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Abstract
REGRESSION-BASED ALLOWANCE POLICY DETERMINATION

PROCEDURES IN A GENERAL JOB SHOP: AN EVALUATION
IN TERMS OF COMPLETION INACCURACY PENALTIES

Edward S. Gee
School of Business - Virginia Commonwealth University, 1988

Major Director: Dr. Charles H. Smith

This dissertation addresses the problem of setting due dates to
minimize completion inaccuracy penalties in a general job shop
environment. In this simulation study, lateness penalties are generated
by four defined functions: lateness variance, mean squared lateness,
mean absolute lateness, and semi-quadratic lateness. Each of these
functions assigns positive penalties to both early and late job
completions.

The study proposes and demonstrates the benefits of an iterative
simulation-regression procedure in determining allowance policies.
Advantages of operation-based dispatching rules over job-based
dispatching rules, as well as improvements to traditional methods of
setting operation due dates, are demonstrated. Characteristics and
benefits of incorporating shop congestion variables in due date setting
procedures under different combinations of expected shop utilization and

processing time assumptions are evaluated.



Chapter 1

Introduction

This dissertation presents a simulation study on the problem of
scheduling jobs through a multi-facility shop. The study extends both
the scope of scheduling research and its applicability to real-world
shops by addressing three important subclasses of problems to which

existing literature devotes little attention:

1. the set of problems in which both negative lateness
(the completion of a job prior to its due date) and
positive lateness (the completion of a job after its
due date) incur a positive penalty,

2. the set of problems in which the shop utilizes
relevant job-related information (such as number of
tasks per job) and shop-related information (such as
number of jobs in shop) to assign, free from external
constraints (i.e., constraints imposed by the client
or the marketplace), an expected completion date to
each job upon its arrival at the shop, and

3. the set of problems in which job-based dispatching
rules (such as "earliest job due date") are compared
with operation-based dispatching rules (such as
"earliest pending operation due date") under a
variety of allowance policies (i.e., methods of
estimating job and operation completion dates) and
shop conditions.

This study demonstrates new procedures which significantly
improve existing methodology in the areas of allowance policy

determination and implementation of operation-based dispatching rules.

Further, the benefits and characteristics of utilizing shop congestion



variables (i.e., variables reflecting how crowded the shop is at the
time of a given job’s arrival) in allowance determination are evaluated
statistically.

Much research has been devoted over the past thirty years to the
job shop scheduling problem. The vast majority of this research has
concerned the evaluation of different heuristic dispatching rules by
which to select a job from an existing queue at each machine.

Most of these studies assume (either explicitly or implicitly)
that due dates are either externally invoked or internally set, based
solely on job characteristics, subject to specific marketplace or
customer constraints. An example of such an external constraint is
"mean job allowance must be seven times mean job processing time". Few
studies have addressed the utilization of shop congestion information in
setting estimated job completion dates.

This dissertation proceeds by stating the research problem
(including brief definitions of problem concepts), and then discussing
the significance of the research. The next section examines the general
shop scheduling problem, and defines further concepts and terminology
pertinent to the study. Chapter 1 concludes with a discussion of the
scope and limitations of the research, and a statement of the hypotheses
tested.

Chapter 2 reviews related research, and Chapter 3 discusses the
research method in terms of its design and analysis procedures.

Chapters 4 and 5 present and discuss the results of the research.
Chapter 6 discusses managerial implications and directions for future

research. A list of references is given, and the Appendices that follow



provide supporting documentation as well as an alphabetized glossary of

variables and acronyms.

The Research Problem

The problem under study is "To what extent does the
unconstrained regression-based choice of allowance policy, interacting
with various dispatching rules and shop characteristics, affect
penalties associated with inaccurate job completion times in a general
job shop with dynamic and probabilistic job arrivals?"

Scheduling decisions in most industrial job shops are
decentralized (Kanet, 1979). Each work station chooses the next job to
be processed from the queue that exists at that station based on a
"dispatching rule."

Dispatching rules may be categorized as either "operation-based"
or "job-based". An operation-based dispatching rule utilizes
information about the pending operations of available jobs to prioritize
those jobs, whereas a job-based dispatching rule utilizes information
about the overall jobs themselves. An example of an operation-based
dispatching rule is "select from the queue the job that has the earliest
due date for its pending operation". An example of a job-based
dispatching rule is "select from the queue the job that has the earliest
job due date".

The allowance of job i is defined as the due date of the job
minus the arrival date of the job, and represents the time job i can
spend in the shop before becoming late. The shop’s "allowance policy,"
therefore, determines a job’s due date based on information available at

the time the job arrives at the shop.



An allowance policy may be categorized as either "local" or
"global.™ A local allowance policy uses only job-related information
(such as number of tasks and total required processing time) to
calculate a due date. A global allowance policy uses both job-related
and shop-related information (such as number of jobs in the shop as of
the job’s arrival) to calculate a due date.

The phrase "regression-based choice of allowance policy" refers
to a procedure in which specific coefficients in an allowance equation
are determined from a regression analysis of the output from a previous
simulation. For example, one may wish to set the allowance of each job,
as it arrives, as a constant plus a fixed multiple of the Jjob’s total
expected processing time. 1In this case, one could fix an initial
constant and an initial multiple arbitrarily (for example, 0.0 and 6.0,
respectively) and run a simulation. One could then perform a simple
linear regression on the output from that simulation, using the time
actually spent in the shop by each simulated job as the dependent
variable and the expected required processing time of each job as the
independent variable. The resulting linear equation would be a
regression-based allowance policy.

Let di denote the expected completion date of a job (upon
arrival at the shop), and let Ci denote the actual realized job

completion date. Job lateness is defined as

L, = G, = djy. : (1.1)

If actual completion occurs after the due date (i.e., the job is

completed later than expected), Li will be positive; if actual



completion occurs before the due date (i.e., the job is completed
earlier than expected), Li will be negative.

Penalties associated with early and late job completions are
reflected by defined penalty functions. This research presents analysis
on each of four different penalty functions: quadratic for Li about the
mean lateness, quadratic for Li about zero, linear for Li about zero,
and linear for negative Li while quadratic for positive Li' For
simplicity, the linear portion of a penalty function is assumed to have
a slope of one, and therefore is equal to the absolute value of Li'

To facilitate comparison with other research, penalties are
reported on an "average penalty per job" basis. Therefore, the four
penalty measures in this study are lateness variance, mean squared
lateness, mean absolute lateness, and semi-quadratic lateness, and are

defined as follows:

n (L,-L)?

vaR = ¥ _ (1.2)
i=1 n "
n L.?

MSL = I i (1.3)
i=1 n 7
n 1L, |

MAL = I = (1.4)
i=1 n , and

L.? for positive L,

n {IL%l for negative L%]

sgL= ¥ _ * (1.5)
i=1 n .



A shop is a set of facilities associated with a given set of
jobs. A job consists of one or more operations, each of which must be
processed at a specific type of facility. The term "job shop" typically
refers to a shop in which the order of a job’s operations is unknown
prior to the job’s arrival.

In a "dynamic" shop the jobs arrive individually over time,
either "deterministically" (future arrival times are known with
certainty), or "probabilistically"™ (arrival times follow some stochastic
process). In a "static" shop, all jobs to be scheduled arrive at the

same time.

Significance of the Study

Several key characteristics of this study concern aspects of

scheduling largely unaddressed by existing research:

1. The minimization of positive penalties incurred by
both early job completions and late job completions.

2. Allowance policies, free from external constraints,
that are based on simulation-regression techniques.
The iterative procedure used in this study is unique
in shop research, and provides significant
improvements in completion accuracy over past
methods.

3. The evaluation of job-based dispatching rules vs.
operation-based dispatching rules under several shop
and procedural environments.

4. The evaluation of benefits of incorporating global
information into the due date setting procedure.

5. The evaluation of the sensitivity of allowance
procedures and dispatching rules to changes in shop
characteristics.



The general areas of completion inaccuracy penalties and

internal allowance policy merit further discussion.

Completion Inaccuracy Penalties

A strong intuitive foundation exists for assuming that a shop
incurs penalties for early completion as well as late completion.

Unless finished jobs can be shipped prior to their respective due dates,
early completions will increase a shop’s monetary and space investments
in finished good inventory.

Given a shop in which resource constraints are significant,
early completions generally occur at the expense of late completions,
and therefore indicate a misallocation of resources. A shop that quotes
due dates that tend to exceed completion times in a systematic manner
may be foregoing a potential competitive edge.

MRP systems, which depend on accurate delivery of subassemblies,
are becoming increasingly popular in the real world. The advantages of
increasing delivery accuracy are detailed by Fry et. al. (1987).

Putnam, Everdell, Dorman, Cronan, and Lindgren (1971) reported
that the preference of many firms is for scheduling techniques that
minimize the variance of completion times around end due dates. This is
analogous to the minimization of this study’s VAR and MSL penalty
measures. Few studies in the reviewed literature, however, specifically
addressed the minimization of VAR or MSL as objectives. For examples,
see Kanet (1979) and Ragatz and Mabert (1984).

Panwalker and Iskander (1973) noted a marked discrepancy between
the "preferred" objective measures of research and those of industry.

Actual firms placed a higher priority on meeting due dates than on



typical research objectives such as minimizing mean flowtime. Similar
opinions were noted by Kanet and Hayya (1982) and Baker (1984). Hax and
Candea (1984) pointed to such "misdirected" research effort as a primary
reason for the relative lack of application of theoretical developments
to actual industrial settings. Similar findings were noted by Melnyk

t. al. (1986)

Regression-Based Internal Allowance Policies

Only a few studies have addressed allowance policy as a decision
variable. Those studies demonstrated that both the choice of
dispatching rule and the choice of allowance policy significantly
affect aggregate performance measures (Kanet, 1979; Conway, 1965a). The
importance of due date assignment problems has been voiced in previous
research (Weeks and Fryer, 1977; Smith and Seidman, 1983). Further, few
studies have assumed that the choice of allowance policy was free from
external constraints such as an imposed mean job allowance (Baker and
Bertrand, 1981).

Kanet (1979) and Conway (1965a and 1965b) examined factorial
designs of various dispatching rules and various allowance policies.
However, both used allowance policies that were externally constrained
in that the mean allowances were set equal to arbitrary levels. Forcing
allowance policies to conform to such an external constraint will affect
mean lateness and MSL. Further, both studies based their allowance
policies solely on job-related information.

The statistic of lateness variance has been reported in an
incidental manner in several studies. It is tempting to conclude that

lateness variance under conditions of an external mean allowance



constraint may be compared directly to MSL under conditions of no
constraint, since lateness variance is calculated about any observed
mean lateness.

Data presented incidentally by Kanet (1979), however, permit a
posteriori analysis that shows a significant relationship (observed Chi-
Squared with 4 d.f. = 136) between mean lateness and lateness variance
over all pairwise combinations of dispatching rules and allowance
policies. In short, since mean lateness and lateness variance are
significantly related, the latter may not be used to infer
"unconstrained"” results from studies that assumed a mean allowance
constraint.

Few available studies attempted to fit allowance policies to the
inherent tendencies of various dispatching rules. Further, few
published studies have evaluated allowance policies which incorporate
global information in the setting of due dates (for example, the level
of shop congestion at the time of job arrival). Intuitively, one would
expect that the allowance set for a job that arrives when the shop is
crowded should be larger than the allowance set for an identical job
that arrives when the shop is empty. This conclusion has been supported
in several previous studies (for example, Baker, 1984).

Ragatz and Mabert (1984) did address the use of an allowance
policy which was generated by multiple regression techniques (termed RMR
in their study). This was the only study found that attempted to
incorporate numerous job-related and shop-related factors,
simultaneously, as independent variables in the allowance estimator. It

is, therefore, the most similar in intent to this research.



There are, however, several potential characteristics of their
study that may limit the usefulness and validity of their conclusions.
They evaluated only three dispatching rules (Shortest Processing Time,
First Come First Served, and Minimum Job Slack). The first two rules do
not incorporate assigned due dates in their prioritization, and all
three have been shown to be inferior to other rules in minimizing
objective functions related to lateness variance (Kanet, 1979 and
Conway, 1965a).

The variable that Ragatz and Mabert used to reflect total shop
congestion was the total number of jobs in the shop at the time of a
job’s arrival. This is intuitively inferior to other potential
indicators such as total number of jobs (or total required processing
times) in the shop that require the same machines as does the job being
examined.

A potentially more telling limitation, however, concerns the
procedures by which Ragatz and Mabert estimated regression coefficients
in the model. They generated their allowance equation by analyzing
results from a single pilot simulation, and used that equation in
subsequent evaluative simulation runs. 1In other words, a different
allowance procedure was used in the pilot simulation than was used in
the evaluative simulations.

This fails to acknowledge the fact that different allowance
procedures will change the characteristic performance of any dispatching
rule that incorporates due dates in its prioritization (such as
selecting the job that has the minimum slack, termed MINSLK by Ragatz
and Mabert). In effect, for MINSLK their parameter estimation stage and

their performance evaluation stage may have been performed on two

10



different populations. This may account for their results that showed
that while the RMR procedure dominated all other procedures with SPT and
FCFS, it was marginally outperformed by two other simpler procedures
when using the dispatching rule MINSLK.

This research addresses that limitation by iterating the
simulation-regression procedure, producing successive allowance policies
that tend to converge to a more stable equation. This procedure (to be
discussed later in further detail) also begins by arbitrarily setting an
initial allowance equation, running a simulation, and determining a
revised allowance equation based on regression analysis of the initial
simulation output. However, this procedure then continues by running a
second simulation using the revised allowance equation, performing a
regression analysis of the results, and revising the allowance equation
again. The process is continued through subsequent iterations until a
predetermined stopping point is reached (also to be discussed later in
further detail). Such an iterative technique is analogous to the Markov
decision process of policy iteration. Significant decreases in
inaccuracy measures result.

Ragatz and Mabert did not investigate the robustness of their

results to changes in shop characteristics.

The General Shop Scheduling Problem

The shop scheduling problem is to order the operations to be
performed at each shop facility subject to routing and shop constraints,
such that some measurable function of the ordering is optimized
(Salvador, 1978). Research generally classifies a shop’s structure as

"parallel, " "flow," or "job."

11



A "parallel shop" consists of several identical facilities, in
which each job consists of a single operation to be performed on any one
of those facilities (for example, checkout stations in a supermarket).
A "flow-shop" is a set of different facilities, in which each job
consists of identical operations in identical order (for example, an
automobile assembly line). A "job shop" is a set of different
facilities in which the type, number, and order of required operations
for any given job are unknown prior to arrival (for example, a general-
purpose machine shop) .

Past research concerning the scheduling problem has sought to
optimize a variety of objective functions. Examples of such goals are
the minimization of makespan, mean flowtime, mean lateness, and mean
tardiness. Makespan is the total time required to process n jobs (with
static arrival) through a shop. If r, represents the arrival time of
job i at the shop (recall that Ci represents the time of that job’s

completion), then the flowtime for job i is defined as
(1.6)

Tardiness is defined as Li 3 F Li is positive and zero otherwise.
Objective functions may be classified as "regular" or "non-
regular" (Conway, 1965a). The value of a regular function will increase
only if at least one job flowtime increases. For example, mean flowtime
is a regular function but the variance of job flowtimes is not.
The allowance of any job i is the due date of the job minus the

arrival date of the job, or

a, =d, -r,. (1:7)

12



The time that job i stays in the shop is the sum of its actual
processing time, P, and its actual waiting time, W, . The allowance for
job i consists of its expected processing time, P, plus its expected

waiting time, w, . Figure 1.1 visually displays the relationships among

these characteristics.

Scope and Limitations

Assumptions

As is typical in scheduling research, this study makes a number

of simplifying assumptions. They are:

1. Jobs consist of operations in series.

2. The order in which operations of a job must be
performed may not be altered after a job’s arrival
at the shop. Consecutive operations on the same
machine are not permitted.

3. Labor and other resources are in ample supply.
Therefore, this is a "machine constrained" shop.

4. Setup times are sequence-independent and are
included in the processing times.

5. Jobs move instantaneously between machines.
6. Arrivals are based on a Poisson stochastic process
and processing times are based on a negative

exponential stochastic process.

7. Each machine is continuously available for
assignment, and no breakdowns occur.

8. A machine can process only one operation at a time.

9. A given operation can be performed only on the
single specified machine in the shop.

10. Operation preemption is not allowed; once a given

operation is started, processing on that operation
may not be interrupted until completion.

13



Figure 1.1

Relationships Among Various
Job Characteristics
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11. Operation overlapping is not permitted;
processing of a given job operation may nct begin
until all previous operations in that job are
completed.

12. No machine will purposely incur idle time if a job

is waiting to be processed.

Most job shop research assumes that processing times are known
with certainty once a job arrives at the shop. This study examines
simulations where this assumption is invoked, as well as where this
assumption is relaxed, permitting actual processing times to vary about
expected processing times stochastically.

Harris (1965), in a study of a real job shop, concluded that the
assumption of Poisson arrival time was unrealistic. However, Elvers

(1974) proved that the relative performances of dispatching rules were

not sensitive to the nature of the arrival distribution.

Dispatching Rules

This study evaluates six dispatching rules:

1. Earliest Due Date (EDD)

2. Minimum Job Slack (SLACK)

3. Critical Ratio (CR)

4. Earliest Operation Due Date (EOPDD)
5. Minimum Operation Slack (OPSLK), and

6. Operation Critical Ratio (OPCR).

These six dispatching rules were used by Kanet and Hayya (1982)
in their study that compared the performances of operation-based

dispatching rules to those of job-based dispatching rules.
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EDD directs the workstation to select from the queue the job
that has the earliest due date. SLACK directs the workstation to select
from the queue the job that has the lowest slack. In this context,
slack is defined as the time remaining until the due date minus the
total remaining processing time required. CR directs the workstation to
select from the queue the job which has the lowest critical ratio (CR).
To define CR, let a represent an allowance specifically assigned to
operation k of job i, let n, represent the total number of operations in

job i, and let t represent the current time. Then,

where z is the current operation number. Note that these first three
dispatching rules are job-based, in that selections are based on
characteristics of each job, and not of each job’s imminent operation.
The final three dispatching rules are analogous, respectively,
to the first three, but are based on pending operation characteristics
as opposed to job characteristics. Let dik represent the due date of
operation k of job i, and let ;ik represent the processing time expected
to be required by operation k of job i. EOPDD directs the workstation
to select from the queue the job that has the earliest due date for the
pending operation. OPSLK directs the workstation to select from the
queue the job that has the smallest d,, - ;ik' OPCR directs the
workstation to select from the queue the job that has the minimum [time

to the pending operation due date divided by the pending operation

allowance], or
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OPCR mim—"———7 (1.9)

Kanet and Hayya (1982) concluded from their research that
operation-based rules were superior to job-based dispatching rules.
Kanet and Hayya, however, simplistically set their job allowances as
multiples of expected total processing times, and allocated those job
allowances among operations in proportion to operation processing times;
they evaluated no other allowance policies. This study, therefore,
serves to extend their research by evaluating different methods of
setting job and operation allowances.

The dispatching rules evaluated in this research represent
important categories of selection heuristic rules. EDD is the most
basic dispatching rule that utilizes due dates. SLACK not only
addresses due date, but also accounts for the remaining required
processing time. CR has been in the past a popular rule in the real
world, and has proven its ability to control lateness variance in
earlier studies (Kanet, 1979).

The operation-based analogies to these rules are intuitively
appealing because they provide intermediate benchmarks for job progress,
and because they have demonstrated (as mentioned) promising research
results in certain situations. Melnyk and Vickery (1986) report that
the once-popular CR is falling into increasing disuse in the real world

in favor of operation-based rules.
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Allowance Policies

The various specific allowance policies to be evaluated in this
current research fall into two general classes: those utilizing local
(i.e., job specific) variables and those utilizing both local and global
(i.e., shop congestion) variables.

A local rule defines the total allowance of job i as some

function of certain job-specific variables:

ai = f([LV]). (1.10)

A global rule defines the total allowance of job i as some function of

job-specific and global variables:
ai = f([LV], [GV]). (1.11)

To further define [LV] and [GV], let mik represent the number of
the machine required to process operation k of job i. Then, for a given
job i over all operations k, examples of local variables are n, and Py

i I
Examples of global variables are TJIQmi TWIQmik’ TOIsmik' and TW Sm.

k' ik’

where (as of the arrival of Jjob i at the shop) TJIQmik represents the

length of the existing queue at machine mik, TWIQmi represents the

k

total processing time of operations in the queue at machine mik, TOISmik

represents the number of remaining operations elsewhere in the shop that

require machine mik, and TWISm. represents the total processing time of

ik
remaining operations elsewhere in the shop that require machine mik.

Note that the final equation for each allowance policy may include

transformations of the raw variables.
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In keeping with the assumption of no external allowance
constraints, a unique allowance policy is defined for each combination
of dispatching rule/allowance policy class/shop characteristic. Of
special interest is a comparison of the performance of the best global
rule for a combination to that of the best corresponding local rule.

The specific coefficients for each allowance policy are derived
based on multiple regression analyses of pilot simulations. The
specific procedure for deriving the equations will be explained in

detail in a later section.

Shop Characteristics

Evaluations are conducted at two different levels of expected
shop utilization (75% and 90%) and under two different assumptions
concerning actual operation processing times (actual processing times
assumed equal to expected processing times, and actual processing times
allowed to vary about expected processing times). Shop utilization is
defined as the percentage of available machine time that is not idle.
Simulating under four different shop environments serves to demonstrate
the sensitivity of allowance policies and dispatching rules to
variations in assumptions, and to increase the value of the research
results to real world job shops.

Several studies have assumed a 90% expected utilization level
(for examples, Conway, 1965b, and Kanet, 1979). This current research
also evaluates performances at a 75% expected utilization level.

As previously mentioned, the vast majority of simulation
research has assumed that actual operation processing times exactly

equal.expected operation processing times. In short, actual processing
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times are known with certainty upon a job’s arrival at the shop. This
assumption has served to eliminate one source of random variation in
order to permit a clearer evaluation of experimental relationships.
This current research also evaluates performances under an
environment where both the expected processing time for each operation
and the actual processing time for an operation (given its expected

processing time) are governed by stochastic processes.

Hypotheses

1. Allowance policies defined from an iterative
simulation-regression procedure produce lower
completion inaccuracy penalties than those defined
from a single pilot simulation.
As previously discussed, the use of a single pilot simulation to
define an allowance policy for use in a subsequent evaluatory simulation
may give inferior results. General job stream characteristics may
differ between the two simulations due to the interaction of each
allowance policy with any dispatching rule using due dates in its
selection process. Repeating the simulation-regression procedure until
a stable allowance policy is approached (to be discussed later in
further detail) addresses this source of inaccuracy.
2. Estimating operation allowances directly from
defined allowance policies produces lower completion
inaccuracy penalties than proportionally allocating
total job allowances among operations.

Every study reviewed that addressed operation-based dispatching

rules defined operation due dates by allocating a job’s estimated total

allowance among operations; the majority of those studies allocated in
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proportion to operation processing times. A properly defined allowance
policy should be able to directly estimate cumulative operation
allowances (and therefore due dates) with less inaccuracy.

3. Allowance procedures that utilize global information

produce lower completion inaccuracy penalties than
those that use only local information.

This hypothesis is based on indications from previous research
(Ragatz and Mabert, 1984; Weeks, 1979; and Weeks and Fryer, 1977), as
well as the common sense notion that a job arriving at a crowded shop
will tend to spend more time in the shop than one that arrives at an
empty shop.

4. Operation-based dispatching rules produce lower

completion inaccuracy penalties than job-based
dispatching rules.

Operation-based dispatching rules address job progress in
relation to a series of intermediate objectives. Existing research
(Kanet and Hayya, 1982) supports the proposition that completion
accuracy should improve by evaluating job status in relation to near-
term goals (task due dates) as opposed to a longer-term goal (job due
date) .

5. The lower the expected shop utilization is, the

lower the incremental benefits of incorporating
global information are.

Shop congestion is higher in an environment of high utilization
than one of low utilization. As gqueue lengths increase, the effects of

shop characteristics on job progress should increase, as should the
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benefits of directly addressing shop status information in estimating
allowances.
6. Simulations run under conditions of stochastic
actual operation processing times produce higher
completion inaccuracy penalties than simulations run
under conditions of deterministic actual processing
times.
The stochastic variation of actual processing times about
expected processing times is a source of variation that cannot be

captured in an allowance estimator. This additional unexplained

variation should decrease completion accuracy directly.

Summary

This research examines the effects of six dispatching rules and
two classes (local and global) of internally set allowance policies on
job completion inaccuracy penalties in a dynamic job shop environment.
The procedures by which allowance policies are analytically derived, the
evaluation of completion inaccuracy cost as the objective function, and
the investigation of the robustness of allowance procedures
differentiate this study from existing research literature. The
hypotheses tested directly address existing needs of real-world shops.

Chapter 2 represents a review of existing research literature.
Chapter 3 discusses the simulation structure and the experimental design
of the study. Chapters 4 and 5 present analyses of research results.

Chapter 6 discusses managerial implications of the research.
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Chapter 2

Review of Related Research

This review proceeds according to the classification displayed
in Figure 2.1. Examples of non-dispatching rule research are offered,
followed by a review of analytically-based dispatching rule research.
Simulation-based dispatching rule research is reviewed next in the
context of two categories: studies that assume a single allowance
policy, and studies that evaluate multiple allowance policies. Finally,
studies that evaluate the use of global information in setting
allowances are discussed.

This review concentrates on dispatching rules and allowance
policies that directly pertain to this research. A more detailed review
may be obtained from survey papers of scheduling research by Day and
Hottenstein (1970), Elmaghraby (1968), Gonzalez (1977), Lemoine (1977),
Moore and Wilson (1967), Panwalker and Iskander (1977), and Salvador
(1978) . Baker (1974), Coffman (1976), and Conway, Maxwell, and Miller

(1967) wrote books devoted to the general scheduling problem.

Non-Dispatching Rule Research

A number of analytical approaches to scheduling by methods other
than dispatching rules exist. Baker and Schrage (1978) and Srinivasan
(1971) adapted dynamic programming to the scheduling of a one-machine,

static arrival shop to minimize tardiness. Rothkopf (1966) used similar
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Figure 2.1

A Classification of
Scheduling Problem Research

Scheduling
Problems
Non- Dispatching
Dispatching Rule
Rule Research
Research
Analytical Simulation
Research Research
Single Multiple
Allowance Allowance
Policy Policies
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techniques to minimize makespan in the context of a parallel shop with
static arrivals.

Story and Wagner (1963) used integer programming techniques in
static flow shop research. Manne (1960) and Fisher (1973) extended the
use of this procedure to a static job shop environment.

Fisher (1976), Picard and Queyranne (1978), and Shwimer (1972)
used branch and bound techniques to minimize tardiness in the context of
a one-machine static shop. Similar algorithms were adapted to a static
flow shop by Ignall and Schrage (1965), and to a static job shop by
Brooks and White (1965) and Balas (1969).

Shild and Fredman (1962) used branch and bound techniques to
evaluate a lateness objective that was quadratic for positive Li and
zero for negative Li' Their study proved that knowledge of di and P,
are insufficient to determine the relative positions of two jobs in an
optimal schedule. Dispatching rules based solely on these two values,
therefore, cannot be developed to minimize this form of lateness
objective.

Johnson (1954) developed an important algorithm to minimize
makespan in a two-machine static flow shop. The intuitive
interpretation of the algorithm is as follows:

1. Put the smallest P, first in the schedule so the

second machine can %egin processing as soon as
possible.

2. Put the smallest p,, last in the schedule so that
total processing can be completed as soon as possible
after machine 1 is finished. 1In the case of a single
job having both the smallest p,, and the smallest
Py, assign it to the machine éﬁat corresponds to the
smaller processing time of the two.

3. Repeat the first two steps until all jobs are

scheduled.
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Johnson’s two-machine algorithm was the foundation of research
by Burns and Rooker (1978), Jackson (1956), and Giglio and Wagner
(1964), and provided the basis for heuristic procedures by Campbell

(1970) and Dannenbring (1977).

i i Rule Research

While some experimental studies have been performed in the
context of real job shops, the vast majority of dispatching rule
research can be classified as either analytically-based or simulation-
based. Examples of real shop experimental research are the studies done
by Elmaghraby and Cole (1963) at Western Electric and Bulkin (1966) at

Hughes Aircraft.
Analytically-Based Research

Analytically-based research typically concerns one-machine
static shops with regular performance criteria (those that can increase
only if at least one job flow time increases). The four accuracy
criteria in this research are non-regular. Certain analytical results,
however, do provide insight into the performance of various dispatching
rules in a general context.

Smith (1956) proved that, in a one-machine static shop, the SPT
dispatching rule minimizes mean flowtime. Conway et. al. (1967)
extended this proof to show that SPT also minimizes mean lateness.
Further, Conway et. al. (1967) proved that the rule LPT (i.e., choose
the operation with the largest processing time) maximizes mean lateness.

Smith (1956) demonstrated that the dispatching rule EDD

minimizes the maximum positive job lateness. This proof supports
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simulation results that have shown EDD producing a consistently lower
lateness variance than SPT. Conway et. al. (1967) showed that the
dispatching rule SLACK (see glossary) maximizes the minimum job
lateness. This proof supports simulation results that have shown SLACK
reducing lateness variance by compressing the spread of lateness from
below.

Several studies offer important interpretations of job lateness
as an incurred penalty. Smith (1956) and McNaughton (1959) showed that,
in the context of a one-machine static shop, i f all jobs are late and
the cost of lateness is linear with a slope of ei, total cost is
minimized by sequencing according to the minimum value of ei/pi. Fife
(1965) extended this result to the case of dynamic arrivals following a
Poisson process. Kanet (1979) used McNaughton’s analytical proof as a
foundation for the dispatching rule OPSLK/P (see glossary).

Sidney (1977) conducted the only analytical research found that
concerned a non-regular performance objective. He developed a simple
algorithm to minimize the maximum penalty for jobs that either start
early or finish late. The severe assumptions made, however, limit the
value of Sidney’s work to this current research.

An important factor in the usefulness of analytically-based
techniques is whether a given problem is "P-complete" or "NP-complete."
A problem is P-complete if its solution time is bounded from above by a
polynomial function; otherwise, the problem is NP-complete. Generally,
NP-comp lete problems rely on approximation techniques such as
dispatching rules.

Lenstra et. al. (1977) demonstrated that the general job shop

scheduling problem is NP-complete, and that any scheduling problem with
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a tardiness criterion is NP-complete, even in a one-machine static
context. Rinnooy Kan and Lenstra (1975) proved NP-completeness in
minimizing makespan in a multi-machine parallel shop, and the flowtime
problem to minimize makespan was shown to be NP-complete by Garey

(1976) .

Simulation-Based Research

Virtually no analytical results exist for lateness related
criteria when the number of machines in a shop is greater than one
(Kanet, 1979). 1In these cases, researchers typically use simulation
techniques.

Many simulation studies have evaluated the tendencies of various
dispatching rules. Panwalker and Iskander (1977) surveyed over 100
different dispatching rules from the literature. This current review
concentrates on simulation research concerning dispatching rules that
operate in the context of some lateness related objective criterion.

The SPT rule long occupied the position of the "standard" in
research due to its ability to minimize mean flowtime and mean lateness
(Nanot, 1963; Conway and Maxwell, 1962; Conway et. al., 1967).
Unfortunately, the same studies that established SPT as the champion of
mean flowtime also demonstrated that it produces extremely high lateness
variances, due to the fact that jobs with large operation times may be
continually "bumped" in a queue. Research by Conway and Maxwell (1962
showed that when SPT is altered in an attempt to prevent such large
variances (either truncated or altered with another rule), the rule

loses its advantages faster than its disadvantages.
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Conway (1965a) examined seven dispatching rules: OPNDD, EDD,
SPT, LPT, FCFS, SLACK, and S/OPN (see glossary). Conway set the mean
allowance in this study at nine times the mean processing time. S/OPN
produced the lowest lateness variance; Le Grande (1963) and Carroll
(1965) reported similar results.

OPNDD produced an unexpectedly large lateness variance in
Conway’s study. A subsequent evaluation of OPNDD by Kanet (1979) did
not reproduce this phenomenon.

New (1975) examined several dispatching rules with the mean
allowance set at five times the average job processing time. This study
showed that the dispatching rule OPSLK provided good control of lateness
variance.

Putnam et. al. (1971) and Berry and Rao (1975) recommended the
dispatching rule CR as an attractive alternative to S/OPN. CR has been
used widely in industry (Kanet, 1979) due to its ability to control
lateness variance.

Few studies specifically addressed MSL as an objective criterion
to be minimized. Kanet (1979) evaluated several dispatching rules in
terms of their ability to control MSL, mean absolute lateness, and
maximum absolute lateness. All three criteria are non-regular, all
assume that positive penalties are incurred for early job completions as
well as late job completions, and all are logical measures of due date
accuracy. The dispatching rule OPSLK/P produced the lowest MSL of the
twelve rules evaluated. Kanet'’s study evaluated three different levels

of mean allowances.
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Few studies in the early literature evaluated different
allowance policies. Research typically determined job allowances as
constant multiples of processing times.

Conway (1965a and 1965b) demonstrated that performances of
various dispatching rules were significantly affected by the choice of

allowance policy. These studies examined four different policies:

1. CON
2. RDM
3. TWK
4. NOP

CON assigned a constant allowance to each job. RDM assigned a
random allowance to each job, reflecting an environment where external
forces strictly set due dates. TWK assigned each job an allowance that
was a multiple of the job’s processing time, and NOP assigned each job
an allowance that was a multiple of the number of operations in the job.
Conway set the mean allowance for each policy at nine times the average
job processing time.

Elvers (1973) examined shop performance using the allowance
policy TWK for several different levels of mean allowance. The results
showed that varying the multiples affected the relative performances of
different dispatching rules.

Kanet (1979) examined the effects of five allowance policies on
the relative MSL of dispatching rules. In addition to the TWK, CON, and
NOP policies evaluated by Conway, Kanet evaluated PPW (each job
allowance equalled the job processing time plus a multiple of the number

of operations) and PPWN (each job allowance equalled the job processing
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time plus a quadratic function of the number of operations). Kanet
imposed, as did Elvers, various levels of mean allowance on each policy.
His study, confirming the results of Elvers and Conway, showed that
allowance policy and mean allowance level affected the relative
performances of dispatching rules. Kanet recommended PPW as the best
policy to minimize MSL. Few studies in the literature evaluated
allowance policies that were totally free from external constraints.

Until the mid 1970’s, investigations of multiple due date
policies were limited to performance comparisons among simplistic job-
oriented (local) allowance procedures with arbitrarily set mean
allowance constraints. For examples, see Conway (1965a and 1965b) and
Eilon and Hodgson (1967).

The earliest study found that took an innovative and promising
approach to due date determination was by Eilon and Chowdhury (1976) .
They not only investigated different forms of job-related information in
the allowance procedure (such as raising total job processing time to a
power), but also proposed the incorporation of shop-related information
in the form of queue lengths at required machines. They concluded that
including shop workload considerations in the allowance procedure was
often advantageous.

Weeks (1979) extended the concept of incorporating shop
congestion information in allowance procedures to a dual (machine and
labor) constrained shop. He reflected shop congestion in an expected
delay time calculation which was based largely on queueing theory. The
specific form of the calculation is not given here because it was later

shown to perform poorly (Ragatz and Mabert, 1984).
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Baker and Bertrand (1981) investigated the modification, based
on a shop congestion index, of three simplistic allowance procedures.
The three procedures were CON (a constant total allowance for each job),
SLK (a constant waiting allowance for each job), and the popular TWK
(total allowance for each job equal to a multiple of total processing
time). The modification was based on the ratio of total processing time
in the shop to the average total processing time. Their research
supported the conclusion of Eilon and Chowdhury (1976) that
incorporating congestion data is often advantageous. Their findings
were limited, however, by the fact that they only examined the
dispatching rules of SPT and EDD, and purposely constrained their
allowance policies to very simple forms.

Bookbinder and Noor (1985) proposed an allowance policy that
incorporated both job and shop related information, but performed their
evaluations in the context of a one-machine shop to minimize the regular
objective function "percent tardiness."

Another innovative approach to allowance policies was
investigated by Baker and Kanet (1983) and Baker (1984). Although basic
allowance policies utilized only job related information, these studies
proposed a "modified due date" that was defined as the original due date
or the early finish time, whichever was larger. They concluded that the
modified due date (both in a job and operation context) performed well
under a variety of mean allowance and mean shop utilization levels.

As will be discussed in more detail in a later section, this
current research analyzes data in a factorial design by using regression
analysis on a set of dummy variables. This same basic analytical

approach was used by Weeks and Fryer (1977) in the context of a dual
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constrained shop with TWK-oriented allowance policies. Concerning
behavior of residuals, they concluded that the residuals were not
markedly non-normal, and that the effects of heteroscedasticity and
autocorrelation (though present to a degree) were not significant enough
to invalidate standard regression inferences. As will be discussed
further in Chapter 5, analyses of the residuals from the evaluatory
regression analyses in this current research support these conclusions
by Weeks and Fryer.

While several of the reviewed studies touched on isolated
concepts related to the current research, the study by Ragatz and
Mabert (1984) came closest in intent by drawing together several key
concepts that are investigated in the current study. A fairly detailed
critique of their work was given in Chapter 1, and will not be repeated

here.

Summary

The complexity of the general job shop scheduling problem has
limited both the amount and real-world applicability of analytical
scheduling research. The cited analytical studies, however, provide
insights into and support for less rigorous approaches to the problem.

The majority of shop scheduling research has used computer
simulation techniques to evaluate characteristics of various queue
dispatching rules. A few of the more recent studies have addressed the
potential benefits of varied allowance policies on the minimization of

completion inaccuracy costs.
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Chapter 3

Research Method

The first section of this chapter details the research design,
explaining the three phases of the research, the simulation structure,
and the two stages of the data generation. The second section of this

chapter discusses the data analysis procedures.

Design

Research Phases

This study entails the analyses of data in the form of three
factorial design matrices, reflecting three distinct phases of the
research. The rows in each matrix correspond to dispatching rules under
consideration. The two columns of the first matrix reflect the general
procedural alternatives of determining specific allowance equations
based on a single pilot simulation vs. based on an iterative simulation-
regression procedure. The two columns of the second matrix reflect the
general procedural alternatives of setting operation due dates by
allocating the total job allowance among operations vs. estimating
operation allowances directly. Both sets of procedural alternatives are
discussed in further detail later in this chapter. The eight columns of
the third (and largest) matrix reflect combinations of allowance policy

class (local or global), utilization level (75% or 90%), and actual
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processing time assumption (equal to expected processing time or allowed
to vary stochastically about expected processing time).

As each matrix is addressed separately on the basis of each of
the four defined penalty functions (VAR, MSL, MAL, and SQL), data in the
form of twelve final matrices are analyzed. Each cell contains twenty
observations of the appropriate inaccuracy penalty measure, generated by
twenty shop simulations using twenty different job streams.

In each simulation, data is gathered on 1000 completed jobs,
providing 20,000 completed jobs per cell. This simulation size is large
in relation to the majority of past research of this type. In the
simulation studies surveyed by Panwalker and Iskander (1977), for
example, simulation sizes varied from less than 100 jobs to 8700 jobs
per cell.

The same twenty job streams, altered only as dictated by the
appropriate cell environment, are used in every cell. Therefore, the
twenty observations in each cell are logically matched with the twenty
observations, respectively, in every other cell. The matched nature of
the data points among cells represents a variance reduction technique
that increases the power of subsequent data analyses over pooled
techniques (Ragatz and Mabert, 1984).

The potential problems with basing allowance equation forms and
coefficients on a single pilot simulation have been discussed
previously. Phase 1 addresses the benefits of using an iterative
simulation-regression procedure to determine allowance policies (see
Hypothesis 1). As shown in Figure 3.1, the columns in Matrix 1

represent the best global allowance policy based on
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Figure 3.1

Phase 1 Experimental Design
Methods of Determining Allowance Equation

Allowance Equation

Allowance Equation Based on Iterative
Based on Single Simulation-Regression
Pilot Simulation Procedures
EDD
SLACK
CR
EOPDD
OPSLK
OPCR
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1. the single simulation-regression procedure (as used,
for example, by Ragatz and Mabert, 1984), and

2. the iterative simulation-regression procedure

proposed in this study.

A brief discussion will clarify the mechanics of the simulation-
regression procedures. A specific dispatching rule and general form of
the allowance equation are selected (the general forms used in this
research for local and global policies are given later in the chapter as
Equations 3.2 and 3.3, respectively). An initial simulation is run
using the arbitrary allowance policy of job allowance set equal to a
fixed multiple of the total required processing time of the job. The
multiple used in this research under the 90% expected utilization
assumption is six, and the multiple used under the 75% expected
utilization assumption is four. These multiples were determined from
pilot simulations as the approximate ratios of mean job flowtime to mean
total processing time under the respective utilization levels in
this shop.

The results of that simulation are analyzed by a multiple
regression procedure to produce the specific coefficients in the
allowance form chosen. The resulting specific equation represents the
"best" estimated allowance policy after one cycle; it is the product of
the single simulation-regression procedure. This would be the policy
used in subsequent evaluatory simulations in previous non-iterative
research, such as that by Ragatz and Mabert (1984).

The iterative simulation-regression procedure proposed in this
research, however, continues by running a second simulation using the

same job stream and the allowance policy generated from the first cycle
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above. The results of the second simulation are analyzed by multiple
regression to produce a second-cycle specific allowance equation. This
procedure is continued through several subsequent cycles.

The simulations performed in Phase 1 are conducted under the
assumptions of 90% utilization, operation due dates set by allocating a
total job allowance to individual operations in proportion to the
operation processing times, and actual processing times equal to
expected processing times. The utilization target is based on past
research such as Conway (1965a), Eilon and Chowdhury (1976), Weeks
(1977), and Kanet (1979). The proportioning of job allowances among
operations is a standard assumption in shop research, and can be seen in
Conway (1965a and 1965b), Kanet (1979), and Ragatz and Mabert (1984).
The assumption that actual processing times are equal to expected
processing times is invoked in virtually all previous research of this
type, a rare exception being Eilon and Hodgson (1967).

As is discussed in detail in Chapter 4, analyses of Phase 1 data
indicate that while the iterative procedure produces major gains in
accuracy in simulations that use global allowance policies, there are no
significant benefits produced under environments where local allowance
policies are used. Therefore, the iterative procedure is used in both
subsequent phases with the exception of cells that dictate local
allowance policies.

Phase 2 addresses the question of whether to set gperational due
dates by

1. allocating total job allowances in proportion to

operation processing times (the standard method in
existing research), or
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2. estimating operation allowances directly by the

appropriate generated allowance equation, as proposed
in this study (see Hypothesis 2).

Figure 3.2 displays the structure of Matrix 2. Note that, since
Phase 2 concerns operation allowances, there are only three rows in the
matrix (representing the three operation-based dispatching rules).

The remainder of the Hypotheses are addressed in Phase 3. The
structure of Matrix 3 is displayed in Figure 3.3. As is discussed in
detail in Chapter 4, analyses of Phase 2 data indicate that significant
improvements in accuracy are obtained by directly estimating operation
due dates. Therefore, this method is used exclusively in Phase 3
simulations.

In order to provide a direct link between this study and that of
Ragatz and Mabert (1984), data are generated for additional cells. The
cell environment in the current research that specifically parallels a
cell environment in the Ragatz and Mabert study entails the dispatching
rule SLACK, the form of allowance estimator termed RMR in their study,
an expected utilization of 90%, and known actual processing times (i.e.,
actual processing times assumed equal to expected processing times).

The specific form of RMR is defined by Ragatz and Mabert as

ai = klpi + k2(JISi) + k3(JIQi) + k4(WIQ1i)

+ kg (WIQ2,) + ko (WIQ3,), (3.1)
where:

a, = estimated allowance for job i
p. = total required processing time for job i

JIs, = number of jobs in the system
-
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Figure 3.2

Phase 2 Experimental Design
Methods of Setting Operation Allowances

Total Allowance Operation
Allocated in Allowance
Proportion Estimated
to Operation Directly from
Processing Times Allowance Equation
EOPDD
OPSLK
OPCR
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EDD

SLACK

CR

EOPDD

OPSLK

OPCR

Figure

3.8

Phase 3 Experimental Design
Dispatching/Allowance/Shop Condition Evaluations

Local Allowance

Global Allowance

75% 90% 75% 90%
Expected Expected Expected Expected
Utilization|Utilization|Utilization|Utilization

Act Act Act Act
Act TPT Act TPT Act TPT Act TPT
TPT Not TPT Not TPT Not TPT Not
Known | Known | Known | Known [ Known | Known | Known | Known
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JIQi = number of jobs in queue on routing for job i

WIQIi = total required processing time of operations in queue at
the first machine on routing for job i

WIQZi = total required processing time of operations in queue at
the second machine on routing for job i

WIQ3i = total required processing time of operations in queue at
the third machine on routing for job i

In order to extend the comparison of this research to that of
Ragatz and Mabert, relative performance of the SLACK/RMR
combination is evaluated under environments of both 90% and 75%
utilization, both known and unknown actual processing times, and
allowance coefficients based on both a single pilot simulation and an
iterative simulation-regression procedure. Comparisons of the
data in these eight cells to the data in the corresponding cells of
Matrix 3 provide direct evidence as to the additional benefits inherent
in the procedures proposed in this current research as opposed to past
procedures.

In all, 296 final cells of data are analyzed. Each of the four
penalty measures entail twelve cells in Phase 1, six cells in Phase 2,
48 cells in Phase 3, and the eight isolated cells just discussed. The
specific procedures for generating the cell data are discussed in more

detail later.
Simulation Structure

The shop consists of eight machines. This number of machines
has been used in previous studies (for example, Kanet, 1979). Baker and
Dzielinski (1960) concluded that the number of machines in a shop

simulation does not significantly affect aggregate performance measures,

42



and that a shop consisting of eight machines adequately represents
performance characteristics of much larger shops.

Each job consists of from one to six operations, determined
randomly according to a uniform probability distribution. Each
operation is assigned randomly to one of the eight machines according to
a uniform probability distribution, under the constraint that no two
successive operations require the same machine (this constraint is
traditional in shop research). Although non-uniform distributions have
been used occasionally to establish the number of operations and machine
assignments (for example, see Elvers, 1974), the use of uniform
probability distributions for these purposes is traditional in job shop
research.

Referring to the factorial design in Phase 3 of this research,
recall that half of the cells assume that actual processing times are
equal to expected processing times, and are therefore known with
certainty upon a job’s arrival at the shop. The other half of the cells
in Matrix 3 allow the actual processing times to vary about expected
processing times stochastically.

To maintain direct comparability of data from corresponding
simulations among all cells, the actual processing time for any given
operation of any given job in any given Jjob stream is made consistent
over all cells regardless of the processing time assumption (i.e., known
or unknown as of job arrival) and utilization level (i.e., 75% or 90%).
This leads directly to two specific job stream characteristics:

1. The expected processing times in any given job stream

under the assumption of known actual processing times
may differ from the expected processing times of that

job stream under the assumption of unknown actual
processing times, and
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2. The mean time between job arrivals in any given
job stream under the assumption of 75% expected
utilization differs from the mean time between job
arrivals in that job stream under the assumption of
90% utilization.

Referring to the first characteristic above, in cells where
actual operation processing times are assumed to vary about expected
operation processing times, the expected times are generated randomly
from a negative exponential probability distribution. The resulting
times are integerized by setting (0,1] =1, (1,2) = 2, and so on, in the
interest of computer run time and to facilitate interpretability of shop
processes. The ramifications of integerization (as well as a specific
discussion as to the expected values of assumed stochastic
distributions) are discussed further in the next section.

Deviations about each expected operation processing time are
generated from a second negative exponential distribution that has a
standard deviation equal to .3 times the standard deviation of the
expected operation processing time distribution, shifted so that the
expected value of the deviational distribution is zero. The actual
operation processing time, then, is the sum of these two distributions,
integerized as above. In cases where the integerized sum is less than
one, it is set to one.

In the cells where the actual operation processing times are
assumed known (i.e., equal to the expected processing times), the
expected processing times for each operation are then reset to equal the
actual processing times generated as above. Thus, the actual processing
time for any given operation (of any given job within any given job

stream) is consistent throughout the Phase 3 design, being the result of
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stochastic variation about the expected time in the cells that make that
assumption.

In summary, for each operation an expected processing time is
generated. Based on the expected processing time for each operation, an
actual processing time for each operation is generated. 1In cells where
the expected processing time for an operation is assumed equal to the
actual processing time for that operation, the expected operation
processing time is then set equal to the actual processing time.

Times between job arrivals are generated from a negative
exponential distribution, integerized as discussed above. Therefore,
job arrivals follow (approximately) a Poisson process, slightly modified
by the integerization procedure.

The mean of this exponential distribution is the value,
determined from pilot simulations using the "neutral” dispatching rule
FCFS, that produces the appropriate machine utilization (75% or 90%)
given the correspondingly consistent set of actual operation processing
times discussed previously. This method of fixing one stochastic
parameter and varying another until a target utilization is achieved has
been used in previous research (for example, Kanet, 1979 and Conway,

1965a) .

Data Generation Procedures

There are two stages to the data generation:

1. The determination of a specific allowance equation

for each cell, and

2. Twenty evaluatory simulations per cell based on the
appropriate allowance equation determined in Stage 1.
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As will be discussed later in further detail, specific allowance
equation determinations in the first stage are based on a single pilot
simulation-regression analysis in cells where local allowance policies
are used, and are based on an iterative simulation-regression procedure
in cells where global allowance policies are used.

All computing was performed on a UNIX-based VAX 8650 mainframe.
All simulation and supporting programs were written specifically for
this research, by the author, in FORTRAN. Appendix B shows the summary
logic flow and the FORTRAN code for the main simulation program.
Statistical analyses were performed using the BMDP Statistical Software
Package.

Random numbers were generated by a multiplicative congruential
method. This method has been shown to possess favorable statistical
properties (Naylor et. al., 1966), and is widely used in scientific
software packages (for example, the IBM Scientific Subroutine Package).

The specific generator used in this research is from the BMDP
Statistical Software Package. Characteristics of various job streams
produced by this generator have been checked for randomness and
underlying stochastic properties by a series of Chi-squared goodness of
fit tests, with consistently acceptable results. Appendix C displays
the FORTRAN code for this uniform ([0,1l) random number generator.

As previously mentioned, values generated for times between job
arrivals and operation processing times were integerized prior to use.
The mean of the pre-integerized negative exponential distribution used
to generate expected operation processing times was fixed at 5 units
(i.e., an expected service rate of .2 operations per period). The

process of integerization increased the mean service time to 5.5, or an
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expected rate of .181 operations per period. The summation of the
expected processing times with the deviational values (as previously
discussed) tended to offset that effect somewhat, and the true mean of
the integerized processing times ended up as approximately 5.2 units.

Given the fixed integerized processing time distribution, the
desired means for the negative exponential distributions that generated
the times between job arrivals were determined as the values which (in
pilot simulations) yielded 75% utilization and 90% utilization,
respectively. These means turned out to be 2.5 periods for the 75%
utilization environment and 2.0 periods for the 90% utilization
environment, on a pre-integerized basis. 1Integerization shifted those
means to 2.5 periods and 3.0 periods, respectively.

Duplication of this shop without integerization should, of
course, use the post-integerized means given above for underlying
distributions. The minor shape effects to the underlying theoretical
distributions caused by the integerization process (i.e., from smooth to
discrete profiles) were not expected to have any significant
effects, due to previous research on the insensitivity of shop
performance characteristics to changes in underlying distributions
(Elvers, 1974). 1Informal parallel simulations conducted without
integerization supported the previous research findings. Table 3.1
displays frequency tables of operation processing times and times
between job arrivals for one of the job streams used in this research.

Stage 1. - In order to achieve a steady state prior to data
collection, the shop was pre-loaded with the same job set prior to each
simulation. This pre-load set was generated from a simulation using the

neutral FCFS (first-come-first-served) dispatching rule under conditions
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Table 3.1

Frequency Tables of Selected Characteristics
of a Typical Stream of 1800 Jobs

Frequency: Frequency: Frequency: Frequency: Frequency:

Number of Machine Times Expected Actual
Tasks Per Assignment Between Operation Operation
Job by Task Jobs Processing Processing
Times Times
1 296 791 751 1124 1679
2 333 780 403 882 691
3 299 791 245 755 619
4 272 790 165 631 568
5 309 807 86 531 468
6 291 755 60 415 376
i/ 776 33 325 359
8 748 22 296 248
9 13 226 236
10 6 198 176
11 11 174 152
12 1 123 126
13 1 92 92
14 0 84 83
value 15 1 68 64
16 0 63 53
187/ 2 40 52
18 40 24
19 26 34
20 28 29
21 2 23
22 20 13
213 12 12
24 10 17
25 14 13
2/6 14 3
27 2 7
28 5 2
>30 16 16
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of an expected 83% machine utilization. The FCFS rule was used to
generate the pre-load set due to its lack of direct dependence on any
job characteristics or stated due dates. Further, no statistics were
collected on the first 300 jobs in each simulation; Kanet (1979) used
this same cutoff point. Data was collected on jobs 301 through 1300,
inclusive. Each simulation continued until all of the jobs in this
window were completed.

The assumption that allowance policies are free from external
constraints is crucial to the significance of this study. Given a
particular combination of dispatching rule and general allowance
structure (under a particular shop environment), the shop is free to
choose the optimal specific allowance equation based on steady state
performance characteristics of the shop. The sole purpose of this first
stage of data generation is the determination of that specific allowance
equation for each cell of each matrix.

Extensive evaluation of various forms of allowance determination
equations yielded forms of a local allowance estimator and a global
allowance estimator that, in general, produce optimal or near optimal

accuracy over all cells. The form of the local allowance equation is

= g J 3.2
a, a + ﬁl('rp-ri) + [32 (NOPi) + |33 (TPTi ) + 94 (NOPi ). ( )

where: a, = estimated allowance for job i
i
TPT. = total required estimated processing time for job i
i

NOP, = number of operations in job i.
i

The form of the allowance equation for cells that allow the due

date determination procedure to incorporate global variables is
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a, =0+ Bl(TPTi) + ﬁz(TWIQi) + B3(TWISMi)

+ B4(TPTi2) + Bs(waoi’). (3.3)

where: a; = estimated allowance for job i
TPTi = total required estimated processing time for job i

TWIQi = total required estimated processing time for operations
in queue along the routing of job i

TWISMi = total required estimated processing time for operations
elsewhere in the shop that require machines that are
required by job i.

Multiple regression analyses are used to estimate the
coefficients in the above equations for each cell. As expected,
correlations between variables and their squared terms were high
(often above .9), and correlations among other pairs of independent
variables were often as high as .5. Since deviations from the necessary
independence assumption underlying formal regression analysis therefore
exist to some degree in each determination, no standard regression
inferences are made based upon these regression procedures. 1Instead,
regression analysis is used here merely as a tool for producing a good
allowance estimator equation to be evaluated by further analyses.

Further, in cells where the iterative process is beneficial
(i.e., those with global allowance policies), analysis showed that, in
general, significant incremental improvements in accuracy were achieved
through six cycles, but not thereafter. This is discussed in detail in
Chapter 4. The iterative procedure, therefore, is carried through the
sixth cycle in all simulations with global allowance policies. As
indicated by Phase 1 analyses, no iteration is implemented in

simulations that use local allowance policies. The choice of general
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allowance equation forms and the determination of six cycles as optimal
are discussed in detail in Chapter 4.

Stage 1 of the data generation is complete after the specific
allowance equation for each cell is determined. Each of the simulations
performed in Stage 1 use the same job stream, modified only to the
extent required by the particular cell environment. For example, the
job stream used for a particular cell in a 90% utilization environment
is identical to the job stream used for the corresponding cell in a 75%
environment, except that each time between job arrivals is drawn from an
integerized negative exponential distribution with a smaller mean (the

percentile position in each distribution, however, is identical).

Stage 2. - The purpose of Stage 2 is to generate multiple
observations per cell in order to provide indications of performance
reliability and to permit valid statistical comparisons of performance
among cells. Twenty simulations are run per cell, using twenty
different job streams, matched among cells as discussed previously. As
in Stage 1, the shop is pre-loaded prior to each simulation, and data is
collected only on jobs 301 through 1300, inclusive.

While only four inaccuracy measures per simulation (VAR, MSL,
MAL, and SQL) pertain directly to stated hypotheses, other data such as
observed machine utilizations and mean latenesses were stored and
analyzed. These incidental data provided useful insights into the
characteristics of the dispatching rules and allowance policies under

particular shop environments.
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Simulation Validation

The simulation pfogram was validated by two methods. First,
shop status details were examined at each successive time period for a
series of jobs with known characteristics. This verified that the jobs
arrived and moved through the shop properly and that resulting
statistics were accurate.

Further, the shop was recreated using the GPSS simulation
programming language by Dr. Richard Redmond of Virginia Commonwealth
University. Summary characteristics of FORTRAN and GPSS simulations
were compared which verified that similar results were produced for
identical shop environments. Table 3.2 displays examples of selected

shop characteristic distributions.

Data Analysis

Two important previous studies that examined factorial designs
are those by Kanet (1979) and Conway (1965a). Both studies avoided
statistical analysis of results due to concerns about non-normality,
serial autocorrelation, and other systematic effects. Neither study,
however, generated multiple observations of the objective measure per
cell with which to perform valid statistical tests.

Although Ragatz and Mabert (1984) did generate multiple, matched
observations in different cells, the technique used to compare cells on
a pairwise basis was a t-test. As only five observations per cell were
generated, the marked non-normality of raw observations within each cell

do not support strongly the assumption required for this technique.
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Table 3.2

Selected Shop Characteristic Frequency Tables
Twenty Simulations

Machine Maximum
Utilization Freg Shop Load Freg
85% b 35 - 49 2
86% 1 50 - 64 5
87% 2 65 - 79 8
88% 2 80 - 94 3
89% 3 95 -109 2
90% 5
91% 3
92% 2
93% 1
Maximum Average
Queue lLength Freg Queue Length Freg
9 - 11 i 3.75 - 4.99 4
12 - 14 29 5.00 - 6.24 5
15 - 17 34 6.25 - 7.49 6
18 - 20 25 7.50 - 8.74 5
21 - 23 18
24 - 26 19
27 - 29 S
30 - 32 7
33 - 85 6
36 - 38 5
39 - 41 2
42 - 44 3
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Data in Phase 1 and Phase 2 are analyzed by pairwise cell
comparisons using the Wilcoxon Signed Rank test. This technique is
preferred to its parametric analog, the t-test, due to the extreme
positive skew of the data.

The Wilcoxon technique, however, is too limited to adequately
address by itself the larger and more complex structure of the matrix in
Phase 3 of the research. Although tests directly pertaining to most
stated hypotheses would entail a comparison of only two treatments,
addressing the significance of overall treatment effects and
interactions is necessary to test Hypothesis 5, as well as beneficial
in terms of general information.

The 960 observations in Matrix 3, therefore, are analyzed in the
context of stated hypotheses by a stepwise multiple regression
procedure. The regression uses, as potential independent variables, one
scalar variable (mean lateness) and 46 dummy variables representing
dispatching rules, allowance policy classes, shop environments, job
streams, and interactions. A separate regression analysis is performed
on each of the four inaccuracy penalty measures, using ten times the
natural logarithm of the appropriate measure (due to favorable residual
behavior and scaling) as the dependent variable.

Appendix D displays the specific independent variables made
available to the stepwise procedure. These consist of mean lateness,
nineteen dummy variables representing job streams, one dummy variable
representing allowance policy class, one dummy variable representing
utilization level, one dummy variable representing the assumption
invoked on actual processing times, five dummy variables representing

dispatching rules, eighteen dummy variables representing second order
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interactions, and one dummy variable representing a third order
interaction.

Residual analyses showed that, in general, assumptions
underlying regression theory were not significantly violated.
Multicolinearity among independent variables was, of course, expected to
a degree because of the nature of the independent variables (dummy
variable sets). The stepwise procedure, however, served to minimize
effects of colinearity.

Conclusions from the regression procedures that pertain to the
stated hypotheses were augmented by multiple Wilcoxon Signed Rank Tests.
The regression analyses, the residual analyses, and the supporting use

of the Wilcoxon procedure are discussed in more detail in Chapter 5.

Summary

For each of 296 cells in various factorial designs, job shop
simulations and regression techniques are used to specify near-optimal
allowance policy equations. Twenty simulations are run per cell, based
on twenty job streams (matched among cells) and the specified allowance
equation. Stated hypotheses are tested by use of a stepwise multiple
regression procedure and the conclusions verified by use of multiple

Wilcoxon Signed Rank tests.
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Chapter 4

Phase 1 and Phase 2 Results

The first section of this chapter discusses the determination of
the forms of the allowance equations used in the research. The
following two sections discuss results from Phase 1 and Phase 2,

respectively. The final section provides a chapter summary.

Allowance Eguation Forms

The forms of allowance equations used in this research for local
and global allowance policies were given in Equations 3.2 and 3.3,
respectively. Numerous alternative forms were evaluated, from which
these two were selected as being generally optimal.

Potential predictor variables in allowance equations can be
based either on amount of processing time involved (for example, total
processing time in a particular queue) or on number of operations/jobs
(for example, number of jobs in a particular queue). The form selected
for local allowance policies (Equation 3.2) includes variables of both
types.

The form (Equation 3.3) selected for global allowance policies,
however, consists solely of time-related variables. Pilot evaluations
indicated that inclusion of variables based on numbers of operations or

tasks did not contribute to predictive power.
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This indication is not surprising. Analogous variables of the
two types largely address the same job or shop characteristics, and are
expected to be positively correlated. For example, over all jobs in a
simulation, the number of operations per job would be positively
correlated with the total processing time per job. 1In the local
allowance policy form, each of the two specific variables just mentioned
contribute enough unique information to warrant inclusion. 1In the
global allowance policy form, however, the several included time-related
variables (each of which are logically related to the number of
operations per job, for instance) combine to explain enough of the
variation in variables such as the number of operations per job as to
make their inclusion superfluous.

Note that, in the forms selected, characteristics are
aggregated over all operations in a job (for example, the variable TPTi
represents the sum of required operation processing times for all
operations in job i). Other allowance forms that were evaluated but not
selected for use entailed individual (disaggregated) operation
characteristics. These alternate forms were more complex and did not
appear to contribute to predictive power. An example of such a policy

form is:

a, =@+ ﬁl(TPTi’l) + ...+ BZ(TPTi’z)
+ Bz+l(TWIQi,1) 500 Bzz(TWIQi’z)
L.+ , 4.1
+ BZz+1(TWISMi,l) + B3z(TWISM1,z)’ (4.1)

where there are z operations in job i, and:

estimated allowance for job i

[\
]

processing time required for operation k of job i

(=]

o

=]
]
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TWIQi'k = total processing time of operations in the queue of
the machine required by operation k of job i

TWISMi’k = total processing time of operations elsewhere in the
shop that require the machine required by operation k
of job i.

Other variables evaluated but not included in the selected forms
were total work in the shop, total number of jobs in the shop, and total
number of operations in the shop. Also evaluated but not included were
interactions such as total work in the shop times the number of
operations in a job.

The form of the allowance policy termed RMR in the research of
Ragatz and Mabert (1984) was given in Equation 3.1. Note that this
form includes both aggregate and operation-specific variables. As is
discussed in detail in a later section, the simpler and completely
aggregated global form given in Equation 3.3 outperformed the RMR form
in terms of completion inaccuracy penalties in this current research.

The early finish time of any operation k of any job i as of its
arrival at the shop is defined as
+ g P (4.2)
where: EFT, = the earliest possible finish time for operation k

t of job i as of the job’s arrival at the shop
r, = the arrival time of job i at the shop
p_ = the required processing time of operation z of job
i.

Without prior knowledge of allowance equation coefficients, one
cannot rule out the possibility of an estimated due date being earlier

than the appropriate early finish time, although with an intelligently
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set allowance equation this should be a highly improbable occurrence.
Therefore, all allowance procedures in this research add the constraint
that any due date that is earlier than the appropriate early finish time
is set to that early finish time. Note that this is not a dynamic

process, and is done only once, upon a job’s arrival at the shop.

Phase 1

The first phase of the research addresses Hypothesis 1 and
investigates whether an iterative simulation-regression procedure
provides lower inaccuracy penalty measures than a single simulation-
regression procedure. The assumptions under which Phase 1 simulations
were run reflected 90% expected utilization, actual processing times
equal to expected processing times, and operation allowances determined
by allocating total job allowances in proportion to operation processing
times. These assumptions are considered standards of existing job shop
research.

As previously discussed, the rationale behind the hypothesized
benefits of an iterative process is based on the fact that for a
dispatching rule that incorporates the job due date in the selection
process, two simulations run under two different allowance policies can
produce different sets of general scheduling characteristics. By basing
an allowance equation on the results of a single simulation that was run
under an arbitrary allowance policy, the shop will not have had an
"opportunity to adapt" to the general tendencies of the interaction
between the allowance policy and the dispatching rule used. It is
hypothesized that an iterative process produces successive allowance

policies that tend to converge to stability, resulting in lower
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completion inaccuracy penalties associated with the eventual policy

evaluated.

Convergence to Stability

The theory of convergence was supported by Phase 1 analyses.
While convergence did not appear to be a monotonic process, allowance
policies produced by successive simulations later in an iterative
process tended to be more similar than those produced by successive
simulations at the beginning of an iterative process.

Figure 4.1 displays an example of convergence to stability, over
the first ten cycles of the iterative procedure, of the global allowance
policy form defined in Equation 3.3. This chart presents the sets of
standardized regression coefficients generated by successive cycles
using the dispatching rule CR, under the standard assumptions previously
stated. The standardized regression coefficients tended to change more
radically in the first several cycles than thereafter; a measure of
stability was apparently achieved after the first six or seven cycles.

Table 4.1 addresses to what extent two iterative sequences,
under the same environment but starting with two vastly different
initial allowance policies, approach each other. The first column
presents the allowance coefficients from the first and ninth cycles,
using the standard arbitrary initial allowance policy of 6 times the
total processing time required by the job. The second column presents
the corresponding coefficient sets from the iterative series initialized
with the allowance policy -6 times the total processing time required by
the job. This allowance policy, of course, is unrealistic as it assigns

negative allowances to jobs. Further, the larger the processing time
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Regression
Coefficients

Figure 4.1

Standardized Regression Coefficients
Dispatching Rule CR, Cycle 1 - Cycle 10
Global Allowance Policy, 90% Utilization

Cycle Number
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---- TPT2
—=O- TWIQ2
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Table 4.1

Allowance Equation Coefficients:
Cycles from Iterations Using Different
Initial Allowance Equations

Initial Equation

Coefficients 6.0*TPT =6.0*TPT

Cycle 1 Intercept -25.3612 25.15311
TPT 3.8743 .1175

TWIQ .5001 1.0440

TWISM .0283 .0707

TPT? .0298 .0140

TWIQ? -.0006 -.0017

Coefficients 6.0*TPT -6.0*TPT

Cycle 9 Intercept ~14.0693 -23.7918
TPT .5836 .8997

TWIQ .1654 .2678

TWISM .0956 .1651

TPT? L0711 .0450

TWIQ? .0019 .0012
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required by a particular job is, the more negative is the allowance
assigned to that job. Therefore, the ranking of allowances under this
initial policy is exactly the opposite of the ranking of allowances
produced by the first initial policy.

One sees that while the coefficient sets from the first cycle
differ in several major respects from each other (note especially the
intercepts and the TPT coefficients), by the ninth iterative cycle the
two coefficient sets have become similar in that the respective
coefficients are of the same sign and roughly the same magnitude. These
results give indications that the iterative process not only stabilizes
allowance equations given an initial policy, but also drives allowance
equations toward a common coefficient set regardless of the initial

allowance policy used.

Effects of Iteration on Penalty Measures

The fact that an iterative process apparently produces
successively more stable allowance equations has little relevance to the
stated research problem unless this convergence to stability manifests
itself in systematic beneficial effects on resulting inaccuracy penalty
measures. The presence and nature of such systematic effects can be
evaluated by examining, for each of the four penalty measures addressed
in this research, the medians of the measures produced by the twenty
evaluatory simulations under each dispatching rule/ allowance policy/
iteration cycle combination, as well as performing pairwise statistical
tests of significance using the Wilcoxon Procedure.

Results indicate that the effects of iteration are different for

local allowance policy forms than for global allowance policy forms.
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Evaluations of iterative effects, therefore, are presented separately
for each of these two general classes of allowance policies. All
simulations performed in Phase 1 analyses are under the "standard"
environment of 90% expected utilization, known actual processing times,
and operation allowances set by allocating total job allowances among
operations in proportion to the operations’ respective required

processing times.

Local Allowance Policies. Figures 4.2 through 4.5 present the
medians, by cycle and by dispatching rule, of the penalty measures VAR,
MSL, MAL, and SQL, respectively. Again, each point represents the
median of the appropriate measures produced by twenty evaluatory
simulations using local allowance policies.

These charts present little or no compelling evidence of any
systematic beneficial effects of iteration on penalty measures using
local allowance policy forms. Apparent tendencies range from cyclical
movements (for example, with the dispatching rule CR for the measures
VAR, MSL, and MAL) to monotonic upward pressures on penalties (for
example, with the dispatching rule OPSLK for the measures MSL and MAL).

The impressions given by the charts are supported by pairwise
statistical comparisons of the points, which show few statistically
significant differences between successive cycles. Table 4.2 displays
the significance levels of all pairwise comparisons of the median
variances produced by the first six cycles using the dispatching rule
EDD. Note that no two successive values are statistically different

from each other, based on the Wilcoxon Signed Rank test.
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Median VAR Penalty Measures
Local Allowance Policy, 90% Utilization
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Figure 4.3

Median MSL Penalty Measures
Local Allowance Policy, 90% Utilization
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Figure 4.4

Median MAL Penalty Measures
Local Allowance Policy, 90% Utilization

3y

317

MAL 30T

25J' M ‘““ﬂ‘-_____‘-_‘a

23 + t

-
N
[FE S
.
w

Cycle Number

—{— EDD
werOw SLACK
--A-- CR
-.-\--- EOPDD
—=O=+ OPSLK
—4#— OPCR

67



Figure 4.5

Median SQL Measures
Local Allowance Policy, 90% Utilization
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Cycle

Table 4.2

VAR Comparisons Between Cycles Under EDD
Local Allowance Policy Forms
(90% Utilization, Known Actual Processing Times)

Median
Cycle VAR

1740
1853
1688
1759
1787
1775

AU WN

Level of Significance of Pairwise Cycle Differences
(Two-tailed Wilcoxan Signed Rank Test)

Cycle
1 2 3 4 5
2 .9702
3 . 4330 .6542
4 .5755 .5503 . 4781
5 - .6542 . 6813 5257 .9702
6 .7652 . 9405 .8813 . 4115 . 6542
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Global Allowance Policies. Figures 4.6 through 4.9 present the
penalty median/cycle charts for the four penalty measures, respectively,
using global allowance policy forms. Unlike the analogous charts using
local forms, these charts display a strong general tendency for the
early stages of the iterative process to produce successively lower
median penalty measures, as hypothesized. 1In fact, the only case in
which the median penalty measures do not generally decrease throughout
the iterative process is the penalty measure SQL with the dispatching
rule SLACK.

These charts provide several strong visual indications. The
majority of benefits apparently occur in the first few cycles, with the
median penalty measures apparently asymptotically (though not .
necessarily monotonically) approaching a lower limit. Virtually all
benefits are achieved, generally, by the fifth or sixth cycle.

The dispatching rules EDD and SLACK seem to perform similarly,
producing higher measures of inaccuracy penalties than the other four
dispatching rules. For the measures VAR, MSL, and MAL, the dispatching
rule CR produces the lowest inaccuracy penalty measures in later cycles,
with the dispatching rules EOPDD, OPSLK, and OPCR performing similarly
to each other. The relative performances of the six dispatching rules
are evaluated quantitatively in chapter 5.

The penalty measure SQL appears to react differently to the
iterative process than do the other three measures. The beneficial
effects of iteration seem less compelling, and the successive median
measures seem to exhibit more unsystematic variation.

These characteristics, unique to SQL in this research, are

explainable and were anticipated. Early and late completions are
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Figure 4.9
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penalized symmetrically under the penalty functions VAR, MSL, and MAL

(about the mean lateness in the first function and about zero lateness
in the last two functions). Under SQL, however, early completions are
penalized according to a linear function while positive latenesses are
penalized according to a quadratic function.

This non-symmetrical penalty assignment results in SQL being
highly sensitive to the observed mean lateness in any given simulation.
In the lateness ranges existing in this research, simulations in which
the observed mean latenesses ended up as less than zero produced
systematically lower SQL measures than simulations in which positive
mean latenesses occurred. SQL measures, therefore, were often more
erratic (for example, the dispatching rule EDD in Figure 4.9) than
corresponding VAR, MSL, and MAL measures. In one case (the dispatching
rule SLACK in Figure 4.9), the phenomenon of iteration producing
successively higher mean latenesses overpowered the inherently
beneficial effects of iteration and produced the previously discussed
upward pressure on median SQL measures.

The visual indications provided by Figures 4.6 through 4.9 that
successive iterative cycles generally produce successively lower
completion inaccuracy penalties are strongly supported by pairwise
statistical comparisons. Whereas under local allowance policy forms
there were only occasional systematic statistically significant
differences between successive cycles, under global allowance policy
forms the penalty measure decreases produced by iteration are systematic
and statistically significant. Table 4.3 displays, for the dispatching
rule EDD, the median penalty measures for each cycle. Further, for each

cycle in the iterative series, the table notes which other cycles in the
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series were significantly less (in terms of the appropriate penalty
measures) than that cycle. All comparisons are based on a one tailed
Wilcoxon Signed Rank test, using .05 as the probability of a type I
error.

The superscripts by the median penalty measure in any cycle
indicate which other cycles were significantly less than that particular
cycle. For example, for the measure VAR one sees that the median of the
twenty variances produced by the first cycle was 1149, and that the
variances produced in this cycle were significantly larger than those of
cycles two through ten, inclusive. The median variance produced by the
fifth cycle was 786, which was significantly larger than cycles six
through ten, inclusive. The variances produced by cycles six through
ten, however, were not significantly different from each other.

The patterns of significant pairwise differences for the other
five dispatching rules are similar to those of EDD shown in Table 4.3,
and strongly support the hypothesis of iteration generally producing
successively lower penalty measures under global allowance policy forms.
Under this hypothesis, one would expect measures produced in any cycle
to tend to be significantly greater than or equal to those in subsequent
cycles, and significantly less than those in few (if any) subsequent
cycles. While the analogous tables for the other five dispatching rules
are not shown here, a complete set of tables is provided in Appendix E.

As previously discussed, Figures 4.6 through 4.9 give visual
indications that the majority of benefits from iteration occur in the
first five or six cycles. Further, the data shown in Table 4.3 and in

Appendix E provide indications of the point in the iterative process
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at which the incremental benefits of an additional cycle become
insignificant.

Again, refer to the penalty measure VAR in Table 4.3. One sees
that the first cycle was significantly greater (in terms of the penalty
measure) than 100% (nine out of nine) of all other cycles. The fourth
cycle was significantly greater than 56% (five out of nine) of all other
cycles. The sixth cycle was significantly greater than no other cycles.

Under the hypothesized iteration effects, one would expect this
"greater than" percentage to decrease throughout the iteration process
until marginal benefits become insignificant. For the measure VAR in
Table 4.3, this threshold of insignificance appears to occur at the
sixth cycle. Figure 4.10 displays the within-series "greater than"
percentages, aggregated across all dispatching rules, for VAR, MSL, MAL,
SQL, and the four measures combined. Although one again sees the
somewhat more erratic nature of SQL, the figure displays a strong
indication that marginal benefits from iteration occur through the sixth
cycle, but not thereafter.

The iteration process produces other systematic beneficial
effects in terms of lateness penalties. Not only do successive cycles
produce successively lower penalty measures, but the dispersion of the
twenty observations produced at each successive cycle is also decreased.
Figure 4.11 displays an example of this benefit, in the form of the
standard deviations of the twenty VAR observations for each cycle and
dispatching rule. Similar patterns exist for the other three penalty

measures.
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Figure 4.10
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Discussion of Global vs. Local Effects. The fact that using an
iterative process in allowance equation determination provides benefits
under global allowance policy forms but not under local allowance policy
forms is not unexpected. An examination of the ordinates in Figures 4.2
through 4.9 indicates that allowance estimators that are limited to
local variables are considerably cruder than those that also incorporate
global variables. The nature of the iterative process itself is one of
fine tuning; a good initial solution is improved upon by process
repetition. Local allowance policy estimators simply are not sensitive
enough to exploit the potential benefits of iteration.

Consider the first two cycles of an iterative procedure. Since
the same incoming job stream is presented to each cycle, any given Jjob i
arrives at the same time in the second cycle as in the first and has
identical operation characteristics. Therefore, the only factors
relevant to allowance determination that have changed from the first
cycle to the second cycle as of the arrival of job i are shop related
factors. Global allowance policies explicitly account for these shop
factors, whereas local allowance policies do not. It is logical,
therefore, to expect global allowance estimators to be more sensitive to

the effects of iteration than local allowance estimators.

Tests of Hypothesis 1

Table 4.4 displays the formal tests that address whether or not,
under global allowance policy forms, allowance policies determined from
an iterative process produce significantly lower inaccuracy penalties
than policies determined from a single pilot simulation (cycle 1

policies). For each of the four penalty measures within each
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Table 4.4

Phase 1 Statistical Comparisons
Allowance Policy Determination by
Single Pilot (Cycle 1) vs. Iterative Process (Cycle 6)
Global Allowance Policy Forms
(90% Utilization, Known Actual Processing Times)

Cycle 1 Cycle 6 P-Values'®

EDD var 1149 750 <.00005
msl 1149 753 <.00005

mal 24.5 19.4 <.00005

sql 542 333 .0045

SLACK var 1006 625 <.00005
msl 1079 656 <.00005

mal 24.1 19.0 <,00005

sql 352 404 .6450

CR var 752 392 <.00005
msl 792 394 <.00005
mal 17.9 18..5 <.00005

sql 305 217 .0183
EOPDD var 1001 484 <.00005
msl 1158 512 <.00005
mal 24.5 16.1 <.00005

sql 308 191 .0011
OPSLK var 1016 502 <.00005
msl 1138 507 <.00005

mal 24.7 16.2 <.00005

sql 396 257 .0018

OPCR var 897 480 <.00005
msl 952 486 <.00005

mal 19.8 14.7 <.00005

sql 314 224 .0020

I

! One-tailed H.: Cycle 1 € Cycle 6
le Cycle 1 > Cycle 6
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dispatching rule, the twenty observations from the first cycle are
tested against the twenty observations from the sixth cycle using a one-
tailed Wilcoxon Signed Rank test. The column labelled "P-value" shows
the level of significance at which the sixth cycle is less than the
first cycle in terms of the penalty measures.

With the exception of the previously noted case of SQL under the
dispatching rule SLACK (where there is no significant difference between
the first cycle and the sixth cycle), every test shows that penalty
values from the sixth cycle are significantly less than those from the
first cycle. The median percentage decreases in the penalty measures
VAR, MSL, MAL, and SQL are 47%, 50%, 26%, and 32%, respectively.
Significant benefits are produced by the use of an iterative procedure

in setting allowance equations.

Phase 2

Recall that in cases where operation-based dispatching rules
have been evaluated, it has been common practice in past research to set
operation allowances by allocating a total job allowance among
operations, usually in proportion to their respective operation
processing times. Hypothesis 2 proposes that, with an effective
allowance estimator, increased accuracy results from estimating
cumulative operation allowances directly from the allowance equation.

Phase 2 of this research addresses Hypothesis 2.

Tests of Hypothesis 2

As with the effects of iteration tested in Phase 1, benefits

afforded by direct estimation of operation allowances appear to differ
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between local allowance policy forms and global allowance policy forms.
Tables 4.5 and 4.6 display the results of the Wilcoxon tests of
Hypothesis 2 for local and global allowance policy forms, respectively.
Both tables represent environments of 90% expected utilization and
actual processing times that are known as of a job’s arrival at the
shop. Based on Phase 1 analyses, simulations under local allowance
policy forms are first cycle simulations, whereas those under global
forms are sixth cycle simulations.

The tests in Table 4.5 indicate that direct estimation of
operation allowances neither increased nor decreased inaccuracy
penalties on a systematic basis under local allowance policy forms. For
the measures VAR, MSL, MAL, and SQL under the dispatching rule EOPDD,
direct estimation significantly decreased inaccuracy penalties. For the
measure SQL under OPSLK and the measures MAL and SQL under OPCR, direct
estimation significantly increased inaccuracy penalties. For all other
combinations of penalty measures and dispatching rules there were no
statistically significant differences. As with the effects of
iteration, local allowance policy forms do not appear sensitive enough
to exploit potential advantages of direct estimation.

The tests in Table 4.6, however, indicate that direct estimation
provides consistently significant benefits in terms of inaccuracy
penalties under global allowance policy forms. In each of the twelve
combinations of dispatching rules and penalty measures, inaccuracy
penalties associated with direct estimation of operation allowances are
significantly lower than those associated with proportional allocation

of job allowances. The median percentage decreases in the penalty
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Table 4.5

Phase 2 Statistical Comparisons

Operation Allowance Determination by

Allocation vs.

Direct Estimation

Local Allowance Policy Forms, Cycle 1 Simulations
(90% Utilization, Known Actual Processing Times)

Job Allowance Direct
Allocation | Estimation P-vValues!®

EOPDD var 1713 1611 .0430
msl 1957 1809 .0002

mal 33.4 32.4 .0004

sql 599 569 .0152

OPSLK var 1765 1727 . 4407
msl 1955 1962 .7492

mal 34.0 33,4 .1754

sql 667 801 .9994

OPCR var 1301 1282 .2629

msl 1392 1417 .8839

mal 24.7 25.1 .9963

sql 426 449 .9874

! One-tailed H

By
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Table 4.6

Phase 2 Statistical Comparisons

Operation Allowance Determination by

Allocation vs.

Direct Estimation

Global Allowance Policy Forms, Cycle 6 Simulations
(90% Utilization, Known Actual Processing Times)

Job Allowance Direct
Allocation | Estimation P-Values'®
EOPDD var 484 342 <.00005
msl 512 374 <.00005
mal 16.1 13.7 <.00005
sql 191 125 <.00005
OPSLK var 502 380 <.00005
msl 507 391 .0001
mal 16.2 14.6 .0002
sql 257 152 <.00005
OPCR var 480 333 <.00005
msl 486 358 .0001
mal 14.7 13.1 .0010
sql 224 136 .0008

1

One-tailed H

By
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measures VAR, MSL, MAL, and SQL are 29%, 26%, 11%, and 39%,
respectively.

Direct estimation therefore produces significant positive
effects under global forms and no consistently positive or negative
effects under local forms. In order to maintain procedural consistency,
and since there are no compelling reasons not to, all simulations

performed in Phase 3 analyses use the direct estimation procedure.

Summary

Under global allowance policy forms, determination of allowance
equation coefficients by an iterative simulation-~regression procedure
significantly reduces completion inaccuracy penalties (Hypothesis 1), as
well as reducing the dispersion of those penalties. The allowance
equations generated by the iterative procedure tend to become
successively more stable as cycles are repeated.

Under global allowance policy forms and operation-based due
dates, direct estimation of cumulative operation allowances in setting
due dates produces significantly lower completion inaccuracy penalties
than allocation of total job allowances among operations in proportion

to their respective operation processing times (Hypothesis 2).
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Chapter 5

Phase 3 Results
LS
The first section of this chapter discusses the results from
Phase 3. The next section presents comparisons to the Ragatz and Mabert

study (1984), and the final section provides a chapter summary.

Phase 3

Phase 3 analyses address Hypotheses 3 through 6. The
experimental design of Phase 3 was illustrated previously in Figure 3.3.
This factorial design is evaluated for each of the four penalty
measures.

For each penalty measure evaluated, each cell in the
experimental design matrix contains twenty observations, representing
(as in Phases 1 and 2) simulations run under the same assumptions but on
twenty different job streams. The observations within any given cell
therefore comprise a random sample of observed measures within the given
environment. Since the design consists of 48 cells, each matrix
contains 960 observations (20 observations by 48 cells).

As indicated by analyses in Phases 1 and 2, the data in each
cell that corresponds to a local allowance policy are generated from
first cycle (no iteration) simulations, whereas the data in each cell
that corresponds to a global allowance policy are generated from cycle 6

simulations. Further, all data in cells that correspond to operation-
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based dispatching rules utilize direct estimation of operation

allowances.

Observed Measures

Table 5.1 displays the medians of the twenty appropriate
observations for each of the four penalty measures in each of the 48
combinations of assumptions. The observations from which each median
was calculated tend to be positively skewed. As examples, frequency
tables of individual VAR observations under assumptions of global
allowance forms and 90% utilization are displayed in Table 5.2.

Comparisons of the medians in Table 5.1 give immediate support
to stated hypotheses. Within each of the four penalty measures there
are 24 possible comparisons of local vs. global allowance forms (local
vs. global under EDD, 75% utilization, and known actual processing
times; local vs. global under EDD, 75% utilization, and unknown actual
processing times, etc.). Within each of the four measures the median
penalty under a global policy is less than the corresponding median
penalty under a local policy in all 24 cases. Under the assumptions of
90% utilization and known actual processing times, the median percentage
decreases in the penalty measures VAR, MSL, MAL, and SQL are 72%, 74%,
46%, and 64%, respectively. Benefits of utilizing global variables in
allowance estimation are highly significant.

Likewise, within each penalty measure there are 24 comparisons
of operation-based dispatching rules vs. job-based dispatching rules.
An example is EOPDD vs. EDD under local allowance policies, 75%
utilization, and known actual processing times. For the penalty measure

VAR, the median for the operation-based dispatching rule is lower than
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Table 5.1
- NN N

Phase 3 Observed Median Penalty Measures
Dispatching/Allowance/Shop Condition Evaluations

Local Allowance Global Allowance

75% 90% 75% 90%
Utilization Utilization Utilization Utilization

Act Act Act Act
Act TPT Act TPT Act TPT Act TPT
TPT Not TPT Not TP Not TPT Not

Known| Known| Known| Known| Known| Known| Known| Known|

var 694 691 1740 1799 292 302 750 735
EDD msl 712 707 1800 2014 295 302 753 757
mal 18.8 19.2 31.9 33k 6 1283 12,.7 19.4 19.8
sql 349 358 803 683 183 176 333 461

var 652 673 1750 1832 21317 251 625 659
SLACK | msl 703 705 1902 1951 239 251 656 673
mal 18.8 19.1 33.3 33.8 11.4 1] . 19.0 18.8
sql 379 3497 676 633 153 128 404 354

var 566 592 1322 1267 170 188 392 417
CR msl 624 622 1453 1437 170 189 394 418
mal 17.0 17.2 24.3 25.2 9.2 9.6 13.5 14.0
sql 236 218 364 381 100 101 217 213

var 509 525 1611 1694 156 171 342 364
EOPDD msl 515 546 1809 1950 157 171 374 392
mal 16.6 17.0 32.4 32.6 9.0 9.6 13.7 14.6
sql 289 273 569 781 75 88 125 111

var 593 625 1727 1771 198 229 380 384
OPSLK msl 608 663 1962 2157 199 230 391 397
mal 18.2 19.1 33.4 35.0 10.3 11.2 14.6 14.7
sql 348 326 801 752 107 112 152 173

var 467 495 1282 1365 157 179 333 335
OPCR | msl 513 550 1417 1498 159 180 358 354
mal 16.0 16.8 2§51 26.1 9.0 919 1:3rf 13.4
sql 139 157 449 407 87 86 136 130
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Table 5.2

Frequency Distributions of Variances in Cells
Global Allowance Policy, Cycle 6
(90% Utilization, Known Actual Processing Times)

Frequencies

variance EDD SLACK CR EOPDD OPSLK OPCR
200 - 299 0 0 2 0 0 1
300 - 399 0 0 10 2 i 2
400 - 499 0 2 5 9 4 8
500 - 599 2 6 2 2 8 4
600 - 699 4 6 0 4 2 2
700 - 799 8 4 1 1 2 0
800 - 899 2 0 0 1 1 2
900 -1000 1 2 0 0 1 0
1000 -1099 1 0 0 0 0 0
2 1100 2 0 0 1 1 1
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the median for the corresponding job-based dispatching rule in 23 of the
24 cases. For MSL, the operation-based rule is lower in 20 out of 24
cases. For MAL as well as for SQL, the operation-based rule is lower in
18 out of 24 cases. Under the assumptions of 90% utilization, global
allowance policy forms, and known actual processing times, the median
percentage decreases in the penalty measures VAR, MSL, MAL, and SQL are
39%, 40%, 23%, and 38%, respectively. Operation-based dispatching rules
generally provide significant benefits over corresponding job-based
dispatching rules.

Within each measure there are 24 direct comparisons of actual
processing times known as of a job’s arrival at the shop vs. unknown as
of a job’s arrival at the shop. An example is known vs. unknown under
EDD, local allowance policies, and 75% utilization. For the measures
VAR, MSL, and MAL, values under known times are less than those under
unknown times in 21 out of 24 cases, 20 out of 24 cases, and 23 out of
24 cases, respectively. For the measure SQL, however, the median
penalty under known times is less than the median penalty under unknown
times in only 9 out of 24 cases. Apparently, the previously discussed
characteristic that SQL values are highly variable due to increased
sensitivity to observed mean latenesses overwhelms the additional
systematic variation contributed by actual processing times varying
about expected processing times. If the chosen variance of the
deviational distribution that defined the stochastic differences of
actual about expected times had been sufficiently large, logic dictates
that observed SQL values under known times also would have been

significantly less than those under unknown times.
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Conclusions that are not specifically related to stated
hypotheses can be made from comparisons of the median measures in Table
5.1. Within each measure, values produced under 75% utilization
environments are significantly lower than those produced under 90%
utilization environments (24 out of 24 cases within each of the four
measures) .

Within each of the eight combinations of allowance policy class,
utilization level, and actual processing time assumption, one can
compare the relative performances of the six dispatching rules for each
of the four penalty measures. The dispatching rule OPCR produces either
the lowest or second lowest VAR, MSL, and SQL measures in 8 out of 8
cases. OPCR produces the lowest or second lowest MAL measures in 7 out
of 8 cases. No other dispatching rule exhibits such overall
superiority.

The dispatching rules EDD and SLACK exhibit strong tendencies to
be the worst performers among the six dispatching rules examined. EDD
is one of the bottom two performers for VAR in 8 out of 8 cases, for MSL
in 7 out of 8 cases, for MAL in 6 out of 8 cases, and for SQL in 7 out
of 8 cases. SLACK is one of the bottom two performers for VAR in 8 out
of 8 cases, for MSL in 7 out of 8 cases, for MAL in 8 out of 8 cases,

and for SQL in 5 out of 8 cases.

Regression Analyses

The indications provided above are based on pairwise comparisons
of the 48 observed medians within each of four factorial design
matrices. These indications can be supported and extended by regression

analyses that specifically address all 960 observations within each
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matrix. As discussed in Chapter 3, four stepwise multiple regression
analyses were performed; in each, ten times the natural logarithm of the
appropriate penalty measure was the dependent variable, and potential
independent variables presented to the stepwise procedure consisted of
one scalar variable (lateness) and numerous dummy variables representing
assumption combinations, as well as selected second and third order
interactions. This section presents results of the regression
procedures in the forms of observed coefficients and residual analyses.
The following section presents interpretations of these results in terms

of the stated hypotheses.

Observed Coefficients. Selected coefficients produced by the
four regression analyses, as well as the corresponding standard errors
of the coefficients, are displayed in Table 5.3. Only coefficients that
are significantly different from zero and relevant to the stated
hypotheses are included in this table. While numerous other variables
in each regression exhibit significant coefficients (for example, the
dummy variable denoting job stream 10), these variables are included in
the regressions only to account directly for certain systematic
variations and are not specifically relevant to stated hypotheses.

In each regression the base from which each dummy variable
deviates represents an environment of local allowance form, 75% expected
utilization, actual processing times that are known as of a job’s
arrival at the shop, and the dispatching rule EDD run on the job stream
denoted as job stream 1. In cases where coefficients for a given

variable are not significant, the table is blank (for example, the
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Table 5.3

Phase 3 Regressions
Coefficients and Standard Errors of Coefficients

Dependent Variable: 10 x Natural Logarithm of

VAR MSL MAL SQOL
std std std std

Variable Coeff Error Coeff Error Coeff Error Coeff Error
Global - 7.599 .225 - 8.247 .265 - 4.200 .135 - 6.964 .315
High 11.208 .173 11.999 .204 5.812 .116 8.583 .255
Unknown .433 .099 .442 .117 +2718 <059
CR - 1.276 .241 - 1.260 .284 - 1.345 .146 - 4.735 .269
EOPDD - 1.421 .202 - 1.326 .238 ~- .709 .145 - 1.457 .345
OPCR - 2.256 .241 - 2.441 .284 - 1.689 .146 - 4.952 .347
Global*High - 2.449 .201 - 2.774 .237 - 1.500 .121 - 2.675 .340
Global*SLACK - 2.047 .242 - 2.009 .286 - 1.023 .162 - 1.149 .489
Global*CR - 3.617 .315 - 3.572 .372 - 1.342 .189
Global*EOPDD - 5.007 .316 - 4.792 .373 - 2.524 .189 - 5.998 .490
Global*OPSLK - 4.371 .269 - 4.343 .318 —‘2.226 .145 - 5.267 .379
Global*OPCR - 3.951 .315 - 3.426 .372 - 1.170 .189 - 2.486 .488
High*CR - 1.333 .277 - 1.620 .327 - .961 .175
High*OPSLK - 1.239 .233 - 1.234 .275
High*OPCR - .974 .278 - 1.199 .328 - .775 .175
High*SLACK .580 .146 1.682 .448
High*EOPDD .525 .175
SLACK - 1.164 .412
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variable "unknown" where ten times the natural logarithm of the observed
penalty measure under SQL is the dependent variable).

One interesting result not displayed in Table 5.3 concerns the
variable "lateness". The standardized coefficients for this variable
produced by the VAR, MSL, MAL, and SQL regressions are .110, .067, .056,
and .512, respectively. The higher standardized coefficient in the SQL
regression supports previous statements that the measure SQL is more

sensitive to observed mean latenesses than are the other three measures.

Residual Analyses. Statistical conclusions made in the next
section rely on the fact that assumptions underlying the regression
analysis procedures are not violated to the extent that such conclusions
are invalid. Figures 5.1 through 5.4 show residual plots and expected
normal value plots for the VAR, MSL, MAL, and SQL regressions,
respectively.

The four residual plots give no visual indications of the
presence of heterogcedasticity. The plots of the expected normal values
display some evidence of non-normality in the positive tails of the VAR,
MSL, and MAL plots and in both tails of the SQL plot. All four sets of
residuals display a bell-shaped distribution with a slight tendency of
leptokurtosis, and the sets for VAR, MSL, and MAL exhibit a slight
positive skew. %’ goodness-of-fit tests show that, while residuals are
not significantly non-normal for the VAR and MSL residual sets at a =
.01, the MAL and SQL residual sets are significantly non-normal at a
=50

The potential presence of autocorrelation of residuals (when

residuals are ranked by magnitude of predicted penalty measure) is
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Figure 5.1
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Figure 5.2

Phase 3 Regression Residual Plots - MSL

10
1
.
1
1 1
5 11 21 12
12 1111311 1
2 14124 1122 1 131 1) (318 2 1
Residual 4 41221 12 3211423111 1 13121 11
224655 11 43214345956 3 225 21 22

1266883436147B7967EEJ931 12 72353 1
0 25868525358985957BC9992 1124C93264
211116 33713B57A5A11 2 43346125411
3 114 11455311432341 1113 3124313
111111 11 82 1711 2 22311 3 35171, A
1 11 11 21 2 1
1 1 11 1 11

=5

Predicted
(Note: 1=1 obs,...,9=9 obs,A=10 obs,B=1ll obs, etc.)

Normal Probability Plot of Residuals

3 11/ il
//*** *
*kkkxk
* k k%
* % %k %k

* % %k
Expected & Wik
Normal 0 LRI
Value pitidid

* % %
* %k k%
* %k %
%* % %k
/**
-3 *%
Residual

(Note: Expected Normal Probability Value Should Lie on ///)

98



Figure 5.3

Phase 3 Regression Residual Plots - MAL
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Figure 5.4

Phase 3 Regression Residual Plots - SQL
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addressed for each of the four residual sets by the Durbin-Watson test
as well as by a test of the number of positive and negative runs. The
observed Durbin-Watson values for the VAR, MSL, MAL, and SQL residual
sets are 1.813, 1.920, 1.882, and 1.751, respectively. None are
sufficiently low to reject the hypothesis of no autocorrelation at o =
.05. The observed z values for the runs tests are -1.29, -.65, +.71,
and =-3.17, respectively. Only in the SQL residual set is there evidence
of autocorrelation.

In summary, while there are no indications of problems with
heteroscedasticity, there are statistically significant indications of
moderate departures from normality in the MAL and SQL residual sets, and

some indications of autocorrelation in the SQL residual set.

Tests of Remaining Hypotheses

Since some assumptions underlying regression theory are violated
to some degree, statistical conclusions provided by the four regression
analyses and relating to stated hypotheses are tested further by sets of
Wilcoxon Signed Rank tests. 1In all cases the regression conclusions are
supported by the Wilcoxon tests; apparently, the observed departures
from underlying assumptions are not sufficient to affect the regression
results to a meaningful extent.

As previously mentioned, the dependent variables in the four
regression analyses are ten times the natural logarithms of the
appropriate inaccuracy penalty measures. Since the natural logarithm is
a monotonic function of the raw penalty value, throughout this section
conclusions from the regression analyses are stated in terms of the

untransformed penalty values. Supporting Wilcoxon tests (o = .05) are
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performed in terms of the untransformed values, and are therefore

interpreted naturally.

Hypothesis 3. Hypothesis 3 proposes that global allowance forms
produce lower inaccuracy penalties than do local allowance policy forms.
Coefficients for the dummy variable "global" are negative and
significant in all four regressions (see Table 5.3), indicating that
the main effect of global allowance forms is a significant reduction in
penalty measures. Further, coefficients for all significant
interaction variables that address the global state are negative and
significant, indicating that the main global superiority exists in every
case.

Table 5.4 presents the p values associated with all pairwise
comparisons, within each penalty measure, between the twenty
observations in the global cell under given assumptions and the twenty
matched observations in the corresponding local cell under the same
assumptions. For example, the twenty observations under global/ EDD/
75% utilization/ known actual processing times are compared with the
twenty observations under local/ EDD/ 75% utilization/ known actual
processing times.

Within each penalty measure, global values are significantly
lower than local values at the stated a of .05 in all 24 comparisons.
The observed Wilcoxon tests strongly support the regression conclusions

in affirming Hypothesis 3.

Hypothesis 4. Hypothesis 4 proposes that operation-based
dispatching rules produce lower inaccuracy penalty measures than do the

corresponding job-based dispatching rules. Both the regression



Table 5.4

Hypothesis 3 Pairwise Tests
Global vs Local P-Values'

Global vs Local
Under Stated

Dispatching/
Utilization/
Processing Time
Assumptions VAR MSL MAL SQL
EDD/ 75%/ Known <.00005 <.00005 <.00005 <.00005
EDD/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
EDD/ 90%/ Known <.00005 <.00005 <.00005 .0002
EDD/ 90%/ Unknown <.00005 <.00005 <.00005 .0032
SLACK/ 75%/ Known <.00005 <.00005 <.00005 <.00005
SLACK/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
SLACK/ 90%/ Known <.00005 <.00005 <.00005 .0025
SLACK/ 90%/ Unknown <.00005 <.00005 <.00005 .0050
CR/ 75%/ Known <.00005 <.00005 <.00005 <.00005
CR/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
CR/ 90%/ Known <.00005 <.00005 <.00005 .0020
CR/ 90%/ Unknown <.00005 <.00005 <.00005 .0007
EOPDD/ 75%/ Known <.00005 <.00005 <.00005 <.00005
EOPDD/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
EOPDD/ 90%/ Known <.00005 <.00005 <.00005 <.00005
EOPDD/ 90%/ Unknown <.00005 <.00005 <.00005 <.00005
OPSLK/ 75%/ Known <.00005 <.00005 <.00005 <.00005
OPSLK/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
OPSLK/ 90%/ Known <.00005 <.00005 <.00005 <.00005
OPSLK/ 90%/ Unknown <.00005 <.00005 <.00005 <.00005
OPCR/ 75%/ Known <.00005 <.00005 <.00005 <.00005
OPCR/ 75%/ Unknown <.00005 <.00005 <.00005 <.00005
OPCR/ 90%/ Known <.00005 <.00005 <.00005 <.00005
OPCR/ 90%/ Unknown <.00005 <.00005 <.00005 <.00005

! One tailed H_: Global 2 Local
Hl: Global < Local
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analyses and the Wilcoxon tests indicate that, in general, there are
statistically significant benefits associated with operation-based
dispatching rules. However, both methods of analysis indicate that
there are specific combinations of shop assumptions where benefits are
not significant.

Practical interpretations of the regression analyses are
difficult due to the large number of significant interactions that are
observed. When one combines appropriate coefficients and
variances/covariances, one sees that within the measure VAR (collapsed
across dispatching rules) the operation-based rules produce
significantly lower penalties than do the analogous Jjob-based rules in
18 out of 24 cases. Within MSL, MAL, and SQL, the penalties produced by
the operation-based rules are significantly lower in 20 out of 24 cases,
in 18 out of 24 cases, and in 18 out of 24 cases, respectively.

Wilcoxon tests show that within VAR, MSL, MAL, and SQL,
penalties produced by operation-based dispatching rules are
significantly (a = .05) lower than those produced by corresponding job-
based rules in 18 out of 24 cases, in 16 out of 24 cases, in 12 out of
24 cases, and in 15 out of 24 cases, respectively (see Table 5.5).

The hypothesized benefits of operation-based rules are, in general,
strongly supported.

Both the regression and Wilcoxon analyses indicate, however,
that benefits tend to be insignificant for the measure MAL under the
dispatching rule comparison OPCR vs. CR, for all measures under local
allowance forms and 90% expected utilizations, and for all measures
under local forms and the dispatching rule comparison 6PSLK vs. SLACK.

For example, within penalty measures under local allowance forms and 90%
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Hypothesis 4 Pairwise Tests

Table 5.5

Operation vs Job Based Dispatching P-Values'

Under Stated
Dispatching/
Utilization/

Processing Time
Assumptions:

H

Hl.
Local/
Local/
Local/
Local/

Global/
Global/
Global/
Global/

H

el

75%/
75%/
90%/
90%/
75%/
75%/
90%/
90%/

: OPSLK
: OPSLK

: EOPDD 2 EDD
: EOPDD < EDD

Known
Unknown
Known
Unknown
Known
Unknown
Known
Unknown

2 SLACK
< SLACK

Local/
Local/
Local/
Local/
Global/
Global/
Global/
Global/

:o
1
Local/
Local/
Local/
Local/

Global/

Global/

Global/

Global/

75%/
75%/
90%/
90%/
75%/
75%/
90%/
90%/

: OPCR
: OPCR

75%/
75%/
90%/
90%/
75%/
75%/
90%/
90%/

Known
Unknown
Known
Unknown
Known
Unknown
Known
Unknown

2 CR
< CR

Known
Unknown
Known
Unknown
Known
Unknown
Known
Unknown

! One Tailed

VAR MSL MAL SQL
.0002 .0002 .0005 .0310
<.00005 .00005 .0005 .0007
.0677 .6174 .7134 .0727
%659 .0727 .1354 .9924
<.00005 .00005 .00005 .00005
<.00005 .00005 .00005 .00005
<.00005 .0001 .00005 .0007
<.00005 .0002 .0001 .0007
VAR MSL MAL SQL
.0366 .0780 .3075 .2878
.0430 .10'957 .3614 .9817
.3006 .6863 .7310 .9964
.1953 . 6727 .7609 .9960
.0013 .0011 .0006 .0003
.0013 .0016 .0031 .0080
.0003 .0008 .0008 .0008
<.00005 .0002 .00005 .0008
VAR MSL MAL SQL
<.00005 .00005 .0004 .0007
.0001 .00005 .0040 .0008
.3006 .0500 .9389 .9603
.8520 .5149 .6950 .7942
.0365 .0630 L2711 . 3476
.0040 .0039 .8570 .0016
.0084 .0284 .2005 .0085
.0045 .0166 .2333 .0014
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utilization, operation-based rules produce significantly (@ = .05) lower
penalties in 0 out of 6 cases, in 1 out of 6 cases, in 0 out of 6 cases,
and in 0 out of 6 cases for VAR, MSL, MAL, and SQL, respectively. In
short, while overall benefits of operation-based rules are significant,
several specific assumption combinations (primarily under local

allowance forms) yield no significant benefits.

Hypothesis 5. Hypothesis 5 proposes that benefits produced
by incorporating global variables in allowance equations are greater
under conditions of 90% expected utilization than under conditions of
75% expected utilization. The coefficients for the interaction variable
"global*high"™ are negative and significant in all four regression
analyses (see Table 5.3). This indicates that within each of the four
measures, the differences in penalties produced by global vs. local
forms under conditions of 90% utilization are significantly greater than
the differences in penalties produced by global vs. local forms under
conditions of 75% utilization.

The Wilcoxon tests support the regression conclusions.
Pairwise evaluation of this hypothesis entails the statistical
comparison of two sets of relative performances: under each appropriate
combination of assumptions, the relative performance of local vs. global
forms under 75% utilization against the relative performance of local
vs. global forms under 90% utilization. As previously discussed,
penalty effects of any given assumption change tend to be proportional,
as opposed to scalar, in nature (hence the use of the logarithm

transformation in the regression analyses). Therefore, the relative
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performances mentioned above are determined in terms of the ratios of
local to global penalties.

Accordingly, the Wilcoxon procedure tests the local/global
ratios under 75% utilization vs. the local/global ratios under 90%
utilization for each of 12 possible comparisons. For example, for the
dispatching rule EDD and known actual processing times, the 20 observed
values of [(local under 75%)/(global under 75%)] are tested against the
matched values of [(local under 90%)/ (global under 90%)]. If the
effects proposed in Hypothesis 5 exist, one would expect the second
ratio to be significantly larger than the first ratio since the marginal
benefits of global forms are hypothesized to be larger under 90%
utilization than under 75% utilization.

Table 5.6 displays the p values associated with each Wilcoxon
test, for each of the 12 possible comparisons, within each penalty
measure. The results show that within VAR, MSL, MAL, and SQL, the
second ratio is significantly larger (o = .05) than the first ratio in 7
out of 12 cases, in 10 out of 12 cases, in 10 out of 12 cases, and in 6
out of 12 cases, respectively. Under operation-based dispatching rules,

the second ratio is significantly larger than the first in all cases.

Hypothesis 6. Hypothesis 6 proposes that penalties produced
under the assumption that actual processing times are known upon a job’s
arrival at the shop (i.e., assumed to be equal to the expected
processing times) are lower than penalties produced under the assumption
that actual processing times are unknown upon a job’s arrival at the
shop (i.e., allowed to vary stochastically about expected processing

times). The observed coefficients for the variable "Unknown" are



Table 5.6

Hypothesis 5 Pairwise Tests
90% Utilization-Global Interaction P-Values®

Under Stated

Dispatching/
Processing Time
Assumptions: VAR MSL MAL SQL
EDD/ Known .5691 .8666 .0010 .0777
EDD/ Unknown .8254 .0250 .0016 .9950
SLACK/ Known .5777 .1025 .0139 .9982
SLACK/ Unknown .5446 .0337 .0061 .9989
CR/ Known .7953 .0261 .8895 . 8844
CR/ Unknown .0702 . 0495 .1216 .7248
EOPDD/  Known .0001 <.00005 .0008 .0149
EOPDD/ Unknown <.00005 <.00005 <.00005 <.00005
OPSLK/ Known <.00005 <.00005 <.00005 .0007
OPSLK/ Unknown <.00005 <.00005 <.00005 .0011
OPCR/  Known .0002 .0003 .0096 .0002
OPCR/ Unknown <.00005 .0002 .0024 .0007

\

! § : [Local/Global Ratio, 75% Utilization] 2
[Local/Global Ratio, 90% Utilization]

H.: [Local/Global Ratio, 75% Utilization] <
[Local/Global Ratio, 90% Utilization]
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positive and significant in the VAR, MSL, and MAL regressions; in the
SQL regression, this coefficient is not significant. The regression
analyses therefore provide statistically significant support for
Hypothesis 6 for three out of the four penalty measures.

Table 5.7 shows the p values associated with the Wilcoxon tests
of known vs. unknown for each of the 24 possible comparisons within each
penalty measure. These results support the regression conclusions.
Within VAR, MSL and MAL, the penalties produced under the assumption of
known actual processing times are significantly lower (@ = .05) than
those produced under the assumption of unknown actual processing times
in 12 out of 24 cases, in 10 out of 24 cases, and in 16 out of 24 cases,
respectively.

For the measure SQL, the penalties produced under the assumption
of known actual processing times are significantly lower (o = .05) than
those produced under the assumption of unknown actual processing times
in 5 out of 24 cases. However, the penalties produced under the
assumption of known actual processing times are significantly higher (a
= .05) than those produced under the assumption of unknown actual
processing times in 8 out of 24 cases. In no comparison within VAR,
MSL, or MAL were "known" penalties significantly higher than "unknown"
penalties.

Recall that the measure SQL is very sensitive to observed
latenesses. While the effects of observed mean latenesses are
specifically accounted for in the SQL regression analysis, they are not
addressed in the SQL Wilcoxon series. Apparently, systematic effects of
observed mean latenesses are producing significant differences in both

directions in the Wilcoxon SQL tests.
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Known vs Unknown
Under Stated

Assumptions

EDD/
EDD/
EDD/
EDD/
SLACK/
SLACK/
SLACK/
SLACK/
CR/
CR/
CR/
CR/
EOPDD/
EOPDD/
EOPDD/
EOPDD/
OPSLK/
OPSLK/
OPSLK/
OPSLK/
OPCR/
OPCR/
OPCR/
OPCR/

Known Processing Time vs Unknown Processing Time P-Values'®

Dispatching/
Allowance/
Utilization

Local/
Local/
Global/
Global/
Local/
Local/
Global/
Global/
Local/
Local/
Global/
Global/
Local/
Local/
Global/
Global/
Local/
Local/
Global/
Global/
Local/
Local/
Global/
Global/

1

75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%
75%
90%

One tailed H,_:

Table 5.7

Hypothesis 6 Pairwise Tests

VAR MSL MAL SQL
.9370 .9043 .0292 .3271
.4260 .0590 .0542 .9690
.0114 .0138 .0054 .5886
.8910 .2165 .2878 .0004
.3137 .3969 .1090 .9974
.2752 .0727 .1802 .5446
.0630 .0836 .0132 .9874
.1022 .2752 .6450 .9952
.1754 993723 .0159 .9848
.7432 .8605 .2891 .3969
.0009 .0009 .0002 .0429
.0261 .0229 .0121 .0585
L2271 .2058 .0255 59991
.0152 .3969 .4260 .00005
.0002 .00025 <.00005 .0188
.0002 .0003 .0003 .9891
.0365 .1590 .0243 .9950
.0542 .1661 .1659 .8614
.0002 .0002 .0001 .0590
.0200 .0032 .0119 .0003
.0001 <.00005 <.00005 .0836
.0062 .0094 .0006 .9273
.0001 .0002 .0002 .7942
.1568 .8148 .0219 .6796

Known 2 Unknown

le Known < Unknown
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Comparisons to Ragatz and Mabert Study

As previously discussed, Ragatz and Mabert (1984) recommend a
global allowance form termed RMR for use under the SLACK dispatching
rule (termed MINSLK in their study). Their proposed allowance form is
noted in Chapter 3 of this current study as Equation 3.1.

The RMR equation contains variables that are job-based (Pi'

JIs and JIQi) and operation-based (WIQli, WIQZi, and WIQ3i). The

i
specific equation coefficients are based on a regression analysis of
results from a single pilot simulation (equivalent to Cycle 1 values in
this current research). The global form recommended in this current
research contains only job-based variables (TPTi, TWIQi, TWISMi, TPTi’,
and TWIQiz), with coefficients based on the sixth cycle of an iterative
simulation-regression procedure.

Table 5.8 displays the median penalty measures and Wilcoxon p
values associated with direct comparisons of the global allowance form
and coefficient determination procedures recommended by Ragatz and
Mabert (RMR) vs. those recommended in this current research (GEE).
Comparisons are made for each of the four possible combinations of
utilization level and actual processing time assumptions, under the
dispatching rule SLACK that is common to both studies.

Within the measures VAR, MSL, MAL, and SQL, GEE produces
significantly lower penalties than does RMR in 4 out of 4 cases, in 4
out of 4 cases, in 4 out of 4 cases, and in 2 out of 4 cases,
respectively. In 13 out of the 14 cases in which GEE produces

significant benefits, the p values associated with the tests are <.00005

(in the 14th case the p value is .0018). These results provide
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Table 5.8

Pairwise Wilcoxon Tests of GEE (Cycle 6) vs RMR (Cycle 1)

GEE vs RMR

Under Stated
Utilization/
Act Proc Time

Assumptions

90%/ Known

90%/ Unknown

75%/ Known

75%/ Unknown

Median Penalty Measures and P-Values®
(Under SLACK Dispatching Rule)

GEE Median
RMR Median
P-Value

GEE Median
RMR Median
P-Value

GEE Median
RMR Median
P-Value

GEE Median
RMR Median
P-Value

1

<

112

1: GEE < RMR

VAR MSL MAL SQL
625 656 19.0 404
948 1012 23 .2 325
.00005 .00005 .00005 .9634
659 673 18.8 354
1081 1168 24.8 349
.00005 .00005 .00005 .5247
21377 239 11.4 153
365 366 13.8 191
.00005 .00005 .00005 <.00005
251 251 11.7 128
359 359 13.6 162
.00005 .00005 .00005 .0018
One tailed H,: GEE 2 RMR



compelling statistical evidence that the form and procedures recommended
in this current research provide significant and meaningful improvements
in terms of completion inaccuracy penalties over the Ragatz and Mabert

form and procedures.

Summary

Global allowance policy forms produce significantly lower
completion inaccuracy penalties than do local allowance policy forms
(Hypothesis 3). Generally, operation-based dispatching rules produce
significantly lower completion inaccuracy penalties than do job-based
dispatching rules (Hypothesis 4), although specific combinations of
assumptions exist where benefits are not significant.

The significant benefits produced by incorporating global
variables in the allowance determination procedure are less under
conditions of 75% expected utilization than under conditions of 90%
expected utilization (Hypothesis 5). Generally, simulations run under
the assumption that actual processing times are known upon a job’s
arrival at the shop produce significantly lower completion inaccuracy
penalties than do simulations run under the assumption that actual
processing times vary stochastically about expected times (Hypothesis
6) .

The global allowance form and coefficient determination
procedures recommended in this current research produce significantly
lower completion inaccuracy penalties than do the global form and

procedures recommended by Ragatz and Mabert (1984).
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Chapter 6

Implications and Directions

The current research findings provide management of general job
shops with directions for immediate benefits and for potential future
benefits. This chapter discusses managerial implications in terms of
benefits and costs of adopting recommended procedures, and then

discusses directions of potentially valuable future research.

Managerial Implications

Implications of this research for shop management include both
benefits and costs. The benefits are associated with guidance in
selecting dispatching rules and optimal allowance policy forms, and
providing procedures for determining specific allowance equations and
operation due dates. The costs are associated with the studies and
informational mechanisms necessary to support the improved methods.
Further, the method of research itself (i.e., simulation of a shop based
on a set of stated assumptions) may provide beneficial tools for

management above and beyond dispatching rules and allowance policies.

Benefits

Previously cited surveys and studies such as Putnam et. al.
(1971), Panwalker and Iskander (1973), Kanet and Hayya (1982), Baker

(1984), and Hax and Candea (1984) state that the vast majority of
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existing job shop research has not addressed the objectives of the real
world. This current research addresses real world needs by minimizing
penalties associated with the dispersion of actual job completions about
expected completions.

Concerning selection of dispatching rules, this research has
supported and extended the conclusions of Kanet and Hayya (1982) that
operation-based dispatching rules outperform job-based dispatching
rules. Specifically, this current research indicates that the
rule OPCR generally is superior to other dispatching rules evaluated.

The majority of existing job shop simulation-based research has
assumed naive allowance policies and concentrated on evaluating the
performances of various dispatching rules under given assumptions. This
current research has concentrated on the development and evaluation of
optimal allowance policies under different combinations of dispatching
rules and shop assumptions. The benefits of incorporating global (i.e.,
shop congestion) variables into the allowance policy have been
demonstrated.

An important point, though, is that while this research has
demonstrated meaningful benefits inherent in extending beyond naive
allowance methods, the global allowance forms used in this research have
not been overly complex in nature. The two global variables
incorporated in the recommended allowance form (the total work of
operations in the queues of machines required by a given job, and the
total work of operations elsewhere in the shop that require those same

machines) are summary in nature and feasible to maintain in a real world

shop.
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Given an allowance policy form, this research has demonstrated
the benefits of an iterative simulation-regression procedure for
determining the specific allowance equation. Further, this research has
demonstrated the advantages of setting operation due dates directly from
the defined allowance equation rather than proportionally allocating
total job allowances among operations.

The benefits offered by these recommendations are shown to be
both statistically significant and meaningful in magnitude. The median
percentage decreases in the observed penalty measures VAR, MSL, MAL, and
SQL produced by operation-~based dispatching rules (over job-based
dispatching rules) were 39%, 40%, 23%, and 38%, respectively. The
median percentage decreases in the observed penalty measures produced by
global allowance policies (over local allowance policies) were 72%, 74%,
46%, and 64%, respectively. The median percentage decreases in the
observed penalty measures produced by an iterative simulation-regression
procedure (over a single simulation-regression procedure) were 47%, 50%,
26%, and 32%, respectively. The median percentage decreases in the
observed penalty measures produced by direct estimation of operation due
dates (as opposed to proportional allocation of total job allowances)

were 29%, 26%, 11%, and 39%, respectively.

Costs

The costs inherent in adopting the procedures recommended by
this research entail both computational costs associated with initial
implementation and informational costs associated with maintenance and
operation. As indicated by previous research (for example, Kanet,

1979), the choice of the optimal dispatching rule and the choice of the



optimal allowance policy appear to be dependent. This current research
(as well as logic) indicates that both may be dependent on specific shop
characteristics. Implementation of recommended procedures, therefore,
should occur on a shop-specific basis.

Envisioned implementation would require an initial simulation
study based on the specific shop structure, management objectives, and
relevant observed distributions. Management objectives would dictate
the choice of the appropriate penalty measure to be minimized. The
observed distributions would reflect job/ machine characteristics such
as number of operations per job, operation-machine assignments, times
between job arrivals, and operation service times (including setup and
breakdown times).

The iterative simulation-regression procedure would produce an
optimal combination of dispatching rule and specific allowance equation
for the shop. A simpler procedure that would produce near-optimal
results would be to adopt a generally superior dispatching rule such as
OPCR and to simulate in order to specify only the optimal specific
allowance policy to be used.

The initial study could be accomplished utilizing in-house
programming and computing capabilities or external expertise such as a
consultant. All required computing could be implemented feasibly on a
personal computer with moderate speed and memory storage capacity.
Conceivably, a general user-friendly software package could be developed
and marketed to individual shops to provide sufficient capabilities for
the initial study.

The on-going use of a global allowance policy defined by the

initial study would entail an information structure to support its



requirements. In short, certain shop congestion information would have
to be maintained in order to provide necessary data to be used in the
specific allowance equation. As mentioned previously, the shop
congestion information required by the global allowance form recommended
in this research consists of total work of operations in the queues of
machines required by a given job, and total work of operations elsewhere
in the shop that require those machines. This information could be

maintained effectively with or without in-house computer capabilities.

Simulation as a Management Tool

With in-house computing capabilities and the proper software,
the simulation procedures utilized in this research could provide shop
management with beneficial directions beyond dispatching rules and
allowance procedures. This current research indicates that as shop
utilization decreases, penalty measures associated with inaccurate job
completions decrease. In short, a shop can increase completion accuracy
if it is willing to accept more machine idle time and lower asset
utilization.

This suggests that, for a given shop, there may be a
theoretically optimal combination of excess capacity and completion
accuracy. Simulation studies based on specific shop and job
characteristics could aid in defining such a point, and provide
quantitative guidance to capacity expansion/contraction decisions.
Similarly, simulation analyses could provide input into decisions
concerning areas including shop balancing, shop layout, job pricing, and

preventive maintenance.
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Directions for Future Research

The majority of existing research has concentrated on simplistic
shop scheduling algorithms due to a perceived lack of real world
capabilities to implement more sophisticated ones. With the current
availability of powerful and relatively inexpensive personal computer
systems, increased computational sophistication is within the reach of
even the smallest shops. Future research should not constrain itself
based on limitations that no longer exist.

Perhaps the most pressing immediate need for further research
lies in the application of theoretical procedures to real-world shops.
Although instances of studies in actual shops have been cited (for
example, Elmaghraby and Cole, 1963, and Bulkin, 1966), examples of
applying proposed procedures to real-world shops are relatively scarce
in the literature. Topics such as the indicated advantages of global
allowance policies over local allowance policies, the indicated
advantages of operation-based dispatching rules over Jjob-based
dispatching rules, and the external validity of simulation-based
optimization procedures should be verified by researchers in real-world
situations in order to facilitate the wide acceptance and adoption of
recommended procedures.

This is not to say that further simulation research outside of
existing shops would not be worthwhile. This current research and other
relatively recent studies such as Baker and Bertrand (1981), Baker and
Kanet (1983), Ragatz and Mabert (1984), and Bookbinder and Noor (1985)
provide new foundations for potentially valuable research in a variety

of areas.
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One promising topic of future efforts is research on global
allowance policies. The small number of previously cited studies
(including this present research) that have examined the inclusion of
shop congestion variables in the allowance determination procedure have
all demonstrated significant benefits resulting from their proper
inclusion. However, the topic is relatively new, and further research
should be undertaken with a focus on the specific form and content of
global allowance policies.

The benefits of moving from local allowance forms to global
allowance forms that incorporate information about shop congestion as of
the moment a job arrives at the shop have been established. Further
benefits may be gained by moving from global information as of a job’s
arrival to expected global information in the near future. For example,
when a job arrives at the shop, one may know with certainty that the
second machine on its path will not be available for thirty more time
units, and by the time it is available, two more jobs currently being
processed on other machines will have joined the queue at that machine.
Such certain or highly probable knowledge about near-term movements of
the shop may provide valuable predictive information.

If a shop has computing power available, a further potentially
beneficial step may be to start with the shop status as of the job’s
arrival, run a small simulation procedure through that job’s simulated
completion, and base the job’s due date upon that simulated completion.
Since virtually all of the better-performing dispatching rules have
included job/ operation due dates in their selection prioritizations,
this procedure would likely be an iterative one, where initial job/

operation due dates are set and then refined with each iterative stage.

120



Another promising area of future research concerns the
development and evaluation of algorithms for preempting jobs. Gains in
completion accuracy may be offered by the ability of shop management to
interrupt the processing of a current operation in favor of another
job’s imminent operation. Virtually all existing simulation-based shop
scheduling research has assumed that preemption is not allowed.

The topic of job expediting holds great promise for future
research efforts, and the development and evaluation of job expediting
algorithms should be undertaken. This could entail static expediting
(for example, setting a high/ medium/ low priority to a job upon its
arrival at the shop, with the job keeping the same rating throughout its
stay in the shop) or dynamic expediting (changing the relative
priorities of jobs during their stay in the shop). Actually, the use of
dispatching rules to select jobs from queues is a mild form of dynamic
expediting. This is a practice that must be considered a reality in
actual shops (for example, receiving rush orders where the necessary due
date is earlier than a constraint-free allowance policy would dictate or
giving special treatment to a preferred customer) but has received
little attention in past research.

The topic of dynamic expediting points to a related area
of potential future research: the separate consideration of due
dates stated to the customer upon a job’s arrival at the shop and
expected completion dates that are updated as the jobs move through the
shop. In effect, many dispatching rules (such as SLACK) are based on
this theme, as they take both the job due date and the remaining work
required by the job into account. Potentially, improved scheduling

algorithms could be developed by calculating an updated expected
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completion date for each job (based on the defined allowance policy)
and basing the selection prioritization on the relationship between the
updated expected completion date and the original expected completion
date (that was stated to the customer).

Other potential areas of future research include extending this
analysis to dual (i.e., machine and labor) constrained shops, imposing
certain types of external allowance constraints (such as maximum mean
flowtimes) on the simulation-regression procedures, and examining the
effects of differential machine loading (for example, one machine may be
used twice as much as other machines). While numerous promising new
directions based on this current research undoubtedly exist, they must
be undertaken with a recognition of the needs and limitations of real-

world shops.

Summary

This current research has many direct implications for the
management of real-world shops. Meaningful improvements to existing
methods have been proposed and demonstrated. Implementation, however,
would require efforts such as initial shop-specific simulation analyses
and maintenance of global information necessary to optimal allowance
policies. Simulation methods such as employed in this research could
prove useful to shop management in areas other than job scheduling.

Numerous important areas for future research exist, based on the
results of this current research and other relatively recent studies.
Examples of such areas are the application of recommended improvements
to real-world shops, further research into global allowance policies,

operation preemption, and job expediting.
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CON

CR

ik
EDD

EFT,
i

EOPDD

FCFS

GEE

JIQ

JIS,
i

LPT

Appendix A
Glossary of Variables and Acronyms

The total allowance assigned to job i.

3 th : :
The total allowance assigned to the k operation of job
The actual completion time of job i.

An allowance policy that assigns a constant allowance to
each job.

The dispatching rule that selects from the queue the job
with the lowest Jjob based critical ratio (see page 16).

The due date assigned to job i.
. th : . :
The due date assigned to the k operation of job i.

The dispatching rule that selects from the queue the job
with earliest due date.

The early finish time of job i (see page 58).

The dispatching rule that selects from the queue the job
that has the earliest pending operation due date.

The total time a job spends in the shop (flow time).

The dispatching rule that selects from the queue the job
with the earliest arrival at the shop.

The global allowance policy recommended in this current
research with aggregate variables and coefficients based
the sixth cycle of an iterative simulation-regression
procedure.

The number of jobs in the queues of machines required by
job i as of its arrival at the shop.

The number of jobs in the shop as of the arrival of job i
at the shop.

The observed lateness of job i (see page 4).

The dispatching rule that selects from the queue the job
with the largest pending operation processing time.
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MAL

MINSLK

MSL

NOP

OPCR

OPNDD

OPSLK

OPSLK/P

o >

ik

PPW

RDM

SLACK

The mean absolute lateness penalty measure (see page 5).
The dispatching rule equivalent to SLACK.
The mean squared lateness penalty measure (see page 5).

The allowance policy that assigns an allowance to each job
that is a multiple of the number of operations in the job.

The dispatching rule that selects from the queue the job
that has the smallest pending operation critical ratio (see
page 17).

A dispatching rule that equivalent to EOPDD.

The dispatching rule that selects from the queue the job
that has the smallest pending operation slack (see page
16) .

The dispatching rule that selects from the queue the job
that has the smallest ratio of pending operation slack to
pending operation required processing time.

The actual processing time required by job i.

The processing time expected to be required by job i as of
its arrival at the shop.

The actual processing time required by the kth operation of
job i.

. . . th
The processing time expected to be required by the k
operation of job i as of its arrival at the shop.

The allowance policy that assigns a job allowance equal to
the total required processing time plus a constant times
the number of operations.

The time that job i arrives at the shop.

An allowance policy that assigns a random total allowance
to each job as of its arrival at the shop.

The global allowance policy recommended by Ragatz and
Mabert consisting of both aggregated and operation specific
variables and coefficients determined from a regression
analysis of the results of a single pilot simulation.

The dispatching rule that selects from the queue the job

with the smallest slack (time to due date less remaining
required processing time) .
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S/OPN

SPT

SQL

TPT

TWIQ,
.

TWISM,
i

TWK

VAR

WIQ1,
i

WIQ2,
i

WIQ3i

The dispatching rule that selects from the gueue the job
that has the smallest ratio of slack to number of remaining
operations.

The dispatching rule that selects from the queue the job
that has the smallest pending operation required processing
time.

The semi-quadratic lateness penalty measure (see page 5).
The total processing time expected to be required by job i.
The total expected required processing time of imminent
operations in the queues of machines required by job i as
of the arrival of job i at the shop.

The total expected required processing time of pending but
not imminent operations in the shop that require the

machines required by job i as of its arrival at the shop.

The allowance policy that assigns an allowance equal to a
multiple of the job’s expected total processing time.

The variance penalty measure (see page 5).
The actual amount of time job i spends waiting in queues.

The amount of time that job i is expected to spend waiting
in queues as of its arrival at the shop.

The total processing time of imminent operations in the
queue of the machine required by the first operation of job
i.

The total processing time of imminent operations in the
queue of the machine required by the second operation of
job i.

The total processing time of imminent operations in the

queue of the machine required by the third operation of job
i.
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Appendix B

Summary Flow Logic of Main Simulation Program

Initialize

Determine time of next critical event
(either job arrival or task completion);

| set T to that time
L .

job
arrival at
this T?

NO

!Input time to next arrival, statistics of arriving job:
compute global statistics, due dates, etc:; place
job into shop and update shop status matrices

L L 4

task
completion at
thia T?

At each empty NO
machine, select =—o
job from gueue

update shop
idiagnostic statistics

was it
final task
in job?2

Output job job in

statistics 301 - 1300
to disk | window?

Place job in queue
of next task’s
reqguired machine

all 1000 jobs
finished?
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Appendix B (continued)

Main Simulation Program Code
Global Allowance Policy, EDD Dispatching Rule

implicit integer (a-y)
jobmat (110, 65) is matrix showing 65 items of jobs in shop
Item 1: Job #
2: # tasks in job
3: current task #
4-9: arrival time of job at task 1, 2, etc.
10-15: machine required by task 1, 2, etc.
16-21: expected processing time of task 1, 2, etc.
22-27: actual processing time of task 1, 2, etc.
28-33: due date of task 1, 2, etc.
34-39: actual completion date of task 1, 2, etc.
40-45: # jobs in queue of machine required
by task 1, 2, etc. as of job arrival
at shop
46~51: total expected processing time of tasks in
queue at machine required by task 1, 2, etc.
as of job arrival at shop
52-57: # of tasks elsewhere in shop requiring machine
required by task 1, 2, etc. as of job arrival
at shop
58-63: total expected processing time of tasks elsewhere
in shop requiring machine required by task 1,
2, etc. as of job arrival at shop
64: # of tasks in shop as of job arrival at shop
65: total expected processing time of tasks in shop
as of job arrival at shop

macmat (8,80) is matrix of queues of machines 1-8
Item 1: # jobs at machine
2: slot (column) containing jobmat row number of
current job in progress at machine
3-80: jobmat row numbers of jobs in queue

jobst.* is file of data on the *th jobstream (21 items per job)
Item 1: job #
2: time to next job arrival
3: # of tasks in this job
4-9: machine required by task 1, 2, etc.
10-15: expected processing time of task 1, 2, etc.
16-21: actual processing time of task 1, 2, etc.
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simres.a is output file of 65 items on jobs 301-1300

pload.d is input file of snapshot of shop (preload)

zcoeff.d is input file of coefficients to use in allowance equation

reginp.a is output file containing items pertinent to regression
analysis of output

O0000000

dimension jobmat (110,65), macmat (8,80), numsum(8), ptsum(8)
dimension twka(8), twkqg(8), maxg(8),zcoef(8),reg(1ll)
open (unit=9, file= ‘pload.d’)
open (unit=10, file= ' jobst.0’)
open (unit=11, file= ’'simres.a’)
open (unit=12,file=' zcoeff.d’)
open (unit=13, file='reginp.a’)
c read allowance equation coefficients
do 864 i=1,8
read(12,1114) zcoef (i)
864 continue
1114 format (£10.6)

(]
c
c totfin: # of jobs in 301-1300 window finished
c tbeg: time that first job in window finishes
c maxj: maximum # of jobs in shop
c jbsm, msum, empsum: summary variables to be used in further
c calculations
c
(&}

totfin=0

tbeg=0

maxj=0

jbsm=0

msum=0

empsum=0

1111 format (lx,’max queue(’,il,’) was ’',i3)
1112 format(/’'max shop load was ‘,i3,’ jobs’)
1113 format(/4i7)
900 format (i4)
1000 format(i5)
c preload macmat, jobmat, etc.
do 50 i=1,8
do 51 j=1,80
read(9,1000) macmat (i, j)
51 continue
50 continue
do 52 i=1,110
do 53 j=1,65
read(9,1000) jobmat (i, j)

53 continue

52 continue
read(9,1000) t
do 54 i=1,8

maxqg(i)=0
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54 read(9,1000) numsum (i)
do 55 i=1,8
55 read(9,1000) ptsum(i)
¢ read job # of first job in stream and time to next arrival
read(10,1000) jobnum
read (10, 900) tnj
njarr=t+tnj
e find time of next task completion
999 ntskc=99999999
do 100 i=1,8
%f ((macmat (i,1) .eq.0) .or. (macmat (i,2) .eq.0)) go to 100
Jrow = macmat (i, macmat (i,2))
curtsk = jobmat (jrow, 3)
if (jobmat (jrow,curtsk+33).1lt.ntskc) ntskc=jobmat (jrow,curtsk+33}
100 continue
minev=ntskc
(o! find time of next critical event: min(next arr, next task comp)
if (njarr.lt.minev) minev=njarr
tdelt=minev-t
c if not in 301-1300 window, don’t augment summary statistics
if (tbeg.eq.0) go to 103
snap=0
macbus=0
do 629 j3j=1,8
if (macmat (jj, 1) .gt.maxqg(jj)) maxqg(jj)=macmat (jj, 1)
if (macmat (j3j, 1) .gt.0) macbus=macbus+l
629 snap=snap+macmat (jj, 1)
if (snap.eq.0) empsum=empsum+tdelt
if (snap.gt.maxj) maxj=snap
msum=msum+tdelt *macbus
jbsm=jbsm+tdelt *snap
c update t; if no task comp at this time, branch to job arrival
section
103 t=minev
if (ntskc.gt.t) go to 760
c next 20 lines of code adjusts shop for any tasks ending at this time
do 750 i=1,8
if ((macmat(i,l).eq.0).or. (macmat(i,2).eq.0)) go to 750
jrow=macmat (i, macmat (i, 2)
curtsk=jobmat (jrow, 3)
if (jobmat (jrow,curtsk+33).gt.t) go to 750
macmat (i, 1) =macmat (i, 1) -1
numsum (i) =numsum (i) -1
ptsum(i)=ptsum(i)-jobmat (jrow, curtsk+15)
macmat (i, macmat (i, 2))=0
macmat (i, 2)=0
if (jobmat (jrow, 2) .eq.curtsk) go to 670
ntask=curtsk+l
jobmat (jrow, 3)=ntask
jobmat (jrow, ntask+3)=t
nmach=jobmat (jrow, ntask+9)
macmat (nmach, 1) =macmat (nmach, 1) +1
maccol=2
630 maccol=maccol+l
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1100

1020

1021

35719
€

730
101

750
c

760
c

210

80

81

82

if completed job is not in window,

zero slots vacated by completed job:
to summary output and end

if (macmat (nmach,maccol).gt.0) go to 630
macmat (nmach,maccol) =jrow
go to 750

skip output section

if ((jobmat (jrow,1) .1le.300) .or. (jobmat (jrow,1) .gt.1300)) go to 730

if (tbeg.eq.0) tbeg=t

next 16 lines outputs data on finished jobs to files

totfin=totfin+l
write(11,1100) (jobmat(jrow,ii), ii=1,65)

format (i4,2i2,6i6,6i2,12i3,12i6,6i3,6i5,6i4,6i5,1i4,1i5)

do 1020 kk=1,8
reg(kk)=0

reg(l)=jobmat (jrow, jobmat (jrow, 2) +33) -jobmat (jrow, 4)

do 1021 kk=1, jobmat (jrow, 2)
reg(2)=reg(2)+jobmat (jrow, kk+15)
reg(3)=reg(3)+jobmat (jrow, kk+45)

reg(4)=reg(4)+jobmat (jrow, kk+57) -jobmat (jrow, kk+45)

reg(5)=jobmat (jrow, 65) *jobmat (jrow, 2)
reg(6)=reg(2) *reg(2)

reg(7)=reg(3) *reg(3)

reg(8)=reg(4) *reg(4)

write(13,3579) (reg(kk),kk=1,8)
format (8i7)

do 101 ii=1,65

jobmat (jrow, ii)=0
if(totfin.eq.1000) go to 2222
continue

if no job arrival at this time, skip to select section

if (njarr.gt.t) go to 770

next 88 lines of code read new arrival characteristics, place job
into shop, and update shop status

jrow=0

jrow=jrow+l

if (jobmat (jrow,1) .gt.0) go to 210
jobmat (jrow, 1)=jobnum
read(10,900) jobmat (jrow,2)
nop=jobmat (jrow,2)

do 80 i=1, nop

read (10, 900) jobmat (jrow, i+9)
do 81 i=1,nop

read (10, 900) jobmat (jrow, i+15)
do 82 i=1,nop

jobmat (jrow, i+39)=macmat (jobmat (jrow, i+9),1)
read(10,900) jobmat (jrow, i+21)
jobmat (jrow, 3)=1

opsum=0

twksum=0

read(10,1000) jobnum

read (10,1000) tnj

njarr=t+tnj

do 90 macrow=1,8

numq=0
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go



twka (macrow) =0
twkg(macrow)=0
if (macmat (macrow, 1) .eq.0) go to 89
maccol=2
111 maccol=maccol+l
jinbin=macmat (macrow,maccol)
if (jinbin.eq.0) go to 111
numg=numg+1
tem=jobmat (jinbin, 3)
twkg(macrow)=twkg(macrow) +jobmat (jinbin, tem+15)
if (numg.1lt.macmat (macrow,1)} go to 111
if (macmat (macrow,2) .eq.0) go to 89
jinbin=macmat (macrow, macmat (macrow, 2))
tem=jobmat (jinbin, 3)
if (jobmat (jinbin,tem+33) .eq.0) go to 117
twka (macrow)=t-jobmat (jinbin, tem+33) +jobmat (jinbin, tem+21)
117 temp=jobmat (jinbin, tem+15)
if (twka (macrow) .gt.temp) twka (macrow)=temp
twkqg(macrow) =twkqg(macrow) -twka (macrow)

89 opsum=opsum+numsum (macrow)
twksum=twksum+ptsum(macrow) -twka (macrow)
90 continue

do 91 i=1,nop
tem=jobmat (jrow, i+9)
jobmat (jrow, i+45) =twkg(tem)
jobmat (jrow, i+51) =numsum(tem)
91 jobmat (jrow, i+57)=ptsum (tem) -twka (tem)
do 92 i=1,nop
tem=jobmat (jrow,i+9)
numsum (tem)=numsum(tem) +1
ptsum(tem)=ptsum(tem)+jobmat (jrow,i+15)
92 continue
jobmat (jrow, 64) =opsum
jobmat (jrow, 65) =twksum

C *ARKA KA R A AR AR A AR A KA A AR KA AR A AR ARk Ak k k&
c * *
c = due date setting goes here b
c * *

tpt=0

twig=0

twism=0

zt=t

ztwis=jobmat (jrow, 65)

do 94 i=1, nop

ztwisi=ztwis*i

tpt=tpt+jobmat (jrow,i+15)
twig=twiqg+jobmat (jrow, i+45)
twism=twism+jobmat (jrow, i+57)-jobmat (jrow, i+45)
ztpt=tpt

ztwig=twiqg

ztwism=twism

z=zt+zcoef (1) +zcoef (2) *ztpt+zcoef (6) *ztpt*ztpt
z=z+zcoef (3) *ztwig+zcoef (7) *ztwig*ztwiq
z=z+zcoef (4) *ztwism+zcoef (8) *ztwism*ztwism
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jobmat (jrow, i+27)=z+zcoef (5) *ztwisi+.5
if (Jjobmat (jrow,i+27).1t. (t+tpt)) jobmat (jrow,i+27)=tpt+t
94 continue
c * *
c J % %k ok ok sk sk sk J ok sk sk sk gk ok sk ok sk ks sk ke ok ok ok ok ke ok ok k-
jobmat (jrow, 4)=t
macrow=jobmat (jrow,10)
macmat (macrow, 1) =macmat (macrow, 1) +1
maccol=2
112 maccol=maccol+l
if (macmat (macrow,maccol) .gt.0) go to 112
macmat (macrow, maccol)=jrow

c poll machines; where unoccupied, select next job from queue and
intiate

c % %k % Jk % dk %k dk % dk %k sk %k dk dk dk ok Kk ok ok ok %k %k ok %k dk ok Kk dk ok Kk ok ok Kk ok k k

(& select from queue goes here *

e ™ EDD *

¢ N *

770 do 790 i=1,8

if ((macmat (i,2) .gt.0) .or. (macmat (i, 1) .eq.0)) go to 790
tem=99999999
maccol=2
numg=0
795 maccol=maccol+l
if (numg.ge.macmat (i, 1)) go to 789
if (macmat (i, maccol) .eq.0) go to 795
numg=numg+1l
jrow=macmat (i, maccol)
numtsk=jobmat (jrow, 2)
if(jobmat (jrow, numtsk+27) .ge.tem) go to 795
tem=jobmat (jrow, numtsk+27)
macmat (i, 2)=maccol
go to 795
789 newjob=macmat (i, macmat (i,2))
curtsk=jobmat (newjob, 3)
jobmat (newjob, curtsk+33)=t+jobmat (newjob, curtsk+21)
790 continue
c % %k % %k %k ok ok sk %k sk Kk ok %k ok Kk Kk dk ok Kk sk %k %k sk %k %k ok %k dk ok Kk %k Kk %k ok k k ok
go to 999
2222 do 618 i=1,8
618 print 1111, i, maxqg(i)
timexp=t-tbeg
print 1112, maxj
print 1113, timexp, msum, jbsm, Jjobnum
stop
end
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Appendix C

Fortran Code for Uniform
Random Number Generator

subroutine rndn(ix,iy,yfl)

ml = 65539
m2 = 4101
m3 = 261

iy = ix*m3
m4 = ml

if (iy.1t.0) m4

R

iy = iy*m4

if (iy.1t.0) iy = iy + 2147483647 + 1

yfl = iy

yfl = yf1*.4656613e-9
ix = iy

return

Note: ix is integer seed.
yfl is uniform random number 2 0 but < 1.
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1. Mean Lateness 27. OPSLK
2. Job Stream 2 28. OPCR
3. Job Stream 3 29. Global*High
4. Job Stream 4 30 Global*Unknown
5. Job Stream 5 31. Global*SLACK
6. Job Stream 6 32. Global*CR
7. Job Stream 7 33. Global*EOPDD
8. Job Stream 8 34. Global*OPSLK
9. Job Stream 9 35. Global*OPCR
10. Job Stream 10 36. High*Unknown
11. Job Stream 11 37. High*SLACK
12. Job Stream 12 38. High*CR
13. Job Stream 13 39. High*EOPDD
14. Job Stream 14 40. High*OPSLK
15. Job Stream 15 41. High*OPCR
16. Job Stream 16 42. Unknown*SLACK
17. Job Stream 17 43. Unknown*CR
18. Job Stream 18 44, Unknown*EOPDD
19. Job Stream 19 45. Unknown*OPSLK
20 Job Stream 20 46. Unknown*OPCR
21 Global 47. Global*High*Unknown
22. High (90% Utilization)
23. Unknown (Actual
Processing Times)
24. SLACK
25. CR
26. EOPDD

1

Independent Variables'®

Appendix D

Presented to

Phase 3 Evaluatory Stepwise
Multiple Regression Procedure

All variables except Mean Lateness are dummy variables.
Base case is EDD, Local, 75% Utilization, Job Stream 1,
and Known Actual Processing Times.
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Appendix E

Additional Tables
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Table E.1

Penalty Comparisons Between Cycles Under EDD
Global Allowance Policy Forms
(90% Utilization, Known Actual Processing Times)

Median Median
Cycle VAR Cycle MSL
1 1149 2 3 4 S [ 1 8 9 10 1 1149 2 3 4
2 894 3405 8 7 8 9 10 2 904 ALY
3 849 4 5 6 1 8 9 10 3 880 4
4 806 O I O 4 845
5 786 e 18 810 5 795
6 750 6 753
7 744 7 755
8 724 8 759
9 695 9 703
10 793 10 757
Median Median
Cycle MAL Cycle _SQL
1 24.5 2 3 4 5 6 71 8 9 10 1 542 3
2 21.5 3 4 5 6 7 8 9 10 2 487 3 4
3 20 .7 4 S 6 1 8 9 10 3 366
4 20.3 6 7 8 9 10 4 462 3
5 20.2 L 5 472
6 19.4 6 333
7 19.4 7 410
8 19.2 8 435
9 18.8 9 362
10 19.6 2 10 425
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Penalty Comparisons Between Cycles Under SLACK

(90% Utilization,

Median
VAR

1006
761
715
684
630
625
633
617
590
591

Median
MAL
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19.
19.
19.
1,9/
19
19.
18.
19.
19.
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Table E.2

Global Allowance Policy Forms
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°

‘2’
(e]
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oW WN K

Median
MSL

1079
s
717
706
674
656
672
656
632
675

Median
__SQL

352
344
371
401
414
404
437
411
414
463
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Table E.3

Penalty Comparisons Between Cycles Under CR
Global Allowance Policy Forms
(90% Utilization, Known Actual Processing Times)

Median Median

Cvcle VAR Cycle MSL
1 752 4 5 6 778 9 10 1 792
2 555 4q 5 6 72 8 9 10 2 603
3 462 4 5 6 7 8 9 10 3 483
4 412 ARG 4 414
5 387 Tee 5 387
6 392 78 6 394
7 385 7 398
8 363 8 366
9 371 9 379
10 374 10 378
Median Median

Cycle MAL Cycle _SQL
1 17'9 4 5 6 7 8 9 10 1 305
2 15.9 4 5 6 7 8 9 10 2 212
3 14'4 4 5 6 17 8 9 10 3 207
4 13.8 5 6 7 L] 9 10 4 221
5 13.4 7 ° 5 200
6 13.5 e 6 2117
7 13.3 7 212
8 13.4 8 223
9 13.2 9 236
10 13.4 ! 2 10 242
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Penalty Comparisons Between Cycles Under EOPDD

(90% Utilization, Known Actual Processing Times)

Median

VAR

1001
750
616
556
509
484
489
497
486
497

Median

MAL

24,
20.
17.
16.
16.
16.
16.
16.
A5i
18S.
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Table E.4

Global Allowance Policy Forms
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Median
MSL

1158
851
648
586
521
512
504
513
490
507

Median
SQL

308
243
227
203
215
191
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24,5
213
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Penalty Comparisons Between Cycles Under OPSLK

(90% Utilization, Known Actual Processing Times)

Median
VAR

1016
732
576
522
544
502
523
524
587
514

Median

24.
21.
7'
16.
16.
16.
16.
16.
16.
16.
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Table E.5

Global Allowance Policy Forms
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Median
MSL

1138
858
596
537
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507
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396
236
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216
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Table E.6

Penalty Comparisons Between Cycles Under OPCR
Global Allowance Policy Forms
(90% Utilization, Known Actual Processing Times)

Median

Median

Cvcle VAR Cycle MSL
1 897 4 5 6 7 8 9 10 1 952
2 727 4 5 6 7 8 9 10 2 741
3 599 4 5 6 7 8 9 10 3 612
4 549 SIE Tl 8= 9l 10 4 554
5 510 €7 8B 5 514
6 480 20110 6 486
7 471 7 474
8 488 N 8 489
9 463 9 467
10 466 10 467
Median Median

Cycle _MAL Cycle _SQL
1 19.8 4 5 6 7 8 9 10 1 314
2 15704 R 2 291
3 16.2 Al SEsER e LS 3 284
4 15.6 DO GO 4 249
5 14.9 U 5 235
6 14.7 8 9 10 6 224
7 14.8 . 7 225
8 14.6 8 i
9 14.4 9 209
10 14.5 10 C2 )

LR T )

& o o o o

& & o o o
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