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ABSTRACT 

 

In the current research, a time-dependent discrete adjoint algorithm for 

optimization of electromagnetic problems is developed. The proposed algorithm 

improves the efficiency for gradient-based optimization. The time-dependent Maxwell 

equations are discretized using a semi-discrete Petrov-Galerkin method, and time 

advancement is accomplished with an implicit, second-order backward differentiation 

formulation (BDF2). Utilizing the developed capability, two gradient-based shape design 

optimizations are conducted. In the first optimization an optical waveguide is designed 

with photonic crystals, and in the second an all-dielectric metamaterial is designed.  

A motivation for optimizing photonic crystals is due to their use as multi-band 

optical waveguides for telecommunication applications. For this design optimization, to 

ensure smooth surfaces, Bezier curves are employed to parametrically represent the shape. 

To reflect the design changes on the mesh, linear elasticity is used to adapt interior mesh 

points to boundary modifications. The cost function used in this design attempts to shift 

the band gap of the photonic crystals to desired frequency ranges. Results demonstrate a 

band gap shift from one single band gap to multiple band gaps is achievable.  

The motivation for optimizing broadband metamaterials is for their use as 

dielectric mirrors for applications where high power reflection is required. In this 

optimization, Hicks-Henne functions are utilized for shape parameterization and linear 

elasticity used once again for mesh adaptation. The cost function used attempts to widen 
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the bandwidth of the metamaterial over a desired frequency range. Results demonstrate 

an increase of the full width at half maximum (FWHM) of reflection from 111THz to 

303THz.  
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CHAPTER I 

 

INTRODUCTION 

 

Photonic Crystals 

Over the last century, advances in semiconductor physics have significantly 

changed our daily lives. The semiconductor technology utilizes the electrical properties 

of certain materials and initiates the transistor revolution in electronics. However, 

traditional semiconductor materials have limitation in realizing the goal of 

miniaturization and high-speed performance of integrated electronic circuits. 

Miniaturization leads to increased resistance and higher power dissipation, while higher 

speeds cause greater sensitivity in signal synchronization. To overcome these problems, 

photonic integrated circuits, which use light instead of electrons as information carrier, 

have been proposed as alternative technologies. As the information carrier, light has 

several advantages over the electron[1]. First, the speed of light in a dielectric material is 

much higher than that of an electron in a metallic wire. Next, the amount of information 

that light can carry per second is much larger. In addition, the bandwidth of optical 

communication systems is typically on the order of one terahertz, and is much larger 

compared with that of electronic systems, which is on the order of one hundred kilohertz. 

Moreover, photons interact less than electrons and result in reduction of energy losses. 

To control the optical properties of materials, in the late 1980s, a new class of 

optical materials, known as photonic crystals, was proposed[2]. The photonic crystal is 
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the optical analogue of real electronic semiconductor crystal. Photonic crystals consist of 

macroscopic dielectric media in a periodic arrangement, while electronic semiconductor 

crystals have a periodic arrangement of atoms. In electronic semiconductor crystals, there 

are gaps in the energy band structure, where electrons with certain electron energies are 

forbidden to propagate. Similarly, photonic crystals have gaps where light with certain 

photon energies are forbidden to propagate, and these gaps are named the photonic band 

gaps. More details of the photonic band gap will be discussed in Chapter III. 

With the development of photonic crystals, light can be controlled to propagate 

only in certain directions, or be confined within a specified volume. Therefore, the 

photonic crystal related devices have been applied in the fields of telecommunication, 

sensing, high-speed computing, spectroscopy, etc. In this dissertation, the photonic band 

gap of 2D photonic crystal is simulated using the Petrov-Galerkin finite element method. 

The optimization of the photonic band gap is carried out using a gradient-based approach 

with the adjoint formulation being employed for sensitivity calculation. Using this 

optimization method, we designed an optical waveguide based on photonic crystal with 

multiple bands, which can potentially be used for applications such as optical 

communication. 

Metamaterial 

Metamaterial is defined as an artificially structured and effectively homogenous 

material with properties that arise from the structuring of the material rather than the 

constituent materials. The properties of metamaterial correspond to time varying fields 

such as electromagnetic field and acoustic field. The research in this dissertation focuses 

on the electromagnetic metamaterials. The optical properties of metamaterials depend on 
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the constituent materials and geometries of the building blocks. Compared to photonic 

crystal, one significant difference of metamaterial is that the building blocks of 

metamaterials are much smaller than wavelength. As a result, light passing through a 

metamaterial does not diffract and therefore material can exhibit ‘effective’ material 

properties, for example, refractive index, permittivity and permeability, different from the 

naturally existing materials. Therefore, one can design such metamaterials to realize 

unique material properties not attainable with naturally occurring materials, opening up 

the pathway for many applications. 

In 1999, Pendry[3] designed a material with a negative index of refraction. In 

2000, Smith[4] first experimentally realized a negative index medium using periodic 

arrays of SRRs and a cut-wires. Since then, different types of metamaterials have been 

developed with characteristics of near-zero permittivity[5, 6], chirality[7, 8], super 

absorption[9], negative group velocity[10, 11], and highly anisotropic material 

properties[12, 13]. In 2005, Pendry[14] proposed a new application for metamaterial: the 

electromagnetic cloaking device. The electromagnetic cloak was first realized at 

microwave frequencies[12] in 2006 and has been demonstrated at optical frequencies[15] 

in 2009. The electromagnetic cloak is widely applied as source transformations[16], 

electromagnetic black holes[17, 18], novel lenses[19], and hybrid optical devices [20]. In 

recent years, metamaterials have also been demonstrated in applications such as thermal 

sensing, solar energy harvesting and optoelectronics applications [21-27]. 

Since metal-based metamaterials have limitations such as absorption caused by 

ohmic damping[28-30] and saturation of the magnetic response at high frequencies[31], 

all-dielectric metamaterials have been proposed as an alternative approach. Dielectric 

materials do not cause magnetic saturation at high frequencies. Dielectric materials result 
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in less optical absorption than metal does at high frequencies. All-dielectric 

metamaterials have been developed to realize high frequency magnetism[32-36] and 

negative refractive index[37, 38]. Recently, dielectric metamaterials have been developed 

that control the phase of reflected light[39], achieve negative phase propagation[40], 

active tuning of resonant modes[41], and for the demonstration of magnetic mirror with 

zero reflection phase[42].  

In particular, dielectric metamaterial mirrors have been an emerging research 

topic due to their ability to control light reflection with desired patterns[43-45]. If 

designed correctly, the dielectric metamaterial mirrors can be designed to perfectly reflect 

light at desired wavelength, with reflection exceeding the traditional metal mirror. 

Moreover, due to the low loss nature and high stability of the constituent dielectric 

materials, dielectric metamaterial mirror is particularly beneficial in applications where 

high power light reflection is required. On the other hand, comparing with the multilayer 

film stack 1D photonic crystal Bragg mirror, one can achieve perfect light reflection with 

a much smaller thickness, therefore opening up pathways for applications such as 

integrated photonics and optical communications. However, previous metamaterial 

mirror work mainly focused on simple geometry shapes such as cylinders. Optimization 

of the geometry of dielectric metamaterials with complex shapes has not been extensively 

explored. It is shown in Chapter V of this dissertation that by employing shape 

optimization method, further improvements in the performance of the dielectric 

metamaterial mirror can be achieved.  
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Numerical Methods in Computational Electromagnetics 

A variety of numerical methods are used in solving electromagnetic problems, 

such as the finite-difference time-domain method, the finite-volume method and the 

finite-element method. 

In the 1960’s, Yee[46] invented the finite-difference time-domain method (FDTD) 

that solved Maxwell’s equations discretized on structured grids directly in the time 

domain. The method is efficient since no matrix solutions need to be calculated and also 

has ease of implementation and simple grid generation requirements. However, FDTD 

suffers from the limitation in its capability to model complex geometrical structures such 

as curved surfaces and devices with a widely varying range of geometric scales. FDTD is 

widely applied in computational electromagnetics, for instance, the CST Microwave 

Studio [47] is a Finite Integral Technique (FIT) solver, which is basically FDTD with 

integration instead of differentiation. CST MICROWAVE STUDIO®(CST MWS) is a 

specialist tool for the 3D EM simulation of high frequency components.  

The finite-volume method is another approach applied in computational 

electromagnetics. Maxwell’s equations in this form have mathematical similarities with 

the compressible Euler equations from fluid dynamics. These relationships are taken 

advantage of by the finite-volume method in solving the Maxwell’s equations [48, 49]. 

However, the second-order accuracy resulting from discretization of the spatial 

derivatives in this method is not sufficient to solve problems requiring higher-order 

accuracy such as those found in high-frequency applications and electrically large 

structures. 
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The finite-element method was introduced to computational electromagnetics by 

Jin in his book [50]. Although not as widely used as FDTD, it has many advantages such 

as the capability for modeling both complex structures and materials. The method can 

accurately model curved surfaces and complex structures by applying unstructured 

meshes with curvilinear triangular and tetrahedral elements. Although the method 

requires solving a large matrix equation, solution can be obtained efficiently using 

advanced solvers. The commercial simulation software HFSS [51] is based on the finite 

element method. The High Frequency Structure Simulator (HFSS™) is a software tool 

for 3D full-wave electromagnetic field simulations. The metamaterial model discussed in 

this dissertation is simulated with HFSS for comparison.  

Petrov-Galerkin Methods for Time-Domain Simulations and Adjoint based 

Formulation for Shape Optimization 

Maxwell’s equation can be cast in both the time domain and the frequency 

domain, and consequently the numerical simulation can be applied in either the time 

domain or the frequency domain. The frequency-domain numerical method is highly 

suitable for scattering analysis, where the main concern is the scattering due to plane 

waves from many incident directions. The time-domain numerical method is well suited 

for the current work where solutions over a broad frequency band are desired. The 

broadband frequency-domain solution can be obtained through the Fourier transform in 

one time-domain calculation.  

Petrov-Galerkin finite element methods are applied to solve Maxwell’s equations 

for applications involving photonic crystals and metamaterials in this work. The method 

is highly suitable for analysis and design of periodic electromagnetic structures. It has the 
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capability of dealing with high-order spatial discretization, which helps represent 

complex geometries accurately. The Petrov-Galerkin method has been successfully 

applied in computational fluid dynamics [52] and computation electromagnetics[53, 54]. 

The automatic computational shape optimization is a novel alternative for 

designing optical structures such as photonic crystals and metamaterials. Discrete Adjoint 

formulation in gradient-based optimization realizes efficiency in calculation of the 

sensitivity of cost function with multiple design variables, since the computational costs 

do not scale with the number of design variables. Adjoint-based shape optimization has 

been applied using finite-volume methods in a steady flow environment in the area of 

aerodynamics[55-58]. In 2000, Li[59] developed an unsteady discrete adjoint algorithm 

for high-order discontinuous Galerkin discretizations in time-dependent flow problems 

and applied this technique to unsteady shape optimization problems. Recently, Lin[60-

63] applied shape and topology optimization for the design of acoustic metamaterial with 

a discrete adjoint formulation. Applications included noise reduction, design of effective 

material property, and an acoustic cloaking device. In this work, the discrete adjoint 

formulation is applied to Petrov-Galerkin discretizations of Maxwell’s equations for 

shape optimization of photonic crystals and electromagnetic metamaterials. The 

technique is applied to design a multiband optical waveguide and a broadband perfect 

reflector mirror[64]. 
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CHAPTER II 

 

PETROV-GALERKIN METHODS FOR ELECTROMAGNETIC 

  

SIMULATIONS AND TIME-DEPENDENT SHAPE SENSITIVY 

 

 ANALYSIS  

  

Petrov-Galerkin Methods for Electromagnetic Simulations 

Governing Equations 

Maxwell’s equations are the basic laws in electromagnetics that describe electric 

and magnetic phenomena. The time dependent Maxwell’s equation set is given by:   

∇×𝑬 = −
𝜕𝑩

𝜕𝑡
− 𝑴     (2.1) 

∇×𝑯 =
𝜕𝐷

𝜕𝑡
+ 𝑱                                                           (2.2) 

∇ ∙ 𝑩 = 0                                                                   (2.3) 

∇ ∙ 𝑫 = 𝜌𝑐                                                                 (2.4) 

where 𝑬 is the electric field, 𝑯 is the magnetic field, 𝑫 is the electric flux density and 𝑩 

is the magnetic flux density. The magnetic current density 𝑴, the electric current density 

𝑱 and the electric charge density 𝜌𝑐 are all ignored in the various applications considered 

in the current work. 

The flux densities and the field intensities have the following relationships: 

𝐵 = 𝜇𝐻     (2.5) 

𝐷 = 휀𝐸     (2.6) 
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where 𝜇 is the permeability and 휀 is the permittivity.  

For three-dimensional applications, the governing equations are rewritten in a 

divergence form as follows: 

𝜕𝒒

𝜕𝑡
+ ∇ ∙ 𝑭(𝒒) = 0              (2.7) 

𝒒 = (𝐷𝑥, 𝐷𝑦, 𝐷𝑧 , 𝐵𝑥, 𝐵𝑦, 𝐵𝑧)
𝑇      (2.8) 

𝑭 = 𝑖̂𝒇 + 𝑗̂𝒈 + �̂�𝒉      (2.9) 

𝒇 = (0,𝐻𝑧 , −𝐻𝑦 , 0, −𝐸𝑧 , 𝐸𝑦)𝑇   (2.10) 

𝒈 = (−𝐻𝑧, 0, 𝐻𝑥 , 𝐸𝑧 , 0, −𝐸𝑥)
𝑇   (2.11) 

𝒉 = (𝐻𝑦, −𝐻𝑥, 0, −𝐸𝑦, 𝐸𝑥, 0)
𝑇
   (2.12) 

The equations above can be written in the differential form as: 

𝜕

𝜕𝑡

[
 
 
 
 
 
𝐷𝑥

𝐷𝑦

𝐷𝑧

𝐵𝑥

𝐵𝑦

𝐵𝑧 ]
 
 
 
 
 

+
𝜕

𝜕𝑥

[
 
 
 
 
 

0
𝐵𝑧/𝜇

−𝐵𝑦/𝜇

0
−𝐷𝑧/휀
𝐷𝑦/휀 ]

 
 
 
 
 

+
𝜕

𝜕𝑦

[
 
 
 
 
 
−𝐵𝑧/𝜇

0
𝐵𝑥/𝜇
𝐷𝑧/휀

0
−𝐷𝑥/휀]

 
 
 
 
 

+
𝜕

𝜕𝑧

[
 
 
 
 
 

𝐵𝑦/𝜇

−𝐵𝑥/𝜇
0

−𝐷𝑦/휀

𝐷𝑥/휀
0 ]

 
 
 
 
 

= 0  (2.13) 

For two-dimensional applications, the fourth term in Eq.(2.13) is not considered, 

that is 𝒉 = 𝟎. For a transverse-electric (TE) mode application, the first, second and sixth 

rows of Eq.(2.13) are solved, which can be expressed as: 

𝒒 = {𝐷𝑥, 𝐷𝑦 , 𝐵𝑧}
𝑇
                                               (2.14) 

𝒇 = {0, 𝐵𝑧/𝜇, 𝐷𝑦/휀}
𝑇
                                         (2.15) 

𝒈 = {−𝐵𝑧/𝜇, 0, −𝐷𝑥/휀}
𝑇                                   (2.16) 

For a transverse-magnetic(TM) mode application, the third, fourth and fifth rows of 

Eq.(2.13) are solved, which can be expressed as: 

𝒒 = {𝐵𝑥, 𝐵𝑦, 𝐷𝑧}
𝑇
                                              (2.17) 
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𝒇 = {0,−𝐷𝑧/휀, −𝐵𝑦/𝜇}
𝑇
                                  (2.18) 

𝒈 = {𝐷𝑧/휀, 0, 𝐵𝑥/𝜇}𝑇                                        (2.19) 

Finite Element Formulation 

In the Petrov-Galerkin finite-element approach, field variables are assumed 

continuous across element boundaries. As a result, data is stored at the vertices of the 

elements. Within each element, the solution is assumed to vary according to a linear 

combination of polynomial basis functions given by: 

𝑸ℎ = ∑ 𝑁𝑖𝑸𝑖
𝑛
𝑖=1     (2.20) 

In Eq.(2.20), 𝑸ℎ represents the approximated variables within each element dependent on 

𝑸𝑖  and 𝑁𝑖 , 𝑸𝑖  is the corresponding data at each node of the element, and each 𝑁𝑖 

represents a basis function. 

The Petrov-Galerkin method is formulated as a weighted residual method, which 

can be expressed in the following form: 

∰ [𝜙]
Ω

(
𝜕𝑸

𝜕𝑡
+ ∇ ∙ 𝑭) 𝜕Ω = 0    (2.21) 

where 𝜙  is a weighting function defined by the Streamline Upwind/Petrov-

Galerkn(SUPG) method  given by: 

[𝜙] = 𝑁[𝐼] + (
𝜕𝑁

𝜕𝑥
[𝐴] +

𝜕𝑁

𝜕𝑦
[𝐵] +

𝜕𝑁

𝜕𝑧
[𝐶]) [𝜏] = 𝑁[𝐼] + [𝑃]  (2.22) 

In Eq.(2.22), the first term 𝑁[𝐼] is composed of linear combination of the same basis 

functions used in Eq.(2.20), and  can be represented as: 

𝑁 = ∑ 𝑁𝑖𝑐𝑖
𝑛
𝑖=1      (2.23) 



 11 

where 𝑐𝑖  is arbitrary, and 𝑛 is the number of degrees of freedom in the element. The 

second term [𝑃], is a stabilizing term that dissipates odd-even point decoupling along 

preferential directions. In the second term, [𝐴], [𝐵] and [𝐶] are given by: 

[𝐴] = [
𝜕𝒇

𝜕𝒒⁄ ] , [𝐵] = [
𝜕𝒈

𝜕𝒒⁄ ] , [𝐶] = [𝜕𝒉
𝜕𝒒⁄ ]                     (2.24) 

And [𝜏]  represents the stabilization matrix and can be obtained by the following 

definitions [65]  

[𝜏]−1 = ∑ |
𝜕𝑁𝑘

𝜕𝑥
[𝐴] +

𝜕𝑁𝑘

𝜕𝑦
[𝐵] +

𝜕𝑁𝑘

𝜕𝑧
[𝐶]|𝑛

𝑘=1      (2.25) 

|
𝜕𝑁𝑘

𝜕𝑥
[𝐴] +

𝜕𝑁𝑘

𝜕𝑦
[𝐵] +

𝜕𝑁𝑘

𝜕𝑧
[𝐶]| = [𝑇][|𝛬|] [𝑇]−1  (2.26) 

where [𝑇] and [𝛬] are the right eigenvectors and eigenvalues of the matrix on the left side 

of Eq. (2.26) respectively, and  [𝑇]−1 represents the inverse of  [𝑇]. By applying Green’s 

theorem, the weak statement can be expressed as: 

∰ (𝑁 {
𝜕𝒒

𝜕𝑡
} − 𝑭 ∙ ∇𝑁) 𝜕Ω

Ω
+ ∰ [𝑃]

Ω
(
𝜕𝒒

𝜕𝑡
+ ∇ ∙ 𝑭)𝜕Ω + ∯ 𝑁𝑭 ∙ �̂�𝜕𝛤

𝛤
= 0   (2.27) 

Note that the surface integral needs to be evaluated only on the boundaries where 

appropriate boundary conditions are weakly enforced by incorporating them into the 

surface integral. Because the field variables are assumed to vary continuously in the 

interior of the domain, the surface integral typically vanishes on the boundaries of the 

interior elements. The boundaries mentioned above include not only the physical 

boundaries of the domain, but also the boundaries of discontinuous materials. The details 

will be discussed later.  
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Shape Functions for FEM 

In the Petrov-Galerkin scheme, the domain of interest is discretized into a series 

of non-overlapping elements. For two-dimensional and three-dimensional applications in 

the current work, the triangular and tetrahedral elements are applied, respectively. The 

triangular and tetrahedral elements within the computational mesh are mapped to parent 

elements in non-dimensional (𝜉1, 𝜉2) space and (𝜉1, 𝜉2, 𝜉3) space, respectively.  

For a linear triangle with 3 nodes, as shown in Fig. 2.1(a), the shape functions are 

given by: 

𝑁(𝜉1, 𝜉2) = [
𝑁1

𝑁2

𝑁3

] = [

1 − 𝜉1 − 𝜉2

𝜉1

𝜉2

]                                   (2.28) 

For a quadratic triangle with 6 nodes, as shown in Fig. 2.1(b), the shape functions are 

given by: 

𝑁(𝜉1, 𝜉2) =

[
 
 
 
 
 
𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

𝑁6]
 
 
 
 
 

=

[
 
 
 
 
 
 
(1 − 𝜉1 − 𝜉2)(1 − 2𝜉1 − 2𝜉2)

𝜉1(2𝜉1 − 1)

𝜉2(2𝜉2 − 1)

4𝜉1(1 − 𝜉1 − 𝜉2)

4𝜉1𝜉2

4𝜉2(1 − 𝜉1 − 𝜉2) ]
 
 
 
 
 
 

                   (2.29) 

  
(a) Linear triangular (b) Quadratic triangular 

Figure 2.1 Nodes of triangular element 
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For a linear tetrahedron with 4 nodes, as shown in Fig. 2.2(a), the shape functions 

are given by: 

𝑁(𝜉1, 𝜉2, 𝜉3) = [

𝑁1

𝑁2

𝑁3

𝑁4

] = [

1 − 𝜉1 − 𝜉2 − 𝜉3

𝜉1

𝜉2

𝜉3

]                         (2.30) 

For a quadratic tetrahedron with 10 nodes, as shown in Fig.2.2(b), the shape functions are 

given by: 

𝑁(𝜉1, 𝜉2, 𝜉3) =

[
 
 
 
 
 
 
 
 
 
𝑁1

𝑁2

𝑁3

𝑁4

𝑁5

𝑁6

𝑁7

𝑁8

𝑁9

𝑁10]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
1 − 𝜉1 − 𝜉2 − 𝜉3 − 0.5(𝑁5 + 𝑁7 + 𝑁8)

𝜉1 − 0.5(𝑁5 + 𝑁6 + 𝑁9)

𝜉2 − 0.5(𝑁6 + 𝑁7 + 𝑁10)

𝜉3 − 0.5(𝑁8 + 𝑁9 + 𝑁10)

4𝜉1(1 − 𝜉1 − 𝜉2 − 𝜉3)

4𝜉1𝜉2

4𝜉2(1 − 𝜉1 − 𝜉2 − 𝜉3)

4𝜉3(1 − 𝜉1 − 𝜉2 − 𝜉3)

4𝜉1𝜉3

4𝜉2𝜉3 ]
 
 
 
 
 
 
 
 
 
 

             (2.31) 

  
(a) Linear tetrahedron (b) Quadratic tetrahedron 

Figure 2.2 Nodes of tetrahedron element 

 

The shape functions discussed above form the basis functions in Eq.(2.20). 

Gaussian quadrature rules are used in evaluating the volume and surface integrals. In 
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evaluating the volume integrals, a function integrated over a tetrahedron can be expressed 

as: 

∰ 𝑓(𝑥, 𝑦, 𝑧)𝜕Ω
Ω

= ∑ 𝑓𝑖(𝑥(𝜉1, 𝜉2, 𝜉3) , 𝑦(𝜉1, 𝜉2, 𝜉3) , 𝑧(𝜉1, 𝜉2, 𝜉3) )𝑊𝑖𝐽
𝑁𝑔𝑎𝑢𝑠𝑠

𝑖=1
   (2.31) 

where (𝜉1, 𝜉2, 𝜉3)  are Gauss points, 𝑊𝑖  are Gauss weights, and 𝐽  is the Jacobian. In 

evaluating the surface integrals, a function integrated over a triangle can be expressed as: 

∬ 𝑓(𝑥, 𝑦)∂Γ
𝛤

= ∑ 𝑓𝑖(𝑥(𝜉1, 𝜉2), 𝑦(𝜉1, 𝜉2))𝑊𝑖𝐽
𝑁𝑔𝑎𝑢𝑠𝑠

𝑖=1
  (2.32) 

where (𝜉1, 𝜉2) are Gauss points, 𝑊𝑖 are Gauss weights, and 𝐽 is the Jacobian. 

For polynomial representations of the dependent variables of p, formulas for 

integrating polynomials of order 2p are used in evaluating volume integrals while 

formulas for integrating polynomials of order 2p+1 are used in evaluating surface 

integrals [66].  

Boundary Conditions 

The boundary conditions are weakly enforced through the flux terms in the 

surface integral in Eq. (2.27). For applications in the current work, three types of 

boundary conditions are implemented: Silver-Muller boundary conditions, material jump 

conditions and Floquet-Bloch periodic conditions. 

 For Silver-Muller boundary conditions, the flux can be derived from the following 

equation [67]: 

(𝑬 − 𝑐𝑩×𝒏)×𝒏 = 𝑒∗×𝒏    (2.33) 

or, in a similar way, 

(𝑐𝑩 + 𝑬×𝒏)×𝒏 = 𝑐𝑏∗×𝒏    (2.34) 
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where (E,B) denotes the electromagnetic field, c is the speed of light and n is the unit 

outside normal to the boundary.  For the cases where the plane wave propagates normal 

to the boundary, 𝑒∗ and 𝑏∗ are set to zero. For three-dimensional applications, Eqs.(2.33-

2.34) can be expressed as: 

𝑭 ∙ �̂� =

[
 
 
 
 
 
 

−𝑛𝑦𝐻𝑧 + 𝑛𝑧𝐻𝑦

𝑛𝑥𝐻𝑧 − 𝑛𝑥𝐻𝑧

−𝑛𝑦𝐻𝑧 + 𝑛𝑧𝐻𝑦

(𝐵𝑧𝑥𝑛 − 𝐵𝑥𝑧𝑛)𝑧𝑛 − (𝐵𝑥𝑦𝑛 − 𝐵𝑦𝑥𝑛)𝑦𝑛

(𝐵𝑥𝑦𝑛 − 𝐵𝑦𝑥𝑛)𝑥𝑛 − (𝐵𝑦𝑧𝑛 − 𝐵𝑧𝑦𝑛)𝑧𝑛

(𝐵𝑦𝑧𝑛 − 𝐵𝑧𝑦𝑛)𝑦𝑛 − (𝐵𝑥𝑦𝑛 − 𝐵𝑦𝑥𝑛)𝑥𝑛]
 
 
 
 
 
 

                    (2.35) 

 

For material jump boundary conditions (such as port boundaries and interface 

between different materials), the flux is determined using a Riemann solver: 

𝑭(𝑸𝐿 , 𝑸𝑅) ∙ �̂� =
1

2
[𝑭(𝑸𝐿) + 𝑭(𝑸𝑅) − [�̃�][�̃�][�̃�][�̃�]∆𝑸]  (2.36) 

where [�̃�], [�̃�], and [�̃�] represent average values and 

𝑸 = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝐻𝑥, 𝐻𝑦, 𝐻𝑧)
𝑇    (2.37) 

And the difference in values across the interface ∆𝑸 can be expressed as: 

∆𝑸 = 𝑸𝑅 − 𝑸𝐿    (2.38) 

Also, the matrix M is given by: 

[𝑀] = [
𝜕𝒒

𝜕𝑸
]     (2.39) 

Here, the flux densities 𝒒 are computed at each mesh point during the simulations. The 

ideas above come from the flux-difference-splitting method in the fluid dynamic 

applications [68]. 

 For port boundaries, the data on the interface is obtained from the field variables 

on each side, and driving wave is added on the interface of the excitation port. Duplicate 
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nodes are introduced in solving this problem and they are created on either side of the 

interface. The Riemann solver is also applied in this paper to simulate periodic boundary 

conditions.  

The Floquet-Bloch periodic conditions are applied for simulation of photonic 

crystals. Its formulation is based on the knowledge of Riemann solver. The details of 

Floquet-Bloch periodic conditions will be discussed in detail in Chapter III in 

combination with the knowledge of photonic crystals. 

Time-dependent Shape Sensitivity Analysis 

In gradient-based optimization, sensitivity derivatives of the objective function 

are utilized to construct an appropriate search direction for improving the design. An 

automatic shape design cycle is implemented by combining an electromagnetics 

simulation codes, a time accurate adjoint based method for sensitivity analysis, a linear 

elasticity solver for mesh smoothing and an optimization package. In the current research 

the DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit, 

developed at Sandia National Laboratories[69], is utilized. DAKOTA’s optimization 

capabilities include a wide variety of gradient-based and nongradient-based optimization 

methods. It includes many external optimization libraries such as the OPT++ library[70], 

CONMIN and DOT libraries[71], and an interface to link with third-party routines that 

provide the function evaluations and sensitivity information. The optimization in current 

work is performed using a quasi-Newton method (from DAKOTA’s OPT++ library). 

OPT++’s quasi-Newton method is based on the Broyden-Fletcher-Goldfard-Shanno 

(BFGS) [72] variable-metric algorithm. Opt++'s quasi-Newton method uses a line 

searching approach based on the algorithm by More and Thuente [73].   
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 The objective of the shape design cycle is to minimize the cost function for 

realizing desired characteristics by modifying the shape of the optical structure. In the 

discussions below, the cost function is denoted as 𝑐𝑜𝑠𝑡𝐼 , and the design variable is 

denoted as 𝛽. The methods for computing the sensitivities and surface parameterization 

utilized in current work will be discussed in the following sections.  

Sensitivity Analysis 

Finite Difference Method 

The derivative of the cost function with respect to the design variable can be 

approximated by the central-difference method expressed as: 

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝛽
=

𝑐𝑜𝑠𝑡𝐼(𝛽+∆𝛽)−𝑐𝑜𝑠𝑡𝐼(𝛽−∆𝛽)

2∆𝛽
+ 𝑂(∆𝛽2)                      (2.40) 

The central finite-difference method is subject to subtractive cancellation, and the 

truncation error increases as ∆𝛽 decreases. This method is utilized as a tool for accuracy 

verification in current work. It is not practical when multiple design variables are used to 

design an object since it requires two highly-converged solutions for each design variable. 

Forward Mode Direct Differentiation 

The sensitivity derivative can be computed using a forward mode direct 

differentiation by examining the functional dependencies of the cost function. The cost 

function is defined as: 

𝑐𝑜𝑠𝑡𝐼 = 𝑐𝑜𝑠𝑡𝐼(𝛽, 𝑋, 𝑞)                                           (2.41) 
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where the dependencies are the design variables 𝛽 , computational mesh 𝑋  and the 

solution quantities 𝑞. The total differential of the cost function with respect to the design 

variable is given by: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
=

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝛽
+

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑞

𝜕𝑞

𝜕𝛽
                            (2.42) 

The residual of the governing equation for a time-dependent problem at 𝑖𝑡ℎ time 

step, BDF2 in this case, can be expressed as: 

𝑅𝑖(𝛽, 𝑋, 𝑞𝑖, 𝑞𝑖−1, 𝑞𝑖−2) = 0                                     (2.43) 

Therefore the total differential of residual with respect to 𝛽 at time step 𝑖 is given by: 

𝑑𝑅𝑖

𝑑𝛽
=

𝜕𝑅𝑖

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖

𝜕𝑞𝑖

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
= 0        (2.44) 

Then the derivative of solution quantities with respect to design variable at 𝑖𝑡ℎ time step 

is obtained by: 

𝜕𝑞𝑖

𝜕𝛽
= − [

𝜕𝑅𝑖

𝜕𝑞𝑖
]
−1

(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
)                 (2.45) 

By applying Eq.(2.45) into Eq.(2.42), the sensitivity derivative for time-dependent 

problems using the forward mode direct differentiation is given by: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
=

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝛽
+

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑋

𝜕𝑋

𝜕𝛽
− ∑

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑞𝑖 [
𝜕𝑅𝑖

𝜕𝑞𝑖]
−1

(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
)

𝑛𝑐𝑦𝑐
𝑖=1  (2.46) 

where 𝑛𝑐𝑦𝑐 is the total number of time steps. The forward mode, direct differentiation 

method is not practical for shape design problems with multiple design variables, since 

the computational costs scale with the number of design variables. In current work, the 

direct sensitivity is used as a comparison tool for the reverse mode discrete adjoint 

formulation. 
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Reverse Mode Discrete Adjoint Formulation 

The reverse mode discrete adjoint formulation is efficient for computing 

sensitivity derivatives for problems with multiple design variables. The adjoint 

formulation eliminates the computational overhead caused by repetitive calculations of 

the solution sensitivities by transposing the inverse of the Jacobian matrix. The third term 

in Eq.(2.46) can be expressed as: 

∑
𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑞𝑖
[
𝜕𝑅𝑖

𝜕𝑞𝑖
]
−1

(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
)

𝑛𝑐𝑦𝑐
𝑖=1

= ∑ [𝜆𝑞
𝑖 ]

𝑇
(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
)

𝑛𝑐𝑦𝑐
𝑖=1

= ∑ ([𝜆𝑞
𝑖 ]

𝑇 𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+ [𝜓1

𝑖 ]
𝑇 𝜕𝑞𝑖−1

𝜕𝛽
+ [𝜓2

𝑖 ]
𝑇 𝜕𝑞𝑖−2

𝜕𝛽
)

𝑛𝑐𝑦𝑐
𝑖=1

              (2.47) 

where 

𝜆𝑞
𝑖 = [

𝜕𝑅𝑖

𝜕𝑞𝑖]
−𝑇

[
𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑞𝑖 ]
𝑇

                                        (2.48) 

𝜓1
𝑖 = [

𝜕𝑅𝑖

𝜕𝑞𝑖−1]
𝑇

𝜆𝑞
𝑖                                                 (2.49) 

𝜓2
𝑖 = [

𝜕𝑅𝑖

𝜕𝑞𝑖−2]
𝑇

𝜆𝑞
𝑖                                                 (2.50) 

As observed from Eq.(2.47), the solution sensitivities from the earlier two time 

steps are not available in adjoint mode. To avoid the evolution of unavailable terms, the 

adjoint variables of newer time steps can be regrouped with the ones of older time steps. 

Then the reformulated adjoint variable becomes: 

𝜆𝑞
𝑖 = [

𝜕𝑅𝑖

𝜕𝑞𝑖
]
−𝑇

([
𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑞𝑖
]
𝑇

+ [𝜓1
𝑖+1]

𝑇
+ [𝜓2

𝑖+2]
𝑇
)                  (2.51) 

The total differential of the objective function in terms of the adjoint vector is expressed 

as: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
=

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝛽
+

𝜕𝑐𝑜𝑠𝑡𝐼

𝜕𝑋

𝜕𝑋

𝜕𝛽
+ [𝜆𝑞

𝑖 ]
𝑇
(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
)                       (2.52) 
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Once the sensitivity derivatives of the objective function are evaluated, they are utilized 

to predict an appropriate search direction. The basic algorithm can be written as: 

Algorithm. A discrete adjoint formulation for time-dependent sensitivity derivatives 

(1) Set 𝜓1
𝑖+1,𝜓2

𝑖+1,𝜓2
𝑖+2to be zero. Set 𝑖 to be ncyc. 

(2) Solve Eq. (2.51) for the adjoint variable. 

(3) Set the sensitivity derivatives by Eq. (2.52). 

(4) Set 𝜓2
𝑖+2 = 𝜓2

𝑖+1. 

(5) Set 𝑖 = 𝑖 − 1. 

(6) Solve Eqs. (2.49-2.50) for 𝜓1
𝑖+1 and 𝜓2

𝑖+1. 

(7) If 𝑖 = 1, stop; otherwise go to step 2. 

Surface Parameterization 

During a design cycle the geometry is modified through surface node 

displacements according to a defined parameterization. The specific method will dictate 

the set of geometric design variables. In current work, surface parameterization methods 

of Bezier Curves and Hicks-Henne functions are utilized, Linear-Elastic smoothing is 

applied to move interior mesh points in response to boundary movement. The surface 

parameterization methods and mesh smoothing methods will be discussed in the 

following sections. 

Linear-Elastic Smoothing 

For current work, sensitivity analysis is applied for two-dimensional applications 

only, and the following discussions will focus on two-dimensional cases. The Linear-
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Elastic equations represent the perturbation field on the inside of the domain based on the 

perturbations prescribed on the boundaries, and are given by[74]: 

𝜕

𝜕𝑥
[𝛼11

𝜕∆𝑥

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝛼12

𝜕∆𝑥

𝜕𝑦
] +

𝜕

𝜕𝑥
[𝜃11

𝜕∆𝑦

𝜕𝑦
] +

𝜕

𝜕𝑦
[𝜃12

𝜕∆𝑦

𝜕𝑥
] = 0             (2.53) 

𝜕

𝜕𝑥
[𝛼21

𝜕∆𝑦

𝜕𝑥
] +

𝜕

𝜕𝑦
[𝛼22

𝜕∆𝑦

𝜕𝑦
] +

𝜕

𝜕𝑥
[𝜃21

𝜕∆𝑥

𝜕𝑦
] +

𝜕

𝜕𝑦
[𝜃22

𝜕∆𝑥

𝜕𝑥
] = 0             (2.54) 

Here ∆𝑥 and ∆𝑦 are the displacements of the x and y coordinates. The coordinates of 

interior nodes are updated by: 

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑙𝑑 + ∆𝑥                                               (2.55) 

𝑦𝑛𝑒𝑤 = 𝑦𝑜𝑙𝑑 + ∆𝑦                                               (2.56) 

The parameters in Eqs.(2.53-2.54) are defined as: 

𝛼11 = 𝛼22 =
𝐸

1−𝜈2                                             (2.57) 

𝛼12 = 𝛼21 = 𝜃12 = 𝜃21 =
𝐸

2(1+𝜈)
                              (2.58) 

𝜃11 = 𝜃22 =
𝜈𝐸

1−𝜈2                                             (2.59) 

where 𝜈 is Poisson’s Ratio, and 𝐸 is Young’s Modulus.  

 The Linear-Elastic equations are solved with the Galerkin finite element method 

given by: 

𝜕𝑭𝐿𝐸

𝜕𝑥
+

𝜕𝑮𝐿𝐸

𝜕𝑦
= 0                                             (2.60) 

where 

𝒒𝐿𝐸 = [
∆𝑥
∆𝑦

]                                                (2.61) 

𝑭𝐿𝐸 = [
𝛼11

𝜕∆𝑥

𝜕𝑥
+ 𝜃11

𝜕∆𝑦

𝜕𝑦

𝛼21
𝜕∆𝑦

𝜕𝑥
+ 𝜃21

𝜕∆𝑥

𝜕𝑦

]                                     (2.62) 
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𝑮𝐿𝐸 = [
𝛼12

𝜕∆𝑥

𝜕𝑦
+ 𝜃12

𝜕∆𝑦

𝜕𝑥

𝛼22
𝜕∆𝑦

𝜕𝑦
+ 𝜃22

𝜕∆𝑥

𝜕𝑥

]                                    (2.63) 

The governing equations in weak form are expressed as: 

∫ 𝑤 (
𝜕𝑭

𝜕𝑥
+

𝜕𝑸

𝜕𝑦
) 𝜕Ω

Ω
= 0                                        (2.64) 

The Linear-Elastic equations are solved in matrix form as: 

[𝑀][𝒒𝐿𝐸] = [𝑅𝐻𝑆]                                           (2.65) 

where [𝑀] is the stiffness matrix for solving the resulting mesh movement. To calculate 

the mesh sensitivity derivatives, the following equations in matrix form will be solved: 

[𝑀] [
𝜕𝒒𝐿𝐸

𝜕𝛽
] = [

𝜕𝑅𝐻𝑆

𝜕𝛽
]                                            (2.66) 

 

Hicks-Henne Function 

The Hicks-Henne sine bump function is utilized to ensure smooth surface shape, 

given by: 

𝑏𝑖(𝑥𝑠𝑖 , 𝛽𝑚) = 𝛽𝑚𝑠𝑖𝑛4(𝜋𝑥𝑠𝑖
ln(0.5) ln(𝑥𝑠𝑚)⁄ )                      (2.67) 

where the design variables are set to be the magnitudes of the bump functions 𝜷 =

{𝛽𝑚, 𝑚 = 1,⋯ , 𝑁𝑑}. In Eq.(2.67), 𝑏𝑖 represents the surface node displacement at 𝑥𝑠𝑖 due 

to the displacement of the surface node at 𝑥𝑠𝑚, and 𝛽𝑚 denotes the 𝑚𝑡ℎ component of the 

design variables associated with the surface node at 𝑥𝑠𝑚 . The modified surface 

coordinates are computed by: 

𝑥𝑠𝑖
𝑛𝑒𝑤 = 𝑥𝑠𝑖

𝑜𝑙𝑑 + ∑ 𝑏𝑖(𝑥𝑠𝑖 , 𝛽𝑚)𝑛𝑑𝑣
𝑚=1                            (2.68) 

where 𝑛𝑑𝑣 represents the total number of design variables. 
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Bezier Curve 

A Bezier curve is defined by a set of control points 𝑷0 through 𝑷𝑛, and 𝑛 is the 

curve’s order. The first and last control points are the start and end points of the curve, 

respectively. The intermediate control points generally do not lie on the curve. A Bezier 

curve can be expressed as: 

𝑩(𝑡) = ∑ 𝑷𝑖
𝑛!

𝑖!(𝑛−𝑖)!
𝑡𝑖(1 − 𝑡)𝑛−𝑖𝑛

𝑖=0                             (2.69) 

where 0 ≤ 𝑡 ≤ 1, and 𝑡 represents the position of design points. 𝑷𝑖 are control points for 

the Bezier curve, and we have: 

𝑩(𝑡) = [
𝑥𝐵𝑒𝑧𝑖𝑒𝑟(𝑡)

𝑦𝐵𝑒𝑧𝑖𝑒𝑟(𝑡)
]                                            (2.70) 

𝑷𝒊 = [
𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖)

𝑦𝑐𝑜𝑛𝑡𝑟𝑜𝑙(𝑖)
]                                           (2.70) 

The setting of design variables needs to be combined with real design problems and will 

be discussed in more detail in Chapter IV. 

 

 

 

 

 

 



 24 

 

 

 

 

 

CHAPTER III 

 

PHOTONIC CRYSTALS: THEORY, SIMULATION AND RESULTS 

 

Introduction 

Photonic crystals are composed of periodic structures that affect electromagnetic 

wave propagation in the same way that the periodic potential in a semiconductor crystal 

affects electron motion by defining allowed and forbidden electronic energy bands. This 

periodicity is the electromagnetic analogue of a crystalline atomic lattice[2]. That is 

where the name “crystal” comes from. 

Photonic crystals contain regularly repeating regions of high and low dielectric 

constant. Whether waves propagate through this structure or not depends on their 

wavelength. Wavelengths that don’t propagate form disallowed bands called photonic 

band gaps. 

The dispersion relation (band diagram) of the photonic crystal describes the 

location and size of the photonic band gap (PBG). The knowledge of Floquet-Bloch 

periodic conditions and Brillouin zone are utilized in calculating the PBG. The methods 

for computing the band diagram of the photonic crystals with lattice types of both square 

lattice and triangular lattice are discussed in the following sections. In current work, we 

focus on the simulation of two-dimensional photonic crystals. 
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Calculation of Band Diagram  

A two-dimensional photonic crystal is periodic along two of its axes and 

homogeneous along the third axis. Within the photonic crystal, one basic configuration 

unit (the unit cell) is replicated over and over corresponding to a periodic dielectric 

function 휀(𝒓) =  휀(𝒓 + 𝑹). According to Bloch’s theorem, the electromagnetic mode can 

be expressed as a plane wave that is modulated by a periodic function 𝑢(𝒓) =  𝑢(𝒓 + 𝑹), 

where the function 𝑢(𝒓) shares the same periodicity as the photonic crystal. 

Floquet-Bloch Periodic Conditions 

The simulation is run on the unit cell with Floquet-Bloch periodic conditions 

applied on the boundaries. The expressions of Floquet-Bloch periodic conditions depend 

on the lattice type (periodic function 𝑢(𝒓)) of the photonic crystal. The two most used 

lattice types: square lattice and triangular lattice are discussed in the following sections. 

Square Lattice 

The proposed photonic crystal is made of cylinders of refractive index 𝑛1 

immersed in a medium of refractive index 𝑛2. As shown in Fig. 3.1(a), the cylinders are 

repeated with periodicity of the lattice constant 𝑎  along both 𝑥  and 𝑦  directions. The 

computational geometry of the unit cell is shown in Fig. 3.1(b). 
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a) 2D photonic crystal: square lattice b) Unit cell 

Figure 3.1 Square lattice structure and unit cell 

 

For square lattice with the given unit cell, the Floquet-Bloch periodic conditions 

applied to the electric and magnetic components are shown in Eqs.(3.1-3.4). In the 

equations, 𝑎 is the lattice constant and 𝑘𝑥, 𝑘𝑦 are the wave numbers. The selection of the 

values of 𝑘𝑥 and 𝑘𝑦 will be discussed in detail later in this chapter. 

𝐸(𝑥 = 0, 𝑦, 𝑡) =  𝐸(𝑥 = 𝑎, 𝑦, 𝑡)exp (−𝑖𝑘𝑥 ∙ 𝑎)                      (3.1) 

𝐸(𝑥, 𝑦 = 0, 𝑡) =  𝐸(𝑥, 𝑦 = 𝑎, 𝑡)exp (−𝑖𝑘𝑦 ∙ 𝑎)                      (3.2) 

𝐻(𝑥 = 𝑎, 𝑦, 𝑡) =  𝐻(𝑥 = 0, 𝑦, 𝑡)exp (𝑖𝑘𝑥 ∙ 𝑎)                        (3.3) 

𝐻(𝑥, 𝑦 = 𝑎, 𝑡) =  𝐻(𝑥, 𝑦 = 0, 𝑡)exp (𝑖𝑘𝑦 ∙ 𝑎)                        (3.4) 

Triangular Lattice 

The periodic structure of the triangular lattice and the simulation geometry of the 

unit cell are shown in Fig. 3.2. For triangular lattice with the given unit cell, the Floquet-

Bloch conditions applied to the electric and magnetic components are shown in Eq.(3.5-

3.10). As shown in Fig. 3.2(b), there are three pairs of periodic conditions. Equations 
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(3.5-3.6) are applied on the boundaries of 𝑥 = 0  and 𝑥 = 𝑎 . Equations (3.7-3.8) are 

applied on the boundaries of 0 ≤ 𝑥 ≤ 𝑎/2, 𝑦 = 0 and 𝑎/2 ≤ 𝑥 ≤ 𝑎, 𝑦 = 𝑏 illustrated by 

the black arrow in Fig. 3.2(b), and Equations (3.9-3.10) are applied on the boundaries of 

𝑎/2 ≤ 𝑥 ≤ 𝑎, 𝑦 = 0 and 0 ≤ 𝑥 ≤ 𝑎/2, 𝑦 = 𝑏 illustrated by the red arrow in Fig. 3.2(b), 

where 𝑏 =
√3

2
a.  

  
a) 2D photonic crystal: triangular lattice b) Unit cell 

Figure 3.2 Triangular lattice structure and unit cell 

 

𝐸(𝑥 = 0, 𝑦, 𝑡) =  𝐸(𝑥 = 𝑎, 𝑦, 𝑡)exp (−𝑖𝑘𝑥 ∙ 𝑎)                           (3.5) 

𝐻(𝑥 = 𝑎, 𝑦, 𝑡) =  𝐻(𝑥 = 0, 𝑦, 𝑡)exp (𝑖𝑘𝑥 ∙ 𝑎)                             (3.6) 

𝐸(𝑥, 𝑦 = 0, 𝑡) =  𝐸 (𝑥 +
𝑎

2
, 𝑦 =

√3

2
𝑎, 𝑡) exp (−𝑖𝑘𝑦 ∙

√3

2
𝑎 − 𝑖𝑘𝑥 ∙

𝑎

2
)            (3.7) 

𝐻 (𝑥, 𝑦 =
√3

2
𝑎, 𝑡) =  𝐻 (𝑥 +

𝑎

2
, 𝑦 = 0, 𝑡) exp (𝑖𝑘𝑦 ∙

√3

2
𝑎 − 𝑖𝑘𝑥 ∙

𝑎

2
)             (3.8) 

𝐸(𝑥, 𝑦 = 0, 𝑡) =  𝐸 (𝑥 −
𝑎

2
, 𝑦 =

√3

2
𝑎, 𝑡) exp (−𝑖𝑘𝑦 ∙

√3

2
𝑎 + 𝑖𝑘𝑥 ∙

𝑎

2
)            (3.9) 

𝐻 (𝑥, 𝑦 =
√3

2
𝑎, 𝑡) =  𝐻 (𝑥 −

𝑎

2
, 𝑦 = 0, 𝑡) exp (𝑖𝑘𝑦 ∙

√3

2
𝑎 + 𝑖𝑘𝑥 ∙

𝑎

2
)           (3.10) 
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To realize the Floquet-Bloch periodic conditions in the code, the original 

Riemann solver is modified by adding a factor that is a complex number related to the 

wave vector. Since the periodic boundaries are considered as duplicate edges in the code, 

the mesh points on the paired boundaries must be identical. 

Reciprocal Lattice and Brillouin Zone 

According to the knowledge of solid-state physics[75], only wave vectors 𝒌 that 

lie in the irreducible Brillouin zone need to be considered to get enough information for 

the band diagram. To introduce Brillouin zone, reciprocal lattice must be discussed first. 

           By taking Fourier transform of the periodic function 𝑢(𝒓) =  𝑢(𝒓 + 𝑹),  we have: 

𝑔(𝒌) =  𝑔(𝒌) ∗ exp (𝑖𝒌 ∙ 𝑹)                                 (3.11) 

where 𝑔(𝒌) is the Fourier transform of 𝑢(𝒓), and it is the coefficient on the plane wave 

with the vector 𝒌. To satisfy Eq.(3.11), we must have either 𝑔(𝒌) = 0 or exp(𝑖𝒌 ∙ 𝑹) = 1. 

That means, 𝑔(𝒌) is zero everywhere, except for spikes at the values of 𝒌 such that 

exp(𝑖𝒌 ∙ 𝑹) = 1 for all 𝑹. 

The vectors 𝒌  which satisfies exp(𝑖𝒌 ∙ 𝑹) = 1  or 𝒌 ∙ 𝑹 = 2𝜋𝑁 , are called 

reciprocal lattice vectors. The reciprocal lattice vectors are usually designated by the 

letter 𝑮 and they form a lattice of their own. Every lattice vector 𝑹 can be written in 

terms of the primitive lattice vectors as: 

𝑹 = 𝑙𝑅𝒂1 + 𝑚𝑅𝒂2 + 𝑛𝑅𝒂3                                   (3.12) 

Similarly, the reciprocal lattice vectors can be written in terms of their primitive lattice 

vectors as: 

𝑮 = 𝑙𝐺𝒃1 + 𝑚𝐺𝒃2 + 𝑛𝐺𝒃3                                    (3.13) 

Then, the lattice vector 𝑹 and 𝑮 need to satisfy: 
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𝑮 ∙  𝑹 = (𝑙𝑅𝒂1 + 𝑚𝑅𝒂2 + 𝑛𝑅𝒂3) ∙ (𝑙𝐺𝒃1 + 𝑚𝐺𝒃2 + 𝑛𝐺𝒃3) =  2𝜋𝑁      (3.14) 

For all choices of (𝑙,𝑚, 𝑛), Eq.(3.14) must hold for some N. To satisfy that, we 

will have 𝒂𝑖 ∙ 𝒃𝑗 = 2𝜋𝛿𝑖𝑗 . Based on these relationships, to construct the primitive 

reciprocal lattice vectors in terms of the primitive lattice vectors, we have:  

𝒃1 =
2𝜋𝒂2×𝒂3

𝒂1∙(𝒂2×𝒂3)
                                                  (3.15) 

𝒃2 =
2𝜋𝒂3×𝒂1

𝒂1∙(𝒂2×𝒂3)
                                                  (3.16) 

𝒃3 =
2𝜋𝒂1×𝒂2

𝒂1∙(𝒂2×𝒂3)
                                                  (3.17) 

After taking the Fourier transform of a function that is periodic on a lattice, only the 

terms with wave vectors that are reciprocal lattice vectors need to be included.  

The electromagnetic modes can be written in Bloch form, since the translational 

symmetry of a photonic crystal allows us to classify the electromagnetic modes with a 

wave vector 𝒌. In Bloch form, the plane wave is modulated by a function that shares the 

periodicity of the lattice. In Bloch states, a mode with wave vector 𝒌 and a mode with 

wave vector 𝒌 + 𝑮 are the same mode, if 𝑮 is a reciprocal lattice vector. Then, we can 

restrict calculation to a finite zone in reciprocal space, where all values of 𝒌 that lie 

outside this zone can be reached from within the zone. Among such zones, we will focus 

on the one closest to 𝒌=0. This zone is the (first) Brillouin zone. 

In the following sections, the reciprocal lattice and Brillouin zone of square lattice 

and triangular lattice will be discussed in detail. 

Square Lattice 

Figure 3.3(a) shows the structure of square lattice. For a square lattice with lattice 

constant 𝑎, the lattice vectors are respectively: 𝒂1 = 𝑎𝒙, 𝒂2 = 𝑎𝒚 and 𝒂3 = 𝑙𝒛, where 𝑙 
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can be any length. By putting the lattice vectors into Eq.(3.15-3.17), the reciprocal lattice 

vectors are obtained, they are  𝒃1 = (2𝜋/𝑎)𝒙  and  𝒃2 = (2𝜋/𝑎)𝒚 . The corresponding 

reciprocal lattice is shown in Fig. 3.3(b), and it is a square lattice with reciprocal lattice 

constant of 2𝜋/𝑎. 

  
(a) Real lattice (b) Reciprocal lattice 

Figure 3.3 The real and reciprocal lattice of the square lattice 

 

Fig. 3.4(a) is the construction of the first Brillouin zone: taking the center point as 

the origin, connecting the lines from the origin to the other lattice points, getting their 

perpendicular bisectors, and the square boundary of the Brillouin zone is obtained. As 

shown in Fig. 3.4(b), in the irreducible Brillouin zone, the coordinates of the points 

Γ, 𝑋,𝑀 are (0,0), (𝜋/𝑎, 0), (𝜋/𝑎, 𝜋/𝑎), respectively. The band diagram will be calculated 

along the triangular edge of the irreducible Brillouin zone, from Γ to X to M. 
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(a) Brillouin zone (b) Irreducible Brillouin zone 

Figure 3.4 The Brillouin zone and irreducible Brillouin zone of the square lattice 

 

The coordinates of points in the irreducible Brillouin zone are the wave vectors 

𝑘𝑥, 𝑘𝑦 for the Floquet-Bloch conditions.  In current work, we pick 15 points along the 

edge of the irreducible Brillouin zone, x and y coordinates of each points which are also 

the wave vectors 𝑘𝑥, 𝑘𝑦 are shown in Table 3.1, where the point ΓnX represents the nth 

point between the node Γ and X, same for XnM and MnΓ. The wave vectors are put into 

Eq.(3.1-3.4) and then form 15 different boundary conditions. 

 

Table 3.1. Wave Vectors in the Irreducible Brillouin Zone of Square Lattice 

 Γ Γ1X Γ2X Γ3X Γ4X 

𝑘𝑥 0 0.2𝜋/𝑎 0.4𝜋/𝑎 0.6𝜋/𝑎 0.8𝜋/𝑎 

𝑘𝑦 0 0 0 0 0 

 X X1M X2M X3M X4M 

𝑘𝑥 𝜋/𝑎 𝜋/𝑎 𝜋/𝑎 𝜋/𝑎 𝜋/𝑎 
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𝑘𝑦 0 0.2𝜋/𝑎 0.4𝜋/𝑎 0.6𝜋/𝑎 0.8𝜋/𝑎 

 M M1Γ M2Γ M3Γ M4Γ 

𝑘𝑥 𝜋/𝑎 0.8𝜋/𝑎 0.6𝜋/𝑎 0.4𝜋/𝑎 0.2𝜋/𝑎 

𝑘𝑦 𝜋/𝑎 0.8𝜋/𝑎 0.6𝜋/𝑎 0.4𝜋/𝑎 0.2𝜋/𝑎 

 

Triangular Lattice 

Figure 3.5(a) shows the structure of triangular lattice. For a triangular lattice with 

lattice constant 𝑎 , the lattice vectors are respectively: 𝒂1 =
𝑎

2
(𝒙 + √3𝒚), 𝒂2 =

𝑎

2
(𝒙 −

√3𝒚)  and 𝒂3 = 𝑙𝒛 , where 𝑙  can be any length. By putting the lattice vectors into 

Eqs.(3.15-3.17), the reciprocal lattice vectors are obtained, they are 𝒃1 = (2𝜋/𝑎)(𝒙 +

𝟏

√𝟑
𝒚) and  𝒃2 = (2𝜋/𝑎)(𝒙 −

𝟏

√𝟑
𝒚). The corresponding reciprocal lattice is shown in Fig. 

3.5(b), and it is a triangular lattice with reciprocal lattice constant of 4𝜋/√3𝑎  and a 

rotation of 90 degree with respect to the real lattice.  

 



 33 

  
(a) Real lattice (b) Reciprocal lattice 

Figure 3.5 The real and reciprocal lattice of the triangular lattice 

 

Fig. 3.6(a) is the construction of the first Brillouin zone, which is a hexagon 

centered on the origin. As shown in Fig. 3.6(b), in the irreducible Brillouin zone, the 

coordinates of the points Γ,𝑀, 𝑋 are (0,0), (0,2𝜋/√3𝑎), (2𝜋/3𝑎, 2𝜋/√3𝑎),respectively. 

The band diagram will be calculated along the triangular edge of the irreducible Brillouin 

zone, from Γ to M to X. The coordinates of points in the irreducible Brillouin zone are the 

wave vectors 𝑘𝑥, 𝑘𝑦 for the Floquet-Bloch conditions.  In current work, we pick 15 points 

along the edge of the irreducible Brillouin zone, x and y coordinates of each points which 

are also the wave vectors 𝑘𝑥, 𝑘𝑦 are shown in Table 3.2. By applying the wave vectors 

into Eq.(3.5-3.10), 15 different boundary conditions are formed. 
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(a) Brillouin zone (b) Irreducible Brillouin zone 

Figure 3.6 The Brillouin zone and irreducible Brillouin zone of the triangular lattice 

 

Table 3.2. Wave Vectors in the Irreducible Brillouin Zone of Triangular Lattice 

 Γ Γ1M  Γ2M Γ3M Γ4M 

𝑘𝑥 0 0 0 0 0 

𝑘𝑦 0 0.4𝜋/√3𝑎 0.8𝜋/√3𝑎 1.2𝜋/√3𝑎 1.6𝜋/√3𝑎 

 M M1X M2X M3X M4X 

𝑘𝑥 0 0.4𝜋/3𝑎 0.8𝜋/3𝑎 1.2𝜋/3𝑎 1.6𝜋/3𝑎 

𝑘𝑦 2𝜋/√3𝑎 2𝜋/√3𝑎 2𝜋/√3𝑎 2𝜋/√3𝑎 2𝜋/√3𝑎 

 X X1Γ X2Γ X3Γ X4Γ 

𝑘𝑥 2𝜋/3𝑎 1.6𝜋/3𝑎 1.2𝜋/3𝑎 0.8𝜋/3𝑎 0.4𝜋/3𝑎 

𝑘𝑦 2𝜋/√3𝑎 1.6𝜋/√3𝑎 1.2𝜋/√3𝑎 0.8𝜋/√3𝑎 0.4𝜋/√3𝑎 

 



 35 

Excitation and Monitoring  

In simulation of the unit cell of photonic crystals, source points and monitoring 

points are chosen randomly[76]. At the source points, a modulated Gaussian pulse is 

applied to excite the electromagnetic modes over a wide range of frequencies, and the 

formulation is shown as follow[77]: 

𝑉 = 𝑐𝑜𝑠𝑡(𝜔(𝑡 − 𝑡0))𝑒
−

(𝑡−𝑡0)2

𝑎                                    (3.18) 

𝑎 =
√2.3

𝜋𝑓𝑚𝑎𝑥
                                                     (3.19) 

𝑡0 = √𝑚𝑎                                                     (3.20) 

where 𝑉 represents the value of Gaussian pulse, 𝑡0 and m can be used to control the delay 

of the source waveform. 

While running the simulation, we record the temporal response at the monitoring 

points at each time step until the solution has converged. Then we take a Fourier 

transform of the temporal results to obtain the frequency spectra where peaks at certain 

frequencies can be observed. Then these frequencies where the peaks are located are 

plotted on the band diagram for wave vector 𝒌. By looping all the wave vectors from the 

irreducible Brillouin zone, that means changing the wave vector 𝒌 in the Floquet-Bloch 

boundary condition for each simulation, we will get the entire band diagram. 
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Simulation Results of Photonic Band Gaps 

Square Lattice 

The first test case is to simulate the light propagation in the 𝑥~𝑦 plane of a square 

array of dielectric columns as shown in Fig. 3.1, with lattice constant 𝑎 = 200𝑛𝑚. The 

proposed photonic crystal consists of silicon(휀 = 12.0)  rods in air, with radius  𝑟 =

40𝑛𝑚.  

The simulation is run on the unit cell shown in Fig. 3.1(b) over a frequency range 

of 0-150THz in TM mode with 15 different boundary conditions mentioned in last 

section. Fourier transform of the temporal response of z-component of electric field at 15 

different wave vectors 𝒌 are shown in Fig. 3.7(a-o). The band diagram is obtained by 

applying a peak finding function at each frequency spectra, and the resulting band 

diagram is shown in Fig. 3.8. The frequency on the vertical axis is expressed as 

normalized frequency 𝑓𝑎/𝑐, and the horizontal axis shows the value of the in-plane wave 

vector 𝒌. As we move from left the right, 𝒌 moves along the triangular edge of the 

irreducible Brillouin zone, from Γ to X to M, as shown in Fig. 3.4(b). The simulation 

result of band diagram is compared with MPB[78], the results match each other well. As 

illustrated in Fig. 3.8, the band gap of the proposed photonic crystal is from 420THz to 

620THz. 
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(a) 𝑘𝑥 = 0.0, 𝑘𝑦 = 0.0 (b) 𝑘𝑥 = 0.2𝜋/𝑎, 𝑘𝑦 = 0.0 (c) 𝑘𝑥 = 0.4𝜋/𝑎, 𝑘𝑦 = 0.0 

   
(d) 𝑘𝑥 = 0.6𝜋/𝑎, 𝑘𝑦 = 0.0 (e) 𝑘𝑥 = 0.8𝜋/𝑎, 𝑘𝑦 = 0.0 (f) 𝑘𝑥 = 𝜋/𝑎, 𝑘𝑦 = 0.0 

   
(g) 𝑘𝑥 = 𝜋/𝑎, 𝑘𝑦 = 0.2𝜋/𝑎 (h) 𝑘𝑥 = 𝜋/𝑎, 𝑘𝑦 = 0.4𝜋/𝑎 (i) 𝑘𝑥 = 𝜋/𝑎, 𝑘𝑦 = 0.6𝜋/𝑎 

   
(j) 𝑘𝑥 = 𝜋/𝑎, 𝑘𝑦 = 0.8𝜋/𝑎 (k)  𝑘𝑥 = 𝑘𝑦 = 𝜋/𝑎 (l) 𝑘𝑥 = 𝑘𝑦 = 0.8𝜋/𝑎 
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(m) 𝑘𝑥 = 𝑘𝑦 = 0.6𝜋/𝑎 (n) 𝑘𝑥 = 𝑘𝑦 = 0.4𝜋/𝑎 (o) 𝑘𝑥 = 𝑘𝑦 = 0.2𝜋/𝑎 

Figure 3.7 Frequency spectra at each wave vector for square lattice 

 

 
Figure 3.8 Band diagram of square lattice 

 

Triangular Lattice 

The second test case is to simulate the light propagation in the 𝑥~𝑦 plane of a 

triangular array of dielectric columns as shown in Fig 3.2, with lattice constant 𝑎 =

200𝑛𝑚. The proposed photonic crystal consists of silicon(휀 = 12.0) rods in air, with 

radius 𝑟 = 40𝑛𝑚.  

The simulation is run on the unit cell shown in Fig. 3.2(b) over frequency range of 

0-150THz in TM mode with 15 different boundary conditions mentioned in last section. 
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Fourier transform of temporal response of z-component of electric field at 15 different 

wave vectors 𝒌 are shown in Fig. 3.9(a-o). The band diagram is shown in Fig. 3.10. The 

simulation result of band diagram is compared with MPB[78], the results match each 

other well. As illustrated in Fig. 3.10, the band gap of the proposed photonic crystal is 

from 410THz to 667THz. 

 

   
(a) 𝑘𝑥 = 0.0, 𝑘𝑦 = 0.0 (b) 𝑘𝑥 = 0, 𝑘𝑦 = 0.4𝜋/√3𝑎 (c) 𝑘𝑥 = 0, 𝑘𝑦 = 0.8𝜋/√3𝑎 

   

(d) 𝑘𝑥 = 0, 𝑘𝑦 = 1.2𝜋/√3𝑎 (e) 𝑘𝑥 = 0, 𝑘𝑦 = 1.6𝜋/√3𝑎 (f) 𝑘𝑥 = 0, 𝑘𝑦 = 2𝜋/√3𝑎 

   
(g) 𝑘𝑥 = 0.4𝜋/3𝑎, 

     𝑘𝑦 = 2𝜋/√3𝑎 

(f) 𝑘𝑥 = 0.8𝜋/3𝑎, 

     𝑘𝑦 = 2𝜋/√3𝑎 

(i) 𝑘𝑥 = 1.2𝜋/3𝑎, 

     𝑘𝑦 = 2𝜋/√3𝑎 
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(j) 𝑘𝑥 = 1.6𝜋/3𝑎, 

     𝑘𝑦 = 2𝜋/√3𝑎 

(k) 𝑘𝑥 = 2𝜋/3𝑎, 

     𝑘𝑦 = 2𝜋/√3𝑎 

(l) 𝑘𝑥 = 1.6𝜋/3𝑎, 

     𝑘𝑦 = 1.6𝜋/√3𝑎 

   
(m) 𝑘𝑥 = 1.2𝜋/3𝑎, 

     𝑘𝑦 = 1.2𝜋/√3𝑎 

(n) 𝑘𝑥 = 0.8𝜋/3𝑎, 

     𝑘𝑦 = 0.8𝜋/√3𝑎 

(o) 𝑘𝑥 = 0.4𝜋/3𝑎, 

     𝑘𝑦 = 0.4𝜋/√3𝑎 

Figure 3.9 Frequency spectra at each wave vector for triangular lattice 

 

 
Figure 3.10 Band diagram of triangular lattice 
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Approach Array Model 

The strategy used in exciting the monitoring waves may cause problems such as 

missing peaks especially when the shape is complex. This will increase the inaccuracy in 

the design cycle. Also, the magnitude of the peaks at the frequency spectra is random, 

which can introduce disturbance and leads to unsteadiness in the design cycle. For the 

reasons above, an approach array model for simulation of the photonic crystals for design 

purposes is proposed.  

Reflection and Transmission 

Scattering parameters describe the input-output relationship between ports in an 

electrical system. Regarding a typical two-port network, the scattering matrix shows the 

relationship between the outgoing waves 𝑏1, 𝑏2  and incoming waves 𝑎1, 𝑎2  that are 

incident at the two ports: 

[
𝑏1

𝑏2
] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑎1

𝑎2
] , 𝑆 = [

𝑆11 𝑆12

𝑆21 𝑆22
]   (3.21) 

The matrix elements, S11, S12, S21, S22 are referred to as the scattering parameters. 

The parameters S11 and S22 represent reflection coefficients, and parameters S21 and S12 

represent transmission coefficients.  

In practice, the most commonly quoted parameter in regards to photonic crystal 

and metamaterials are transmission and reflection. Equation (3.22) shows the relation 

between transmission and scattering parameters, and Eq.(3.23) shows the relation 

between reflection and scattering parameters. 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑆11
2
                                              (3.22) 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 𝑆21
2
                                           (3.23) 
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To calculate reflection and transmission, electric field and magnetic filed are 

monitored at the excitation port and collection port. Transmitted, incident and reflected 

power can be obtained from the monitored field. The formulas to calculate reflection and 

transmission are expressed as follow: 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘) =  𝑆11(𝑘)2 =
𝑃_𝑅(𝑘)

𝑃_𝐼(𝑘)
                                (3.24) 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘) = 𝑆21(𝑘)2 =
𝑃_𝑇(𝑘)

𝑃_𝐼(𝑘)
                              (3.25) 

In Eqs.(3.24-3.25), 𝑃_𝑇(𝑘)  represents the transmitted power at frequency 

𝑘 ,𝑃_𝐼(𝑘)  represents the incident power at frequency 𝑘 , and 𝑃_𝑅(𝑘)  represents the 

reflected power at frequency 𝑘. The formula to calculate power is expressed in Eq.(3.26), 

and Eqs.(3.27-3.29) are the FEM implementations of Eq.(3.26). 

𝑃𝑜𝑤𝑒𝑟 = 𝐸 ∗ �̅�                                              (3.26) 

𝑃_𝑇(𝑘) = ∫ ∑ 𝑤𝑒𝑖𝑔ℎ𝑡 ∙ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 ∙ 𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)
𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 ×𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝𝑜𝑟𝑡2
(3.27) 

𝑃_𝐼(𝑘) = ∫ ∑ 𝑤𝑒𝑖𝑔ℎ𝑡 ∙ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 ∙ 𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔)
𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 ×𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑝𝑜𝑟𝑡1
  (3.28) 

𝑃_𝑅(𝑘) = ∫ ∑ 𝑤𝑒𝑖𝑔ℎ𝑡 ∙ 𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛 ∙ 𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔)
𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 ×𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑝𝑜𝑟𝑡1
(3.29) 

 

Square Lattice 

The approach array model for square lattice is a 10×1 array as shown in Fig. 3.11. 

Periodic conditions are applied on the boundary 𝑦 = 0 and 𝑦 = 𝑎. A modulated Gaussian 

pulse is applied at Port 1 to excite the electromagnetic modes over a wide range of 

frequencies. The temporal responses at Port 1 and Port 2 are recorded at each time step 

until the solution has converged. Then a Fourier transform of the temporal results is used 

to obtain the frequency spectra of electric field and magnetic field. 
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Figure 3.11 Approach array model for square lattice 

 

The reflection of the approach array model for square lattice is shown in Fig. 

3.12(a). The comparison of that with the band diagram is illustrated in Fig. 3.12(b). A 

small mismatch can be observed since the approach model does not have the infinite 

periodicity along the x-axis as the unit cell model. However, considering its steadiness, it 

is a good approach for design purpose. The approach array model is used for design 

cycles to be discussed in Chapter IV, and the final optimized photonic crystals will be 

simulated with the unit cell model again to get the exact band diagram. 

 

  
(a) Reflection (b)Reflection and band diagram 

Figure 3.12 Results of approach array model for square lattice 
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CHAPTER IV 

 

SENSITIVITY ANALYSIS AND SHAPE OPTIMIZATION  

 

OF PHOTONIC CRYSTALS 

 

Cost Function and Sensitivity Analysis 

The target of shape optimization of photonic crystals is to realize band gap shift. 

For the target, a generalized cost function is proposed as follow: 

𝑐𝑜𝑠𝑡𝐼 =  ∑ 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)𝑓2
𝑘=𝑓1 + ∑ 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝑓4
𝑘=𝑓3           (4.1) 

The cost function ensures minimization of transmission at frequency range 𝑓1 −

𝑓2  and minimization of reflection at frequency range of 𝑓3 − 𝑓4 . When 𝑐𝑜𝑠𝑡𝐼  is 

minimized, the band gap of the designed photonic crystal will shift to the desired range of 

𝑓1 − 𝑓2. The frequency range of 𝑓3 − 𝑓4 here is to ensure that the designed photonic 

crystal only have band gap at the desired frequency range. 

From the definition in Eqs.(3.24-3.25), the cost function can be expressed as:  

𝑐𝑜𝑠𝑡𝐼 = ∑
𝑃_𝑇(𝑘)

𝑃_𝐼(𝑘)

𝑓2
𝑘=𝑓1 + ∑

𝑃_𝑅(𝑘)

𝑃_𝐼(𝑘)

𝑓4
𝑘=𝑓3                                  (4.2) 

where 𝑃_𝑇(𝑘),𝑃_𝐼(𝑘) and 𝑃_𝑅(𝑘) represent the transmitted, incident and reflected power 

at frequency 𝑘,respectively, and the FEM formulation is shown in Eqs. (3.27-3.29). The 

Fourier transform terms of electric and magnetic field in Eq. (3.27) can be expressed as: 

𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔) = ∑ 𝐸_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝑒−𝑗𝜔(𝑘)𝑖∆𝑡∆𝑡
𝑛𝑐𝑦𝑐
𝑖=1              (4.3) 

𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐻_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝑒𝑗𝜔(𝑘)𝑖∆𝑡∆𝑡
𝑛𝑐𝑦𝑐
𝑖=1               (4.4) 
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By defining 𝜙(𝑖, 𝑘) = 𝑒−𝑗𝜔(𝑘)𝑖∆𝑡∆𝑡, Eqs.(4.3-4.4) are rewritten as:  

𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔) = ∑ 𝐸_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1                 (4.5) 

𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐻_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐
𝑖=1                 (4.6) 

Similarly, for the Fourier transform terms of electric and magnetic field in Eqs.(3.28-

3.29), we have: 

𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔) = ∑ 𝐸_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1                   (4.7) 

𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = ∑ 𝐻_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐
𝑖=1                  (4.8) 

𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔) = ∑ 𝐸_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1                 (4.9) 

𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝐻_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐
𝑖=1              (4.10) 

Then the Eqs(3.27-3.29) can be expressed as follow: 

𝑃_𝑇(𝑘) = ∫ ∑ 𝑤 ∙ 𝐽 ∙ ∑ 𝐸_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 × ∑ 𝐻_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1𝑝𝑜𝑟𝑡2
  (4.11) 

𝑃_𝐼(𝑘) = ∫ ∑ 𝑤 ∙ 𝐽 ∙ ∑ 𝐸_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 ×∑ 𝐻_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1𝑝𝑜𝑟𝑡1
    (4.12) 

𝑃_𝑅(𝑘) = ∫ ∑ 𝑤 ∙ 𝐽 ∙ ∑ 𝐸_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐
𝑖=1

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1 × ∑ 𝐻_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1𝑝𝑜𝑟𝑡1
  (4.13) 

The sensitivities of the cost function for both forward sensitivity and adjoint 

formulation are discussed in details in the following sections. 

Forward Sensitivity 

The general method of calculating total differential of cost function with respect 

to the design variable 𝛽 with forward sensitivity analysis was discussed in Chapter II. For 

the design problem proposed in this dissertation, it becomes more complicated since the 

cost function is related to the Fourier transform of the temporal results. For the proposed 

cost function, the first and second terms of Eq.(2.42) are zero, only the third term is 



 46 

considered. The total differential of cost function with respect to the design variable 𝛽 is 

expressed as: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
=  ∑

𝑑𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝑑𝛽

𝑓2

𝑘=𝑓1

+ ∑
𝑑𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝑑𝛽

𝑓4

𝑘=𝑓3

= ∑ (
𝜕𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝑇(𝑘)
∙
𝜕𝑃_𝑇(𝑘)

𝜕𝛽
+

𝜕𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼(𝑘)

𝜕𝛽
)

𝑓2

𝑘=𝑓1

+ ∑ (
𝜕𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝑅(𝑘)
∙
𝜕𝑃_𝑅(𝑘)

𝜕𝛽
+

𝜕𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼(𝑘)

𝜕𝛽
)

𝑓2

𝑘=𝑓1

 

(4.14) 

 

The sensitivities of the power terms in Eq.(4.14) can be expressed as : 

𝜕𝑃_𝑇(𝑘)

𝜕𝛽
= ∫ ∑ 𝑤𝐽 (∑

𝜕𝐸_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)× ∑ 𝐻_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

+ ∫ ∑ 𝑤𝐽 (∑
𝜕𝐻_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅× ∑ 𝐸_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

(4.15) 

𝜕𝑃_𝐼(𝑘)

𝜕𝛽
= ∫ ∑ 𝑤𝐽 (∑

𝜕𝐸_𝐼(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)× ∑ 𝐻_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡1

 

+∫ ∑ 𝑤𝐽 (∑
𝜕𝐻_𝐼(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅× ∑ 𝐸_𝐼(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡1

 

(4.16) 

𝜕𝑃_𝑅(𝑘)

𝜕𝛽
= ∫ ∑ 𝑤𝐽 (∑

𝜕𝐸_𝑅(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)× ∑ 𝐻_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡1

 

+∫ ∑ 𝑤𝐽 (∑
𝜕𝐻_𝑅(𝑖,𝑚, 𝑛𝑔)

𝜕𝛽
∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅× ∑ 𝐸_𝑅(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡1

 

(4.17) 

 

In Eqs.(4.15-4.17), the sensitivities of electric and magnetic field are obtained by solving 

linear equations: 

𝜕𝑞𝑖

𝜕𝛽
= − [

𝜕𝑅𝑖

𝜕𝑞𝑖]
−1

(
𝜕𝑅𝑖

𝜕𝑋

𝜕𝑋

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−1

𝜕𝑞𝑖−1

𝜕𝛽
+

𝜕𝑅𝑖

𝜕𝑞𝑖−2

𝜕𝑞𝑖−2

𝜕𝛽
)                (4.18) 

For each design variable, one linear equation needs to be solved at each time step. The 

computational costs for the forward mode sensitivities scale with the number of design 

variables. 
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Discrete Adjoint Formulation 

To overcome the disadvantages of forward mode sensitivities, discrete adjoint 

formulation is proposed. The general method of calculating total differential of cost 

function with respect to the design variable 𝛽  with discrete adjoint formulation was 

discussed in Chapter II. In Eq.(2.42), 
𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝑄
 is the term to be derived, the total differential 

of cost function with respect to solution 𝑄 is expressed as: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝑄
=  ∑

𝑑𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝑑𝑄

𝑓2

𝑘=𝑓1

+ ∑
𝑑𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝑑𝑄

𝑓4

𝑘=𝑓3

= ∑ (
𝜕𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝑇(𝑘)
∙
𝜕𝑃_𝑇(𝑘)

𝜕𝑄
+

𝜕𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼(𝑘)

𝜕𝑄
)

𝑓2

𝑘=𝑓1

+ ∑ (
𝜕𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝑅(𝑘)
∙
𝜕𝑃_𝑅(𝑘)

𝜕𝑄
+

𝜕𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼(𝑘)

𝜕𝑄
)

𝑓2

𝑘=𝑓1

 

(4.19) 

 

The sensitivities of the power term is Eq.(4.19) can be expressed as : 

𝜕𝑃_𝑇(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (∑

𝜕𝐸_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝑄
∙ 𝜙(𝑖, 𝑘)× ∑ 𝐻_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

+ ∫ ∑ 𝑤𝐽 (∑
𝜕𝐻_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝑄
∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅× ∑ 𝐸_𝑇(𝑖,𝑚, 𝑛𝑔) ∙ 𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

(4.20) 

 

Equation (4.20) can be rewritten as: 

 

𝜕𝑃_𝑇(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ × ∑

𝜕𝐸_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝑄
∙ 𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

+ ∫ ∑ 𝑤𝐽 (𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔) × ∑
𝜕𝐻_𝑇(𝑖,𝑚, 𝑛𝑔)

𝜕𝑄
∙ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

)

𝑛𝑔𝑎𝑢𝑠𝑠

𝑛𝑔=1𝑝𝑜𝑟𝑡2

 

(4.21) 

 

Since the terms 
𝜕𝐸_𝑇(𝑖,𝑚,𝑛𝑔)

𝜕𝑄
 and  

𝜕𝐻_𝑇(𝑖,𝑚,𝑛𝑔)

𝜕𝑄
 does not depend on the time step i, Eq.(4.21) 

can be rewritten as: 

𝜕𝑃_𝑇(𝑘)

𝜕𝑄
=

𝜕𝑃_𝑇1(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐

𝑖=1 + 
𝜕𝑃_𝑇2(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1                 (4.22) 
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where 

𝜕𝑃_𝑇1(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ×

𝜕𝐸_𝑇(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

        (4.23) 

𝜕𝑃_𝑇2(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑇(𝑚, 𝑘, 𝑛𝑔) ×

𝜕𝐻_𝑇(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

        (4.24) 

Similarly, we have: 

𝜕𝑃_𝐼(𝑘)

𝜕𝑄
=

𝜕𝑃_𝐼1(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐

𝑖=1 + 
𝜕𝑃_𝐼2(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1                  (4.25) 

𝜕𝑃_𝑅(𝑘)

𝜕𝑄
=

𝜕𝑃_𝑅1(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)𝑛𝑐𝑦𝑐

𝑖=1 + 
𝜕𝑃_𝑅2(𝑘)

𝜕𝑄
∑ 𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝑛𝑐𝑦𝑐

𝑖=1                 (4.26) 

where 

𝜕𝑃_𝐼1(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ×

𝜕𝐸_𝐼(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

         (4.27) 

𝜕𝑃_𝐼2(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝐼(𝑚, 𝑘, 𝑛𝑔) ×

𝜕𝐻_𝐼(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

         (4.28) 

𝜕𝑃_𝑅1(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐻𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ×

𝜕𝐸_𝑅(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

       (4.29) 

𝜕𝑃_𝑅2(𝑘)

𝜕𝑄
= ∫ ∑ 𝑤𝐽 (𝐸𝑓𝑜𝑢𝑟𝑖𝑒𝑟_𝑅(𝑚, 𝑘, 𝑛𝑔) ×

𝜕𝐻_𝑅(𝑚,𝑛𝑔)

𝜕𝑄
)

𝑛𝑔𝑎𝑢𝑠𝑠
𝑛𝑔=1𝑝𝑜𝑟𝑡2

       (4.30) 

Finally, the total differential of cost function with respect to solution 𝑄  is 

expressed as: 

𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝑄
= ∑ ∑ (

𝜕𝑆21(𝑘)

𝜕𝑃_𝑇(𝑘)
∙
𝜕𝑃_𝑇1(𝑘)

𝜕𝑄
+

𝜕𝑆21(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼1(𝑘)

𝜕𝑄
)

𝑓2

𝑘=𝑓1

𝜙(𝑖, 𝑘)

𝑛𝑐𝑦𝑐

𝑖=1

 

+ ∑ ∑ (
𝜕𝑆21(𝑘)

𝜕𝑃_𝑇(𝑘)
∙
𝜕𝑃_𝑇2(𝑘)

𝜕𝑄
+

𝜕𝑆21(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼2(𝑘)

𝜕𝑄
)

𝑓2

𝑘=𝑓1

𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

 

+ ∑ ∑ (
𝜕𝑆11(𝑘)

𝜕𝑃_𝑅(𝑘)
∙
𝜕𝑃_𝑅1(𝑘)

𝜕𝑄
+

𝜕𝑆11(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼1(𝑘)

𝜕𝑄
)

𝑓4

𝑘=𝑓3

𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

 

+ ∑ ∑ (
𝜕𝑆11(𝑘)

𝜕𝑃_𝑅(𝑘)
∙
𝜕𝑃_𝑅2(𝑘)

𝜕𝑄
+

𝜕𝑆11(𝑘)

𝜕𝑃_𝐼(𝑘)
∙
𝜕𝑃_𝐼2(𝑘)

𝜕𝑄
)

𝑓4

𝑘=𝑓3

𝜙(𝑖, 𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑐𝑦𝑐

𝑖=1

 

(4.31) 

 

The computational costs for the discrete adjoint formulation do not scale with the number 

of design variables. 
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Verification of Shape Sensitivity Derivatives 

For the photonic crystal with square lattice proposed in Chapter III, the time 

accurate sensitivity derivatives are computed with three methods to verify the correctness 

of implementation; they are: finite difference method, forward sensitivity method and 

adjoint formulation. For this case, the design variable 𝛽 is the radius of the circle 𝑟. For 

better clarification, as shown in Fig. 4.1, 
𝑑𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝑑𝛽
 are plotted at each frequency point 

for comparison of finite difference and forward sensitivity. For adjoint method, the 

matrix to be solved is determined by the number of cost functions. For forward sensitivity, 

the matrix to be solved is determined by the number of design variables. That’s why Fig. 

4.1 does not show the plot of 
𝑑𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)

𝑑𝛽
 of adjoint method for each frequency point.  

To make further verification, now let the cost function be as follow: 

𝑐𝑜𝑠𝑡𝐼 =  ∑ 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘)𝑓2
𝑘=𝑓1                                      (4.32) 

where 𝑓1 = 200𝑇𝐻𝑧 𝑎𝑛𝑑 𝑓2 = 600𝑇 . Table 4.1 shows the comparison of 
𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
 

generated from the finite different approach, the forward sensitivity approach and the 

discrete adjoint approach.  

Table 4.1 Comparison of Sensitivity Derivatives 

Approach 
𝑑𝑐𝑜𝑠𝑡𝐼

𝑑𝛽
 

Finite Difference     -0.962499999968E+02 

Forward Sensitivity -0.9626056573E+02 

Discrete Adjoint -0.9626056587E+02 
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Figure 4.1 Comparison of sensitivity at each frequency for square lattice 

 

Optimization Results and Application on Optical waveguide 

Photonic Crystal Waveguide 

The well-known metallic pipe waveguide provides lossless transmission, 

but it only works for microwaves. To provide lossless transmission for infrared 

and visible light, dielectric guides were developed. The dielectric waveguide relies 

on total internal reflection to ensure lossless transmission. However, if it curves 

tightly, the angle of incidence is too large for total internal reflection to occur, as a 

result, light is lost at the corners.  

By applying the technique of photonic crystal into waveguides, lossless 

transmission even at sharp corners can be obtained. Considering the band gap of photonic 
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crystals discussed earlier, light within the gap is forbidden to transmit through the 

photonic crystal. By carving a waveguide out of the photonic crystal, light with 

frequencies in the gap of the photonic crystal can be directed along the waveguide.  

By carving different paths out of the photonic crystal with square lattice proposed 

in Chapter III, waveguides with different transmission directions are obtained. The 

electric field patterns at 500THz, which is located within the band gap as shown in Fig. 

3.8, are shown in Fig.4.2. Fig. 4.2(a) shows electric field pattern within a straight 

waveguide, Fig. 4.2(b-c) show electric field patterns within 90 degree and 135 degree 

bent waveguides, and Fig. 4.2(d) shows a U-shaped waveguide.  

By optimizing the band gap of photonic crystal, we can obtain optical waveguides 

at any frequency range desired. In this work, Bezier curves are applied on shape 

optimization of photonic crystals. The target is to design a dual-band and a triple-band 

optical waveguide for applications on telecommunication. 

 

  
(a) Straight waveguide (b) 90 degree bended waveguide 
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(c) 135 degree bended waveguide (d) U-turn waveguide 

Figure 4.2 Electric field pattern in photonic crystal waveguide for frequency f=500THz 

 

Design of Dual-band Waveguide 

The base design case is the square lattice made of circles. Consider that the origin 

point of circle is (0,0) and radius of circle is r. In this design, the circle is divided to two 

curve segments, the first and last control points of the first curve are the (𝑟, 0) and 

(−𝑟, 0), and the first and last control points of the second curve are the (−𝑟, 0) and (𝑟, 0). 

The design variables control the radius of the control points with 10 uniformly distributed 

angles between the start point and end point. There are 20 design variables in total for the 

circle with two curve segments. 

Since the target is to design dual-band waveguide, the cost function can be 

expressed as: 

𝑐𝑜𝑠𝑡𝐼 =  ∑ (1.0 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘))
𝑓2
𝑘=𝑓1 + ∑ (1.0 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘))

𝑓4
𝑘=𝑓3    (4.33) 

where 𝑓1 = 350𝑇𝐻𝑧, 𝑓2 = 450𝑇𝐻𝑧, 𝑓3 = 650𝑇𝐻𝑧, and 𝑓4 = 750𝑇𝐻𝑧.  The shape of 

optimized unit cell with 20 design variables is shown in Fig.4.3.  
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Figure 4.3 Shape of optimized unit cell for dual-band optical waveguide 

 

 
Figure 4.4 Band diagram of optimized photonic crystals for dual-band waveguide 
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The band diagram is plotted in Fig. 4.4. As is shown, the optimized photonic 

crystal has band gap at both 352THz~450THz and 630THz~765THz. By carving a path 

at the designed photonic crystal, a dual-band waveguide is obtained. The electric field 

patterns of the designed waveguide at 420THz and 680THz are shown in Fig. 4.5. 

  
(a) 420THz (b) 680THz 

Figure 4.5 Electric field pattern in designed dual-band waveguide 

 

Design of Triple-band Waveguide 

In this design, the circle is divided to three curve segments, the first and last 

control points of the first curve are the (𝑟, 0)and (−
1

2
𝑟,

√3

2
𝑟), the first and last control 

points of the second curve are the (−
1

2
𝑟,

√3

2
𝑟) and (−

1

2
𝑟, −

√3

2
𝑟), and the first and last 

control points of the third curve are the (−
1

2
𝑟, −

√3

2
𝑟) and (𝑟, 0). The design variables 

control the radius of the control points with 10 uniformly distributed angles between the 

start point and end point. Since the three curve segments share the same design variables, 

the resulted shape is rotationally symmetrical. 
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Since the target is to design triple-band waveguide, the cost function can be 

expressed as: 

𝑐𝑜𝑠𝑡𝐼 =  ∑ (1.0 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘))
𝑓2
𝑘=𝑓1 + ∑ (1.0 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘))

𝑓4
𝑘=𝑓3 + ∑ (1.0 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝑘))

𝑓6
𝑘=𝑓5   

(4.34) 

where 𝑓1 = 300𝑇𝐻𝑧, 𝑓2 = 400𝑇𝐻𝑧, 𝑓3 = 550𝑇𝐻𝑧, 𝑓4 = 650𝑇𝐻𝑧, 𝑓5 = 850𝑇𝐻𝑧,  

and 𝑓6 = 950𝑇𝐻𝑧. The shape of optimized unit cell with 10 design variables is shown in 

Fig. 4.6. The band diagram is plotted in Fig. 4.7. As is shown, the optimized photonic 

crystal has band gap at  331THz~402THz, 573THz~702THz and 840THz~950THz. The 

electric field patterns of the designed waveguide at 390THz, 640THz and 880THz are 

shown in Fig. 4.8. 

 

 
Figure 4.6 Shape of optimized unit cell for triple-band waveguide 
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Figure 4.7 Band diagram of optimized photonic crystal for triple-band waveguide 

 

   
(a) 390THz (b) 640THz (c) 880THz 

Figure 4.8 Electric field pattern in designed triple-band waveguide 

 

The optimized waveguides can be applied in telecommunication to the meet the 

requirement of lossless transmission with any transmitting direction at the desired 

frequency range. 
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CHAPTER V 

 

SIMULATION AND OPTIMIZATION OF METAMATERIAL 

  

All-dielectric Metamaterial and Optimization 

Proposed Design Model 

  All-dielectric metamaterials offer a potential low-loss alternative to plasmonic 

metamaterials at optical frequencies. In the current work, an all-dielectric metamaterial 

made of silicon on SiO2 substrate is proposed as the initial design model.  Figures 5.1(a-b) 

illustrate the schematic of metamaterial unit cell and array. The silicon resonators with 

dimension of W = 200nm  and H = 100nm  are placed on top of a SiO2 substrate 

(regarded infinite) with periodicity of P = 300nm . As shown the Fig.5.1(a), the 

metamaterial is illuminated with polarized light. The electric field is polarized along the 

x-direction and the magnetic field along the y-direction with wave vector k in z-direction. 

In this case, the light transmits from the air to the SiO2 through the silicon resonators. 

  
(a)Metamaterial unit cell (b) Metamaterial array 

Figure 5.1 Proposed initial metamaterial model 
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Results and Accuracy 

  The results of reflection over frequency range of 350-650THz are shown in Fig. 

5.2(a), with full width at half maximum (FWHM) of 111THz (479~590THz) in reflection. 

For comparative purposes, the current results are shown with those from the commercial 

software ANSYS© HFSS[51]. The reflection indicates that the metamaterial has the 

maximum reflection at 516THz. The electric field distribution at 516THz, depicted in Fig. 

5.2(b), clearly illustrates this reflection.  

 
 

(a) Reflection (b) Electric Field at 516THz 

Figure 5.2 Simulation results of initial model 

 

Optimization of All-dielectric Metamaterial 

  The objective of the current design optimization is to widen the bandwidth of the 

metamaterial. Accordingly, an objective function is proposed as: 

𝐼 = ∫ (1 − 𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛)2𝑓2

𝑓1
𝑑𝑓                                    (5.1) 

where 𝑓1 and 𝑓2 represent the lower and upper bound of the desired frequency range. 
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  Utilizing the objective function given in Eq.(5.1), with 𝑓1 = 300𝑇𝐻𝑧 and 𝑓2 =

700𝑇𝐻𝑧, the optimization was performed using different numbers of design variables. 

Increasing the number of design variables allows for greater geometric flexibility. Figure 

5.3 illustrates the optimization results with 1, 3, and 9 design variables. As seen in Fig. 

5.4(a), at 426THz no reflection can be observed from the electric field distribution for the 

initial model, while high reflection can be observed for the optimized geometries in Figs. 

5.4(b)-(d) using different number of design variables. 

  As shown in Fig. 5.3, the FWHM of reflection for the all-dielectric metamaterial 

increases from 111THz to 277THz, 285THz, and 303THz with 1, 3, and 9 design 

variables, respectively. For the optimized result with 9 design variables, the FWHM of 

reflection ranges from 376 to 679THz. As shown in Fig. 5.5, the electric field 

distributions at 404THz, 505THz and 620THz are simulated to demonstrate the high 

reflection property of the optimized metamaterial over the wide frequency range. 

 

Figure 5.3 Comparison of reflection over 300-700THz 
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(a) Original (b) 1 design variable 

  

(c) 3 design variables (d) 9 design variables 

Figure 5.4 Electric field distribution at 426THz 

 

   
(a)404THz (b)505THz (c)620THz 

Figure 5.5 Electric field distribution of model with nine design variables 
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By designing the artificial structure made of the naturally existing silicon material, 

a new material with optical properties beyond its constituent material is created. At 

certain frequencies, the new material can strongly reflect light just like metal, and to 

some extent, beyond metal. For applications where high power reflection is required, 

dielectric metamaterial mirrors work much better than metal. Although metal shows high 

reflection, the reflection cannot reach 100%. When high power light is illuminated on the 

metal, small portion of the light will be absorbed due to the Ohmic loss of metal. Unlike 

dielectric materials such as silicon, metal has a lower melting point and is not stable at 

high temperature. For that reason, absorbing even a tiny portion of the high power laser 

can lead to severe damage of the metal mirror. On the contrary, the dielectric 

metamaterial mirror can perfectly reflect light. And due to its high melting temperature, it 

is more desirable for applications where high power illumination is needed. In addition, 

through optimization of the metamaterial topology, one can significantly increase the 

reflection bandwidth. Therefore, the reflected light energy and device efficiency can be 

greatly enhanced. 

 

Simulation of 3D Metamaterial Model 

For verification of 3D solver for metamaterial simulations, we simulated a single-

negative all-dielectric metamaterial, comprised of a single layer of cylindrical silicon 

resonators on a silicon-on-insulator substrate, as shown in Fig.5.6. 
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(a) Top view (b) Isometric view 

Figure 5.6 SEM images of periodic Si cylinder-based metamaterials[44] 

 

Performance test is run on different meshes for the simulation of the metamaterial 

perfect reflector, and the results are compared with CST Microwave Studio○a . As shown 

in Fig.5.7, for p1 element, as the mesh becomes finer, the error becomes smaller. Results 

for p2 elements show good agreement with the results of commercial software even with 

coarse mesh.  The metamaterial perfect reflector possesses peak reflectance over 99% 

across a 100 nm wide bandwidth in the short-wavelength infrared region. Further 

optimization can be conducted on this case to obtain desired bandwidth. 

The sensitivity analysis technology can be developed to 3D cases for future work. 

This test case will be a good basic design model for further optimization. 
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(a) P1 element on Coarse Mesh (b) P2 element on Coarse Mesh 

  

(c) P1 element on Medium Mesh (d) P2 element on Medium Mesh 

  

(e) P1 element on Fine Mesh (d) P2 element on Fine Mesh 

Figure 5.7 Simulation Results of Reflectance of  3D Metamaterial  
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CHAPTER VI 

 

CONCLUSION  

                                           

A Petrov-Galerkin finite element method is applied for the analysis of optical 

structures: photonic crystals and electromagnetic metamaterials. Implicit time integration 

is applied in the time domain and quadratic elements are utilized for spatial discretization. 

A Gaussian pulse is employed as the excitation for the optical structures, which allows 

the frequency-based characteristics to be obtained in one time-domain calculation. 

Gradient-based optimization, based on a discrete adjoint formulation for sensitivity 

analysis, is utilized for optimization of the optical structures. 

The first design case is the photonic crystal. The theory and procedures of 

calculating the photonic band diagram are discussed. Band diagrams of photonic crystals 

in both square lattice and triangular lattice are calculated and compared with well-

recognized band gap calculation software MPB[78] for verification. The sensitivities 

obtained using the discrete adjoint formulation are compared with results from the finite 

difference method and forward sensitivity method for verification. Optimization of 

photonic band gaps is realized by a combination of the electromagnetics simulation code, 

the time accurate adjoint-based method for sensitivity analysis, the linear elasticity solver 

for mesh smoothing and an optimization package. The application of photonic crystals as 

optical waveguide is discussed. The optimized photonic crystals can be used as multi-

band optical waveguides for applications in telecommunication. 

The second design case is the all-dielectric metamaterial. By designing the 
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artificial structure, made from existing silicon material, a new effective material with 

optical properties beyond its constituent material is created. At certain frequencies, the 

new material can strongly reflect light similar to metal, and to some extent, beyond 

metallic materials. The simulation results for the base design case are compared with 

results of HFSS for verification. Utilizing the current shape optimization procedure, the 

FWHM of reflection was increased from 111THz to 303THz. The optimized broadband 

metamaterial can be used as dielectric metamaterial mirrors for applications where high 

power reflection is required.   

For verification of the 3D solver for metamaterial simulations, a 3D metamaterial 

was simulated. The simulation results are compared with CST Microwave Studio○a  for 

verification. The grid convergence behavior is demonstrated on meshes with different 

sizes, which are applied with both p1 and p2 element types.  

In future work, the sensitivity analysis technology should be extended to 3D cases 

for more realistic structures and practical optimization. Moreover, dispersive materials 

should be introduced for optimization of metamaterials made of metallic materials. 

Finally, nonlinear materials, whose permittivity and permeability depend on the strength 

of the fields, should be developed to extend the application domain of the current 

optimization procedure. 
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