
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2016

Methods for Predicting an Ordinal Response with High-Methods for Predicting an Ordinal Response with High-

Throughput Genomic Data Throughput Genomic Data

Kyle L. Ferber
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

© Kyle L. Ferber

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4585

This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It
has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars
Compass. For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4585&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4585?utm_source=scholarscompass.vcu.edu%2Fetd%2F4585&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

c©Kyle L. Ferber, December 2016

All Rights Reserved.

METHODS FOR PREDICTING AN ORDINAL RESPONSE WITH

HIGH-THROUGHPUT GENOMIC DATA

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University.

by

KYLE L. FERBER

B.S. Mathematics, College of William and Mary, 2012

Director: Kellie J. Archer, Ph.D.,

Professor, Department of Biostatistics

Virginia Commonwewalth University

Richmond, Virginia

December, 2016

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Kellie J. Archer, for being

an incredible mentor to me and for serving as an example of a dedicated and successful

researcher. I have benefited greatly from her intelligence, patience, and teaching and com-

munication skills over the past three and a half years. I also want to thank her for supporting

me as a Research Assistant on her NIH Research Project Grant.

I would also like to thank my committee members for their efforts and for taking the time

to read my thesis and attend regular meetings. Dr. Roy Sabo and Dr. Le Kang provided

great suggestions regarding the statistical aspects of my dissertation, while Dr. Michael

Idowu and Dr. Colleen Jackson-Cook contributed useful insights regarding the clinical and

genomic applications.

I would like to thank Russell Boyle for teaching and emphasizing valuable skills as the

instructor for Biostatistical Consulting (BCL). Through that class, I have become a more

effective communicator of statistical concepts to researchers without a strong quantitative

background. This crucial skill is too often overlooked. Furthermore, my critical thinking

and public speaking skills also grew over the eight semesters of BCL.

I also need to thank my family for their unwavering encouragement and support. The

formidable first year in graduate school would have been much more difficult without weekly

dinners with my brother and sister-in-law. I am also incredibly lucky to have parents that

have done everything in their power to help me succeed. I am certain that I would not be

here without them. Finally, my wife, Laura, has kept me afloat from day one of graduate

school. Despite her own busy schedule, she has firmly committed herself to supporting me

no matter what, and I will always be grateful for that.

ii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . ii

Table of Contents . iii

List of Tables . vi

List of Figures . viii

Abstract . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Analysis of ordinal response data . 2

1.2.1 Ordinal regression . 3

1.2.2 Maximum likelihood estimation . 5

1.3 Microarray experiments . 6

1.4 High-dimensional classification . 7

1.4.1 Least Absolute Shrinkage and Selection Operator 8

1.4.2 Component-wise gradient boosting 9

1.5 Measuring model performance . 11

1.5.1 Prediction . 11

1.5.1.1 10-Fold cross-validation . 12

1.5.2 Feature selection . 13

1.6 Discussion . 13

2 Feature Augmentation via Nonparametrics and Selection 14

2.1 Introduction . 14

2.1.1 Ensemble learners . 14

2.1.2 Feature Augmentation via Nonparametrics and Selection 16

2.1.3 Extending FANS to the ordinal response setting 21

2.2 Approach 1: Aggregating penalized binary response models 23

2.2.1 Predicting new observations . 25

2.2.2 Feature selection . 26

2.3 Approach 2: Proportional Odds Boosting 27

2.3.1 Functional gradient descent . 27

2.3.1.1 Proportional Odds Boosting 29

iii

2.3.2 Fitting the Ordinal FANS model with Proportional Odds Boosting . 31

2.3.2.1 Predicting new observations 33

2.3.2.2 Feature selection . 34

2.4 Simulation study . 34

2.4.1 Simulations with K = 3 . 35

2.4.2 Simulations with K = 4 . 37

2.5 Data analysis . 39

2.6 Results . 43

2.6.1 Simulation results . 43

2.6.2 Data analysis results . 48

2.7 R package . 53

3 Comparative Analysis . 55

3.1 Methods . 55

3.1.1 Weighted k-Nearest Neighbors . 55

3.1.2 Component-Wise Proportional Odds Boosting 56

3.1.3 Generalized Monotone Incremental Forward Stagewise Method . . . 58

3.2 Simulation study . 59

3.3 Data analyses . 60

3.3.1 Progression to cervical cancer . 61

3.3.1.1 Data preprocessing . 61

3.3.2 Progression to malignant melanoma 61

3.3.2.1 Data preprocessing . 62

3.3.3 Pathogenesis of hepatocellular carcinoma 63

3.3.3.1 Data preprocessing . 63

3.4 Results . 64

3.4.1 Simulation study . 64

3.4.1.1 Prediction . 64

3.4.1.2 Feature selection . 67

3.4.2 Data analyses . 70

3.5 Summary . 72

4 Discrete Survival Time Analysis in High-Dimensional Settings 74

4.1 Introduction . 74

4.1.1 Motivating example: extended phase of the AML DREAM Challenge 77

4.1.2 Definitions . 78

4.1.3 Low-dimensional discrete time survival analysis 79

4.2 Forward continuation ratio model . 81

4.2.1 Penalized and unpenalized predictors 81

4.2.2 Likelihood . 82

4.2.3 Model fitting in high-dimensional settings 85

iv

4.2.4 Performance measures . 87

4.2.5 Simulation . 88

4.2.6 Data analysis . 90

4.2.6.1 Exploratory data analysis . 90

4.2.6.2 Analysis . 92

4.3 Results . 92

4.3.1 Simulation results . 92

4.3.2 Data analysis results . 96

4.4 Summary . 100

5 Conclusions and future work . 102

5.1 Conclusions . 102

5.2 Future work . 104

Appendix A Code for Chapter 1 . 106

A.1 Ordinal FANS, approach 1 . 106

A.2 Ordinal FANS, approach 2 . 121

Appendix B Code for Chapter 3 . 155

B.1 Extended phase of the AML DREAM Challenge analysis 155

References . 167

Vita . 176

v

LIST OF TABLES

Table Page

1 Median classification error (%) on an independent test set with standard

errors for the simulation study. Different values of ρ were used for each example. 20

2 Median test set performance for models fit using the Ordinal FANS binary

aggregation approach and the Ordinal FANS boosting approach. Results are

presented for L = 10 FANS iterations. 47

3 Median sensitivity and specificity for models fit using the Ordinal FANS bi-

nary aggregation approach and the Ordinal FANS boosting approach. Results

are presented for L = 1 FANS iteration. 50

4 Genes deemed important in the classification of normal, HSIL, and cervical

carcinoma samples by the Ordinal FANS models fit to GSE7803. The genes

listed were included in either the model fit using the boosting approach or

in the model fit using the binary aggregation approach (or in both models).

A check mark denotes that the gene was included in the model fit using the

given approach. One Affymetrix probe id could not be matched to a unique

gene symbol and is denoted by <NA>. 53

5 Median test set misclassification rates and class-specific misclassification rates

(in parentheses) by method. 65

6 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and

class-specific misclassification rates for the classification of normal (n = 10),

HSIL (n = 7), and cervical carcinoma (n = 21) samples from GSE7803. 71

7 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and

class-specific misclassification rates for the classification of normal (n = 7),

nevus (n = 18), and melanoma (n = 45) samples from GSE3189. 72

8 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and

class-specific misclassification rates for the classification of normal (n = 20),

HCV-cirrhotic (n = 16), and HCV-HCC (n = 20) liver tissue samples from

GSE18081. 72

9 Distribution of T (% censored within interval) for the Extended Phase of the

AML DREAM Challenge data. 90

vi

10 Percent censored within each interval in the AML dataset, by RAS mutation status. 91

11 Extended Phase of the AML DREAM Challenge univariate feature selection

for the unpenalized subset. 93

12 Number of nonzero coefficient estimates among the 261 penalized predictors

when using the entire AML dataset. The GMIFS iteration of the selected

model is shown in parentheses. 100

vii

LIST OF FIGURES

Figure Page

1 A cumulative logit model with a single predictor and an ordinal outcome with

K = 3 classes. 4

2 The sample correlation matrix of the features simulated to be important to

class separation for the linear decision boundary simulation with K = 3 classes. . 37

3 Among observations in class 1, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 3 classes. 38

4 Among observations in class 2, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 3 classes. 38

5 Among observations in class 3, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 3 classes. 39

6 The sample correlation matrix of the features simulated to be important to

class separation for the linear decision boundary simulation with K = 4 classes. . 40

7 Among observations in class 1, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 4 classes. 40

8 Among observations in class 2, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 4 classes. 41

9 Among observations in class 3, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 4 classes. 41

10 Among observations in class 4, the sample correlation matrix of the fea-

tures simulated to be important to class separation for the nonlinear decision

boundary simulation with K = 4 classes. 42

viii

11 Test set Somers’ DXY for models fit using the binary aggregation approach

to the Ordinal FANS algorithm. As the number of classifiers in the FANS

ensemble (L) increases, the predictive performance improves monotonically. . . . 44

12 Test set Somers’ DXY for models fit using the boosting approach to the Ordi-

nal FANS algorithm. As the number of classifiers in the FANS ensemble (L)

increases, the predictive performance improves monotonically. 45

13 Test set Somers’ DXY for models fit using the Ordinal FANS binary aggrega-

tion approach (blue) and the Ordinal FANS boosting approach (red). Results

are presented for L = 10 FANS iterations. 45

14 Sensitivity for models fit using the Ordinal FANS binary aggregation approach

(blue) and the Ordinal FANS boosting approach (red). Results are presented

for L = 1 FANS iteration. 48

15 Specificity for models fit using the Ordinal FANS binary aggregation approach

(blue) and the Ordinal FANS boosting approach (red). Results are presented

for L = 1 FANS iteration. 49

16 10-fold cross-validation estimates of Somers’ DXY for the classification of nor-

mal, HSIL, and cervical carcinoma samples from GSE7803. Results are shown

for the P/O boosting approach (red) and binary model aggregation approach

(blue). 49

17 10-fold cross-validation estimates of the misclassification rate for the clas-

sification of normal, HSIL, and cervical carcinoma samples from GSE7803.

Results are shown for the P/O boosting approach (red) and binary model

aggregation approach (blue). 51

18 10-fold cross-validation estimates of the class-specific misclassification rates

for the classification of normal (red), HSIL (green), and cervical carcinoma

(blue) samples from GSE7803. Results are shown for the P/O boosting ap-

proach (red) and binary model aggregation approach (blue). 51

19 Simulation results: Distribution of test set Somers’ DXY estimates for varying

K, n, and decision boundaries for each method in the comparative analysis. . . . 64

20 Simulation results: Distribution of sensitivity for varying K, n, and decision

boundaries. 68

21 Simulation results: Distribution of specificity for varying K, n, and decision

boundaries. 69

ix

22 Proportion missing among predictors with at least one missing value in the

AML dataset. 91

23 Proportion missing among samples with at least one missing value in the

AML dataset. 91

24 Validation set estimates of Somer’s DXY from the simulation study for models

fit using each of the four assumptions and for different proportions of censor-

ing. Results from both the AIC-selected (red) and BIC-selected (blue) models

are shown. 95

25 The distribution of sensitivity estimates from the simulation study for models

fit using each of the four assumptions and for different proportions of censor-

ing. Results from both the AIC-selected (red) and BIC-selected (blue) models

are shown. 97

26 The distribution of specificity estimates from the simulation study for models

fit using each of the four assumptions and for different proportions of censor-

ing. Results from both the AIC-selected (red) and BIC-selected (blue) models

are shown. 98

27 Leave-one-out cross-validation estimates of Somer’s DXY ± one standard error

for models fit using the AML data and for each of the four assumptions.

Results from both the AIC-selected (red) and BIC-selected (blue) models are

shown. 99

x

Abstract

METHODS FOR PREDICTING AN ORDINAL RESPONSE WITH
HIGH-THROUGHPUT GENOMIC DATA

By Kyle L. Ferber

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2016.

Major Director: Kellie J. Archer, Ph.D.,
Professor, Department of Biostatistics

Multigenic diagnostic and prognostic tools can be derived for ordinal clinical outcomes

using data from high-throughput genomic experiments. For example, one may wish to

classify tissue samples as healthy, pre-malignant, or malignant using data from a microarray

experiment. Here, the goal is twofold: to develop an accurate classifier of the ordinal outcome

and to select features that play an important role in the tissue’s progression from a healthy

to a malignant state.

A challenge in this setting is that the number of predictors is much greater than the

sample size, so traditional ordinal response modeling techniques must be exchanged for

more specialized approaches. Existing methods perform well on some datasets, but there is

room for improvement in terms of variable selection and predictive accuracy. Therefore, we

extended an impressive binary response modeling technique, Feature Augmentation via Non-

parametrics and Selection (FANS), to the ordinal response setting and developed software for

implementing the extension. Through simulation studies and analyses of high-throughput

genomic datasets, we showed that our Ordinal FANS method is sensitive and specific when

discriminating between important and unimportant features from the high-dimensional fea-

ture space and is highly competitive in terms of predictive accuracy.

Discrete survival time is another example of an ordinal response. For many illnesses and

chronic conditions, it is impossible to record the precise date and time of disease onset or

relapse. Further, the HIPPA Privacy Rule prevents recording of protected health information

which includes all elements of dates (except year), so in the absence of a “limited dataset”,

date of diagnosis or date of death are not available for calculating overall survival. Therefore,

increasingly survival is collected as a discrete event time. We previously demonstrated that

a penalized forward continuation ratio model can be fit to discrete survival time data in

high-dimensional settings, but this model does not incorporate censoring information. Thus,

we developed a method that is suitable for modeling high-dimensional discrete survival time

data while accommodating censoring information and assessed its performance by conducting

a simulation study and by predicting the discrete survival times of acute myeloid leukemia

patients using a high-dimensional dataset.

CHAPTER 1

INTRODUCTION

1.1 Motivation

Physicians are faced with difficult medical decisions on a daily basis. Oncologists, for

instance, need to personalize treatment plans for their patients. If the desired results are

not obtained after a given amount of time, they may need to consider switching therapies.

These choices are made based on expert medical knowledge, intuition, and past experiences,

and each decision they make will affect their patients’ survival times. Consequently, two

independent, equally qualified physicians may make different decisions about what is best

for the well-being of a patient. A more objective method for making certain medical decisions

is to use data collected on past patients to build a predictive model that can be applied to

future patients.

Consider the case of a breast cancer patient with three treatment options. The physician

will choose one of the three options, the patient will be given that treatment, and then the

physician will assess how well the treatment worked based on characteristics of the residual

disease. The success of treatment can be measured using the residual cancer burden (RCB)

index, an ordinal measure (RCB-I < RCB-II < RCB-III) that takes into account primary

tumor bed dimensions, cellularity fraction of invasive cancer, size of largest metastasis, and

the number of positive lymph nodes [1]. Alternatively, data on patients who have received

each of the three treatments could be used to build a regression model. Then, the patient

would be given whichever treatment the model predicted will result in the best outcome. In

this situation, neither the physician nor the data-driven model are going to make the best

decision 100% of the time. Ayers (2007) argues this by stating “In the end, super crunching

is not a substitute for intuition, but rather a complement [2].” By super crunching, he is

1

referring to the practice of using large amounts of data to make informed decisions. He

then goes on to say, “Traditional experts make better decisions when they are provided

with the results of statistical prediction. Those who cling to the authority of traditional

experts tend to embrace the idea of combining the two forms of ‘knowledge’ by giving the

experts statistical support [2].” Our goal in developing methods for fitting predictive ordinal

response models is not to replace a physicians decision making, but rather to support it with

additional information. The methods we developed utilize high-dimensional genomic data

to predict patient outcome, whereas physicians typically make decisions based on standards

of care that are often developed by clinical knowledge, not rigorous analyses of experimental

data.

Predictive ordinal response models could also help in simpler situations, such as de-

termining the grade of a particular tumor, which is a relatively subjective procedure done

by examining the microscopic cell appearance. Tumor grade is taken into account when

deciding on a treatment regimen, so it is important to make an accurate assessment. Gene

expression can be taken into account through a predictive model to improve the accuracy of

a pathologist’s diagnosis [3].

1.2 Analysis of ordinal response data

An ordinal response is unique in that there is an intrinsic ordering to the possible values

of the response, but the distance between these possible values, called classes, is unknown.

For instance, the four stages of cancer are ordered (stage I is less severe than stage II; stage

II is less severe than stage III, etc.), but we cannot objectively measure the quantitative

difference in severity between each of the four stages. Thus, ordinal variables are somewhat

of a hybrid between a nominal categorical variable and a continuous variable. Ordinal re-

sponses are ubiquitous in biomedical data. For example, in cancer research, discrete survival

time, tumor grade, and the degree of regional lymph node involvement are all ordinal mea-

surements. Furthermore, the severity of many conditions, such as heart failure, Alzheimer’s

2

disease, and chronic kidney disease, are defined by an ordinal stage of disease [4, 5, 6].

1.2.1 Ordinal regression

Ignoring any aspect of the ordinal response results in a loss of information. For instance,

modeling an ordinal outcome using multinomial logistic regression, given below, ignores the

ordering of the classes.

log
P (Yi = k|xi)
P (Yi = K|xi)

= β0k + xiβk, k = 1, ..., K − 1

Given p predictors, this model estimates a different set of p coefficients for each of the K− 1

logistic regression models, and as a result, it is difficult to interpret and is not parsimonious.

Another approach for modeling an ordinal response is to assign each class an integer

rank (i.e. 1, 2, ..., K) and use traditional linear regression to model the response. However,

this method makes the unrealistic assumption that the distances between adjacent ordinal

classes are equal. Furthermore, assigning integer values to the ordinal classes is arbitrary. For

example, one could instead assign even integers to the ordinal classes (2, 4, ..., 2K). Finally,

a linear regression model assumes that Y |X is normally distributed. This assumption will

clearly fail when the response is ordinal because the response is discrete and predicted values

are not restricted to be between 1 and K.

Proportional odds models are a class of models that are appropriate for modeling an

ordinal outcome. Models in this class only estimate p coefficient estimates by taking advan-

tage of the ordered structure and making a simple assumption. For example, for observation

i = 1, 2, ..., n, the cumulative logit model is given by:

log
P (Yi > k|xi)
P (Yi ≤ k|xi)

= αk + xiβ, k = 1, ..., K − 1

In the estimation procedure, a constraint is placed on the class-specific intercepts, or thresh-

olds, such that α1 < α2 < ... < αK−1, which preserves the positivity of the class-specific

probability estimates. The thresholds are the only outcome-specific parameters in the model,

3

Fig. 1. A cumulative logit model with a single predictor and an ordinal outcome with K = 3
classes.

so K − 1 parallel logit models are produced. Further, this model is a type of proportional

odds model because the cumulative odds ratio is proportional to the difference between two

vectors of predictors. The cumulative odds ratio, which is defined as the odds of Y > k

given X = x1 compared to the odds of Y > k given X = x2, is given by:

P (Y >k|x1)
P (Y≤k|x1)

P (Y >k|x2)
P (Y≤k|x2)

=
exp(αk + x1β)

exp(αk + x2β)

= exp(αk + x1β − αk − x2β)

= exp((x1 − x2)β)

which does not depend on k. The proportional odds assumption is displayed by the parallel

logistic curves in Figure 1.

Other logit-link proportional odds models include:

• The adjacent category model:

log
P (Yi = k + 1|xi)
P (Yi = k|xi)

= αk + xiβ, k = 1, ..., K − 1

• The backward continuation ratio model:

log
P (Yi = k|Yi ≤ k,xi)

P (Yi < k|Yi ≤ k,xi)
= αk + xiβ, k = 1, ..., K − 1

4

• The forward continuation ratio model:

log
P (Yi = k|Yi ≥ k,xi)

P (Yi > k|Yi ≥ k,xi)
= αk + xiβ, k = 1, ..., K − 1

Furthermore, alternative link functions can be used for these models. For example, instead

of the logit, the cumulative link model can utilize a:

• Probit link: Φ−1(P (Yi>k|xi)
P (Yi≤k|xi)

) = αk+xiβ, where Φ is the cumulative distribution function

(CDF) of the standard normal distribution

• Complimentary log-log (cloglog) link: log(-log(1− P (Yi > k|xi))) = αk + xiβ

1.2.2 Maximum likelihood estimation

The length-n ordinal response vector y can be reformatted as an n x K response matrix,

Y as follows,

yik =

 1 if observation i belongs to class k

0 otherwise

Then the log-likelihood can be expressed as [7]

L =
n∑
i=1

K∑
k=1

yiklog[P (Yi = k|xi)]

Pratt (1981) and Burridge (1981) showed that the log-likelihoods of the cumulative link

models are concave, so a unique global maximum exists [8, 9]. However, a closed-form

solution does not exist, so an iterative algorithm is needed to find the maximum likelihood

(ML) estimates of the parameters, β and α1, ..., αK−1. One such method that is commonly

used in low-dimensional problems (i.e. p < n) is the Newton-Raphson algorithm. Let the

vector of all parameter estimates be denoted by θ = {α1, ..., αK−1, β1, ..., βp}. The gradient

of L, which consists of the partial derivatives of L with respect to each parameter, is given

by

g(θ) = (
∂L

∂θ1
,
∂L

∂θ2
, ...,

∂L

∂θp+K−1
)

5

and the Hessian, the (p + K − 1) x (p + K − 1) matrix of second-order partial derivatives,

is denoted by

H(θ) =

((
∂2L

∂θa∂θb

))
a,b∈{1,...,p+K−1}

Let the iteration number be denoted by s. The Newton-Raphson algorithm begins by spec-

ifying starting values for the parameters that are to be estimated, θ[1]. The update at the

next iteration and each of the subsequent iterations is

θ[s+1] = θ[s] − (H(θ[s]))−1g(θ[s])

The algorithm continues until convergence, which occurs when the difference between suc-

cessive log-likelihoods, L(θ[s+1])− L(θ[s]), is negligible.

1.3 Microarray experiments

The central dogma of molecular biology states that the genetic information encoded in

the DNA within the nucleus of each cell is transcribed into messenger RNA (mRNA), and

the mRNA is then translated into proteins in the cell cytoplasm. Genes are the regions of

DNA that encode instructions to produce proteins, and proteins are “used to support the

cell structure, to break down chemicals, to build new chemicals, to transport items, and

to regulate production [10].” Put simply, genes dictate which proteins and how much of

the proteins should be synthesized, and proteins control cell function. Thus, along with

environmental factors, genes determine the characteristics, or phenotypes, of cells and as a

result, the entire organism [11]. Furthermore, aberrant cell function can lead to a host of

diseases, so interest lies in detecting which genes are involved in causing the problem.

We can measure the activity of a gene (called gene expression) by quantifying the amount of

mRNA that is transcribed from that particular gene. A microarray does this for thousands

of genes simultaneously. There are many assays developed by different companies, but we

analyzed data from two of the most common platforms, Affymetrix GeneChips and Illumina

BeadChips. The technology involved in the two arrays is quite different, but the goal is

6

the same: to quantify the expression of the tens of thousands of genes present on the chip.

Each gene is represented on the array by a set of short sequences of nucleotides called

oligonucleotides. Each chip is used to measure a single patient’s gene expression. Thus, a

typical experiment involves n microarrays and the goal is to detect differences in expression

between groups with different phenotypes (e.g. cancer patients and healthy patients).

There are a multitude of statistical challenges that arise from microarray experiments. The

data are inherently noisy because there are many sources of obscuring variation, including

from array fabrication and image processing [11]. However, we will be focusing on the

statistical challenges that arise once the data has been cleaned and normalized: namely the

fact that there are far more predictors than samples in a typical experiment, i.e. p >> n.

1.4 High-dimensional classification

Traditional methods for fitting classification and regression models require the number

of subjects, n, to be larger than the number of predictors, p, and they assume that the

predictors are independent. However, in high-throughput genomic experiments, we cannot

safely assume independence of the predictors (often called features in this field) and p >> n,

which results in a host of complexities. First, the design matrix will not be full-rank, which

eliminates the ability to find a stable, unique solution. Second, with a large number of

predictors relative to the sample size, a subset of the predictors is likely to exhibit collinearity,

which will lead to unstable parameter estimates. Furthermore, genomic data is typically

sparse, meaning out of the thousands of features, only a small proportion are associated

with the response, which complicates the process of discovering significant features. Model

building tools such as forward and backward stepwise selection are not feasible given the

huge number of predictors.

7

1.4.1 Least Absolute Shrinkage and Selection Operator

Recently, penalization (also referred to as regularization) has stood out as an effective

method to combat the issues that come with high-dimensional data. There are several

popular penalization methods, but the defining characteristic of them all is that they shrink

the absolute coefficient estimates towards 0. As a result, bias is introduced into the parameter

estimates in exchange for a reduction in variance. In cases where model parsimony and

interpretability are important, the least absolute shrinkage and selection operator (LASSO)

penalization method is effective as it shrinks parameter estimates deemed unimportant to

be exactly zero [12]. LASSO models are fit by maximizing the likelihood of the data minus

a penalty term, as given below:

β̂ = argmax
β

(
L(β|y,x)− λ

P∑
p=1

|βp|

)

The tuning parameter, λ, controls the balance between bias and variance. Traditional max-

imum likelihood estimation occurs when λ = 0, but as previously mentioned, when p > n,

there is no unique solution. Therefore, the parameter estimates will have minimal bias but

will be highly unstable (high variance). As λ increases, the parameter estimates shrink to-

wards 0. As this happens, more bias is added to the estimates, but the variance decreases.

As λ increases, the number of nonzero coefficient estimates decreases, which leads to a more

stable and interpretable model.

Hastie et. al showed that the Generalized Monotone Incremental Forward Stagewise

(GMIFS) algorithm solves for the LASSO solution in a penalized logistic regression model

[13]. The algorithm proceeds as follows:

1. Enlarge the predictor space as X̃ = [X : −X] , where X represents the standardized

predictors.

2. For step s=0, initialize the components of β̂
(s)

as β̂1 = β̂2 = ... = β̂P = β̂P+1 = ... =

β̂2P = 0.

8

3. Find m = argmin
j

-δlogL/δβj at the current estimate β̂
(s)

.

4. Update β̂
(s+1)
m = β̂

(s)
m + ε, where ε is a small step size, such as 0.001.

5. Repeat steps 3 to 4 many times.

The design matrix is expanded with its negated version to avoid the computationally bur-

densome step of calculating the second derivative, which would have been needed to find the

step direction in step 4. The final coefficient estimates are given by

β̂j = β̂j − β̂j+P , j = 1, ..., p

The GMIFS method was extended by Archer et al. for fitting logit, probit, and complimen-

tary log-log link ordinal response models (cumulative, adjacent category, stereotype, forward

continuation ratio, and backward continuation ratio) to high-throughput genomic data[7].

We discuss this method in detail in Chapter 4.

1.4.2 Component-wise gradient boosting

Another method for fitting a logistic regression model in high-dimensional data settings

is called componentwise gradient boosting [14]. According to Hastie et. al, boosting is “one

of the most powerful learning ideas introduced in the last twenty years.”[15] It is one method

in a class of ensemble schemes that combines multiple weak function estimates to form one

aggregated estimator. The aim of boosting is to estimate a function, f ∗(·), that minimizes

the risk:

R = E[L(Y, f(X))],

where L is the loss function chosen dependent on the structure of the response[14]. Gradient

boosting searches for the solution by following the steepest path down the gradient of the

empirical risk function, 1
n

∑n
i=1 L(yi, f(xi)) in function space. Gradient boosting can be

applied to many different estimators including regression trees, generalized linear models

(GLMs), and Cox proportional hazards models, but we limit our discussion to GLMs. Most

9

often the loss function is the negative log-likelihood of the response distribution and f is

assumed to belong to a parameterized class of functions, f(x,P). The component-wise

gradient boosting algorithm for GLMs is as follow:

1. Center the predictors and set m = 0.

2. Initialize β̂
[0]

= 0, where β̂
[0]

is the vector of initial parameter estimates of length p.

3. Initialize the function estimate as f̂
[0]

= argmin
c

∑n
i=1 L(yi, c), where f̂ is a vector of

length n.

4. Increase m by 1 (m represents the number of iterations).

5. Compute the negative gradient of the loss function with respect to f and, for each

observation, evaluate it at the estimate of the previous iteration, f̂
[m−1]

(xi):

U [m] =
(
U

[m]
i

)
i=1,...,n

=

(
− δ

δf
L(yi, f)|

f=f̂
[m−1]

(xi)

)
i=1,...,n

6. Fit each predictor, xj , separately to the negative gradient vector U [m] using a “base

learner,” h(xj ; βj), j = 1, ..., p. A base learner in this context is a simple linear

model, and the coefficient in each model is estimated using least squares. Each of the

p models will result in a different estimate of U [m].

7. Select the model that fits the negative gradient best as determined by the residual sum

of squares criterion. Let Û
[m]

represent the vector of predicted values for that model

and assign the estimated coefficient of that model to β̂s.

8. Update the current function estimate and parameter estimate:

f̂
[m]

= f̂
[m−1]

+ νÛ
[m]

β̂
[m]

= β̂
[m−1]

+ νβ̂s

Note that ν is a pre-specified small step length factor between 0 and 1. Also, β̂
[m]

is

the vector of coefficient estimates, while β̂s is a single coefficient estimate.

10

Repeat steps 4-8 until m = mstop, where mstop represents the stopping iteration which is

generally chosen by cross-validation or an information criterion. Furthermore, the choice

of ν is not highly influential; any small value (e.g. ν = 0.1) is fine[14]. A cumulative

logit ordinal response model can be fit using an extension of component-wise gradient called

proportional odds boosting [16]. We will discuss this method in Chapter 2.

1.5 Measuring model performance

We are interested in assessing the models’ ability to accurately predict the outcome of

new observations as well as their ability to discriminate between important and unimportant

features in the high-dimensional feature space.

1.5.1 Prediction

To assess prediction in a classification setting with a binary outcome, the misclassifica-

tion rate, which is defined as

#
(Y 6= Ŷ)

n

is often utilized. The misclassification rate is a useful and simple measure. However, in the

ordinal response setting, the severity of the misclassifications is lost. For instance, the same

penalty is applied if an observation in class 1 is classified to class 2 or to class 4. Therefore, a

better method is to examine the misclassification rate separately for each class. The resulting

K measures are called the class-specific misclassification rates.

Another useful metric examines the association between the observed and predicted

values in terms of discordance and concordance. Let ya and ŷa be the observed and the

predicted ordinal response variables, respectively, for subject a. Given a pair of subjects,

if the subject that has a larger observed value also has the larger predicted value, the pair

of subjects is concordant. If the subject that has a larger observed value has the smaller

predicted value, the pair of subjects is discordant. Now, let C represent the number of

concordant pairs in a sample and D represent the number of discordant pairs. Define TY

11

as the number of pairs in which the two subjects had the same observed response value

(i.e. they were tied with respect to y). Somer’s D is an asymmetric measure of association,

meaning we cannot treat the two variables interchangeably. We used Somer’s DXY , which

measures how well X serves as a predictor of Y [17]. Here, X represents the predicted value,

or ŷa, and Y represents the observed outcome, ya. The sample version of Somer’s DXY is

given by:

DXY =
C −D

n(n− 1)/2− TY
,

where the numerator represents the difference in the number of concordant and discordant

pairs, and the denominator represents the total number of pairs that are untied on Y . DXY

ranges from -1 to 1, where DXY = −1 indicates a perfect negative association, DXY = 1

indicates a perfect positive association, and DXY = 0 indicates no association.

1.5.1.1 10-Fold cross-validation

One way of assessing performance is to fit a model to the entire dataset, predict the

outcome of the observations in the same dataset, and then estimate the metrics described

previously using the predictions. This method gives overly optimistic results and does not

estimate how well the model’s performance will generalize to independent data. One way of

overcoming these shortcomings is to use 10-fold cross-validation, which proceeds as follows:

1. Split the data evenly into 10 equal partitions.

2. For m = 1, 2, ..., 10:

(a) Fit a model using all partitions except partition m.

(b) Predict the outcome of observations in partition m using the fitted model.

(c) Estimate the performance measure(s) using the predicted classes of observations

in partition m.

3. Let nm denote the sample size of partition m, and let n denote the total sample size.

Also, let ŵm denote the performance metric estimated using the predicted classes of

12

observations in partition m (e.g. Somers’ DXY). Estimate the 10-fold cross-validation

estimate of the metric, ŵ, as

ŵ =
10∑
m=1

nm
n
ŵm

1.5.2 Feature selection

Let the features that are truly associated with the ordinal response be deemed important,

and we call the features that are not associated with the outcome unimportant. To assess

feature selection in simulations, where we know which features are important and which are

unimportant, we estimate

1. Sensitivity = Number of important features selected
Total number of important features

2. Specificity = Number of unimportant features not selected
Total number of unimportant features

In gene expression data analyses when we do not know which features are truly impor-

tant and which are truly unimportant, we can examine the features selected by the model

in the literature in an attempt to validate model findings.

1.6 Discussion

In this chapter, we have provided the necessary overview of ordinal regression as well as

methods for fitting penalized classification and regression models. In Chapter 2, we introduce

the method we developed, Ordinal Feature Augmentation via Nonparametrics and Selection

(FANS). This method is compared to other methods suitable for fitting high-dimensional

ordinal response models in Chapter 3. To that end, we examine prediction accuracy as well

as feature selection in a simulation study and several gene expression data analyses. Next, in

Chapter 4, a novel method for performing discrete time survival analysis in high-dimensions

is described. Finally, we conclude with a discussion of the methods developed as well as

future work in Chapter 5.

13

CHAPTER 2

FEATURE AUGMENTATION VIA NONPARAMETRICS AND SELECTION

2.1 Introduction

2.1.1 Ensemble learners

In a supervised learning problem with a discrete outcome, the goal is to use a training

sample of known outcomes and predictors, {yi,xi}n1 , to build a classifier that accurately

predicts the outcome of a future observation. An ensemble learner is composed of two

or more classifiers, with the idea that the combination of classifiers should produce more

accurate predictions than any of the individual models. However, the constituents must

be both accurate and diverse in order for an ensemble to be more accurate than any of the

individual classifiers [18]. Here, an accurate classifier is defined as one with a misclassification

rate lower than that of random guessing, and two classifiers are said to be diverse if they

make different errors on new data [19]. In the ordinal response setting, the misclassification

rate of random guessing is equal to K−1
K

, where K denotes the number of classes in the

outcome.

There are several methods for constructing an ensemble learner that can be applied to

a variety of classification and regression algorithms [19]. One method forms an ensemble of

classifiers using manipulated versions of the training data. Breiman (1994) created one of

the first ensemble schemes in this way [20]. The method, called bootstrap aggregation, or

bagging for short, generates multiple decision trees using bootstrap replicates of the training

data. To build a decision tree, all observations begin together in one set, called a root node.

The observations are then partitioned, or split, into two distinct sets, called nodes. Each of

these nodes is then further split into two nodes. This process continues until some stopping

criteria is met. At each step, to determine the optimal split, we need a set of binary questions

14

which are defined such that [21]:

1. Each split depends on only one predictor.

2. For ordered (ordinal and continuous) predictors, the question takes the form, “Is x ≤

c?”, where c is in the set of observed values for that predictor.

3. For nominal predictors, the binary question takes the form, “Is x ∈ A?, where A is a

subset of the observed values for that predictor.

Bagging begins by sampling n observations with replacement from the training data of

size n to create a bootstrap replicate. Then, a classifier is built using the bootstrap replicate.

This procedure of sampling with replacement from the training data and then building

a classifier using the bootstrap replicate is repeated many times. When the outcome is

discrete, the classifiers are aggregated by plurality voting. That is, each classifier returns

a prediction for a new observation, and the class with the most “votes” is the predicted

class [20]. The performance of the ensemble generally improves as the number of constituent

classifiers increases. However, at a certain point, the performance stabilizes and adding

more classifiers does not help much. With bagging, Breiman succinctly states that “what

one loses...is a simple and interpretable structure. What one gains is increased accuracy.”[20]

Manipulating the input features is another method for constructing an ensemble [19].

For instance, Cherkauer (1996) trained an ensemble of 32 models based on 8 different sub-

sets of the 119 available features and 4 different tuning parameters [22]. This method for

constructing an ensemble only works well when the predictors suffer from collinearity [19].

A third technique for building an ensemble learner is to manipulate the outcome variable.

A method called error-correcting output coding randomly partitions the K classes of a

discrete (nominal) outcome into two subsets, A and B [23]. The training data are re-coded

so that the outcome for all observations whose response is in A is coded as 0 and the outcome

for any observations whose response is in B is coded as 1. Then, a classifier is built using

the binary outcome. The steps of partitioning the outcome classes, re-coding the multi-class

15

outcome for each observation in the training data, and then fitting a binary response model

is repeated L times. For a new observation, each of the L classifiers will predict whether the

outcome is in A or B. Each time a classifier predicts the outcome is in A, the classes in that

subset receive a vote, and likewise for subset B. Then, the class with the most votes is the

predicted class on the original multi-class scale [23].

Finally, a fourth general method for building an ensemble of classifiers is to inject

randomness into the learning algorithm [19]. Random forest is one of the most common

ensemble schemes and it improves on bagging by injecting randomness into the tree building

procedure [24]. At each step in the tree-building procedure, instead of considering all features

when searching for the best split, random forest considers a random subset of the features.

This helps to reduce the correlation among the classifiers (trees) that are aggregated, which

drives down the variance of the ensemble learner.

2.1.2 Feature Augmentation via Nonparametrics and Selection

Feature Augmentation via Nonparametrics and Selection (FANS) is a two-class modeling

procedure that has shown promising results in high-dimensional learning problems [25] by

building an ensemble of classifiers in a unique way. Suppose we have n feature-outcome

pairs in a training set, T = {(xi, yi)}ni , where yi ∈ {0, 1} and xi ∈ Rp. We begin with some

definitions. Let g(x) = P (X = x|Y = 0), f(x) = P (X = x|Y = 1), and π = P (Y = 1).

The Bayes classifier, which minimizes the probability of misclassifying an observation, assigns

observations to class 1 if P (Y = 1|X) > 0.5 and to class 0 otherwise. Thus, the Bayes-

optimal decision boundary is defined as

{x : P (Y = 1|x) = P (Y = 0|x)}

⇒ {x :
πf(x)

πf(x) + (1− π)g(x)
=

(1− π)g(x)

πf(x) + (1− π)g(x)
}

⇒ {x :
πf(x)

(1− π)g(x)
= 1}

16

If we assume equal priors, i.e. P (Y = 1) = P (Y = 0), then the Bayes decision boundary

becomes

{x :
f(x)

g(x)
= 1} = {x : log

f(x)

g(x)
= 0}.

Thus, given a single feature, x, the best univariable classifier of y is [25]

ŷ =

 1 if log
(
f(x)
g(x)

)
> 0

0 if log
(
f(x)
g(x)

)
< 0

The Näıve Bayes classifier assumes the p features within each class are independent,

so the joint distribution of features in the two classes becomes f(x) =
∏p

j=1 fj(xj) and

g(x) =
∏p

j=1 gj(xj). Consequently, the nonparametric Näıve Bayes decision boundary is{
x :

p∑
j=1

log
fj(xj)

gj(xj)
= 0

}
.

However, this independence assumption is too strong in most cases. For example, in

a gene expression microarray experiment, each feature is designed to interrogate a gene (or

part of a gene), and we know that genes interact in biological networks. Hence, non-zero

correlations exist among some sets of genes. Thus, assuming the features from a microarray

experiment are independent would be ill-advised. The FANS method attempts to account

for dependence among the features by adding optimized weights to the Näıve Bayes classifier

to form the following decision boundary [25]:

FANSD =

{
x : β0 +

p∑
j=1

βj log
fj(xj)

gj(xj)
= 0

}
.

The method combines the best univariable predictors in a linear and additive manner

in an attempt to create a powerful multivariable classifier. Note that the decision boundary

based on the original features is nonlinear, which makes the classifier more flexible. However,

since FANSD is linear in the coefficients, we can rename the transformed variables (i.e. zj =

log
fj(xj)

gj(xj)
) and apply any binary linear classification procedure to estimate the coefficients.

When p > n, the model is overparameterized, so penalization/regularization techniques are

17

required to fit the model. These methods shrink the coefficient estimates towards zero, which

adds bias in exchange for a reduction in variance, leading to improved model performance

[15]. The FANS classifier uses penalized logistic regression [25] and is fit using the following

algorithm that utilizes data splitting and prediction averaging to build an ensemble learner

[25]:

1. Randomly partition the data into two sets, (D1, D
c
1), analogous to splitting data into

a training set and a test set.

2. Using D1, estimate fj(xj) = P (Xj = xj|Y = 1) and gj(xj) = P (Xj = xj|Y = 0), j =

1, ..., p by kernel density estimation. Denote the estimates as f̂ = (f̂1, ..., f̂p) and

ĝ = (ĝ1, ..., ĝp).

3. Use the data in Dc
1 to calculate the matrix of transformed variables, Z, where

zij = log

[
f̂j(xij)

ĝj(xij)

]
, xij ∈ Dc

1

4. Using Z and y ∈ Dc
1, fit an L1 penalized logistic regression model.

5. Repeat steps 1-4 L times to obtain (D1, D
c
1), ..., (DL, D

c
L). However, the partitions in

step 1 are formed differently for odd and even numbered iterations. For odd numbered

iterations, the training set is randomly partitioned. For even numbered iterations, the

roles of the partitions in the preceding odd numbered iteration are reversed. That is,

the first partition estimates the marginal densities for odd numbered iterations, but

for even numbered iterations, the second partition estimates the marginal densities. In

general, (D2l, D
c
2l) = (Dc

2l−1, D2l−1) for l = 1, ..., bL
2
c, where (D2l−1, D

c
2l−1) is formed by

randomly partitioning T and (D2l, D
c
2l) is formed by reversing the roles of D2l−1 and

Dc
2l−1.

In order to predict the outcome of a new observation, xi = (xi1, ..., xip), we must use

the densities and models estimated from the learning set. For each of the L partitions, we

18

obtain a different estimate of f and g, and a different fitted model. Thus, for each of the

l = 1, 2, ..., L partitions, we can use f̂ l and ĝl to transform xi and obtain zil = (zi1l, ..., zipl),

where

zijl = log

[
f̂jl(xij)

ĝjl(xij)

]
, j = 1, ..., p.

So, we end up with L vectors of transformed features, one from each iteration of the

FANS algorithm. Each one can be input into the corresponding fitted model from step 4

in order to obtain a predicted probability, pil = P̂ (Yi = 1|zil). The average of these L

predicted probabilities, p̄i = 1
L

∑L
l=1 pil, is used to classify the observation according to the

Bayes classifier: if p̄i > 0.5, predict class 1; otherwise, predict class 0 [25].

In step one, the roles of the data used for the density estimation and model fitting are

reversed from one partition to the next in order to ensure a balanced assignment of data

for the two tasks [25]. Partitioning the data multiple (L) times and averaging the predicted

probabilities makes efficient use of the data and ensures the procedure is robust to arbitrary

assignment of data to the two tasks [25].

Several simulation examples were reported in the FANS manuscript [25]. The first three

simulations generated the features in each class from a multivariate Gaussian distribution.

The first let the two classes be linearly separable with an autoregressive (1) correlation

structure among the features. The second simulation was the same as the first except the

correlation structure was changed to be compound symmetric. The third generated the

two classes to be separable by a nonlinear decision boundary with a compound symmetric

correlation structure. Finally, the fourth simulation used a nonlinear decision boundary but

generated the features using a uniform distribution. The FANS method performed as well or

better than the competing methods including penalized logistic regression (PLR), penalized

additive logistic regression (penGAM), Näıve Bayes (NB), and support vector machines

(SVM) (Table 1) [25]. The most competitive method to FANS in terms of misclassification

error was penGAM. However, the median computation time for the simulations ranged from

3.4 to 6.6 seconds for FANS and 243.7 to 4811.9 seconds for penGAM, so FANS seemed to

19

Table 1. Median classification error (%) on an independent test set with standard errors for
the simulation study. Different values of ρ were used for each example.

Simulation (ρ) FANS PLR penGAM NB SVM
AR (0) 6.8(1.1) 6.5(1.2) 6.6(1.1) 11.2(1.4) 13.2(1.5)

AR (0.5) 16.5(1.7) 15.9(1.7) 16.9(1.6) 20.6(1.7) 22.5(1.8)
CS (0.5) 4.2(0.9) 2.5(0.6) 3.7(0.9) 43.5(11.1) 5.3(1.1)
CS (0.9) 3.1(1.1) 0.0(0.0) 0.2(1.4) 46.8(8.8) 0.0(0.1)

Nonlinear CS (0) 0.0(0.0) 50.0(1.3) 0.0(0.1) 50.4(2.2) 31.8(2.4)
Nonlinear CS (0.5) 3.4(0.7) 50.0(1.3) 3.7(0.8) 50.0(2.1) 19.8(2.4)

Nonlinear Unif 0.0(0.0) 50.0(10.7) 0.0(0.0) 41.0(1.1) 0.0(0.0)

be much more computationally efficient [25].

The authors also compared the predictive performance of FANS and the other methods

using a lung cancer gene expression dataset. There were p = 12, 533 features and n = 181

observations, where the number of observations in the training set, ntrain, was 32, and the

number of observations in the test set, ntest, was 149. The aim was to predict whether

observations in the test set were adenocarcinoma (ADCA) or mesothelioma [25]. With

L = 20 partitions, FANS obtained a 0% misclassification rate, while the other methods

failed to do so [25].

In order to independently verify the predictive performance of FANS, we coded the

method in the R programming environment [26] and compared the performance of models fit

using FANS, penalized logistic regression, and Näıve Bayes. We applied the three methods

to a publicly available lung cancer gene expression dataset, GSE4115, where there were

n = 163 observations after removing samples without a definitive cancer diagnosis and

p = 22, 215 features [27]. We split the data into a training set and an independent test

set. Given the fact that the training set is partitioned into two sets in the first step of the

FANS algorithm, we wanted to ensure there was enough data in the first set to estimate the

marginal densities. Therefore, we assigned 2
3

of the data to the training set (ntrain = 136)

and the remaining 1
3

to the test set (ntest = 27). For the FANS model, we set L = 2, 10,

and 20. The aim was to predict whether subjects had lung cancer or not [27]. The model fit

using FANS with L = 20 achieved a 0% misclassification rate on the independent test set,

20

while the misclassication rates for the penalized logistic regression and Näıve Bayes models

were 25.9% and 18.5%, respectively. Therefore, we also identified FANS as a competitive

algorithm in the binary response case. With L = 2 and L = 10, the FANS misclassication

rates were 14.8% and 3.7% respectively, suggesting that the data splitting and prediction

averaging scheme in the FANS algorithm is effective. For L = 2, 10, and 20, the runtime

for FANS was 31.29 minutes, 114.63 minutes, and 312.09 minutes, respectively. Meanwhile,

the runtimes for Näıve Bayes and penalized logistic regression were 0.96 minutes and 0.293

minutes, respectively. However, we did not apply parallel programming techniques when we

coded the FANS algorithm, which would have significantly reduced the runtime.

2.1.3 Extending FANS to the ordinal response setting

In the binary response setting, FANS models the class-conditional marginal density

ratios,

zj = log
P (Xj = xj|Y = 1)

P (Xj = xj|Y = 0)
= log

fj(xj)

gj(xj)
.

Because there are K > 2 ordinal outcome classes, the augmented features must be redefined

in the FANS algorithm to accommodate all K class-conditional density estimates. One

approach to create the ordinal augmented features is to consider the decision boundaries

between adjacent classes, which would result in K − 1 augmented features for each original

feature:

z
(1)
j = log

[
P̂ (Xj = xj|Y = 1)

P̂ (Xj = xj|Y = 2)

]

z
(2)
j = log

[
P̂ (Xj = xj|Y = 2)

P̂ (Xj = xj|Y = 3)

]
...

z
(K−1)
j = log

[
P̂ (Xj = xj|Y = K − 1)

P̂ (Xj = xj|Y = K)

]
.

21

This approach reduces to the binary FANS method when K = 2. However, one issue

is that the augmented features do not use the whole training set. Furthermore, the density

estimates may be poor if there is not a sufficient number of observations in each class. Thus,

the augmented features will be defined in a way that avoids these issues:

z
(1)
j = log

[
P̂ (Xj = xj|Y = 1)

P̂ (Xj = xj|Y > 1)

]
= log

[
f̂
(1)
j (xj)

ĝ
(1)
j (xj)

]

z
(2)
j = log

[
P̂ (Xj = xj|Y ≤ 2)

P̂ (Xj = xj|Y > 2)

]
= log

[
f̂
(2)
j (xj)

ĝ
(2)
j (xj)

]
...

z
(K−1)
j = log

[
P̂ (Xj = xj|Y ≤ K − 1)

P̂ (Xj = xj|Y = K)

]
= log

[
f̂
(K−1)
j (xj)

ĝ
(K−1)
j (xj)

]
.

(2.1)

This way, each augmented feature uses the entire dataset, and the only densities that

are class-specific (i.e. conditional on only one class) are f̂
(1)
j and ĝ

(K−1)
j . Furthermore, this

approach also reduces to the binary FANS method when K = 2.

Now, because there are K − 1 augmented features for each original feature, we must

discover the best way to model the augmented features. One method is to include all K − 1

in the model, resulting in (K − 1) ∗ p input variables for the Ordinal FANS model. A

typical Affymetrix HG-U133A microarray contains around 22,215 features, and if K = 4,

we would need to model 22, 215 ∗ 3 = 66, 645 augmented features. This approach would

greatly increase the computational time of fitting the model and may reduce the predictive

accuracy of the model by increasing the sparsity of the solution. Another option would be

to perform principal components analysis (PCA) on each of the p sets of K − 1 augmented

features. We could then fit a model with the first principal component (PC) from each

analysis. However, if the first PC in each of the p PCAs does not explain the vast majority

of the total variance, we would lose significant information by excluding the other PC’s.

Therefore, we implemented two approaches:

22

1. Fit a penalized binary response model for each of the K − 1 augmented features and

aggregate the results using the technique proposed in the Ordinal Real AdaBoost

algorithm [28]. We refer to this approach as the binary aggregation approach.

2. Fit a cumulative logit model using proportional odds boosting [16], where the K − 1

augmented features for each predictor will either all be included or all be excluded

from the fitted model. We refer to this approach as the boosting approach.

2.2 Approach 1: Aggregating penalized binary

response models

Define the matrix, Z(k), which contains the elements z
(k)
ij for subjects i ∈ {1, 2, ..., n}

and features j ∈ {1, 2, ..., p}. In other words, Z(k) is the design matrix for augmented feature

k, and z
(k)
i is a 1 x p row in Z(k). We will fit the following K − 1 binary response models

using Z(1), ...,Z(K−1):

log

[
P (Y = 1|z(1))
P (Y > 1|z(1))

]
= β

(1)
0 + z(1)β(1)

log

[
P (Y ≤ 2|z(2))
P (Y > 2|z(2))

]
= β

(2)
0 + z(2)β(2)

...

log

[
P (Y ≤ K − 1|z(K−1))
P (Y = K|z(K−1))

]
= β

(K−1)
0 + z(K−1)β(K−1)

(2.2)

Each model is fit using L1-penalized logistic regression, which estimates the penalized

solution given by

β̂ = argmax
β

(
L(β|y, z)− λ

P∑
p=1

|βp|

)
The resulting solution is sparse, meaning that the model fitting algorithm shrinks the coef-

ficient estimates of features deemed unimportant to zero resulting in a parsimonious set of

features with non-zero coefficient estimates. Thus, model fitting and feature selection are

performed simultaneously. The tuning parameter, λ, controls the amount of shrinkage and is

either chosen by cross-validation or by minimizing an information criterion (e.g. AIC, BIC).

23

As λ increases, the number of parameter estimates that will be shrunk to zero also increases.

The log-likelihood, L, of the kth logistic regression model is given by

L(β) =
n∑
i=1

{I(Yi ≤ k)log(P (Yi ≤ k)|z(k)) + I(Yi > k)log(P (Yi > k)|z(k))}

From equation (2.2),

P (Yi ≤ k)|z(k)i) =
exp{z(k)i β(k)}

1 + exp{z(k)i β(k)}

P (Yi > k)|z(k)i) =
1

1 + exp{z(k)i β(k)}

The binary response model fit using Z(k) will predict whether y ≤ k or y > k. For a

given subject i, define [28]

p̂
(k)
1i = p̂

(k)
2i = ... = p̂

(k)
ki = P̂ (Yi ≤ k|z(k)i)

p̂
(k)
(k+1)i = p̂

(k)
(k+2)i = ... = p̂

(k)
Ki = 1− P̂ (Yi ≤ k|z(k)i).

For a given subject i, each of the K− 1 binary classifiers returns a vector, resulting in K− 1

length-K vectors:

(p̂
(1)
1i , p̂

(1)
2i , ..., p̂

(1)
Ki)

(p̂
(2)
1i , p̂

(2)
2i , ..., p̂

(2)
Ki)

...

(p̂
(K−1)
1i , p̂

(K−1)
2i , ..., p̂

(K−1)
Ki)

(2.3)

We can then sum the vectors from the binary classifiers fit using Z(1), ...,Z(K−1) to form an

aggregated vector of scores. The class with the largest score is the predicted class for that

subject [28]:

ŷi = argmax
m

K−1∑
k=1

p̂
(k)
mi (2.4)

We can incorporate this method into the FANS algorithm as follows:

24

1. Randomly partition the n feature-outcome pairs into two sets, (D1, D
c
1).

2. Using D1, estimate f̂
(1)
j (xj), ..., f̂

(K−1)
j (xj) and ĝ

(1)
j (xj), ..., ĝ

(K−1)
j (xj) for j = 1, ..., p

using kernel density estimation.

3. Evaluate the density estimates at the observed values in Dc
1, and calculate the matrices

of augmented features, Z(1), ...,Z(K−1), where z
(k)
ij = log

[
f̂
(k)
j (xij)

ĝ
(k)
j (xij)

]
∈ Z(k) for xij ∈

Dc
1, i = 1, ..., n and j = 1, ..., p and k = 1, ..., K − 1.

4. Use y ∈ Dc
1 to fit the K − 1 binary classifiers defined in equation (2.2) using L1-

penalized logistic regression. The tuning parameter, λ is chosen by minimizing the

AIC.

5. Reverse the roles of D1 and Dc
1 and repeat steps 2 - 4. Let D2 = Dc

1 and Dc
2 = D1 .

6. Repeat steps 1 - 6 L
2

times, which results in L ∗ (K − 1) penalized logistic regression

models based on the L different partitions, (D1, D
c
1), ..., (DL, D

c
L).

2.2.1 Predicting new observations

In order to predict the outcome of a new observation, x = (x1, x2, ..., xp), we must use

the densities and models estimated from the learning set. For each of the L partitions, we

obtain different kernel density estimates and as a result, different fitted models. Thus, for

each of the L partitions, we can use the kernel density estimates to transform x and obtain

the K−1 length-p vectors of augmented features. Then, the augmented features are plugged

into the respective fitted binary classifiers. Finally, the L ∗ (K − 1) binary response models

are aggregated to arrive at the class prediction on the ordinal scales.

Explicitly, for a new observation, x = (x1, x2, ..., xp),

1. Using the kernel densities estimated with D1, calculate f̂
(1)
j (xj), ..., f̂

(K−1)
j (xj) and

ĝ
(1)
j (xj), ..., ĝ

(K−1)
j (xj) for j = 1, ..., p.

25

2. Form the K − 1 vectors augmented features,

z(1) = log

[
f̂
(1)
j (xj)

ĝ
(1)
j (xj)

]
, j = 1, 2, ..., p

z(2) = log

[
f̂
(2)
j (xj)

ĝ
(2)
j (xj)

]
, j = 1, 2, ..., p

...

z(K−1) = log

[
f̂
(K−1)
j (xj)

ĝ
(K−1)
j (xj)

]
, j = 1, 2, ..., p

3. Plug each of the length-p vectors of augmented features into the respective fitted

penalized logistic regression models in equation (2.2) and obtain the estimates of

P (Y ≤ k|z(k)), k = 1, 2, ..., K − 1.

4. Form the vectors in equation (2.3).

5. Repeat 1-4 for (D2, D
c
2), ..., (DL, D

c
L).

6. Sum the L ∗ (K − 1) vectors of scores. The element in the vector of sums with the

largest value is the predicted value on the original ordinal scale,

ŷ = argmax
m

L∑
l=1

K−1∑
k=1

p̂(k)m

2.2.2 Feature selection

In addition to developing an accurate predictive model, we are interested in discriminat-

ing between important and unimportant features from the high-dimensional set of predictors.

This can be accomplished by running the FANS algorithm once, i.e. by setting L = 1. In

this approach, the K − 1 L1-penalized logistic regression models in equation (2.2) are fit,

and each model produces a parsimonious set of features with non-zero coefficient estimates.

The union of these sets is the final set of features selected.

26

2.3 Approach 2: Proportional Odds Boosting

2.3.1 Functional gradient descent

In the following setting, let y represent an outcome variable and let x = {x1, ..., xp}

represent a vector of p predictors. Recall that in a predictive learning problem, the goal is

to use a training sample of known outcomes and predictors, {yi,xi}n1 , to estimate a function

that maps x to y. The true, unknown function is denoted F ∗(x) and the estimate is F̂ (x).

Ideally, the function would be estimated by minimizing the expected value of a loss function

(chosen depending on the distribution of y), Ey[L(y, F (x))|x] [29]. Minimizing the expected

loss (also known as the risk) in function space requires treating the function F (x) evaluated

at each x as a parameter. However, there is an infinite number of such parameters in Rp.

If we instead attempt to simplify the estimation by using data, we can evaluate F at each

xi in the training set. Unfortunately, this approach breaks down because the expected loss

cannot be estimated accurately using a finite dataset, and even if it could, estimates of F ∗(x)

outside of the training set could not be obtained [29]. To remedy this situation, the function

can be assumed to take a parametric form, F (x;P), where P = {P1, P2, ...} is a finite set

of parameters [29]. In this case, the function estimation problem can be simplified to one of

parameter estimation. Boosting assumes an additive form for the function, given by

F (x; {νm,βm}M1) =
M∑
m=1

νmh(x;βm).

In this form, the base learner, h(x;β), is a simple function of the predictors (or a subset of

the predictors), parameterized by β, and ν is a weight, or step size, for h. Futhermore, M

is the number of base learners that are combined to form the estimated function. The goal

then becomes to estimate the parameters that minimize the empirical risk,

argmin
{νm,βm}M1

n∑
i=1

L

(
yi,

M∑
m=1

νmh(xi;βm)

)
.

27

In many problems, including when p >> n, this is infeasible, so a “greedy stagewise” ap-

proach is taken [29]. For m = 1, 2, ...,M ,

1. (νm,βm) = argmin
ν,β

∑n
i=1 L (yi, Fm−1(xi) + νh(xi;β))

2. Fm(x) = Fm−1(x) + νmh(x;βm)

Here, νmh(x;βm) is called a step, where νm is the step size, and the vector h(x;βm)

is the step direction. The goal is to take the largest possible step in the direction of the

minimum of the empirical risk. By construction, the best steepest-descent step direction is

the negative gradient evaluated at the prior step’s function estimates,

−gm(xi) = −
[

∂

∂F (xi)
L(yi, F (xi))

]
F (xi)=Fm−1(xi)

for x1, ...,xn, which is given by gm(x) = {−gm(xi)}ni=1. However, this gradient is only

defined at x1, ...,xn [29]. To generalize to other points outside the training set, we can

choose the base learner, h(xi;βm) that is most correlated with gm(x). This corresponds

to replacing the difficult two-step function estimation problem given above with a simple

least squares estimation problem to choose the base learner, h, among a set of candidate

base learners. Specifically, the negative gradient vector is fit using each base learner, and h

is set to the base learner with the smallest residual sum of squares (RSS). Then, Freidman

states that we can use a line search to estimate νm [29], but Bühlmann and Hothorn have

suggested that the additional line search is unnecessary [14]. Using empirical evidence, they

determined that one can simply use a single small constant step size ν, and further, the

choice of ν is unimportant, as long as it is sufficiently small (such as 0.1) [14]. Thus, the

generic boosting algorithm, without the line search for step size, is given by [29, 14]:

1. Specify a set of candidate base learners. These can be, for example, regression trees

or linear models with a subset of the p predictors. Herein we focus our attention on

linear models. The simplest setting specifies p base learners, where each base learner

is a simple linear regression model with one of the p predictors as the sole input. For

28

example, the base learner for the jth predictor would be defined as

gm(x) = xjβ + ε

2. Let m = 0 and initialize the vector of the estimated function evaluated at the n data

points as F0(x) = argmin
c

∑n
i=1 L(yi, c). That is, each element in the length-n vector

is initialized to the constant that minimizes the empirical risk.

3. Increase m by one and compute the negative gradient vector, gm(x).

4. Fit the negative gradient vector using each base learner. An estimate of the negative

gradient vector is obtained from each fitted model. Denote the estimate from the base

learner with the smallest RSS as ĝm(x).

5. Update the function estimate, Fm(x) = Fm−1(x) + νĝm(x;β).

6. Iterate steps 3-5 M times, where M is a tuning parameter that is generally chosen by

cross-validation [30].

Thus, the final function estimate takes the form F (x) = F0(x) +
∑M

m=1 νĝm(x).

2.3.1.1 Proportional Odds Boosting

A cumulative logit proportional odds model for ordinal response data is given by

P (Y ≤ k|x) =
1

1 + exp(F (x)− θk)
, k = 1, ..., K − 1,

where F (x) is the prediction function defined in the previous section and {θ1, ..., θK−1} are

class-specific intercepts, or thresholds, that are constrained to be increasing from θ1 to θK

and are estimated simultaneously with F . The model can be expressed equivalently as

log

(
P (Y > k|x)

P (Y ≤ k|x)

)
= F (x)− θk, k = 1, ..., K − 1.

29

Using the given model, the class-specific probabilities can be estimated as:

P (Y = k|x) = πk =

1

1+exp(F (x)−θ1) for k = 1

1
1+exp(F (x)−θk)

− 1
1+exp(F (x)−θk−1)

for 1 < k < K

1− 1
1+exp(F (x)−θK−1)

for k = K,

(2.5)

which are used to specify the log-likelihood [16]:

l(F,θ) = −I(Y = 1) ∗ log[1 + exp(F (x)− θ1)]

+
K−1∑
k=2

I(Y = k) ∗ log
[
(1 + exp(F (x)− θk))−1 − (1 + exp(F (x)− θk−1))−1

]
+I(Y = K) ∗ log

[
1− (1 + exp(f − θK−1))−1

]
Schmid et al. extended the generic boosting algorithm to the ordinal response setting,

using the negative log-likelihood as the loss function, L, which resulted in the proportional

odds (P/O) boosting algorithm [16]:

1. Let F̂m and θ̂m denote the vectors of estimates, (F̂ (x1), ..., F̂ (xn)) and (θ̂1, ..., θ̂K−1)

at step m. Set m = 0 and initialize F̂0 and θ̂0.

2. Specify the base learners.

3. Increase m by 1 and compute the negative gradient of the loss with respect to F and, for

each observation, evaluate it at the estimates of the previous iteration, F̂m−1(xi), θ̂m−1:

gm(x) = (−gm(xi))i=1,...,n =

(
− δ

δF
L(yi, F,θ)|F=F̂m−1(xi),θ=θ̂m−1

)
i=1,...,n

4. Fit each of the base learners to the negative gradient vector gm(x). Each model results

in a different estimate of gm(x).

5. Select the model that fit the negative gradient best as determined by the R2 goodness-

of-fit criterion. Let ĝm(x) represent the vector of fitted values for that model.

30

6. Update the current function estimate :

F̂m = F̂m−1 + νĝm(x)

Note that ν is a pre-specified small step length factor between 0 and 1 and is not highly

influential as long as it is sufficiently small (e.g. ν = 0.1) [14].

7. Treating the function estimate as fixed, estimate θm by minimizing the empirical risk,

1
n

∑n
i=1 L(yi, F̂m,θ).

8. Repeat steps 3-7 until m = M , where M represents the stopping iteration chosen by

cross-validation.

The final function estimate is given by

F̂M =
M∑
m=0

F̂m

=F̂0 +
M∑
m=1

νĝm(x)

2.3.2 Fitting the Ordinal FANS model with Proportional Odds Boosting

We can model the augmented features in the Ordinal FANS algorithm by specifying the

base learners in step 2 of the P/O boosting algorithm. Specifically, for each of the p original

features, there will be a base learner defined as a linear model of the K − 1 augmented

features. Before fitting the model, we center the augmented features because we do not

include an intercept term [30]. Recall the definition of the augmented features in equation

(2.1). The base learners will be:

zjβj + ε, j = 1, 2, ..., p (2.6)

where zj = (z
(1)
j , z

(2)
j , ..., z

(K−1)
j) and βj = (β1j, β2j, ..., β(K−1)j).

Thus, in step 4 of the P/O boosting algorithm, we fit each base learner to the negative

31

gradient vector calculated in step 3:

gm(z) =z1β
[m]
1 + ε

gm(z) =z2β
[m]
2 + ε

...

gm(z) =zpβ
[m]
p + ε

and we set ĝm(z) to the fitted values from the base learner with the largest R2. As a result,

the coefficient estimates for that base learner are implicitly updated in step 6 of the P/O

boosting algorithm by a factor of ν. For instance, assume that in step m, the base learner

employing the augmented features for the second predictor fit the negative gradient best.

That is,

ĝm(z) = z2β̂
[m]

2 .

Then the coefficient estimates in that model are updated as

β̂2 = β̂
[m−1]
2 + νβ̂

[m]

2

We can incorporate P/O boosting into the FANS algorithm as follows:

1. Randomly partition the n feature-outcome pairs into two sets, (D1, D
c
1).

2. Using D1, estimate f̂
(1)
j (xj), ..., f̂

(K−1)
j (xj) and ĝ

(1)
j (xj), ..., ĝ

(K−1)
j (xj) for j = 1, ..., p

using kernel density estimation.

3. Evaluate the density estimates at the observed values in Dc
1, and calculate the aug-

mented features where z
(k)
ij = log

[
f̂
(k)
j (xij)

ĝ
(k)
j (xij)

]
for xij ∈ Dc

1, i = 1, ..., n and j = 1, ..., p

and k = 1, ..., K − 1.

4. Use y ∈ Dc
1 to fit a proportional odds model with P/O boosting, using the base learners

specified in equation (2.6).

5. Reverse the roles of D1 and Dc
1 and repeat steps 2 - 4. Let D2 = Dc

1 and Dc
2 = D1 .

32

6. Repeat steps 1 - 5 L
2

times to form (D1, D
c
1), ..., (DL, D

c
L).

7. Repeat steps 1 - 5 L
2

times, which results in L fitted proportional odds based on the L

different partitions, (D1, D
c
1), ..., (DL, D

c
L).

2.3.2.1 Predicting new observations

To predict a new observation, x = (x1, x2, ..., xp),

1. Using the kernel densities estimated with D1, calculate f̂
(1)
j (xj), ..., f̂

(K−1)
j (xj) and

ĝ
(1)
j (xj), ..., ĝ

(K−1)
j (xj) for j = 1, ..., p.

2. For each of the p original features, form the K − 1 augmented features,

z1 = log

[
f̂
(k)
1 (x1)

ĝ
(k)
1 (x1)

]
, k = 1, 2, ..., K − 1

z2 = log

[
f̂
(k)
2 (x2)

ĝ
(k)
2 (x2)

]
, k = 1, 2, ..., K − 1

...

zp = log

[
f̂
(k)
p (xp)

ĝ
(k)
p (xp)

]
, k = 1, 2, ..., K − 1

3. Calculate
∑p

j=1 zjβ̂
[M]

j − θk, k = 1, 2, ..., K − 1 and estimate the class-specific prob-

abilities using equation (2.5).

4. Repeat 1-4 for (D2, D
c
2), ..., (DL, D

c
L).

5. Average the class-specific probability estimates calculated from the L partitions of the

33

training set,

π̄1 =
1

L

L∑
l=1

P̂ (Y = 1|z1, ...,zp)l

π̄2 =
1

L

L∑
l=1

P̂ (Y = 2|z1, ...,zp)l

...

π̄K =
1

L

L∑
l=1

P̂ (Y = K|z1, ...,zp)l

6. Predict the class with the maximum class-specific probability estimate,

ŷ = argmax(π̄1, π̄2, ..., π̄K)

2.3.2.2 Feature selection

In addition to developing an accurate predictive model, we are interested in discriminat-

ing between important and unimportant features from the high-dimensional set of predictors.

This can be accomplished by runnning the FANS algorithm once, i.e. by setting L = 1. Each

feature in the dataset is represented by a single base learner, so the base learners that were

selected for updating during the model fitting procedure at least once correspond to the

important features.

2.4 Simulation study

We are interested in assessing the models’ ability to accurately predict the outcome

of new observations as well as their ability to select important features from the high-

dimensional feature space. Thus, we examined:

1. Somers’ DXY , a measure of association between two ordinal variables. In this case, the

ordinal variables are the observed and predicted values.

2. Misclassification rate = # (Y 6=Ŷ)
n

34

3. Class-specific misclassification rates

4. Sensitivity = Number of important features selected
Total number of important features

5. Specificity = Number of unimportant features not selected
Total number of unimportant features

To assess predictive performance, observations were split into a training set and a test

set in each simulation. The models were fit on the training set, and predictions were made

on the test set. However, to assess feature selection, the entire dataset was used to fit the

models.

We examined the effects on performance of sample size (n ∈ {50, 100, 200, 300}), the

number of classes in the outcome (K ∈ {3, 4}), and the number of FANS iterations (L ∈

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}). Furthermore, because FANS fits a nonlinear decision boundary,

we simulated both a nonlinear and a linear decision boundary to assess how well the method

adapts to each situation. The number of features, p, was set to 1,000 in all simulations, and

publicly-available gene expression datasets were used as templates for simulating the data.

2.4.1 Simulations with K = 3

For simulations with K = 3, we downloaded the raw CEL files for GSE7390 [31] from

the Gene Expression Omnibus (GEO) [32]. The dataset consisted of p = 22, 283 gene

expression values for n = 198 frozen tumor samples of systemically untreated node-negative

breast cancer patients. However, two subjects with missing outcome variables were removed

leaving n = 196. To preprocess the data, we performed robust multi-array average (RMA)

normalization [33] and then removed the control probe sets as well as probe sets called absent

in all samples by the MAS5 detection call algorithm [34].

Next, we fit a univariable cumulative logit model for each of the remaining 18,887

features to tumor grade (grade 1 < grade 2 < grade 3). There were 30 grade 1 samples, 83

grade 2 samples, and 83 grade 3 samples. The resulting p-values were adjusted for multiple

comparisons using the Benjamini-Yekutieli procedure [35]. In order to restrict the calculation

35

of class-conditional means to coefficients that were in the same direction, we only examined

features with a negative coefficient estimate. Of the 18,887 features, 1,537 had a negative

coefficient estimate and an adjusted p-value less than 0.05.

Linear decision boundary For the simulations with a linear decision boundary, we calcu-

lated the class-conditional means of the 10 features with the smallest adjusted p-values. Let

the class-conditional means be denoted by x̄1, x̄2, x̄3. Next, we estimated the mean of the

features with an adjusted p-value greater than 0.05, denoted by w̄. The sample covariance

matrix, S, was calculated for 10 randomly sampled significant features and 990 randomly

sampled nonsignificant features. Finally, using these estimates, the n
K

observations in each

class were simulated from a multivariate normal distribution:

MVN(µ = ((x̄k)10, w̄990),Σ = S) , k ∈ {1, 2, 3}

If n was not divisible by K then the remainder of observations were simulated in class K.

For example, when n = 50, 16 observations were simulated in classes 1 and 2, while 18

observations were simulated in class 3.

The means of the first 10 features differ between classes, while the means of the remaining

990 features do not. Thus, ideally, the models should select the first 10 features because

they are important for class separation but none of the other 990. Figure 2 shows the

sample correlation matrix for the important features. Several features were highly correlated,

which makes feature selection more difficult because correlated features contain redundant

information. Thus, only one of the features is needed to predict the outcome. However, we

would like to select all important features, regardless of their correlation, in order to learn

more about the underlying biology and interaction between genes.

Nonlinear decision boundary For the simulations with a nonlinear decision boundary, we

calculated the class-conditional means of all 1,537 significant features with a negative co-

efficient estimate. Let these means be represented by x̄1, x̄2, x̄3. Also, let the mean of the

36

Fig. 2. The sample correlation matrix of the features simulated to be important to class
separation for the linear decision boundary simulation with K = 3 classes.

features with an adjusted p-value greater than 0.05 be denoted by w̄. Next, we estimated

the class-conditional sample covariance matrices, S1, S2, S3. Using these estimates, the ob-

servations in each class were generated from a multivariate normal distribution:

MVN(µ = ((x̄k)10, w̄990),Σ = Sk) , k ∈ {1, 2, 3}

Thus, in both the linear and nonlinear settings, the first 10 features were simulated to be

important to class separation while the remaining 990 were simulated to be unimportant.

Figures 3, 4, and 5 show that the features simulated to differ between classes are highly

correlated within each class.

2.4.2 Simulations with K = 4

For simulations with K = 4, we used the RMA-normalized gene expression data in the

ALL R package [36], which consisted of p = 12, 626 features measured on n = 128 acute

lymphoblastic leukemia (ALL) patients. The dataset consisted of 95 B-cell and 33 T-cell

leukemia patients. We limited our simulation to B-cell patients, and we examined tumor

grade (B1 < B2 < B3 < B4) as the ordinal outcome. The class-specific sample sizes were

37

Fig. 3. Among observations in class 1, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 3 classes.

Fig. 4. Among observations in class 2, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 3 classes.

38

Fig. 5. Among observations in class 3, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 3 classes.

19, 36, 23, and 12, respectively.

The data were simulated analogously to the simulations with 3 classes in the outcome.

As in the previous simulation design, the features whose expression levels differed across

classes were highly correlated both overall (Figure 6) and within each class (Figures 7, 8, 9,

and 10).

2.5 Data analysis

We also compared the performance of the two Ordinal FANS approaches on a gene

expression dataset. We downloaded the raw CEL files for GSE7803 [37] from the Gene

Expression Omnibus (GEO) [32]. The dataset contained samples from normal squamous

cervical epitheilia samples, high-grade squamous intraepithelial lesions (HSIL), and invasive

squamous cell carcinomas of the cervix. After removing three test samples, 10 normal, 7

HSIL, and 21 carcinoma samples remained. The investigators used Affymetrix HG-U133A

arrays to measure gene expression on 22,283 probe sets from the n = 38 samples, and we

used the RMA method to normalize and obtain probe set expression summaries on these

39

Fig. 6. The sample correlation matrix of the features simulated to be important to class
separation for the linear decision boundary simulation with K = 4 classes.

Fig. 7. Among observations in class 1, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 4 classes.

40

Fig. 8. Among observations in class 2, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 4 classes.

Fig. 9. Among observations in class 3, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation with
K = 4 classes.

41

Fig. 10. Among observations in class 4, the sample correlation matrix of the features simulated
to be important to class separation for the nonlinear decision boundary simulation
with K = 4 classes.

features. After removing the control probe sets as well as probe sets that were not called

present in any of the samples by the MAS5 detection call algorithm [38], p = 13, 667 features

remained.

We fit models using both Ordinal FANS approaches and evaluated their performances

predicting the tissue classification (normal < HSIL < carcinoma) using the 10-fold cross-

validation estimates of:

• Somers’ DXY

• Misclassification rate

• Class-specific misclassification rate

We also fit a model to the entire dataset using each approach and examined the features with

non-zero coefficient estimates. These features are deemed important by the model fitting

procedure and should be investigated further regarding their role in the progression from

normal squamous cervical epithelia to HSIL to carcinoma.

42

2.6 Results

2.6.1 Simulation results

First, we examine performance in terms of Somers’ DXY . As the number of FANS

iterations (i.e. L, the number of ordinal response classifiers that are averaged in the FANS

ensemble) increases, the predictive performance improves monotonically for both the binary

aggregation approach (Figure 11) and the boosting approach (Figure 12).

The effects of L, n, K, and the linearity of the true decision boundary on the performance

in terms of the test set estimate of Somers’ DXY was similar for both approaches. First,

we examine the simulations when the true decision boundary is nonlinear. As the number

of ordinal response classifiers in the FANS ensemble increases, the association between the

observed and predicted values increases and the variability of the Somers’ DXY estimates

decreases. Thus, the model becomes more precise and more accurate. We suspected that

the Ordinal FANS method would perform much better on larger samples sizes because of the

data splitting and class-conditional kernel density estimation that each reduce the sample

size for important aspects of the model fitting procedure. This is certainly the case with a

nonlinear decision boundary. The improvement in the median as well as the variability of

Somers’ DXY from a sample size of 50 to a sample size of 200 is substantial. From n = 200

to n = 300, the performance improves only slightly. Also, we expected that the number of

classes in the outcome, K, would affect the performance. Holding the training set sample

sizes equal, the within-class sample sizes are larger for smaller values of K, which results

in more data to estimate the class-conditional kernel densities. The simulations confirmed

our intuition that increasing K would deteriorate performance, especially for sample sizes

greater than 50.

Next, we examine the simulations with a true linear decision boundary. When K = 3,

the improvement obtained by building an ensemble is only in terms of the variance for sample

sizes of 50 and 100, and no improvement is achieved for sample sizes of 200 and 300. Also,

43

Fig. 11. Test set Somers’ DXY for models fit using the binary aggregation approach to the
Ordinal FANS algorithm. As the number of classifiers in the FANS ensemble (L)
increases, the predictive performance improves monotonically.

surprisingly, the sample size doesn’t seem to have much of an effect on the median Somers’

DXY when K = 3. The only improvement seems to come as a reduction in variance. With

4 classes in the outcome, as L increases, the performance improves slightly in terms of the

median Somers’ DXY but not in terms of the variance. An increase in sample size improves

both the median and variance.

Both approaches seemed to benefit from more FANS iterations. Therefore, we compared

the predictive performance of the two approaches with L = 10 FANS iterations (Figure 13

and Table 2). The boosting approach seemed to adapt better to a linear decision boundary

better, outperforming the binary aggregation approach across the board. However, when the

true decision boundary was nonlinear, the binary aggregation approach performed better,

especially for larger sample sizes.

The overall misclassification rate conveyed the same message as Somers’ DXY (Table 2).

However, the class-specific misclassification rates in Table 2 show that in simulations with

44

Fig. 12. Test set Somers’ DXY for models fit using the boosting approach to the Ordinal
FANS algorithm. As the number of classifiers in the FANS ensemble (L) increases,
the predictive performance improves monotonically.

Fig. 13. Test set Somers’ DXY for models fit using the Ordinal FANS binary aggregation ap-
proach (blue) and the Ordinal FANS boosting approach (red). Results are presented
for L = 10 FANS iterations.

45

K = 3 ordinal classes, errors were least common among observations in the third class. In

contrast, the models had the most difficulty classifying observations in the second ordinal

class. For simulations with K = 4 ordinal classes, the misclassification rates were lower for

observations in the first and fourth classes than for observations in the second and third

classes.

Overall, the proportional odds boosting approach seems to perform feature selection

better than the binary aggregation approach as measured by sensitivity and specificity with

L = 1 FANS iteration (Figures 14 and 15 and Table 3). With K = 3 classes, the boosting

approach is more specific but slightly less sensitive than the binary aggregation approach

regardless of the linearity of the decision boundary. With K = 4 classes, the boosting

approach is more specific and more sensitive across all sample sizes and decision boundaries

with one exception. When the sample size is smallest (n = 50) and the true decision

boundary is linear, the binary aggregation approach was more specific but still less sensitive.

Furthermore, although not exactly monotonically, sample size did seem to improve the

sensitivity of both approaches. That is, as the sample size increased the Ordinal FANS

models selected more important truly features. However, the relationship between specificity

and sample size was not as clear. In some scenarios, for instance when the true decision

boundary was linear and there were K = 3 ordinal classes, sample size did not seem to have

an effect on specificity. However, when the decision boundary remained linear but the number

of classes increased to K = 4, specificity decreased for models fit using the binary aggregation

approach but increased for models fit using the boosting approach as sample size increased.

Finally, with a nonlinear decision boundary and K = 4 classes, specificity decreased for both

approaches as sample size increased with an exception at n = 300. Specificity improved at

n = 300 for models fit using the boosting approach.

If we examine the results of sensitivity and specificity together, there seems to be a

weak negative association between the two. As the number of features included in the model

increases, the number of truly important features selected will likely increase, which leads to

46

T
ab

le
2.

M
ed

ia
n

te
st

se
t

p
er

fo
rm

an
ce

fo
r

m
o
d
el

s
fi
t

u
si

n
g

th
e

O
rd

in
al

F
A

N
S

b
in

ar
y

ag
gr

eg
at

io
n

ap
p
ro

ac
h

an
d

th
e

O
rd

in
al

F
A

N
S

b
o
os

ti
n
g

ap
p
ro

ac
h
.

R
es

u
lt

s
ar

e
p
re

se
n
te

d
fo

r
L

=
10

F
A

N
S

it
er

at
io

n
s.

A
p
p
ro

ac
h

K
n

B
ou

n
d
ar

y
M

is
cl

as
si

fi
ca

ti
on

R
at

e
(C

la
ss

-S
p

ec
ifi

c
R

at
es

)
S
om

er
s’

D
X
Y

B
o
os

ti
n
g

3
50

L
in

ea
r

0.
26

(0
.3

4,
0.

43
,

0.
02

)
0.

76
B

in
ar

y
A

gg
re

ga
ti

on
3

50
L

in
ea

r
0.

32
(0

.4
5,

0.
51

,
0.

01
)

0.
71

B
o
os

ti
n
g

3
10

0
L

in
ea

r
0.

23
(0

.3
1,

0.
36

,
0.

01
)

0.
77

B
in

ar
y

A
gg

re
ga

ti
on

3
10

0
L

in
ea

r
0.

33
(0

.3
7,

0.
50

,
0.

01
)

0.
67

B
o
os

ti
n
g

3
20

0
L

in
ea

r
0.

21
(0

.3
1,

0.
30

,
0.

01
)

0.
79

B
in

ar
y

A
gg

re
ga

ti
on

3
20

0
L

in
ea

r
0.

31
(0

.3
0,

0.
48

,
0.

01
)

0.
68

B
o
os

ti
n
g

3
30

0
L

in
ea

r
0.

21
(0

.3
3,

0.
28

,
0.

01
)

0.
79

B
in

ar
y

A
gg

re
ga

ti
on

3
30

0
L

in
ea

r
0.

27
(0

.2
8,

0.
44

,
0.

01
)

0.
72

B
o
os

ti
n
g

3
50

N
on

li
n
ea

r
0.

44
(0

.2
4,

0.
59

,
0.

09
)

0.
5

B
in

ar
y

A
gg

re
ga

ti
on

3
50

N
on

li
n
ea

r
0.

38
(0

.1
4,

0.
55

,
0.

02
)

0.
54

B
o
os

ti
n
g

3
10

0
N

on
li
n
ea

r
0.

20
(0

.1
7,

0.
31

,
0.

08
)

0.
82

B
in

ar
y

A
gg

re
ga

ti
on

3
10

0
N

on
li
n
ea

r
0.

10
(0

.0
5,

0.
21

,
0.

01
)

0.
90

B
o
os

ti
n
g

3
20

0
N

on
li
n
ea

r
0.

11
(0

.0
9,

0.
18

,
0.

05
)

0.
90

B
in

ar
y

A
gg

re
ga

ti
on

3
20

0
N

on
li
n
ea

r
0.

04
(0

.0
4,

0.
09

,
0.

00
5)

0.
96

B
o
os

ti
n
g

3
30

0
N

on
li
n
ea

r
0.

09
(0

.0
7,

0.
15

,
0.

04
)

0.
92

B
in

ar
y

A
gg

re
ga

ti
on

3
30

0
N

on
li
n
ea

r
0.

03
(0

.0
2,

0.
06

,
0.

00
3)

0.
97

B
o
os

ti
n
g

4
50

L
in

ea
r

0.
66

(0
.4

7,
0.

72
,

0.
68

,
0.

65
)

0.
30

B
in

ar
y

A
gg

re
ga

ti
on

4
50

L
in

ea
r

0.
69

(0
.2

1,
0.

74
,

0.
70

,
0.

72
)

0.
29

B
o
os

ti
n
g

4
10

0
L

in
ea

r
0.

53
(0

.1
8,

0.
62

,
0.

64
,

0.
53

)
0.

55
B

in
ar

y
A

gg
re

ga
ti

on
4

10
0

L
in

ea
r

0.
60

(0
.1

1,
0.

68
,

0.
65

,
0.

64
)

0.
46

B
o
os

ti
n
g

4
20

0
L

in
ea

r
0.

49
(0

.1
6,

0.
57

,
0.

64
,

0.
52

)
0.

61
B

in
ar

y
A

gg
re

ga
ti

on
4

20
0

L
in

ea
r

0.
54

(0
.1

0,
0.

61
,

0.
63

,
0.

55
)

0.
54

B
o
os

ti
n
g

4
30

0
L

in
ea

r
0.

48
(0

.1
7,

0.
57

,
0.

64
,

0.
52

)
0.

61
B

in
ar

y
A

gg
re

ga
ti

on
4

30
0

L
in

ea
r

0.
52

(0
.1

0,
0.

57
,

0.
63

,
0.

49
)

0.
56

B
o
os

ti
n
g

4
50

N
on

li
n
ea

r
0.

57
(0

.3
5,

0.
65

,
0.

62
,

0.
59

)
0.

46
B

in
ar

y
A

gg
re

ga
ti

on
4

50
N

on
li
n
ea

r
0.

50
(0

.0
8,

0.
57

,
0.

59
,

0.
11

)
0.

59
B

o
os

ti
n
g

4
10

0
N

on
li
n
ea

r
0.

38
(0

.1
0,

0.
51

,
0.

53
,

0.
13

)
0.

73
B

in
ar

y
A

gg
re

ga
ti

on
4

10
0

N
on

li
n
ea

r
0.

32
(0

.0
4,

0.
37

,
0.

48
,

0.
01

)
0.

76
B

o
os

ti
n
g

4
20

0
N

on
li
n
ea

r
0.

29
(0

.0
7,

0.
47

,
0.

45
,

0.
05

)
0.

80
B

in
ar

y
A

gg
re

ga
ti

on
4

20
0

N
on

li
n
ea

r
0.

15
(0

.0
2,

0.
21

,
0.

28
,

0.
01

)
0.

90
B

o
os

ti
n
g

4
30

0
N

on
li
n
ea

r
0.

30
(0

.1
2,

0.
42

,
0.

44
,

0.
18

)
0.

79
B

in
ar

y
A

gg
re

ga
ti

on
4

30
0

N
on

li
n
ea

r
0.

09
(0

.0
2,

0.
14

,
0.

18
,

0.
00

4)
0.

94

47

Fig. 14. Sensitivity for models fit using the Ordinal FANS binary aggregation approach (blue)
and the Ordinal FANS boosting approach (red). Results are presented for L = 1
FANS iteration.

improved sensitivity. However, more truly unimportant features will also be selected which

decreases specificity.

2.6.2 Data analysis results

The results of the analysis of GSE7803 in terms of Somers’ DXY , misclassification rate,

and class-specific misclassification rates are shown in Figures 16, 17, 18 respectively.

In terms of Somers’ DXY and the misclassification rate, as the number of FANS iterations

increases, the ability of the Ordinal FANS model fit using P/O boosting to discriminate

between normal, HSIL, and carcinoma samples improves monotonically and stabilizes after 6

iterations. However, the performance of the Ordinal FANS model fit by aggregating penalized

logistic regression models improves as the number of iterations increases from 1 to 3, but

then oscillates from 4 iterations to 7 iterations, and then stabilizes at a value lower than its

maximum, which was achieved at 3, 4, and 6 iterations. This type of behavior is commonly

48

Fig. 15. Specificity for models fit using the Ordinal FANS binary aggregation approach (blue)
and the Ordinal FANS boosting approach (red). Results are presented for L = 1
FANS iteration.

Fig. 16. 10-fold cross-validation estimates of Somers’ DXY for the classification of normal,
HSIL, and cervical carcinoma samples from GSE7803. Results are shown for the
P/O boosting approach (red) and binary model aggregation approach (blue).

49

Table 3. Median sensitivity and specificity for models fit using the Ordinal FANS binary ag-
gregation approach and the Ordinal FANS boosting approach. Results are presented
for L = 1 FANS iteration.

Approach K n Boundary Sensitivity Specificity
Boosting 3 50 Linear 0.30 0.998

Binary Aggregation 3 50 Linear 0.30 0.995
Boosting 3 100 Linear 0.30 0.995

Binary Aggregation 3 100 Linear 0.30 0.995
Boosting 3 200 Linear 0.40 0.997

Binary Aggregation 3 200 Linear 0.40 0.994
Boosting 3 300 Linear 0.30 1.000

Binary Aggregation 3 300 Linear 0.40 0.992
Boosting 3 50 Nonlinear 0.10 0.991

Binary Aggregation 3 50 Nonlinear 0.20 0.989
Boosting 3 100 Nonlinear 0.20 0.995

Binary Aggregation 3 100 Nonlinear 0.30 0.982
Boosting 3 200 Nonlinear 0.30 0.985

Binary Aggregation 3 200 Nonlinear 0.40 0.973
Boosting 3 300 Nonlinear 0.40 0.981

Binary Aggregation 3 300 Nonlinear 0.40 0.967
Boosting 4 50 Linear 0.40 0.974

Binary Aggregation 4 50 Linear 0.30 0.986
Boosting 4 100 Linear 0.50 0.992

Binary Aggregation 4 100 Linear 0.40 0.980
Boosting 4 200 Linear 0.60 0.996

Binary Aggregation 4 200 Linear 0.40 0.967
Boosting 4 300 Linear 0.60 0.998

Binary Aggregation 4 300 Linear 0.50 0.949
Boosting 4 50 Nonlinear 0.30 0.989

Binary Aggregation 4 50 Nonlinear 0.30 0.984
Boosting 4 100 Nonlinear 0.50 0.981

Binary Aggregation 4 100 Nonlinear 0.40 0.974
Boosting 4 200 Nonlinear 0.60 0.964

Binary Aggregation 4 200 Nonlinear 0.40 0.955
Boosting 4 300 Nonlinear 0.50 0.991

Binary Aggregation 4 300 Nonlinear 0.40 0.939

50

Fig. 17. 10-fold cross-validation estimates of the misclassification rate for the classification of
normal, HSIL, and cervical carcinoma samples from GSE7803. Results are shown for
the P/O boosting approach (red) and binary model aggregation approach (blue).

Fig. 18. 10-fold cross-validation estimates of the class-specific misclassification rates for the
classification of normal (red), HSIL (green), and cervical carcinoma (blue) samples
from GSE7803. Results are shown for the P/O boosting approach (red) and binary
model aggregation approach (blue).

51

seen in other ensemble methods, such as bagging and random forests. As the number of

classifiers in the ensemble learner increases, the performance tends to improve rapidly, then

oscillate, and finally stabilize as the number of trees reaches a sufficient number. However,

we did not see this type of behavior in the simulation study. One potential reason for this is

that the classes were perfectly or nearly perfectly balanced in the simulation, but the classes

in the gene expression dataset were extremely imbalanced. This imbalance along with the

small sample size in the HSIL class (n = 7) may have led to an increase in the variance of

the classifiers within the ensemble. In the future, we plan on examining the effect of class

imbalance as well as within-class sample size on performance.

Figure 18 conveys additional information regarding the misclassification rates of the two

approaches. The binary aggregation approach performs as well or better than the boosting

approach with respect to classifying normal and carcinoma samples. Both methods have

more of a difficult time classifying HSIL samples, but as the number of FANS iterations

increases, the gap between the two methods widens. At 10 iterations, the boosting approach

vastly outperforms the binary aggregation approach in classifying HSIL samples, which ex-

plains the difference in overall misclassification rates seen in Figure 17.

The Ordinal FANS boosting approach and binary aggregation approach included 10 and

9 non-zero coefficients, respectively. The genes corresponding to these coefficients are listed

in Table 4. The gene symbols for the features that had non-zero coefficient estimates in

both models are SPAG5, EDN3, B4GALT4, and UPK1A. Upregulation of SPAG5 has been

show to predict poor prognosis among cervical cancer patients [39], and the genes EDN3 and

UPK1A were found to be down regulated in cancerous cervix compared to normal cervical

epithelium [40, 41]. No study has published a link between B4GALT4 and squamous cell

carcinoma of the cervix, which suggests that the feature was either a false positive in both

models or a novel discovery.

52

Table 4. Genes deemed important in the classification of normal, HSIL, and cervical carci-
noma samples by the Ordinal FANS models fit to GSE7803. The genes listed were
included in either the model fit using the boosting approach or in the model fit using
the binary aggregation approach (or in both models). A check mark denotes that
the gene was included in the model fit using the given approach. One Affymetrix
probe id could not be matched to a unique gene symbol and is denoted by <NA>.

Gene Symbol Binary Aggregation Boosting
PLOD2 X
SPAG5 X X
ACOX2 X

SLC16A7 X
EDN3 X X

U2SURP X
B4GALT4 X X
UPK1A X X
PITPNA X

MTF2 X
CCND1 X
KRT4 X
TIPIN X

BRWD1 X
<NA> X

2.7 R package

We developed R [26] code for both approaches of the Ordinal FANS method and assem-

bled each into a unique R package. We followed the S3 object system, so we defined methods

for generic functions including print(), summary(), predict(), plot(), and coef(). The

default method for fitting the model takes the design matrix and the ordinal response as

the first two arguments and performs the analysis by iterating through the FANS algorithm

using our predefined functions. Additional arguments for both approaches include newx if

the user wishes to make predictions on new data using the fitted model, the number of FANS

iterations (niter), a random seed to set so the model is reproducible (seed), scale, which

determines whether the predictors will be centered and scaled, and parallel, which deter-

mines whether or not the niter FANS iterations will be run in parallel. Additionally, the

function for fitting the model using boosting has as arguments: the multiplicative step size,

eps, and the number of boosting iterations, mstop. Furthermore, we wrote a function named

cv.modelselect for estimating the tuning parameter, mstop, by maximizing the K-fold CV

53

estimate of Somers’ DXY .

54

CHAPTER 3

COMPARATIVE ANALYSIS

3.1 Methods

We compared the following methods to the method that we developed in the previous

chapter, Ordinal FANS. From here on, we refer to the first approach of the Ordinal FANS

method, which aggregates binary response models and was described in Chapter 2, Section

2, as Ordinal FANS 1 and the second approach of proportional odds boosting, described in

Chapter 2, Section 3, as Ordinal FANS 2. We performed a simulation study as well as several

data analyses to assess how well each method a) predicts the outcome of a future observation,

measured using Somers’ DXY , misclassification rate, and class-specific misclassification rates

and b) performs feature selection, measured using sensitivity and specificity. (All measures

were defined in Chapter 2, Section 4.)

3.1.1 Weighted k-Nearest Neighbors

The k-nearest neighbors method is one of the simplest and most intuitive classification

techniques. Assume there are n observations in the training data,

T = {(x1, y1), (x2, y2), ..., (xn, yn)}.

The central idea is that, to classify a new observation, x, we find the k observations from

the training set closest to the new observation in terms of a distance measure, d(x,xi)

on the feature vectors. The predicted value of the new observation is the class with

the largest representation among the k neighbors. The k nearest neighbors are given by

(y(1), x(1)), (y(2), x(2)), ..., (y(k), x(k)). A commonly used distance measure is the Minkowski

55

distance:

d(xi,xj) =

(
p∑
r=1

|xir − xjr|q
)1/q

.

Note that q = 1 results in the absolute distance and q = 2 results in the Euclidean distance.

To avoid introducing bias into the selection of neighbors, the predictors must first be stan-

dardized (this can be done differently for continuous, ordinal, and nominal predictors) [42].

In the weighted k-nearest neighbors method, the distances of the k nearest neighbors are

standardized by dividing each distance by the distance to the (k+1)st nearest observation:[42]

D(x,xi) =
d(x,xi)

d(x,xk+1)
, i = 1, 2, ..., k

Then, these standardized distances are converted to weights using a kernel function, K,

which has the following properties,

• K(D) ≥ 0.

• K(D) is maximized when D = 0.

• K(D) is monotonically decreasing function of D for D ≥ 0.

Now, the estimated class probability distribution becomes [42]

P̂ (y = c|x, T) =

∑k
i=1K(D(x,x(i)))I(y(i) = c)∑k

i=1K(D(x,x(i)))
(3.1)

Commonly, the predicted class for the new observation is the class with the largest

predicted probability, which is equivalent to the mode of equation 3.1. For an ordinal out-

come, one can use the median of the estimated class distribution as the predicted outcome

[42]. The weighted k-nearest neighbor method is implemented in the kknn R package on the

Comprehensive R Archive Network (CRAN).

3.1.2 Component-Wise Proportional Odds Boosting

According to Hastie et. al, boosting is one of the most powerful learning ideas introduced

in the last twenty years [15]. It is one method in a class of ensemble schemes that combines

56

multiple weak function estimates to form one aggregated estimator. The aim of boosting is

to estimate a function, f ∗(.), that minimizes the risk:

R = E[L(Y, f(X)))],

where L is the loss function chosen dependent on the structure of the response [14]; often,

the loss function is equal to the negative log-likelihood. Gradient boosting searches for the

solution by following the steepest path down the gradient of the empirical risk function,

1

n

n∑
1

L(Yi, f(Xi))

in function space. Gradient boosting can be applied to many different estimators including

regression trees, generalized linear models (GLMs), and Cox proportional hazards models.

Generally, we assume that f belongs to a parameterized class of functions F (X,P). The

component-wise gradient boosting algorithm for GLMs was extended by Schmid et al. to

the ordinal response setting. The method, called Proportional Odds (P/O) boosting, fits a

cumulative logit model as follows [16]:

1. Let F̂m and θ̂m denote the vectors of estimates, (F̂ (x1), ..., F̂ (xn)) and (θ̂1, ..., θ̂K−1)

at step m. Set m = 0 and initialize F̂0 and θ̂0.

2. Specify the base learners.

3. Increase m by 1 and compute the negative gradient of the loss with respect to F and, for

each observation, evaluate it at the estimates of the previous iteration, F̂m−1(xi), θ̂m−1:

gm(x) = (−gm(xi))i=1,...,n =

(
− δ

δF
L(yi, F,θ)|F=F̂m−1(xi),θ=θ̂m−1

)
i=1,...,n

4. Fit each of the base learners to the negative gradient vector gm(x). Each model results

in a different estimate of gm(x).

5. Select the model that fit the negative gradient best as determined by the R2 goodness-

of-fit criterion. Let ĝm(x) represent the vector of fitted values for that model.

57

6. Update the current function estimate :

F̂m = F̂m−1 + νĝm(x)

Note that ν is a pre-specified small step length factor between 0 and 1 and is not highly

influential as long as it is sufficiently small (e.g. ν = 0.1) [14].

7. Treating the function estimate as fixed, estimate θm by minimizing the empirical risk,

1
n

∑n
i=1 L(yi, F̂m,θ).

8. Repeat steps 3-7 until m = M , where M represents the stopping iteration chosen by

cross-validation.

The final function estimate is given by

F̂M =
M∑
m=0

F̂m

=F̂0 +
M∑
m=1

νĝm(x)

Component-wise boosting was implemented in the mboost R package and is available

on CRAN. To fit a model with proportional odds boosting, we must specify the family

argument as PropOdds().

3.1.3 Generalized Monotone Incremental Forward Stagewise

Method

The generalized monotone incremental forward stagewise (GMIFS) algorithm was de-

veloped by Hastie et al. [13] in order to obtain a penalized solution to overparameterized

linear and logistic regression models. The GMIFS method was extended by Archer et al.

for fitting logit, probit, and complimentary log-log link ordinal response models (cumulative,

adjacent category, stereotype, forward continuation ratio, and backward continuation ratio)

to high-throughput genomic data[7]. The GMIFS algorithm for ordinal response modeling

is as follows[7]:

58

1. Enlarge the predictor space as X̃ = [X : −X] , where X represents the standardized

design matrix.

2. Initialize the α’s to their empirical values.

3. For step s = 0, all components of β̂
(s)

are initialized to 0. That is, β̂1 = β̂2 = ... =

β̂P = β̂P+1 = ... = β̂2P = 0.

4. Find m = argmin
p

− δlogL
δβp

at the current estimate β̂
(s)

.

5. Update β̂
(s+1)
m = β̂

(s)
m + ε, where ε is a small constant such as 0.001.

6. Estimate the α’s by maximum likelihood, treating β̂
(s)

(from step 5) as fixed.

7. Repeat steps 4 to 6 until the difference between two successive log-likelihoods is smaller

than a pre-specified tolerance, τ .

The predictor space is enlarged in step 1 in order to avoid the computationally-intensive

process of taking the second derivative of the log-likelihood. Once the algorithm has con-

verged, the penalized solution is given by β̂p = β̂p − β̂p+P , p = 1, ..., P [7]. Furthermore, we

can choose the model resulting from the convergence of the algorithm as our final model, or

we may select the model that minimizes either the AIC or BIC criteria. The latter generally

have better predictive accuracy on an independent test set because the model resulting from

the convergence of the algorithm is often overfit.

We utilized the ordinalgmifs R package, which is available on CRAN to fit cumulative

logit models with the ordinal GMIFS method.

3.2 Simulation study

Recall the simulation designs from Chapter 2, Section 4. For simulations with a linear

decision boundary, the data were generated by class from a multivariate normal distribution:

MVN(µ = ((x̄k)10, w̄990),Σ = S) , k ∈ {1, ..., K}

59

The class-conditional means of significant features, x̄1, x̄2, ..., x̄K , the overall mean of non-

significant features, w̄, and the sample covariance matrix S were estimated from gene ex-

pression datasets, which served as templates for the simulations.

For simulations with a nonlinear decision boundary, the data were simulated similarly

except that each class was simulated using the class-conditional sample covariance matrices

S1, S2, ..., SK estimated from the data:

MVN(µ = ((x̄k)10, w̄990),Σ = Sk) , k ∈ {1, ..., K}

We examined the effects of the number of classes in the outcome, K ∈ {3, 4}, sample

size, n ∈ {50, 100, 200, 300}, and linearity of the decision boundary (linear and nonlinear)

on the predictive performance and feature selection performance. In all cases, the first 10

features were simulated to be important to class separation, while the remaining 990 features

were not. Thus, to assess feature selection, we examined sensitivity and specificity are defined

as:

• Sensitivity = Number of important features selected
Total number of important features

• Specificity = Number of unimportant features not selected
Total number of unimportant features

To assess predictive performance, we examined the association between the predicted and

observed values in an independent test set using Somers’ DXY , misclassification rate, and

class-specific misclassification rates.

3.3 Data analyses

For each of the following datasets, we fit a predictive model using each of the previously

defined methods. Performance was measured using 10-fold cross-validation estimates of

Somers’ DXY , misclassification rate, and class-specific misclassification rates.

60

3.3.1 Progression to cervical cancer

Nearly all cases of cervical cancer are caused by human papillomavirus (HPV), the most

common type of sexually transmitted infection [43, 44]. Cervical cancer generally progresses

slowly but may not have any noticeable symptoms, so The U.S. Preventive Services Task

Force recommends regular screening for women ages 21 to 65 [44]. Screening can take the

form of a Papanicolaou smear, or pap smear, every three years or a pap smear in combination

with a test for the presence of greater than two high-risk or carcinogenic HPV types every

five years[44]. HPV testing has a higher sensitivity but a lower specificity than the pap smear

[44].

Cervical disease progresses from normal epithelium, to low-grade squamous intraepithe-

lial lesion (LSIL), to high-grade squamous intraepithelial lesion (HSIL), and then to invasive

carcinoma. The mechanism allowing cells to progress from intraepithelial lesions to malig-

nancy is still an active area of research [37]. Our goal in this analysis was to compare the

methods’ abilities to determine a sample’s stage in this progression.

3.3.1.1 Data preprocessing

We downloaded the raw CEL files for GSE7803 [37] from the Gene Expression Omnibus

(GEO) and preprocessed and normalized the data as we described in Chapter 2, Section 5.

Recall that the preprocessed and normalized dataset contained n = 38 samples, including

10 normal samples, 7 high grade intraepithelial lesion (HSIL) samples, and 21 carcinoma

samples. Furthermore, there were p = 13, 667 features.

3.3.2 Progression to malignant melanoma

Melanoma occurs when malignant cells form in the skin cells that produce melanin, the

pigment that gives skin its color. Generally, it occurs in areas of the skin that are exposed to

sunlight, but it can be found anywhere on the body, including in the eyes. Melanoma is the

sixth most common type of cancer, and the rates for new cases have been rising on average

61

1.4% over the past 10 years [45]. Early diagnosis is dependent on visual inspection of a mole

or nevus, relying on the “ABCDE” rule, which describes the early features of melanoma,

namely [46, 47]:

• Asymmetry

• Border that is irregular

• Color that is uneven

• Diameter that is large

• Evolving over time

If the melanoma is caught early, while it is confined to the primary site, 5-year relative

survival is 98.4%. However, 5-year relative survival is drastically lower if the cancer spreads

to the regional lymph nodes (62.4%) or metastasizes (17.9%) [45]. Thus, early diagnosis

is imperative. A multigenic classifier to distinguish between normal, benign nevus, and

malignant melanoma skin samples would be useful to supplement the visual inspection of the

mole to aid in determining a diagnosis. This classifier has the potential to give physicians

increased confidence in a diagnosis made from visual inspection of the skin, which could

shorten the time to treatment. Furthermore, the genes included in the classifier could be

investigated as potential molecular targets for new therapies.

3.3.2.1 Data preprocessing

We downloaded GSE3189 from the Gene Expression Omnibus [32, 48]. The investi-

gators used Affymetrix HG-U133A GeneChips to measure gene expression from skin tissue

specimens. In the dataset, there were n = 70 observations, of which 7 were normal skin

samples, 18 were nevus samples, and 45 were malignant melanoma samples. There were

p = 22, 215 features after excluding the control probe sets. The log2 transformed expression

values of these features were used in the analysis.

62

3.3.3 Pathogenesis of hepatocellular carcinoma

Cirrhosis develops after years of chronic liver disease and results in a destruction of liver

cells, which may eventually lead to the development of cancerous nodules. Consequently,

the majority of patients with hepatocellular carcinoma (HCC), the most common form of

primary liver cancer, suffer concurrently from liver cirrhosis [49]. Thus, a cirrhotic liver has

been described as being pre-malignant [50]. Furthermore, infection with hepatitis C virus

(HCV) is a major risk factor for the development of HCC.

Methylation, an epigenetic event in which a methyl group attaches to a 5’ cytosine in a

CG dinucleotide, or CpG site, is thought to lead to chromosomal instability in some cases.

These CpG sites commonly occur in clusters called CpG islands. When these CpG islands

are located in gene promoter regions of tumor suppressor genes and are densely methylated,

or “hypermethylated,” transcription of the gene can be silenced. Further, a gene promoter

region can be sparsely methylated, or “hypomethylated,” leading to increased expression

of the gene. Hypermethylation of tumor suppression genes and hypomethylation of proto-

oncogenes have been implicated in various types of cancer.

3.3.3.1 Data preprocessing

We downloaded GSE18081 from the Gene Expression Omnibus [32]. The investigators

profiled p =1,505 CpG sites in n = 76 liver tissues using the Illumina GoldenGate Methy-

lation BeadArray Cancer Panel I [50]. Included in the data were HCV-HCC tumor samples

and their adjacent non-cancerous cirrhotic tissue samples, independent non-cancerous HCV-

cirrhotic tissues, and normal liver tissues. We removed the matched cirrhotic samples from

subjects with HCC as well as technical replicate samples, leaving 20 normal, 16 non-HCC

HCV-cirrhotic, and 20 cirrhotic HCV-HCC samples. We removed 10 CpG sites for which

one or more samples had a missing value as well as 26 CpG sites that had a variance of 0.

Our goal was to use the remaining p =1,469 predictors to classify tissue samples as normal,

HCV-cirrhotic (pre-malignant), or HCV-HCC (malignant).

63

Fig. 19. Simulation results: Distribution of test set Somers’ DXY estimates for varying K, n,
and decision boundaries for each method in the comparative analysis.

3.4 Results

3.4.1 Simulation study

3.4.1.1 Prediction

The results of the simulation study in terms of Somers’ DXY are displayed in Figure 19.

True linear decision boundary When the true decision boundary separating the K classes

was linear, weighted k-nearest neighbors clearly delivered the worst performance. With

K = 3 classes in the outcome, sample size had a marginal effect on the performance of

64

T
ab

le
5.

M
ed

ia
n

te
st

se
t

m
is

cl
as

si
fi
ca

ti
on

ra
te

s
an

d
cl

as
s-

sp
ec

ifi
c

m
is

cl
as

si
fi
ca

ti
on

ra
te

s
(i

n
p
ar

en
th

es
es

)
b
y

m
et

h
o
d
.

M
is

cl
as

si
fi
ca

ti
on

R
at

e
(C

la
ss

-S
p

ec
ifi

c
R

at
es

)
K

n
B

ou
n
d
ar

y
O

rd
in

al
F
A

N
S

1
O

rd
in

al
F
A

N
S

2
P

/O
B

o
os

ti
n
g

O
rd

in
al

G
M

IF
S

W
ei

gh
te

d
k
-N

ea
re

st
N

ei
gh

b
or

s

3
50

L
in

ea
r

0.
32

3
(0

.4
47

,
0.

50
8,

0.
01

1)
0.

25
9

(0
.3

43
,

0.
43

1,
0.

02
4)

0.
21

9
(0

.2
92

,
0.

37
2,

0.
00

8)
0.

22
6

(0
.2

97
,

0.
38

4,
0.

00
8)

0.
63

5
(0

.6
38

,
0.

68
1,

0.
54

6)

3
10

0
L

in
ea

r
0.

33
0

(0
.3

65
,

0.
49

7,
0.

01
1)

0.
23

1
(0

.3
10

,
0.

36
2,

0.
01

2)
0.

19
1

(0
.2

61
,

0.
31

3,
0.

00
3)

0.
19

5
(0

.2
61

,
0.

31
3,

0.
00

3)
0.

63
0

(0
.6

27
,

0.
66

1,
0.

56
1)

3
20

0
L

in
ea

r
0.

30
6

(0
.2

96
,

0.
47

6,
0.

00
9)

0.
20

9
(0

.3
12

,
0.

30
4,

0.
01

1)
0.

16
8

(0
.2

40
,

0.
26

1,
0.

00
1)

0.
16

3
(0

.2
30

,
0.

25
7,

0.
00

1)
0.

62
2

(0
.6

14
,

0.
65

8,
0.

54
0)

3
30

0
L

in
ea

r
0.

27
4

(0
.2

79
,

0.
44

3,
0.

00
9)

0.
20

9
(0

.3
26

,
0.

28
2,

0.
01

2)
0.

16
0

(0
.2

32
,

0.
24

7,
0.

00
1)

0.
14

3
(0

.2
09

,
0.

22
0,

0.
00

0)
0.

61
7

(0
.6

05
,

0.
65

9,
0.

51
4)

3
50

N
on

li
n
ea

r
0.

38
3

(0
.1

40
,

0.
54

9.
0.

02
0)

0.
43

9
(0

.2
35

,
0.

59
1,

0.
09

3)
0.

43
3

(0
.4

68
,

0.
61

1,
0.

16
4)

0.
46

8
(0

.4
70

,
0.

62
5,

0.
14

2)
0.

50
8

(0
.5

96
,

0.
36

2,
0.

08
4)

3
10

0
N

on
li
n
ea

r
0.

10
4

(0
.0

53
,

0.
21

2,
0.

00
7)

0.
19

6
(0

.1
73

,
0.

30
9,

0.
08

2)
0.

39
3

(0
.4

26
,

0.
56

0,
0.

10
7)

0.
32

7
(0

.4
22

,
0.

56
0,

0.
09

2)
0.

43
8

(0
.5

65
,

0.
20

0,
0.

05
2)

3
20

0
N

on
li
n
ea

r
0.

04
5

(0
.0

36
,

0.
08

8,
0.

00
5)

0.
10

7
(0

.0
85

,
0.

17
7,

0.
04

8)
0.

33
9

(0
.3

92
,

0.
50

5,
0.

05
7)

0.
32

7
(0

.3
87

,
0.

48
8,

0.
04

1)
0.

43
8

(0
.5

57
,

0.
11

5,
0.

01
8)

3
30

0
N

on
li
n
ea

r
0.

03
0

(0
.0

25
,

0.
06

0,
0.

00
3)

0.
08

8
(0

.0
69

,
0.

15
1,

0.
03

6)
0.

32
2

(0
.3

88
,

0.
48

3,
0.

04
3)

0.
28

6
(0

.3
68

,
0.

43
3,

0.
01

9)
0.

42
1

(0
.5

49
,

0.
09

0,
0.

01
0)

4
50

L
in

ea
r

0.
69

1
(0

.2
15

,
0.

73
8,

0.
70

0,
0.

72
3)

0.
66

1
(0

.4
66

,
0.

72
1,

0.
67

9,
0.

64
7)

0.
53

4
(0

.2
13

,
0.

63
5,

0.
66

7,
0.

56
9)

0.
54

2
(0

.1
59

,
0.

63
6,

0.
64

5,
0.

51
7)

0.
74

4
(0

.7
10

,
0.

75
2,

0.
74

6,
0.

74
9)

4
10

0
L

in
ea

r
0.

60
5

(0
.1

13
,

0.
68

0,
0.

65
0.

0.
63

6)
0.

53
2

(0
.1

81
,

0.
61

8,
0.

64
3,

0.
53

4)
0.

44
3

(0
.0

92
,

0.
51

0,
0.

60
6,

0.
46

0)
0.

40
3

(0
.0

54
,

0.
42

5,
0.

59
1,

0.
42

6)
0.

73
8

(0
.6

81
,

0.
75

4,
0.

74
1,

0.
72

9)

4
20

0
L

in
ea

r
0.

54
3

(0
.1

03
,

0.
60

9,
0.

63
5,

0.
55

2)
0.

48
7

(0
.1

63
,

0.
57

2,
0.

63
6,

0.
51

8)
0.

36
4

(0
.0

41
,

0.
36

3,
0.

57
3,

0.
42

5)
0.

27
7

(0
.0

11
,

0.
14

6,
0.

51
4,

0.
37

1)
0.

72
9

(0
.6

59
,

0.
74

6,
0.

73
5,

0.
71

3)

4
30

0
L

in
ea

r
0.

52
0

(0
.1

03
,

0.
57

4,
0.

63
0,

0.
48

5)
0.

48
2

(0
.1

65
,

0.
56

8,
0.

64
1,

0.
52

1)
0.

34
5

(0
.0

32
,

0.
32

7,
0.

56
5,

0.
41

7)
0.

21
6

(0
.0

02
,

0.
04

9,
0.

43
9,

0.
32

9)
0.

73
1

(0
.6

56
,

0.
75

0,
0.

73
6,

0.
71

6)

4
50

N
on

li
n
ea

r
0.

49
8

(0
.0

78
,

0.
56

6,
0.

59
0,

0.
11

3)
0.

56
8

(0
.3

49
,

0.
65

1,
0.

62
1,

0.
59

3)
0.

49
9

(0
.1

46
,

0.
55

1,
0.

64
3,

0.
57

4)
0.

49
8

(0
.1

13
,

0.
55

2,
0.

61
2,

0.
54

6)
0.

47
6

(0
.2

81
,

0.
43

6,
0.

40
3,

0.
57

0)

4
10

0
N

on
li
n
ea

r
0.

32
2

(0
.0

36
,

0.
36

8,
0.

48
0,

0.
01

0)
0.

38
0

(0
.1

01
,

0.
50

8,
0.

53
3,

0.
13

4)
0.

42
9

(0
.0

88
,

0.
43

3,
0.

58
6,

0.
51

4)
0.

40
2

(0
.0

73
,

0.
38

4,
0.

56
8,

0.
49

6)
0.

35
4

(0
.1

85
,

0.
28

6,
0.

26
7,

0.
48

5)

4
20

0
N

on
li
n
ea

r
0.

14
9

(0
.0

21
,

0.
20

9,
0.

27
8,

0.
00

5)
0.

29
3

(0
.0

67
,

0.
47

4,
0.

45
4,

0.
04

8)
0.

38
0

(0
.0

65
,

0.
31

0,
0.

57
4,

0.
49

8)
0.

32
3

(0
.0

31
,

0.
17

7,
0.

54
3,

0.
46

9)
0.

26
0

(0
.1

11
,

0.
11

7,
0.

14
3,

0.
43

4)

4
30

0
N

on
li
n
ea

r
0.

09
2

(0
.0

17
,

0.
13

8,
0.

18
1,

0.
00

4)
0.

29
9

(0
.1

22
,

0.
41

7,
0.

43
8,

0.
17

9)
0.

36
9

(0
.0

66
,

0.
26

9,
0.

57
7,

0.
50

0)
0.

28
2

(0
.0

13
,

0.
07

8,
0.

51
9,

0.
46

3)
0.

21
0

(0
.0

85
,

0.
06

0,
0.

10
3,

0.
39

0)

65

each method; the median Somers’s DXY stayed about the same, but the variability of the

distributions decreased. With a sample size of 50, there did not seem to be a clear best

method among Ordinal GMIFS, and P/O Boosting, and both Ordinal FANS approaches.

However, when the sample size was greater than 50, Ordinal GMIFS and P/O Boosting had

slightly superior performance to both Ordinal FANS approaches. Ordinal GMIFS achieved

the best performance when the sample size was largest (n = 300).

When the number of classes increased from K = 3 to K = 4, the predictive performance

of each method deteriorated, but the difference between the methods’ performance became

more clear. Furthermore, when the number of classes was K = 4, sample size improved the

median test set Somers’ DXY and reduced the variability of the distribution for all methods.

When the sample size was n = 50, Ordinal GMIFS and P/O Boosting performed similarly

and better than the other methods. However, the gap between the two methods increased

with the sample size – Ordinal GMIFS performed best for all sample sizes greater than 50.

True nonlinear decision boundary When the simulated decision boundary was nonlinear,

weighted k-nearest neighbors again performed the worst in all cases. With K = 3 classes

in the outcome, sample size played a large role in the performance of both Ordinal FANS

approaches. Aside from k-nearest neighbors, all methods performed approximately equiva-

lently with a sample size of n = 50. However, when the sample size increased to n = 100, the

Ordinal FANS methods improved dramatically. From n = 100 to n = 300, Ordinal FANS 1

(binary aggregation approach) clearly performed the best among all methods while Ordinal

FANS 2 (boosting approach) performed second best. Ordinal GMIFS and P/O Boosting

performed similarly behind the Ordinal FANS methods.

The results did not change drastically when the number of classes in the ordinal outcome

increased from K = 3 to K = 4. The estimates of Somers’ DXY exhibited high variance

for all methods when the sample size was n = 50, and all methods performed similarly.

The performance of all methods improved as the sample size increased, but the rates of

66

improvement differed. When the sample size increased to 100, a hierarchy of methods was

established. The top performer was Ordinal FANS 1, followed by Ordinal FANS 2, then

Ordinal GMIFS, P/O Boosting, and weighted k-nearest neighbors in that order. When

n = 200, Ordinal FANS 1 remained the best performing method, followed by Ordinal FANS

2 and Ordinal GMIFS, which performed approximately equivalently. P/O Boosting and

weighted k-nearest neighbors were the bottom two methods. Finally, with a sample size of

300, Ordinal FANS 1 was again the best method, but Ordinal GMIFS was the second best,

followed by Ordinal FANS 2, P/O Boosting, and weighted k-nearest neighbors.

Summary of predictive performance comparison The best method in terms of predictive

performance depended on the shape of the underlying decision boundary. When the true

decision boundary is linear, Ordinal GMIFS seemed to be the preferable method, but when

the true decision boundary was nonlinear, Ordinal FANS 1 (the binary aggregation approach)

performed best. This is somewhat expected because Ordinal FANS fits a nonlinear decision

boundary in the original feature space, while Ordinal GMIFS fits a linear decision boundary.

However, it is worth noting that Ordinal FANS outperformed the other flexible model, k-

nearest neighbors, and Ordinal GMIFS outperformed the other method that fits a linear

decision boundary, namely P/O Boosting. Furthermore, the same conclusions were reached

when we examined the misclassification rates in Table 5.

3.4.1.2 Feature selection

The weighted k-nearest neighbors method does not explicitly perform feature selection,

so we only measured sensitivity (Figure 20) and specificity (Figure 21) for models fit by

Ordinal GMIFS, P/O Boosting, and both Ordinal FANS approaches.

True linear decision boundary When there were K = 3 classes in the ordinal outcome

and the ture decision boundary was linear, there was a clear hierarchy. Both Ordinal FANS

approaches outperformed Ordinal GMIFS and P/O Boosting for all sample sizes examined

67

Fig. 20. Simulation results: Distribution of sensitivity for varying K, n, and decision bound-
aries.

68

Fig. 21. Simulation results: Distribution of specificity for varying K, n, and decision bound-
aries.

69

(n ∈ {50, 100, 200, 300}) in terms of specificity, but the opposite was true for sensitivity, in

which case Ordinal GMIFS was the best method. This suggests that with K = 3 classes,

models fit using the Ordinal FANS approaches are smaller (i.e. more parsimonious) than

models fit using ordinal GMIFS or P/O Boosting, but consequently they miss more important

features. Between the two Ordinal FANS approaches, the binary aggregation approach

seemed to be slightly more sensitive but less specific.

With K = 4 classes in the outcome, Ordinal FANS, approach 2 (boosting) was clearly

the most sensitive and specific method when the true decision boundary was linear. The one

exception occured when the sample size was 50, in which case it was the most sensitive but

not the most specific. P/O Boosting performed best when the sample size was n = 50, but

Ordinal FANS 2 performed best for all other sample sizes (n ∈ {100, 200, 300).

True nonlinear decision boundary When the simulated decision boundary was nonlinear

and there were K = 3 ordinal classes, there seemed to be a dichotomy in the methods’

sensitivity performance – Ordinal GMIFS and P/O Boosting performed similarly and better

than Ordinal FANS 1 and Ordinal FANS 2, which performed similarly. However, aside from

when the sample size was n = 50, in which case all methods performed similarly, Ordinal

FANS 2 achieved the highest specificity.

When the number of classes in the outcome increased to 4, the best performing method

was dependent on the sample size. P/O Boosting achieved the highest median specificity

for sample sizes n = 50 and n = 200 while Ordinal FANS 2 obtained the highest median

specificity when n = 300. The two methods performed best and approximately equivalently

when n = 100. In terms of sensitivity, Ordinal FANS 2 performed best when the sample size

was n = 100 and n = 200. There was no clear best method when n = 50 and n = 300.

3.4.2 Data analyses

The ranking of methods in terms of predictive performance was dependent on the

dataset, which agrees with the simulation study as well as conventional wisdom – no single

70

Table 6. 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and
class-specific misclassification rates for the classification of normal (n = 10), HSIL
(n = 7), and cervical carcinoma (n = 21) samples from GSE7803.

Method Somers’ DXY Misclassification Rate (Class-Specific)
Ordinal FANS 1 0.876 0.158 (0.000, 0.444, 0.095)
Ordinal FANS 2 0.874 0.105 (0.000, 0.200, 0.125)
P/O Boosting 0.876 0.105 (0.000, 0.286, 0.095)

Ordinal GMIFS 0.897 0.079 (0.000, 0.167, 0.091)
Weighted k-Nearest Neighbors 0.939 0.132 (0.000, 0.417, 0.000)

method performs best in all cases.

The results of the analysis of GSE7803 are presented in Table 6. The best method

in terms of Somers’ DXY was Weighted k-Nearest Neighbors. However, if we instead define

predictive performance in terms of the misclassification rate, Ordinal GMIFS was best. Inter-

estingly, all methods correctly classified all normal cervical samples, and the misclassification

rate for cervical carcinoma samples was fairly low among all methods as well. Meanwhile,

the misclassification rate for HSIL samples was highest among the three ordinal classes for

all fitted models.

The results of the analysis of GSE3189 are presented in Table 7. P/O Boosting achieved

the highest 10-fold CV estimate of Somers’ DXY as well as the lowest misclassification rate.

Ordinal FANS approaches 1 and 2 came in third and second, respectively in terms of Somers’

DXY , and the Ordinal FANS approaches and Ordinal GMIFS were tied for second in terms

of misclassification rate. As with GSE7803, several methods had no misclassifications among

the normal skin samples and the highest misclassification rates for the second of the three

ordinal class (in this case, nevus skin samples). In the analysis of GSE3189, the methods

that did not misclassify any normal skin samples also did not misclassify any melanoma

samples. However, in contrast to the analysis of GSE7803, the misclassification rate was

highest for normal samples for two methods in this analysis.

Table 8 shows the results of the analysis of GSE18081. The method with the best predic-

tive performance in terms of Somers’ DXY was Ordinal FANS 2, followed closely by Ordinal

71

Table 7. 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and
class-specific misclassification rates for the classification of normal (n = 7), nevus
(n = 18), and melanoma (n = 45) samples from GSE3189.

Method Somers’ DXY Misclassification Rate (Class-Specific)
Ordinal FANS 1 0.936 0.057 (0.125, 0.111, 0.023)
Ordinal FANS 2 0.944 0.057 (0.000, 0.182, 0.000)
P/O Boosting 0.958 0.043 (0.000, 0.143, 0.000)

Ordinal GMIFS 0.929 0.057 (0.000, 0.182, 0.000)
Weighted k-Nearest Neighbors 0.888 0.071 (0.222, 0.000, 0.063)

Table 8. 10-fold cross-validation estimates of Somers’ DXY , misclassification rate, and
class-specific misclassification rates for the classification of normal (n = 20), HCV–
cirrhotic (n = 16), and HCV-HCC (n = 20) liver tissue samples from GSE18081.

Method Somers’ DXY Misclassification Rate (Class-Specific)
Ordinal FANS 1 0.853 0.125 (0.048, 0.273, 0.000)
Ordinal FANS 2 0.888 0.125 (0.000, 0.263, 0.118)
P/O Boosting 0.842 0.179 (0.000, 0.375, 0.083)

Ordinal GMIFS 0.826 0.179 (0.000, 0.375, 0.077)
Weighted k-Nearest Neighbors 0.804 0.143 (0.091, 0.222, 0.125)

FANS 1. The two Ordinal FANS approaches also achieved the lowest misclassification rates.

Among the five methods, most of the misclassifications occurred among the HCV-cirrhotic

tissues. Several methods (Ordinal FANS 2, P/O Boosting, Ordinal GMIFS) correctly clas-

sified all normal samples, while Ordinal FANS 1 correctly classified all HCV-HCC samples.

3.5 Summary

The “no free lunch” theorem states that one method will not perform best for all prob-

lems [51]. We have shown that certainly holds true in the case of ordinal response prediction

in high-dimensional settings. The simulation study revealed that, overall, the first approach

we took to extend FANS to the ordinal response setting performs best when the true deci-

sion boundary was nonlinear. However, when the true decision boundary was linear, Ordinal

GMIFS seemed to perform best.

With respect to feature selection, for most sample sizes examined, the second Ordinal

FANS approach was more sensitive than the other methods when there were K = 4 classes

72

in the outcome. Ordinal GMIFS was the most sensitive when there were K = 3 ordinal

classes. Furthermore, the second Ordinal FANS approach was also the most specific method

in most of the settings we examined. P/O Boosting was slightly more specific in just four

of the sixteen settings. Thus, overall, the second Ordinal FANS method seemed to perform

feature selection best out of all methods in the comparison.

In the data analyses, each method achieved the best predictive performance in at least

one analysis if we considered both Somers’ DXY and the misclassification rate. When we

examined the class-specific misclassification rates, it became apparent that the methods make

different errors. That is, on a given dataset, some methods had the most trouble classifying

observations from the first class, while others had the most trouble classifying observations

from the second class.

Based on this study, we would recommend applying a suite of predictive models to a

given problem and choosing the one that results in the smallest error, estimated using a

technique such as bootstrapping or cross-validation.

73

CHAPTER 4

DISCRETE SURVIVAL TIME ANALYSIS IN HIGH-DIMENSIONAL

SETTINGS

4.1 Introduction

Survival analysis involves modeling the time until the occurrence of an event. In biomed-

ical research, common events that are modeled include time to death and disease relapse.

For example, a researcher may be interested in determining risk factors that are associated

with a shorter remission period for cancer patients. In another case, the goal may be to

predict survival times of patients based on a set of independent variables. Here, emphasis is

placed on the predictions as opposed to the quantitative relationships between the indepen-

dent variables and the survival time outcome.

The scale on which survival times are measured (and reported) influence the type of analysis

that is performed. A continuous time measurement, calculated using a precise date and time

of relapse, provides more information than a discrete time measurement such as the physician

visit at which the relapse was detected. However, a continuous time is often unattainable.

For instance, patients treated for cutaneous malignant melanoma will typically be seen at

follow-up visits every three to six months for the first three years and every six months to

a year thereafter [52]. Further, whole body scans may be used for those who were treated

for metastases [52]. In this case, if a scan determines the patient has relapsed, the time of

relapse may be recorded as the date of their physician visit at which the scan occurred (e.g.

follow-up visit 3). All that is known is that the relapse occurred sometime in the interval

between visits. Also, researchers may categorize a continuous measurement because they

find the discrete measurement to be more interpretable (although this is inadvisable from a

statistical perspective). For example, researchers modeling the survival times of glioblastoma

74

patients reported the subjects as short-term, intermediate, or long-term survivors as opposed

to reporting their precise times until death [53]. Furthermore, when de-identifying protected

health information, the U.S. Department of Health and Human Services, through the Health

Insurance Portability and Accountability Act (HIPAA) Privacy Rule, has explicitly prohib-

ited the disclosure of dates more specific than the year of the event[54]. Thus, according

to HIPAA, dates of death, relapse, etc., which are used in the calculation of survival times

in de-identified datasets, must be reported as a year without a day or month. As a result,

survival times would be considered a discrete measurement.

An accurate survival time prediction can have important implications for a patient because

choice of treatment is often based on severity of disease [55]. For instance, a patient may be

willing to undergo a cancer treatment with severe side effects if she knows she will live long

enough to experience the potential benefits. In contrast, a patient given only a short time

to live may opt for hospice care. Additionally, an accurate prediction can help the patient

and her family prepare for the future. These plans will likely be drastically different if the

patient is predicted to live two months versus two years.

Numerous studies have investigated the accuracy of physicians’ subjective prognostic abil-

ities, with a unifying theme being that the predictions have poor accuracy [55]. However,

when compared to physicians’ predictions of survival times of non-small-cell lung cancer

patients, a fitted proportional hazards model performed no better [55]. In order to assess

the accuracy of continuous survival time predictions, one needs a suitable loss function to

compare the prediction with the observed outcome. For survival time predictions, there is

no simple choice of function because there are many consequences associated with a poor

prediction [55]. For instance, a severe underestimate of a patient’s survival time may result

in that patient not receiving the treatment that would have extended her life. A drastic

overestimate could cause a patient to receive a treatment that reduced the quality of the

short time he had left while putting a financial and emotional burden on his family. After

an assessment of numerous loss functions and consulting with physicians, Henderson et al.

75

concluded that the most appropriate loss function for a continuous survival time model con-

siders only whether the prediction is in “serious error” [55]. The loss function was developed

by Parkes [56], and assigns no cost if the prediction is within a multiplicative factor of two of

the observed outcome and assigns a cost of 1 otherwise [56, 55]. Thus, a predicted survival

time of 4 months would be considered reasonable if the patient survived between 2 and 8

months. Essentially, Henderson et al. argue that because standard continuous survival time

models have demonstrated poor prediction accuracy, we should consider only what is clini-

cally meaningful and acceptable: a prediction that falls within a certain margin of error of

the observed survival time. This provides motivation for modeling grouped survival times.

In the survival analysis literature, several terms are used to describe methods concerned

with analyzing event times not measured on a continuous scale. These include discrete

time survival analysis, survival analysis of interval-censored data, and grouped-time survival

analysis. Some researchers make a distinction between these terms, while others treat them

synonymously. Generally, if each event is known to have occurred between two time points,

the data are interval-censored [57]. Interval-censored data may be analyzed in several dif-

ferent ways. Cox extended his partial likelihood approach for continuous event times to

the case in which ties occur [58, 59]. Ties are assumed to have occurred as a result of the

way the event times were recorded (i.e. on an interval). For a distinct event interval, let r

represent the number of subjects who are at risk (those who have not yet experienced the

event and have not been censored) just prior to that interval, and let d equal the number

of subjects who experienced the event during the interval. Cox’s partial likelihood requires

the summation over all possible subsets of size d of the r at risk [60]. Thus, the likelihood

can be computationally prohibitive to calculate if the number of ties is large. Other meth-

ods proposed by Breslow and Efron are not as computationally intensive, but they offer

rough approximations of the true likelihood [60, 61]. Further, Breslow’s likelihood does not

acknowledge the grouped nature of the event times and thus would give inconsistent esti-

mates in the presence of grouped times [60]. The distinctions between discrete time survival

76

analysis, survival analysis of interval-censored data, and grouped-time survival analysis are

typically over whether the intervals overlap and if so, the extent of the overlap. Interval-

censored data analysis and grouped-time survival analysis are often used interchangeably,

but grouped-time survival data arise when all observed intervals either completely overlap

or have no overlaps. Further, discrete time survival analysis is used when there are only a

small number of distinct, non-overlapping intervals [62]. For example, in studies that involve

follow-up periods, such as clinical trials, many ties typically occur: d1 patients may have

experienced the event between the end of the study and follow-up visit 1, d2 patients may

have experienced the event between follow-up visit 1 and follow-up visit 2, etc. In these

situations, it is more natural and generally preferred to treat the interval-censored event

times as discrete times although the latent variable is continuous [62].

Additionally, when dealing with a time to event outcome, complications to the analysis arise

when either a subject has not experienced the event when the study ends or a subject drops

out of the study before its conclusion. Outcomes of this nature are called censored. The time

to event for censored subjects is unknown, but discarding their data would result in a loss

of information and a systematic bias. For censored observations, we know that the subject

did not experience the event before they were censored. Thus, a lower bound can be placed

on their outcome measurement, and this lower bound can be incorporated into the model.

4.1.1 Motivating example: extended phase of the AML DREAM Challenge

Acute myeloid leukemia (AML) is a cancer characterized by the proliferation of im-

mature myeloid cells in the bone marrow and commonly results in hematopoietic insuffi-

ciency[63, 64]. Cancerous (i.e. leukemia) cells may build up in the bone marrow and blood,

reducing the room for healthy white blood cells, red blood cells, and platelets. This causes

infection, anemia, and/or easy bleeding. Furthermore, the leukemia cells can spread to the

brain and spinal cord, skin, and gums [64]. There were an estimated 20,830 new cases of

AML and approximately 10,460 deaths resulting from the disease in 2015. Furthermore,

77

only about 25.9% of patients survive 5 or more years after being diagnosed. The median age

at diagnosis is 67 and the median age at death is 72 [64]. There are known risk factors for

AML, such as age and cytogenetics[65], but discovering additional clinical, genomic, and/or

proteomic correlates will help to predict patients who are at an increased risk of relapsing.

The Extended Phase of the AML Dialogue for Reverse Engineering Assessments and Methods

(DREAM) Challenge provided a dataset of acute myeloid leukemia patients that included

clinical covariates (e.g. age, sex), cytogenetic information, and proteomic data. One of

the challenges was to develop a model to predict remission duration, measured in intervals,

among patients who achieved a complete response. Remission duration was given as: 52

weeks or less, more than 52 weeks but less than or equal to 104 weeks, or greater than 104

weeks [66].

4.1.2 Definitions

Assume there are n independent subjects (i = 1, 2, 3, ..., n) and p predictors per subject,

where p >> n. The data are often presented as follows:

• Let Ti represent the discrete survival time response variable. Here, Ti = min(Yi, Ci),

where Yi is the time of event for subject i and Ci is the time at which subject i was

censored. Generally, we do not observe both Yi and Ci; we only observe the minimum

of the two times. Now, suppose there are K distinct times (j = 1, 2, ..., K) at which

at least one subject either experienced the event or was censored, t̃1 < t̃2 < ... < t̃K .

Then each Ti ∈ {t̃1, t̃2, ..., t̃K}.

• An n x 1 vector, δ, is observed where δi = I(Yi < Ci). That is, δi = 1 if an event time

was observed for subject i, and δi = 0 if subject i was censored.

• A p x 1 vector of covariates, xi, is observed for each subject.

78

To facilitate the formation of the likelihood, we define an n x K matrix for the event times

as follows:

yij =

 1 if yi = t̃j

0 otherwise

4.1.3 Low-dimensional discrete time survival analysis

Traditionally, in cases where p < n, discrete survival times are modeled using logistic

regression [67, 68]. However, the data needs to be restructured before doing so. For each

individual, a new observation is created for each time point until the subject experiences the

event. For each of these time points, the outcome is coded as 1 if the subject experienced the

event during that period and 0 otherwise. For a given individual, the same covariate values

are used for each observation (assuming the covariates are not time dependent) with the

addition of a dummy-coded variable for each of the time points (minus one). For example,

if a subject experienced the event during year 4 in a study lasting 5 years, four observations

would be created with the same covariate values along with four dummy variables for years

1 through 4. The outcomes for these four observations would be a series of three zeros fol-

lowed by a one. A subject who did not experience the event during the study would have

five observations, and the outcome values would be a series of five zeros.

Although it appears the observations for a given subject in the expanded dataset are assumed

to be independent, that assumption is not explicitly made. Instead, the binomial likelihood

for the expanded dataset is equivalent to the likelihood of the discrete-time survival model

obtained before the expansion. Thus, the ability to obtain valid maximum likelihood es-

timates by treating all observations in the expanded dataset as independent is ‘merely an

incidental convenience.’[67] We demonstrate this in the following paragraph.

The likelihood of the data can be expressed as [61, 67],

L =
n∏
i=1

P (Yi = ti)
δiP (Yi > ti)

1−δi

79

Now, define the discrete hazard rate, πij = πj(xi) = P (Yi = t̃j|Yi ≥ t̃j,xi), which is

interpreted as the probability that a subject experiences the event at time t̃j given that they

have not already experienced the event. Applying properties of conditional probabilities, we

have,

P (Yi = ti) = πiti

ti−1∏
j=1

(1− πij)

P (Yi > ti) =

ti∏
j=1

(1− πij)

where ti ∈ {t̃1, t̃2, ..., t̃K}. Plugging these values into the likelihood results in,

L =
n∏
i=1

[
πiti

ti−1∏
j=1

(1− πij)

]δi [ti∏
j=1

(1− πij)

]1−δi
The log-likelihood results from taking the logarithm and simplifying:

log L =
n∑
i=1

δilog

(
πiti

1− πiti

)
+

n∑
i=1

ti∑
j=1

log(1− πij)

Using yij as defined previously, the log-likelihood can be re-expressed as [67]

log L =
n∑
i=1

ti∑
j=1

[
yijlog

(
πij

1− πij

)
+ log(1− πij)

]
.

Notice that this log-likelihood is equivalent to the log-likelihood utilized in logistic regression

[67].

Now, re-expressing the log-likelihood as,

log L =
n∑
i=1

ti∑
j=1

[yijlog(πij) + (1− yij)log(1− πij)] , (4.1)

demonstrates that this formulation assumes that censored observations are observed at ci

but not at ci + 1. In other words, the censoring occurs at the end of the interval in which

the censoring was recorded [67]. For instance, let K = 3 years. If ci = 2, all we know is that

observation i was censored between the start of the second year and the end of the second

year. The above log-likelihood assumes that observation i was censored at the end of the

80

second year, implying that yi > 2. However, if the observation was actually censored soon

after the start of the second year, bias is added to the model. We will discuss other ways of

incorporating the censored observations in section 2.2.

4.2 Forward continuation ratio model

4.2.1 Penalized and unpenalized predictors

In high-throughput experiments, there are often two sets of predictors: a high-

dimensional set of genomic predictors (e.g. gene expression data) and a smaller dimensional

set of demographic and clinical predictors (e.g. sex, age, platelet count). Given the number

of genomic predictors is generally at least in the tens of thousands, in the absence of applying

some aggressive data reduction or filtering strategy, a penalized (also called regularized)

procedure is required to estimate the model parameters. One of the most frequently used

methods utilizes the L1 or LASSO penalty, which constrains the sum of the absolute coeffi-

cients to be less than some tuning parameter, λ. In a model with p predictors, the constraint

is given by
∑p

q=1 |βq| ≤ λ. The coefficients of the predictors that are deemed unimportant

by the algorithm will be shrunk to zero, so parameter estimation and feature selection are

performed simultaneously. However, if certain clinical variables are known to be associated

with, or predictive of, the outcome, then they should be forced into the model. That is,

the clinical predictors should not be estimated using penalization techniques. The ability

to model both penalized and unpenalized predictors is a crucial aspect of our method for

modeling high-dimensional data. One reason is that the National Institutes of Health (NIH)

released a statement suggesting that all NIH-funded projects going forward must either

consider sex as a biological variable or provide convincing justification from the scientific

literature or preliminary data for studying only one sex [69]. Going forward, we refer to

the high-dimensional set of predictors whose coefficients we estimate using penalization as

the penalized predictors, denoted by x, and the predictors we force into the model as the

unpenalized predictors or unpenalized subset, denoted by z.

81

4.2.2 Likelihood

We developed a method for modeling high-dimensional discrete survival time data from

an ordinal modeling perspective. Our method fits the high-dimensional data to a discrete

survival time outcome using a forward continuation ratio (FCR) model with a complementary

log-log (cloglog) link function given by [70],

log[− log(1− πij)] = αj + xiβ + ziθ, j = 1, ..., K − 1 (4.2)

where αj represents the intercept, or threshold, for the jth distinct time, t̃j, and β and θ are

the coefficients for the penalized and unpenalized predictors, respectively [71]. The cloglog

link function is appropriate if it is reasonable to assume that the data were generated by

a continuous-time proportional hazards model [60]. Furthermore, πij is the discrete hazard

rate as defined previously.

No Censoring Occurs Sometimes in discrete survival time datasets, all subjects experi-

enced the event [53]. Thus, we first developed a model that does not incorporate censoring

information [70]. We define the likelihood as a product of n conditionally independent Bi-

nomial random variables [72], where (1− πij) is the conditional complement of πij equal to

P (Yi > t̃j|Yi ≥ t̃j,xi, zi):

L =
n∏
i=1

K−1∏
j=1

π
yij
ij (1− πij)

∑K
k=j yik−yij . (4.3)

If interest lies in predicting a future observation, we can recursively estimate the probability

that a subject experienced the event at a certain time [70]:

P (Yi = j|xi) = πij ∗ P (Yi ≥ j|xi, zi)

=

 πij for j = 1

πij ∗
∑j−1

i=1 P (Yi = j|xi, zi) for 1 < j ≤ K

82

Then, we predict the subject will experience the event at the time point with the maximum

estimated probability.

Censoring Occurs To account for censoring, we define a response matrix as,

tik =

 1 if ti = t̃k

0 otherwise
(4.4)

Now we can incorporate censored observations by using a modified version of the previously-

defined likelihood:

L =
n∏
i=1

K∏
j=1

π
yij
ij (1− πij)

∑K
k=j tik−yij .

There are two modifications from equation 4.3. First, the sum in the second exponent is

applied to ti = (ti1, ..., tiK) as opposed to yi = (yi1, ..., yiK). This change is necessary because

yij = 0 for j ∈ {1, ..., K} if δi = 0. The second modification is that the product over time

intervals now goes to K instead of K − 1 to account for censoring in the last time period,

t̃K .

The corresponding log-likelihood is given by

log L =
n∑
i=1

K∑
j=1

[
yijlog(πij) +

(
K∑
k=j

tik − yij

)
∗ log(1− πij)

]
. (4.5)

In our redefined likelihood, tik can be defined differently depending on our assumption of

the timing of the censoring. Recall that in cases when p < n, it is often assumed that

an observation is censored at the end of the discrete time interval in which the censoring

occurred, so the contribution to the likelihood reflects the assumption that yi > ci [67].

When the response matrix is defined as it is in (4.4), the log-likelihoods in equations (4.1)

and (4.5) are equivalent. In our previous example, we set K = 3 years and we assumed the

subject was censored during the second time interval, so ci = 2. Using this definition of tik,

83

the contribution to the likelihood for censored observation i is

log(1− πi1) + log(1− πi2)

However, if the censoring occurred towards the beginning of the second year, it may be more

appropriate to assume that each censored observation was censored at the end of the first

year. In this case the contribution to the likelihood reflects the assumption that yi > ci − 1.

Using this assumption of the timing of censoring, we have

tik =

1 if yi = t̃k

1 if ci = t̃k+1

0 otherwise

And so the contribution to the likelihood for censored observation i is

log(1− πi1)

Finally, we can assume the hazard rate is constant over the time period in which the obser-

vation was censored [73]. This method represents a compromise between the previous two

assumptions. Here, we define

tik =

1 if yi = t̃k

0.5 if ci = t̃k

0.5 if ci = t̃k+1

0 otherwise

Using this compromise, the contribution to the likelihood for censored observation i is

log(1− πi1) + 0.5 ∗ log(1− πi2)

84

Now define πj = (π1j, π2j, ..., πnj)
T . The derivative of the log-likelihood with respect to the

qth predictor is given by

δ logL
δβq

=
∑K

j=1

[
xTq ∗ exp{− exp{αj + xβ + zθ}+ αj + xβ + zθ}

[
yj
πj
−

∑K
k=j tk−yj
1−πj

]]
(4.6)

When the purpose of a model is strictly to predict a future observation, as opposed to

inferring information about the relationship between the predictors and response, researchers

will often treat censoring times as event times instead of incorporating a lower bound on

these observations into the likelihood [74]. This amounts to setting yi = ci for the censored

observations and fitting an FCR model using the likelihood in equation 4.3. In this case, the

contribution to the likelihood for censored observation i would be

log(1− πi1) + log(πi2).

From here on, we will refer to the censoring assumptions by number:

• Assumption 1: yi > ci

• Assumption 2: yi > ci − 1

• Assumption 3: Constant hazard rate within the interval in which the censoring oc-

curred.

• Assumption 4: Event times are equal to the censoring times, i.e. yi = ci.

4.2.3 Model fitting in high-dimensional settings

The Generalized Monotone Incremental Forward Stagewise (GMIFS) method is an al-

gorithm that produces a monotone LASSO solution for loss functions other than squared

error. Hastie et al. provided a concrete example using logistic regression [13], and the GMIFS

method was subsequently extended by Archer et al. for fitting several different logit link

ordinal response models to high-throughput genomic data including the cumulative logit,

forward continuation ratio, backward continuation ratio, stereotype logit, and adjacent cat-

85

egory models [7].

Using the log-likelihood in equation 4.5 and it’s derivative in equation 4.6, we extended the

GMIFS algorithm for ordinal response modeling using a cloglog link function, which enabled

us to estimate a penalized solution to the discrete survival time FCR model in the presence

of censoring. We can also include an unpenalized subset of predictors in the model by using

the following modified GMIFS algorithm [71]:

1. Enlarge the predictor space as X̃ = [X : −X] , where X represents the standardized

predictors.

2. Initialize the α’s to their empirical values. For model (4.2), these are initialized as

αj = log

(
−log

(
1−

∑n
i=1 tij∑n

i=1

∑K
k=j tik

))
for j = 1, ..., p. For the discrete survival time

model with censored data, we initialize an additional threshold as αK = log(−log(1−

0.99)) = 1.52718.

3. For step s = 0, initialize the components of β̂
(s)

as β̂1 = β̂2 = ... = β̂p = β̂p+1 = ... =

β̂2p = 0.

4. Treat β̂
(s)

as fixed and estimate α and θ by maximum likelihood.

5. Find m = argmin
p

-δlogL/δβp at the current estimate β̂
(s)

.

6. Update β̂
(s+1)
m = β̂

(s)
m + ε, where ε is a small increment such as 0.001.

7. Repeat steps 4 to 6 until the difference between two successive log-likelihoods is smaller

than a pre-specified tolerance, τ .

The resulting model will be sparse, meaning the vast majority of the coefficient estimates

will be zero. Thus, only the unpenalized predictors and the penalized predictors deemed

important by the algorithm will have an estimated effect on the outcome. As a result, we

can assess how well the model predicts a future observation as well as how well the model

performed feature selection. The former can be estimated by applying the model to an

86

independent validation set or by utilizing resampling techniques (e.g. bootstrap resampling,

cross-validation) and the latter can be assessed with a simulation study.

4.2.4 Performance measures

We measured the performance of the ordinal response models in the simulation and data

analysis with Somer’s D, a measure of association between two ordinal variables. Before

giving the equation for Somer’s D, it is necessary to define concordance and discordance.

Let ya and ŷa be the observed and the predicted ordinal response variables, respectively, for

subject a. Given a pair of subjects, if the subject that has a larger observed value also has

the larger predicted value, the pair of subjects is concordant. If the subject that has a larger

observed value has the smaller predicted value, the pair of subjects is discordant. Now, let

C represent the number of concordant pairs in a sample and D represent the number of

discordant pairs. Define Ty as the number of pairs in which the two subjects had the same

observed response value (i.e. they were tied with respect to y) and n as the number of

subjects. Somer’s D is an asymmetric measure of association, meaning we cannot treat the

two variables interchangeably. We used Somer’s DXY , which measures how well X serves as

a predictor of Y [17]. Here, X represents the predicted value, or ŷa, and Y represents the

observed outcome, ya. The sample version of Somer’s DXY is given by:

DXY =
C −D

n(n− 1)/2− TY
,

where the numerator represents the difference in the number of concordant and discordant

pairs, and the denominator represents the total number of pairs that are untied on Y . DXY

ranges from -1 to 1, where DXY = −1 indicates a perfect negative association, DXY = 1

indicates a perfect positive association, and DXY = 0 indicates no association.

Somer’s D has been extended to account for censored observations in survival data [17].

Define the censored sign difference, csign, for two outcomes, ya and yb, and their respective

87

censoring indicators, δa and δb, as

csign(ya, δa, yb, δb) =

1 if ya > yb and δa ≤ 1 = δb

−1 if ya < yb and δa = 1 ≥ δb

0 otherwise

For the predicted values, we will use

sign(ŷa, ŷb) =

1 if ŷa > ŷb

−1 if ŷa < ŷb

0 otherwise

Given the set {ya, δa, yb, δb, ŷa, ŷb}, the product csign(ya, δa, yb, δb) ∗ sign(ŷa, ŷb) is calculated

and the pair of subjects is declared to be concordant if the product is 1, discordant if the

product is -1, and “tied” if the product is 0. This product is calculated for all

(
n

2

)
pairs of

subjects and then Somer’s DXY can be calculated as usual, where TY is the number of times

that csign(ya, δa, yb, δb) = 0.

4.2.5 Simulation

The aim of the simulation study was two-fold. First, we were interested in determining

how well our model predicts event times in an independent dataset. Second, we wanted to

determine how well our model performs feature selection. We simulated data from 3 discrete

survival time points (e.g. short-, intermediate-, and long-term survival), and we set the

number of penalized predictors to p = 1, 000. Within each time point (k = 1, 2, and 3),

50 multivariate Gaussian observations were generated, where the {w, z}th element of the

covariance structure was set to σwz = 0.5|w−z| and the variance of each predictor was set

to σzz = 1. We simulated the first ten predictors to have means equal to their event time

and the remaining 990 to have a mean of 0 for each of the three classes, so µ = (kT10,0
T
990)

for k = 1, 2, 3. In order to assess the effect of censoring on performance, we randomly

sampled 10%, 20%, and 30% of the observations to be censored. We were also interested

88

in determining which of the four assumptions is most valid, so we fit models using each

assumption. Thus, there were 12 simulation scenarios, and each simulation was run 2,401

times.

Using stratified random sampling, we allocated 2/3 of the data to a training set and 1/3 to

a validation set. We fit a discrete survival time model to the training set using the GMIFS

algorithm and predicted the event times in the validation set. We assessed the predictive

performance of the algorithm with Somer’s DXY measure of association between the observed

and predicted values. Next, in order to assess how well the model performed feature selection,

we fit a discrete survival time model using the combined training and validation set. We

calculated the sensitivity, which assesses the ability of the model to correctly identify features

that were simulated to have different means across the outcome classes, and we calculated

the specificity, which assesses the ability of the model to correctly identify features that were

simulated to have equal means across the outcome classes. Furthermore, the model resulting

from the convergence of the GMIFS algorithm is often overfit, resulting in poor test set error

rates, so we examined the results of the models at the steps that minimized the AIC and

BIC.

We used the normal approximation for the confidence interval of a proportion to arrive

at the number of simulations. We set the estimated accuracy at 0.5 because it gives the

most conservative (i.e. largest) sample size estimate, and we wanted to be within 2% of the

true error rate with 95% confidence. Thus, setting the margin of error to 0.02, and using

Z1−α = 1.96, we concluded that we needed to conduct 2,401 simulations, as shown below.

0.02 = 1.96 ∗
√

0.5 ∗ 0.5

n

⇒ n = 0.25 ∗
(

1.96

0.02

)2

= 2, 401

89

Table 9. Distribution of T (% censored within interval) for the Extended Phase of the AML
DREAM Challenge data.

Interval 1 Interval 2 Interval 3
71 (16.9%) 16 (0%) 44 (68.2%)

4.2.6 Data analysis

4.2.6.1 Exploratory data analysis

The dataset provided for the Extended Phase of the AML DREAM Challenge contained

a censoring indicator and p = 265 predictor variables (34 clinical and cytogenetic predictors

and 231 proteomic predictors) on 187 subjects. However, we only retained the n = 131

subjects who achieved a complete response and thus had a nonmissing response variable (re-

mission duration). Of the 131 subjects, 89 (67.9%) relapsed and 42 (32.1%) were censored,

but the censored observations were not uniformly distributed across the three intervals (Table

9). The distribution of T and C reflect the difficulties in analyzing this particular dataset.

First, there is a noticeable class imbalance, which will likely cause any model to overem-

phasize the classes with larger sample sizes. Second, a ubiquitous assumption in survival

analysis is that the censoring times are independent of the event times. This assumption

appears to be invalid in this particular dataset. Nevertheless, these issues are common in

biomedical data.

The structure of the chromosomes (i.e. cytogenetics) is a known predictor of risk for AML

patients and can be used to categorize a patient into one of three risk groups: favorable,

intermediate, or adverse [65]. No subjects in the dataset had a favorable karyotypic feature,

so we dichotomized the variable as “adverse” or “other”. Next, we checked for any variables

with zero variance or “near-zero variance.” Near-zero variance predictors are those in which

the number of unique values divided by the sample size is small and the ratio of the frequency

of the most prevalent predictor value to the frequency of the second most prevalent value

is large [74]. After ensuring that no predictors met the criteria, we centered and scaled the

90

Fig. 22. Proportion missing among
predictors with at least one
missing value in the AML
dataset.

Fig. 23. Proportion missing among
samples with at least one
missing value in the AML
dataset.

Table 10. Percent censored within each interval in the AML dataset, by RAS mutation status.

Interval 1 Interval 2 Interval 3
Missing RAS status 60.7% 10.7% 28.6%

Not missing RAS status 52.4% 12.6% 35.0%

continuous predictors. Then we examined the data for missing values. Of the 131 subjects,

41 (31.3%) had at least one missing value, and of the 265 predictors, 20 (15.3%) had at

least one missing value. Among the predictors with at least one missing value, only one

(a variable indicating whether or not a patient had a particular Ras mutation) had greater

than 10% of its values missing (Figure 22). We empirically examined that predictor to assess

whether the pattern of missingness was related to the outcome (Table 10) and concluded

that the pattern of missingness appeared to be random. We also looked at the subjects

with at least one missing value (Figure 23) and noticed that the amount of missingness was

small. Thus, we imputed the missing values using the K-nearest neighbors technique, which

is fairly robust to the tuning parameter, K, and the amount of missing data [75]. We used

the R function, knnImputation in the DMwR package with the default value of K = 10.

91

Unpenalized Subset Recall that the unpenalized subset refers to clinical predictors that

have a known association with the response. We do not penalize these variables in the

fitting process, so they are effectively forced into the model. To choose the predictors to

include in the unpenalized subset, we first separately fit each of the 34 clinical variables to

the discrete survival time response using logistic regression models, as previously described

(Table 11). We combined the results of this analysis with a literature search of known risk

factors among AML patients and decided to include 4 predictors in the unpenalized subset:

cytogenetic category[65, 76], age at diagnosis[65, 63], Fms-like tyrosine kinase 3 receptor-

internal tandem duplication (FLT3/ITD mutation)[77, 78, 79], and hemoglobin count[76].

The remaining clinical and proteomic predictors were included in the penalized subset.

4.2.6.2 Analysis

We used the GMIFS algorithm to fit a FCR model to the AML dataset for each of

the four assumptions regarding the censoring information. We evaluated the results of the

models at the steps that minimized the AIC and BIC using the leave-one-out (N -fold) cross-

validation estimate of Somer’s DXY for each of the four models.

4.3 Results

4.3.1 Simulation results

For each of the 2,401 simulations, 2/3 of the data was used to train a model, and

1/3 of the data was set aside to test the fitted model’s prediction performance. Figure

24 shows the distributions of Somer’s DXY , calculated using the predicted observations in

the validation set, for each of the models fit using different assumptions and for varying

percentages of censoring. For all models, performance deteriorated as the percentage of

censored observations in the data increased. This is to be expected since less information is

provided by a censored observation than an observation with an event time. When 10% of the

observations were censored, models fit using assumptions 2 and 4 resulted in slightly larger

92

Table 11. Extended Phase of the AML DREAM Challenge univariate feature selection for
the unpenalized subset.

Feature Unadjusted p-value
Hemoglobin count 0.0005

Whether the patient was found to have a ITD FLT3 mutation 0.0028
Levels of cell surface marker CD13 detected 0.0054

Cytogenetic category 0.0126
Whether the patient was found to have a Ras/STAT mutation 0.0285

Age at time of diagnosis 0.0325
Fibrinogen levels 0.0420

Whether the patient had been diagnosed with a prior cancer 0.0533
Whether the patient was found to have a D835 FLT3 mutation 0.0664

Whether the patient had had prior chemotherapy 0.0768
Levels of cell surface marker CD7 detected 0.0889

Whether the patient was diagnosed with an infection 0.0925
Sex 0.1576

White blood cell count 0.1938
Whether the patient had prior radiation therapy 0.2295

Prior antecedent hematologic disorder 0.2601
Albumin levels 0.2658

Lactate dehydrogenase levels 0.3120
Levels of cell surface marker HLA-DR detected 0.3235
Number of myeloid blast cells (bone marrow) 0.3443
Total number of myeloid blast cells (blood) 0.4051

Number of monocytes measured (blood) 0.4287
Levels of cell surface marker CD33 detected 0.4560

Creatinine levels measured 0.6376
Number of promegakaryocytes measured (blood) 0.6894

Levels of cell surface marker CD34 detected 0.6951
Number of monocytes measured (bone marrow) 0.7156

Bilirubin levels measured 0.7744
Levels of cell surface marker CD19 detected 0.7979
Levels of cell surface marker CD20 detected 0.8334

Number of myeloid blast cells measured (blood) 0.9305
Platelet count 0.9474

Levels of cell surface marker CD10 detected 0.9501
Number of promegakaryocytes measured (bone marrow) 0.9541

93

values of Somer’s DXY than models fit using assumptions 1 and 3. This trend continued as

20% and then 30% of observations were censored. However, the differences in performance

became more apparent as the percentage of censored observations increased. When 20% of

observations were censored, assumption 1 was worst, followed by assumption 3. Models fit

using assumption 4 and assumption 2 performed relatively equivalently. In the simulation

with 30% of observations censored, assumption 1 performed poorly and by far the worst,

followed by assumption 3. Assumptions 2 and 4 performed best, but assumption 4 was the

slightly better of the two. In all three cases with different levels of censoring, assumptions

2 and 4 performed much better than assumptions 1 and 3. Models fit using assumption

4, which underestimates survival times for censored observations by assuming their event

times are equal to the times at which the observations were censored, consistently achieved

the largest values of Somer’s DXY . This result echos Kuhn and Thompson’s statement

that incorporating censoring times may not be necessary when prediction, as opposed to

inference, is the ultimate goal [74]. It appears there is a bias-variance tradeoff, as is the

case in most statistical learning problems. Assumption 4 biases results by underestimating

survival times for censored observations but reduces the variance by incorporating into the

likelihood an event time as opposed to a bound on an event time, as the other assumptions

do. Furthermore, the selection criteria did not seem to make a difference. That is, the

AIC-selected and BIC-selected models performed approximately equivalently.

Aside from developing a useful predictive model, the GMIFS algorithm also performs feature

selection. When p >> n, this corresponds to selecting a subset of the p features to jointly

predict the response. Of the p = 1, 000 features in the simulations, 10 were simulated to differ

between classes, while the remaining 990 were not. Figure 25 shows the distribution of the

sensitivity for the AIC-selected and BIC-selected models, separately by assumption. Once

again, the models employing assumptions 2 and 4 performed best, assumption 1 performed

poorly, and assumption 3 performed slighlty worse than 2 and 4. As the percentage of

censoring increased, assumption 4 performed better than assumption 2. This is a surprising

94

Fig. 24. Validation set estimates of Somer’s DXY from the simulation study for models fit
using each of the four assumptions and for different proportions of censoring. Results
from both the AIC-selected (red) and BIC-selected (blue) models are shown.

95

result. It has been hypothesized that assumption 4 might be reasonable when prediction is

the primary research task [74], but assumption 4 also seems to perform feature selection well.

Further, the percentage of censoring does not affect the assumption 4 models because the

models in the three cases are the same. That is, since assumption 4 effectively ignores the

censoring information, the proportion of censoring does not affect the predictors selected by

the models. Increasing the percentage of censored observations slightly negatively affected

models fit with assumption 2. Furthermore, the variation of sensitivity estimates is relatively

large for all cases. This is a result of there being only 10 features that were simulated to have

nonzero coefficients. Thus, the addition or withdrawal of a single predictor from a model

has a large impact on the estimated sensitivity.

Figure 26 shows the distribution of the specificity estimates. As with sensitivity, models fit

using assumptions 2 and 4 performed best, and assumption 1 performed poorly. Additionally,

it seems that using BIC to select the final models resulted in better specificity but slightly

worse sensitivity.

4.3.2 Data analysis results

The results from the Extended Phase of the AML DREAM Challenge data analysis are

presented in Figure 27. Aside from assumption 2 in which the AIC and BIC performed

equivalently, the BIC seemed to have slightly larger Somer’s DXY values, which suggests

that the AIC-selected models were overfit. The models for assumption 2 achieved the highest

estimate of Somer’s DXY (Figure 27). However, the AIC-selected and BIC-selected models fit

using assumption 3 were well within one standard error of the models fit using assumption 2.

Thus, it appears that there were two levels of performance. Assumptions 2 and 3 performed

best while models fit using assumptions 1 and 4 performed equivalently to one another but

worse than 2 and 3.

In addition to prediction accuracy, we were also interested in determining which variables the

models selected among the 261 penalized predictors. Thus, we fit a model utilizing the entire

96

Fig. 25. The distribution of sensitivity estimates from the simulation study for models fit using
each of the four assumptions and for different proportions of censoring. Results from
both the AIC-selected (red) and BIC-selected (blue) models are shown.

97

Fig. 26. The distribution of specificity estimates from the simulation study for models fit using
each of the four assumptions and for different proportions of censoring. Results from
both the AIC-selected (red) and BIC-selected (blue) models are shown.

98

Fig. 27. Leave-one-out cross-validation estimates of Somer’s DXY ± one standard error for
models fit using the AML data and for each of the four assumptions. Results from
both the AIC-selected (red) and BIC-selected (blue) models are shown.

99

Table 12. Number of nonzero coefficient estimates among the 261 penalized predictors when
using the entire AML dataset. The GMIFS iteration of the selected model is shown
in parentheses.

Selection Criterion Assumption 1 Assumption 2 Assumption 3 Assumption 4
AIC 4 (207) 2 (115) 3 (118) 26 (2,371)
BIC 4 (207) 2 (115) 1 (29) 1 (41)

dataset for each assumption, as opposed to N-fold CV models, in which one observation is

left out each time a model is fit. The BIC-selected models, which seemed to achieve slightly

better prediction accuracy as measured by N-fold CV (Figure 27), were more parsimonious

than the AIC-selected models for assumptions 3 and 4 (Table 12). AIC and BIC selected the

same models for assumptions 1 and 2. We compared the features with nonzero coefficient

estimates in each AIC-selected and BIC-selected model. Only one feature, MCL1, had a

nonzero coefficient estimate in all models. MCL1, a member of the Bcl-2 family, is the anti-

apoptotic protein encoded by the MCL1 (myeloid cell leukemia 1) gene. Although the gene

doesn’t play a direct role in cell proliferation and differentiation, MCL1 and other genes in

the Bcl-2 family can either permit or prevent these programs from proceeding [80]. The

longest gene product (isoform) inhibits apoptosis, but alternatively spliced shorter isoforms

promote apoptosis. Furthermore, drug resistance in AML has been linked to high levels of

MCL1 [81]. Glaser et al. showed that removal of MCL1 could cure mice with AML and that

MCL1 is critical for survival of human AML cells [81].

4.4 Summary

In this chapter, we developed a method for modeling discrete survival times when the

number of predictors is much larger than the number of observations. Specifically, we showed

that the discrete times can be modeled using a forward continuation ratio model with a com-

plementary log-log link function. When the discrete response measures are intervals in time,

there is no clear best way of incorporating censoring times into the likelihood. Therefore,

we examined four possible assumptions. The first treats the beginning of the time interval

100

following the interval in which an observation was censored as a lower bound on the event

time for that observation. The second assumption treats the beginning of the time interval

in which the censoring occurred as the lower bound. The third assumes that the hazard rate

is constant over the period in which the censoring occurred. Finally, we can simply, and

näıvely assume that the censoring times are equal to the event times.

The ordinal Generalized Monotone Incremental Forward Stagewise (GMIFS) algorithm al-

lowed us to model both an unpenalized subset of predictors, that are forced into the model

with nonzero coefficient estimates, and a penalized subset of predictors, many of which will

end up having coefficient estimates equal to zero. Thus, in addition to developing a predictive

model, the algorithm also performed feature selection. GMIFS models run until convergence

are usually overfit, so we examined the performance of the models stopped at the steps that

minimized the AIC and BIC criteria.

Among the four assumptions, the AIC-selected and BIC-selected models fit using assump-

tion 2 (yi > ci − 1) resulted in the best performance in the data analysis. However, in the

simulation studies, models fit using assumption 2 and assumption 4 (the event times are set

equal to the censoring times) seemed to perform best among both AIC-selected and BIC-

selected models. Specifically, models fit using assumption 4 achieved the highest Somer’s

DXY measures and were about equivalent to models fit using assumption 2 with regard to

feature selection. Based on the combined results of the AML data analysis and the simu-

lation studies, no matter if the purpose of a study is to develop a predictive model or to

gain a sense of which features are driving the model, we recommend employing assumption

2 when modeling discrete survival times in high dimensions. Assumption 1 (yi > ci), which

is frequently used in low-dimensional discrete survival time models, performed the worst

according to all three criteria (Somer’s DXY , sensitivity, and specificity) .

101

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, we developed new methods for predicting an ordinal response in

cases when the number of predictors, p, is much larger than the sample size, n. In Chapter

2, we extended the binary classification method, Feature Augmentation via Nonparametrics

and Selection (FANS), to the ordinal response setting. Our motivation to develop this novel

method arose from the fact that, in the binary response setting, FANS was highly competitive

when compared with popular high-dimensional classification methods and outperformed the

other methods in many cases. FANS is unique in that it fits a model of augmented features

defined in terms of class-conditional kernel density estimates using an ensemble scheme of

data splitting and prediction averaging. We implemented two approaches to extend FANS

to the ordinal response setting, namely, aggregating K−1 penalized binary response models

and proportional odds boosting augmented features. We described the two methods in

Chapter 2 and compared their performances using a simulation study and an analysis of a

gene expression dataset. In the simulation study, we examined the effects of the number of

ordinal classes, K, the sample size, n, the number of iterations in the FANS algorithm, L, and

the linearity of the decision boundary. Because Ordinal FANS fits a decision boundary that

is nonlinear in the original features, both approaches achieved better predictive performance

when the simulated decision boundary was nonlinear. When compared against one another,

the aggregating penalized binary response models approach had a lower misclassification rate

overall when the true decision boundary was linear, while the proportional odds boosting

approach performed better when the true decision boundary was nonlinear. With respect

to selecting truly important features from the high-dimensional feature space, the Ordinal

102

FANS proportional odds boosting approach performed better overall. In our data analysis,

we showed that both Ordinal FANS approaches accurately utilized high-throughput gene

expression data to classify tissues as normal cervical, high-grade intraepithelial lesion, or

cervical carcinoma, but the Ordinal FANS proportional odds boosting approach performed

better.

In Chapter 3, we compared Ordinal FANS to other competing methods, namely Ordinal

GMIFS, P/O Boosting, and k-nearest neighbors. We assessed the models’ performances in

a simulation study and in three analyses of high-throughput genomic data using a variety of

metrics. To assess predictive accuracy, we utilized Somers’ DXY , a measure of ordinal asso-

ciation between the predicted and observed outcomes, as well as the misclassification rate.

To assess feature selection, we examined the sensitivity and specificity of the fitted models.

We showed that both Ordinal FANS approaches performed competitively in the simulation

study in terms of predictive accuracy when the true decision boundary was nonlinear, the

number of classes in the ordinal outcome was small (K = 3 in the simulations), and the

sample size was 100 or greater. With respect to feature selection, we demonstrated that the

Ordinal FANS proportional odds boosting approach was overall the most specific method

and one of the most sensitive as well. Furthermore, in the data analyses, it was apparent

that the best method was dependent on the dataset. That is, one method was not best

overall, and one method was not worst overall. The Ordinal FANS approaches performed

best on one of the datasets, but they were also competitive in all three data analyses.

In Chapter 4, we developed a novel method for predicting a discrete survival time out-

come using high-throughput genomic data. We accomplished this by extending the Ordinal

GMIFS method to accommodate censoring information and to allow for the use of the com-

plementary log-log link function. We implemented four approaches for accommodating the

censoring information, each of which uses a unique assumption. We compared the results of

models fit using each assumption in a simulation study and in an analysis of acute myeloid

leukemia (AML) patients. The results suggested that the lower bound of a censored pa-

103

tient’s event time should be the discrete time point prior to the time point in which they

were censored.

5.2 Future work

In our Ordinal FANS extension, we used kernel density estimation to augment the

original features. Specifically, we used a normal kernel function with a normal optimal

bandwidth/smoothing parameter [82], given by(
4

3n

) 1
5

∗ σ,

where σ denotes the standard deviation. The choice of kernel function is not overly impor-

tant, but we would like to evaluate different bandwidths. One possibility is to modify the

bandwidth to accommodate extreme values and long tailed distributions by utilizing a more

robust version of σ, such as the median absolute deviation estimator, given by [82]

σ̃ =
median(|yi − µ̃|)

0.6745
,

where µ̃ denotes the median of the observations.

We also saw in Chapter 2 that Ordinal FANS performs much better when the true

decision boundary is nonlinear. Fan et al. described a variant of FANS, called FANS2,

that includes the original features in addition to the augmented features in the model fitting

procedure, which improves performance when a linear decision boundary is reasonable [25].

We plan on implementing FANS2 in the ordinal response setting and comparing it to the

Ordinal FANS approaches described in Chapter 2.

Furthermore, it is well known that class imbalance can lead to predictions that favor

the class(es) with more observations [74]. Methods such as upsampling, in which the classes

with fewer observations are sampled with replacement such that all class-specific sample sizes

are equal, have been criticized as unscientific. We plan on examining the impact of class

imbalance on the Ordinal FANS algorithm through a simulation study.

104

Finally, key demographic or clinical predictors that have a known association with the

ordinal response should be included in the model in addition to the important genomic

features. For instance, age and sex are known to be associated with many diseases. These

predictors should not be subject to feature selection by a penalization technique. In other

words they should be forced into the model as unpenalized predictors. As we mentioned in

Chapter 3, the ability to model both penalized and unpenalized predictors is important for

any high-dimensional data modeling method. Therefore, we plan on extending the Ordinal

FANS method described in Chapter 2 to allow for the inclusion of an unpenalized subset of

predictors.

105

Appendix A

CODE FOR CHAPTER 1

A.1 Ordinal FANS, approach 1

1 #### Ordinal FANS: Approach #1 ############

2

3 ### Model Fitting

4

5 binFANS <- function(x, ...) UseMethod("binFANS") # Generic function

6

7 #Function for running ordinal FANS algorithm

8 binFANS.default <- function(x, y, newx=NULL, niter=1, seed=2468,

9 scale=TRUE, parallel=FALSE) {

10

11 if (class(y)[1] != "ordered") {

12 stop("y must be an ordered factor.")

13 }

14 orig.y <- y

15 y <- NULL

16 # For each feature, add a small amount of noise to the duplicate values.

17 # Avoids issues estimating densities.

18 orig.x <- apply(x, 2, function(d) {

19 set.seed(seed)

20 d[duplicated(d)] <- jitter(d[duplicated(d)], factor=0.5)

21 return(d)

106

22 })

23 if (scale) {

24 trans <- preProcess(as.data.frame(orig.x), method=c("center", "scale"))

25 if (!is.null(newx)) newx <- predict(trans, as.data.frame(newx))

26 orig.x <- predict(trans, as.data.frame(orig.x))

27 } else {

28 trans <-NULL

29 }

30 x <- NULL

31 K <- length(unique(orig.y))

32 n <- dim(orig.x)[1]

33 levels <- unique(orig.y)

34 set.seed(seed)

35 partitions <- createDataPartition(orig.y, p=0.5,

36 times=ceiling(niter / 2))

37 call <- match.call()

38 matrix.sum <- function(mat1, mat2) {

39 return(as.matrix(mat1) + as.matrix(mat2))

40 }

41 # Part of the algorithm that is repeated niter times

42 if (parallel) {

43 ‘%fun%‘ <- ‘%dopar%‘

44 } else {

45 ‘%fun%‘ <- ‘%do%‘

46 }

47 fitted.model <- foreach(i=1:niter, .combine=’rbind’,

48 .packages=c(’sm’, ’caret’)) %fun% {

107

49 #Create the data partitions, i.e. (D1, D1^c), (D2, D2^c), ..., (DL, DL^c

)

50 if(i%%2!=0) {

51 D.train.x <- orig.x[partitions[[(i - 1) / 2 + 1]],] #x in D1, D3, ...

52 D.train.y <- orig.y[partitions[[(i - 1) / 2 + 1]]] #y in D1, D3, ...

53 D.test.x <- orig.x[-partitions[[(i - 1) / 2 + 1]],] #x in D1^c, D3^c,

...

54 D.test.y <- orig.y[-partitions[[(i - 1) / 2 + 1]]] #y in D1^c, D3^c,

...

55 } else {

56 D.train.x <- orig.x[-partitions[[i / 2]],] #x in D2, D4, D6, ...

57 D.train.y <- orig.y[-partitions[[i / 2]]] #y in D2, D4, D6, ...

58 D.test.x <- orig.x[partitions[[i / 2]],] #x in D2^c, D4^c, D6^c, ...

59 D.test.y <- orig.y[partitions[[i / 2]]] #y in D2^c, D4^c, D6^c, ...

60 }

61 D.train.y.bin <- matrix(nrow=length(D.train.y), ncol=K - 1)

62 D.test.y.bin <- matrix(nrow=length(D.test.y), ncol=K - 1)

63 for(k in 1:(K - 1)) {

64 D.train.y.bin[, k] <- ifelse(as.numeric(D.train.y) <= k, 1, 0)

65 D.test.y.bin[, k] <- ifelse(as.numeric(D.test.y) <= k, 1, 0)

66 }

67 f.marginals <- array(dim=c(dim(D.test.x)[1], dim(orig.x)[2], K - 1))

68 g.marginals <- array(dim=c(dim(D.test.x)[1], dim(orig.x)[2], K - 1))

69 #if newx is specified, fit model and predict outcome of new observations

70 if(!is.null(newx)) {

71 if(class(newx) == "numeric") {newx <- t(as.matrix(newx))}

72 test.marginals.f <- array(dim=c(dim(newx)[1], dim(orig.x)[2], K - 1))

108

73 test.marginals.g <- array(dim=c(dim(newx)[1], dim(orig.x)[2], K - 1))

74 for(k in 1:(K - 1)) {

75 for(j in 1:dim(orig.x)[2]) {

76 f.estimates <- sm.density(D.train.x[as.numeric(D.train.y) <= k, j],

77 eval.points=c(D.test.x[, j], newx[, j]),

78 display="none")$estimate

79 g.estimates <- sm.density(D.train.x[as.numeric(D.train.y) > k, j],

80 eval.points=c(D.test.x[, j], newx[, j]),

81 display="none")$estimate

82 #Marginal density estimates for observations in D^c

83 f.marginals[, j, k] <- f.estimates[1:length(D.test.x[, j])]

84 g.marginals[, j, k] <- g.estimates[1:length(D.test.x[, j])]

85 #Marginal density estimates for newx

86 test.marginals.f[, j, k] <- f.estimates[(length(D.test.x[, j]) + 1)

:

87 length(f.estimates)]

88 test.marginals.g[, j, k] <- g.estimates[(length(D.test.x[, j]) + 1)

:

89 length(g.estimates)]

90 }

91 }

92 f.marginals[f.marginals < 0.001] <- 0.001

93 g.marginals[g.marginals < 0.001] <- 0.001

94 test.marginals.g[test.marginals.g < 0.001] <- 0.001

95 test.marginals.f[test.marginals.f < 0.001] <- 0.001

96 Z <- log(f.marginals / g.marginals) #array of augmented features.

97 Z.test <- log(test.marginals.f / test.marginals.g)

109

98 for (g in 1:dim(Z)[3]) {

99 colnames(Z[, , g]) <- paste(colnames(orig.x), g, sep=".")

100 }

101 #Fit the K - 1 binary response models

102 p.mat <- array(dim=c(K, dim(Z.test)[1], K - 1))

103 create.mat <- function(w) {

104 c(rep(w, k), rep(1 - w, K - k))

105 }

106 coefs <- matrix(nrow=K - 1, ncol=dim(orig.x)[2] + 1)

107 colnames(coefs) <- c("Intercept", colnames(orig.x))

108 rownames(coefs) <- sapply(as.character(1:nrow(coefs)),

109 function(x) {

110 paste("Modeling logit[P(Y <= ", ")]", sep=x)

111 })

112 fits <- list()

113 min.AIC <- c()

114 for(k in 1:(K - 1)) {

115 fits[[k]] <- glmpath(x=Z[, , k], y=D.test.y.bin[, k],

116 family=binomial)

117 min.AIC[k] <- as.numeric(gsub("Step ", "",

118 rownames(summary(fits[[k]])

119 [which.min(summary(fits[[k]])$AIC),])))

120 p.hat <- predict(fits[[k]], newx=Z.test[, , k],

121 s=min.AIC[k], type="response") #predict y<=k or y>k

122 coefs[k,] <- predict(fits[[k]], s=min.AIC[k], type="coefficients")

123 p.mat[, , k] <- sapply(p.hat, create.mat)

124 }

110

125 scores <- apply(p.mat, c(1, 2), sum) #aggregate binary predictions

126 return(list(fits=fits, minAIC=min.AIC, scores=t(scores), coefs=coefs,

127 D.train.x=D.train.x, D.train.y=D.train.y, trans=trans))

128 #if newx is NULL, just fit K - 1 binary response models

129 } else {

130 for(k in 1:(K - 1)) {

131 for(j in 1:dim(orig.x)[2]) {

132 #Marginal density estimates for observations in D^c

133 f.marginals[, j, k] <- sm.density(D.train.x[as.numeric(D.train.y)

<= k, j],

134 eval.points=c(D.test.x[, j]),

135 display="none")$estimate

136 g.marginals[, j, k] <- sm.density(D.train.x[as.numeric(D.train.y) >

k, j],

137 eval.points=c(D.test.x[, j]),

138 display="none")$estimate

139 }

140 }

141 f.marginals[f.marginals < 0.001] <- 0.001

142 g.marginals[g.marginals < 0.001] <- 0.001

143 Z <- log(f.marginals / g.marginals)

144 #Fit the K - 1 binary response models

145 fits <- list()

146 coefs <- matrix(nrow=K - 1, ncol=dim(orig.x)[2] + 1)

147 colnames(coefs) <- c("Intercept", colnames(orig.x))

148 rownames(coefs) <- sapply(as.character(1:nrow(coefs)),

149 function(x) {

111

150 paste("Modeling logit[P(Y <= ", ")]", sep=x)

151 })

152 min.AIC <- c()

153 for(k in 1:(K - 1)) {

154 fits[[k]] <- glmpath(x=Z[, , k], y=D.test.y.bin[, k], family=

binomial)

155 min.AIC[k] <- as.numeric(gsub("Step ", "",

156 rownames(summary(fits[[k]])

157 [which.min(summary(fits[[k]])$AIC),])))

158 coefs[k,] <- predict(fits[[k]], s=min.AIC[k], type="coefficients")

159 }

160 return(list(fits=fits, x=orig.x, D.train.x=D.train.x, coefs=coefs,

161 D.train.y=D.train.y, K=K, minAIC=min.AIC, niter=niter,

162 call=call, trans=trans))

163 }

164 }

165 if (niter == 1) {

166 if(!is.null(newx)) {

167 output <- list(coefs=fitted.model$coefs, niter=niter, K=K, x=orig.x,

168 fits=fitted.model$fits, minAIC=fitted.model$minAIC,

169 D.train.x=fitted.model$D.train.x, y=orig.y,

170 D.train.y=fitted.model$D.train.y, call=call,

171 trans=trans, newx=newx, scores=fitted.model$scores,

172 pred.class=ordered(unique(orig.y)[apply(fitted.model$

scores,

173 1, which.max)],

174 levels=levels(orig.y)))

112

175 } else {

176 output <- list(coefs=fitted.model$coefs, niter=niter, K=K, x=orig.x,

177 fits=fitted.model$fits, minAIC=fitted.model$minAIC,

178 D.train.x=fitted.model$D.train.x, y=orig.y,

179 D.train.y=fitted.model$D.train.y, call=call,

180 trans=trans)

181 }

182 } else {

183 if(!is.null(newx)) {

184 fits <- lapply(fitted.model[, 1], as.matrix)

185 minAIC <- fitted.model[, 2]

186 scores <- lapply(fitted.model[, 3], as.matrix)

187 agg.scores <- Reduce(’+’,lapply(fitted.model[, 3], as.matrix))

188 coefs <- lapply(fitted.model[, 4], as.matrix)

189 D.train.x <- lapply(fitted.model[, 5], as.matrix)

190 D.train.y <- lapply(fitted.model[, 6], unlist)

191 pred.class <- ordered(unique(orig.y)[apply(agg.scores, 1, which.max)],

192 levels=levels(orig.y))

193 output <- list(coefs=coefs, niter=niter, K=K, x=orig.x, fits=fits,

194 minAIC=minAIC, D.train.x=D.train.x, y=orig.y,

195 D.train.y=D.train.y, call=call, trans=trans, newx=newx,

196 scores=scores, agg.scores=agg.scores, pred.class=pred.class

)

197 } else {

198 fits <- lapply(fitted.model[, 1], as.matrix)

199 D.train.x <- lapply(fitted.model[, 3], as.matrix)

200 D.train.y <- lapply(fitted.model[, 5], unlist)

113

201 minAIC <- fitted.model[, 7]

202 coefs <- lapply(fitted.model[, 4], as.matrix)

203 output <- list(coefs=coefs, niter=niter, K=K, x=orig.x, fits=fits,

204 minAIC=minAIC, D.train.x=D.train.x, y=orig.y,

205 D.train.y=D.train.y, call=call, trans=trans)

206 }

207 }

208 class(output) <- "binFANS"

209 return(output)

210 }

1

2 ### Extract coefficient estimates

3

4 coef.binFANS <- function(object, model.select="mean", only.nonzero=FALSE) {

5 if(is.numeric(model.select) & model.select > object$niter) {

6 stop(paste("model.select cannot be greater than ", object$niter, sep="")

)

7 }

8 if (object$niter > 1) {

9 if (model.select=="mean") {

10 mean.coefs <- Reduce(’+’, object$coefs) / object$niter

11 if (only.nonzero) {

12 beta <- mean.coefs[, which(apply(mean.coefs, 2,

13 function(x) abs(sum(x)))!=0)]

14 }

15 } else if (is.numeric(model.select)) {

16 beta <- object$coefs[[model.select]]

114

17 if (only.nonzero) {

18 beta <- beta[, which(apply(beta, 2, function(x) abs(sum(x)))!=0)]

19 }

20 } else if (model.select=="all") {

21 beta <- object$coefs

22 if (only.nonzero) {

23 nonzero <- function(x) {

24 x[, which(apply(x, 2, function(y) abs(sum(y)))!=0)]

25 }

26 beta <- lapply(beta, function(l) nonzero(l))

27 }

28 }

29 } else {

30 beta <- object$coefs

31 if (only.nonzero) {

32 beta <- beta[, which(apply(beta, 2, function(x) abs(sum(x)))!=0)]

33 }

34 }

35 beta

36 }

1 ### Plot coefficient paths of individual binary response models

2

3 plot.binFANS <- function(object, type="coefficients", xlab=NULL,

4 ylab=NULL, main=NULL, ...) {

5 num.plots <- object$niter * (object$K - 1)

6 if (object$niter > 1) {

7 for (l in 1:object$niter) {

115

8 for (k in 1:(object$K - 1)) {

9 if(is.null(main)) {

10 title <- paste(paste("FANS Iteration: ", l),

11 paste("Modeling Augmented Feature: ", "",

12 sep=as.character(k)), sep="\n")

13 }

14 x11()

15 par(oma=c(0,0,1,1))

16 plot(object$fits[[l]][[k]], main="", breaks=FALSE, type=type, ...)

17 title(main=title)

18 }

19 }

20 } else {

21 for (k in 1:num.plots) {

22 if (is.null(main)) {

23 title <- paste(paste("FANS Iteration: ", object$niter),

24 paste("Modeling Augmented Feature: ", "",

25 sep=as.character(k)), sep="\n")

26 }

27 x11()

28 par(oma=c(0,0,1,1))

29 plot(object$fits[[k]], main="", breaks=FALSE, type=type, ...)

30 title(main=title)

31 }

32 }

33 }

1 ### Predict the outcome of a new observation

116

2

3 predict.binFANS <- function(object, newx) {

4 newx <- predict(object$trans, newx) # Scale newx with mean and sd of X

5 if (!is.null(object$newx)) {

6 if (!is.null(object$pred.class) & all.equal(as.matrix(object$newx),

7 newx)[1]) {

8 #if (type=="class") {

9 # return(object$pred.class)

10 #} else {

11 # return(object$scores)

12 #}

13 if (object$niter == 1) {

14 return(list(scores=object$scores, pred.class=object$pred.class))

15 } else {

16 return(list(scores=object$scores, agg.scores=object$agg.scores,

17 pred.class=object$pred.class))

18 }

19 }

20 }

21 K <- object$K

22 x <- object$x

23 niter <- object$niter

24 predicted <- foreach(i=1:niter, .combine=’rbind’,

25 .packages=c(’sm’, ’caret’)) %dopar% {

26 if (niter==1) {

27 D.train.x <- object$D.train.x

28 D.train.y <- object$D.train.y

117

29 fits <- object$fits

30 min.AIC <- object$minAIC

31 } else {

32 D.train.x <- object$D.train.x[[i]]

33 D.train.y <- object$D.train.y[[i]]

34 fits <- object$fits[[i]]

35 min.AIC <- object$minAIC[[i]]

36 }

37 test.marginals.f <- array(dim=c(dim(newx)[1],

38 dim(newx)[2], K - 1))

39 test.marginals.g <- array(dim=c(dim(newx)[1],

40 dim(newx)[2], K - 1))

41 for(k in 1:(K - 1)) {

42 for(j in 1:dim(x)[2]) {

43 test.marginals.f[, j, k] <-

44 sm.density(D.train.x[as.numeric(D.train.y) <= k, j],

45 eval.points=c(newx[, j]),

46 display="none")$estimate

47 test.marginals.g[, j, k] <-

48 sm.density(D.train.x[as.numeric(D.train.y) > k, j],

49 eval.points=c(newx[, j]),

50 display="none")$estimate

51 }

52 }

53 test.marginals.g[test.marginals.g < 0.001] <- 0.001

54 test.marginals.f[test.marginals.f < 0.001] <- 0.001

55 Z.test <- log(test.marginals.f / test.marginals.g)

118

56 p.mat <- array(dim=c(K, dim(Z.test)[1], K - 1))

57 create.mat <- function(w) {

58 c(rep(w, k), rep(1 - w, K - k))

59 }

60 for(k in 1:(K - 1)) {

61 p.hat <- predict(fits[[k]], newx=Z.test[, , k],

62 s=min.AIC[k], type="response") #predict y<=k or y>k

63 p.mat[, , k] <- sapply(p.hat, create.mat)

64 }

65 scores <- t(apply(p.mat, c(1, 2), sum)) #aggregate binary predictions

66 class <- apply(scores, 1, which.max)

67 return(list(scores=scores, class=class))

68 }

69 if(niter > 1) {

70 scores <- lapply(predicted[, 1], as.matrix)

71 agg.scores <- Reduce(’+’, scores)

72 # if (type=="class") {

73 class <- apply(agg.scores, 1, which.max)

74 # return(pred.class=class)

75 # } else {

76 return(list(scores=scores,

77 agg.scores=agg.scores,

78 pred.class=levels(object$y)[class]))

79 #}

80 } else {

81 #if (type=="class") {

82 # return(pred.class=predicted$class)

119

83 #} else {

84 return(list(scores=predicted$scores,

85 pred.class=levels(object$y)[predicted$class]))

86 #}

87 }

88 }

1 ### Another function that does the same thing as predict.binFANS()

2

3 fitted.binFANS <- function(object, newx) {

4 predict.binFANS(object=object, newx=newx)

5 }

1 ### Print a summary of the model fitting

2

3 print.binFANS <- function(object, ...) {

4 cat("Call:\n")

5 print(object$call)

6 cat("\nNumber of FANS iterations: niter = ", object$niter)

7 cat("\n")

8 }

1 ### Summary of the model fitting

2

3 summary.binFANS <- function(object) {

4 features <- colnames(coef.binFANS(object, model.select="mean",

5 only.nonzero=TRUE))[-1]

6 return(list(object=object, features=features))

7 }

120

A.2 Ordinal FANS, approach 2

1 #### Ordinal FANS: Approach #2 #######################################

2

3 ### Model Fitting

4

5 sum.across.L <- function(Li, Lj) {

6 # Sums the results of the L fitted models

7 #

8 # Args:

9 # Li: list of results of a fitted model

10 # Lj: list of results of another fitted model

11 #

12 # Returns:

13 # A list composed of the sums of the elements of the L

14 # lists produced from the L fitted models.

15 tmp<-rbind(Li, Lj)

16 apply(tmp, 2, function(x) Reduce(’+’, x))

17 }

18

19 ordinalFANS <- function(x, ...) UseMethod("ordinalFANS") # Generic function

20

21 ordinalFANS.default<-function(x, y, newx=NULL, eps=0.1, niter=1,

22 seed=2468, mstop=100, scale=TRUE,

23 parallel=FALSE) {

24 # Runs the ordinal FANS algorithm

25 #

121

26 # Args:

27 # x: the n x p design matrix

28 # y: the response vector

29 # newx: (optional) design matrix with which to predict outcomes

30 # niter: number of times to repeat the algorithm with new data partitions

31 # seed: sets the seed for the initial partitioning of the data

32 # mstop: Stopping iteration

33 #

34 call <- match.call()

35 if (class(y)[1] != "ordered") {

36 stop("y must be an ordered factor.")

37 }

38 orig.y <- y

39 y <- NULL

40 # For each feature, add a small amount of noise to the duplicate values.

41 # Avoids issues estimating densities.

42 orig.x <- apply(x, 2, function(d) {

43 set.seed(seed)

44 d[duplicated(d)] <- jitter(d[duplicated(d)], factor=0.5)

45 return(d)

46 })

47 if (scale) {

48 trans <- preProcess(as.data.frame(orig.x), method=c("center", "scale"))

49 if (!is.null(newx)) newx <- predict(trans, as.data.frame(newx))

50 orig.x <- predict(trans, as.data.frame(orig.x))

51 } else {

52 trans <-NULL

122

53 }

54 x <- NULL

55 K <- length(unique(orig.y))

56 n <- dim(orig.x)[1]

57 levels <- unique(orig.y)

58 set.seed(seed)

59 # Stratified random sampling

60 partitions <- createDataPartition(orig.y, p=0.5,

61 times=ceiling(niter / 2))

62

63 # Part of the algorithm that is repeated niter times

64 if (parallel) {

65 ‘%fun%‘ <- ‘%dopar%‘

66 } else {

67 ‘%fun%‘ <- ‘%do%‘

68 }

69 if (niter > 1) {

70 fitted.model <- foreach(i=1:niter, .combine=’rbind’,

71 .packages=c(’sm’, ’caret’)) %fun% {

72 # Create the data partitions, (D1, D1^c), (D2, D2^c), ..., (DL, DL^c)

73 if (i%%2 != 0) {

74 D.train.x <- orig.x[partitions[[(i - 1) / 2 + 1]],]

75 D.train.y <- orig.y[partitions[[(i - 1) / 2 + 1]]]

76 D.test.x <- orig.x[-partitions[[(i - 1) / 2 + 1]],]

77 D.test.y <- orig.y[-partitions[[(i - 1) / 2 + 1]]]

78 } else {

79 D.train.x <- orig.x[-partitions[[i / 2]],]

123

80 D.train.y <- orig.y[-partitions[[i / 2]]]

81 D.test.x <- orig.x[partitions[[i / 2]],]

82 D.test.y <- orig.y[partitions[[i / 2]]]

83 }

84 # Estimate marginals using data in Di, evaluate using data in Di^c,

85 # and calculate augmented features (log ratios)

86 # If newx is supplied, fit model, then find predicted values for new

obs

87 if (!is.null(newx)) {

88 f.estimates <- array(dim=c(dim(D.test.x)[1] + dim(newx)[1],

89 K - 1, dim(orig.x)[2]))

90 g.estimates <- array(dim=c(dim(D.test.x)[1] + dim(newx)[1],

91 K - 1, dim(orig.x)[2]))

92 for (k in 1:(K - 1)) {

93 for (j in 1:dim(orig.x)[2]) {

94 f.estimates[, k, j] <-

95 sm.density(D.train.x[which(as.numeric(D.train.y) <= k), j],

96 eval.points=c(D.test.x[, j], newx[, j]),

97 display="none")$estimate

98 g.estimates[, k, j] <-

99 sm.density(D.train.x[which(as.numeric(D.train.y) > k), j],

100 eval.points=c(D.test.x[, j], newx[, j]),

101 display="none")$estimate

102 }

103 }

104 # Marginal density estimates for observations in D^c

105 f.marginals <- f.estimates[1:dim(D.test.x)[1], ,]

124

106 g.marginals <- g.estimates[1:dim(D.test.x)[1], ,]

107 # Marginal density estimates for newx

108 test.marginals.f <- f.estimates[(dim(D.test.x)[1] + 1):

109 dim(f.estimates)[1], ,]

110 test.marginals.g <- g.estimates[(dim(D.test.x)[1] + 1):

111 dim(g.estimates)[1], ,]

112

113 # Winsorization to improve stability of estimates as

114 # suggested in FANS manuscript

115 f.marginals[f.marginals < 0.001] <-

116 g.marginals[g.marginals < 0.001] <-

117 test.marginals.g[test.marginals.g < 0.001] <-

118 test.marginals.f[test.marginals.f < 0.001] <- 0.001

119 # Array of augmented features for x. Within the array:

120 # n x (K - 1) matrices of augmented features .

121 # array dimensions are n x (K - 1) x p

122 Z <- log(f.marginals / g.marginals)

123 full <- data.frame(Z)

124 colnames(full) <- paste("z", paste(rep(1:dim(Z)[3], each=K - 1),

125 rep(1:(K - 1), times=dim(Z)[3]),

126 sep="."), sep="")

127 # Array of augmented features for newx. Within the array:

128 # n x (K - 1) matrices of augmented features .

129 # array dimensions are n x (K - 1) x p

130 Z.test <- log(test.marginals.f / test.marginals.g)

131 full.test <- data.frame(Z.test)

132 colnames(full.test) <- paste("z", paste(rep(1:dim(Z)[3], each=K - 1)

125

,

133 rep(1:(K - 1),

134 times=dim(f.marginals)[3]),

135 sep="."), sep="")

136 orig.vars.index <- rep(1:dim(Z)[3], each=K - 1)

137 # Fit proportional odds boosting model

138 fit <- PO.boost(x=full, y=D.test.y, eps=eps, mstop=mstop)

139 # Variable importance measure = absolute value of sum of the (K - 1)

140 # augmented features coefficient estimates

141 var.importance <- apply(fit$coefs, 1, function(x) {

142 tapply(x, orig.vars.index, function(y) {

143 abs(sum(y))

144 })

145 })

146 var.importance <- data.frame(t(var.importance))

147 colnames(var.importance) <- colnames(orig.x)

148 # function estimates for newx

149 offset <- as.numeric(-1 * (matrix(apply(full, 2, mean), nrow=1) %*%

150 matrix(fit$coefs[mstop,], ncol=1)))

151 f.newx <- offset + (as.matrix(full.test) %*% fit$coefs[mstop,])

152 # estimated posterior probabilities for newx

153 post.probs <- response(f.newx, fit$theta[mstop,])

154 risk <- apply(fit$loss, 1, sum)

155 return(list(coefs=fit$coefs, theta=fit$theta, risk=risk,

156 post.probs=post.probs, D.train.x=D.train.x,

157 D.train.y=D.train.y, trans=trans,

158 var.importance=var.importance,

126

159 aug.newX=as.matrix(full.test), aug.X=as.matrix(full)))

160

161

162 # If newx is NOT supplied

163 } else {

164 # Initialize array of f marginals

165 f.marginals <- array(dim=c(dim(D.test.x)[1],

166 K - 1, dim(orig.x)[2]))

167 # Initialize array of g marginals

168 g.marginals <- array(dim=c(dim(D.test.x)[1],

169 K - 1, dim(orig.x)[2]))

170 for (k in 1:(K - 1)) {

171 for (j in 1:dim(orig.x)[2]) {

172 # Marginal density estimates for observations in D^c

173 f.marginals[, k, j] <-

174 sm.density(D.train.x[which(as.numeric(D.train.y) <= k), j],

175 eval.points=D.test.x[, j],

176 display="none")$estimate

177 g.marginals[, k, j] <-

178 sm.density(D.train.x[which(as.numeric(D.train.y) > k), j],

179 eval.points=D.test.x[, j],

180 display="none")$estimate

181 }

182 }

183 # Winsorization to improve stability of estimates

184 # as suggested in FANS

185 f.marginals[f.marginals < 0.001] <-

127

186 g.marginals[g.marginals < 0.001] <- 0.001

187 # Array of augmented features for x. Within the array:

188 # n x (K - 1) matrices of augmented features.

189 # Array dimensions are n x (K - 1) x p

190 Z <- log(f.marginals / g.marginals)

191 full <- data.frame(Z)

192 colnames(full) <- paste("z",

193 paste(rep(1:dim(Z)[3], each=K - 1),

194 rep(1:(K - 1), times=dim(Z)[3]),

195 sep="."), sep="")

196 orig.vars.index <- rep(1:dim(Z)[3], each=K - 1)

197 # Fit proportional odds boosting model

198 fit <- PO.boost(x=full, y=D.test.y, mstop=mstop)

199 var.importance <- apply(fit$coefs, 1, function(x) {

200 tapply(x, orig.vars.index, function(y) {

201 abs(sum(y))

202 })

203 })

204 var.importance <- data.frame(t(var.importance))

205 colnames(var.importance) <- colnames(orig.x)

206 risk <- apply(fit$loss, 1, sum)

207 return(list(coefs=fit$coefs, theta=fit$theta, risk=risk,

208 D.train.x=D.train.x, D.train.y=D.train.y, trans=trans,

209 var.importance=var.importance, aug.X=as.matrix(full)))

210 }

211 }

212 if (!is.null(newx)) {

128

213 coefs <- lapply(fitted.model[, 1], as.matrix)

214 mean.coefs <- Reduce(’+’, fitted.model[, 1]) / niter

215 theta <- lapply(fitted.model[, 2], as.matrix)

216 mean.theta <- Reduce(’+’, fitted.model[, 2]) / niter

217 risk <- lapply(fitted.model[, 3], as.numeric)

218 mean.risk <- as.numeric(Reduce(’+’, risk) / niter)

219 if (dim(newx)[1] == 1) {

220 posteriors <- lapply(fitted.model[, 4], function(q) t(as.matrix(q)))

221 } else {

222 posteriors <- lapply(fitted.model[, 4], as.matrix)

223 }

224 mean.posteriors <- Reduce(’+’, posteriors) / niter

225 D.train.x <- lapply(fitted.model[, 5], as.matrix)

226 D.train.y <- lapply(fitted.model[, 6], unlist)

227 pred.class <-

228 factor(levels(orig.y)[apply(mean.posteriors, 1, which.max)],

229 levels=levels(orig.y), ordered=TRUE)

230 var.importance <- lapply(fitted.model[, 8], data.frame)

231 mean.var.importance <-

232 data.frame(Reduce(’+’, fitted.model[, 8]) / niter)

233 aug.newX <- lapply(fitted.model[, 9], as.matrix)

234 aug.X <- lapply(fitted.model[, 10], as.matrix)

235 output <- list(call=call, eps=eps, mstop=mstop,

236 niter=niter, K=K, coefs=coefs,

237 mean.coefs=mean.coefs, theta=theta,

238 mean.theta=mean.theta,

239 risk=risk, mean.risk=mean.risk, y=orig.y,

129

240 D.train.x=D.train.x, D.train.y=D.train.y,

241 trans=trans, var.importance=var.importance,

242 aug.X=aug.X,

243 mean.var.importance=mean.var.importance,

244 newx=newx, aug.newX=aug.newX,

245 posteriors=posteriors,

246 mean.posteriors=mean.posteriors,

247 pred.class=pred.class)

248 }

249 else {

250 coefs <- lapply(fitted.model[, 1], as.matrix)

251 mean.coefs <- Reduce(’+’, fitted.model[, 1]) / niter

252 theta <- lapply(fitted.model[, 2], as.matrix)

253 mean.theta <- Reduce(’+’, fitted.model[, 2]) / niter

254 risk <- lapply(fitted.model[, 3], as.numeric)

255 mean.risk <- as.numeric(Reduce(’+’, risk) / niter)

256 D.train.x <- lapply(fitted.model[, 4], as.matrix)

257 D.train.y <- lapply(fitted.model[, 5], unlist)

258 var.importance <- lapply(fitted.model[, 7], data.frame)

259 aug.X <- lapply(fitted.model[, 8], as.matrix)

260 mean.var.importance <-

261 data.frame(Reduce(’+’, fitted.model[, 7]) / niter)

262 output <- list(call=call, eps=eps, mstop=mstop,

263 niter=niter, K=K, coefs=coefs,

264 mean.coefs=mean.coefs, theta=theta,

265 mean.theta=mean.theta,

266 risk=risk, mean.risk=mean.risk, y=orig.y,

130

267 D.train.x=D.train.x, D.train.y=D.train.y,

268 trans=trans, var.importance=var.importance,

269 aug.X=aug.X, mean.var.importance=mean.var.importance)

270 }

271

272

273 # if niter=1

274 } else {

275 # Create the data partitions, i.e. (D1, D1^c)

276 D.train.x <- orig.x[partitions[[1]],] #x in D1

277 D.train.y <- orig.y[partitions[[1]]] #y in D1

278 D.test.x <- orig.x[-partitions[[1]],] #x in D1^c

279 D.test.y <- orig.y[-partitions[[1]]] #y in D1^c

280 # Estimate marginals using data in Di, evaluate using data in Di^c,

281 # and calculate augmented features (log ratios)

282 # If newx is supplied, fit model, then find predicted values for new obs

283 if (!is.null(newx)) {

284 f.estimates <- array(dim=c(dim(D.test.x)[1] + dim(newx)[1],

285 K - 1, dim(orig.x)[2]))

286 g.estimates <- array(dim=c(dim(D.test.x)[1] + dim(newx)[1],

287 K - 1, dim(orig.x)[2]))

288 for (k in 1:(K - 1)) {

289 for (j in 1:dim(orig.x)[2]) {

290 f.estimates[, k, j] <-

291 sm.density(D.train.x[which(as.numeric(D.train.y) <= k), j],

292 eval.points=c(D.test.x[, j], newx[, j]),

293 display="none")$estimate

131

294 g.estimates[, k, j] <-

295 sm.density(D.train.x[which(as.numeric(D.train.y) > k), j],

296 eval.points=c(D.test.x[, j], newx[, j]),

297 display="none")$estimate

298 }

299 }

300 # Marginal density estimates for observations in D^c

301 f.marginals <- f.estimates[1:dim(D.test.x)[1], ,]

302 g.marginals <- g.estimates[1:dim(D.test.x)[1], ,]

303 # Marginal density estimates for newx

304 test.marginals.f <- f.estimates[(dim(D.test.x)[1] + 1):

305 dim(f.estimates)[1], ,]

306 test.marginals.g <- g.estimates[(dim(D.test.x)[1] + 1):

307 dim(g.estimates)[1], ,]

308 # Winsorization to improve stability of estimates

309 # as suggested in FANS manuscript

310 f.marginals[f.marginals < 0.001] <-

311 g.marginals[g.marginals < 0.001] <-

312 test.marginals.g[test.marginals.g < 0.001] <-

313 test.marginals.f[test.marginals.f < 0.001] <- 0.001

314 # Array of augmented features for x. Within the array:

315 # n x (K - 1) matrices of augmented features.

316 # Array dimensions are n x (K - 1) x p

317 Z <- log(f.marginals / g.marginals)

318 full <- data.frame(Z)

319 colnames(full) <- paste("z",

320 paste(rep(1:dim(Z)[3], each=K - 1),

132

321 rep(1:(K - 1), times=dim(Z)[3]),

322 sep="."), sep="")

323 # Array of augmented features for newx. Within the array:

324 # n x (K - 1) matrices of augmented features .

325 # array dimensions are n x (K - 1) x p

326 Z.test <- log(test.marginals.f / test.marginals.g)

327 full.test <- data.frame(Z.test)

328 colnames(full.test) <- paste("z",

329 paste(rep(1:dim(Z)[3], each=K - 1),

330 rep(1:(K - 1),

331 times=dim(f.marginals)[3]),

332 sep="."), sep="")

333 orig.vars.index <- rep(1:dim(Z)[3], each=K - 1)

334 # Fit proportional odds boosting model

335 fit <- PO.boost(x=full, y=D.test.y, eps=eps, mstop=mstop)

336 # Variable importance measure = absolute value of sum of the (K - 1)

337 # augmented features coefficient estimates

338 var.importance <- apply(fit$coefs, 1, function(x) {

339 tapply(x, orig.vars.index, function(y) {

340 abs(sum(y))

341 })

342 })

343 var.importance <- data.frame(t(var.importance))

344 colnames(var.importance) <- colnames(orig.x)

345 # function estimates for newx

346 offset <- as.numeric(-1 * (matrix(apply(full, 2, mean), nrow=1) %*%

347 matrix(fit$coefs[mstop,], ncol=1)))

133

348 f.newx <- offset + (as.matrix(full.test) %*% fit$coefs[mstop,])

349 # estimated posterior probabilities for newx

350 post.probs <- response(f.newx, fit$theta[mstop,])

351 risk <- apply(fit$loss, 1, sum)

352

353

354 # If newx is NOT supplied

355 } else {

356 # Initialize array of f marginals

357 f.marginals <- array(dim=c(dim(D.test.x)[1],

358 K - 1, dim(orig.x)[2]))

359 # Initialize array of g marginals

360 g.marginals <- array(dim=c(dim(D.test.x)[1],

361 K - 1, dim(orig.x)[2]))

362 for (k in 1:(K - 1)) {

363 for (j in 1:dim(orig.x)[2]) {

364 # Marginal density estimates for observations in D^c

365 f.marginals[, k, j] <-

366 sm.density(D.train.x[which(as.numeric(D.train.y) <= k), j],

367 eval.points=D.test.x[, j],

368 display="none")$estimate

369 g.marginals[, k, j] <-

370 sm.density(D.train.x[which(as.numeric(D.train.y) > k), j],

371 eval.points=D.test.x[, j],

372 display="none")$estimate

373 }

374 }

134

375 # Winsorization to improve stability of estimates

376 # as suggested in the FANS manuscript

377 f.marginals[f.marginals < 0.001] <-

378 g.marginals[g.marginals < 0.001] <- 0.001

379 # Array of augmented features for x. Within the array:

380 # n x (K - 1) matrices of augmented features .

381 # array dimensions are n x (K - 1) x p

382 Z <- log(f.marginals / g.marginals)

383 full <- data.frame(Z)

384 colnames(full) <- paste("z",

385 paste(rep(1:dim(Z)[3], each=K - 1),

386 rep(1:(K - 1), times=dim(Z)[3]),

387 sep="."), sep="")

388 orig.vars.index <- rep(1:dim(Z)[3], each=K - 1)

389 # Fit proportional odds boosting model

390 fit <- PO.boost(x=full, y=D.test.y, mstop=mstop)

391 var.importance <- apply(fit$coefs, 1, function(x) {

392 tapply(x, orig.vars.index, function(y) {

393 abs(sum(y))

394 })

395 })

396 var.importance <- data.frame(t(var.importance))

397 colnames(var.importance) <- colnames(orig.x)

398 risk <- apply(fit$loss, 1, sum)

399 }

400 if (!is.null(newx)) {

401 coefs <- as.matrix(fit$coefs)

135

402 theta <- as.matrix(fit$theta)

403 risk <- as.numeric(risk)

404 if (dim(newx)[1] == 1) {

405 posteriors <- t(as.matrix(post.probs))

406 } else {

407 posteriors <- as.matrix(post.probs)

408 }

409 pred.class <-

410 factor(levels(orig.y)[apply(posteriors, 1, which.max)],

411 levels=levels(orig.y), ordered=TRUE)

412 D.train.x <- as.matrix(D.train.x)

413 D.train.y <- as.matrix(D.train.y)

414 var.importance <- data.frame(var.importance)

415 aug.newX <- as.matrix(full.test)

416 output <- list(call=call, eps=eps, mstop=mstop, niter=niter,

417 K=K, coefs=coefs, theta=theta, risk=risk,

418 y=orig.y, D.train.x=D.train.x,

419 D.train.y=D.train.y, trans=trans,

420 var.importance=var.importance, aug.X=full,

421 newx=newx, aug.newX=aug.newX,

422 posteriors=posteriors, pred.class=pred.class)

423 } else {

424 coefs <- as.matrix(fit$coefs)

425 theta <- as.matrix(fit$theta)

426 risk <- as.numeric(risk)

427 D.train.x <- as.matrix(D.train.x)

428 D.train.y <- as.matrix(D.train.y)

136

429 var.importance <- data.frame(var.importance)

430 output <- list(call=call, eps=eps, mstop=mstop,

431 niter=niter, K=K, coefs=coefs,

432 theta=theta, risk=risk, y=orig.y,

433 D.train.x=D.train.x,

434 D.train.y=D.train.y, trans=trans,

435 var.importance=var.importance, aug.X=full)

436 }

437 }

438 class(output) <- "ordinalFANS"

439 return(output)

440 }

1 ### Proportional Odds Boosting

2

3 PO.boost<-function(x, y, eps=0.1, w=1, mstop) {

4 # Proportional odds (P/O) boosting algorithm

5 #

6 # Args:

7 # x: Design matrix

8 # y: Response vector

9 # eps: A real-valued step length factor

10 # w: Vector of weights

11 # K: Number of levels in the response

12 # mstop: Stopping iteration

13 # Returns:

14 # coefs: Vector of coefficient estimates

15 # f.hat: Vector of function estimate

137

16 # theta: Vector of threshold estimates

17 ###

18 # Step 1: Initialize the n-dimensional vector f_hat[0] and the

19 # K1 threshold parameter estimates with offset values.

20 #y <- factor(y, ordered=TRUE)

21 K <- length(unique(y))

22 p <- dim(x)[2] / (K - 1)

23 x <- scale(x, center=T, scale=F)

24 f.hat <- rep(0, length(y))

25 pi.0 <- table(y) / length(y)

26 theta <- matrix(0, nrow=mstop, ncol=K - 1)

27 theta[1,] <- delta <- log(cumsum(pi.0) / (1 - cumsum(pi.0)))[1:(K - 1)]

28 colnames(theta) <- paste("theta", 1:(K - 1), sep="")

29 # Matrix of coefficient estimates (in all m steps)

30 coefs <- matrix(0, nrow=mstop, ncol=dim(x)[2])

31 # Matrix of latest, updated vector of coefficient estimates

32 coefs.latest <- rep(0, dim(x)[2])

33 colnames(coefs) <- names(coefs.latest) <- colnames(x)

34 all.loss <- matrix(0, nrow=mstop, ncol=length(y))

35 # Step 2: Specify base-learners, set m = 0.

36 vars <- list()

37 for (w in 1:p) {

38 vars[[w]] <- colnames(x)[(w + (w-1)):(w + (w-1) + (K-2))]

39 }

40 m <- 0

41 # Iterate mstop times.

42 for (j in 1:mstop) {

138

43 # Step 3: Increase m by 1.

44 m <- m + 1

45 # Step 4a: Calculate negative gradient vector with current estimate of

46 # theta and f

47 U <- neg.grad(y=y, f=f.hat, theta = theta[m,])

48 # Step 4b: Fit the negative gradient vector U[m] using each of the p

49 # base learners. This yields p vectors of predicted values, where each

50 # vector is an estimate of the negative gradient vector U[m].

51 # Use R^2 to determine best base learner.

52 fit.rsq <- function(aug.vars) {

53 # Fit a linear model for a given base learner

54 #

55 # Args:

56 # aug.vars: Names of the augmented features used to fit the model

57 # Returns:

58 # R^2 for given model.

59 # fit.i <- glmnet(x=data.matrix(x[, aug.vars]), y=U,

60 # family="gaussian", alpha = 0)

61 fit.i <- lm(U ~ 0 + ., data=data.frame(U, x[, aug.vars]))

62 return(summary(fit.i)$r.squared)

63 #return(max(fit.i$dev.ratio)) # Return max R^2 of all lambda values

used

64 }

65 r.sq <- vapply(vars, fit.rsq, 1) # R^2 for all p base learners

66 # Step 4c: Select the base-learner that fits U[m] best according to the

Rsq

67 # goodness-of-fit criterion. Set U_hat[m] equal to the fitted values of

139

the

68 # best model.

69 max.rsq <- which.max(r.sq) # Base learner with largest R^2

70 fit.maxrsq <- lm(U ~ 0 + ., data=data.frame(U, x[, vars[[max.rsq]]]))

71 u.hat <- predict(fit.maxrsq, newdata = data.frame(x[, vars[[max.rsq]]]),

72 interval="none")

73 vars.update <- names(fit.maxrsq$coefficients)

74 coefs.latest[vars.update] <- coefs.latest[vars.update] +

75 eps * fit.maxrsq$coefficients

76 coefs[m,] <- coefs.latest

77 # Step 4d: Update f_hat[m] f_hat[m1] + eps * U_hat[m], where 0 < eps 1

78 # is a real-valued step length factor.

79 f.hat <- f.hat + eps * u.hat

80 # Step 5: Plug f_hat[m] into the empirical risk function and minimize

the

81 # empirical risk over . Set _hat[m] equal to the newly obtained estimate

82 # of . (Convert delta (unconstrained) to theta, minimize risk over theta

,

83 # return optimum delta).

84 delta <- optim(par = delta, fn = riskS, y = y,

85 fit = f.hat, w = w, method = "BFGS")$par

86 # Convert optimum delta (above) to theta (constrained).

87 theta[m,] <- d2t(delta)

88 all.loss[m,] <- t(plloss(theta=theta[m,], y=y, f=f.hat))

89 }

90 return(list=list(coefs=coefs, f.hat=f.hat, theta=theta, loss=all.loss))

91 }

140

1

2 ### Functions used in P/O Boosting

3

4 d2t <- function(delta) {

5 # Used for constraining the threshold estimates to be nondecreasing

6 #

7 # Args:

8 # delta: the vector of unconstrained threshold values

9 #

10 # Returns:

11 # Theta, the vector of constrained threshold values

12 delta[1] + cumsum(c(0, exp(delta[-1])))

13 }

14

15 plloss <- function(theta, y, f, w = w) {

16 # Calculates the value of the loss (negative logL)

17 #

18 # Args:

19 # theta: the vector of constrained threshold values

20 # y: the response vector

21 # f: the current function estimate

22 # w: the vector of weights

23 #

24 # Returns:

25 # The value of the loss function at the current step

26 if (length(f) == 1) f <- rep(f, length(y))

27 tmp <- lapply(1:(length(theta) + 1), function(i) {

141

28 if (i == 1) return(1 + exp(f - theta[i]))

29 if (i == (length(theta) + 1)) {

30 return(1 - 1 / (1 + exp(f - theta[i - 1])))

31 }

32 return(1 / (1 + exp(f - theta[i])) -

33 1 / (1 + exp(f - theta[i - 1])))

34 })

35 loss <- log(tmp[[1]]) * (y == levels(y)[1])

36 for (i in 2:nlevels(y)) {

37 loss <- loss - log(tmp[[i]]) * (y == levels(y)[i])

38 }

39 return(loss)

40 }

41

42 riskS <- function(delta, y, fit, w = w) {

43 # Calculates the value of the empirical risk.

44 # Converts delta to theta (constrained), then sums Loss over i=1, ..., n.

45 #

46 # Args:

47 # delta: the vector of unconstrained threshold values

48 # y: the response vector

49 # fit: the current function estimate

50 # w: the vector of weights

51 #

52 # Returns:

53 # The value of the risk function at the current step

54 sum(w * plloss(y = y, f = fit, theta = d2t(delta)))

142

55 }

56

57 neg.grad <- function(y, f, theta = theta, w = w) {

58 # Calculates the negative gradient at current estimate of f and theta

59 #

60 # Args:

61 # y: the response vector

62 # f: the current function estimate

63 # theta: the vector of constrained threshold values

64 # w: the vector of weights

65 #

66 # Returns:

67 # The value of the risk function at the current step

68 if (length(f) == 1) f <- rep(f, length(y))

69 # Calculates negative gradient for each subject, then sums over i=1...n

70 ng <- sapply(1:(length(theta) + 1), function(i) {

71 if (i > 1 & i < (length(theta) + 1)) {

72 ret <- (1 - exp(2 * f - theta[i - 1] - theta[i])) /

73 (1 + exp(f - theta[i - 1]) +

74 exp(f - theta[i]) +

75 exp(2 * f - theta[i - 1] - theta[i]))

76 } else {

77 if (i == 1) {

78 ret <- -1 / (1 + exp(theta[i] - f))

79 } else {

80 ret <- 1 / (1 + exp(f - theta[i - 1]))

81 }

143

82 }

83 return(ret * (y == levels(y)[i]))

84 })

85 rowSums(ng)

86 }

87

88 #Empirical risk function, treat theta as fixed, optimize over f - used to

initialize f

89 # risk <- function(y, f, w = w)

90 # sum(w * plloss(y = y, f = f, theta = theta))

91

92 #Initialize delta / theta and f (maybe just initialize f to 0)

93 #initial.f <- function(y, w = w) {

94 # delta<-log(cumsum(pi.0) / (1 - cumsum(pi.0)))[1:(K - 1)]

95 # optimize(risk, interval = c(-5, 5), y = y, w = w)$minimum

96 # }

97

98 response <- function(f, theta) {

99 # Calculates posterior probabilities

100 #

101 # Args:

102 # f: the current function estimate

103 #

104 # Returns:

105 # Vector of posterior probabilities (of length K)

106 ret <- sapply(1:(length(theta) + 1), function(i) {

107 if (i == 1) return(1 / (1 + exp(f - theta[i]))) #P(Y=1|X)

144

108 if (i == (length(theta) + 1)) {

109 return(1 - 1 / (1 + exp(f - theta[i - 1]))) #P(Y=K|X)

110 }

111 return(1 / (1 + exp(f - theta[i])) - #P(Y=2or3or...orK-1|X)

112 1 / (1 + exp(f - theta[i - 1])))

113 })

114 ret

115 }

1 ### Select stopping iteration by cross validation

2

3 cv.modelselect <- function(x, y, parallel=TRUE, num.folds=5, seed=2468,

4 mstop.seq=floor(seq(from=10, to=100, by=10))) {

5 set.seed(seed)

6 folds <- createFolds(y=y, k=num.folds, list=F)

7 if (parallel) {

8 ‘%fun%‘ <- ‘%dopar%‘

9 } else {

10 ‘%fun%‘ <- ‘%do%‘

11 }

12 modelselect <- foreach (m=mstop.seq, .combine=rbind) %fun% {

13 dxy <- rep(0, num.folds)

14 for (i in 1:num.folds) {

15 fit <- ordinalFANS(x=x[-which(folds == i),], y=y[-which(folds == i)

],

16 newx=x[which(folds == i),], niter=1, mstop=m)

17 dxy[i] <- rcorr.cens(as.numeric(fit$pred.class),

18 y[which(folds == i)])[2]

145

19 }

20 CV.estimate <- sum((table(folds) / length(y)) * dxy)

21 dxy.sd <- sqrt(sum((table(folds) / length(y)) * (dxy - mean(dxy))^2))

22 return(c(m, CV.estimate, dxy.sd))

23 }

24 colnames(modelselect) <- c("mstop", "CV Somer’s Dxy Estimate", "SE")

25 return(modelselect)

26 }

1 ### Extract Model Coefficients

2

3 coef.ordinalFANS <- function(object, model.select="mean", m=NULL,

4 only.nonzero=FALSE) {

5 if (object$niter > 1) {

6 if (is.null(m)) {

7 m <- dim(object$coefs[[1]])[1]

8 }

9 if (model.select=="mean") {

10 beta <- object$mean.coefs[m,]

11 theta <- object$mean.theta[m,]

12 if (only.nonzero) {

13 beta <- object$mean.coefs[m,][object$mean.coefs[m,]!=0]

14 }

15 } else if (is.numeric(model.select)) {

16 beta <- object$coefs[[model.select]][m,]

17 theta <- object$theta[[model.select]][m,]

18 if (only.nonzero) {

19 beta <- beta[beta!=0]

146

20 theta <- theta[theta!=0]

21 }

22 } else if (model.select=="all") {

23 beta <- lapply(object$coefs, function(x) {x[m,]})

24 theta <- lapply(object$theta, function(x) {x[m,]})

25 if (only.nonzero) {

26 beta <- lapply(beta, function(x) {x[x!=0]})

27 theta <- lapply(theta, function(x) {x[x!=0]})

28 }

29 }

30 } else {

31 if (is.null(m)) {

32 m <- dim(object$coefs)[1]

33 }

34 beta <- object$coefs[m,]

35 theta <- object$theta[m,]

36 if (only.nonzero) {

37 beta <- beta[beta!=0]

38 }

39 }

40 c(theta, beta)

41 }

1 ### Plot the model output

2

3 plot.ordinalFANS <- function(object, type="coefficients", xlab=NULL,

4 ylab=NULL, main=NULL) {

5 if (is.null(xlab)) xlab="Step"

147

6 if (is.null(ylab)) {

7 if (type == "coefficients") {

8 ylab <- expression(hat(beta))

9 if (is.null(main)) {

10 main <- "Coefficient Path"

11 }

12 } else if (type == "risk") {

13 ylab <- "Empirical Risk"

14 if (is.null(main)) {

15 main <- "Empirical Risk Path"

16 }

17 } else if (type=="var.importance") {

18 ylab <- "Variable Importance"

19 if (is.null(main)) {

20 main <- "Variable Importance Path"

21 }

22 }

23 }

24 if (type=="coefficients") {

25 if (object$niter > 1) {

26 mean.beta <- object$mean.coefs

27 } else {

28 mean.beta <- object$coefs

29 }

30 last.row <- nrow(mean.beta)

31 y.positions <- mean.beta[last.row,][which(mean.beta[last.row,] != 0)]

32 varorder <- names(y.positions)

148

33 matplot(mean.beta, type="l", xlab=xlab, ylab=ylab, main=main)

34 axis(side=4, labels=varorder, at=y.positions, cex.axis=0.69)

35 } else if (type=="risk") {

36 if (object$niter > 1) {

37 mean.risk <- object$mean.risk

38 } else {

39 mean.risk <- object$risk

40 }

41 plot(mean.risk, type="b", xlab=xlab, ylab=ylab, main=main)

42 } else if (type=="var.importance") {

43 if (object$niter > 1) {

44 mean.importance <- object$mean.var.importance

45 } else {

46 mean.importance <- object$var.importance

47 }

48 last.row <- nrow(mean.importance)

49 y.positions <- mean.importance[last.row,][

50 which(mean.importance[last.row,] != 0)]

51 varorder <- names(y.positions)

52 matplot(mean.importance, type="l", xlab=xlab, ylab=ylab, main=main)

53 axis(side=4, labels=varorder, at=y.positions, cex.axis=0.69)

54 }

55 }

1 ### Predict the outcome of a new observation

2

3 predict.ordinalFANS <- function(object, newx, mstop=NULL) {

4 newx <- predict(object$trans, newx) # Scale newx with mean and sd of X

149

5

6 if (is.null(mstop)) mstop <- object$mstop

7 if (!is.null(object$newx)) {

8 if (object$niter > 1) {

9 if (!is.null(object$mean.posteriors) &

10 all.equal(as.matrix(object$newx), as.matrix(newx))) {

11 return(list=list(mean.posteriors=object$mean.posteriors,

12 pred.class=object$pred.class))

13 }

14 } else {

15 if (!is.null(object$posteriors) &

16 all.equal(as.matrix(object$newx), as.matrix(newx))) {

17 return(list=list(posteriors=object$posteriors,

18 pred.class=object$pred.class))

19 }

20 }

21 }

22 K <- object$K

23 niter <- object$niter

24

25 niter.preds <- foreach(l = 1:niter, .combine=’rbind’,

26 .packages=c(’sm’, ’caret’)) %do% {

27 if (object$niter > 1) {

28 D.train.x <- object$D.train.x[[l]]

29 D.train.y <- object$D.train.y[[l]]

30 coefs <- object$coefs[[l]]

31 theta <- object$theta[[l]]

150

32 aug.X <- object$aug.X[[l]]

33 } else {

34 D.train.x <- object$D.train.x

35 D.train.y <- object$D.train.y

36 coefs <- object$coefs

37 theta <- object$theta

38 aug.X <- object$aug.X

39 }

40 test.marginals.f <- array(dim=c(dim(newx)[1], K - 1, dim(newx)[2]))

41 test.marginals.g <- array(dim=c(dim(newx)[1], K - 1, dim(newx)[2]))

42 for (k in 1:(K - 1)) {

43 for (j in 1:dim(newx)[2]) {

44 test.marginals.f[, k, j] <- sm.density(D.train.x[D.train.y <= k, j],

45 eval.points=newx[, j],

46 display="none")$estimate

47 test.marginals.g[, k, j] <- sm.density(D.train.x[D.train.y > k, j],

48 eval.points=newx[, j],

49 display="none")$estimate

50 }

51 }

52 # Winsorization to improve stability of estimates as suggested in FANS

53 # manuscript

54 test.marginals.g[test.marginals.g < 0.001] <-

55 test.marginals.f[test.marginals.f < 0.001] <- 0.001

56 # Array of augmented features for newx. Within the array: p matrices of

57 # augmented features of dimension n x (K - 1)

58 Z.test <- log(test.marginals.f / test.marginals.g)

151

59 full.test <- data.frame(Z.test)

60 colnames(full.test) <- paste("z", paste(rep(1:dim(Z.test)[3], each=K -

1),

61 rep(1:(K - 1),

62 times=dim(test.marginals.f)[3]),

63 sep="."),

64 sep="")

65 # function estimates for newx

66 offset <- as.numeric(-1 * (matrix(apply(aug.X, 2, mean), nrow=1) %*%

67 matrix(coefs[mstop,], ncol=1)))

68 f.newx <- offset + (as.matrix(full.test) %*% as.matrix(coefs[mstop,]))

69 # estimated posterior probabilities for newx

70 post.probs <- response(f.newx, theta[mstop,])

71 return(list=list(post.probs))

72 }

73 if (object$niter > 1) {

74 if (ncol(as.matrix(niter.preds[[1]])) == 1) {

75 mean.posteriors <- Reduce(’+’, niter.preds) / niter

76 pred.class <- factor(levels(object$y)[apply(t(as.matrix(mean.

posteriors)), 1, which.max)],

77 levels=levels(object$y), ordered=TRUE)

78 posteriors <- lapply(1:niter, function(w) t(as.matrix(niter.preds))[[w

]])

79 } else {

80 mean.posteriors <- Reduce(’+’, niter.preds) / niter

81 pred.class <- factor(levels(object$y)[apply(mean.posteriors, 1, which.

max)],

152

82 levels=levels(object$y), ordered=TRUE)

83 posteriors <- lapply(1:niter, function(w) niter.preds[[w]])

84 }

85 return(list=list(posteriors=posteriors,

86 mean.posteriors=mean.posteriors, pred.class=pred.class))

87 } else {

88 if (ncol(as.matrix(niter.preds[[1]])) == 1) {

89 posteriors <- t(as.matrix(niter.preds[[1]]))

90 } else {

91 posteriors <- as.matrix(niter.preds[[1]])

92 }

93 pred.class <- factor(levels(object$y)[apply(posteriors, 1, which.max)],

94 levels=levels(object$y), ordered=TRUE)

95 return(list=list(posteriors=posteriors, pred.class=pred.class))

96 }

97 }

1 ### Does the same thing as predict()

2

3 fitted.ordinalFANS <- function(object, newx, mstop=NULL) {

4 predict.ordinalFANS(object=object, newx=newx, mstop=mstop)

5 }

1 ### Print the model output

2

3 print.ordinalFANS <- function(object, ...) {

4 cat("Call:\n")

5 print(object$call)

153

6 cat("\nNumber of boosting iterations: mstop = ", object$mstop)

7 cat("\nNumber of FANS iterations: niter = ", object$niter)

8 cat("\nStep size: ", object$eps, "\n")

9 }

1 ### Summarize the fitted model

2

3 summary.ordinalFANS <- function(object, m=NULL) {

4 if (object$L > 1) {

5 if (is.null(m)) {

6 m <- dim(object$coefs[[1]])[1]

7 }

8 rownames(object$mean.var.importance) <- NULL

9 var.importance <- object$mean.var.importance[m,

10 which(object$mean.var.importance[m,]!=0)]

11 } else {

12 if (is.null(m)) {

13 m <- dim(object$coefs)[1]

14 }

15 rownames(object$var.importance) <- NULL

16 var.importance <- object$var.importance[m,

17 which(object$var.importance[m,]!=0)]

18 }

19 return(list(object=object, var.importance=var.importance))

20 }

154

Appendix B

CODE FOR CHAPTER 3

B.1 Extended phase of the AML DREAM Challenge analysis

1 ### Select clinical predictors to include in the

2 ### no penalty subset

3

4 rm(list=ls())

5 #setwd("C:\\Users\\Kyle\\Dropbox\\Dissertation\\Aim 3\\AML\\Data")

6 #Fit univariate coxPH models for each predictor using continuous response

7 library(survival)

8 load("AML.RData")

9

10

11

12

13 ### Logistic regression approach from Allison

14 aml.train$y<-as.numeric(aml.train$y)

15 aml.train$censor<-as.numeric(aml.train$censor)

16

17 X<-clinical

18 classes<-c()

19 for(i in 1:ncol(X)) {

20 classes[i]<-class(X[,i])[1]

21 }

155

22

23

24 yij<-matrix(nrow=dim(X)[1],ncol=3)

25 for(i in 1:dim(X)[1]) {

26 for(j in 1:3) {

27 yij[i,j]<-ifelse(aml.train$y[i]==j &

28 aml.train$censor[i]==1,1,0)

29 }

30 }

31

32 newX<-matrix(nrow=1,ncol=dim(X)[2])

33 for(i in 1:dim(X)[1]) {

34 for(j in 1:dim(X)[2]) {

35 if(class(X[,j])=="factor") X[,j]<-as.character(X[,j])

36 }

37 new.rows<-matrix(rep(X[i,],aml.train$y[i])

38 nrow=aml.train$y[i],ncol=dim(X)[2],

39 byrow=TRUE)

40 newX<-rbind(newX,new.rows)

41 }

42 newX<-newX[-1,]

43 newX.mat<-newX

44 newX<-data.frame(newX)

45 colnames(newX)<-colnames(clinical)

46 newX<-apply(newX,2,as.numeric)

47

48 new.y<-numeric()

156

49 for(i in 1:dim(X)[1]) {

50 indiv<-c(rep(0,aml.train$y[i]-1),aml.train$censor[i])

51 new.y<-c(new.y,indiv)

52 }

53

54 #Univariate models

55 glm.univFit<-function(pred) {

56 data<-data.frame(new.y,unlist(newX[,pred]))

57 colnames(data)<-c("y","x")

58 form<-as.formula(paste("y","x",sep=" ~ "))

59 fit<-summary(glm(form,data=data,family=binomial))

60 return(coef(fit)[2,4])

61 }

62 p.values<-c()

63 j<-0

64 #p-values for numeric variables or factors with only 2 levels

65 for(i in 1:ncol(clinical)) {

66 j<-j+1

67 p.values[j]<-glm.univFit(i)

68 }

69

70 #p-values with variable names

71 vars1<-colnames(clinical)[c(1:ncol(clinical))]

72 p.vals<-data.frame(vars1,p.values)

73

74 #significant at alpha=0.1

75 lt.10 <-p.vals[which(p.vals[,2]<0.1),]

157

76 lt.10[order(lt.10[,2]),]

77 # vars1 p.values

78 # 20 HGB 0.0005222901

79 # 9 ITD 0.0027507695

80 # 27 CD13 0.0054240144

81 # 8 cyto.cat 0.0125850298

82 # 11 Ras.Stat 0.0285030529

83 # 2 Age.at.Dx 0.0325419998

84 # 26 FIBRINOGEN 0.0419517112

85 # 4 PRIOR.MAL 0.0532993564

86 # 10 D835 0.0664101054

87 # 5 PRIOR.CHEMO 0.0767917172

88 # 30 CD7 0.0889254091

89 # 7 Infection 0.0924734909

90

91

92

93

94 #significant at alpha=0.05

95 lt.05 <- p.vals[which(p.vals[,2]<0.05),]

96 lt.05[order(lt.05[,2]),]

97 # vars1 p.values

98 # 20 HGB 0.0005222901

99 # 9 ITD 0.0027507695

100 # 27 CD13 0.0054240144

101 # 8 cyto.cat 0.0125850298

102 # 11 Ras.Stat 0.0285030529

158

103 # 2 Age.at.Dx 0.0325419998

104 # 26 FIBRINOGEN 0.0419517112

105

106 #Combine results of univariate models and literature search:

107 #choose as unpenalized subset: Age, cytogenetics, ITD (FLT3), HGB

1 #N-fold cross validation (CV) code

2

3 library(doMC)

4 library(survival)

5 library(foreach)

6 library(Hmisc)

7

8 ### READ IN DATA ###

9 load("AML.RData")

10 univ.sig <- c("Age.at.Dx", "cyto.cat", "ITD", "HGB")

11 y <- as.numeric(as.character(aml.train$y))

12 AML <- data.frame(y=Surv(y, aml.train$censor), protein, clinical)

13 X <- AML[, setdiff(colnames(AML), univ.sig)][, -1] #penalized predictors

14 unpen <- AML[, univ.sig] #unpenalized predictors

15

16 source("..//discSurvFCR.R")

17 registerDoMC(cores=10)

18

19 NfoldCV.1 <- foreach(i=1:nrow(AML), .combine=’rbind’) %dopar% {

20 print(i)

21 fit.1 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB,

22 data=AML[-i,], x=X[-i,], scale=TRUE,

159

23 epsilon=0.001, tol=1e-04, assumption=1)

24 pred.AIC.1 <- predict.forwardCR(fit.1, newx=X[i,], neww=AML[i, univ.sig],

25 model.select="AIC")$class #minAIC model

26 pred.BIC.1 <- predict.forwardCR(fit.1, newx=X[i,], neww=AML[i, univ.sig],

27 model.select="BIC")$class #minBIC model

28 return(c(i,pred.AIC.1, pred.BIC.1))

29 }

30

31

32 somer.aic.1 <- rcorr.cens(NfoldCV.1[, 2], AML[, 1])[2:3] # Somer’s Dxy (AIC)

33 somer.bic.1 <- rcorr.cens(NfoldCV.1[, 3], AML[, 1])[2:3] # Somer’s Dxy (BIC)

34 somer.1 <- data.frame(assumption=c(1, 1),

35 somer=c(somer.aic.1[1], somer.bic.1[1]),

36 std.err=c(somer.aic.1[2], somer.bic.1[2]),

37 model.selection=c("AIC", "BIC"))

38

39 #

##

40

41 registerDoMC(cores=10)

42

43 NfoldCV.2 <- foreach(i=1:nrow(AML), .combine=’rbind’) %dopar% {

44 print(i)

45 fit.2 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB,

46 data=AML[-i,], x=X[-i,], scale=TRUE,

47 epsilon=0.001, tol=1e-04, assumption=2)

160

48 pred.AIC.2 <- predict.forwardCR(fit.2, newx=X[i,], neww=AML[i, univ.sig],

49 model.select="AIC")$class #minAIC model

50 pred.BIC.2 <- predict.forwardCR(fit.2, newx=X[i,], neww=AML[i, univ.sig],

51 model.select="BIC")$class #minBIC model

52 return(c(i,pred.AIC.2, pred.BIC.2))

53 }

54

55

56 somer.aic.2 <- rcorr.cens(NfoldCV.2[, 2], AML[, 1])[2:3] # Somer’s Dxy (AIC)

57 somer.bic.2 <- rcorr.cens(NfoldCV.2[, 3], AML[, 1])[2:3] # Somer’s Dxy (BIC)

58 somer.2 <- data.frame(assumption=c(2, 2),

59 somer=c(somer.aic.2[1], somer.bic.2[1]),

60 std.err=c(somer.aic.2[2], somer.bic.2[2]),

61 model.selection=c("AIC", "BIC"))

62

63 #

##

64

65 registerDoMC(cores=10)

66

67 NfoldCV.3 <- foreach(i=1:nrow(AML), .combine=’rbind’) %dopar% {

68 print(i)

69 fit.3 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB,

70 data=AML[-i,], x=X[-i,], scale=TRUE,

71 epsilon=0.001, tol=1e-04, assumption=3)

72 pred.AIC.3 <- predict.forwardCR(fit.3, newx=X[i,], neww=AML[i, univ.sig],

161

73 model.select="AIC")$class #minAIC model

74 pred.BIC.3 <- predict.forwardCR(fit.3, newx=X[i,], neww=AML[i, univ.sig],

75 model.select="BIC")$class #minBIC model

76 return(c(i,pred.AIC.3, pred.BIC.3))

77 }

78

79

80 somer.aic.3 <- rcorr.cens(NfoldCV.3[, 2], AML[, 1])[2:3] # Somer’s Dxy (AIC)

81 somer.bic.3 <- rcorr.cens(NfoldCV.3[, 3], AML[, 1])[2:3] # Somer’s Dxy (BIC)

82 somer.3 <- data.frame(assumption=c(3, 3),

83 somer=c(somer.aic.3[1], somer.bic.3[1]),

84 std.err=c(somer.aic.3[2], somer.bic.3[2]),

85 model.selection=c("AIC", "BIC"))

86

87 #

##

88

89 registerDoMC(cores=10)

90

91 NfoldCV.4 <- foreach(i=1:nrow(AML), .combine=’rbind’) %dopar% {

92 print(i)

93 fit.4 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB,

94 data=AML[-i,], x=X[-i,], scale=TRUE,

95 epsilon=0.001, tol=1e-04, assumption=1)

96 pred.AIC.4 <- predict.forwardCR(fit.4, newx=X[i,], neww=AML[i, univ.sig],

97 model.select="AIC")$class #minAIC model

162

98 pred.BIC.4 <- predict.forwardCR(fit.4, newx=X[i,], neww=AML[i, univ.sig],

99 model.select="BIC")$class #minBIC model

100 return(c(i,pred.AIC.4, pred.BIC.4))

101 }

102

103

104 somer.aic.4 <- rcorr.cens(NfoldCV.4[, 2], AML[, 1])[2:3] # Somer’s Dxy (AIC)

105 somer.bic.4 <- rcorr.cens(NfoldCV.4[, 3], AML[, 1])[2:3] # Somer’s Dxy (BIC)

106 somer.4 <- data.frame(assumption=c(4, 4),

107 somer=c(somer.aic.4[1], somer.bic.4[1]),

108 std.err=c(somer.aic.4[2], somer.bic.4[2]),

109 model.selection=c("AIC", "BIC"))

110 to.plot <- rbind(somer.1, rbind(somer.2, rbind(somer.3, somer.4)))

111 to.plot$assumption <- as.factor(to.plot$assumption)

112 to.plot$model.selection <- as.factor(to.plot$model.selection)

113

114 save(list=c("NfoldCV.1", "somer.aic.1", "somer.bic.1",

115 "NfoldCV.2", "somer.aic.2", "somer.bic.2",

116 "NfoldCV.3", "somer.aic.3", "somer.bic.3",

117 "NfoldCV.4", "somer.aic.4", "somer.bic.4",

118 "AML", "to.plot"),

119 file="AML_NfoldCV.RData")

1 ### Fit a model with the entire dataset,

2 ### examine which features are included

3

4 ### READ IN DATA ###

5 library(survival)

163

6 load("AML.RData")

7 univ.sig <- c("Age.at.Dx", "cyto.cat", "ITD", "HGB")

8 y <- as.numeric(as.character(aml.train$y))

9 AML <- data.frame(y=Surv(y, aml.train$censor), protein, clinical)

10 X <- AML[, setdiff(colnames(AML), univ.sig)][, -1] #penalized predictors

11 unpen <- AML[, univ.sig] #unpenalized predictors

12

13 source("..//discSurvFCR.R")

14

15 fit.1 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB, data=AML,

16 x=X, scale=TRUE, epsilon=0.001, tol=1e-04,

17 assumption=1)

18 fit.2 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB, data=AML,

19 x=X, scale=TRUE, epsilon=0.001, tol=1e-04,

20 assumption=2)

21 fit.3 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB, data=AML,

22 x=X, scale=TRUE, epsilon=0.001, tol=1e-04,

23 assumption=3)

24 fit.4 <- forwardcr.stepwise(y ~ Age.at.Dx + cyto.cat + ITD + HGB, data=AML,

25 x=X, scale=TRUE, epsilon=0.001, tol=1e-04,

26 assumption=4)

27

28

29 sAIC.1 <- which.min(fit.1$AIC)

30 sBIC.1 <- which.min(fit.1$BIC)

31 sAIC.1

32 sBIC.1

164

33 beta.nonzero.AIC.1 <- fit.1$beta[sAIC.1, which(fit.1$beta[sAIC.1,] != 0)]

34 beta.nonzero.BIC.1 <- fit.1$beta[sBIC.1, which(fit.1$beta[sBIC.1,] != 0)]

35 nonzero.AIC.1 <- names(beta.nonzero.AIC.1)

36 nonzero.BIC.1 <- names(beta.nonzero.BIC.1)

37

38 sAIC.2 <- which.min(fit.2$AIC)

39 sBIC.2 <- which.min(fit.2$BIC)

40 sAIC.2

41 sBIC.2

42 beta.nonzero.AIC.2 <- fit.2$beta[sAIC.2, which(fit.2$beta[sAIC.2,] != 0)]

43 beta.nonzero.BIC.2 <- fit.2$beta[sBIC.2, which(fit.2$beta[sBIC.2,] != 0)]

44 nonzero.AIC.2 <- names(beta.nonzero.AIC.2)

45 nonzero.BIC.2 <- names(beta.nonzero.BIC.2)

46

47 sAIC.3 <- which.min(fit.3$AIC)

48 sBIC.3 <- which.min(fit.3$BIC)

49 sAIC.3

50 sBIC.3

51 beta.nonzero.AIC.3 <- fit.3$beta[sAIC.3, which(fit.3$beta[sAIC.3,] != 0)]

52 beta.nonzero.BIC.3 <- fit.3$beta[sBIC.3, which(fit.3$beta[sBIC.3,] != 0)]

53 nonzero.AIC.3 <- names(beta.nonzero.AIC.3)

54 nonzero.BIC.3 <- names(beta.nonzero.BIC.3)

55

56 sAIC.4 <- which.min(fit.4$AIC)

57 sBIC.4 <- which.min(fit.4$BIC)

58 sAIC.4

59 sBIC.4

165

60 beta.nonzero.AIC.4 <- fit.4$beta[sAIC.4, which(fit.4$beta[sAIC.4,] != 0)]

61 beta.nonzero.BIC.4 <- fit.4$beta[sBIC.4, which(fit.4$beta[sBIC.4,] != 0)]

62 nonzero.AIC.4 <- names(beta.nonzero.AIC.4)

63 nonzero.BIC.4 <- names(beta.nonzero.BIC.4)

64

65 data.frame(fit.1$AIC[sAIC.1], fit.2$AIC[sAIC.2], fit.3$AIC[sAIC.3],

66 fit.4$AIC[sAIC.4])

67 data.frame(fit.1$BIC[sBIC.1], fit.2$BIC[sBIC.2], fit.3$BIC[sBIC.3],

68 fit.4$BIC[sBIC.4])

69

70 save.image("AMLfull.RData")

166

REFERENCES

[1] W Fraser Symmans et al. “Measurement of residual breast cancer burden to pre-

dict survival after neoadjuvant chemotherapy”. In: Journal of Clinical Oncology 25.28

(2007), pp. 4414–4422.

[2] Ian Ayres. Super Crunchers: Why Thinking-By-Numbers is the New Way to be Smart.

Bantam, 2008.

[3] Otto Metzger Filho, Michail Ignatiadis, and Christos Sotiriou. “Genomic Grade Index:

An important tool for assessing breast cancer tumor grade and prognosis”. In: Critical

Reviews in Oncology/Hematology 77.1 (2011), pp. 20–29.

[4] Khawaja Afzal Ammar et al. “Prevalence and prognostic significance of heart failure

stages application of the American College of Cardiology/American Heart Associa-

tion heart failure staging criteria in the community”. In: Circulation 115.12 (2007),

pp. 1563–1570.

[5] Reisa A Sperling et al. “Toward defining the preclinical stages of Alzheimers Disease:

recommendations from the National Institute on Aging-Alzheimer’s Association work-

groups on diagnostic guidelines for Alzheimer’s Disease”. In: Alzheimer’s & Dementia

7.3 (2011), pp. 280–292.

[6] Andrew S Levey et al. “National Kidney Foundation practice guidelines for chronic

kidney disease: evaluation, classification, and stratification”. In: Annals of Internal

Medicine 139.2 (2003), pp. 137–147.

[7] Kellie J Archer et al. “ordinalgmifs: An R package for ordinal regression in high-

dimensional data settings”. In: Cancer Informatics 13 (2014), p. 187.

[8] John W Pratt. “Concavity of the log likelihood”. In: Journal of the American Statis-

tical Association 76.373 (1981), pp. 103–106.

167

[9] J Burridge. “A note on maximum likelihood estimation for regression models using

grouped data”. In: Journal of the Royal Statistical Society. Series B (Methodological)

(1981), pp. 41–45.

[10] Sorin Drăghici. Statistics and Data Analysis for Microarrays Using R and Bioconduc-

tor. CRC Press, 2011.

[11] Danh V Nguyen et al. “DNA microarray experiments: biological and technological

aspects”. In: Biometrics 58.4 (2002), pp. 701–717.

[12] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of

the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[13] Trevor Hastie et al. “Forward stagewise regression and the monotone lasso”. In: Elec-

tronic Journal of Statistics 1 (2007), pp. 1–29.

[14] Peter Bühlmann and Torsten Hothorn. “Boosting algorithms: regularization, predic-

tion and model fitting”. In: Statistical Science (2007), pp. 477–505.

[15] Trevor Hastie, Rob Tibshirani, and Jerome Friedman. The Elements of Statistical

Learning. New York, NY, USA: Springer New York Inc.; 2001.

[16] Matthias Schmid et al. “Geoadditive regression modeling of stream biological condi-

tion”. In: Environmental and Ecological Statistics 18.4 (2011), pp. 709–733.

[17] Roger Newson. “Confidence intervals for rank statistics: Somers’ D and extensions”.

In: Stata Journal 6.3 (2006), p. 309.

[18] Lars Kai Hansen and Peter Salamon. “Neural network ensembles”. In: IEEE transac-

tions on pattern analysis and machine intelligence 12 (1990), pp. 993–1001.

[19] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International

workshop on multiple classifier systems. Springer. 2000, pp. 1–15.

[20] Leo Breiman. “Bagging predictors”. In: Machine Learning 24.2 (1996), pp. 123–140.

168

[21] L Breiman. Classification and Regression Trees. Belmont, CA, USA: Wadsworth In-

ternational Group, 1984.

[22] Kevin J Cherkauer. “Human expert-level performance on a scientific image analysis

task by a system using combined artificial neural networks”. In: Working notes of the

AAAI workshop on integrating multiple learned models. Citeseer. 1996, pp. 15–21.

[23] Thomas G. Dietterich and Ghulum Bakiri. “Solving multiclass learning problems via

error-correcting output codes”. In: Journal of Artificial Intelligence Research 2 (1995),

pp. 263–286.

[24] Leo Breiman. “Random forests”. In: Machine Learning 45.1 (2001), pp. 5–32.

[25] Jianqing Fan et al. “Feature Augmentation via Nonparametrics and Selection (FANS)

in high-dimensional classification”. In: Journal of the American Statistical Association

111.513 (2016), pp. 275–287.

[26] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing. Vienna, Austria, 2014. url: http://www.R-project.

org/.

[27] Avrum Spira et al. “Airway epithelial gene expression in the diagnostic evaluation of

smokers with suspect lung cancer”. In: Nature Medicine 13.3 (2007), pp. 361–366.

[28] Gerhard Tutz and Klaus Hechenbichler. “Aggregating classifiers with ordinal re-

sponse structure”. In: Journal of Statistical Computation and Simulation 75.5 (2005),

pp. 391–408.

[29] Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”.

In: Annals of Statistics (2001), pp. 1189–1232.

[30] Benjamin Hofner et al. “Model-based boosting in R: a hands-on tutorial using the R

package mboost”. In: Computational Statistics 29.1-2 (2014), pp. 3–35.

169

[31] Christine Desmedt et al. “Strong time dependence of the 76-gene prognostic signature

for node-negative breast cancer patients in the TRANSBIG multicenter independent

validation series”. In: Clinical Cancer Research 13.11 (2007), pp. 3207–3214.

[32] Ron Edgar, Michael Domrachev, and Alex E Lash. “Gene Expression Omnibus: NCBI

gene expression and hybridization array data repository”. In: Nucleic Acids Research

30.1 (2002), pp. 207–210.

[33] Rafael A Irizarry et al. “Summaries of Affymetrix GeneChip probe level data”. In:

Nucleic Acids Research 31.4 (2003), e15–e15.

[34] Kellie J Archer and Sarah E Reese. “Detection call algorithms for high-throughput

gene expression microarray data”. In: Briefings in Bioinformatics (2009), bbp055.

[35] Yoav Benjamini and Daniel Yekutieli. “The control of the false discovery rate in

multiple testing under dependency”. In: Annals of Statistics (2001), pp. 1165–1188.

[36] Xiaochun Li. ALL: A data package. R package version 1.14.0. 2009.

[37] Yali Zhai et al. “Gene expression analysis of preinvasive and invasive cervical squamous

cell carcinomas identifies HOXC10 as a key mediator of invasion”. In: Cancer research

67.21 (2007), pp. 10163–10172.

[38] Jeanette N McClintick and Howard J Edenberg. “Effects of filtering by present call

on analysis of microarray experiments”. In: BMC Bioinformatics 7.1 (2006), p. 1.

[39] Lin-Jing Yuan et al. “SPAG5 upregulation predicts poor prognosis in cervical cancer

patients and alters sensitivity to taxol treatment via the mTOR signaling pathway”.

In: Cell Death & Disease 5.5 (2014), e1247.

[40] De Jun Sun et al. “Endothelin-3 growth factor levels decreased in cervical cancer

compared with normal cervical epithelial cells”. In: Human Pathology 38.7 (2007),

pp. 1047–1056.

170

[41] Martin Koch and Michael Wiese. “Gene expression signatures of angiocidin and dara-

pladib treatment connect to therapy options in cervical cancer”. In: Journal of Cancer

Research and Clinical Oncology 139.2 (2013), pp. 259–267.

[42] Klaus Schliep and Klaus Hechenbichler. kknn: Weighted k-nearest neighbors. R package

version 1.0. 2010.

[43] National Cancer Institute. SEER Cancer Statistics Factsheets: Cervix Uteri Cancer.

National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/statfacts/

html/cervix.html. Accessed: 2016-08-30.

[44] Virginia A Moyer. “Screening for cervical cancer: US Preventive Services Task Force

recommendation statement”. In: Annals of Internal Medicine 156.12 (2012), pp. 880–

891.

[45] National Cancer Institute. SEER Cancer Statistics Factsheets: Melanoma of the Skin.

National Cancer Institute. Bethesda, MD. http://seer.cancer.gov/statfacts/

html/melan.html. Accessed: 2016-08-30.

[46] Darrell S Rigel, Julie Russak, and Robert Friedman. “The evolution of melanoma

diagnosis: 25 years beyond the ABCDs”. In: CA: A Cancer Journal for Clinicians

60.5 (2010), pp. 301–316.

[47] Agnessa Gadeliya Goodson and Douglas Grossman. “Strategies for early melanoma

detection: approaches to the patient with nevi”. In: Journal of the American Academy

of Dermatology 60.5 (2009), pp. 719–735.

[48] Dmitri Talantov et al. “Novel genes associated with malignant melanoma but not

benign melanocytic lesions”. In: Clinical Cancer Research 11.20 (2005), pp. 7234–

7242.

[49] Arun J Sanyal, Seung Kew Yoon, and Riccardo Lencioni. “The etiology of hepatocel-

lular carcinoma and consequences for treatment”. In: The Oncologist 15.Supplement

4 (2010), pp. 14–22.

171

[50] Kellie J Archer et al. “High-throughput assessment of CpG site methylation for dis-

tinguishing between HCV-cirrhosis and HCV-associated hepatocellular carcinoma”.

In: Molecular Genetics and Genomics 283.4 (2010), pp. 341–349.

[51] David H Wolpert and William G Macready. “No free lunch theorems for optimization”.

In: Evolutionary Computation, IEEE Transactions on 1.1 (1997), pp. 67–82.

[52] R Dummer, A Hauschild, and G Pentheroudakis. “Cutaneous malignant melanoma:

ESMO clinical recommendations for diagnosis, treatment and follow-up”. In: Annals

of Oncology 20.suppl 4 (2009), pp. iv129–iv131.

[53] Guido Reifenberger et al. “Molecular characterization of long-term survivors of

glioblastoma using genome-and transcriptome-wide profiling”. In: International Jour-

nal of Cancer 135.8 (2014), pp. 1822–1831.

[54] US Department of Health and Human Services et al. Guidance regarding methods for

de-identification of protected health information in accordance with the Health Insur-

ance Portability and Accountability Act (HIPAA) Privacy Rule. 2015.

[55] Robin Henderson, Margaret Jones, and Janez Stare. “Accuracy of point predictions

in survival analysis”. In: Statistics in Medicine 20.20 (2001), pp. 3083–3096.

[56] C Murray Parkes. “Accuracy of predictions of survival in later stages of cancer”. In:

British Medical Journal 2.5804 (1972), p. 29.

[57] Enrico A Colosimo, Liciana VAS Chalita, and Clarice GB Demétrio. “Tests of pro-

portional hazards and proportional odds models for grouped survival data”. In: Bio-

metrics 56.4 (2000), pp. 1233–1240.

[58] David R Cox. “Regression models and life-tables”. In: Journal of the Royal Statistical

Society. Series B (Methodological) (1972), pp. 187–220.

[59] David R Cox. “Partial likelihood”. In: Biometrika 62.2 (1975), pp. 269–276.

172

[60] Ross L Prentice and Lynn A Gloeckler. “Regression analysis of grouped survival data

with application to breast cancer data”. In: Biometrics (1978), pp. 57–67.

[61] John P Klein and Melvin L Moeschberger. Survival Analysis: Techniques for Censored

and Truncated Data. Springer Science & Business Media, 2003.

[62] Jianguo Sun. “Regression analysis of interval-censored failure time data”. In: Statistics

in Medicine 16.5 (1997), pp. 497–504.

[63] Bob Lowenberg, James R Downing, and Alan Burnett. “Acute myeloid leukemia”. In:

New England Journal of Medicine 341.14 (1999), pp. 1051–1062.

[64] National Cancer Institute. SEER Cancer Statistics Factsheets: Acute Myeloid

Leukemia. http : / / seer . cancer . gov / statfacts / html / amyl . html. Accessed:

2015-12-02. 2015.

[65] Elihu Estey and Hartmut Döhner. “Acute myeloid leukaemia”. In: The Lancet

368.9550 (2006), pp. 1894–1907.

[66] David Noren et al. “DREAM 9: An Acute Myeloid Leukemia Prediction Big Data

Challenge”. In: ICBO. 2014, pp. 108–109.

[67] Paul D Allison. “Discrete-time methods for the analysis of event histories”. In: Soci-

ological Methodology 13.1 (1982), pp. 61–98.

[68] Judith D Singer and John B Willett. “Its about time: Using discrete-time survival

analysis to study duration and the timing of events”. In: Journal of Educational and

Behavioral Statistics 18.2 (1993), pp. 155–195.

[69] Janine Austin Clayton. “Studying both sexes: a guiding principle for biomedicine”.

In: The FASEB Journal (2015), fj–15.

[70] Kyle Ferber and Kellie J Archer. “Modeling discrete survival time using genomic

feature data”. In: Cancer Informatics 14.Suppl 2 (2015), pp. 37–43.

173

[71] Amanda Elswick Gentry et al. “Penalized ordinal regression methods for predict-

ing stage of cancer in high-dimensional covariate spaces”. In: Cancer Informatics 14

(Suppl 2) (2015), p. 201.

[72] KJ Archer and AAA Williams. “L1 penalized continuation ratio models for ordinal

response prediction using high-dimensional datasets”. In: Statistics in Medicine 31.14

(2012), pp. 1464–1474.

[73] WA Thompson Jr. “On the treatment of grouped observations in life studies”. In:

Biometrics (1977), pp. 463–470.

[74] Max Kuhn and Kjell Johnson. Applied Predictive Modeling. Springer, 2013.

[75] Olga Troyanskaya et al. “Missing value estimation methods for DNA microarrays”.

In: Bioinformatics 17.6 (2001), pp. 520–525.

[76] P Morel et al. “Cytogenetic analysis has strong independent prognostic value in de

novo myelodysplastic syndromes and can be incorporated in a new scoring system: a

report on 408 cases.” In: Leukemia 7.9 (1993), pp. 1315–1323.

[77] Panagiotis D Kottaridis et al. “The presence of a FLT3 internal tandem duplication in

patients with acute myeloid leukemia (AML) adds important prognostic information

to cytogenetic risk group and response to the first cycle of chemotherapy: analysis

of 854 patients from the United Kingdom Medical Research Council AML 10 and 12

trials”. In: Blood 98.6 (2001), pp. 1752–1759.

[78] Luis Villela and Javier Bolaños-Meade. “Acute Myeloid Leukaemia”. In: Drugs 71.12

(2011), pp. 1537–1550.

[79] Susan P Whitman et al. “Absence of the wild-type allele predicts poor prognosis

in adult de novo acute myeloid leukemia with normal cytogenetics and the internal

tandem duplication of FLT3: A Cancer and Leukemia Group B Study”. In: Cancer

Research 61.19 (2001), pp. 7233–7239.

174

[80] RW Craig. “MCL1 provides a window on the role of the BCL2 family in cell prolifer-

ation, differentiation and tumorigenesis.” In: Leukemia 16.4 (2002), pp. 444–454.

[81] Stefan P Glaser et al. “Anti-apoptotic Mcl-1 is essential for the development and

sustained growth of acute myeloid leukemia”. In: Genes & Development 26.2 (2012),

pp. 120–125.

[82] Adrian W Bowman and Adelchi Azzalini. Applied Smoothing Techniques for Data

Analysis: The Kernel Approach with S-Plus Illustrations. Vol. 18. OUP Oxford, 1997.

175

VITA

Kyle Ferber was born on July 2, 1990 in Virginia Beach, VA. He received his Bachelor of

Science degree in May of 2012 from the College of William and Mary in Williamsburg, VA. He

began work towards a PhD in Biostatistics at Virginia Commonwealth University in August

of 2012. While pursuing his PhD, he has worked as a Teaching Assistant (August 2012 -

June 2013), a Statistical Intern for PharPoint Research, Inc. (June 2013 - June 2014), a

Research Assistant under Dr. Kellie J. Archer (June 2014 - April 2016), and as a Consulting

Biostatistician for ImmunArray, Ltd. (April 2016 - November 2016).

176

	Methods for Predicting an Ordinal Response with High-Throughput Genomic Data
	Downloaded from

	tmp.1479399867.pdf.vHBwh

