such 

as ethanol are highly conserved across species [456]. It is, therefore, not surprising that patterns 

of ethanol-regulated gene expression have been shown to involve similar genes and synaptic 

signaling mechanisms between model species ranging from invertebrates [202, 203], to 

mammals [86, 200, 209, 212], and even fish [197, 201]. Further, these gene expression patterns 

may also be seen in humans with alcohol use disorder (AUD) [212]. 

 

Based on these observations, we have collaborated with other laboratories through the INIA 

Stress Consortium to perform a cross-species network analysis of the transcriptome response to 

prolonged ethanol exposure. Dr. Kathleen Grant at the Oregon National Primate Research Center 

has used schedule-induced polydipsia (SIP) to establish voluntary ethanol consumption in 

macaques [457]. Through INIA the Miles laboratory obtained PFC tissue from rhesus macaques 

that, following SIP induction, voluntarily drank ethanol for a period of 1 year. Microarray gene 

expression data from these macaques was combined with gene expression data from that of the 

C57BL/6J mice discussed in Chapter 3. We have used network analysis with WGCNA to 

identify conserved patterns of chronic ethanol responsive gene expression across mice and 

nonhuman primates. 
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As outlined in previous chapters, genomic technologies such as microarrays and scale-free 

network analysis have identified patterns of correlated gene expression in brain-regions of the 

mesocorticolimbic system and extended amygdala in response to ethanol exposure [80, 212, 

230]. In C57BL/6J mice, modules of co-expressed genes were identified by scale-free network 

analysis in various brain-regions after four cycles of CIE [80]; and both with and without 

intermittent drinking, as discussed in Chapters 3 and 4. Both gene expression studies of 

C57BL/6J mice with CIE looked at five brain-regions, and in both studies the prefrontal cortex 

(PFC) showed some of the highest numbers of modules, both overall and in terms of enrichment 

for chronic ethanol responsive genes [80] (Chapters 3 and 4). Additionally, the largest number 

and strongest correlations to ethanol intake, following CIE treatment, were seen in the PFC 

(Chapter 4). For this reason, the PFC was chosen as the brain-region in which to perform a cross-

species network analysis using Weighted Gene Correlated Network Analysis (WGCNA) [218]. 

 
WGCNA is a method for scale-free network analysis that also allows for the identification of 

modules of co-expressed genes shared between two networks. These types of modules are 

referred to as consensus modules [339]. Consensus modules are identified by forming networks 

of correlation matrices for each dataset separately, and grouping genes into modules based on the 

lower correlation between datasets [339]. This is done to avoid over-inflation of relatedness in 

gene expression patterns in the event that a group of genes is highly correlated in one dataset, but 

not the other [339]. The purpose of consensus modules is to identify common gene expression 

patterns between two datasets. In the case of this analysis, WGCNA was used to identify 

modules between C57BL/6J mice after CIE with intermittent drinking and chronic ethanol 

consuming rhesus macaques. Macaques were chosen due to their evolutionary proximity to 

humans, and because the mode of chronic ethanol exposure used is voluntary, oral, and 
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prolonged. Additionally, ethanol intake measures before and after chronic ethanol exposure were 

available for mice. Intake was assessed for baseline, and after chronic ethanol because this 

ethanol exposure paradigm has been shown to increase drinking with each successive exposure 

[239]. Ethanol intake and steroid hormone measures across the course of one year were also 

available for macaques. WGCNA capabilities allow for the correlation of co-expression modules 

to such phenotype measures.  

 
Gene expression was quantified in the PFC of rhesus macaques and C57BL/6J mice after 

chronic, prolonged exposure to high dose ethanol using Affymetrix microarrays. Network 

analysis with WGCNA was used to identify modules of co-expressed genes across species, and 

across ethanol exposure models. These analyses were performed with the hypothesis that 

consensus modules represent pathways that show a conserved gene expression response in the 

PFC to chronic ethanol exposure, and that a network analysis across two species will lead to a 

deeper understanding of the brain’s response to chronic, high-dose ethanol exposure. Network 

analysis revealed that regulation of neurotransmission and myelination seem to be very 

conserved ethanol responsive pathways across species. Bioinformatics specifically raise the 

possibility that Robo-Slit signaling is involved in ethanol responsive plasticity in the PFC, and 

that genes known to be involved in development and differentiation of neuronal and 

mesenchymal cells may continue to function in synaptic remodeling in the adult brain. With 

further study, the identification of biological processes disrupted by chronic ethanol exposure 

may aid in the identification of new therapeutic targets in the treatment of AUD in humans. 

 
Methods 
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All cross-species studies in this chapter were done in collaboration with Dr. James Bogenpohl in 

the Miles laboratory, who was the primary investigator studying gene networks from rhesus 

microarray studies. In addition, all primate studies were done in collaboration with Dr. Kathleen 

Grant at Oregon Health and Sciences University. Dr. Grant devised the schedule-induced 

polydipsia model for obtaining high levels of ethanol intake in macaques [457], performed the 

behavioral and hormonal studies as well as brain tissue harvesting, and made tissue or RNA 

samples available to the Miles laboratory as part of a collaborative study within the Interactive 

Neuroscience Initiative on Alcoholism (INIA-Stress) consortium. The mouse tissue/RNA and 

microarray data used for these studies are as described in chapter 4 and were made available as 

part of a collaborative study with Drs. Howard Becker and Marcelo Lopez at Medical University 

of South Carolina through the INIA Stress Consortium. 

 

Animals and Chronic Ethanol Treatments 

Rhesus macaques (Macaca mulatta) were individually housed at the Oregon National Primate 

Research (Hillsboro, Oregon, USA). All housing and experimental protocols were conducted in 

accordance with the NIH’s Guide for the Care and Use of Laboratory Animals and the Oregon 

Health and Science University’s (OHSU) IACUC. 46 Male macaques, ages 5-11 years, were 

used for gene expression studies. Macaques were conditioned to drink ethanol by schedule-

induced polydipsia as previously described [457]. Monkeys were trained to use an operant touch 

panel, and induced to drink water gradually shifting to ethanol by being given 1g banana-

flavored pellets a Fixed-Time 300 sec operant schedule [457]. Scheduled pellet delivery was 

ceased after 6 months of training and ethanol induction. Monkeys were then given free access to 

water and 4% (w/v) ethanol for one year; control monkeys were given only water [457]. Ethanol 
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and water intake were measured using a computerized digital scale system (AV4101C, Ohaus 

Corporation, Pine Brook, NJ, USA). Blood samples for quantification of blood ethanol 

concentration were also taken every fifth day from monkeys during from the course of the 

experiment by voluntary presentation of the leg to allow access to the saphenous vein [457]. 

Additionally, blood samples were also collected once every week for measurement of the 

hormones cortisol, adrenocorticotropic hormone (ACTH), testosterone, deoxycorticosterone 

(DOC), aldosterone, and dehydroepiandrosterone sulfate (DHEA-S). 

 
Adult male C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME, USA). 

Mice were acclimated to the animal facility at Medical University of South Carolina (MUSC) for 

two weeks before undergoing any experiments. All animals were kept under a 12-hour light/dark 

cycle and given free access to food and water. All studies were conducted in an AALAC-

accredited animal facility at MUSC, and approved by the Institutional Animal Care and Use 

Committee. All experimental and animal care procedures met guidelines outlined in the NIH 

Guide for the Care and Use of Laboratory Animals. For chronic intermittent ethanol by vapor 

chamber studies, mice were divided into 4 groups: the CIE Drinking group received inhaled 

ethanol in the vapor chambers followed by 2-bottle choice drinking, the Air Drinking group 

received only air in the vapor chambers and 2-bottle choice drinking, the CIE NonDrinking 

group received inhaled ethanol in the vapor chambers but did not drink in between CIE cycles, 

and the Air NonDrinking group remained ethanol naïve both in and out of the inhalation 

chambers. Mice in the CIE Drinking and Air Drinking groups underwent 6-weeks of 2-bottle 

choice drinking to establish baseline drinking levels. Mice were given ethanol for 2 hours per 

day. Ethanol and water intake for each individual mouse was measured daily. Following 6-weeks 

of baseline drinking, mice were placed in Plexiglass inhalation chambers (60x36x60 cm) 16 
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hours/day for 4 days. After 4 days in the inhalation chambers, mice underwent a 72-hour period 

of total abstinence from ethanol. Following the abstinence period, mice in the CIE Drinking and 

Air Drinking groups were given 2-bottle choice drinking for 2 hours per day for 5 days. A total 

of 4 cycles of CIE-abstinence-drinking were performed. After the end of the fourth cycle mice 

were sacrificed on the 5th drinking day before receiving ethanol. 

 
Tissue Harvesting and RNA Preparation 

Macaques sacrificed and necropsied after one year of open access to ethanol. Four hours after 

final access to ethanol, monkeys were sedated with 15 mg/kg intramuscular ketamine, prepared 

for surgery, and anesthetized by 20-35 mg/kg intravenous pentobarbital. Craniotomy was then 

performed, followed by transcardial perfusion with oxygenated buffer solution. Macaque brains 

were rapidly removed, brain-regions dissected, and tissue samples flash frozen. Tissue samples 

were then deposited into the Monkey Alcohol Tissue Research Resource (MATRR; 

http://matrr.com). Macaques used in this study included those from rhesus cohorts 4, 5, 7a, and 

7b with age and treatment information as described above. A detailed diagram of the 

experimental timeline for each cohort can be found at http://matrr.com. Samples of the monkey 

anterior cingulate and subgenual cortices (Brodmann areas 24, 25, and 32) were obtained from 

MATRR. RNA was extracted from brain tissue using either RNeasy Mini Kit (Quiagen, 

Valencia, CA; cohorts 4 & 5) or the All Prep DNA/RNA/miRNA Universal Kit (Qiagen, 

Valencia, CA; cohorts 7a & 7b) according to manufacturer protocol. RNA samples were 

assessed for quality by capillary electrophoresis (Experion Automated Electrophoresis System, 

BIO-RAD, Hercules, CA-cohorts 4 & 5; or 2100 Bioanalyzer, Agilent Technologies, Palo Alto, 

CA-cohorts 7a & 7b). 
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Mice were sacrificed by decapitation on the final drinking day of the 4th CIE cycle at the time 

they received 2-bottle choice drinking all previous drinking days. Mouse brains were 

immediately removed from the skull and dissected as previously described [208] and outlined in 

Chapter 4. Tissues were stored at -80°C until RNA isolation. Total RNA was extracted using the 

RNeasy Mini Kit (Qiagen, Valencia, CA) at MUSC. 

 
Gene Expression Microarrays 

Monkey RNA samples were prepared using standard procedures outlined by Affymetrix. 

Samples were processed in two groups (cohorts 4 and 5, and cohorts 7a and 7b) consisting of a 

total of 8 microarray processing batches. Arrays randomized within each array batch by 

treatment group and cohort to minimize batch effects. Gene expression was measured using 

Affymetrix GeneChip® Rhesus Macaque Genome Arrays. Arrays were scanned at 2.5 µm 

pixilation with an Affymetrix GeneChip Scanner 3000 7G. Arrays probes were prepared and 

hybridized by the VCU Molecular Diagnostics Laboratory. 

 
Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were used to measure gene 

expression. Sample preparation, hybridization, and array scanning were performed at the MUSC 

ProteoGenomics Core Facility according to Affymetrix protocols. Each brain-region was 

processed separately, with treatment groups randomized to minimize batch effects. Array data 

was transferred to Virginia Commonwealth University (VCU) in .CEL file format for further 

analysis. 

 
Microarray Analysis 

All arrays were analyzed using The R Project for Statistical Computing (http://www.r-

project.org/). Dr. James Bogenpohl in the Miles laboratory performed detailed quality control 
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studies, generated RMA values and performed initial statistical analyses on macaque arrays as 

described below. Each macaque arrays were assessed for quality based on 3’/5’ ratios for the 

housekeeping genes ACTB and GAPDH, and percent present probes for each probeset on the 

array. Rhesus arrays were background corrected with the Robust Multi-array Average (RMA) 

method [256] and quantile normalized using the ‘affy’ package for R [255]. Principal component 

analysis was then used to identify any batch effects within the data. Examination of first and 

second principal components with multi-dimensional scale plots showed evidence of batch 

effects for array hybridization batch and cohort. These effects were corrected using ComBat for 

hybridization batch [257], which successfully removed batch effects for both hybridization batch 

and cohort. Macaque arrays were analyzed for differential gene expression between ethanol-

drinking and control animals using Linear Models for Microarrays (LIMMA) [258] with Multi-

Experiment Viewer (MeV) software by Dr. James Bogenpohl. Probesets were considered 

significantly differentially expressed at an FDR ≤ 0.01. 

 

Affymetrix GeneChip® Mouse Genome 430, type 2 arrays were also analyzed with R as 

described in Chapter 3. Microarray quality was assessed by RNA degradation, average 

background, percent present probesets, and multi-dimensional scale plots (first principal 

component by second principal component).  Arrays showing low quality measures, or that 

appeared to be outliers, were removed from the dataset.  Background correction using Robust 

Multi-array Average (RMA) and quantile normalization was performed using the ‘affy’ package 

for R. ComBat by hybridization batch was used to correct for any batch effects present in the 

data [257]. Differential gene expression was determined by LIMMA using the ‘limma’ package 

for R. LIMMA comparisons between each possible comparison between the 4 treatment groups 
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of C57BL/6J mice were made, as well as, one-way ANOVA to compare all groups for any 

difference was performed. For the purposes of this analysis, results of one-way ANOVA were 

used FDR ≤ 0.01. 

 
Weight Gene Correlated Network Analysis 

 
Consensus WGCNA was run on mouse and macaque arrays as described in [226]. Probesets 

from both mouse and macaque arrays were curated to include only those probesets within genes 

that had recorded homologs in both species. Gene homology data from Ensembl  

BioMart (http://www.ensembl.org/biomart) and NCBI Homologene 

(http://www.ncbi.nlm.nih.gov/homologene) were used to identify homologous genes. Multiple 

probesets were then eliminated based on maximal expression using the collapseRows() function 

in WGCNA [458]. Arrays were then filtered to exclude probesets with RMA values ⪯ 3.75 in at 

least 80% of macaque samples. Of these, only 1% showed expression values ⪯ 3.75 in at least 

80% of mouse arrays. These filtering steps lead to a final list of 10,990 genes (Suppl. Table 

S30). Consensus WGCNA was then run on 43 macaque arrays (32 ethanol drinking, 11 control), 

and 47 mouse arrays (23 CIE, 24 control). To ensure datasets were on a similar scale, the mouse 

topological overlap matrix was scaled to that of the macaques. A soft-thresholding power of 8 

was chosen based on the data fit to scale-free topology as described in [218]. A deep-split value 

of 3 was chosen using principal component analysis as described in previous chapters. 

Multidimensional scale plots using first and second principal components were used for the x 

and y axes. A deep-split where there were no overlaps between modules was then chosen. 

Consensus modules were the compared for overlap to significantly differentially expressed genes 

in mice, and in macaques. Overlap was assessed using hypergeometric overlap. The Bonferroni 
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method was applied to correct for multiple testing. Modules with Bonferroni corrected p-values 

⪯ 0.05 were considered significantly enriched for ethanol responsive genes. 

 
Bioinformatics 

Mouse/macaque consensus modules identified by WGCNA were for functional enrichment using 

the ToppGene Suite’s Topp Funn tool (https://toppgene.cchmc.org/) by postdoctoral fellow Dr. 

James Bogenpohl at the Miles laboratory. Functional enrichment analysis was performed with a 

p-value cutoff of 0.01 within the ontological categories Molecular Function, Biological Process, 

Cellular Component, Human Phenotype, Mouse Phenotype, Pathway, Gene Family, and Disease, 

focusing on ontologies containing between 3 and 1000 genes. ToppFun results were processed to 

decrease complexity and merge redundant categories using REVIGO (http://revigo.irb.hr/). In 

REVIGO an output list size of small (0.5) was used. All other settings were left at default. 

 
Cell-type Enrichment Analysis 

Dr. James Bogenpohl in the Miles laboratory performed cell-type enrichment analysis on 

consensus WGCNA modules by hypergeometric overlap using the userListEnrichment() 

function [260]. Gene expression data was taken from two previous studies of cell types in mouse 

cortex. One used Affymetrix 430, type 2 arrays to assess gene expression FACS sorted brain-

cells [341]. Data from these arrays were filtered to only include only genes with a 3+ fold 

enrichment in each cell type. The second dataset came from single-cell RNAseq of mouse cortex 

and hippocampal cells [459]. The Bonferroni correction was used to account for multiple testing. 

Modules with Bonferroni corrected p-values ⪯ 0.05 were considered significantly enriched for 

gene expressed in a certain cell-type. 

 
Results 
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Chronic Ethanol-Responsive Genes 

Two-factor LIMMA was run on the macaque arrays by Dr. James Bogenpohl at the Miles 

laboratory. 2,294 probesets were determined to be significantly ethanol responsive at FDR ≤ 

0.01. On the mouse arrays, one-way ANOVA using the ‘limma’ package revealed 2787 

significantly differentially expressed probesets at FDR ≤ 0.01 (Suppl. Table S31). Due to the 

large number of significant probesets, ethanol responsive genes were used for overlap with 

consensus WGCNA modules to help determine which modules represented chronic ethanol 

responsive pathways in PFC.  

 
Consensus Weighted Gene Correlated Network Analysis 

15 consensus modules were identified from WGCNA on mouse and macaque arrays as 

described. Of these, only one module significantly correlated to average ethanol intake in the 

macaques. Many more consensus modules, however, were significantly correlated to ethanol 

intake in the mice, particularly after the 4th CIE cycle (Figure 32). 
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Figure 32: Heatmap of Consensus Module Correlation to Mouse Ethanol Intake. “meta” 
modules refer to consensus modules. Cell color indicates Spearman rank correlation. 
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Figure 33: Heatmap of Consensus Module Correlation to Macaque Ethanol Intake. “meta” 
modules refer to consensus modules. Cell color indicates Spearman rank correlation. 
 

The salmon module was significantly correlated both to macaque average daily ethanol intake 

(r=0.36, p-value=0.02), and to mouse ethanol intake after the 4th CIE cycle (r=0.42, p-

value=0.003) and percent change from baseline (r=0.39, p-value=0.007) (Figure 32-33). This 

module was functionally enriched for genes involved in both GABAergic and glutaminergic 

signaling (Suppl. Table S32). GRIN2B, one of the major subunits of the NMDA receptor, was 

present in this module [106, 127]. Interestingly, GABRB3 was also present in this module. This 

gene encodes the beta 3 subunit of the GABAA receptor. Previous research into any possible link 

between this subunit and AUD has shown variable results [111, 460, 461]. This module also 

showed significant overlap with several gene ontology (GO) categories related to female sexual 

development and regulation of the estrous cycle (Suppl. Table S32). Specific genes within these 

categories that were in the salmon module, UBE3A, SLIT3, and ROBO2, have also been found 

to regulate neurodevelopment and axon guidance in the forebrain, particularly the olfactory bulb 
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[462]. Indeed, the salmon module also significantly overlapped with four GO categories related 

to olfactory bulb development and one related to overall forebrain development (Figure 34). 

 

 
Figure 34: REVIGO Treemap of Consensus Salmon Module. Gene Ontology categories are 
hierarchically grouped based on semantic similarity. Block size reflects number of GO categories 
in an overall group. 
 

The yellow, turquoise, and purple modules were significantly correlated to ethanol intake after 

the 4th CIE cycle in mice. In macaques the yellow and turquoise modules also showed a 

significant negative correlation to change in daily ethanol intake during the last 6 months of the 

study, but not overall average daily intake (Figure 33). Functionally, all 3 of these modules 

showed enrichment for GO categories related to regulation of transcription and translation 

(Suppl. Table S32). Other modules with significant correlation to ethanol intake post 4th CIE 

cycle and percent change from baseline with similar functional enrichment were blue, grey60, 

pink, and tan (Figure 32). These modules were enriched for genes involved in developmental 

regulation in the brain including neurogenesis and axonogenesis (Suppl. Table S32). 

Correlations to macaque data was mostly unremarkable, though the blue module showed some 
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significant positive correlations to BEC, ethanol bout volume, change in ethanol intake from 6 to 

12 months, water intake, ACTH levels, and testosterone levels (Figure 33). This module also 

showed significant positive correlation to age at necropsy. The correlations to ethanol and water 

intake, BEC, and hormone levels may, therefore, be explained by age related variation in 

hormone production and ethanol metabolism in macaques. Mice, however, were age matched, so 

further studies will be required to determine if co-expression of genes in this module is driven by 

variation in macaque age or ethanol response. The grey60 module was also highly enriched for 

genes involved in neurodevelopment and neuron differentiation. The exact genes within these 

categories, however, were very interesting as many are also involved in development and 

differentiation of bone, eye, and connective tissue (COL3A1, BMP7, LUM, OMD, FN1, 

CRABP2, OGN, ZIC2) [463-467]. The tan module was significantly correlated to mouse ethanol 

intake during CIE cycle 4 (r=0.38 , p-value=0.009), and percent change from baseline to CIE 

cycle 4 (r=0.31 , p-value=0.04) (Figure 32). Correlation of this module to macaque phenotype 

data showed only significant correlation to percent days consuming over 4 g/kg ethanol (r=0.35, 

p-value=0.02) (Figure 33). With cell-type analysis, this module showed significant enrichment 

for genes expressed in both astrocytes and oligodendrocytes, suggesting it is a glial-cell specific 

module driven mostly by mouse gene expression (Table 9, Suppl. Table S33).  

Table 9: Cell-type enrichment for consensus modules. 

 
 



 148 

The magenta module correlated to percent change in drinking from baseline between CIE cycles 

2 (r=0.36 , p-value=0.01) and 4 (r=0.45 , p-value=6e-04) in the mouse. In the monkey, this 

module significantly correlated to ACTH levels across the study (r= -0.46, p-value=0.002), as 

well as marginal correlation to change in ethanol intake between 6 and 12 months, cortisol, and 

testosterone levels (Figure 33). Functionally, this module was enriched for genes involved in 

neurotransmitter signaling including two subunits of the GABAA receptor complex (GABRAB1 

and GABRA1), a few voltage gated potassium channel genes, and calcium dependent protein 

phosphatase genes (Suppl. Table 32). Cell-type enrichment analysis showed that this module 

was significantly overrepresented for genes expressed in neurons, supporting the possibility that 

this module represents the gene expression effect of chronic ethanol on synaptic signaling genes 

(Table 9, Suppl. Table S33). Additionally, the correlation to ACTH and cortisol levels in 

monkey suggests that expression of genes in this module may be influenced by stress hormone 

response, a hypothesis supported by the presence of the corticotropin releasing hormone gene in 

the magenta module (Suppl. Table 32). 

 
Cell-type enrichment analysis showed that the black module was highly enriched for genes 

expressed in oligodendrocytes (Table 9. Suppl. Table S33). Bioinformatics analysis supports 

this result. This module significantly overlapped with several GO categories related to 

myelination, demyelinating diseases, and human and mouse phenotypes related to neuron 

ensheathment (Suppl. Table S32, Figure 35). This module contained multiple genes expressed 

in oligodendrocytes such as MBP, MOG, MAG, MAL, GAL3ST1, FA2H, TF, LPAR1, NDRG1, 

CD9, ASPA, UGT8, QKI, MYRF, PLP1, CNTN2, and JAM3 [341, 459]. In terms of correlation 

to phenotypes, this module significantly correlated to monkey BEC, testosterone levels across 

the study, average bout volume (r=0.4, p-value=0.008) (Figure 32). In mice, the black module 
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correlated most significantly to baseline drinking (r=0.43, p-value=0.003). After CIE exposure 

this module switched from a positive to negative correlation, and decreased in significance with 

each successive CIE cycle (Figure 32). 

 

 
Figure 35: REVIGO Treemap of Consensus Black Module. Gene Ontology categories are 
hierarchically grouped based on semantic similarity. Block size reflects number of GO categories 
in an overall group. 
 

Overall, the bioinformatics analyses of all identified consensus modules revealed some very 

specific patterns of functional enrichment. Several modules were enriched for regulation of 

transcription and translation reflecting the effect of ethanol on brain gene expression. Regulation 

of neurotransmission and neurodevelopment also appeared as a functional category in multiple 

modules, indicating that prolonged, high-dose ethanol exposure leads to alteration in synaptic 

function across species. Cellular respiration, myelination, and blood vessel development also 
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appeared, suggesting that these cellular processes are significantly affected by chronic ethanol 

(Figure 36). 

 
Figure 36: Multidimensional scale plot with summary of bioinformatics results. X and y 
axes = 1st and 2nd principal components. 
 

WGCNA-Ethanol Responsive Gene Overlap 

Consensus modules were compared for overlap to significantly differentially expressed genes in 

mice, and macaques. The salmon and blue modules were significantly enriched for mouse 

ethanol responsive genes. In contrast, the brown, turquoise, yellow, blue, green, red, purple, and 

midnightblue modules were significantly enriched for macaque ethanol responsive genes. This 

finding, along with the relative lack of correlation to intake in macaques, raises the intriguing 

possibility that consensus module formation was driven by genes correlated to ethanol intake in 
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mice, but the macaque contribution was driven more by genes that are significantly ethanol 

responsive (Figure 37, Suppl. Table 34). 

 
Figure 37: Table of all consensus modules. Modules enriched for mouse (blue) and macaque 
(yellow) ethanol response highlighted. Green highlighted cells indicate enrichment for genes 
significantly differentially expressed in both species.  
 

Discussion 

These analyses outline the use of two powerful model organisms for alcohol use disorder 

research. These module organisms were exposed to high-doses of ethanol over long periods of 

time using paradigms that have previously been shown to lead to escalations in ethanol intake 

[81, 457]. Expression at the mRNA transcript level was measured using gene expression 

microarrays. In addition to standard differential gene expression analysis using LIMMA, 

network analysis with WGCNA allowed us to identify patterns of correlated gene expression 

across species. This approached led to the identification of consensus modules, groups of genes 

with correlated expression in the PFC of both model organism species and ethanol exposure 

methods. Functionally, these modules tended to represent specific biological processes such as 

regulation of transcription and translation, neurodevelopment including myelination, regulation 

of neurotransmission, cellular respiration, and blood vessel development (Figure 36). These 

findings suggest that these processes reflect the conserved response to prolonged ethanol 

exposure in neural tissue. More in depth examination of specific genes within these modules 

helped to identify signaling cascades that may mediate the cellular response to ethanol exposure. 
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We found that modules overlapped with previously characterized data on gene expression 

patterns in specific neural cell-types [341, 459], demonstrating that network analysis with 

WGCNA can identify cell-type specific responses across species even in mixed tissue samples.  

 
The gene content of the only module that correlated with ethanol intake in both mice and 

macaques (salmon), raises the intriguing possibility that the Robo-Slit signaling pathway is 

disrupted by prolonged ethanol exposure across species. This pathway has been shown to be 

important in axon guidance and neurodevelopment in multiple brain-regions including the 

neocortex [468-470]. This pathway has not been extensively associated with alcohol exposure, 

although the effect of early alcohol exposure on olfactory bulb development is quite extensively 

studied in fetal alcohol research [471-475]. This connection is significant because Robo-Slit 

signaling is important in olfactory bulb development [462]. Findings from this cross-species 

analysis, therefore, raise the possibility that this signaling pathway in the PFC underlies chronic 

ethanol behaviors such as increased consumption even in adults. 

 
In this study, a module enriched for some very well known myelin genes including structural 

components of the CNS myelin sheath was identified across species. This module, the black 

module, supports findings from previous studies at the Miles laboratory that myelin genes are 

significantly disrupted by ethanol in the PFC [86]. In mice exposed to chronic ethanol, a 

coherent network of ethanol responsive myelin genes was identified [86] (van der Vaart et al. – 

in press, Miles et al. – in preparation). Additionally, network analyses of rhesus gene expression 

data alone identified a module highly enriched in myelin genes (Bogenpohl & Smith et al. - in 

preparation). Networks containing a significant number of myelin genes were also identified in 

the C57BL/6J time-course study (Chapter 3) [80], and in the BXD network analysis discussed in 
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Chapter 5. Together with previous observations that white matter tracts in certain brain-regions 

are reduced in human alcoholics, and the fact that specific demyelinating diseases associated 

with heavy drinking and alcohol use disorder are recorded, these studies all support the 

hypothesis that cerebral myelination is a biological process disrupted by ethanol exposure and, 

furthermore, that basal myelin expression may be a “risk factor” influencing initial sensitivity to 

ethanol and ethanol consumption rates. Further, the Clic4 gene was also sorted into the black 

module. Clic4 is a chloride intracellular channel. The function of this gene’s product is still the 

subject of investigation [476]. However, Clic4 and its orthologs have been associated with 

ethanol response in a study of multiple model organisms, and shown to have variable expression 

in response to ethanol exposure across the BXD mouse panel, and in C57BL/6J and DBA/2J 

progenitors in PFC [337]. CLIC4 protein was also detected as part of the human and mouse 

myelinome in a proteomic study of CNS white matter [477]. These results, along with the 

presence of Clic4 in the myelin enriched black module provides further evidence for the role of 

Clic4 in myelination.  

 

Finally, that more consensus modules significantly overlap with genes differentially regulated by 

ethanol in the macaque, while more consensus modules were significantly correlated with 

ethanol intake in mice, may support previous findings. The BXD mouse analysis discussed in 

Chapter 5 found that co-expression modules in the PFC tend to either be enriched for ethanol 

responsive genes or significantly correlated with ethanol intake, but not both. This same pattern 

was seen in network analysis of the Rhesus arrays only with WGCNA performed by Dr. James 

Bogenpohl (Bogenpohl&Smith et al – in preparation). These results may, therefore, provide 

further support for the endophenotype hypothesis [478]. This hypothesis states that intrinsic 
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differences in individual biological function, for example variation in gene expression due to 

genetic differences, may underlie voluntary ethanol intake more than genes whose expression is 

altered in the presence of ethanol. Alternatively, one could propose that expression of networks 

such as the myelin-related black module may influence initial ethanol sensitivity (and therefore 

consumption), and that perturbation of the expression of other networks could contribute to the 

mechanisms of excessive consumption, even if the expression of genes in those networks do not 

ultimately show a correlation with chronic ethanol consumption rates. 

 

Here we have presented a cross-species network analysis that has identified groups of co-

expressed genes in the PFC of two mammalian species. We have also produced the first analysis 

of modules of co-expressed genes correlating to ethanol intake in both species, and explored 

whether any modules identified were enriched for ethanol responsive genes in either species. The 

only consensus module correlated to ethanol intake in both species was functionally enriched for 

genes involved in Robo-Slit signaling; an ethanol correlated pathway also identified in PFC 

transcriptome data from BXD RI mice (Chapter 5). Most importantly, this analysis demonstrates 

that neurotransmission, transcription and translation, cellular respiration, and myelination are 

biological processes that show a conserved response to long-term, high-dose ethanol exposure in 

both species. Future studies will focus on exploring highly connected hub genes within these 

modules to identify potential targets that may be manipulated by pharmacologic or genetic 

techniques. We will then examine the effect of altering hub gene expression in the PFC on both 

ethanol responsive gene expression, and on voluntary consumption, in order to better determine 

whether basal differences in expression of hub genes affects the network’s ethanol response, and, 

in turn consumption. Due to their shorter life span and availability, such follow up studies will 
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most likely be done in mice, however, appropriate model organisms will be determined based on 

candidate genes selected. This approach will, hopefully, aid in the identification of specific target 

genes that affect consumption, and may be pharmacologically tractable in humans. 
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Chapter 7: Final Conclusions and Future Directions 

Alcohol use disorder is a chronic, relapsing condition of significant biomedical and 

socioeconomic consequence. Key to this disorder is the widespread effect on the 

mesocorticolimbic system and extended amygdala. This system has been shown to be involved 

in cognitive processes such as reward, reinforcement, incentive salience, and aversion-related 

cognition [190, 351, 456]. In the context of AUD, alcohol stimulates dopamine release, 

mediating the positive-reinforcing effects of the substance in the short-term, and, with repeated 

exposure, long-term changes in dopaminergic neurotransmission occur to compensate for the 

effects of alcohol exposure [67]. These systems then begin to operate in ways that are aberrant 

without the effect of alcohol, leading to physical and psychological symptoms known as 

withdrawal. Individuals, in response, continue to consume alcohol to avoid withdrawal 

symptoms, in a process known as negative-reinforcement [190]. Over time, alcohol use escalates 

to where an individual is physiologically dependent on the substance, resulting in the collection 

of physical and behavioral symptoms that constitute AUD [1, 238]. 

 
Research using technologies such as microarrays have demonstrated in model systems from 

cultured cells to model organisms and human autopsy tissue that the effect of alcohol exposure 

on neural cells begins at the level of mRNA gene expression. Across several brain-regions within 

the mesocorticolimbic system and extended amygdala, alcohol has been shown to significantly 

change the level of expression of hundreds to thousands of genes [86, 194, 195, 208, 210]. Other 

studies have demonstrated that alcohol affects neurotransmission mediated by GABAergic, 

glutamatergic, acetylcholine, serotonin, endocannabinoid and calcium dependent signaling in 

neurons, and that the function of glial cells, which potentiate synaptic signaling by modulating 

synaptic transmission in the case of astrocytes; and insulating neuron projections in the case of 
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oligodendrocytes, is also affected by alcohol [176, 187]. Taken together with gene expression 

findings, these results indicate that alcohol affects multiple biological pathways in the brain. The 

challenge, therefore, was to tease out these responses, and identify specific pathways that may 

represent targets for pharmacological intervention in the treatment of AUD. 

 
In this dissertation we have described a series of studies using the systems biology technique of 

network analysis to explore the gene expression response to chronic ethanol exposure across two 

model organism species in brain-regions of the mesocorticolimbic system and extended 

amygdala with special emphasis on the prefrontal cortex. These analyses have revealed that 

certain cellular signaling processes such as neurotransmission, neuron ensheathment, and 

regulation of transcription and translation show conserved gene expression response to chronic 

ethanol exposure in the PFC of both rodents and nonhuman primates, suggesting that these are 

evolutionarily conserved responses. A multi brain-region study of the time-course gene 

expression response to repeated cycles of high dose ethanol exposure in C57BL/6J mice revealed 

that lasting changes in gene expression are seen in the PFC and HPC. Bioinformatics analyses of 

these gene expression changes have identified patterns of correlated gene expression 

representing neurotransmission, neurodevelopment, and neuroimmune response. These studies 

have also helped identify highly connected candidate genes within co-expression modules, and 

potential microRNA regulators of the genes within these modules. A similar analysis of 

microarray expression data from C57BL/6J mice under chronic intermittent ethanol by vapor 

chamber that also received limited access two-bottle choice drinking revealed modules of 

correlated gene expression that correlate to ethanol intake after chronic high-dose exposure, 

particularly in the PFC and NAC. This study showed that, across brain-regions, those modules 

most strongly correlated to ethanol intake tended to be those enriched with genes known to 
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regulate synaptic transmission. This finding seemed to suggest that long-term gene expression 

changes in neurotransmission regulation, in response to chronic high-dose ethanol exposure, 

underlie the escalation in drinking behavior seen in this rodent model, and, potentially, in alcohol 

abusers. However, this finding was somewhat contradicted by network analysis of gene 

expression in the PFC of a panel of recombinant mice derived from two inbred mouse lines that 

vary significantly in their ethanol response. Transcriptome data from the PFC of BXD RI mice 

revealed that many genes, representing certain biological processes, are significantly regulated 

by ethanol across a variable genetic background. This study also showed that co-expression 

modules identified by WGCNA tended to either correlate strongly to ethanol intake, or were 

significantly overrepresented for ethanol responsive genes across the panel, but not both. This 

finding raises the interesting possibility that, as observed with cross-species network analysis, 

those processes whose gene expression is regulated in response to chronic ethanol exposure are 

conserved. However, this gene expression response may not necessarily regulate ethanol 

drinking behavior. Instead, ethanol consumption may be largely determined by basal differences 

in the expression of certain genes. These differences in gene expression are thought to, in turn, 

lead to variation in certain cellular processes, and that this variation in tissue function is what 

underlies individual differences in both baseline ethanol consumption, and escalation in drinking 

observed after multiple cycles of high-dose ethanol exposure and abstinence [239, 244]. This 

model of the relationship between gene expression and drinking behavior is known as the 

endophenotype hypothesis [478]. 

 
These series of experiments, data generated from them, and network analysis techniques used to 

discover patterns within these data lead to a number of possible routes for future research. One of 

the most obvious routes is to utilize the microarray data from BXD RI mice to further explore the 
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effect of genetic variation on basal and chronic ethanol responsive gene expression. This can be 

done using the genetical-genomics technique of expression QTL mapping [479]. QTL mapping 

on the BXD panel has been used previously at the Miles laboratory, in collaboration with other 

investigators at VCU to identify a polymorphism in the Chrna7 gene that correlates to nicotine 

induced conditioned place preference [480]. BXD mice have also been used to identify a cis-

QTL on a region of mouse chromosome 12 that correlates to anxiolytic-like response to acute 

ethanol exposure, and examination of genes within this region lead to the identification of Ninein 

as a candidate gene in ethanol’s anxiolytic response [481]. Ninein also showed significant 

differences in expression between C57BL/6J and DBA/2J [481]. Similar analyses, using gene 

expression as the behavior, and utilizing the extensive SNP data on the BXD RI panel available 

through the University of Tennessee’s GeneNetwork 

(http://www.genenetwork.org/webqtl/main.py), will likely be the first follow up analysis to 

accompany the differential gene expression, and network analysis results of CIE exposed BXD 

mice. This analysis may lead to the identification of genes with polymorphisms that modulate 

their basal level of expression, and, in turn, influence the amount of ethanol an individual mouse 

will voluntarily consume. This sort of study would be performed with the hypothesis that such 

genetic analysis increases the likelihood that a given gene indeed functions in ethanol behaviors 

such as progressive consumption. Furthermore, polymorphisms in homologous genes in humans 

may represent risk factors for the development of AUD. 

 
Another needed future study on the BXD mice that underwent CIE would be to expand our gene 

expression studies with microarrays to other brain-regions. Along with the analyses outlined in 

Chapters 3-5, previous microarray studies of ethanol responsive gene expression across multiple 

brain-regions have revealed that ethanol exposure affects different brain-regions in different 
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ways [247]. The nucleus accumbens and ventral tegmental area are extensively studied in alcohol 

research because they are central regions in the brain’s reward pathway, and alcohol 

consumption leads to dopamine release in the NAc shell from neurons that originate in the VTA 

[187]. However, olfactory bulb tissue was also collected from BXD RI mice that underwent 5 

cycles of CIE by vapor chamber with 2-bottle choice drinking. WGCNA results from both BXD 

PFC, and consensus modules in mouse and macaque PFC, contained genes within the Robo-Slit 

signaling pathway such as Robo2, Slit3, and Ube3a [469, 482, 483]. The Robo-Slit signaling 

pathway is known to be involved in axonal guidance, particularly in the olfactory tract [462, 468, 

470]. The olfactory bulb and olfactory tract does not directly influence PFC signaling, however, 

it is believed to receive inputs from multiple areas of the neocortex [484-486]. Olfactory regions 

of the brain are not as widely studied as mesocorticolimbic regions in alcohol research, however, 

this brain-region has been studied in relation to the effects of fetal alcohol exposure on sensory 

perception and ethanol intake later in life [487]. In rodent studies, prenatal and neonatal ethanol 

exposure resulted in impaired odor discrimination and reduced olfactory bulb size in adulthood 

[471, 474, 488]. Prenatally exposed rats also consumed significantly more ethanol than matched 

controls in certain studies [489]. Early alcohol exposure has also been shown to cause altered 

alcohol odor response in human infants [472]. Fetal alcohol exposure has also been repeatedly 

documented to increase risk for heavy drinking later in life [489]. The mechanism by which this 

occurs is still under study, however, alcohol olfactory cues have been shown to increase neural 

activity, measured by fMRI, in the NAc and VTA [473], and impairs inhibitory control in high 

drinkers [475]. The influence of olfactory cues on long-term ethanol response, including 

increased intake, may, therefore, be an important area of future study for the identification of 

new therapeutic targets. 
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Another area of potential future study is that of miRNAs as regulators of chronic ethanol 

responsive co-expression networks. The role of miRNAs in ethanol response, and their link to 

behaviors is a somewhat recent area of study. In 2008, Pietrzykowski et al. showed that alcohol 

exposure modulates the expression of the BK potassium channel isoforms via miR-9 in culture, 

and used computer modeling to suggest that this switch in BK isoform population may contribute 

to increased alcohol tolerance [490]. Since this report, gene expression studies in vivo have been 

used to identify miRNAs with altered expression after ethanol exposure in human alcoholics 

[491], and rodent models [294, 492]. In 2016, a study of a Mediterranean population identified a 

polymorphism in the miR-27a sequence that was significantly associated with alcohol 

consumption [493]. In rats, miR-206 has been shown to be upregulated in PFC following 

repeated ethanol exposures, and to increase ethanol self-administration via inhibition of Bdnf 

expression [273]. miR-30a-5p, another miRNA with a complementary binding site in the 3’ URT 

of Bdnf, was also demonstrated to increase voluntary ethanol intake in mice [272]. These studies 

suggest that Bdnf is a target of miRNA in response to ethanol exposure. As discussed in Chapter 

3, our network analysis of gene expression in PFC of C57BL/6J mice after multiple cycles of 

CIE represents one of the first published studies suggesting that Let-7 miRNAs may regulate a 

chronic ethanol responsive co-expression network that includes Bdnf as a hub gene [80]. Initial 

qPCR studies at the Miles laboratory suggest that Let-7c-1 is significantly regulated by repeated 

cycles of CIE in male C57BL/6J mice (Figure 10). One potential future study would involve 

overexpressing Let-7c-1 in mouse PFC by delivery of an AAV plasmid via stereotactic surgery 

[337], and then investigating the effect of this modulation on ethanol consumption with/without 

vapor chamber exposure. The effect of overexpressing Let-7c-1-3p on PFC gene expression 

could then be assessed using microarrays or RNAseq to validate the role of this miRNA in 
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regulating the Bdnf network. Studies such as these would represent important pre-clinical 

assessments of the efficacy of Let-7c-1 as a potential target for the treatment of excessive alcohol 

consumption. 

 

Using a network-based approach, we have outlined an extensive study of transcriptome networks 

that are regulated in response to chronic, intoxicating levels of ethanol delivered by vapor 

chamber. We have explored the time-dependent effect of multiple CIE cycles across multiple 

brain-regions, and looked extensively at the relationship between long-term gene expression and 

ethanol intake, in C57BL/6J mice. These analyses where then expanded to account for the effect 

of genetic background on the gene expression response chronic ethanol in PFC. The conserved 

gene expression response in the PFC was then determined by identifying co-expression networks 

preserved in both mice and rhesus macaques that were exposed to prolonged, high-dose ethanol. 

These studies have led to several new candidate genes, pathways, and even miRNAs as possible 

regulators the gene expression response to ethanol exposure, and may, in time, open up new 

areas to study in the field of alcohol research. 
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Figure 38: Diagram summarizing findings from all gene expression experiments and 
conclusions drawn. 
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