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ABSTRACT 

The Hormonal Regulation of the Claudin Genes in the Ovary 

by  

Sean Gadson 
 

The ovary is a dynamic organ that responds to many hormonal signals. When these 

hormonal signals are disrupted, ovarian dysfunction can occur. One such example is Polycystic 

Ovarian Syndrome (PCOS). PCOS patients suffer from high levels of testosterone. Excess 

testosterone may misregulate genes in the ovary and disrupt ovarian function. The Claudin 

(Cldn) 3 and Cldn11 genes have been shown to be regulated by androgens in the testis, while 

studies in ovarian cancer cells suggests a coregulatory mechanism for the expressions of Cldn3 

and Cldn4 in the ovary. The objective of this study was to characterize the hormonal regulation 

of Claudin gene expression in the ovary. The ovaries of estrogen receptor alpha knockout 

(αERKO) mice have high serum testosterone concentrations, therefore Claudin expression was 

measured in these ovaries. Experiments were conducted using Quantitative Real Time PCR 

(QRT-PCR) to monitor the expression of Cldn3, 4, and 11 in wild-type (WT) and αERKO mouse 

ovaries. These experiments indicated that Cldn3, 4, and 11 were more highly expressed in 

αERKO mice than their wild-type counterparts (p < 0.05, n  =  5). Further experiments 

characterized Claudin expression in the ovaries of mice treated with Dihydrotestosterone (DHT) 

for 90 days which serve as a common mouse model of PCOS. DHT treated mice were found to 

express Cldn3 and Cldn11 significantly higher than control mice. Cldn4 expression decreased in 

DHT treated mice when compared to the controls (p < 0.05, n  =  4 for control and DHT groups). 

These findings indicated that Cldn3 and Cldn11 are upregulated by testosterone in the ovary. 
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The data also indicates Cldn4 is regulated via different mechanisms than the other Claudin 

genes in the mouse ovary.  DHT reduces expression of Cldn4, while increases are observed in 

the absence of ERα. Claudin expression was also evaluated in the ovaries of mice that were 

treated with testosterone propionate (TP) for three or six days. No expression of Cldn3 or 

Cldn11 was found, however Cldn4 steadily increased in conjunction with the duration of the 

testosterone propionate treatment. Western blot analysis for the presence of CLDN3 in the 

ovaries of control and TP treated mice yielded no detectable signal for either group.  Studies 

done in cell lines found that CLDN4 expression decreased when BG-1 ovarian epithelial cells 

were treated with testosterone. These findings provide a first consider the regulation of the 

Claudin genes in the ovary, while providing a basis for future research to explore how they may 

contribute to PCOS. 

Keywords: PCOS, Claudin, Ovary, Cldn3, Cldn4, Expression. 
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     CHAPTER I 

INTRODUCTION (AND LITERATURE REVIEW) 

Reproduction is the process where offspring are produced and is necessary for 

the survival of any species. Humans, like all mammals, reproduce sexually. This sexual 

reproduction requires genetic input from both a male and a female. These contributions 

are provided via specialized sex cells called gametes. The male gametes are sperm, while 

the female gametes are oocytes [1]. The processes by which these gametes are 

produced is tightly regulated since the quality of the gametes used in reproduction 

directly affects the development of the resulting offspring. Males produce their gametes 

by a process called spermatogenesis while females produce oocytes via oogenesis [1] 

[2]. The quality control of spermatogenesis and oogenesis are both extremely 

important. This calls for an environment that is tightly controlled, and one that receives 

and provides the various hormonal signals that drive these processes forward. The 

testes provide this environment in the male reproductive system. The ovary is the organ 

that provides this highly-optimized environment in the female reproductive system. 

The Ovary  

 While signals from several organs in the body affect oogenesis, the direct care 

and maturation of a developing oocyte takes place in the female ovary [3], where 

certain gametes are selected, develop to maturity, and are eventually released into the 

fallopian tubes for fertilization. Given its role in an important process in biology, 

research has focused on how a healthy ovary functions, and how the ovary responds to 

various diseases and conditions which are not optimal to its normal activity. To provide 
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a solid knowledge base with which to explore ovarian diseases, we first turn to 

understand the healthy ovary. We start with the functional unit of the ovary known as 

the ovarian follicle, then transition into hormonal signals and their role in follicular 

development. Finally, we explore Polycystic Ovarian Syndrome, a model used to study 

the disease, and some genes of interest and how they relate to PCOS. 

The Ovarian Follicle 

As the oocyte within the ovary develops into maturity, hormonal signals and 

nutrients to be successful. The ovarian follicle is the structure that fulfills these 

requirements. The follicle itself is composed of three main cell types: the theca cells, 

granulosa cells, and the developing oocyte [4]. The follicle adopts a roughly spherical 

shape. The outermost cellular layer is composed of theca cells. While a main function of 

the theca cells is the production of androgens from cholesterol, these cells also have a 

number of other functions including the production of LH receptors and Vascular 

Endothelial Growth Factor (VEGF)  [4]. The nurse cells of the ovarian follicle that come 

into direct contact with the oocyte are called granulosa cells. These cells express the 

enzyme aromatase which catalyzes the conversion of testosterone into estradiol [5]. In 

mammals, as oogenesis progresses, the follicle and the developing egg progress through 

several stages and grow. This development of the ovarian follicle is called 

folliculogenesis [6] and is necessary to produce a mature oocyte.  After the oocyte has 

been ovulated, the granulosa cells of the follicle luteinize and become the corpus 

luteum, which provides the progesterone required for the successful implantation of the 

blastocyst and the establishment of a healthy pregnancy [1]. If no pregnancy is 
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established, the corpus luteum regresses and is reabsorbed into the ovary [7]. This 

event marks the end of one cycle of folliculogenesis. At any given time, an ovary will 

have multiple follicles at different stages of folliculogenesis. 

Hormonal Signaling 

The hypothalamic-pituitary-gonadal (HPG) axis regulates the normal function of 

a healthy ovary. This stepwise cascade ultimately provides the ovaries with the 

hormonal signals required to successfully complete folliculogenesis [1]. At puberty, the 

hypothalamus of the brain releases pulses of Gonadotropin Releasing Hormone (GnRH), 

a peptide hormone, directly to the pituitary. This GnRH signal acts on gonadotrope cells 

in the pituitary gland to secrete both Follicle Stimulating Hormone (FSH) and Luteinizing 

Hormone (LH) into the bloodstream [8]. During the early stages of folliculogenesis, FSH 

stimulates the ovarian follicle to grow. As the theca and granulosa cells propagate, low 

concentrations of LH act on the thecal cells which convert cholesterol into testosterone. 

During these same stages, FSH signals to the granulosa cells of the follicle, causing them 

to convert testosterone into estradiol using the enzyme aromatase [9]. These initial low 

levels of estradiol work through a negative feedback mechanism on the pituitary gland 

thereby suppressing the amount of LH that is released [1]. As follicular development 

progresses and the follicle grows, the amount of estradiol being produced increases due 

to higher numbers of granulosa cells expressing aromatase. When the follicle is 

prepared to ovulate the developed oocyte, estradiol production peaks. At this higher 

concentration, estradiol works as a positive feedback signal that results in more 

frequent GnRH pulses and a spike in the production and release of LH. This LH surge 
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pushes the follicle from the follicular stage of folliculogenesis into the luteal phase. 

During this phase, the mature oocyte is ovulated, and the granulosa cells of the 

remaining follicle becomes a structure known as the corpus luteum [8]. The corpus 

luteum produces the steroid hormone progesterone, which is essential for maintenance 

of pregnancy through actions on the uterus [1]. Progesterone also slows the GnRH 

pulsing of the hypothalamus, thereby reducing the  levels of FSH and LH back to a 

baseline from which the next cycle can begin [10]. The corpus luteum also produces 

estrogen which is important in the regrowth of uterine endometrium [11]. Figure 1 

highlights just a few of the hormones and feedback pathways of the HPG-axis. 

 

Figure 1: Hormonal Control of Positive and Negative Feedback on the HPG-Axis . 
The hypothalamus releases pulses of GnRH that act on the pituitary gland. The pituitary 
releases LH and FSH which acts on ovarian follicles that produce estradiol in response. 
Early stage preantral follicles release low levels of estradiol which inhibits LH/FSH 
secretion. Late stage preovulatory follicles release high levels of estradiol. This increases 
the frequency of GnRH pulses from the hypothalamus and causes a large amount of LH 
to be released which triggers ovulation of the mature oocyte.   
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Steroid Hormone Receptors 

 Sex steroid hormones and their receptors are fundamental to the function and 

maintenance of the reproductive systems of both males and females in a wide number 

of species. The receptors or hormones can work through a number of mechanisms that 

can depend on the presence of their ligand, or other non-genomic pathways that don’t 

require the direct ligand-receptor interaction [12]. Direct signaling by steroid receptors 

occurs when the ligand bound receptor binds directly to a DNA sequence in order to 

affect transcription of one or multiple genes [13]. Ligand bound steroid receptors can 

also bind to and activate other transcription factors which then bind directly to DNA to 

alter gene transcription. Steroid receptor signaling can also initiate a signal cascade 

rather than causing the receptor to directly translocate into the nucleus [14]. One 

example would be an estrogen activated protein kinase signaling cascades[15]. Finally, 

steroid receptors can act as second messengers in signal cascades that can be activated 

by modifications such as phosphorylation [16]. Estrogen receptor alpha (ERα, officially 

Esr1), estrogen receptor beta (ERβ, officially Esr2) and the androgen receptor (Ar) are 

just a few of the receptors for steroid hormones that have been characterized in the 

ovary. 

Estrogen receptor alpha binds estrogenic signaling hormones, the most widely 

recognized being estradiol. While ERα is important for sexual reproduction and the 

development of secondary sex characteristics, the receptor can affect a wide number of 

other physiological processes as well. Tissue differentiation [17], cell proliferation [18], 

and even the persistence of breast cancer have all been found to be affected by or 
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dependent upon signaling through ERα [19]. ERα signaling in part regulates the activity 

of the hypothalamic-pituitary-gonadal axis that controls the human menstrual cycle and 

rodent estrous cycle. Varying levels of estradiol act to communicate the status of a 

developing follicle to the hypothalamus, which in turn initiates ovulation when levels of 

estradiol pass a certain threshold [1]. Since estradiol can work through both positive and 

negative feedback mechanisms to affect the HPG axis, organisms that have their 

signaling via ERα disrupted develop a wide number of abnormal phenotypes. By using 

the Cre-Lox recombinase system of gene editing, mice have been generated that 

possess an allele of ERα that lacks the DNA-binding domain [20]. This renders the 

resulting truncated protein non-functional. This does not however, render heterozygous 

mice infertile. When heterozygotes are bred, homozygous individuals can be born that 

can mature to adulthood, but are sterile due to the lack of functional ERα. In addition to 

being sterile, homozygous estrogen receptor alpha knockout mice (αERKO) have large 

ovaries that have cystic follicles and increased levels of serum testosterone [21]. These 

females also have elevated levels of estradiol and LH [22] since ERα can no longer inhibit 

the production of LH in the pituitary gland. The elevated levels of LH in the bloodstream 

of female αERKO mice is considered to be the main cause of their ovarian phenotype 

[23]; a similar ovarian phenotype was observed in an elevated LH mouse model [24].  

  ERα and ERβ share a high degree of structural similarity, and as a result can bind 

to the same ligands and DNA sequences [25]. In tissues where both receptors are 

expressed, ERβ has been found to alter the transcriptional activity of ERα in both a 

permissive and an inhibitory manner. ERβ can act as a competitive inhibitor of ERα by 
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binding to target DNA sequences and sterically blocking ERα from binding [26]. These 

two receptors can also form heterodimers with one another before translocating into 

the nucleus of a cell and activating gene transcription [27]. ERβ is the predominant ER 

gene in the ovaries of mammals and is found almost exclusively in the granulosa cells 

[28],[29]. Mice lacking functional ERβ (βERKO) do not show ovarian gross morphologies 

like those lacking ERα [30]. In addition, these βERKO mice do not show significantly 

altered levels of hormones, including testosterone and LH. However, βERKO mice have 

been shown to form fewer corpora lutea and preovulatory follicles than wild-type mice 

which makes them sub-fertile[29],[31]. Mice lacking functional ERα and ERβ (αβERKO) 

share some characteristics with those of αERKO mice such as hyperandrogenism and 

granulosa cell deficient antral ovarian follicles [25]. The double knockout mice do 

develop some novel ovarian phenotypes. One characteristic of the double knockout 

mice is the presence of Sertoli-like cells that develop post-pubertally [32],[21]. Sertoli 

cells are normally found in male testis and facilitate the progression of immature 

spermatids through spermatogenesis [33]. Also, αβERKO mice do not develop 

preovulatory follicles [21]. The extent of the irregularities seen in any of the estrogen 

receptor knockout models highlights the importance of estrogenic signaling in the 

development and function of the ovary. 

The androgen receptor (AR) binds to androgenic steroid hormones such as 

testosterone and dihydrotestosterone (DHT) [34]. While AR signaling is required for the  

development of masculine secondary sex characteristics, and reproduction in males; it is 

less commonly known that androgenic signaling also pays a role in female reproduction 
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as well [1]. AR protein in rodents has been found in the granulosa cells and theca cells of 

the ovarian follicle, as well as other cell types outside of the follicle such as the stroma 

and epithelium [35]. Female mice lacking AR are impaired in their ability to ovulate 

normally developed follicles as indicated by a substantially lower number corpora lutea 

in their ovaries [36]. This observation highlights the role of androgens in ovarian 

function as being more than just precursors for the synthesis of estrogenic hormones.  

As these models show, steroid hormones are essential to the maintenance of a 

healthy reproductive phenotype.  Many common fertility issues are treated with 

hormone therapies, and reproductive diseases often have an etiology rooted in 

hormonal imbalances. Therefore, by studying sex hormones as they relate to 

reproductive diseases, it is possible to identify a cause of the disease as well as the best 

avenues of treatment. Endocrinologists and reproductive biologists are actively studying 

the hormonal imbalances associated with the leading cause of infertility in women, 

Polycystic Ovarian Syndrome. 

Introduction to Polycystic Ovarian Syndrome 

Polycystic ovarian syndrome (PCOS) is a disease affecting 5-10% of women 

entering their reproductive ages [37]. PCOS can manifest as several symptoms that can 

vary from one patient to another. In order to minimize incorrectly diagnosing the 

disease and standardizing diagnostic criteria for PCOS, the Rotterdam European Society 

for Human Reproduction proposed the Rotterdam Criteria 2003 [38]. These criteria 

considered the most consistent symptoms of PCOS. The Rotterdam criteria defines PCOS 

as the development of two of the following three symptoms: (1) oligo-anovulation, (2) 
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polycystic ovaries, and (3) biochemical or clinical hyperandrogenism [39]. Oligovulation 

in humans is defined as menstrual cycles lasting longer than 35 days or occurring fewer 

than eight times a year [38].  The presence of polycystic ovaries is routinely evaluated 

via ultrasound, although the relative size and number of follicles that must be present to 

diagnose a woman with polycystic ovaries is under debate [40]. Typically, the first sign 

that a woman may have high circulating testosterone is hirsutism, the development of 

coarse hairs that grow in a male pattern on the body [41]. Other signs of excess serum 

androgens include obesity and clitoromegaly [40]. PCOS has also been attributed to the 

onset of other detrimental health conditions such as type II diabetes [37]. The 

hyperandrogenism that PCOS patients experience exposes the ovaries to more 

testosterone than is typically present in the ovary. Normally, testosterone in the ovary is 

converted into estradiol by the enzyme aromatase for use as a steroid hormone 

signaling molecule [42]. The excess testosterone in PCOS acts as an inappropriate 

signaling hormone that can bind the AR. This may upregulate the expression of genes 

that are normally silenced in ovarian tissue and thereby alter normal ovarian function, 

contributing to the symptoms that are characteristic of this disease. 

There are many physiological effects of PCOS besides the symptoms that are 

used in its diagnosis. While these other symptoms are not ubiquitous in all PCOS 

afflicted women, they largely impact the lives of PCOS patients and make it difficult to 

maintain a healthy lifestyle. For instance, the infertility brought on by PCOS is often the 

first reason that a woman will seek medical care. To overcome this infertility, many 

people turn to hormonal therapies or in vitro fertilization (IVF). While women can find 
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success in restoring fertility with these methods, they can also be financially and 

emotionally draining given that it may require multiple attempts before a pregnancy is 

successfully established. Fifty percent of women with PCOS are either obese or 

overweight [43]. Unhealthy weight gain can adversely affect menstrual cycling which 

makes it more difficult to become pregnant [44]. The problem becomes two-fold when 

the difficulties of having children while overweight are compounded with an altered 

hormonal milieu brought on by PCOS. This is why healthy weight management practices 

are often effective in alleviating some PCOS symptoms [40]. 

PCOS has also been associated with several psychological disorders. Depression 

and anxiety have both been shown to be more prevalent in women with PCOS [45]. The 

exact etiology of these disorders is still debated, the persistence of these disorders can 

be exacerbated by the mental strain that infertility, hirsutism, issues with sense of self, 

and obesity that women with PCOS may face [40]. Prior studies have also associated 

specific treatments of bipolar disorder with the development of PCOS-like symptoms. 

Valporate™ is a common drug used as a treatment for bipolar disorder. It has been 

associated with hyperandrogenism, weight gain, polycystic ovaries, and irregular 

menstrual cycling [40]. Long term studies measuring the persistence of depression in 

PCOS afflicted women found a consistently high rate of depression over the two year 

period [46]. The relationship between PCOS and mental health disorders is complex with 

more clinical manifestations directly feeding into the psychological problems. To ensure 

the best quality of life possible for PCOS afflicted women, it is necessary to study, and 
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eventually be able to alleviate both the physiological and psychological complications 

associated with PCOS.  

Dihydrotestosterone Treatment as a PCOS Model 

Studying the etiology of this disease creates a need for a reliable animal model 

that can closely replicate the symptoms of PCOS. Mice are a common model used to 

study PCOS due to their stable genetic background, ease of maintenance, short 

reproductive cycle, feasibility of generating genetic mutations, and affordability [37]. 

PCOS-like phenotypes have been produced in mice by a number of methods including 

postnatal treatment with dihydrotestosterone (DHT). DHT is a form of testosterone that 

utilizes the same classic androgenic signaling mechanisms [47], but cannot be converted 

into estradiol by the enzyme aromatase. Given this property, it is possible to separate 

androgenic and estrogenic effects on gene expression experimentally. Treating 

prepubertal female mice with 10 mg of DHT over 90 days via subcutaneous implants has 

been shown to produce phenotypes that mimic PCOS symptoms. These include irregular 

estrous cycling, cystic ovaries, and obesity [48]. PCOS-like phenotypes have also been 

produced in mice given a lower dosage of daily DHT.  Metabolic disorders and ovarian 

morphologies resembling those of PCOS women can be induced by treating prepubertal 

mice with DHT doses as low as 3 mg over 90 days [49]. By inducing these phenotypes by 

treating mice with DHT, we can study how PCOS symptoms develop in a mouse model. 

Tight Junctions and Claudin Proteins 

 Tight Junctions (TJ) are large multi-protein complexes found on the plasma 

membrane that adheres neighboring cells together. These junctions have a number of 



12 

 

functions including the adherence of neighboring cells, the maintenance of cell polarity, 

control of paracelluar ion flow, and the establishment of distinct tissue barriers [50]. 

Improper TJ formation or other loss of TJ function is associated with increased 

metastasis and a poor prognosis for cancers originating from tissues all over the body 

[51]. It does not take a complete ablation of TJ formation to increase cancer metastasis.  

 The Claudin genes are a large family of genes consisting of 24 members [52]. The 

Claudin proteins are localized to the plasma membrane and have four membrane 

spanning regions [52]. Some Claudin genes have been shown by numerous studies to 

have altered regulation in ovarian cancers [53], [54]. Prior studies suggest that the 

overexpression of CLDN3 and CLDN4 increases the invasiveness and motility of ovarian 

epithelial cells [55] . This suggests that the misregulation of the Claudin genes may have 

a pathogenic effect. Real-time RT-PCR analysis of Claudin gene expression in numerous 

neoplastic tissue samples indicates that the expressions of CLDN3 and CLDN4 are tightly 

correlated across multiple tissue types, which suggests a coordinated regulation of 

these genes [50]. Although most notably documented in ovarian cancer, this correlation 

has also been found in both ovarian and colon cancers [56], as well as pancreatic, 

prostate, and breast cancers [57].  Epidemiological evidence has been presented 

suggesting that women with PCOS are more likely to develop ovarian cancer [58]. 

Despite the association between the misregulation of the Claudin genes and these 

diseases, there has been no research to date that characterizes the regulation of the 

Claudin genes in the ovary. Alterations in the regulation of even one protein constituent 

of TJs like the Claudin proteins (CLDN) have been shown to have negative effects [51]. 



13 

 

The Claudin genes also play an important role in male spermatogenesis. Both 

CLDN3 and CLDN11 are expressed in the Sertoli cells of the male testis. These Claudins 

are part of the tight junctions between neighboring Sertoli cells that form the blood-

testis barrier [59]. This barrier separates the seminiferous epithelium into two distinct 

compartments [59]. Immature sperm develop as they move from one compartment to 

the other. Testosterone has been shown to increase the expression of CLDN3 and 

CLDN11 in the male testis [59], [60]. We hypothesize that the same androgenic 

hormone would have a similar effect on Claudin expression in the female ovary.  

Conclusions 

 PCOS patients also have high levels of testosterone which could cause the 

overexpression of any androgenically regulated Claudin genes in the ovary. Should this 

overexpression occur in the ovarian epithelium, the excess protein could inhibit 

ovulation by not allowing the oocyte to erupt from the ovary. For this reason, we 

hypothesize that PCOS women overexpress CLDN3 and CLDN11 which further inhibits 

ovulation and contributes to the anovulation and infertility of PCOS. There have been 

studies that indicate that women who have PCOS are more likely to develop ovarian 

cancer later in life [61].When these studies are coupled with evidence indicating that 

the overexpression of the Claudin genes leads to increased ovarian epithelial cell 

motility and invasiveness [55] [62]; the overexpression of the Claudin genes due to 

hyperandrogenism could cause these cells to adopt a cancerous phenotype. It is 

necessary to accurately evaluate the risk that PCOS women have of having increased 

expression of the ovarian Claudin genes. Doing so facilitates a deeper understanding of 



14 

 

the ovary, and the complications that are associated with ovarian diseases like PCOS. 

The results from this study will lay the groundwork for future research to further 

explore the role of the Claudin genes in the ovary. 
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Abstract 

When the hormonal signals of the ovary are disrupted, it is possible to develop 

ovarian disease states such as Polycystic Ovarian Syndrome (PCOS). PCOS patients suffer 

from high levels of testosterone which misregulates genes in the ovary. The tight 

junction genes Claudin (Cldn) 3 and Cldn11 are regulated by testosterone in the testis. 

Studies suggests a coregulatory mechanism could exist between CLDN3 and CLDN4, 

since they share a regulatory pattern in cancers derived from multiple tissues. This study 

sought to characterize the hormonal regulation of Claudin genes expression in the 

ovary. Estrogen receptor alpha knockout (αERKO) mice have high serum testosterone 

concentrations which mimics the excess testosterone of PCOS, therefore Claudin 

expression was measured in these ovaries. Experiments were conducted using QRT-PCR 

to monitor the expression of Cldn3, 4, and 11 in wild-type and αERKO mouse ovaries. 

These experiments indicated that Cldn3, 4, and 11 were expressed at significantly higher 

levels in αERKO mice than their wild-type counterparts. Further experiments 

characterized Claudin expression in the ovaries of mice treated with 

dihydrotestosterone (DHT) for 90 days. DHT treated mice were found to express Cldn3 
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and Cldn11 significantly more than controls. Cldn4 expression significantly decreased in 

DHT treated mice. Claudin expression was also evaluated in the ovaries of mice that 

were treated with testosterone propionate for three or six days. No expression of Cldn3 

or Cldn11 was found, however Cldn4 steadily increased in conjunction with the duration 

of the testosterone propionate treatment. These findings demonstrate that Cldn3 and 

Cldn11 are upregulated by testosterone in the ovary, while Cldn4 is regulated via a 

different mechanism. 

Introduction 

Polycystic Ovarian Syndrome (PCOS) is the leading cause of female infertility 

worldwide and is characterized by a few classic symptoms including cystic ovaries, 

metabolic disorders, and high serum levels of testosterone (hyperandrogenism) [37]. 

The hyperandrogenism associated with PCOS has been extensively studied as the 

presence of excess androgens has been shown to have multiple effects on the normal 

functioning of the ovary as well as the Hypothalamic-Pituitary-Gonadal axis as a 

whole[40]. This could significantly alter gene expression in the ovaries of PCOS affected 

women. This excess androgen could in turn contribute to the anovulation, cystic ovaries, 

and overall infertility that these women experience. PCOS afflicted women have also 

been shown to have an increased risk of developing ovarian epithelial cancers[58].  

To study PCOS, reproductive biologists have turned to several mouse models 

that mimic PCOS symptoms. Treating mice with androgens such as dihydrotestosterone 

(DHT) or testosterone propionate (TP) both prenatally and prepubertally, have been 

shown to result in the development of PCOS-like ovarian phenotypes [37]. Treating mice 
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postnatally with aromatase inhibitors like letrozole also produces similar symptoms [48]. 

Genetic alterations can also lead to the development of PCOS-like phenotypes. Estrogen 

receptor alpha knockout mice (αERKO) have share characteristics with PCOS mouse 

models, such as cystic ovaries and hyperandrogenism [21]. By using these models, it is 

possible to study the etiology of PCOS whether it be due to abnormal testosterone 

levels, exposure to an endocrine disrupting chemical like letrazole, or a genetic 

predisposition. 

Two tight junction proteins Claudin 3 (CLDN3) and Claudin 4 (CLDN4) have been 

shown to be consistently over expressed in ovarian cancers [62]. CLDN3 and Claudin 11 

(CLDN11) are normally not expressed in the female ovary but, have been shown to be 

upregulated by testosterone in Sertoli cells of the male testis [63]. CLDN3 and CLDN4 

have also seem to be upregulated by the same signaling mechanism [50]. Our study 

sought to characterize the expression of the Cldn3, Cldn4, and Cldn11 in the ovaries with 

hyperandrogenism in hopes of characterizing how the excess testosterone observed in 

PCOS can impact the expression of the Claudin genes in the ovary. Ovaries from three 

hyperandrogenous mouse models were used: estrogen receptor alpha knockout 

(αERKO) mice, testosterone treated mice, and mice treated with dihydrotestosterone 

(DHT) for 90 days. 

Materials and Methods 

Estrogen Receptor Alpha Knockout Mice 

Adult age matched wild type (n = 5) and estrogen receptor alpha knockout (n = 

5) mouse ovaries were isolated from adult animals (5-6 months old), snap frozen in 
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liquid nitrogen, shipped on dry ice and stored at -80 Cͦ prior to RNA extraction.  The 

ovaries were generously donated by Dr. Kenneth Korach from the National Institute of 

Environmental Health Sciences from animals under a protocol approved by NIESH 

Institutional Care and Use Committee (ASP#01-30).  

DHT Treated mice 

Prepubertal (postnatal day 19) mice were randomly sorted into two groups and 

surgically implanted with a subcutaneous pellet that releases placebo or 

dihydrotestosterone (DHT) for 90 days (Innovative Research of America, Sarasota, FL).  

Pellets contained placebo or 2.5mg of DHT and administered a daily dosage of 27.5 µg. 

Mice were fed ad libitum and maintained on a 12-hour light/dark cycle. At the duration 

of the 90-day treatment, mice were euthanized and ovaries were snap frozen in liquid 

nitrogen and stored at -80 ͦC.  Treatment of the animals was done at National Institute of 

Environmental Health Sciences (NIEHS) under a protocol approved by NIEHS 

Institutional Care and Use Committee (ASP#01-30).  Five ovaries from each treatment 

group were provided for this study. 

Testosterone Propionate Treatments 

C57BL/6J mice were used from the Binder lab breeding colony at Central Washington 

University. Mice were fed ad libitum and maintained on a 12-hour light/dark cycle. 

Fifteen female mice were sorted into either control, 3-day Testosterone Propionate (TP) 

(Sigma-Aldrich, St. Louis, MO) treatment, or 6-day TP treatment groups.  Treatments 

began at 21 days old. Mice were given 3mg/kg TP (for either 3 or 6 days) subcutaneously 

in a sesame oil vehicle. Control mice were given 50ul of sesame oil and ovaries were 
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collected on day six. At the time of ovary collection, mice were euthanized via carbon 

dioxide inhalation followed by cervical dislocation to confirm death. Ovaries were 

collected and stored at -80 ͦC. The protocol for maintaining, treating, and sacrificing the 

mice was approved by the Central Washington University Institutional Animal Care and 

Use Committee (Protocol#: A111509). 

RNA Extraction and cDNA Synthesis 

Tissue samples were homogenized in 1mL of Trizol Reagent™ (Invitrogen, 

Waltham, MA) prior to RNA extraction. RNA was isolated as previously described [64]. 

All cDNA syntheses were carried out using 1µg of RNA. First, samples were treated with 

DnaseI™ (Invitrogen, Carlsbad, CA) to ensure no genomic DNA remained. This was done 

in a master mix containing 1µl 10x DnaseI buffer™ (Invitrogen, Carlsbad, CA), 1 unit of 

DNAseI and 8µl of DEPC water for 1ug of RNA (Invitrogen, Carlsbad, CA). RNA was then 

reverse transcribed for 50 minutes at 42 ͦC in a 20µl master mix containing 50ng of 

random hexamers (Applied Biosystems, Foster City, CA), 10nM dNTP mix, 5x First Strand 

Buffer, 0.1M DTT, 40 units of RnaseOut, and 200 units of SuperScript II reverse 

transcriptase (Invitrogen, Carlsbad, CA). cDNA was then treated with 0.5µl RNAseH 

(Applied Biosystems, Foster City, CA) at 37 ͦC for 20 minutes to ensure no mRNA 

transcripts remain after reverse transcription. RNAseH was then denatured by adding 

0.5µl of 25mM EDTA (Invitrogen, Carlsbad, CA). Finally, cDNA was diluted 1:5 prior to 

PCR by adding 80µl of DEPC treated water.  

 

 



20 

 

QRT-PCR 

Quantitation of cDNA transcripts was done using a quantitative real-time 

polymerase chain reaction method. Measurements were taken using the IQ5 Multicolor 

Real Time PCR Detection System (Biorad, Hercules, CA). PCR was conducted in 20µl 

master mixes containing 10µl SYBR Select Master Mix (Thermofisher, Waltham, MA), 4µl 

DEPC water, 1µl of 10mM primers, and 5µl cDNA. PCR was run with an initial 30 second 

cycle at 95 ͦC to separate DNA strands. The next cycle was set to 95 ͦC for 10 seconds to 

separate strands, and then 55 ͦC for primer binding and transcript extension. Readings of 

fluorescence were taken at this step. This cycle was repeated 40 times. Experiments 

were run in triplicate and the average Ct of each triplicate set was calculated. These 

averages were converted into standardized ratios using the Livak [65] method and mPl7 

as the control standard.  The primer sets utilized are as follows: 

Gene Name Primer Sequences 5'-3' Melting Temp Source 

mPl7 
F: AGCTGGCCTTTGTCATCAGAA                 
R: GACGAAGGAGCTGCAGAACCT 

F: 59.93 Cͦ          
R:62.37 Cͦ 

Diez-roux, 2011 

mCldn3 
F: GGAAGGCCTGTGGATGAACT    F: 59.67 Cͦ          

R:60.25 Cͦ 
NCBI Primer Blast 

 R: CCTTACGGTCATAGGCGGTG 

mCldn4 
F: ATGGCGTCTATGGGACTACA    F: 57.92 Cͦ      

R:58.27 Cͦ 
NCBI Primer Blast 

 R: TTACACATAGTTGCTGGCGG 

mCldn11 
F: TCGTCACAACGTCCACCAAT                    
R: GGATGCAGGGGAGAACTGTC 

F: 59.89 Cͦ            
R: 60.11 Cͦ 

NCBI Primer Blast 

mERα 
F: CCACCAACCAGTGCACCAT                      
R: GGTCTTTTCGTATCCCACCTTTC 

F: 60.53 Cͦ          
R:59.31 Cͦ 

Latil, 2001 

 

Table1: cDNA primers for in vivo QRT-PCR experiments.  
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Statistical Analysis 

             All comparisons between treatment groups were made using R version 3.2.3 

with the RStudio plug-in. Statistical analyses were run using at least three average ratios 

for each treatment group. Student’s t-tests were used compare average Cldn/mPL7 

Livak ratios between treatment groups. Significance was determined using a significance 

level of 0.05. 

RESULTS 

Esr1 and Claudin Expression 

Mice lacking estrogen receptor alpha (αERKO) have been shown to develop a 

number of irregular morphological and hormonal characteristics including cystic ovaries, 

elevated androgen secretion, and anovulation [22]. These characteristics are also seen 

in mouse models of PCOS [37].  The expressions of Cldn3, Cldn4, and Cldn11 were 

measured in the ovaries of female αERKO mice. First, it was necessary to confirm that 

Estrogen Receptor alpha (ERα) was knocked out in the αERKO ovaries. To do this, 

Quantitative Real-Time PCR (QRT-PCR) was first used to measure the expression of ERα 

in wild-type (WT) and knockout (KO) mouse ovaries.  As seen in figure 1, WT mice did 

express ERα with some variation between individuals, this expression contrasts the KO 

mice that showed no expression of Esr1 in the ovary. 
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Figure 2:  EsR1 Expression in Wild-Type and αERKO Mouse Ovaries . Esr1 expression was 
quantitated via QRT-PCR to confirm the presence of Esr1 in the WT group, and the 
absence of Esr1 in the KO group. Expression is reported as the average Esr1/pl7 Livak 
ratio ± SEM (n = 5 for both WT and KO groups). Non-detectable  =  N.D. 

 

To gain a better understanding of how Claudin regulation may be altered in a 

hyperandrogenous model, gene expression was measured in the ovaries of both WT and 

αERKO mice. There were significant differences in the expressions of Cldn3, 4, and 11 

between the two groups. Amplification of cDNA transcripts by Quantitative RT-PCR 

indicated that αERKO mice expressed Cdn3 at a significantly higher level than their WT 

counterparts (Fig.3, p < 0.05). This result indicates that a loss of ERα resulted in an 

increase in transcription of the Cldn3 gene. Analysis of Cldn4 expression yielded results 

similar to Cldn3. αERKO mice expressed Cldn4 significantly higher than WT individuals 

(Fig.3, p < 0.05). Cldn11 expression was also found to be elevated in the αERKO mice 

when compared to wild-type controls (Fig.3, p < 0.05). Each gene of interest was found 

to be transcribed roughly five –fold higher in the αERKO than in WT. This data 

demonstrates that a loss of ERα in the ovary results in an increase in the ovarian 

expression of Cldn3, Cldn4, and Cldn11. 
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Figure 3: Cldn3, Cldn4, and Cldn11 ovarian expression in wild-type (WT) and αERKO (KO) 
mouse ovaries. Expression is reported as the average Cldn/pl7 Livak ratio ± SEM (n = 5 
for both WT and KO groups). Students t-test was conducted for comparison of 
expression between genotypes between WT and KO mice (*p < 0.05). Non-detectable  =  
N.D. 
 
 
Excess DHT Alters Ovarian Claudin Expression  
 
 Given that αERKO mice also have elevated levels of LH and estradiol levels in 

addition to excess testosterone [23], we investigated if a PCOS model with excess 

testosterone alone would show similar differences in Claudin gene regulation. Claudin 

expression was measured from ovaries of mice treated with dihydrotestosterone (DHT) 

for 90 days and compared to control mice treated with placebo. DHT treated individuals 

showed significant alteration in the expressions of Cldn3, 4, and 11. Cldn3 and Cldn11 

were significantly elevated in the ovaries mice treated with DHT for 90 days (Figure 3A, 

p < 0.05), while Cldn4 transcription was found to be decreased in the DHT mice when 

compared to controls (Figure 5, p < 0.05). Taken together, this data indicates that Cldn3 

and Cldn11 have increased expression in response to excess DHT, while Cldn4 
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expression decreased in response to the excess DHT. When coupled with the 

expressions of Cldn3, Cldn4, and Cldn11 in αERKO mice (figure 3); the findings indicate 

that Cldn3 and Cldn11 are upregulated by testosterone signaling in the ovaries while 

Cldn4 expression is regulated separately. 

 

Figure 4: Cldn3 and Cldn11 in Control and 90d DHT Treated Mouse Ovaries. Expression is 
reported as the average Cldn/pl7 Livak ratio ± SEM (n = 4 for both control and DHT 
groups). T-test was conducted for comparison of expression between treatment groups. 
(*p < 0.05). Non-detectable  =  N.D. 
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Figure 5: Cldn4 Expression in Control and 90d DHT Treated Mouse Ovaries . Expression is 
reported as the average Cldn/pl7 Livak ratio ± SEM (n = 4) T-test was conducted for 
comparison of expression between treatment groups. (*p < 0.05).  
 

Short Term Testosterone Propionate Treated Mice Have Increased Cldn4 Expression 

 Treating mice with Testosterone Propionate (TP) postnatally has been shown to 

induce the development of PCOS like characteristics [37]. Disrupted ovulatory cycling, 

cystic ovaries, and hyperandrogenism have all been observed in mice treated with 

varying doses of TP for as little as one week to as long as sixteen weeks [37]. Given its 

use as a model of PCOS, the expressions of Cldn3, 4, and 11 were measured by QRT-PCR 

from the ovaries of prepubertal mice treated with testosterone propionate. 3mg/kg of 

TP in an oil vehicle was administered subcutaneously for either three or six days to avoid 

the onset of puberty with extended treatment periods. Control mice were given just the 

oil vehicle and ovaries were collected on day six. 

 QRT-PCR analysis showed no detectable signal for the expression of either Cldn3 
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or Cldn11 in the vehicle, 3-day, or 6-day treatment groups (data not shown). Ovarian 

Cldn4 expression was found to steadily increase over the duration of the TP treatment. 

Expression of Cldn4 in the 3-day treated group was significantly higher than the vehicle 

treated group (Figure 6, p < 0.05). Similarly, Cldn4 expression in six day treated group 

was significantly higher than the vehicle treated group (p < 0.05). 

 

 

Figure 6: Cldn4 Expression in the Ovaries of Control, 3d, and 6d TP Treated Mice. 
Expression is reported as the average Cldn/pl7 Livak ratio ± SEM (n = 4 for 3d and 6d 
treatment groups, n = 6 for vehicle group). Significance shown as determined by a 
Student’s t-test (*p < 0.05) Non-detectable  =  N.D. 
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Figure 7: Overview of In Vitro models and their expression of Cldn3, Cldn4, and Cldn11. 

DISCUSSION 

Claudin Genes and loss of functional ERα 

Loss of ERα inhibits the negative feedback that low levels of estradiol has on the 

hypothalamus [23]. Left uninhibited, excess LH and FSH is released from the pituitary. In 

the ovary, high levels of LH inhibits aromatase activity [66], which in turn inhibits the 

conversion of testosterone into estradiol [67] leading to hyperandrogenism. In this same 

manner, the excess LH in the αERKO mice contributes to their hyperandrogenism [44]. 

Prior research indicates Cldn3 and Cldn11 are upregulated by testosterone in the male 

testis [59, 60, 67]. CLDN4 has also been hypothesized to share a regulatory mechanism 

with CLDN3 in that they may both be upregulated by testosterone [50]. We 

hypothesized that testosterone could upregulate the expression of Cldn3, Cldn4, and 

Cldn11 in the ovary. αERKO mice were found to express ovarian Cldn3, Cldn4, and 

Cldn11 significantly more than their wild-type counterparts. This indicates that a loss of 

ERα functionality either directly or indirectly results in the increased expression of these 

Claudin genes although the exact signaling mechanism remains unknown.   
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The Claudins: Regulation and Ovarian Cancer 

If testosterone causes an increased expression of the Claudin genes in normal 

mice, it could also be contributing to the increased expression of the Claudin genes in 

the αERKO mice. To test this idea, it was necessary to test the effect that excess 

testosterone has on Claudin expression in the ovary.  In order to isolate the effect that 

excess testosterone has on the ovary, as well as characterize Claudin expression in a 

mouse model of PCOS; the expressions of Cldn3, Cldn4, and Cldn11 were measured in 

the ovaries of mice treated with DHT for 90 days. Mice that were treated with DHT 

showed significantly elevated expression of Cldn3 and Cldn11 while Cldn4 significantly 

decreased (Figure 3). This indicates that long term treatment with DHT alters the 

expression of these genes in the ovary. 

Overexpression of CLDN3 has been found in ovarian cancers and the altered 

expression of Claudin proteins is continuing to be investigated as a possible marker for 

multiple types of cancer [53, 57]. In addition, prior studies have explored the expression 

of the Claudin genes in ovarian cancer in humans[69]. Altered expression of CLDN3 and 

CLDN4 has also been found to increase the metastatic properties of ovarian cancer cell 

lines [55] and increased CLDN3 expression has been identified as an early marker in the 

development of ovarian epithelial cancer in humans [62]. Given the upregulation of 

Cldn3 in our DHT model and the prior research exploring its role and end expression in 

ovarian cancer; increased expression of ovarian Cldn3 due to PCOS attributed 

hyperandrogenism may be one of the links that connects PCOS and their increased 

likelihood to develop ovarian cancer.  
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It is possible that the lack of Cldn3 and Cldn11 expression seen in TP treated mice 

is due to their age. The TP treatments and ovary extractions were done prepubertally. In 

male mice Cldn3 and Cldn11 expression are not present until after puberty as the blood-

testis barrier develops[70]. It is possible that the lack of Cldn3 or Cldn11 expression in 

the ovaries of TP treated mice is also due to their prepubescent age. These genes may 

be unresponsive to testosterone signaling prior to adulthood. 

Cldn4 expression decreased in the DHT treated mice (Figure 3). Given that Cldn3 

increased, it stands to reason that a coregulatory mechanism that alters the expression 

of Cldn3 and Cldn4 in the same manner in response to testosterone does not come into 

effect in the mouse ovary. This contrasts prior research indicating a coregulatory 

mechanism may exist between CLDN3 and CLDN4 [50] in cancerous tissues. It is also 

possible that DHT may work through a different regulatory mechanism for each Claudin 

gene. This would account for the differences in the response of Cldn3, Cldn11 and Cldn4 

to DHT treatment compared to Testosterone treated and αERKO mice. 

Ovarian Claudin Regulation and PCOS 

The overexpression of ovarian Claudin genes in response to excess testosterone 

may help contribute to the anovulation that can accompany PCOS. Ovulation requires 

that the ovarian epithelium be able to rupture in order to release a mature oocyte [71]. 

It is possible that this rupturing is physically hindered by an increased titer of cell-

adhesion proteins such as the Claudin proteins in the ovary due to the excess 

testosterone. As our data, has shown, ovarian Cldn3 and Cldn11 can be upregulated by 

excess androgenic signaling in the ovary. Excess androgens have also been shown to 
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correlate with an increased number of developing follicles within the ovaries of 

primates [72, 73]. These follicles become the cysts that give PCOS its name [38]. In this 

manner, the hyperandrogenism of PCOS affected women could culminate in both an 

increased number of ovarian follicles, and the inability to ovulate them. 

 Ovarian Cldn3 and Cldn11 expression remained unexpressed despite three or six 

days of subcutaneous testosterone propionate treatment. This is consistent with prior 

work showing that these genes are expressed to an extremely low degree in healthy 

human ovarian tissue [50]. Coupled with the results from the 90 day DHT-treated mice, 

the experiment indicates that significant changes in the expression of Cldn3 and Cldn11 

in response to androgens takes place on a time scale longer than six days. This result 

suggests that a small transient exposure to testosterone may not alter the Claudin 

expression in mouse ovaries. It is possible that a long term endogenous dose of 

androgen like PCOS patients experience is required to significantly affect the levels of 

ovarian CLDN3 and CLDN11. Another study measured the expression levels of Cldn3 and 

Cldn11 in the testis of hypogonadal mice[70]. It was found that both genes increased at 

the mRNA and protein levels after 10 days of DHT treatment forming fully functional 

tight junctions, and also that when DHT and FSH were administered together, these 

functional tight junctions formed in as little as 2 days[70]. This shows a dynamic 

interplay between androgens and FSH can affect the timescale on which the expressions 

of Cldn3 and Cldn11 are altered. Our study found no ovarian expression of either gene in 

response to three or six days of TP treatment. We hypothesize that in the ovary, where 

these genes are normally expressed to a much lower degree than the male testis, 
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upregulation of Cldn3 and Cldn11 takes longer than six days. The mice used in the TP 

experiments were 21 days old when they received the first treatment. This is too young 

for estrous cycling and so no FSH would be present in these mice.  Nevertheless, the 

increase in the expression of both genes in response to the 90 day DHT treatment does 

help define the bounds of a time scale that can be further refined by future studies.  

Ovarian Cldn4 was found to steadily increase in response to the short-term 

testosterone propionate treatments. This result contrasts the decrease in Cldn4 that 

was seen in the mice treated with DHT for 90 days. Differences in the regulation of this 

gene between these models could be attributed to different regulatory mechanisms 

controlling the expression of Cldn4 in response to testosterone. Early in life, excess 

androgens could upregulate Cldn4 while later in life the same hormonal excess could 

downregulate its expression. Cldn4 has been previously documented to decrease when 

testosterone levels in the male mouse prostate are suppressed [59]. Also, in vitro 

studies have identified Cldn4 to be a target of AR regulation in cells derived from male 

prostate cancers [74]. When coupled with our own study, it seems that Cldn4 can be 

downregulated or upregulated by androgens in the female mouse ovary as well. 

 The αERKO mice developed cystic ovaries, hyperandrogenism [20] and increased 

expression of Cldn3, Cldn4, and Cldn11. While these effects were due to a complete 

silencing of ERα signaling, future studies should elucidate the effect that a short-term 

treatment with ERα antagonists would have on the ovarian expression of the Claudin 

genes. This will allow us to understand if a complete silencing of ERα is required for the 

development of these characteristics, or if a transient exposure to an environmental 
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antagonist is sufficient. We hypothesize that the increase in Cldn3, Cldn4, and Cldn11 

expression is more directly caused by the high levels of testosterone in the serum of the 

αERKO mice based on the expression of these genes in the DHT and TP treated mouse 

ovaries. 

Future research should also seek to more definitively characterize the time scale 

on which the expression of ovarian Cldn3 and Cldn11 is significantly altered in response 

to testosterone. As our ability to diagnose PCOS progresses and earlier detection 

becomes available, understanding this time scale will allow us to better characterize 

what changes and complications women at different ages with PCOS might experience. 

The regulatory differences of Cldn4 at different life stages should also be further 

explored. Given that Cldn4 overexpression has been shown to increase cell invasiveness, 

we have an opportunity to better understand at what age a PCOS afflicted women may 

be at the highest risk of developing ovarian cancer. To fully understand how the Claudin 

genes affected by PCOS, the expression of the Cldn3, Cldn4, and Cldn11 in the ovaries of 

women diagnosed with PCOS should be measured. Finally, future studies should further 

investigate the ramifications that altered Claudin expression has on the general health 

of the ovary. It’s possible that the overexpression of Cldn3 and Cldn4 may have more 

deleterious health effects than just increasing cell invasiveness, and the health effects of 

the overexpression of Cldn11 in the ovary has yet to be investigated. Through continued 

research, advancements in the treatment and understanding of PCOS will allow for 

more effective treatment of the disease and improved quality of life for those afflicted. 
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CHAPTER III 

CELL CULTURE IN VITRO EXPERIMENTS 

Introduction 

The anovulation that PCOS women experience prevents the release of oocytes 

from ovarian follicles which results in the infertility. This inability to ovulate is the 

culmination of a number of normal ovarian functions being dirsupted by PCOS such as 

aromatase and LH/FSH signalling [40]. In addition to a failure in hormonal signaling, a 

physical inhibition of ovulation could prevent the release of fully developed oocytes. 

Given that the CLDN proteins function to maintain tight junctions between cells, we 

hypothesized that an overexpression of these genes in the ovarian epithelium could 

physically block the ovulation of the ovarian follicles thereby contributing to the 

anovulation. This would contribute to both the infertility and ovarian cysts that 

characterize PCOS. In order to test this hypothesis, we measured the expression of 

CLDN3, CLDN4 and CLDN11 in ovarian epithelial cells in response to various testosterone 

treatments. Two different human ovarian epithelial carcinoma cell lines, BG-1 [75] and 

SKOV3 [76], were treated with different concentrations of testosterone and the effect 

on Claudin gene expression was measured. 

Materials and Methods 

Cell Culture and Plating 

             SKOV3 and BG-1 ovarian epithelilal cells were cultured in Dulbecco’s modified 

Eagles media F-12 (DMEM-F12); (Sigma-Aldrich, St. Louis, MO) supplemented with 10% 

fetal bovine serum. Cells were trypsinized into suspension and 500,000 cells were plated 

into each well of a six well plate for testosterone treatment. Twenty-four hours after 
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plating, and 24 hours before treatment cells were washed with PBS and the media 

replaced with DMEM F-12 lacking any FBS additive. Cells that were beyond passage 20 

not used due to irregular cellular morphology. 

RNA/Protein Isolation 

RNA and Protein were extracted and isolated from as previously described 

[64][77]. All cDNA syntheses were carried out using 1µg of RNA. First, samples were 

treated with DnaseI™ (Invitrogen, Carlsbad, CA) to ensure no genomic DNA remained. 

This was done in a master mix containing 1µl 10x DnaseI buffer™, 1 unit of DNAseI, and 

8µl of DEPC water (Invitrogen, Carlsbad, CA) for 1µg of RNA. RNA was then reverse 

transcribed for 50 minutes at 42 ͦC in a 20µl master mix containing 50ng of random 

hexamers (Applied Biosystems, Foster City, CA), 10nM dNTP mix, 5x First Strand Buffer, 

0.1M DTT, 40 units of RnaseOut, and 200 units of SuperScript II reverse transcriptase 

(Invitrogen, Carlsbad, CA). cDNA was then treated with 0.5µl RNAseH (Applied 

Biosystems, Foster City, CA) at 37 ͦC for 20 minutes to ensure no mRNA transcripts 

remain after reverse transcription. RNAseH was then denatured by adding 0.5µl of 

25mM EDTA (Invitrogen, Carlsbad, CA). Finally, cDNA was diluted 1:5 prior to PCR by 

adding 80µl of DEPC treated water. 

QRT-PCR 

Quantitation of cDNA transcripts was done using a quantitative real-time 

polymerase chain reaction method. Measurements were taken using the IQ5 Multicolor 

Real Time PCR Detection System (Biorad, Hercules, CA). PCR was conducted in 20µl 
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master mixes containing 10µL SYBR Select Master Mix (Thermofisher, Waltham, MA), 

4µl DEPC water, 1µl of 10mM primers, and 5µl cDNA. PCR was run with an initial 30 

second cycle at 95 ͦC to separate DNA strands. The next cycle was set to 95 ͦC for 10 

seconds to separate strands, and then 55 ͦC for primer binding and transcript extension. 

Readings of fluorescence were taken at this step.  Experiments were run in triplicate and 

the average Ct of each triplicate set was calculated. These averages were converted into 

standardized ratios using the Livak method and GADPH as the control standard.  

Statistical analyses were run using at least three ratios for each experimental group. The 

primer sets utilized are as follows: 

Gene Name Primer Sequences 5'-3' Melting Temp Source 

hCLDN3 
F: AACACCATTATCCGGGACTTCT             
R: GCGGAGTAGACGACCTTGG 

F: 59.16 Cͦ          
R: 59.86 Cͦ 

NCBI Primer Blast 

hCLDN4 
F: GGGGCAAGTGACCAACTG                    
R: GACACCGGCACTATCACCA 

F: 58.24 Cͦ          
R: 59.41 Cͦ 

NCBI Primer Blast 

hCLDN11 
F: CGGTGTGGCTAAGTACAGGC                  
R: CGCAGTGTAGTAGAAACGTTTT 

F: 59.16 Cͦ          
R: 59.86 Cͦ 

NCBI Primer Blast 

hGAPDH 
F: AATGGGCAGCCGTTAGGAAA       
R: GCGCCCAATACGACCAAATC 

F: 59.96 Cͦ          
R: 59.97 Cͦ 

NCBI Primer Blast 

 

Table 2: Primer sequences used for in vitro claudin studies . 

Western Blotting 

Protein from wild-type and αERKO mouse ovaries was isolated using Trizol 

Reagent™ (Invitrogen, Waltham, MA). 20ug of protein from each sample was denatured 

at 95 ͦC in 1x Laemmli sample buffer (Biorad, Hercules CA). Proteins were then separated 

by SDS PAGE gel electrophoresis in Mini-Protean® TGX™ Precast Gels (Biorad, Hercules 
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CA) at 100V for 1 hour and transferred to a 0.2µm pore nitrocellulose membrane 

(Biorad, Hercules CA) at 100V for 50 minutes. Membranes were stained in Ponceau red 

stain for 5 minutes while shaking to confirm successful protein transfer. Membranes 

were then rinsed in Tris-Buffered Saline (TBS) supplemented with 0.1% Tween prior to 

viewing. After confirming the protein transfer was successful, membranes were 

incubated in a blocking solution of 5% powdered milk in TBST overnight. Primary CLDN3 

antibody diluted 1:1000 in 5% powdered milk in TBS was then applied to the membrane 

and allowed to incubate overnight. Membrane was then rinsed in TBST and a 1:500 

dilution of secondary antibody in milk-TBST solution was applied and allowed to 

incubate at room temperature for an hour. After another wash in TBST, 1x DAB 

substrate (Thermo Scientific, Waltham MA) was applied and the resulting staining was 

photographed. The same protocol was followed with anti-actin antibodies (Invitrogen, 

Carlsbad, CA) which served as a loading control. 

Results 

Preliminary experiments sought to evaluate the Claudin expression in ovarian epithelial 

cells given 24-hour testosterone treatment. Treating SKOV3 ovarian epithelial cells with 10nm, 

100nm, or 1000nm testosterone yielded no significant alerations in the expressions of Cldn3, 

Cldn4, or Cldn11 (Figure 6, p > 0.05). Given that the enzyme aromatase converts testosterone 

into estradiol within the ovary, it was also necessary to evaluate estradiol for an ability to alter 

Claudin expression. Given 24-hour treatments of 10nm, 100nm, or 1000nm estradiol, CLDN4 

expression trended toward decreasing as the concentraion of estradiol increased but this trend 

failed to reach statistical significance given a Student’s t-test (Figure 7, p > 0.05). 
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Figure 8: CLDN expression in SKOV3 cells treated with testosterone. Claudin expression 

was measured by QRT-PCR. Expressions are reported as mean Cldn livak ratio of 

testosterone treated groups to untreated (0nM) controls ± standard deviation (n = 2 for 

all groups). 

 

 

Figure 9: CLDN expression in SKOV3 cells treated with estradiol. Claudin expression was 

measured by QRT-PCR. Values are reported as mean Cldn livak ratio of testosterone 

treated groups to untreated (0nM) controls ± standard deviation (n = 2 for CLDN4 and 

CLDN11, n = 1 for CLDN3). 
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Another ovarian epithelial cell line BG-1 ovarian epithelial cells were also treated with 

vehicle, 0nM, 10nnM 100nM, or 1000nM concentrations testosterone. QRT-PCR yielded no 

detectable signal for the expression of Cldn3 or Cldn11. CLDN4 expression was detected, and 

was found to decrease significantly in response to 10nM and 100nM treatments (Figure 10, p < 

0.05). Although 1000nM testosterone treated cells showed a decrease in Cldn4, it was 

significantly different from untreated controls (Figure 10, p < 0.05). 

 

Figure 10: Decreasing Cldn4 expression in BG-1 ovarian epithelial cells given 

testosterone treatment. CLDN4 expression was measured by QRT-PCR. Expression is 

reported as mean Cldn4 Livak ratio of testosterone treated groups to untreated control 

(0nM) group ± SEM (n = 4 for all groups). 

 

Given the upregulation of the Claudin genes at the mRNA level that the prior 

experiments indicated, a western blot was performed to measure the amount of CLDN3 protein 

being produced in the ovaries of αERKO mice. Conducting a western blot would determine if the 

possible upregulation of CLDN3 seen at the level of the transcriptome translates to an increase 
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at the level of the proteome. Although Ponceau staining showed the protein transfer to the 

nitrocellulose membrane was successful (Figure 4S), no detectable signal for the presence of 

CLDN3 was found (data not shown). Ovarian expression of CLDN3 may be too low in both wild-

type and αERKO ovaries to be detected by western analysis. More sensitive methods of protein 

detection would benefit subsequent studies. 

 

 

Figure 11: Ponceau Stain for Mouse Ovarian Cldn3 Western Blot . Protein was isolated 
from the TRIzol fraction of WT and αERKO ovaries and subjected to SDS-PAGE followed 
by transfer to nitrocellulose membrane.  Ponceau staining demonstrates that protein 
was transferred successfully.   

 

Discussion 

Preliminary work in the SKOV3 ovarian epithelial cells indicated no significant 

effect of testosterone or estradiol treatment on the expression of Cldn3, Cldn4, or 

Cldn11. This result lead us to consider whether this indicated that these genes were not 

regulated by either hormone, or if this issue was a cell line specific insensitivity. A 

previous study showed that the SKOV3 cell line does not express a functional androgen 
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receptor and has a frameshift mutation that renders its ERα non-functional [76]. The 

lack of a functioning ERα could explain why the cells were unresponsive to estradiol. In 

addition, ERβ is still expressed and functional in this cell line [76], therefore it can be 

hypothesized that the stimulation of ERβ by estradiol does not alter the expression of 

CLDN3, CLDN4, or CLDN11 in this cell line. The lack of a functioning androgen receptor in 

the SKOV3 cell line indicates that an alternate model should be used to study CLDN 

responsiveness to testosterone. Future studies could introduce and AR or ERα 

expression vector and measure Claudin expression in response to the appropriate 

hormone.  

Further work in the BG-1 Ovarian epithelial cell line showed that while there was 

no detectable expression of CLDN3 or CLDN11; CLDN4 significantly decreased given a 

10nM or 100nM testosterone treatment. This data complements the trend of Cldn4 

expression in the DHT treated mice where we also saw a decrease in response to excess 

androgen supplementation. The lack of Claudin expression in the granulosa cells in 

response to testosterone suggests that hyperandrogenism does not alter the expression 

of CLDN3, CLDN4, or CLDN11 in granulosa cells, the treatment duration was not long 

enough, or that a higher concentration of hormone is required. Future studies could 

further increase the concentration of testosterone that that the cells are given, or use 

an in vitro model of hyperandrogenism to evaluate the response of these genes to 

excess testosterone. 

In vitro studies do not perfectly mimic the results obtained from in vivo 

experiments. A new model may need to be developed to better study PCOS in these 
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ovarian cell lines. Therefore, transforming SKOV3 cells with a functional Esr1 gene using 

plasmid DNA would make the cells sensitive to estradiol so its effect on gene expression 

in the ovarian epithelium could be studied. Another ovarian epithelial cell line would 

need to be used to study testosterone’s effect on Claudin expression in the ovarian 

epithelium. This would further corroborate the trend seen in CLDN4 expression in 

response to testosterone treatment of the BG-1 cells.  By exploring additional models of 

PCOS, we can further understand the etiology of the disease, the long-term effects, and 

eventually what the most effective mode of treatment may be for those afflicted. 
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