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ABSTRACT 

 

In the current research, a time-dependent discrete adjoint algorithm for 

optimization of electromagnetic problems is developed. The proposed algorithm 

improves the efficiency for gradient-based optimization. The time-dependent Maxwell 

equations are discretized using a semi-discrete Petrov-Galerkin method, and time 

advancement is accomplished with an implicit, second-order backward differentiation 

formulation (BDF2). Utilizing the developed capability, two gradient-based shape design 

optimizations are conducted. In the first optimization an optical waveguide is designed 

with photonic crystals, and in the second an all-dielectric metamaterial is designed.  

A motivation for optimizing photonic crystals is due to their use as multi-band 

optical waveguides for telecommunication applications. For this design optimization, to 

ensure smooth surfaces, Bezier curves are employed to parametrically represent the shape. 

To reflect the design changes on the mesh, linear elasticity is used to adapt interior mesh 

points to boundary modifications. The cost function used in this design attempts to shift 

the band gap of the photonic crystals to desired frequency ranges. Results demonstrate a 

band gap shift from one single band gap to multiple band gaps is achievable.  

The motivation for optimizing broadband metamaterials is for their use as 

dielectric mirrors for applications where high power reflection is required. In this 

optimization, Hicks-Henne functions are utilized for shape parameterization and linear 

elasticity used once again for mesh adaptation. The cost function used attempts to widen 
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the bandwidth of the metamaterial over a desired frequency range. Results demonstrate 

an increase of the full width at half maximum (FWHM) of reflection from 111THz to 

303THz.  
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CHAPTER I 
 

INTRODUCTION 
 

Photonic Crystals 

Over the last century, advances in semiconductor physics have significantly 

changed our daily lives. The semiconductor technology utilizes the electrical properties 

of certain materials and initiates the transistor revolution in electronics. However, 

traditional semiconductor materials have limitation in realizing the goal of 

miniaturization and high-speed performance of integrated electronic circuits. 

Miniaturization leads to increased resistance and higher power dissipation, while higher 

speeds cause greater sensitivity in signal synchronization. To overcome these problems, 

photonic integrated circuits, which use light instead of electrons as information carrier, 

have been proposed as alternative technologies. As the information carrier, light has 

several advantages over the electron[1]. First, the speed of light in a dielectric material is 

much higher than that of an electron in a metallic wire. Next, the amount of information 

that light can carry per second is much larger. In addition, the bandwidth of optical 

communication systems is typically on the order of one terahertz, and is much larger 

compared with that of electronic systems, which is on the order of one hundred kilohertz. 

Moreover, photons interact less than electrons and result in reduction of energy losses. 

To control the optical properties of materials, in the late 1980s, a new class of 

optical materials, known as photonic crystals, was proposed[2]. The photonic crystal is 
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the optical analogue of real electronic semiconductor crystal. Photonic crystals consist of 

macroscopic dielectric media in a periodic arrangement, while electronic semiconductor 

crystals have a periodic arrangement of atoms. In electronic semiconductor crystals, there 

are gaps in the energy band structure, where electrons with certain electron energies are 

forbidden to propagate. Similarly, photonic crystals have gaps where light with certain 

photon energies are forbidden to propagate, and these gaps are named the photonic band 

gaps. More details of the photonic band gap will be discussed in Chapter III. 

With the development of photonic crystals, light can be controlled to propagate 

only in certain directions, or be confined within a specified volume. Therefore, the 

photonic crystal related devices have been applied in the fields of telecommunication, 

sensing, high-speed computing, spectroscopy, etc. In this dissertation, the photonic band 

gap of 2D photonic crystal is simulated using the Petrov-Galerkin finite element method. 

The optimization of the photonic band gap is carried out using a gradient-based approach 

with the adjoint formulation being employed for sensitivity calculation. Using this 

optimization method, we designed an optical waveguide based on photonic crystal with 

multiple bands, which can potentially be used for applications such as optical 

communication. 

Metamaterial 

Metamaterial is defined as an artificially structured and effectively homogenous 

material with properties that arise from the structuring of the material rather than the 

constituent materials. The properties of metamaterial correspond to time varying fields 

such as electromagnetic field and acoustic field. The research in this dissertation focuses 

on the electromagnetic metamaterials. The optical properties of metamaterials depend on 
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in less optical absorption than metal does at high frequencies. All-dielectric 

metamaterials have been developed to realize high frequency magnetism[32-36] and 

negative refractive index[37, 38]. Recently, dielectric metamaterials have been developed 

that control the phase of reflected light[39], achieve negative phase propagation[40], 

active tuning of resonant modes[41], and for the demonstration of magnetic mirror with 

zero reflection phase[42].  

In particular, dielectric metamaterial mirrors have been an emerging research 

topic due to their ability to control light reflection with desired patterns[43-45]. If 

designed correctly, the dielectric metamaterial mirrors can be designed to perfectly reflect 

light at desired wavelength, with reflection exceeding the traditional metal mirror. 

Moreover, due to the low loss nature and high stability of the constituent dielectric 

materials, dielectric metamaterial mirror is particularly beneficial in applications where 

high power light reflection is required. On the other hand, comparing with the multilayer 

film stack 1D photonic crystal Bragg mirror, one can achieve perfect light reflection with 

a much smaller thickness, therefore opening up pathways for applications such as 

integrated photonics and optical communications. However, previous metamaterial 

mirror work mainly focused on simple geometry shapes such as cylinders. Optimization 

of the geometry of dielectric metamaterials with complex shapes has not been extensively 

explored. It is shown in Chapter V of this dissertation that by employing shape 

optimization method, further improvements in the performance of the dielectric 

metamaterial mirror can be achieved.  
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Figure 3.11 Approach array model for square lattice 

 

The reflection of the approach array model for square lattice is shown in Fig. 

3.12(a). The comparison of that with the band diagram is illustrated in Fig. 3.12(b). A 

small mismatch can be observed since the approach model does not have the infinite 

periodicity along the x-axis as the unit cell model. However, considering its steadiness, it 

is a good approach for design purpose. The approach array model is used for design 

cycles to be discussed in Chapter IV, and the final optimized photonic crystals will be 

simulated with the unit cell model again to get the exact band diagram. 

 

  
(a) Reflection (b)Reflection and band diagram 

Figure 3.12 Results of approach array model for square lattice 
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Figure 4.1 Comparison of sensitivity at each frequency for square lattice 

 

Optimization Results and Application on Optical waveguide 

Photonic Crystal Waveguide 

The well-known metallic pipe waveguide provides lossless transmission, 

but it only works for microwaves. To provide lossless transmission for infrared 

and visible light, dielectric guides were developed. The dielectric waveguide relies 

on total internal reflection to ensure lossless transmission. However, if it curves 

tightly, the angle of incidence is too large for total internal reflection to occur, as a 

result, light is lost at the corners.  

By applying the technique of photonic crystal into waveguides, lossless 

transmission even at sharp corners can be obtained. Considering the band gap of photonic 
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crystals discussed earlier, light within the gap is forbidden to transmit through the 

photonic crystal. By carving a waveguide out of the photonic crystal, light with 

frequencies in the gap of the photonic crystal can be directed along the waveguide.  

By carving different paths out of the photonic crystal with square lattice proposed 

in Chapter III, waveguides with different transmission directions are obtained. The 

electric field patterns at 500THz, which is located within the band gap as shown in Fig. 

3.8, are shown in Fig.4.2. Fig. 4.2(a) shows electric field pattern within a straight 

waveguide, Fig. 4.2(b-c) show electric field patterns within 90 degree and 135 degree 

bent waveguides, and Fig. 4.2(d) shows a U-shaped waveguide.  

By optimizing the band gap of photonic crystal, we can obtain optical waveguides 

at any frequency range desired. In this work, Bezier curves are applied on shape 

optimization of photonic crystals. The target is to design a dual-band and a triple-band 

optical waveguide for applications on telecommunication. 

 

  
(a) Straight waveguide (b) 90 degree bended waveguide 
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Figure 4.3 Shape of optimized unit cell for dual-band optical waveguide 

 

 
Figure 4.4 Band diagram of optimized photonic crystals for dual-band waveguide 
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Figure 4.7 Band diagram of optimized photonic crystal for triple-band waveguide 

 

   
(a) 390THz (b) 640THz (c) 880THz 

Figure 4.8 Electric field pattern in designed triple-band waveguide 
 

The optimized waveguides can be applied in telecommunication to the meet the 

requirement of lossless transmission with any transmitting direction at the desired 

frequency range. 
































