# Central Washington University ScholarWorks@CWU

All Master's Theses

Master's Theses

1965

# A Correlation Study of the Sixth Grade Verbal School and College Ability Test with Eighth Grade Reading Achievement

Claude E. Yule *Central Washington University* 

Follow this and additional works at: http://digitalcommons.cwu.edu/etd Part of the Educational Methods Commons, Scholarship of Teaching and Learning Commons, and the Teacher Education and Professional Development Commons

### **Recommended** Citation

Yule, Claude E., "A Correlation Study of the Sixth Grade Verbal School and College Ability Test with Eighth Grade Reading Achievement" (1965). *All Master's Theses.* 524. http://digitalcommons.cwu.edu/etd/524

This Thesis is brought to you for free and open access by the Master's Theses at ScholarWorks@CWU. It has been accepted for inclusion in All Master's Theses by an authorized administrator of ScholarWorks@CWU.

# A CORRELATION STUDY OF THE SIXTH GRADE VERBAL SCHOOL AND COLLEGE ABILITY TEST WITH EIGHTH GRADE READING ACHIEVEMENT

A Thesis

Presented to

the Graduate Faculty

Central Washington State College

In Partial Fulfillment of the Requirements for the Degree Master of Education

by

Claude E. Yule

August 1965



SPECIAL COLLECTION ) |神戸県 「秋白」長の「山口」」「「小白」(「小白」」

algonit

with the try of a till

ylinest at month off

egally edds in Fulder. Fudae)

the platfor istant of

of the requirements for the sector

solutionable for the durate

130737

. . . . . . . . . .

. . . .

75 GLY JE SHIELD

3000 58000

#### APPROVED FOR THE GRADUATE FACULTY

John E. Davis, COMMITTEE CHAIRMAN

Milo L. Smith

Ray R. Wilson Jr.

#### TABLE OF CONTENTS

CHAPTER PAGE THE SCOPE OF THE STUDY AND DEFINITIONS I. OF TERMS USED . . . . . . . . . . 1 1 Purpose of the study. . . . . . . . 1 Hypothesis of the study . . . . . 1 Importance of the study . . . . . . . . 2 Definitions of Terms Used . . . . . . . . . . . . . З З З З Limitations of the Study. . . . . . . . . . . . . 4 Organization of the Remainder of the Study. . . 4 II. REVIEW OF THE LITERATURE. . . . . 5 Literature of the Predictive Value of Tests . . 6 Value and Need for Knowing Predictive 7 III. MATERIALS USED, GROUPS STUDIED, 8 8 8 9 IV. 10

| CHAPTER                                        |   |   |   |   | PAGE |
|------------------------------------------------|---|---|---|---|------|
| Standard error of estimate                     | • | • | • | • | 11   |
| Regression line of Y on X                      | • | • | • | • | 12   |
| V. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS . | • | • | • | • | 15   |
| Summary                                        | • | • | • | • | 15   |
| Conclusions                                    | • | • | • | • | 15   |
| Recommendations                                | • | • | • | • | 16   |
| BIBLIOGRAPHY                                   | • | • | • | • | 18   |
| APPENDICES                                     | • | • | • | • | 20   |

# LIST OF TABLES

| TABLE |                                                | PAGE |
|-------|------------------------------------------------|------|
| I.    | The Bellevue SCAT-STEP Testing Program         | 2    |
| II.   | Coefficients of Correlation Between the        |      |
|       | Sixth Grade Verbal SCAT and Eighth Grade       |      |
|       | STEP Reading                                   | 10   |
| III.  | Standard Error of Estimate for Predicted Value |      |
|       | of STEP Reading Scores                         | 11   |

# LIST OF FIGURES

| FIGUR | E                                                    | PAGE |
|-------|------------------------------------------------------|------|
| l.    | Plotted SCAT and STEP Scores and the Regression      |      |
|       | Line Drawn from SCAT Scores and Predicted STEP       |      |
|       | Scores for Male Students                             | 13   |
| 2.    | Plotted SCAT and STEP $S_{cores}$ and the Regression |      |
|       | Line Drawn from SCAT Scores and Predicted STEP       |      |
|       | Scores for Female Students                           | 14   |

#### CHAPTER I

#### THE STUDY AND DEFINITIONS OF TERMS USED

The need for an adequate guidance program in the secondary school has been increasingly more evident. Students must plan early in their school training for a general area of concentration. College requirements are more difficult for pupils to meet each year. It is the counselor's role to help pupils in self-analysis. The counselor must use available information that can provide a sound indication for possible future scholastic activity. However, instruments of known predictive value for many local areas are limited because of the inadequacy of the basic research done to help the student to gain a sufficiently complete understanding of himself and his vocational possibilities.

#### I. THE SCOPE OF THE STUDY

<u>Purpose of the study</u>. It was the purpose of this study to compare the test scores of one group of children who took the verbal ability section of the sixth grade School and College Ability Test (SCAT) with the test scores of the same group of children on the eighth grade reading Sequential Test of Educational Progress (STEP) and to determine the degree of relationship between the tests.

Hypothesis of the study. The test scores of one

group of children who took the verbal ability section of the sixth grade SCAT will not compare with a significantly positive correlation with test scores of the same group of children on the eighth grade reading STEP.

Importance of the study. At the present time, standardized test results are a main tool for analyzing a student's achievement and scholastic aptitude. It is important for a worker to know his tools well. Teachers appear to be basically well grounded in administering tests, but not when interpreting as to the reliability of the tests. Therefore, the reliability of a test in a local area is important to the teacher or counselor in helping a student plan for the future. The results of this thesis should provide valuable information to junior high school counselors in the Bellevue Public Schools, Bellevue, Washington, who use these tools--the SCAT and STEP.

Table I, located on page 3, indicates the intervals at which the Bellevue Public Schools have used the SCAT and STEP series since 1957. (13:3)

#### TABLE I

#### THE BELLEVUE SCAT-STEP TESTING PROGRAM

| TEST                   | GRADE |   |   |   |   |   |    |  |
|------------------------|-------|---|---|---|---|---|----|--|
| ACHIEVEMENT (STEP)     | 4     | 5 | 6 | 7 | 8 | 9 | 10 |  |
| Reading                | х     | x | х |   | х |   | х  |  |
| Mathematics            | х     | х | х |   | х |   | х  |  |
| Social Studies         |       | х | х |   | х |   | х  |  |
| Science                |       | х | х |   | х |   | х  |  |
| Writing                |       | х | х |   | х |   | x  |  |
| Listening              | x     | x | х |   | х |   | x  |  |
| GENERAL ABILITY (SCAT) | x     | х | x |   | x |   | x  |  |

#### II. DEFINITION OF TERMS USED

<u>SCAT</u>. The School and College Ability Test measures achievement of children in certain verbal and quantitative areas and from these results infers verbal and quantitative scholastic aptitude.

STEP. The Sequential Test of Educational Progress measures the student's grasp of the fundamentals of six subjects or skills: reading, writing, mathematics, science, listening, and social studies.

<u>Relationship</u>. Relationship is that particular connection between the SCAT verbal ability section and the reading STEP. The relationship is expressed in the form of a correlation coefficient.

#### III. LIMITATIONS OF THE STUDY

Teacher evaluation and elementary school grades were not used as part of verbal ability. Junior high school grades were not used as a measure of reading achievement.

IV. ORGANIZATION OF REMAINDER OF STUDY

Chapter II reviews the literature pertaining to the predictive value of tests.

Chapter III is a discussion of the materials used and the groups studied.

Chapter IV gives the results of the comparisons between the two tests.

Chapter V deals with the summary, conclusions, and some suggestions for further study.

#### CHAPTER II

#### REVIEW OF THE LITERATURE

Many studies have been conducted attempting to predict achievement of prospective high school students. Some studies correlated ability test results and grade point average. Ross and Hooks brought together a group of correlations showing the relationship between intelligence scores and achievement. The coefficients ranged from .18 to .72, with a median of .39 (10:184-195). Ames obtained a correlation of .71 between achievement and intelligence test scores (3:229-236). Some studies compared achievement test scores from elementary grades at the secondary level. Adams used data derived from administering the National Intelligence Test to pupils in the fourth, fifth, and sixth grades. When these pupils reached college the IQ's derived in the fourth grade correlated .46 with the high school average and .49 with college freshman average. For IQ's obtained in the fifth grade the correlations were .53 and .35; for the sixth grade, .43 and .39 (2:56-66). Aaron showed the median correlation of intelligence and high school scholarship to be .46 when the intelligence test was administered at the elementary school level and .49 when given in the later school years (1:227). Some studies used teachers' judgment of student abilities correlated with later high school grades. Aaron

showed that teachers' marks in algebra provided the best single prediction factor for success in physics (1:227). Layton found a relationship of .82 between eighth grade marks and first-year algebra (7:601-605).

#### LITERATURE ON THE PREDICTIVE VALUES OF TESTS

In a summary of results from twenty-four studies which reported correlations between high school achievement as a measure of intelligence, Aaron found the correlation coefficient ranged from .25 to .65 with a median of .48 (1:227). Jordan used high school marks compared with four different intelligence test scores with resulting correlations that were similar to those reported by Aaron. The results of Jordan's study were: Otis Quick Scoring Mental Ability Test, correlation .45; Army Alpha, .476; Miller Mental Ability Test, .476; and Terman Group Test. .492 (6:419-429). Pintner found that relationships between scores of intelligence tests and high school marks ranged between a coefficient of .20 to .60 with two below .40 (9:256). The Educational Testing Service conducted a study of seventh grade students in the Newark, Delaware, Central Junior High School. The study compared the SCAT scores taken at the beginning of the year with the STEP scores taken at the end of the school year. The test scores correlated .81 (11:26). All of these comparisons were conducted

with a close interval in time between the mental ability test and the measure of achievement. Layton used a ninth grade achievement test as a predictor of high school twelfth grade achievement. The scores were compared by percentile rank and showed a significant consistency. (8:10)

#### VALUE AND NEED FOR KNOWING THE PREDICTIVE VALUE OF TESTS

Cain and Michaels state that throughout the educational system promotion implies that the pupil is ready to follow successfully the work of the next higher grade. Consequently, every promotion and every failure is, in a very real sense, a prediction (4:891). Therefore, as a student progresses through school, there is a definite value of and need for valid and reliable measures of the predictive value of tests which are used to estimate the student's ability in a given subject. Cain and Michaels feel that there has been too little concern with followup of prediction. This is particularly true in terms of studies that purport to get at the inherent factors in success and failure (4:891). The accuracy of prediction needs to be more closely checked by investigation of actual later achievement.

#### CHAPTER III

#### MATERIALS USED, GROUPS STUDIED, AND METHODS EMPLOYED

#### I. MATERIALS USED

The SCAT and STEP tests are administered to all Bellevue Public School students starting in grade four and concluding in the tenth school year. The study was only concerned with the SCAT test form 4A that was given during the fall of 1962 to all sixth graders and the STEP reading test form 3A that was administered during the fall of 1964 to the same group of students who were then in the eighth grade.

#### II. GROUPS STUDIED

A search was made of 1,164 cumulative records from the Bellevue Public Schools to determine which students took the sixth grade verbal ability test form 4A in 1962 and the eighth grade STEP reading form 3A in 1964. During this search a list of 387 female students who took both tests was compiled with their scores.

Consecutive numbers were assigned to all members of the list. Numbers were read vertically from the table of random numbers compiled by Kendall and Smith. When a number from the table corresponded with a number assigned in the list, that unit was included in the sample. This procedure continued until a sample of one hundred female subjects was compiled.

From a list of 405 male students, a sample of one hundred subjects was procured in the same manner.

#### III. METHODS EMPLOYED

Statistical analysis was applied to separate male and female groups. All statistical formulas were those used by Edwards (5:72-80).

Tables were set up to employ the techniques necessary for finding a summary of the statistical analysis. A correlation coefficient was found to determine the degree of relationship existing between the SCAT ability scores and the STEP reading scores.

The standard error of estimate was established to ascertain the possible variation between the predicted score on the STEP and the actual achievement.

The two variables were plotted on a graph to determine the trend of the relationship. Since the relationship was linear, a regression equation was used to determine the predicted value of the STEP scores from the SCAT scores.

#### CHAPTER IV

#### RESULTS OF THE STUDY

The purpose of the study was to determine the relationship between the sixth grade SCAT and the eighth grade STEP scores. The coefficient of correlation was the statistical device employed. The results were as follows.

Table II indicates the coefficient of correlation for both groups.

#### TABLE II

| STEP READING |                    |                                 |  |  |  |
|--------------|--------------------|---------------------------------|--|--|--|
| Group        | No. of<br>Students | Coefficient of<br>Correlation r |  |  |  |
| Male         | 100                | .76*                            |  |  |  |
| Female       | 100                | .79*                            |  |  |  |

#### COEFFICIENTS OF CORRELATION BETWEEN THE SIXTH GRADE VERBAL SCAT AND EIGHTH GRADE STEP READING

\* Significant at the .01 level of confidence.

Employment of the formula for finding the coefficient of correlation revealed a significant positive correlation for the association of both the male and female sixth grade SCAT scores with their eighth grade reading STEP scores. The coefficient of correlation for the sample group of one hundred boys was .76. The coefficient correlation for the female group of one hundred students revealed a relationship of .79, which was slightly more than the male group. These correlations were interpreted as denoting a high relationship between the two tests.

Table III indicates the standard error of estimate for the samples of one hundred male and female students.

#### TABLE III

#### STANDARD ERROR OF ESTIMATE FOR PREDICTED VALUE OF STEP READING SCORES

| Group  | No. of pupils | s Standard Error of<br>Estimate |
|--------|---------------|---------------------------------|
| Male   | 100           | 7.75                            |
| Female | 100           | 5.87                            |
|        |               |                                 |

Standard error of estimate. The standard error of estimate, which indicates the possible variation between the predicted STEP score and the actual individual STEP reading achievement, was calculated. From the sample of one hundred male students the individual STEP score predicted from the SCAT score would be within 7.75 above or below the predicted score. From the sample of one hundred female students the individual STEP score predicted from the SCAT score would be





within 5.87 above or below the predicted score.

<u>Regression line of Y on X</u>. The male and female SCAT and STEP scores were plotted on separate graphs to determine the nature of their relationships. Figure 1, located on page 13, illustrates the plotted male SCAT and STEP score. Figure 2, located on page 14, illustrates similar information for the female score.

Both graphs indicated a linear relationship of the SCAT and STEP scores. A correlation coefficient was, therefore, an adequate measure of the association between the two tests.

A regression equation was used to determine the predicted SCAT scores and the predicted STEP scores, which is usually called the regression line, was drawn in each graph. The line drawn in each graph indicated the ideal relationship between the SCAT score and the STEP scores. However, the plotted points did not fall on this line. The discrepancies between the plotted points and the points of the line are explained by the standard error of estimate.

#### CHAPTER V

#### SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

#### I. THE SUMMARY

The purpose of this study was to compare the verbal ability of sixth grade students as measured by the SCAT with their eighth grade reading achievement as measured by the reading STEP. The students were selected by a random sample of those who had taken both tests. The comparison was achieved by finding the correlation of the SCAT and STEP scores, the standard error of estimate, and the regression line of Y on X.

The problem of the study was to determine the value of the SCAT as a guidance tool for teachers and counselors when directing students in the selection of high school courses.

#### II. THE CONCLUSIONS

1. An analysis of the gathered information revealed that there was a statistically significant correlation between the SCAT sixth grade verbal ability test and the STEP eighth grade reading achievement for one group of students in the Bellevue School District.

2. The correlation of the tests was slightly higher for girls than for boys. A review of the male students'

statistics revealed that one student received a lower score on the STEP than on the SCAT. For a sample of one hundred students, this is a possible cause for this difference.

3. The standard error of estimate was slightly less for the female sample than for the male sample. The range of scores on the STEP test was greater for female students than for male students.

4. The SCAT and STEP tests compared more favorably than most similar comparisons as found in previous studies.

5. The SCAT sixth grade verbal test was a reliable predictor of future achievement for the group who took the test in 1964. The hypothesis of this study was that the test scores of one group of children who took the verbal ability section of the sixth grade SCAT would not compare with a significantly positive correlation with test scores of the same group of children on the eighth grade reading STEP. On the basis of these findings, the original hypothesis was rejected.

#### III. RECOMMENDATIONS

1. The teacher and counselor in the Bellevue Public Schools should use the sixth grade SCAT verbal along with other information as a guidance tool for predicting possible future achievement in reading. If reliable testing information is used properly it can provide a basis for the teacher and counselor in regrouping, making individual assignments, selection of materials, drill on specific skills, conferences with parents, and as an aid to pupils in evaluating their own progress. One convenient method of keeping these records would be to set up a large looseleaf notebook with a section for every child. These cumulative records can furnish the basis for recommendations made at the end of each school term.

2. The Bellevue School District should continue to use the SCAT and STEP tests for reading. However, it is recommended that further comparisons with similar groups of students be made.

#### BIBLIOGRAPHY

- 1. Aaron, Sadie. <u>The Predictive Value of Cumulative Test</u> <u>Results</u>. Doctor's Thesis. Stanford University, 1946.
- Adams, F. J. "Predicting High School and College Records from Elementary School Test Data," <u>Journal</u> of Educational Psychology, 29:56-66, February, 1938.
- Ames, Viola C. "Factors Related to High School Achievement," Journal of Educational Psychology, 34:229-236, 1943.
- Cain, L. F. and Michaels, J. U. "Prognosis," <u>Encyclo-pedia of Educational Research</u>. New York: The MacMillan Company, p. 891, 1941.
- 5. Edwards, Allen L. <u>Statistical Analysis</u>. New York: Holt, Rinehart, and Winston, 1960.
- Jordan, A. M. "Correlation of Four Intelligence Tests with Grades," <u>Journal of Educational Psychology</u>, 13:419-429, October, 1922.
- Layton, R. B. "A Study of Prognosis in High School Algebra," <u>Journal of Educational Research</u>, 34:601-605, 1941.
- 8. Layton, Wilbur L. "The Relation of Ninth Grade Test Scores to Twelfth Grade Test Scores and High School Rank," Journal of Applied Psychology, 38:10, 1954.
- 9. Pintner, Rudolf. <u>Intelligence Testing; Methods and</u> <u>Results</u>. New York: Henry Holt Company, 1923.
- 10. Ross, C. C. and Hooks, W. T. "How Shall We Predict High School Achievement?" Journal of Educational Research, 22:184-195, 1930.
- 11. <u>SCAT-STEP Supplement</u>. Princeton, N.J., Los Angeles 27, California: Cooperative Test Division, Educational Testing Service, 1958.
- 12. <u>Teacher's Guide</u>. Sequential Tests of Educational Progress. Princeton, N. J., Los Angeles 27, California: Cooperative Test Division, Educational Testing Service, 1959.

13. <u>The Group Testing Program</u>. Bellevue, Washington: Bellevue Public Schools, 1963. (Mimeographed).

### APPENDICES

Tables "B" and "D" use the following symbols:

- X SCAT verbal scores
- Y STEP reading score
- X<sup>2</sup> SCAT verbal score squared
- Y<sup>2</sup> STEP reading score squared
- XY SCAT score times STEP score
- x SCAT score minus mean of SCAT  $(X \overline{X})$
- y STEP score minus mean of STEP  $(X \overline{Y})$
- $x^2$  (SCAT score minus mean of SCAT) squared
- $y^2$  (STEP score minus mean of STEP) squared
- xy x times y
- $\mathbf{\hat{y}}$  by times each value of x when by equals  $\mathbf{Ex}^{\mathbf{Exy}}$ y- $\mathbf{\hat{y}}$  each y member minus y
- $(y-\tilde{y})^2$  (each y member minus y) squared

Formulas used are from Edwards <u>Statistical Analysis</u> (see bibliography)

- 1. Coefficient of Correlation p. 73 (6.6)
- 2. Regression Equation p. 78 (6.9, 6.10)
- 3. Standard Error of Estimate p. 80 (6.11)

# MALE SCAT AND STEP SCORES

| OBSERVATION      | X   | Y           | x2    | Y <sup>2</sup> | XY     | x             | У             |
|------------------|-----|-------------|-------|----------------|--------|---------------|---------------|
| 1                | 246 | 247         | 60516 | 61009          | 60762  | -20.2         | -37.9         |
| 2                | 246 | 273         | 60516 | 74529          | 67158  | -20.2         | -11.9         |
| 3                | 247 | 273         | 61009 | 74529          | 67431  | -19.2         | -11.9         |
| 4                | 248 | 284         | 61504 | 80656          | 70432  | -18.2         | 9             |
| 5                | 250 | 254         | 62500 | 64516          | 63500  | -16.2         | -30.9         |
| 6                | 250 | 257         | 62500 | 66049          | 64250  | -10.2         | -27.9         |
| 7                | 201 | 270         | 67504 | 72900          | 67770  | -10.2         | -14.9         |
| 0                | 202 | 200<br>27 A | 64000 | 71024          | 607000 | -14.⊘<br>17.9 | 10.9          |
| 9                | 200 | 274<br>250  | 65025 | 67081          | 66045  | -10.2         | -25 0         |
| 10               | 255 | 260         | 65025 | 67600          | 66300  | -11.2         | -24.9         |
| 12               | 255 | 262         | 65025 | 68644          | 66810  | -11.2         | -22.9         |
| 13               | 255 | 279         | 65025 | 77841          | 71145  | -11.2         | - 5.9         |
| 14               | 255 | 280         | 65025 | 78400          | 71400  | -11.2         | - 4.9         |
| 15               | 255 | 287         | 65025 | 82369          | 73185  | -11.2         | 2.1           |
| 16               | 256 | 284         | 65536 | 80656          | 72704  | -10.2         | 9             |
| 17               | 257 | 260         | 66049 | 67600          | 66820  | - 9.2         | -24.9         |
| 18               | 257 | 262         | 66049 | 68644          | 67334  | - 9.2         | -22.9         |
| 19               | 257 | 270         | 66049 | 72900          | 69390  | - 9.2         | -14.9         |
| 20               | 258 | 267         | 66564 | 71289          | 68886  | - 8.2         | -17.9         |
| 21               | 258 | 270         | 66564 | 72900          | 69660  | - 8.2         | -14.9         |
| 22               | 258 | 273         | 66564 | 74529          | 70434  | - 8.2         | -11.9         |
| 23               | 258 | 280         | 66564 | 78400          | 72240  | - 8.2         | - 4.9         |
| 24               | 258 | 281         | 66564 | 78961          | 72498  | - 8.2         | - 3.9         |
| 25               | 258 | 283         | 66564 | 80089          | 73014  | - 8.2         | - 1.9         |
| 26               | 258 | 284         | 66564 | 80656          | 73272  | - 8.2         | 9             |
| 27               | 259 | 287         | 67081 | 82369          | 74592  | - 7.2         | 3.⊥           |
| 28               | 259 | 288         | 67081 | 82944          | 74333  | - 7.2         | 2.1           |
| 29               | 259 | 288         | 67081 | 82944          | 74592  | - 7.2         | 0.L           |
| 30<br>L          | 260 | 270         | 67600 | 72900          | 70200  | - 0.2         | -14.9         |
| 51<br>79         | 200 | 279         | 67600 | 77841          | 72340  | - 0.2         | - 0.9         |
| した<br><b>ス</b> ス | 260 | 288         | 67600 | 82044          | 74020  | - 0.2         | ん・エ<br>マ 1    |
| 31               | 261 | 265         | 68121 | 70995          | 69165  | - 0.2         | _10 0         |
| 35               | 261 | 287         | 68121 | 82369          | 74907  | - 5.2         | 2.1           |
| 36               | 261 | 288         | 68121 | 82944          | 75168  | - 5.2         | $\frac{2}{3}$ |
| 37               | 261 | 289         | 68121 | 83521          | 75429  | - 5.2         | 4.1           |
| 38               | 261 | 299         | 68121 | 89401          | 78039  | - 5.2         | 14.1          |
| 39               | 262 | 277         | 68644 | 76729          | 72574  | - 4.2         | - 7.9         |
| 40               | 262 | 279         | 68644 | 77841          | 73098  | - 4.2         | - 5.9         |
| 41               | 262 | 283         | 68644 | 80089          | 74146  | - 4.2         | - 1.9         |
| 42               | 262 | 285         | 68644 | 81225          | 74670  | - 4.2         | .1            |
| 43               | 263 | 265         | 69169 | 70225          | 69695  | - 3.2         | -19.9         |
| 44               | 263 | 271         | 69169 | 73441          | 71273  | - 3.2         | -13.9         |
| 45               | 263 | 279         | 69169 | 77841          | 73377  | - 3.2         | - 5.9         |
| 46               | 263 | 281         | 69169 | 78961          | 73903  | - 3.2         | - 3.9         |
| 47               | 263 | 288         | 69169 | 82944          | 75744  | - 3.2         | 3.1           |
| 48               | 263 | 295         | 69169 | 87025          | 77585  | - 3.2         | 10.1          |
| 49               | 263 | 296         | 69169 | 87616          | 77848  | - 3.2         | 11.1          |
| 50               | 264 | 28T         | 69696 | 7896T          | 74184  | - 2.2         | - 3.9         |

| x <sup>2</sup> | v <sup>2</sup>  | xv               | v                | v-v              | 2 (v-v)                |
|----------------|-----------------|------------------|------------------|------------------|------------------------|
| 408.04         | 1436.41         | 765.58           | -19.430          | -18,470          | 338.817649             |
| 408.04         | 141.61          | 240.38           | -19.430          | - 7.530          | 56,700900              |
| 368.64         | 141.61          | 228.48           | -18,469          | - 6.569          | 43.151761              |
| 331.24         | .81             | 16.38            | -17.507          | -16.607          | 275.792449             |
| 262.44         | 954.81          | 500.58           | -15.583          | -15.317          | 234.610489             |
| 262.44         | 778.41          | 451.98           | -15.583          | 12.317           | 151.708489             |
| 231.04         | 222.01          | 226.48           | -14.621          | .279             | .077841                |
| 201.64         | 285.61          | 239.98           | -13.659          | 3.241            | 10.504081              |
| 174.24         | 118.81          | 143.88           | -12.697          | - 1.797          | 3.229209               |
| 125.44         | 670.81          | 290.08           | -10.773          | 15.127           | 228.826129             |
| 125.44         | 620.01          | 278.88           | -10.773          | 14.127           | 199.572129             |
| 125.44         | 524.41          | 256.48           | -10.773          | 12.127           | 147.064129             |
| 125.44         | 34.81           | 66.08            | -10.773          | - 4.873          | 23.746129              |
| 125.44         | 24.01           | 54.88            | -10.773          | - 5.873          | 34.492129              |
| 125.44         | 4.41            | -23.52           | -10.773          | - 8.673          | 75.220929              |
| 104.04         | .81             | 9.18             | - 9.811          | - 8.911          | 79.405921              |
| 84.64          | 620.01          | 229.08           | - 8.850          | 16.050           | 257.602500             |
| 84.64          | 524.41          | 210.68           | - 8.850          | 14.050           | 197.402500             |
| 84.64          | 222.01          | 137.08           | - 8.850          | 6.050            | 36.602500              |
| 67.24          | 320.41          | 146.78           | - 7.888          | 10.012           | 100.240144             |
| 67.24          | 222.01          | 122.18           | - 7.888          | 7.012            | 49.168144              |
| 67.24          | 141.61          | 97.58            | - 7.888          | 4.012            |                        |
| 67.24          | ລ4.01<br>15 ຄ1  | 40.18            | -7.888           | - 2.980          | 0,920144               |
| 67.24<br>67.91 | 13.61<br>7 61   | 01.90<br>15 50   |                  | - J.900<br>5 088 | 10.904144<br>35 856111 |
| 67 91          | 0.01<br>81      | 7 38             | - 7.888          | - 5.900          | 18 839144              |
| 51 84          | 10.             | -22 32           | - 6 926          | - 3 826          | 14 638276              |
| 51.84          | 4 41            | -15.12           | - 6.926          | - 4.827          | 23,299929              |
| 51.84          | 9.61            | -22.32           | - 6,926          | - 3.826          | 14.638276              |
| 38.44          | 222.01          | 92.38            | - 5.964          | 8,936            | 79.852096              |
| 38.44          | 34.81           | 36,58            | - 5.964          | 064              | .004096                |
| 38.44          | 4.41            | -13.02           | - 5.964          | - 3.864          | 14.930496              |
| 38.44          | 9.61            | -19.22           | - 5.964          | - 2.864          | 8.202496               |
| 27.04          | 396.01          | 103.48           | - 5.001          | 14.899           | 221.980201             |
| 27.04          | 4.41            | -10.92           | - 5.001          | - 2.901          | 8.415801               |
| 27.04          | 9.61            | -16.12           | - 5.001          | - 1.901          | 3.613801               |
| 27.04          | 16.81           | -21.32           | - 5.001          | 901              | .811801                |
| 27.04          | 198.81          | -73.32           | <b>-</b> 5.001   | 9.099            | 82.791801              |
| 17.64          | 62.41           | 33.18            | - 4.040          | 3.860            | 14.899600              |
| 17.64          | 34.81           | 24.78            | - 4.040          | 1.860            | 3.459600               |
| 17.64          | 3.61            | 7.98             | - 4.040          | - 2.140          | 4.579600               |
| 17.64          | .01             | .42              | - 4.040          | - 3.940          | 15.523600              |
| 10.24          | 396.01          | 63.68            | - 3.078          | 16.822           | 282.979684             |
| 10.24          | 193.21          | 44.48            | - 3.078          | 10.822           | 117.115684             |
| 10.24          | 34.81           | 18.88            | - 3.078          | 2.822            | 7.963684               |
| 10.24          | 12.51           | 12.48            | - 3.078          | .822             | .675684                |
| 10.24          | 9.6L            | - 9.92           | - 3.078          | .022             | .000484                |
| 10.24          |                 | - 32.32<br>75.50 | - 3.078          | 7.022            | 49.308484              |
| 10.24          | ⊥≾ວ•≾⊥<br>15 91 | -33.5%           | - 0.078<br>711 0 |                  | 04.002484              |
| 4.04           | ±0.⊄±           | 0.00             | - C.LI7          | T.100            | 9.T12088               |

| OBSERVATION | X     | Y           | $\mathbf{x}^{\mathbf{z}}$ | Y <sup>2</sup> | XY             | x    | У     |
|-------------|-------|-------------|---------------------------|----------------|----------------|------|-------|
| 51          | 264   | 292         | 69696                     | 85264          | 77088          | -2.2 | 7.1   |
| 52          | 265   | 274         | 70225                     | 75076          | 72610          | -1.2 | -10.9 |
| 53          | 265   | 285         | 70225                     | 81225          | 75525          | -1.2 | .1    |
| 54          | 265   | <b>2</b> 92 | 70225                     | 85264          | 77380          | -1.2 | 7.1   |
| 55          | 266   | 279         | 70756                     | 77841          | 74214          | 2    | - 5.9 |
| 56          | 266   | 295         | 70756                     | 87025          | 78470          | 2    | 10.1  |
| 57          | 266   | 296         | 70756                     | 87616          | 78736          | 2    | 11.1  |
| 58          | 268   | 284         | 71824                     | 80656          | 76112          | 1.8  | 9     |
| 59          | 268   | 292         | 71824                     | 85264          | 78256          | 1.8  | 7.1   |
| 60          | 268   | 293         | 71824                     | 85849          | 78524          | 1.8  | 8.1   |
| 61          | 268   | 295         | 71824                     | 87025          | 79060          | 1.8  | 10.1  |
| 62          | 269   | 285         | 72361                     | 81225          | 76665          | 2.8  | .1    |
| 63          | 269   | 288         | 72361                     | 82944          | 77472          | 2.8  | 3.1   |
| 64          | 269   | 292         | 72361                     | 85264          | 78548          | 2.8  | 7.1   |
| 65          | 270   | 281         | 72900                     | 78961          | 75870          | 3.8  | - 3.9 |
| 66          | 270   | 293         | 72900                     | 85849          | 79110          | 3.8  | 8.1   |
| 67          | 270   | 300         | 72900                     | 90000          | 81000          | 3.8  | 15.1  |
| 68          | 272   | 273         | 73984                     | 74529          | 74256          | 5.8  | -11.9 |
| 69          | 272   | 290         | 73984                     | 84100          | 78880          | 5.8  | 5.1   |
| 70          | 272   | 294         | 73984                     | 86436          | 79968          | 5.8  | 9.1   |
| 71          | 272   | 295         | 73984                     | 87025          | 80240          | 5.8  | 10.1  |
| 72          | 272   | 296         | 73984                     | 87616          | 80512          | 5.8  | 11.1  |
| 73          | 273   | 290         | 74529                     | 84100          | 79170          | 6.8  | 5.1   |
| 74          | 273   | 300         | 74529                     | 90000          | 81900          | 6.8  | 15.1  |
| 75          | 273   | 302         | 74529                     | 91204          | 82446          | 6.8  | 17.1  |
| 76          | 274   | 287         | 75076                     | 82369          | 78 <b>63</b> 8 | 7.8  | 2.1   |
| 77          | 274   | 289         | 75076                     | 83521          | 79186          | 7.8  | 4.1   |
| 78          | 276   | 288         | 76176                     | 82944          | 79488          | 9.8  | 3.1   |
| 79          | 276   | 299         | 76176                     | 89401          | 82524          | 9.8  | 14.1  |
| 80          | 277   | 293         | 76729                     | 85849          | 81161          | 10.8 | 8.1   |
| 81          | 277   | 295         | 76729                     | 87025          | 81715          | 10.8 | 10.1  |
| 62          | 277   | 300         | 76729                     | 90000          | 83100          | 10.8 | 15.1  |
| 83          | 279   | <b>2</b> 81 | 77841                     | 78961          | 78399          | 12.8 | - 3.9 |
| 84          | 279   | 285         | 77841                     | 81225          | 79515          | 12.8 | .1    |
| 85          | 279   | 292         | 77841                     | 85264          | 81468          | 12.8 | 7.1   |
| 86          | 279   | 293         | 77841                     | 85849          | 81747          | 12.8 | 8.1   |
| 87          | 279   | 294         | 77841                     | 86436          | 82026          | 12.8 | 9.1   |
| 88          | 279   | 296         | 77841                     | 87616          | 82584          | 12.8 | 11.1  |
| 89          | 279   | 301         | 77841                     | 90601          | 83979          | 12.8 | 16.1  |
| 90          | 279   | 303         | 77841                     | 91809          | 84537          | 12.8 | 18.1  |
| 91          | 279   | 309         | 77841                     | 95481          | 86211          | 12.8 | 24.1  |
| 92          | 281   | 296         | 78961                     | 87616          | 83176          | 14.8 | 10.1  |
| 93          | 281   | 299         | 78961                     | 89401          | 84019          | 14.8 | 14.1  |
| 94          | 282   | 295         | 79524                     | 87025          | 83190          | 15.8 | 10.1  |
| 95          | 284   | 292         | 80656                     | 85264          | 82928          | 17.8 | 7.1   |
| 96          | 284   | 306         | 80656                     | 93636          | 86904          | 17.8 | 21.1  |
| 97          | 286   | 305         | 81796                     | 93025          | 87230          | 19.8 | 20.1  |
| 98          | 289   | 303         | 83521                     | 91809          | 87567          | 22.8 | 18.1  |
| 99          | 292   | 289         | 85264                     | 83521          | 84388          | 25.8 | 4.1   |
| 100         | 295   | 305         | 87025                     | 93025          | 89975          | 28.8 | 20.1  |
| TOTAL       | 26622 | 28487       | 7098392                   | 8131347        | 7593565        |      |       |

Mean of X 266.2 Mean of Y 284.9

| x <sup>2</sup>   | y <sup>2</sup>  | xy               | <b>∼</b> y       | y-y              | (y-y) <sup>2</sup> 23 |
|------------------|-----------------|------------------|------------------|------------------|-----------------------|
| 4.84             | 50.41           | -15.62           | -2.117           | 8.783            | 77.141089             |
| 1.44             | 118.81          | 13.08            | -1.154           | 9.746            | 94.984516             |
| 1.44             | .01             | 12               | -1.154           | -1.054           | 1.110916              |
| 1.44             | 50.41           | - 8.52           | -1.154           | 5.946            | 35.354916             |
| .04              | 34.8L           | 1.18             | 192              | 5.708            | 32.581264             |
| .04              |                 | - 2.02           | 192              | 9.908            | 98.108404             |
| .U4<br>5 54      | 120.21          | - 2.22           | 192<br>וצת ו     | TO . 200         | LIO, 904404<br>600561 |
| 5.24             | 50 41           | 12 78            | 1 731            | 001<br>5 369     | 28 826161             |
| 3.24             | 65.61           | 14.58            | 1,731            | 6.369            | 40.564161             |
| 3.24             | 102.01          | 18,18            | 1.731            | 8.369            | 70.040161             |
| 7.84             | .01             | .28              | 2.693            | -2.593           | 6.723649              |
| 7.84             | 9.61            | 8.68             | 2.693            | .407             | .165649               |
| 7.84             | 50.41           | 19.88            | 2.693            | 4.407            | 19.421649             |
| 14.44            | 15.21           | -14.82           | 3.655            | .245             | .060025               |
| 14.44            | 65.61           | 30.78            | 3.65 <b>5</b>    | 4.445            | 19.758025             |
| 14.44            | 228.01          | 57.38            | 3.655            | 11.445           | 130.988025            |
| 33.64            | 141.61          | -69.02           | 5.579            | 6.321            | 39,955041             |
| 33.64            | 26.01           | 29.58            | 5.579            | 479              | .229441               |
| 33.64            | 82.81           | 52.78            | 5.579            | 3.521            | 12.397441             |
| 33.64            | 102.01          | 58.58            | 5.579            | 4.521            | 20.439441             |
| 33.64            | 123.21          | 64.38            | 5.579            | 5.521            | 30.481441             |
| 46.24            | 26.01           | 34.68            | 6.541            | -1.441           | 2.076481              |
| 46.24            | 228.01          | 102.68           | 6.541            | 8.559            | 73.256481             |
| 40.24            | 292.41          |                  | 6.041<br>7 507   | TO.009           | 111.492481            |
| 60.84            | 4•4⊥<br>16 01   | TO.08            | 7.503            | -0.400           | 29.192409             |
| 00.04            | 10.01           | 21.90<br>21.90   | 7.503            | -3.403           | 10 386400             |
| 90.04            | 108 81          | 128.18           | 9.427            | 4 673            | 21 836409             |
| 116 64           | 65.61           | 87.48            | 10.389           | -2.289           | 5.239521              |
| 116.64           | 102.01          | 109.08           | 10,389           | 289              | .083521               |
| 116.64           | 228.01          | 163.08           | 10.389           | 4.711            | 22.193521             |
| 163.84           | 15.21           | -49.91           | 12.312           | -8.412           | 70.761744             |
| 163.84           | .01             | 1.28             | 12.312           | -12.212          | 149.132944            |
| 163.84           | 50.41           | 90.88            | 12.312           | -5.212           | 27.164944             |
| 163.84           | 65.61           | 103.68           | 12.312           | -4.212           | 17.740944             |
| 163.84           | 82.81           | 116.48           | 12.312           | -3.212           | 10.316944             |
| 163.84           | 123.21          | 142.08           | 12.312           | -1.212           | 1.468944              |
| 163.84           | 259.21          | 206.08           | 12.312           | 3.788            | 14.348944             |
| 163.84           | 327.61          | 231.68           | 12.312           | 5.788            | 33.500944             |
| 163.84           | 580.81          | 308.48           | 12.312           | 11.788           | 138.958944            |
| 219.04           | 102.01          | 149.48           | 14.236           | -4.136           | 17.106496             |
| 219.04           | 198.81          | 208.08           | 14.200<br>15 100 | 130              | .018496               |
| 247.04<br>316 91 | 102.01<br>50 /1 | 108.00<br>T08.00 | 10.190           | -0.098           | 100 440404            |
| 316 84           | 445 91          | 375 58           | エノ・エムム<br>17 199 | -10.022<br>3 072 | 15 894484             |
| 392.04           | 404.01          | 397 98           | 19.046           | 1 054            | 1,110916              |
| 519.84           | 327 61          | 412.68           | 21,931           | -3,831           | 14.676561             |
| 665.64           | 16.81           | 105.78           | 21.931           | -17.831          | 317.944561            |
| 829.44           | 404.01          | 578.88           | 27.703           | -7.603           | 57.805609             |
| 11.083.20        | 16.234.80       | 10.661.52        |                  |                  | 5896 489787           |

#### APPENDIX C

Coefficient of Correlation for Male Students:



Standard Error of Estimate for Male Students:

Sy.x = 
$$\frac{E(y-y)^2}{n-2} = 7.75682$$

Regression of Y on X for Male Students:

 $b_y = \frac{Exy}{Ex^2}$  = .9619  $\tilde{y} = b_y x$  (x for each of its values)

The regression line was drawn by using observation #1 (X score 246) and its corresponding Y score 247 -  $(y-\bar{y}) =$ 247 - (18.470) = 265.470. Therefore, the first point plotted was X = 246, Y = 265.470. The second point plotted used observation #100 (X score 295) and its corresponding Y score  $305 - (y-\bar{y}) = 305 - (7.603) = 312.603$ . Therefore, the second point plotted was X = 295, Y = 312.603. The regression line was drawn between these two points. However, any two observations could be used to determine this same line.

# FEMALE SCAT AND STEP SCORES

| OBSERVATION | x               | Y                      | x²             | ۲ <sup>2</sup> | XY             | x            | У       |
|-------------|-----------------|------------------------|----------------|----------------|----------------|--------------|---------|
| 1           | 244             | 260                    | 59536          | 67600          | 63440          | -21.8        | -30     |
| 2           | 244             | 295                    | 59536          | 87025          | 71980          | -21.8        | 5       |
| 3           | 245             | 262                    | 60025          | 68644          | 64190          | -20.8        | -28     |
| 4           | 248             | 270                    | 61504          | 72900          | 66960          | -17.8        | -20     |
| 5           | 250             | 268                    | 62500          | 71824          | 67500          | -15.8        | -22     |
| 6           | 250             | 273                    | 62500          | 74529          | 68250          | -15.8        | -17     |
| 7           | 250             | 281                    | 62500          | 78961          | 70250          | -15.8        | - 9     |
| 8           | 251             | 276                    | 63001          | 76176          | 69276          | -14.8        | -14     |
| 9           | 251             | 277                    | 63001          | 76729          | 69527          | -14.8        | -13     |
| 10          | 252             | 276                    | 63504          | 76176          | 69552          | -13.8        | -14     |
| 11          | 252             | 276                    | 63504          | 76176          | 69552          | -13.8        | -14     |
| 12          | 252             | 277                    | 63504          | 76729          | 69804          | -13.8        | -13     |
| 13          | 253             | 259                    | 64009          | 67081          | 65527          | -12.8        | -31     |
| 14          | 253             | 274                    | 64009          | 75076          | 69322          | -12.8        | -16     |
| 15          | 254             | 279                    | 64516          | 77841          | 70866          | -11.8        | -11     |
| 16          | 254             | 283                    | 64516          | 80089          | 71882          | -11.8        | - 7     |
| 17          | 255             | 262                    | 65025          | 68644          | 66810          | -10.8        | -28     |
| 18          | 256             | 290                    | 65536          | 84100          | 74240          | - 9.8        | .0      |
| 19          | 257             | 279                    | 66049          | 77841          | 71703          | - 8.8        | -11     |
| 20          | 257             | 284                    | 66049          | 80656          | 72988          | - 8.8        | - 6     |
| 21          | 257             | 289                    | 66049          | 83521          | 74273          | - 8.8        | - 1     |
| 22          | 257             | 290                    | 66049          | 84100          | 74530          | - 8.8        | .0      |
| 23          | 258             | 277                    | 66564          | 76729          | 71466          | - 7.8        | -13     |
| 24          | 258             | 279                    | 66564          | 77841          | 71982          | - 7.8        | -11     |
| 25          | 258             | 287                    | 66564          | 82369          | 74046          | - 7.8        | - 3     |
| 26          | 258             | 296                    | 66564          | 87616          | 76368          | - 7.8        | 6       |
| 27          | 258             | 298                    | 66564          | 88804          | 76884          | - 7 8        | Ř       |
| 28          | 259             | 279                    | 67081          | 77841          | 72261          | - 6.8        | _11     |
| 29          | 259             | 285                    | 67081          | 81225          | 73815          | - 6.8        | _ 5     |
| 30          | 259             | 288                    | 67081          | 82944          | 74592          | - 6.8        | - 2     |
| 31          | 250             | 206                    | 67081          | 87616          | 76664          | - 6.8        | - 2     |
| 32          | 260             | 284                    | 67600          | 80656          | 73840          | - 5.8        | - 6     |
| 33          | 260             | 289                    | 67600          | 83521          | 75140          | - 5.8        | _ U     |
| 34          | 260             | 202                    | 67600          | 84100          | 75400          | - 5.8        |         |
| 35          | 260             | 205                    | 67600          | 87025          | 76700          | - 5.8        | •0      |
| 36          | 261             | 268                    | 68121          | 71824          | 69948          | - 4.8        | _ 22    |
| 37          | 261             | 285                    | 68121          | 81225          | 74385          | - 4.8        | - 22    |
| 38          | 261             | 203                    | 68121          | 85849          | 74000          | - 4.8        | - 5     |
| 39          | 261             | 203                    | 68121          | 85849          | 76473          | - 4.8        | U<br>R  |
| 40          | 261             | 300                    | 68121          | 90000          | 70470          |              | 10      |
| 41          | 262             | 271                    | 68644          | 75076          | 70000          | - 4.0        | 16      |
| 19          | 262             | 2023                   | 68611          | 80080          | 71700          | - J.O        | -10     |
| 15<br>15    | 262             | 200                    | 69611          | 20089<br>27616 | 74140          | - J.O        | - /     |
| 11          | 262             | 200                    | 60160          | 87610          | 77552          | - J.O        | 6       |
| 15          | 263             | 20 <del>1</del><br>200 | 60160          | 82044          | 74096          | - 2.0<br>0 0 | - 0     |
| 16          | 200<br>267      | 200                    | 09109          | 06744          | 75744          | - 2.0        | - 2     |
| 10<br>10    | 202             | 205<br>205             | C0160<br>09T08 | 00204          | 10790<br>00505 | - 2.0<br>0   | کن<br>۲ |
| 79<br>78    | 261             | ດອບ<br>ດວວດ            | 09109          | 01020          | 11000          |              | ິ       |
| 10          | 204<br>961      | 200                    | 60606<br>02020 | 06944          | 70032          | - 1.8        | - 2     |
| 77<br>50    | 204<br>961      | 500<br>000             | 09090          | 04100          | 70000          | - 1.8        | •0      |
| 50          | 20 <del>4</del> | 620                    | 02020          | 00004          | 10072          | - T'A        | 8       |

| x <sup>2</sup> | y <sup>2</sup> | xy     | <b>م</b> حر<br>۲ | y-y     | $(\mathbf{y} - \mathbf{y})^2$ |
|----------------|----------------|--------|------------------|---------|-------------------------------|
| 475.24         | 900.           | 654.0  | -18,768          | 11.232  | 126.157764                    |
| 475.24         | 25.            | -109.0 | -18.768          | -13.767 | 189.530289                    |
| 432.64         | 784.           | 582.4  | -17,907          | 10.093  | 101.868649                    |
| 316.84         | 400.           | 356.0  | -15.324          | 4.676   | 21.864976                     |
| 249.64         | 484.           | 347.6  | -13.602          | 8.398   | 70.526404                     |
| 249.64         | 289.           | 268.6  | -13.602          | 3.398   | 11.546404                     |
| 249.64         | 81.            | 142.2  | -13.602          | - 4.602 | 21.178404                     |
| 219.04         | 196.           | 207.2  | -12.741          | 1.259   | 1.585081                      |
| 219.04         | 169.           | 192.4  | -12.741          | .259    | .067081                       |
| 190.44         | 196.           | 193.2  | -11.880          | 2.120   | 4.494400                      |
| 190.44         | 196.           | 193.2  | -11.880          | 2.120   | 4.494404                      |
| 190.44         | 169.           | 179.4  | -11.880          | 1.120   | 1.254400                      |
| 163.84         | 961.           | 396.8  | -11.020          | 19.980  | 399,200400                    |
| 163.84         | 256.           | 204.8  | -11.020          | 4.980   | 24.800400                     |
| 139.24         | 121.           | 129.8  | -10.159          | .841    | .707281                       |
| 139.24         | 49.            | 82.6   | -10.159          | - 3,159 | 9,979281                      |
| 116.64         | 784.           | 302.4  | - 9.298          | 18.702  | 349.764804                    |
| 96.04          | Ο.             | 0.0    | - 8.437          | 8.437   | 71.182969                     |
| 77.44          | 121.           | 96.8   | - 7.576          | 3.424   | 11.723776                     |
| 77.44          | 36.            | 52.8   | - 7.576          | - 1.576 | 2.483776                      |
| 77.44          | 1.             | 8.8    | - 7.576          | - 6.576 | 43.243776                     |
| 77.44          | 0.             | 0.0    | - 7.576          | 7.576   | 57.395776                     |
| 60.84          | 169.           | 101.4  | - 6.715          | 6.285   | 39.501225                     |
| 60.84          | 121.           | 85.8   | - 6.715          | 4.285   | 18.361225                     |
| 60.84          | 9.             | 23.4   | - 6.715          | - 3.715 | 13.801225                     |
| 60.84          | 36.            | 46.8   | - 6.715          | 715     | .511225                       |
| 60.84          | 64.            | - 62.4 | - 6.715          | 1.285   | 1.651225                      |
| 46.24          | 121.           | 74.8   | - 5.854          | 5.146   | 26.481316                     |
| 46.24          | 25.            | 34.0   | - 5.854          | 854     | .729316                       |
| 46.24          | 4.             | 13.6   | - 5.854          | - 3.854 | 14.853316                     |
| 46.24          | 36.            | - 40.8 | - 5.854          | .146    | .021316                       |
| 33.64          | 36.            | 34.8   | - 4.993          | 146     | .021316                       |
| 33.64          | 1.             | 5.8    | - 4.993          | - 3.993 | 15,944049                     |
| 33.64          | 0.             | 0.0    | - 4.993          | - 4.993 | 24.930049                     |
| 33.64          | 25.            | - 29.0 | - 4.993          | .007    | .000049                       |
| 23.04          | 484.           | 105.6  | - 4.132          | 17,868  | 319.265424                    |
| 23.04          | 25.            | 24.0   | - 4.132          | .868    | .753424                       |
| 23.04          | 9.             | - 14.4 | - 4.132          | - 3.132 | 9.809424                      |
| 23.04          | 9.             | - 14.4 | - 4.132          | - 3.132 | 9.809424                      |
| 23.04          | 100.           | - 48.0 | - 4,132          | 5.868   | 34.433424                     |
| 14.44          | 256.           | 60.8   | - 3.271          | 12.729  | 162.027441                    |
| 14.44          | 49.            | 26.6   | - 3.271          | 3.729   | 13.905441                     |
| 14.44          | 36.            | 22.8   | - 3.271          | 2.729   | 7.447441                      |
| 7.84           | 36.            | 16.8   | - 2.411          | 3.589   | 12.880921                     |
| 7.84           | 4.             | - 5.6  | - 2.411          | 411     | .168921                       |
| 7.84           | 4.             | - 5.6  | - 2.411          | 411     | .168921                       |
| 7.84           | 25.            | - 14.4 | - 2.411          | 2.589   | 6.702921                      |
| 3.24           | 4.             | 3.6    | - 1.550          | .450    | .202500                       |
| 3.24           | Ο.             | 0.0    | <b>- 1.</b> 550  | - 1.550 | 2.402500                      |
| 3.24           | 64.            | - 14.4 | - 1.550          | 6.450   | 41.602500                     |

| OBSERVATION           | x                      | Y          | x <sup>2</sup> | Y <sup>2</sup> | XY             | x      |              | у               |
|-----------------------|------------------------|------------|----------------|----------------|----------------|--------|--------------|-----------------|
| 51                    | 265                    | 292        | 70225          | 85264          | 77380          | -      | .8           | 2               |
| 52                    | 265                    | 295        | 70225          | 87025          | 78175          | -      | .8           | 5               |
| 53                    | 265                    | 299        | 70225          | 89401          | 79235          | _      | .8           | 9               |
| 54                    | 265                    | 300        | 70225          | 90000          | 79500          |        | .8           | 10              |
| 55                    | 266                    | 298        | 70756          | 88804          | 79268          |        | .2           | 8               |
| 56                    | 268                    | 285        | 71824          | 81225          | 76380          |        | 2.2          | -5              |
| 57                    | 268                    | 288        | 71824          | 82944          | 77184          |        | 2.2          | -2              |
| 58                    | 268                    | 296        | 71824          | 87616          | 79328          |        | 2.2          | 6               |
| 59                    | 268                    | 302        | 71824          | 91204          | 80936          |        | 2.2          | 12              |
| 60                    | 269                    | 283        | 72361          | 80089          | 76172          |        | 3.2          | -7              |
| 61                    | 269                    | 284        | 72361          | 80656          | 76396          |        | 3.2          | -6              |
| 62                    | 269                    | 293        | 72361          | 85849          | 78817          |        | 3.2          | 3               |
| 63                    | 269                    | 295        | 72361          | 87025          | 79355          |        | 3.2          | 5               |
| 64                    | 269                    | 300        | 72361          | 90000          | 80700          |        | 32           | 10              |
| 65                    | 270                    | 296        | 72900          | 87616          | 79920          |        | 4 2          | 6               |
| 66                    | 270                    | 298        | 72900          | 88804          | 80460          |        | 4 2          | Ř               |
| 67                    | 279                    | 203        | 73984          | 85849          | 79696          |        | τ.ω<br>6 2   | 3               |
| 68                    | 272                    | 296        | 73984          | 87616          | 80512          |        | 6 2          | 6               |
| 60                    | 575                    | 208        | 73081          | 88801          | 81056          |        | 6 2          | g               |
| 70                    | 272                    | 290        | 73984          | 80401          | 81228          |        | 6 2          | 0               |
| וק                    | んてん<br>973             | 200        | 70504          | 84100          | 70170          |        | 7 9          | Ő               |
| 71<br>79              | 270                    | 290<br>203 | 74520          | 858/9          | 79170          |        | 7 9          | יס.<br>די       |
| 75                    | 270                    | 203<br>203 | 74520          | 85849          | 79909          |        | 7 2          | ט<br>ק          |
| 73                    | 270                    | 205        | 74029          | 87025          | 20535<br>20535 |        | 7.0          | 5               |
| 7 <del>1</del><br>7 5 | 270                    | 296        | 74029          | 87616          | 80808          |        | 7.0          | 6               |
| 76                    | 270                    | 200        | 74520          | 01010          | 82446          |        | 7.0          | 19              |
| 70                    | 270                    | 305        | 74029          | 91204          | 02440          |        | 7.0          | 15              |
| 78                    | 270                    | 202        | 74029          | 90020<br>91995 | 78000          |        | 1.2          | тО<br>Б         |
| 70                    | 574<br>977 A           | 200        | 75076          | 95164          | 20090          |        | ບ <b>.</b> ພ | -J<br>9         |
| 80                    | 574<br>977             | 292<br>205 | 75076          | 00104<br>07095 | 80008          |        |              | یہ<br>ج         |
| 20<br>21              | 27 <del>4</del><br>977 | 295<br>205 | 75076          | 87025          | 80830          |        | 0.A          | 5               |
| 60<br>01              | 076                    | 220<br>200 | 75070          | 07020          | 70499          | ٦      | 0.2          | ິ<br>ເ          |
| 02<br>Q7              | 270                    | 200        | 70170          | 02944          | 79400          | 1      | ید O.        | + <i>€</i><br>7 |
| 84                    | 270                    | 206        | 70170          | 07616          | 00000          | 1      | یم• 0.       | 6               |
| 0 <del>1</del>        | 270                    | 200        | 70170          | 87010          | 01090          | ד<br>ר | Ω•Ω          | 0               |
| 86                    | 270                    | 290        | 70170          | 01004          | 06640          |        | <u>کہ</u> U. | 0<br>10         |
| 00                    | 270                    | 202        | 70170          | 91204          | 00002          |        | 1 0          |                 |
| 07                    | 6//<br>0 <b>00</b>     | 290        | 70729          | 00004          | 02040          | ۲<br>۲ |              | 0               |
| 00                    | 277                    | 299        | 70729          | 89401          | 82823          | 1      | 1.2          | 9               |
| 00                    | 279                    | 290<br>705 | 77041          | 87020          | 82303          | 1      | ວ. ລ         | ່ວ              |
| 90                    | 279                    | 305        | 77841          | 93020          | 80090          |        | S.2          | TO              |
| 00<br>AT              | 202                    | 30 Z       | 79024          | 91204          | 80104          | 1      | <u>ک</u> و.0 | T C             |
| 92<br>07              | 204<br>004             | 290<br>700 | 80656          | 87025          | 83780          | Ļ      | 8.2          | с<br>10         |
| 90                    | 204                    | 302<br>700 | 80000          | 91204          | 85768          | 1      | 8.2          | 12              |
| 94                    | 204<br>004             | 302<br>705 | 80656          | 91204          | 80768          | Ļ      | 8.2          | 12              |
| 90                    | 204<br>004             | 305        | 80000          | 93023          | 86620          |        | 8.2          | TO              |
| 90                    | 284                    | 300        | 800000         | 90000          | 86904          | Ļ      | 8.2          | TP              |
| 97<br>97              | 284                    | 307        | 80656          | 94249          | 87188          | Ţ      | ອ.ະ          | 17              |
| 90<br>20              | 289                    | 509        | 89927          | 85481          | 8930T          | 2      | 3.2          | 19<br>19        |
| 100<br>70             | 289                    | 509        | ROOST          | 95481          | 89301          | 2      | ວ.ະ          | 13              |
| T00                   | 298                    | <u> </u>   | 88804          | <u>AT808</u>   | 90204          | 3      | 2.2          | 13              |
|                       | 20070                  | 20220      | 7074093        | 8419359        | 7714993        |        |              |                 |
|                       |                        |            |                |                |                |        |              |                 |

X 265.8 Y 290.0

| x <sup>2</sup>   | y <sup>2</sup> | xy             | <b>ب</b> ر<br>لا | y-y              | (y <b>-y</b> ) 26   |
|------------------|----------------|----------------|------------------|------------------|---------------------|
| .64              | 4.             | - 1.6          | 689              | 1.311            | 1.718721            |
| .64              | 25.            | - 4.0          | 689              | 4.311            | 18.584721           |
| .64              | 81.            | - 7.2          | 689              | 8.311            | 69.072721           |
| .64              | 100.           | - 8.0          | 689              | 9.311            | 86.684721           |
| .04              | 64.            | 1.6            | .172             | 7.828            | 61.277584           |
| 4.84             | 25.            | - 11.0         | 1.894            | 3.106            | 9.647236            |
| 4.84             | 4.             | - 4.4          | 1.894            | .106             | .011236             |
| 4.84             | 36.            | 13.2           | 1.894            | 4.106            | 16.859236           |
| 4.84             | 144.           | 26.4           | 1.894            | 9.245            | 85.470025           |
| 10.24            | 49.            | - 22.4         | 2.755            | 4.245            | 18.020025           |
| 10.24            | 36.            | - 19.2         | 2.755            | 3.245            | 10.530025           |
| 10.24            | 9.             | 9.6            | 2.755            | .245             | .060025             |
| 10.24            | 25.            | 16.0           | 2.755            | 2.245            | 5.040025            |
| 10.24            | 100.           | 32.0           | 2.755            | 7.245            | 52.490025           |
| 17.64            | 36.            | 25.2           | 3.616            | 2.384            | 5.683456            |
| 17.64            | 64.            | 33.6           | 3.616            | 4.384            | 19.219456           |
| 38.44            | 9.             | 18.6           | 5.338            | - 2.338          | 5.466244            |
| 38.44            | 36.            | 37.2           | 5.338            | .662             | .438244             |
| 38.44            | 64.            | 49.6           | 5.338            | 2.662            | 7.086224            |
| 38.44            | 81.            | 55.8           | 5.338            | 3.662            | 13.410224           |
| 51.84            | 0.             | 0.0            | 6.119            | - 6.199          | 38.427601           |
| 51.84            | 9.             | 21.6           | 6.119            | - 3.199          | 10.233601           |
| 51.84            | 9.             | 21.6           | 6.119            | - 3.199          | 10.233601           |
| 51.84            | 25.            | 36.0           | 6.119            | - 1.199          | 1.637601            |
| 51.84            | 36.            | 43.2           | 6.119            | 199              | .039601             |
| 51.84            | 144.           | 86.4           | 6.119            | 5.801            | 33.651601           |
| 51.84            | 225.           | 108.0          | 6.119<br>7 050   | 8.801            | 33.651601           |
| 67.24            | 25.            | - 41.0         | 7.059            | - 2.059          | 4.239481            |
| 67.24            | 4.             | 10.4           | 7.059            | - 5.059          | 25.595481           |
| 67.24            | 25.            | 41.0           | 7.059            | - 2.059          | 4.239481            |
| 67.24            | 25.            | 41.0           | 7.059            | - 5.059          | 25.595481           |
| 104.04           | <b>4</b> •     | - 20.4         | 8.781            | - 0.781          | 40.981961           |
| 104.04           | у.             | 30.6           | 8,781            | - 5.781          | 55.419961           |
| 104.04           | 30.            | 61.2           | 8.781            | - 2.781          | 7.733961            |
| 104.04           | 04.            | 01.0           | 8.781            | 781              | .00990T             |
| 104.04           | 144.           | 122.4          | 8.781            | 3.219            | T0.201301           |
| 120.44           | 04.            | 89.0           | 9.024            | 781              | .00990T             |
|                  | 01.            | 100.8          | 9.024            | - 3.304          | LT. 310490          |
| 174.24           | ມ<br>205       |                | 11.304           | - 2.004<br>7.676 | D.088490            |
| 1/4·24           | 220.           | 190.0          |                  |                  |                     |
| 202,44<br>221 91 | 144.<br>25     | T34.4          | 10.947           | - 1.947          | 3.790009            |
| 501.64<br>77 91  | 20.            | 91.0           | 15.600           | -10.000          | 113.000224          |
| 331 91           | 144.           | 210.4<br>919 1 | 15.669           | - 3.000          |                     |
| 201•24<br>221 94 | 144.<br>995    | 210.4          | 15,669           | - 0.000          | 10.001044           |
| 331 94           | 256            | 201 9          | 15 660           | - 000<br>- 770   | .4/0044             |
| 331 91           | 280            | 200 A          | 15 669           | ບບລ<br>ອຸສຸສຸ    | •110224<br>1 771991 |
| 538 94           | 361            | 440 A          | 10.073           | _ 07%            | 1016790             |
| 538 24           | 361            | 440 R          | 10 073           | - 073            | 946790              |
| 1036 84          | 169            | 418 A          | 27,791           | -14.791          | 216 707841          |
| 11787.04         | 12259.00       | 10148.6        |                  | TITUT            | 3467.156116         |

#### APPENDIX E

Coefficient of Correlation for Female Students:

r = 
$$(EX) - (EX) (EY)$$
  
n  
r =  $(EX)^2 - (EY)^2$   
n  
r =  $(P)^2$   
n  
r =  $(P)^2$   
n

Standard Error of Estimation for Female Students:

$$S_{y.x} = \sqrt{\frac{E(y-y)^2}{n-2}} = 5.87118$$

Regression of Y on X for Female Students:

$$\begin{array}{ccc} b_{y} & \underline{Exy} & .8609 \\ \hline \mathbf{\hat{y}} & b_{y}x & (x \text{ for each of its values}) \end{array}$$

The regression line was drawn by using observation #1 (X score 244) and its corresponding Y score 260 -  $(y-\tilde{y}) =$ 260 - (11.232) = 271.232. Therefore, the first point plotted was X - 244, Y - 271.232. The second point plotted used observation #100 (X score 298) and its corresponding Y score  $303 - (y-\tilde{y}) = 303 - (14.721) = 317.721$ . Therefore, the second point plotted was X = 298, Y = 317.721. The regression line was drawn between these two points. However, any two observations could be used to determine this same line.