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ABSTRACT

The problem of statistical inference of the reliability parameter Pr(Xk−s+1:k > Y ) of an s-out-of-

k : G system with strength components X1, X2, ..., Xk subjected to a common stress Y when X and

Y are independent two-parameter general class of exponentiated inverted exponential (GCEIE)

progressively type-II right censored data with uniformly random removal random variables, are

discussed. We use p-value as a basis for hypothesis testing. There are no exact or approximate

inferential procedures for reliability of a multicomponent stress-strength model from the GCEIE

based on the progressively type-II right censored data with random or fixed removals available in

the literature. Simulation studies and real-world data analyses are given to illustrate the proposed

procedures. The size of the test, adjusted and unadjusted power of the test, coverage probability

and expected confidence lengths of the confidence interval, and biases of the estimator are also

discussed.
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CHAPTER I

INTRODUCTION

The background of exact statistical methods

Exact statistics has a history dated back to Fisher’s era when Fisher’s exact test (1922) based

on the sampling distribution that is conditional on the marginals played a vital role in making

inferences of parameters of interest. When statistical inferences are performed, it provides more

reliable, accurate, non-misleading results, outperforming procedures based on classical asymptotic

and approximate statistical inference methods. The most prominent and major characteristic of

exact methods is that statistical inferences are mainly based on exact probability statements that

are valid for any sample size. While in exact tests all assumptions of the distribution of the test

statistic have to be met, in approximate tests the approximation may be made as close as desired

by making the sample size big enough which will result in a significance test that will have a false

rejection rate always equal to the significance level of the test. When the sample size is small, the

asymptotic and other approximate results may lead to unreliable and misleading conclusions. There

are two branches in exact statistics as in approximate or asymptotic statistics: exact parametric

procedures where statistical inferences are performed under any parametric distributions and exact

nonparametric procedures where any distributional assumptions are not made. Prompted by a

conversation he had with Miss Muriel Bristol about whether the tea or milk was added first to

her cup, Sir Ronald Aylmer Fisher (1954), The Father of Modern Statistics, for the first time in
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statistical history devised a comment from her to come up with the idea of “ Exact Test” that is to

be used in the analysis of contingency tables where sample sizes are small. When the cell counts are

small—specifically, if more than twenty percent of the cells, when marginal totals are fixed, have an

expected count that is less than five—the χ2 distribution may not a suitable distributional candidate

of the Pearson C2 or Likelihood Ratio G2 statistics for testing independence of row and column

variables. Such a situation is easily remedied by Fisher’s exact test.

Inspired by the Fisher’s original treatment of hypothesis testing statistics (1954), Weerahandi

searched for an extreme region, a unbiased subset of sample space formed by minimal sufficient

statistics having observed sample points on its boundary, to generalize the existing p-values to

come up with exact solutions for different problems arise in hypothesis testing. For exact tests,

readers are referred to Fisher (1922), Weerhandi (1995, 2005), Metha and Patel (1997), and many

others.

As extensions (not alternatives) to conventional inference methods, generalized p-values (Tsui

and Weerahandi 1989) and generalized confidence intervals (Weerahandi 1993) based on exact prob-

ability statements are introduced to remedy and overcome drawbacks of other conventional exact

and approximate inference methods. Conventional methods alone do not always provide exact

solutions to:

1. Problems involving nuisance parameters such as that of comparing the means of two

exponential distributions and making inferences of the second moments of a random
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variable whose underlying distribution is normal,

2. Problems of making inferences of complicated functions of parameters of underlying

distributions such as Offered Optical Network Unit Load (OOL) in Data Transmission,

3. Problems of making inferences in the face of small samples, especially that are found in

biomedical researches.

Practitioners often resort to asymptotic results in search of approximate solutions in the face of

all the above mentioned problems. This newly developed promising approach, generalized variable

method, provides exact solutions for such drastic, difficult, intrigue problems.

The generalized p-value and confidence interval have been widely applied to variety of practical

settings where standard and conventional solutions do not exist for confidence interval estimation

and hypothesis testing: Weerahandi (1995, 2004), Weerahandi and Berger (1999), Gamage and

Weerahandi (1998), Ananda and Weerahandi (1997), Ananda (1995, 1998, and 1999), Gunasekera

and Ananda (2009), Tian and Wu (2007), Krishnamoorthy and Lu (2003), and Zhou and Mathew

(1994).

Exponentiated inverted family of distributions

Two-parameter gamma and two-parameter Weibull are the most popular distributions for an-

alyzing any lifetime data. Gamma has a long history and it has several desirable properties, see

Johnson, Kotz, and Balakrishnan (1994) for the different properties of the two-parameter gamma
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distribution. It has wide variety of applications in different fields other than being a lifetime dis-

tribution. (see, Alexander 1962, Jackson 1963, Klinken 1961, and Masuyama and Kuroiwa 1952).

The two parameters of a gamma distribution represent the scale and shape of the distribution, and

because of them, the distribution has quite a bit of flexibility to analyze any positive real data. It

has increasing as well as decreasing failure rates depending on the shape parameter, which gives

an extra edge over exponential distribution, which has only constant failure rate. Since sum of

independent and identically distributed (iid) gamma random variables has a gamma distribution,

it has also a nice physical interpretation. If a system has one component and n-spare parts, and if

the component and each spare parts have iid gamma lifetime distributions, then the lifetime distri-

bution of the system also follows a gamma distribution. Another interesting property of the family

of gamma distributions is that it has likelihood ratio ordering, with respect to the shape parameter,

when the scale parameter remains constant. It naturally implies the ordering in hazard rate as well

as in distribution. But one major disadvantage of the gamma distribution is that the distribution

function or survival function cannot be expressed in a closed form if the shape parameter is not an

integer. Since it is in terms of an incomplete gamma function, one needs to obtain the distribution

function, survival function or the failure rate by numerical integration. This makes gamma dis-

tribution little bit unpopular compared to the Weibull distribution, which has a nice distribution

function, survival function and hazard function. Weibull distribution was originally proposed by

Weibull (1939), a Swedish physicist, and he used it to represent the distribution of the breaking

4



strength of materials. Weibull distribution also has the scale and shape parameters. In recent years

the Weibull distribution becoming very popular to analyze lifetime data mainly because in presence

of censoring it is much easier to handle, at least numerically, compared to a gamma distribution.

It also has increasing and decreasing failure rates depending on the shape parameter. Physically

it represents a series system, because the minimum of i.i.d. Weibull distributions also follows a

Weibull distribution. Several applications of the Weibull distribution can be found in Plait (1962)

and Johnson (1968) although some of the negative points of the Weibull distribution can be found

in Gorski (1968). One of the disadvantages can be pointed out that the asymptotic convergence

to normality for the distribution of the maximum likelihood estimators is very slow (Bain, 1976).

Therefore most of the asymptotic inferences (for example asymptotic unbiasedness or asymptotic

confidence interval) may not be very accurate unless the sample size is very large. Some ramifica-

tions of this problem can be found in Bain (1976). It also does not enjoy any ordering properties

like gamma distribution.

In this paper we consider a two-parameter exponentiated inverted exponential distribution and

study some of its properties. The two parameters of an exponentiated inverted exponential distribu-

tion represent the shape and the scale parameter like a gamma distribution or aWeibull distribution.

It also has the increasing or decreasing failure rate depending of the shape parameter. The density

function varies significantly depending of the shape parameter. It is observed that it wide variety of

properties which are quite similar to those of a gamma distribution but it has an explicit expression
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of the distribution function or the survival function like a Weibull distribution. It has also likelihood

ratio ordering with respect to the shape parameter, when the scale parameter is kept constant., and

for fixed scale and shape parameters there is a stochastic ordering among distributions.

Reliability of a multicomponent system

We treat the problem of testing, and estimating and constructing the confidence intervals of, the

reliability parameter Rs,k = Pr(at least s of the (X1, X2, ...,Xk) exceed Y ) = Pr(Xk−s+1:k > Y ) in

the multicomponent stress-strength model, developed by Bhattacharyya and Johnson (1974), when

k statistically independent and identical strength components X1, X2, ...,Xk of a system that have

a common probability density function (pdf ) f
X
(x) and Xk−s+1:k is the (k−s+1)th order statistics

of (X1,X2, ...,Xk)a common stress Y experienced by the system that has a pdf f
Y
(y). The system

functions when s (1 ≤ s ≤ k) or more of the components simultaneously survive. This system is

referred to as an s-out-of-k : G (or s-out-of-k : F ) system because a k-component system works

(or is good) if and only if at least s of the k components work (or are good), and the system is

referred to as s-out-of-k : F because the k-component system fails if and only if at least s of

the k components fail. Based on these two definitions, a s-out-of-k : G system is equivalent to an

(k−s+1)-out-of-k : F system. In the reliability context, the multicomponent stress-strength model

can be described as an assessment of reliability of an s-out-of-k : G system. Its practical application

range from communication and industrial systems to logistic and military systems. For example,
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in suspension bridges, the deck is supported by a series of vertical cables hung from the towers.

Suppose a suspension bridge consisting of k number of vertical cable pairs. The bridge will only

survive if minimum s number of vertical cable through the deck are not damaged when subjected

to stresses due to wind loading, heavy traffic, corrosion, etc. As another example, a V-8 engine of

an automobile it may be possible to drive the car if only four cylinders are firing. However, if less

than four cylinders fire, then the automobile cannot be driven. Thus, the functioning of the engine

may be represented by a 4-out-of-8 : G system. Other examples include an electrical power station

containing eight generating units produces the right amount of electricity only if at least 6 units

are working; the demand of the electricity of a district is fulfilled only if 6-out-of-8 wind roses are

operating at all times; a communication system for a navy can be successful only if 6 transmitters

out of 10 are operational to cover a district; a semi-trailer pulled by a truck can be driven safely as

long as 6-out-of-8 tires are in good conditions. For an extensive reviews of s-out-of-k and related

systems, see Kuo and Zuo (2003).

Reliability of a multicomponent system based on general class of exponentiated in-

verted exponential distributions

We consider the case where f
X
and f

Y
are from the general class of exponentiated inverted

exponential distributions (GCEIEDs) (Mudholkar et. al 1995), which is the counter part of the

general class of exponentiated generalized inverted experiential distributions (GCEGIEDs) (Cordeiro
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et. al 2013). The former is derived by raising the cumulative distribution function (cdf ) of an

arbitrary parental (or underlying or baseline) general class of inverted exponential distributions to

an additional non-negative parameter, say α; which is solely responsible for the skewness, kurtosis,

and the tails of the resulting GCEIEDs; and the latter is derived by raising the complement of

the survival function of the underlaying general class of inverted exponential distributions that

has been raised to a shape parameter, say α, to an additional non-negative parameter, say β.

Also, instead of using the complete data, we observe progressively type-II censored samples with

uniformly distributed random removals for stress and strength from GCEIEDs.

In this research, we consider the reliability parameter Rs,k = Pr(at least s of the (X1, X2, ...,

Xk) exceed Y ) or Rs,k = Pr(Xk−s+1:k > Y ), where Xk−s+1:k is (k − s + 1)th order statistic of the

remaining (k − s + 1) strength components Xs through Xk, is more than or equal to Y . That is,

the highest order statistic Xk−s+1:k of the (k− s+ 1) strength components Xs through Xk must at

least more than or equal to Y for the system to function. For instance, in a 13-out-of-18 : G system,

there are (k − s+ 1 = 18− 13 + 1 = 6) strength components, that is, X13,X14,X15,X16, X17,X18.

When they are ordered, that is X1:18,X2:18, X3:18,X4:18,X5:18,X6:18,its highest ordered value,that is

X6:18, must be greater than or equal to Y for the survival of the system, that is, R13,18 = Pr(at

least 13 of the (X1,X2, ..., X18) exceed Y ) = Pr(X6:18 > Y ).

Suppose X1, X2, ..., Xk is a simple random sample from the general class of exponentiated in-

verted exponential distribution with a shape parameter α1and a scale parameter λ, For brevity,
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we shall also say that Xj ∼ GCEIE (α1,λ), j = 1, 2, ..., k, with its common survival function (sf)

SXj(xj) = [(G(1/xj)]
α1,where G(1/xj) = 1 − exp{λQ(1/xj)} is the cdf of the underlying general

class of inverted exponential distribution whose pdf fXj(xj) = α1λQ
�
(1/xj) exp{−λQ(1/xj)}[1 −

exp{λQ(1/xj)}]α1 − 1 and cdf FXj(xj) = 1 − [1 − exp{λQ(1/xj)}]α1 ;xj > 0,α1,λ > 0; for j =

1, 2, ..., k,and prime (3) being the first derivative with respect to (w.r.t.) xi. Also, suppose Y be a

random variable that is distributed as GCEIE (α2,λ) with its pdf fY (y) =α2λQ�(1/y)

exp{−λQ(1/y)}[1− exp{λQ(1/y)}]α2 − 1 and cdf F
Y
(y) = 1− [1− exp{λQ(1/y)}]α2 ;

y > 0,α2,λ > 0. This class (or family) of distributions includes exponentiated inverted exponential,

exponentiated inverted Rayleigh, and exponentiated inverted Pareto distributions when Q(1/z) =

1/z, Q(1/z) = 1/z2, and Q(1/z) = ln(1 + 1/z), respectively. Mudholkar et al. (1995) introduced

the exponentiated Weibull distribution and since then, a number of authors have proposed and

generalized many standard distributions based on the exponentiated distributions; to name few:

Lemonte and Cordeiro (2011), Ghitany et al. (2014), Silva et al. (2010), and Gupta and Kundu

(2001), Krishna and Kumar (2013), and references therin. The reliability in a multi-component
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stress-strength model, based on Xij ∼ GCEIE (α1,λ) and Y ∼ GCEIE (α2,λ), is then given by

Rs,k = Pr(at least s of the (X1, X2, ..., Xk) exceed Y ),

= Pr(Xk−s+1:k > Y ),

=
k[
i=s

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠] ∞

−∞
(1− F

X
(y)) i(F

X
(y))k−idF

Y
(y),

=
k[
i=s

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠α2

] 1

0

uα1 i + α2−1 (1− uα1 )k − idu, where u = 1− e−λQ(1/y)

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jα2

] 1

0

uα1(i + j) + α2−1 du,

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jα2

α1(i + j) + α2

(1.1)

Exponetiated inverted exponentially distributed progressively Type-II right censored

data with unifromly distributed random removals

Let X denote strength of a component that is statistically distributed with GCEIE (α,λ)

whose density is given by fX(x) = αλQ
�
(1/x) exp{−λQ(1/x)}×

[1− exp{λQ(1/x)]α − 1. Consider that X1:m:n ≤ X2:m:n ≤···≤ Xm:m:n is the corresponding progres-

sively type II right censored sample, with censoring scheme R = r = (r1, r2, ..., rm); where m denote

10



the number of failures observed before termination from n items that are on test, and r1, r2, ..., rm

denote the corresponding numbers of units randomly removed (withdrawn) from the test. Further-

more, let x1:m:n ≤ x2:m:n ≤···≤ xm:m:n be the observed ordered lifetimes. Let ri denote the number

of units removed at the time of the ith failure, 0 ≤ ri ≤ n−m−
Si−1

j=1 rj, i = 2, 3, ...,m− 1, with

0 ≤ r1 ≤ n −m and rm = n −m −
Sm−1

j=1 rj, where ri’s are non-pre-specified integers and m are

pre-specified integers. Note that if r1, r2, ..., rm−1 = 0, so that rm = n−m, this scheme reduces to

the conventional type II right censoring scheme. Also note that if r1 = r2 = ... = rm = 0, so that

m = n, progressively type II right censoring scheme reduces to the case of no censoring scheme

(complete sample case).

Since the joint density of X1:m:n,X2:m:n,···, Xm:m:n is given by

m\
i=1

Aif(xi:m:n)[1−
] xi

0

f(xi:m:n)dxi:m:n]
ri , where Ai = n−

[i−1
j=1
(rj + 1) (1.2)

So, the conditional likelihood function is given by

L(α|R = r) = (αλ)m
m\
i=1

AiQ
�
(1/xi) exp{−λQ(1/xi:m:n)} ×

[1− exp{λQ(1/xi:m:n)]α(1+ri) − 1, (1.3)

where Ai is as defined in (1.2).

Now, suppose that the number of units removed at each failure time Ri(i = 1, 2,m− 1) follows

11



a discrete uniform distribution; for brevity, we shall also say Ri ∼ UD(0, n −m −
Si−1

j=1 rj); with

probability mass function (pmf)

P (Ri = ri|Ri−1 = ri−1, Ri−2 = ri−2, ..., R1 = r1) = 1

n−m−Si−1
j=1 rj + 1

,

i = 2, 3, ...,m− 1, (1.4)

and

P (R1 = r1) =
1

n−m+ 1 .

Suppose further that Ri(i = 1, 2, ...,m − 1) is independent of xi:m:n, then the unconditional

likelihood function can be expressed as

L(α) = L(α|R = r)P (R = r),

where P (R = r) =
Tm−1
i=1 P (Ri = ri|Ri−1 = ri−1, Ri−2 = ri−2, ..., R1 = r1).

It is evident that P (R = r) does not depend on the parameters λ and α, and hence the MLE

of θ can be obtained by the conditional likelihood function given in (1.3) directly.

Assuming that λ is given (or known), the maximum likelihood estimate of α can be derived by

12



solving the equation:

d

dα
lnL(α|R = r) = m

λ
−

m[
i=1

(1 + ri) ln[1− exp{−λQ(1/xi:m:n)}] = 0.

Hence, we show that the MLE eα of α is given by
eα = m

mS
i=1

(1 + ri) ln[1− exp{−λQ(1/xi:m:n)}]
. (1.5)

Now, let Yi:m:n = (1 + ri) ln[1 − exp{−λQ(1/xi:m:n)}], i = 1, 2, ...,m. It is easy to show that

Y1:m:n ≤ Y2:m:n ≤···≤ Ym:m:n is a progressively type II censored sample from the exponential dis-

tribution with mean (1/α). For a fixed set of R = r = (r1, r2, ..., rm), let us consider the following

scaled (generalized ) spacings

W1 = nY1:m:n

W2 = (n− r1 − 1)(Y2:m:n − Y1:m:n)

.

.

.

13



Wi = (n−
[i−1

j=1
rj − (i− 1))(Yi:m:n − Yi−1:m:n)

.

.

.

Wm = (n−
[m−1

j=1
rj − (m− 1))(Ym:m:n − Ym−1:m:n)

Balaksrihnan and Aggarwala (2000) proved that the progressively type II right censored spacings

W1,W2, ...,Wm are all independent and identically distributed as exponential with the mean (1/θ),

that is, Wi ∼ E(1/θ) = G(1, 1/θ), where E(β) is an exponential distribution with a mean (or scale

parameter) β, and G(γ, δ) is a gamma distribution with a shape parameter γ and a scale parameter

δ. Then, W =
Sm

i=1Wi = (1+ ri) ln[1− exp{−λQ(1/xi:m:n)}] ∼ G(m, 1/α). Since we can write the

denominator of eθ as the sum of m independent generalized spacings, we can find that, conditionally

on a fixed set of R = r = (r1, r2, ..., rm), U = 2αW = 2mα/eα has a chi-square distribution with
2m degrees of freedom., that is, U |R ∼ χ22m. In addition, because conditional distribution of U

is independent of R = r, it must follow that the marginal distribution of U is also a chi-square

distribution with 2m degrees of freedom, that is, U ∼ χ22m.

A number of authors have proposed and developed various inferential techniques for the relia-

bility in multicomponent stress-strength system using various underlying distributions for complete
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data as well as censored data; see Hanagal (1999), Eryilmaz (2010), Rao, et al. (2015). For a com-

prehensive discussion on different stress-strength models, along with more theories and examples,

the reader is referred to the monograph of Kotz et al. (2003). In these studies, maximum likelihood

estimator (MLE), moment estimator, and asymptotic confidence interval were obtained, but the

generalized variable method due to Tusi and Weerahandi (1989) was not taken into consideration.

On the other hand , inferences for the reliability in multicomponent stress-strength system using

data with fixed removal as well as data with random removals have not been discussed in the lit-

erature. In addition, Bayesian- and generalized-variable-method based inferences for the data with

fixed removals as well as the data with random removals have not been discussed in th literature.

The main purpose of this thesis is to develop various approaches to obtain confidence interval

for, and to perform hypothesis testing of, the reliability parameter Rs,k, where the strength and

stress variables are independent and belong to the family of exponentiated inverted exponential

distributions. Toward this, we mainly develop methods based on the concept of classical procedures,

generalized variable procedures as well as Bayesian procedures. Maximum likelihood estimation is

one of the most popular methods for estimating the parameters of continuous distributions because

of its attractive properties, such as consistency, asymptotic unbiased, asymptotic efficiency, and

asymptotic normality. Under The classical method Section, we discuss the MLEs of the parameters

of the GCEIE distribution and their asymptotic properties to derive the MLE of the reliability

function Rs,k. In the next section, The Bayesian method, we deal with the problem of estimating
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the parameters α1 and α2, and the reliability function Rs,k under various loss functions. The prior

distribution for the parameters of the model has been taken as a natural conjugate prior. The loss

functions and Bayes estimates for a parameter δ are under those loss functions are as follows: under

the squared error (SE) loss function LSE(δ,eδ) = (δ−eδ)2, weighted squared error (WSE) loss function
LWSE(δ,eδ) = w(δ)(δ−eδ)2, linear (L) loss function LL(δ,eδ) = k0(δ−eδ) if δ ≥ eδ and k1(eδ−δ) if δ < eδ,
absolute error (AE) loss function LAE(δ,eδ) = ���δ − eδ��� , linear exponential (LINEX) loss function
LLINEX(δ,eδ) = k

q
exp

k
c
�
δ − eδ�l− c(δ − eδ)− 1r , percentage (P) loss function LP (δ,eδ) = (δ −

eδ)2/δ, and 0-1 (ZO) loss function LZO(δ,eδ) = 0 if ���δ − eδ��� < c and 1 if ���δ − eδ��� ≥ c, Bayes estimates
of δ are, respectively, eδSEB = Eπ(δ|x)(δ), eδWSE

B = Eπ(δ|x [δw(δ)] /Eπ(δ|x) [w(δ)] , eδLB = [k0/(k0 + k1)]th-
Fractile of the π(δ|x), eδAEB = Medianπ(δ|x)(δ), eδLINEXB = (−1/c) ln{Eπ(δ|x)[exp(−cδ)]}, and eδZOB =

Modeπ(δ|x)(δ), where k and c are shape and scale parameters of the LINEX loss function, respectively

and δ−eδ denotes the scalar estimation error in usingeδ to estimate δ. Note that In Bayesian statistics,
a maximum a posteriori probability (MAP) estimate is a mode of the posterior distribution. The

MAP can be used to obtain a point estimate of an unobserved quantity on the basis of empirical

data. It is closely related to Fisher’s method of maximum likelihood (ML) estimation, but employs

an augmented optimization objective which incorporates a prior distribution over the quantity one

wants to estimate. MAP estimation can therefore be seen as a regularization of ML estimation. In

addition as c goes to 0 in the ZO loss function, the Bayes estimator approaches the MAP estimator,

provided that the distribution of the parameter is unimodal. But generally a MAP estimator is not
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a Bayes estimator unless parameter is discrete. Also note that, generally, the sign and magnitude of

c in LINEX loss function reflect the direction and degree of asymmetry. This has been introduced by

Varian (1975) and further properties of this loss function have been investigated by Zellner (1986).

For small values of c (near to zero), the LINEX loss function is almost the same as the SE loss

function, and for the choice of negative or positive values of c, the LINEX loss function gives more

weight to overestimation or underestimation (for details, see Zellner 1986).

In Bayesian approach, we need to integrate over the posterior distribution and the problem

is that the integrals are usually impossible to evaluate analytically. Markov chain Monte Carlo

(MCMC) technique is a Monte Carlo integration method which draws samples from the target

posterior distribution. MCMC methodology provided a convenient and efficient way to sample

from complex, high-dimensional statistical distributions. The one of the main objective of this

research is to estimate the two unknown parameters of the GCEIE , that is, α1 and α2. We use

the maximum likelihood and Bayes methods to derive such estimates. The estimators are obtained

by using the data of type II censoring with random removals. Also the asymptotic confidence

intervals for the parameters are also derived from the Fisher Information matrix. It is observed

that the Bayes estimators can not be expressed in explicit forms and they can be obtained by two

dimensional numerical integrations only. We use the idea of Lindley to compute the approximate

Bayes estimators of the unknown parameters and it is observed that the approximation works quite

well with the general class of exponentiated inverted exponential distributions. We compute the
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approximate Bayes estimators under the assumption of independent gamma priors of the unknown

parameters and compare them with the MLEs by Monte Carlo simulations. We also propose Markov

Chain Monte Carlo (MCMC) techniques to generate samples from the posterior distributions and

in turn computing the Bayes estimators. The posterior density functions match quite well with the

histograms of the asymptotic confidence intervals of the samples obtained by MCMC methods.

Although the classical and Bayesian frameworks of inferences are well-established and have been

in the statistical arena for a long period of time, the generalized variable method and its affiliated

generalized p-value were recently introduced by Tsui and Weerahandi (1989), and generalized con-

fidence interval (CI) and generalized estimators by Weerahandi (1993, 2012) presenting them as

extensions of—rather than alternatives to—classical methods of statistical evaluation. The concepts

of generalized CI and generalized p-value have been widely applied to a wide variety of practical set-

tings such as regression, Analysis of Variance (ANOVA), Analysis of Reciprocals (ANORE), Analysis

of Covariance (ANCOVA), Analysis of Frequency (ANOFRE), Multivariate Analysis of Variance

(MANOVA), Multivariate Analysis of Covariance (MANCOVA), mixed models, and growth curves

where standard methods failed to produce satisfactory results obliging practitioners to settle for

asymptotic results and approximate solutions. For example, see Weerahandi (1995, 2004), Krish-

namoorthy et al. (2007), Gunasekera (2015, 2016 a,b), and Gunasekera and Ananda (2015). For

a recipe of constructing generalized pivotal quantities, see Iyer and Patterson (2002). Moreover, in

an effort to build a very robust discussion on the advantages and better performances of these pro-
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cedures over the existing statistical procedures, reliability in the multi-component stress-strength

model, in the presence of the randomly removed Type-II censored data, is derived and their infer-

ences are also performed in the classical and Bayesian frameworks.

This theisis is organized as follows. In CHAPTER II, classical procedures for Rs,k are reviewed.

In CHAPTER III, the generalized variable method is reviewed, and a test based on the generalized

test variable and a point and an interval estimate based on the generalized pivotal quantity for the

Rs,k is presented. In CHAPTER IV, Bayesian procedures, under SE and LINEX loss functions, are

derived for the reliability parameter in the multicomponent stress-strength model. In CHAPTER

V, simulation results on bias, coverage probability, mean confidence length, type I error control,

unadjusted and adjusted power are presented. Concluding remarks are summarized in CHAPTER

VI, and it is followed by the list of References.
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CHAPTER II

THE CLASSICAL METHOD

Maximum likelihood estimator of Rs,k

LetX1, X2, ..., Xk denote strength components that are statistically distributed with GCEIE (α1,λ)

whose pdf is given by fXj(xj) = α1λQ
�
(1/xj) exp{−λQ(1/xj)}[1− exp{λQ(1/

xj)}]α1 − 1; α1,λ > 0 with its cdf FXj(xj) = 1 − [1−exp{λQ(1/xj)}]α1 ;xj > 0,α1,λ > 0; for

j = 1, 2, ..., k. Consider that X1j:n:N ≤ X2j:n:N ≤···≤ Xnj:n:N , j = 1, 2, ..., k is the corresponding

progressively type II right censored sample, with censoring scheme Rj = rj = (r1j, r2j, ..., rnj);

where n denote the number of failures observed before termination from N items that are on test,

and r1j, r2j, ..., rnj denote the corresponding numbers of units randomly removed (withdrawn) from

the jth test, where j = 1, 2, ..., k. Furthermore, let x1j:n:N ≤ x2j:n:N ≤···≤ xnj:n:N , j = 1, 2, ..., k be

the observed ordered lifetimes. Let rij denote the number of strength components removed at the

time of the ith failure of the jth strength component, 0 ≤ rij ≤ N −n−
Si−1

l=1 rlj, i = 2, 3, ..., n− 1;

j = 1, 2, ..., k with 0 ≤ r1j ≤ N − n and rnj = N − n−
Sn−1

l=1 rlj, where rij’s are non-pre-specified

integers and n are pre-specified integers and j = 1, 2, ..., k. Note that if r1j, r2j, ..., rn−1,j = 0,

so that rnj = N − n, this scheme reduces to the conventional type II right censoring scheme.

Also note that if r1j = r2j = ... = rnj = 0, so that n = N , the progressively type II right

censoring scheme reduces to the case of no censoring scheme (complete sample case). Similarly, let

20



Y1, Y2, ..., YM denote stress of a component that is statistically distributed with GCEIE (α2,λ) whose

pdf is given by fY (y) = α2λQ
�
(1/y) exp{−λQ(1/y)}[1− exp{λQ(1/y)}]α2 − 1;α2,λ > 0 with its cdf

F
Y
(y) = 1− [1 − exp{λQ(1/y)}]α2 ; y > 0,α2,λ > 0. Consider that Y1:m:M ≤ Y2:m:M ≤···≤ Ym:m:M

is the corresponding progressively type II right censored sample, with censoring scheme R� = r� =

(r�1, r
�
2, ..., r

�
m); where m denote the number of failures observed before termination from M items

that are on test, and r�1, r
�
2, ..., r

�
m denote the corresponding numbers of units randomly removed

(withdrawn) from the test. Furthermore, let y1:m:M ≤ y2:m:M ≤···≤ ym:m:M be the observed ordered

lifetimes. Let r�i denote the number of strength components removed at the time of the ith failure

of the stress component, 0 ≤ r�i ≤ M −m−
Si−1

l=1 r
�
l, i = 2, 3, ...,m− 1 with 0 ≤ r�1 ≤ M −m and

r�m =M −m−
Sm−1

l=1 r
�
l, where r

�
i’s are non-pre-specified integers and m are pre-specified integers.

Note that if r�1, r
�
2, ..., r

�
m−1 = 0, so that r

�
m =M−m, this scheme reduces to the conventional type II

right censoring scheme. Also note that if r�1 = r
�
2 = ... = r

�
m = 0, so that m =M , the progressively

type II right censoring scheme reduces to the case of no censoring scheme (complete sample case).

The likelihood function of the unknown parameters based on the observed sample is then given
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as

L(β,λ;x,y) =

%
n\
i=1

k\
j=1

Cijf(xij)[1− F (xij)]rij
&
×
%
m\
i=1

Cig(yi)[(1−G(yi)]r�i
&

= αnk1 αn2λ
n(k+1) exp

%
n[
i=1

k[
j=1

lnQ
�
(1/xij) +

m[
i=1

lnQ
�
(1/yi)

&
×

exp

%
−λ

+
n[
i=1

k[
j=1

Q(1/xij) +
m[
i=1

Q(1/yi)

,
−(α1 − 1)wλ − (α2 − 1)vλ] (2.1)

and the log-likelihood is as

l(β,λ;x,y) = nk lnα1 +m lnα2 +m(k + 1) lnλ−

λ

+
n[
i=1

k[
j=1

Q(1/xij) +
m[
i=1

Q(1/yi)

,
−(α1 − 1)wλ − (α2 − 1)vλ, (2.2)

where β =(α1,α1), wλ = −
Sn

i=1

Sk
j=1(1+rij) ln[1−e−λQ(1/xij)], vλ = −

Sm
i=1(1+r

�
i) ln[1−e−λQ(1/yi)],

Cij = N −
Si−1

l=1(1 + rlj), and Ci =M −
Si−1

l=1(1 + r
�
l).

The MLEs of α1 and α2; interchangeably denoted by eα1 or A1, and eα2 or A2, respectively; are
given by

A1=
mk

Wλ
and A2=

m

Vλ
, (2.3)

where Wλ = −
Sn

i=1

Sk
j=1(1 + Rij) ln(1− e−λQ(1/Xij)) and Vλ = −

Sm
i=1(1 + R

�
i) ln(1− e−λQ(1/Yi)).
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Note that observed values of the MLEs of α1 and α2 are also interchangeably denoted by eα1obs or
a1, and eα2obs or a2, respectively. It can be seen from (2.3) that (Wλ, Vλ) is a complete sufficient

statistics for (α1,α2).Moreover,Wλ and Vλ have gamma distributions with parameters (nk,α1) and

(m,α2), respectively. Let Λ = 2nk(A1α1)−1 and ∆ = 2m(A2α2)
−1, then

Λ ∼ χ22nk and ∆ ∼ χ22n, (2.4)

where ∼ denotes “distributed as” and χ2υ denotes a central chi-square distribution with υ degrees

of freedom.

Hence, the MLE of Rs,k that has been obtained from (1.1) by using the invariance property of

MLEs is given by

eRMs,k =
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jA2
A1(i + j) + A2

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j
1 + A1

A2
(i + j)

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ eRij, (2.5)
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where eRij = (−1)j/[1 +A1(i+ j) /A2] .
Since 2nk(A1α1)−1 ∼ χ22nk and 2m(A2α2)

−1 ∼ χ22n,

eRij = (−1)j
1 + α1

α2
(i + j)Fij

,

where

Fij =
Rij

1−Rij ×
1− eRijeRij ∼ F2n,2m,

with Fυ1,υ2 denotes a central F -distribution with υ1 numerator df and υ2 denominator df, and eR�ijs
pdf is given by

f eRij(χ) =
1

χ2B(m,n)

�
mα2
nα1

�m
×

�
1−χ
χ

�m
�
1 + mα2

nα1

�
1−χ
χ

��(m+n) ;
0 ≤ χ ≤ 1;α1,α2 > 0, (2.6)

where B(γ, δ) is the beta function given by
U 1
0
w(γ−1)(1− w)(δ−1)dw.

Asymptotic distribution of eRs,k
Suppose that β =(α1,α2) is a vector of parameters of interest and eβ = (A1, A2) be its MLE.

Therefore, it is known that Rs,k is a function of β = (α1,α1), i.e., Rs,k = g(β), then by the

invariance property of MLEs, eRs,k = g(eβ) = g(A1, A2). The classical pivotal quantity; denoted by
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T cRs,k(X,Y,β) or simply by T
c
Rs,k
, where X = {Xij}i−1,2,...,n;j=1,2,...,k and Y = (Y )i=1,2,...,m, based on

the large sample procedure; where for testing

H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 , where R0 is a given quantity, (2.7)

is given by

T cRs,k(X,Y,β) =T
c
Rs,k

= ( eRs,k −Rs,k)tI∗n(Rs,k)−1 D−→N(0, 1), (2.8)

here D−→ denotes the “convergence in distribution” and σ2eRs,k = I∗n(Rs,k)−1 is the asymptotic variance
(or the mean squared error (MSE) for unbiased eRs,k) of eRs,k with I∗n(Rs,k) being the the Fisher
information (or the expected Fisher information) matrix.

I∗n(Rs,k) for the new parameterization Rs,k is obtained using the chain rule as

I∗n(Rs,k) = J(Rs,k)
T In(β))J(Rs,k),

where J(Rs,k) is the Jacobian matrix with elements J(Rs,k) = (∂Rs,k/∂α1, ∂Rs,k/∂∂α2) and In(β)

is the observed information matrix of β, whose ijth element is given by In(β)ij=−E[∂2l

(β)/∂i∂j], for i, j = α1,α2, with l(β) = l(β,λ;x,y) as in (2.2). Therefore, the asymptotic variance

of eRs,k is given by
σ2eRs,k =

�
∂Rs,k
∂α1

�2
α21
nk
+

�
∂Rs,k
∂α2

�2
α22
n
,
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where

∂Rs,k
∂α1

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j+1α2(i+ j)
(α1(i + j) + α2)2

and

∂Rs,k
∂α2

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jα1(i+ j)
(α1(i + j) + α2)2

.

The Asymptotic variance as well as the asymptotic one-and two-sided confidence intervals for

Rs,k can also be achieved through the following procedure. Let us considerX = {Xij}i−1,2,...,n;j=1,2,...,k

and Y = (Y )i=1,2,...,m. To compute the confidence interval of Rs,k, consider the log-likelihood func-

tion of the observed sample, which is given by

l(β,λ;x,y) = nk lnα1 +m lnα2 +m(k + 1) lnλ−

λ

+
n[
i=1

k[
j=1

Q(1/xij) +
m[
i=1

Q(1/yi)

,
−(α1 − 1)wλ − (α2 − 1)vλ.

We denote the expected Fisher information matrix of δ =(α1,α2) as I(δ) = E[I†(δ)], where
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I†(δ) =
�
I†ij
�
i,j = 1,2

=
k
−∂2l(δ)

∂i∂j

l
i,j =α1,α2

is the observed information matrix. That is

I†(δ) = −

⎡⎢⎢⎣ ∂2l(δ)
∂2α1

∂2l(δ)
∂α1∂α2

∂2l(δ)
∂α1∂α2

∂2l(δ)
∂2α2

⎤⎥⎥⎦ .

The following theorems will aid in our construction of the above mentioned confidence intervals.

Theorem 1:

As n −→ ∞ and m−→∞ and n/m−→p

Then [
√
n(eα1 − α1),

√
m(eα2 − α2)]

D−→N2(0,W−1(δ)),

where D−→ denotes the convergence in distribution, and

W(δ) = −

⎡⎢⎢⎣ w11 w12

w21 w22

⎤⎥⎥⎦
and

w11 =
1√
n
√
n
I11 =

1
n
I11 = −nkα21

w12 = w21 =
1√
m
√
n
I12 = 0

w22 =
1√
m
√
m
I22 =

1
n
I22 = −m

α22

Theorem 2:

As n −→ ∞ and m−→∞ so that n/m−→p
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√
n( eRs,k −Rs,k) D−→ N(0,σ2eRs,k)

where Rs,k is a function δ, i.e., Rs,k = g(δ),σ2eRs,k = [W(Rs,k)]−1 and W(Rs,k) = J(Rs,k)TW
(Rs,k))J(Rs,k), where J(Rs,k)T = (∂Rs,k/∂α1, ∂Rs,k/∂θα2) is the Jacobian matrix with

elements J(Rs,k)ij(i, j = α1,α2 ), δ(Rs,k) = (g
−1(Rs,k)ij)i,j=α1,α2 .

In order to construct confidence interval for, and testing of, Rs,k, the variance σ2eRs,k needs to
be estimated. To estimate it, the empirical Fisher information matrix and eα1, eα2 are used. The
estimator of σ2eRs,k is denoted by s2eRs,k , and its observed value by s2eRs,k .
The p-value for testing hypotheses in (2.7), based on the asymptotic distribution of Rs,k, is given

by

p
Rs,k

= 1−Φ(q eRs,k), (2.9)

where q eRs,k = (ers,k −R0) s−1eRs,k , and qceRs,k , ers,k, respectively, are the observed values of Q eRs,k =� eRs,k −R0�S−1eRs,k and eRs,k; Φ(.) is the distribution function of the standard normal distributi
on.

A 100(1− γ)% , asymptotic confidence interval (ACI) for Rs,k, based on the above asymptotic

distribution, is given by

ACI1−γRs,k
=
�ers,k − Zγ/2s eRs,k , ers,k + Zγ/2s eRs,k

�
, (2.10)

where Zη is ηth quantile (or 100ηth percentile) of the standard normal distribution. A one-sided
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100(1− γ)% asymptotic lower confidence interval (ALCI) for Rs,k is given by

ALCI1−γRs,k
=
�ers,k, ers,k + Zγ/2s eRs,k

�
.

Unformly minimum variance unbiased estimator of Rs,k

Furthermore, uniformly minimum variance unbiased estimator (UMVUE) of Rs,k, say eRUs,k, will
be derived. Since eRs,k is a linear function of α1 and α2, it is sufficient to find the UMVUE of

ψ(α1,α2) = α2/(α1(i+ j) + α2). It has already seen that (wλ, vλ) is a complete sufficient statistics

for (α1,α2) from (2.3). Moreover, wλ, vλ have gamma distributions with parameters (nk,α1) and

(m,α2), respectively. Let

φ(V,W ) =

⎧⎪⎪⎨⎪⎪⎩
1, W > (i+ j)V

0 otherwise
,

where Wλ = −
Sn

i=1

Sk
j=1(1 + Rij) ln(1− e−λQ(1/Xij)) and Vλ = −

Sm
i=1(1 + R

�
i) ln(1− e−λQ(1/Yi)).

It is clear that W and V have exponential distributions with means 1/α1 and 1/α2, respectively.

Then, φ(V,W ) is an unbiased estimator for ψ(α1,α2). The UMVUE of ψ(α1,α2), say eψU(α1,α2),
can be obtained by using
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Lehmann-Scheffé Theorem (1950) and is given by

eψU(α1,α2) = E(φ(V,W )|Wλ = wλ, Vλ = vλ)

= P (W > (i+ j)V |Wλ = wλ, Vλ = vλ)

=

]
C

]
fW |Wλ=wλ(w|wλ)fV |Vλ=vλ(v|vλ)dvdw, (2.11)

where C = {(v, w) : 0 < v < vλ, 0 < w < wλ, v(i+ j) < w} . Notice that

fW |Wλ=wλ(w|wλ) and fV |Vλ=vλ(v|vλ) are easily obtained by using Lemma 1 in Basirat et al. (2015).

This double integral is considered in two cases i.e. (i+ j)vλ/wλ < 1 and (i+ j)vλ/wλ > 1.

When (i+ j)vλ/wλ < 1, the double integral in (2.11) can be expressed as

eψ†U(α1,α2) =

vλ]
0

wλ]
v(i+j)

(n− 1)(nk − 1)
vλwλ

�
1− v

vλ

�n−2�
1− w

wλ

�nk−2
dwdv

= (n− 1)
1]
0

(1− t)n−2(1− ct)nk−1dt,

where c = (i+ j)vλ/wλ < 1, t = v/vλ

=
nk−1[
z = s

(−1)z
�
(i+ j)vλ
wλ

�z
⎛⎜⎜⎝ nk − 1

i

⎞⎟⎟⎠
⎛⎜⎜⎝ n+ z − 1

z

⎞⎟⎟⎠
. (2.12)
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When (i+ j)vλ/wλ > 1, the double integral in (2.11) can be expressed as

eψ‡U(α1,α2) =

wλ]
0

w/(i+j)]
v(i+j)

(n− 1)(nk − 1)
vλwλ

�
1− v

vλ

�n−2
(1− w

wλ
)n−1dt,

= 1− (nk − 1)
1]
0

(1− t)nk−2
�
1− t

c

�n−1
dt,

where c = (i+ j)vλ/wλ > 1, t = w/wλ

= 1−
n−1[
z = s

(−1)z
�

wλ

(i+ j)vλ

�z
⎛⎜⎜⎝ n− 1

i

⎞⎟⎟⎠
⎛⎜⎜⎝ nk + z − 1

z

⎞⎟⎟⎠
. (2.13)

Therefore, the eRUs,k is obtained by using (2.12 ) and (2.13)

eRUs,k = k[
i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j ×
⎧⎪⎪⎨⎪⎪⎩
eψ†U(α1,α2) if (i+ j)vλ/wλ < 1

eψ‡U(α1,α2) if (i+ j)vλ/wλ > 1

. (2.14)

Bootstrap confidence intervals for Rs,k

It is clear that the confidence intervals for Rs,k based on the asymptotic results do not perform

very well for small sample sizes. So, two confidence intervals based on the parametric bootstrap

methods for estimating Rs,k are proposed: (i) percentile bootstrap method ((Efron 1979) (we call
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it from now on as boot-p), and (ii) studentized bootstrap method or bootstrap-t method (we call

it for now on as boot-t) (Hall 1988).

(i) Percentile Bootstrap Method (Efron 1979)

Algorithm 1:

For given (α1,α2, λ), (m,n, k, s),R = r = {rij}i=1,2,...,n;j=1,2,...,k and R� = r� = (r�1, r�2, ...,

r�m) :

Step 1: Generate inverse exponenetiated xij from

GCEIE (α1,λ) ∼ α1λ[Q
�
(1/xij)/x

2
ij]e

−λQ(1/xij))× (1− e−λQ(1/xij))α1 − 1

for i = 1, 2, ..., n; j = 1, 2, ..., k, and yi from GCEIE (α2,λ) ∼

α2λ[Q
�
(1/yi)/y

2
i ]e

−λQ(1/yi))(1− e−λQ(1/yi))α2 − 1 for i = 1, 2, ...,m,

Step 2: From the samples x = {xij}i=1,2,...,n;j=1,2,...,k and y = (y1, y2..., yn),

compute the estimates of (α1,α2), say (a1, a2)

a1 = nkw
−1
λ , where wλ = −

Sn
i=1

Sk
j=1(1 + rij) ln(1− e−λQ(1/xij))

and a2 = nv−1λ , where vλ = −
Sm

i=1(1 + r
�
i) ln(1− e−λQ(1/yi))

Step 3 : Generate bootstrap inverse exponenetiated x∗ij from GCEIE (a1,λ) ∼

a1λ[Q
�
(1/xij)/x

2
ij]e

−λQ(1/xij))× (1− e−λQ(1/xij))a1 − 1 for

i = 1, 2, ..., n; j = 1, 2, ..., k, and y∗i from GCEIE (α2,λ) ∼

a2λ[Q
�
(1/yi)/y

2
i ] e

−λQ(1/yi))(1− e−λQ(1/yi))a2 − 1 for

i = 1, 2, ...,m,
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Then, compute bootstrap sample estimates of α1 and α2 :

eα∗1obs = a∗1 = nk(w∗λ)−1, where w∗λ = −Sn
i=1

Sk
j=1(1 + rij) ln(1− e−λQ(1/x

∗
ij))

and

eα∗2obs = a∗2 = n(v∗λ)−1, where v∗λ = −Sm
i=1(1 + r

�
i) ln(1− e−λQ(1/y∗i ))

Based on x∗ {x∗ij}i=1,2,...,n;j=1,2,...,k and y = (y∗1, y∗2..., y∗n) compute the

bootstrap sample estimate of Rs,k , denoted by eR∗s,k, using

eR∗s,k = k[
i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jeα∗2obseα∗1obs(i + j) + eα∗2obs ,

Step 4: Repeat step 3, N boot times and get the bootstrap distribution given by

1 eR∗s,k,2 eR∗s,k, ...,N eR∗s,k.
The bootstrap distribution of the statistic eR∗s,k that is based on many
resamples represents the sampling distribution of the statistic eR∗s,k that
is based on many samples.

Step 5: After ranking from bottom to top, let us denote these bootstrap values as

(1)R∗s,k,
(2)R∗s,k, ...,

(N)R∗s,k.

Let G(R∗s,k) = P (R
∗
s,k ≤ r∗s,k), where r∗s,k is the observed value of R∗s,k, be

the cumulative distribution of R∗s,k. Define
boot−pR∗s,k = G

−1(ξ) for a given
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ξ. The approximate 100(1− γ)% percentile-bootstrap CI (PBCI) for

Rs,k is then given by

PBCI =
�
boot−p eR∗s,k �γ2� ,boot−p eR∗s,k

�
1− γ

2

��
(2.15)

When the distributions are skewed we need do some adjustment. One

method which is proved to be reliable is BCa method ( BCa stands for

Bias-corrected and accelerated). For the details please refer to DiCiccio

and Efron (1996). When the distribution of R∗s,k is skewed, we instead use

the q.low and q.up percentiles of the bootstrap replicates of R∗s,k to calculate

the lower bound and upper bound of the confidence intervals. Formally,

for confidence level 95%, the bootstrap bias-corrected and accelerated

CI(BBCACI) for Rs,k is

BBCACI = (q.low, q.up) ,

where

q.low = Φ

�
z0 +

z0 + z0.025
1− b(z0 + az0.025)

�
and

q.up = Φ

�
z0 +

z0 + z0.975
1− b(z0 + az0.975)

�
,
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where zγ is the γth quantile of standard normal distribution, z0 and b,

namely bias-correction and acceleration, are two parameters to be

estimated, by (2.8) and (6.6) in DiCiccio and Efron (1996).

(ii) Bootstrap-t Method (Hall 1988) : The method was suggested in Efron (1979),

but some poor numerical results reduced its appeal. Hall’s (1988) paper

showing the bootstrap-t’s good second-order properties has revived interest

in its use. Babu and Singh (1983) gave the first proof of second-order

accuracy for the bootstrap-t.

Algorithm 2:

Step 1: Do steps 1—3 in Algorithm 1. Also, compute the following statistic

t∗ =

√
n(er∗s,k − ers,k)
s
R∗
s,k

,

where

T ∗ =

√
n( eR∗s,k − eRs,k)

S
R∗
s,k

,

and S
R∗
s,k
is the standard deviation of the bootstrap distribution and s

R∗
s,k

is its observed value. S
R∗
s,k
is obtained using the Fisher (or expected

Fisher) information matrix. Moreover, r∗s,k is the estimate (or the observed

estimator) of Rs,k based on the bootstrap resamples and ers,k is the
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estimate of Rs,k based on the original observed sample, and eR∗s,k is the
estimator of Rs,k based on the bootstrap random resamples and eRs,k
is the estimator of Rs,k based on the original random sample.

Step 2: Compute N bootstrap replications of t∗. Denote t∗ by t∗1, ..., t
∗
N .

Step 3: After ranking from bottom to top, let us denote these bootstrap values as

t∗(1), ..., t
∗
(N).

Step 4: For t∗ values obtained in step 1, determine the upper and lower bounds

of the 100(1− γ)% confidence interval of R∗s,k as follows:

Let H(t∗) = P (T ∗ ≤ t∗) be the cumulative distribution function of T ∗.

For a given ξ,

define

boot−t eR∗s,k (ξ) = er∗s,k +H−1(ξ)
s
R∗
s,k√
n
.

The 100(1− γ)% bootstrap-t CI (BTCI) for Rs,k is then given by

BTCI =
�
boot−t eR∗s,k �γ2� ,boot−t eR∗s,k

�
1− γ

2

��
(2.16)
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CHAPTER III

THE GENERALIZED VARIABLE METHOD

A review

Suppose that Z = (Z1, Z2, ..., Zn) form a random sample from a distribution, which depends

on the parameters ξ = (θ, δ) where θ is the parameter of interest and δT is a vector of nuisance

parameters. Also, suppose that z = (z1, z2, ..., zn) be its observed value. Let Ψ be the sample space

of possible values ofY, Ξ be the parameter space of ξ, and Θ be the parameter space of θ. Consider

testing H0 : θ ≤ θ0 vs. Ha : θ > θ0, where θ0 is a specified quantity. A Generalized Test Variable

(Tusi and Weerahandi, 1989) of the form T (Z; z, θ, δ), a map of Ψ× Ψ× Ξ to a Euclidean space,

is chosen to satisfy the following three conditions.

1. For fixed z, the distribution of T (Z; z, θ, δ) is free of the vector of nuisance

parameter δ.

2. The value of T (Z; z, θ, δ) at Z = z is free of any unknown parameters.

3. For fixed z and δ, and for all t, Pr [T (Z; z, θ, δ) ≥ t] is either an increasing or

a decreasing function of θ.

If T (Z; z, θ, δ) is stochastically increasing in θ, the Generalized P-Value for testing H0 : θ ≤

θ0 vs. Ha : θ > θ0 is given by SupH0 Pr [T (Z; z, θ, δ) ≥ t] , and if T (Z; z, θ, δ) is stochastically
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decreasing in θ, the Generalized P-Value for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0 is given by

SupH0 Pr [T (Z; z, θ, δ) ≤ t] .

Furthermore, a 100(1− γ)% two-sided generalized CI for θ is given by (R(z; γ
2
),R(z;

1− γ
2
)), where R(z; p) is the pth quantile of the Generalized Pivotal Quantity R(Z; z, θ,

δ), a map of Ψ×Ψ× Ξ to a Euclidean space, that has a relationship T (Z; z, θ, δ) = R(Z; z, θ, δ)− θ

and satisfy the following two conditions.

1. For fixed z, the distribution of R(Z; z, θ, δ) is free of unknown parameters.

2. The value of R(Z; z, θ, δ) at Z = z is free of the nuisance parameter δ

and equals to the parameter of interest θ, i.e., R(z; z, θ, δ) = θ.

A Generalized Point Estimator (Weerahandi 2012) of the form Q(Z; z, θ, δ), a map of Ψ× Ψ×

Ξ to a Euclidean space, is chosen to satisfy the following three conditions.

1. The cumulative distribution of Q(Z; z, θ, δ) is a monotonic function of θ

2. Q(z; z, θ, δ)) = c; where c is a constant free of nuisance parameters, but possibly

could depend on z and θ.

An optional, but desirable additional property to have is:

3. The distribution of Q(Z; z, θ, δ) is free of nuisance parameters δ.

Remarks:

Property 3 of the above Generalized Point Estimator is essential when we need to make addi-

tional inferences such as statistical tests and interval estimation based on Q(Z; z, θ, δ)). In fact, it
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is easily verified that if Q(Z; z, θ, δ) is a Generalized Point Estimator satisfying Property 3, then

it is also a Generalized Pivotal Quantity R(Z; z, θ, δ), as defined by Weerahandi (1993). More-

over, T (Z; z, θ, δ) = Q(Z; z, θ, δ) − Q(z; z, θ, δ) is a Generalized Test Variable as defined by Tsui

and Weerahandi (1989), where Q(z; z, θ, δ) is the observed value of Q(Z; z, θ, δ). For example,

in sampling from a normal population, say N(μ,σ2), the random variable Q1(Z; z, θ, δ) = Z − μ

is a Generalized Point Estimator having just the first two properties above, whereas the Gen-

eralized Point Estimator Q2(Z; z, θ, δ) = z − s(Z − μ)/S has all three properties, where Z is

the sample mean and S is the sample standard deviation. Therefore, Q2(Z; z, θ, δ) is a Gen-

eralized Pivotal Quantity R2(Z; z, θ, δ) = z − s(Z − μ)/S and T2(Z; z, θ, δ) = Q2(Z; z, θ, δ) −

Q2(z; z, θ, δ) = [z−s(Z−μ)/S]−[z−s(z−μ)/s] = z−s(Z−μ)/S−μ is a Generalized Test Variable

for estimating μ. This T2(Y;y; θ,β) can also be derived from T2(Y;y; θ,β) = R2(Y;y; θ,β)−μ =

z − s(Z − μ)/S − μ as explained under the Generalized Pivotal Quantity. Please also note that

Q2(Y;y; θ,β) was derived using the Substitution Method described in pp. 13-16 in Weerahandi

(2004). For further details on the concepts of generalized p-values, we refer readers to the books by

Weerahandi (1995, 2004), and references therin.

Generalized inferences for α1 and α2

Since the reliability parameter in (1.1) is a function of both α1 and α2, we first develop generalized

variables for α1 and α2 for the one-sample case. Even though it is not our primary interest, knowing
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the results of the one-sample case will make it easier to understand the approach and results for

the multicomponent stress-strength reliability .Let X1j:n:N ≤ X2j:n:N ≤···≤ Xnj:n:N , j = 1, 2, ..., k

denote n number of strength components observed from GCEIE (α1,λ) before termination andRj =

(R1j, R2j, ..., Rnj) denote the corresponding numbers of strength units removed (withdrawn) from

the jth test, where j = 1, 2, ..., k. Furthermore, let x1j:n:N ≤ x2j:n:N ≤···≤ xnj:n:N , j = 1, 2, ..., k and

rj = (r1j, r2j, ..., rnj) be the observed ordered strengths and observed strength removals, respectively.

Let rij denote the number of strength components removed at the time of the ith failure of the jth

strength component, 0 ≤ rij ≤ N−n−
Si−1

l=1 rlj, i = 2, 3, ..., n−1; j = 1, 2, ..., k with 0 ≤ r1j ≤ N−n

and rnj = N−n−
Sn−1

l=1 rlj, where rij’s are non-pre-specified integers and n are pre-specified integers

and j = 1, 2, ..., k. Note that if r1j, r2j, ..., rn−1,j = 0, so that rnj = N − n, this scheme reduces to

the conventional type II right censoring scheme. Also note that if r1j = r2j = ... = rnj = 0, so that

n = N , the progressively type II right censoring scheme reduces to the case of no censoring scheme

(complete sample case).

We know that a1 is the observed value ofA1, or simply the estimate of α1, whereA1= nk/Wλ with

Wλ = −
Sn

i=1

Sk
j=1(1+Rij) ln(1−e−λQ(1/Xij)). The random variable Q(X;x,α1,λ) = 2nk(a1Λ)−1 =

(a1)
−1(A1α1) is then a generalized estimator who satisfy the three conditions to be a bona fide

generalized point estimator as presented in the subsection (3.1). Therefore, this would also serve

as a generalized pivotal quantityR(X;x,α1,λ) = 2nk(a1Λ)−1 = (a1)−1(A1α1), thus T (X;x,α1,λ) =

2nk(a1Λ)
−1 − α1 = a

−1
1 A1α1 − α1 is the generalized test variable.
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First, for fixed x, the distribution FT (t) of T (X;x, α1,λ), where FT (t) = Pr[T (X;x,α1,λ)

≤ t] = Pr [2nk(a1Λ)
−1 − α1 ≤ t] = Pr [Λ ≥ 2nk[a1(t+ α1)]

−1] = 1 − FΛ(2nk[a1(t + α1)]
−1) with

FΛ(·) being the distribution function of χ22nk, is free of nuisance parameters. Second, at X = x,

T (x;x,α1,λ) = (a1)
−1(a1α1)−α1 = 0, thus T (x;x,α1,λ) is free of any unknown parameters. Third,

FT (t) = Pr [T (X;x,α1,λ) ≤ t]= 1 − FΛ(2nk[a1(t + α1)]
−1 is a decreasing function of α1. Hence,

Q(X;x,α1,λ), R(X;x,α1,λ), and T (x;x,α1,λ) are bona fide generalized point estimator for α1,

generalized pivotal quantity for constructing interval estimation for α1, and the generalized test

variable for testing H0 : α1 ≤ α10 vs. Ha : α1 > α10 , where α10 is a known quantity, respectively.

The generalized p-value for the test is given by pgα1 = Pr(T (X;x,α1,λ) ≤ 0|α1 = α10) =

Pr [Λ ≥ 2nk(a1α10)−1] . The p-value can be computed by numerical integration with respect to the

independent chi-squared random variable Λ with 2nk degrees of freedom. The probability of this in-

equality can also be evaluated by the Monte Carlo method by generating a large number of random

numbers from Λ, and then finding the fraction of random numbers for which the inequality is satis-

fied. In fixed level testing, one can use this p-value for rejecting the null hypothesis, if the generalized

p-value is less than the desired nominal level γ.The equal tail 100(1−γ)% generalized confidence in-

terval for α1, where 1−γ is the confidence coefficient, is given by (Rγ/2(α1; a1,λ),R1−γ/2(α1; a1,λ)),

where Rξ(α1; a1,λ) is the ξth quantile of the random variable R(X;x,α1,λ). These quantiles can

be evaluated by the Monte Carlo Simulations. This can be done by generating a large number of

random numbers from Λ, evaluating R(X;x,α1,λ), and then looking at the empirical distribution
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of R(X;x,α1,λ).

Similarly, let Y1:m:M ≤ Y2:m:M ≤···≤ Ym:m:M denote m number of stress components observed

from GCEIE (α2,λ) before termination and R�j = (R�1, R�2, ..., R�m) denote the corresponding num-

bers of stress units removed (withdrawn) from the test. Furthermore, let y1:m:M ≤ y2:m:M ≤···≤

ym:m:M and r� = (r�1, r
�
2, ..., r

�
m) be the observed ordered stress and observed stress removals, respec-

tively. Let r�i denote the number of stress components removed at the time of the ith failure of

the stress component, 0 ≤ r�i ≤ M −m −
Si−1

l=1 r
�
l, i = 2, 3, ...,m − 1 with 0 ≤ r�1 ≤ M −m and

r�m =M −m−
Sm−1

l=1 r
�
l, where r

�
i’s are non-pre-specified integers and m are pre-specified integers.

Similarly, we can then show that R(Y;y,α2,λ) =2n(a2∆)−1, where from (2.5) ∆ = 2n(A2α2)
−1 ∼

χ22n, where A2= mk/Vλ with Vλ = −
Sm

i=1(1+R
�
i) ln[1−e−λQ(1/Yi)], is a generalized pivotal quantity

for constructing 100(1− γ)% confidence interval for α2, whereas Q(Y;y,α2,λ) =2n(a2∆)−1 is the

generalized point estimator for α2. The generalized test variable for testing H0 : α2 ≤ α20 vs. Ha :

α2 > α20 is T (Y;y,α2,λ) = R(Y;y,α2,λ)− α2 = 2n(a2∆)
−1 − α2 = α2A

−1
2 a2 − α2., and general-

ized p-value for this test is given by Pr
�
supH0: α2 ≤ α20

T (Y;y,α2,λ) > 0
�
= Pr(T (Y;y,α2,λ) ≤

0|α2 = α20) = Pr [∆ ≥ 2n(a2α10)−1] .

Generalized inference for Rs,k

Let XDATA = (X,Y), where X = {Xij}i=1,2,...,n;j=1,2,...,k and Y = (Y1, ..., Ym), and let xDATA =

(x,y), where x = {xij}i=1,2,...,n;j=1,2,...,k and y = (y1, ..., ym), be its observed value. The generalized
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point estimator for Rs,k, denoted by Q(XDATA;xDATA,

β,λ), where β = (α1,α2), can then be obtained by replacing α1,α2 in Rs,k given in (2.13) with their

generalized variables Q(X;x,α1,λ) and Q(Y;y,α2,λ) as:

Q(XDATA;xDATA,β,λ) =
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠×
(−1)R(Y;y,α2,λ)

R(X;x,α1,λ)(i + j) + R(Y;y,α2,λ)
, (3.1)

where R(X;x,α1,λ) = 2nk(a1Λ)−1 and R(Y;y,α2,λ) = 2m(a2∆)
−1 with Λ = 2nk(A1α1)

−1

∼ χ22nk and ∆ = 2m(A2α2)
−1 ∼ χ22m.

We are now interested making inferences such as point and interval estimation, and statistical

tests forRs,k based on the generalized variable method. The random variableQ(XDATA;xDATA,β,λ),

also denoted by eRGs,k, is a generalized point estimator which satisfy the three conditions to be a
bona fide Generalized Point Estimator as presented in the subsection (3.1). Therefore, this would

also serve as a generalized pivotal quantity R(XDATA;xDATA,β,λ) and T (XDATA;xDATA,β,λ) =

R(XDATA;xDATA,β,λ)−Rs,k is the generalized test variable. First, for fixed xDATA, the distribution

HT (t) of T (XDATA;xDATA,β,λ), where HT (t) = Pr[T (XDATA;xDATA,β,λ)≤ t = Pr[R(XDATA;

xDATA,β,λ) ≤ t+Rs,k] =FR(XDATA;xDATA,β,λ)(t+Rs,k) with FR(XDATA;xDATA,β,λ)(·) being the distri-
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bution function of R(X;x,α1,λ, is free of nuisance parameters. Second, at XDATA = xDATA,

T (xDATA;xDATA,β,λ) = R(xDATA;xDATA,β,λ)−Rs,k

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠×
(−1)R(y;y,α2,λ)

R(x;x,α1,λ)(i + j) + R(y;y,α2,λ)
−Rs,k

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)α2

α1(i + j) + α2

−

k[
i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jα2

α1(i + j) + α2

= 0

thus T (XDATA;xDATA,β,λ) is free of any unknown parameters.Third, FT (t) =

Pr [T (XDATA;xDATA,β,λ) ≤ t] = Pr[R(XDATA;xDATA,β,λ) ≤ t+Rs,k] =

FR(XDATA;xDATA,β,λ)(t+Rs,k) is a decreasing function of Rs,k. Hence, Q(XDATA;xDATA,

β,λ), R(XDATA;xDATA,β,λ), and T (XDATA;xDATA,β,λ) are, respectively, bona fide generalized

point estimator of Rs,k , generalized pivotal quantity for constructing interval estimation for Rs,k,

and the generalized test variable for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 , where R0 is a

known quantity.
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Generalized confidence interval for Rs,k

Given the specified significance level γ, the level (1−γ) two—sided generalized confidence interval

for Rs,k can be derived as follows:

For mathematical tractability and simplicity, we write Rα1 = R(X;x,α1,λ) = 2nk(a1Λ)
−1 and

Rα2 = R(Y;y,α2,λ) = 2m(a2∆)
−1 with Λ = 2nk(A1α1)

−1 ∼ χ22nk and ∆ = 2m(A2α2)
−1 ∼ χ22m

, and A1 = nk/Wλ with Wλ = −
Sn

i=1

Sk
j=1(1 + Rij) ln(1 − e−λQ(1/Xij)) and A2 = m/Vλ with

Vλ = −
Sm

i=1(1 + R
�
i) ln(1 − e−λQ(1/Yi)). Hence, a generalized pivotal statistic for Rs,k in (1.1) is

given by

RRs,k, = R(xDATA;xDATA,β,λ) =
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)jRα2

Rα1(i + j) + Rα2
. (3.2)

Let RRs,k,

γ/2 = R
Rs,k,

γ/2 (xDATA; ,
eβobs,λ) and RRs,k,

1−γ/2 = R
Rs,k,

1−γ/2(xDATA; ,eβobs,λ),where eβobs = (α1,α2),
satisfy

P [R
Rs,k,

γ/2 ≤RRs,k, ≤ RRs,k,

1−γ/2] = 1− γ

The
�
R
Rs,k,

γ/2 , R
Rs,k,

1−γ/2
�
is a 100(1 − γ)% lower confidence limit for Rs,k. That is, confidence bounds

for Rs,k

CIG,Rs,k, =
�
R
Rs,k,

γ/2 , R
Rs,k,

1−γ/2
�
. (3.3)
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Generalized testing procedure for Rs,k

Construct a statistical testing procedure to assess whether the reliability function adheres to

the required level. The one-sided hypothesis testing for Rs,k is obtained using the generalized test

variable T S(X;x; δ) = QS(X;x; δ)− Rs,k, or simply TRs,k = RRs,k −Rs,k, where T = TS(X;x; δ).

Assuming that the required reliability is larger than R0, where R0 denotes the target value, the null

hypothesis H0 : Rs,k ≤ R∗0 and the

alternative hypothesis Ha : Rs,k > R0 are constructed. Then, the generalized p-value, denoted by

pg , is derived as follows:

pg = Pr

⎛⎜⎜⎝ k[
i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)R(Y;y,α2,λ)
R(X;x,α1,λ)(i + j) + R(Y;y,α2,λ)

> R0

⎞⎟⎟⎠ . (3.4)

This p-value can be either computed by numerical integration exact up to a desired level of

accuracy or well approximated by a Monte Carlo method. When there are a large number of random

numbers from various random variables, the latter method is more desirable and computationally

more efficient. p is an exact probability of a well-defined extreme region of the sample space and

measures the evidence in favor of the null hypothesis. This is an exact test in significance testing.

In fixed level testing, one can use this p-value by rejecting the null hypothesis, if δ, where δ a desired

nominal level .
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The following algorithm is useful in constructing pg.

Algorithm 3

Step 1: Given λ, k, γ,m, n,R0, R = (R1,R2, ...,Rk),and R� = (R�1, R
�
2, ..., R

�
m),

where Rj = (R1j, R2j, ..., Rnj) for j = 1, 2, ..., k

(a) The generation of data Uij is by the uniform distribution U(0, 1),for

i = 1, 2, ..., n; j = 1, 2, ..., k

(b) By the transformation of Zij = Q−1
�
ln(1− U

1
α1
ij )

−λ
�−1

,

i = 1, 2, ..., n; j = 1, 2, ..., k

{Zij}i=1,2,...,n;j=1,2,...,k is a random sample from the GCEIE with density

as (1.1).

(c) Set Xij:n:N =
Z1j
n
+

Z2j
(n−R1j−1) + ...+

Zij

[n−Si−1
l=1 Rlj−i+1]

, for i = 1, 2, ..., n;

j = 1, 2, ..., k

{Xij:n:N}i=1,2,...,n;j=1,2,...,k is the progressively type II right censored

sample from a two-parameter GCEIE distribution with density as

in (1.1).

Step 2: Compute the maximum likelihood estimate of α1

a1 = nk/wλ, where wλ = −
Sn

i=1

Sk
j=1(1 + rij) ln(1− e−λQ(1/xij))

Step 3: (a) Similarly, generate data Ui from the uniform distribution U(0, 1),

for i = 1, 2, ...,m
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(b) By the transformation of Z �ij = Q
−1
�
ln(1− U

1
α2
ij )

−λ
�−1

, i = 1, 2, ...,m,

{Z �i}i=1,2,...,m is a random sample from the GCEIE with density as

in (1.1).

(c) Set Yi:m:M =
Z�1
m
+

Z�2
(n−R�1−1) + ...+

Z�i
[m−Si−1

l=1 R
�
l−i+1]

, for i = 1, 2, ...,m

{Yi:m:M}i=1,2,...,m is the progressively type II right censored sample from

a two-parameter GCEIE distribution with density in (1.1).

Step 4: Compute the maximum likelihood estimate of α2

a2 = m/vλ, where vλ = −
Sm

i=1(1 + r
�
i) ln(1− e−λQ(1/yi))

Step 5: For l = 1 : L

(a) Generate Λ ∼ χ22nk and ∆ ∼ χ22n

(b) Compute the quantities Rα1 = 2nk(a1Λ)
−1 and Rα2 = 2m(a2∆)

−1

(c) Compute RRs,k,=
kS

i = s

k − iS
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)Rα2

Rα1 (i + j) +Rα2

(end l loop)

Generalized p-value is estimated by the proportion of RRs,k, which are greater than R0. The

100(1−γ/2)th and 100γ/2th percentile of RRs,k,; R
Rs,k,

γ/2 and RRs,k,

1−γ/2, respectively; are the lower and

upper bounds of the two-sided 1− γ confidence interval. That is, CIGRs,k =
�
R
Rs,k,

γ/2 , R
Rs,k,

1−γ/2
�
.

Coverage probabilities of the generalized confidence intervals and powers of generalized tests are

computed using the Monte Carlo method given in the following algorithm.
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Algorithm 4

For given β = (α1,α2),λ, k, γ,m, n,R0, R = (R1,R2, ...,Rk),

and R� = (R�1, R
�
2, ..., R

�
m),

where Rj = (R1j, R2j, ..., Rnj) for j = 1, 2, ..., k

For p = 1 : P

1. Generate Λ ∼ χ22nk and ∆ ∼ χ22n

2. Set α1 = 2nk(a1Λ)−1 and α2 = 2m(a2∆)
−1,

3.Use Algorithm 3 to construct a (1− γ) confidence interval Cp,

ξ
Rs,k

=

⎧⎪⎪⎨⎪⎪⎩
1, if Cp contains Rs,k

0, if Cp does not contain Rs,k

,

4.Use Algorithm 3 again to compute the generalized p-value, pg.

η
Rs,k

=

⎧⎪⎪⎨⎪⎪⎩
1, if pg < γ

0, if pg > γ

.

(end p loop)

The proportion 1
P

SP
p =1 ξ

Rs,k
is the estimated coverage probability of the generalized confidence

interval. It is evident that sometimes the coverage of the generalized confidence interval may not

equal to the nominal level. But, when generalized confidence interval reduces to traditional classical

confidence intervals, theoretical results are available on coverage properties of generalized confidence

intervals. The proportion 1
P

SQ
p =1 ηRs,k

is the estimated power of the generalized test.
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CHAPTER IV

THE BAYESIAN METHOD

Preview

A Bayesian approach for statistical inferences of the reliability parameter of the multicomponent

system Rs,k, contrasting the conventional classical approach and the newly introduced generalized

variable approach, is introduced and discussed, and then the Monte Carlo method and commonly

used Markov Chain Monte Carlo (MCMC) methods are introduced in this section.

The Bayesian statistics and Markov Chain Monte Carlo (MCMC) methods have been twins

in statistical arena for more than 20 years as the former covers the philosophical aspect of the

Bayesian approach and the latter is well suited for the calculations of probabilities and does not

rely on conjugacy or asymptotic moment-based approximations. When marginal posterior distri-

butions are impossible to be summarized analytically, Bayesian statisticians (or simply Bayesians

or practitioners from the Bayesian School) tend to numerical approaches for the summarization of

these marginal posterior distributions. The Monte Carlo method is the commonly used numerical

approach in the Bayesian statistics. In order to use this method, it is necessary to have well-suited

algorithms; there are two well-known algorithms:

1. the Gibbs sampling – uses a sequence of draws from conditional posterior

distribution to characterize the joint posterior distribution: special case of
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Metropolis-Hastings algorithm

2. the Metropolis-Hastings algorithm – used for all sorts of numerical integration

and optimization.

For more details on this algorithm, interested parties are referred to Metropolis et al. (1953),

Hastings (1979), and Chib and Greenberg (1995). In the Gibbs sampling technique incorporated

with the Meta-analysis – a statistical approach adopted to summarize and integrate a collection

studies using many familiar techniques to draw general conclusions that was first performed by

Karl Pearson in 1904 – the information from several GCEIE populations are combined to estimate

the common Rs,k when scale common parameter λ for the strength and stress is known, and the

unknown shape parameters, where common for strength components a1, but different for the stress

component a2.

The marginal posterior distribution of a parameter of interest is the target distribution in the

Bayesian analysis for the estimation of the parameter of interest. But, there are few possible

difficulties incorporated with handling those distributions:

1. when the marginal posterior distribution is a non-standard distribution,

2. when the marginal posterior distribution is a poly standard distribution,

3. when the marginal posterior distribution is a poly non-standard distribution,

4. when the dimensionality problem causes the numerical integration is difficult
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Bayes estimation

Now, we deal with the problem of estimating the parameters a1 and a2, and the reliability

function Rs,k of GCEIE distribution under mainly a SE loss function and LINEX loss functions

found in CHAPTER I. Similar procedure can be adopted for estimating the reliability function Rs,k

under various other loss functions described in the Introduction Section. The Gibbs sampler provides

considerable and fair robust solutions for such drastic and difficult situations. In this section, we

assume that the parameters (α1,α2) are random variables and have statistically independent gamma

prior distributions with parameters (ai, bi), i = x, y, respectively., that is, prior distributions for a1

and a2 are taken to be G(ai, bi), i = x, y. The Gibbs sampler provides considerable and fair robust

solutions for such drastic and difficult situations. In this section, we assume that the parameters

(α1,α2) are random variables and have statistically independent gamma prior distributions with

parameters (ai, bi), i = x, y, respectively. The pdf of a gamma random variable X with parameters

(ai, bi) is

f(x) =
baii

Γ(ai)
xai−1e−xbi , x > 0, ai, bi > 0. (4.1)

Then, the joint posterior density function of (α1,α2) is

π(α1,α2|λ,x,y) = (b1 + wλ)
nk+a1(b2 + vλ)

m+a2

Γ(nk + a1)Γ(m+ a2)
αnk+a1−11 αm+a2−12 e−α1(b1+wλ)−α2(b2+vλ) (4.2)

where x = {xij}i=1,2,...,n;j=1,2,...,k;y = {yi}i=1,2,...,m ;wλ = −
Sn

i=1

Sk
j=1(1 + rij) ln[1− e−λQ(1/xij)],
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vλ = −
Sm

i=1(1+r
�
i) ln[1−e−λQ(1/yi)] with rj = (r1j, r2j, ..., rnj) and r� = (r�1, r�2, ..., r�m), j = 1, 2, ..., k.

Furthermore, the marginal posterior densities of α1 and α2 have gamma distributions with parame-

ters (nk+a1, b1+wλ) and (m+a2, b2+ vλ). The Bayes estimate of Rs,k under the SE loss function,

say eRB,SEs,k , is

eRB,SEs,k = Eπ(α1,α2|λ,xDATA)[Rs,k|xDATA]

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j ] ∞

0

] ∞

0

α2

α1(i + j) + α2

×

π(α1,α2|λ, xDATA)dα1dα2, (4.3)

where xDATA = (x,y) with x = {xij}i=1,2,...,n;j=1,2,...,k and y = (y1, ..., ym) is the observed (or real-

ized) value of XDATA = (X,Y) with X = {Xij}i=1,2,...,n;j=1,2,...,k and Y = (Y1, ..., Ym).

We consider a one-to-one transformation u1 = α2/(α1(i + j) + α2) and u2 = α1(i + j) + α2.

Then, 0 < u1 < 1, 0 < u2 < ∞,α1 = u2(1− u1)/(i + j),α2 = u1u2 and the Jacobian of (u1, u2) is

J(u1, u2) = −u2/(i+ j). Therefore, the double integral in ( 4.3) can be rewritten as

(b1 + wλ)
nk+a1(b2 + vλ)

m+a2

Γ(nk + a1)Γ(m+ a2)(i+ j)nk+a1

�] 1

0

] ∞

0

um+a21 (1− u1)nk+a1−1up−12 ×

exp

�
−u2

�
(1− u1)(b1 + wλ)

(i+ j)
+ u1(b2 + vλ)

��
du1du2

�
=

(1− z)m+a2
B(nk + a1,m+ a2)

] 1

0

um+a21 (1− u1)nk+a1−1(1− u1z)−pdu1, (4.4)
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where z = 1− ((b2 + vλ)(i + j)/(b1 + wλ)) and p = nk + a1 +m + a2. The integral representation

of the hypergeometric series is (this was given by Euler in 1748 and implies Euler’s and Pfaff’s

hypergeometric transformations. See Section 9.1 in Gradshteyn and Ryzhik (1994)

2F1(α,β; γ, z) =
1

B(β, γ − β)

] 1

0

tβ−1(1− t)γ−β−1(1− tz)−αdt,

|z| < 1or |z| = 1, Re(γ) > Re(β) > 0.

Notice that the hypergeometric series converges in the unit circle |z| < 1. Then,

eRBs,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

kS
i = s

k − iS
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j(1−z)(n+a2)(n+a2)
p ×2 F1(p,m+ a2 + 1; p+ 1, z)

if |z| < 1

kS
i = s

k − iS
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j(m+a2)
(1−z)nk+a1p ×2 F1(p, nk + a1; p+ 1, z

z−1)

if z < −1.

(4.5)

The Bayes estimate of Rs,k under the LINEX loss function, say eRB,LINEXs,k , is
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eRB,LINEXs,k = Eπ(α1,α2|λ,xDATA)[exp{cRs,k|xDATA}]

=

∞]
0

∞]
0

exp

⎧⎪⎪⎨⎪⎪⎩−α1(b1 + wλ)− α2(b2 + vλ) +
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ ×

(−1)j α2
α1(i + j) + α2

× (b1 + wλ)
nk+a1(b2 + vλ)

m+a2

Γ(nk + a1)Γ(m+ a2)
×

αnk+a1−11 αm+a2−12 dα1dα2, (4.6)

where xDATA = (x,y) with x = {xij}i=1,2,...,n;j=1,2,...,k and y = (y1, ..., ym) is the observed (or real-

ized) value of XDATA = (X,Y) with X = {Xij}i=1,2,...,n;j=1,2,...,k and Y = (Y1, ..., Ym).

Based on a type II censored sample, we obtained several Bayesian estimates, based on the type-II

progressively censored data with random removals, of the reliability function eRs,k. These Bayesian
estimates are derived against SE and LINEX loss functions. It is easily observed that all these

estimates are in the form of ratio of two integrals for which simplified closed forms are not available.

Thus to evaluate these estimates in practice intensive numerical techniques are required. Instead,

one can apply approximation methods to evaluate these estimates such as Lindley’s approximation

andMarkov Chain Monte Carlo (MCMC). However, the Bayes estimate under the SE loss function is

obtained in the closed form, and alternative methods are also used to see how good the approximate

methods compared with the exact one. We completely use the Lindley’s method for the Bayes

estimate under the LINEX loss function as has no closed forms. If these result are close, then it
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will be encouraging to use the approximate methods when the exact form can not be obtained in

the all parameters are unknown case. These estimators will be compared in the simulation study

section. Next, we give the Bayes estimates of Rs,k using the Lindley’s approximation and MCMC

method.

Lindley’s approximation

Lindley (1980) introduced an approximate procedure for the computation of the ratio of two

integrals. This procedure, applied to the posterior expectation of the function U(θ) for a given x,

is

E(U(θ)|x) =
U
Θ
u(θ)eQ(θ)dθU
Θ
eQ(θ)dθ

, (4.7)

where Q(θ) = l(θ)+ ρ(θ), l(θ) is the logarithm of the likelihood function and ρ(θ) is the logarithm of

the prior density of θ, θ = (θ1, θ2, ..., θL), i, j, k, l = 1, 2, ..., L, and Θ is the parameter space. Using

Lindley’s approximation, E(U(θ)|x) is approximately estimated by

E(U(θ)|x) =

�����u+ 12[
i

[
j

(uij + 2uiρj)σij +
1

2

[
i

[
j

[
k

[
l

Lijkσijσklul

�����eθ
+terms of order n−2 or smaller, (4.8)

where θ = (θ1, θ2, ..., θL), i, j, k, l = 1, 2, ..., L, eθ is the MLE of θ, u = u(θ), ui = ∂u/∂θi, uij

= ∂2u/∂θi∂θj, Lijk = ∂3l/∂θi∂θj ∂θk, ρj = ∂ρ/∂θj and σij = (i, j)th element in the inverse of the
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matrix {−Lij} all evaluated at the MLE of the parameters.

For the two parameter case θ = (θ1, θ2), Lindley’s approximation leads to

euLin = u(θ) + 1
2
[B +Q30B12 +Q21C12 +Q12C21 +Q03B21] ,

where B =
S2

i=1

S2
j=1 uijτ ij, Qij = ∂i+ju/∂iθ1∂

jθ2 for i, j = 0, 1, 2, 3, i + j = 3, ui = ∂u/∂θi, uij

= ∂2u/∂θi∂θj for i, j = 1, 2, and Bij = (uiτ ii + ujτ ij)τ ii, Cij = 3uiτ iiτ ij + uj(τ iiτ ij + 2τ
2
ij)τ ij for

i 9= j. τ ij is the (i, j)th element in the inverse of matrix Q∗ = (Q∗ij), i, j = 1, 2 such that Q∗ij =

∂2Q/∂θi∂θj. The approximate Bayes estimate euLin is evaluated at hθ = (hθ1,hθ2) which is the mode
of the posterior density.

In our case, θ = (θ1, θ2) = α = (α1,α2) and

Q = lnπ(α1,α2|λ,x,y) ∝ (nk + a1 − 1) ln a1 + (m+ a2 − 1) ln a2 − a1(b1 + wλ)− α2(b2 + vλ),

where x = {xij}i=1,2,...,n;j=1,2,...,k;y = {yi}i=1,2,...,m ;wλ = −
Sn

i=1

Sk
j=1(1 + rij) ln[1− e−λQ(1/xij)],

vλ = −
Sm

i=1(1+r
�
i) ln[1−e−λQ(1/yi)] with rj = (r1j, r2j, ..., rnj) and r� = (r�1, r�2, ..., r�m), j = 1, 2, ..., k.

The posterior mode of (α1,α2) is obtained from Q and is given by

hα1 = nk + a1 − 1
b1 + wλ

and hα2 = m+ a2 − 1
b2 + vλ

.
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We obtain that τ 11 = α21/(nk + a1 − 1), τ 22 = α22/(m + a2 − 1), τ 12 = τ 21 = 0, Q12 = Q21 =

0, Q03 = 2/(m+a2−1)/α32, Q30 = 2/(nk+a1−1)/α31, B12 = u1τ 211, B21 = u2τ 222, B = u11τ 11+u22τ 22,

and

u1 =
∂Rs,k
∂a1

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ (−1)j+1(i + j)α2

(α1(i + j) + α2)
2
,

u2 =
∂Rs,k
∂a2

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ α1(i + j)(−1)j
(α1(i + j) + α2)

2
,

u11 =
∂2Rs,k
∂2a21

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ 2(−1)j(i + j)2α2

(α1(i + j) + α2)
3
,

u12 = u21 =
∂2Rs,k
∂a1∂a2

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠×
2(−1)j+1(i + j)α2(α1(i + j) − α2)

(α1(i + j) + α2)
3

,

u22 =
∂2Rs,k
∂2a22

=
k[

i = s

k − i[
j = 0

⎛⎜⎜⎝ k

i

⎞⎟⎟⎠
⎛⎜⎜⎝ k − i

j

⎞⎟⎟⎠ 2(−1)j+1(i + j)α1

(α1(i + j) + α2)
3
.

Therefore, the approximate Bayes estimate of the reliability function Rs,k under SE loss function
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is given by

eRB,Lin(SE)s,k = Rs,k
��
(α1,α2)=(hα1,hα2) + 12

�
α21u11 + 2α1u1
nk + a1 − 1 +

α22u22 + 2α2u2
m+ a2 − 1

�
(α1,α2)=(hα1,hα2) , (4.9)

where u1, u2, u11, and u22 are given above.

With the same argument, we can obtain Bayes estimators under the LINEX loss function of the

reliability function from Eq. ( ). They are obtained by the following forms:

if u(α1,α2) = exp[−cRs,k], then

u∗1 =
∂ exp[−cRs,k]

∂a1
= −c exp[−cRs,k]× ∂Rs,k

∂a1
= −c exp[−cRs,k]× u1,

u∗2 =
∂ exp[−cRs,k]

∂a2
= −c exp[−cRs,k]× ∂Rs,k

∂a2
= −c exp[−cRs,k]× u2, ,

u∗11 =
∂2 exp[−cRs,k]

∂2a21
=

∂

∂a1
{−c exp[−cRs,k]× u1} = −c {exp[−cRs,k]u11 + u1u∗1}

u∗12 = u∗21 =
∂2 exp[−cRs,k]

∂a1∂a2
=

∂

∂a2
{−c exp[−cRs,k]× u1}

= −c {exp[−cRs,k]u12 + u1u∗2}

u∗22 =
∂2 exp[−cRs,k]

∂2a22
=

∂

∂a2
{−c exp[−cRs,k]× u2} = −c {exp[−cRs,k]u22 + u2u∗2}

The approximate Bayes estimate of the reliability function Rs,k under a LINEX loss function is

given by

eRB,Lin(LINEX)s,k =
−1
c
ln
�
Eπ(α1,α2|λ,xDATA)[exp(cRs,k|xDATA)]

�
(4.10)
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Eπ(α1,α2|λ,xDATA)[exp(cRs,k|xDATA)] = exp(cRs,k|xDATA) + 1
2
[B∗ +Q∗30B

∗
12+

Q∗21C
∗
12 +Q

∗
12C

∗
21 +Q

∗
03B

∗
21] (4.11)

where B∗ =
S2

i=1

S2
j=1 u

∗
ijτ ij, Qij = ∂i+ju∗/∂iθ1∂jθ2 for i, j = 0, 1, 2, 3, i+ j = 3, u∗i = ∂u∗/∂θi, u∗ij

= ∂2u∗/∂θi∂θj for i, j = 1, 2, and B∗ij = (u
∗
i τ ii + u

∗
jτ ij)τ ii, C

∗
ij = 3u

∗
i τ iiτ ij + u

∗
j(τ iiτ ij + 2τ

2
ij)τ ij for

i 9= j. τ ij is the (i, j)th element in the inverse of matrix Q∗ = (Q∗ij), i, j = 1, 2 such that Q∗ij =

∂2Q/∂θi∂θj, and θ = (θ1, θ2) = α = (α1,α2).

Markov chain Monte Carlo (MCMC) method

The MCMC algorithm is used for computing the Bayes estimates of the parameters α1 and α2

as well as the reliability function Rs,k. The joint posterior density function of α1 and α2 is given in

(4.2 ). It is easily seen that the marginal posterior density functions of α1 and α2 are, respectively,

α1|λ,x,y ∼ G(nk + a1, b1 + wλ) and α2|λ,x,y ∼ G(m+ a2, b2 + vλ), (4.12)

where x = {xij}i=1,2,...,n;j=1,2,...,k;y = {yi}i=1,2,...,m ;wλ = −
Sn

i=1

Sk
j=1(1 + rij) ln[1− e−λQ(1/xij)],

vλ = −
Sm

i=1(1+r
�
i) ln[1−e−λQ(1/yi)] with rj = (r1j, r2j, ..., rnj) and r� = (r�1, r�2, ..., r�m), j = 1, 2, ..., k.

In the event that the conditional posterior distribution of any parameter to be estimated is not in
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the closed form or well-known distribution, we then consider the Metropolis-Hastings algorithm to

generate samples from the conditional posterior distributions and then compute the Bayes estimates.

The Metropolis-Hastings (Metropolis et al. 1953) algorithm generate samples from an arbitrary

proposal distribution (i.e., a Markov transition kernel), where most of the time the samples are

drawn from normal distribution. So, as suggested by Tierney (1994), a common way to solve this

problem is to use the

hybrid algorithm by combining a Metropolis sampling with the Gibbs sampling scheme using

normal proposal distribution.

We assume that α1 and α2 can be generated from G(nk + a1, b1 + wλ) and G(m + a2, b2 +

vλ), respectively, using a direct random generation scheme (see, for example, Devroye 1986) or a

Markov Chain Monte Carlo (MCMC) sampling algorithm (see Gelfand and Smith 1990 for the

Gibbs sampler, and Tierney 1994 for the Metropolis-Hastings algorithm).

Step 1: Set l = 1.

Step 2: Generate α(l)1 from G(nk + a1, b1 + wλ).

Step 3:Generate α(l)2 from G(m+ a2, b2 + vλ).

Step 4: Compute the R(l)s,k at (α
(l)
1 ,α

(l)
2 )

Step 5: Set l = l + 1.

Step 6: Repeat Steps 2 through 5, L times, and obtain the posterior sample

R
(l)
s,k, l = 1, ..., L.
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Now the approximate posterior mean, and posterior variance of Rs,k become

eE(Rs,k|xDATA) = 1

L− S
L[

l=S+1

R
(l)
s,k,

where eRB,MC2s,k = eE(Rs,k|xDATA) is the Bayes estimate of Rs,k, and
eV (Rs,k|xDATA) = 1

L− S
L[

l=S+1

(R
(l)
s,k − eE(Rs,k|xDATA))2,

respectively. Then a 100(1 − γ)% HPD interval (HPDI) of Rs,k can be approximated (Chen and

Shao 1999) by

Cp∗(L)Rs,k =
�
R
(p∗)
s,k , R

(p∗+[(1−γ)L])
s,k

�
, (4.13)

where p∗ is chosen so that

R
(p∗+[(1−γ)L])
s,k −R(p∗)s,k = min

1 ≤ p≤ [(1−γ)L]

�
R
(p∗+[(1−γ)L])
s,k −R(p∗)s,k

�
.

Furthermore, approximate 100(1− γ)% Bayesian credible interval (BCI) of Ψ can be obtained

by

BCIRs,k = eE(Rs,k|xDATA)± Zγ/2

veV (Rs,k|xDATA
L

, (4.14)

where Zζ is the ζth quantile of the standard normal distribution and S is the burn-in period. It
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well known that rapid convergence is facilitated by choosing appropriate starting values. In order

to guarantee the convergence and to remove the affection of the selection of initial value, the

first S simulated variates are discarded. Then the selected sample are α
(l)
1 and α

(l)
2 , l = 1, ..., L.,

for sufficiently large L, forms an approximate posterior sample which can be used to develop the

Bayesian inference. Furthermore,

Similarly, the Bayes estimate of Rs,k under a LINEX loss function is given by

eRB,MC2s,k = −1
c
ln

+
1

L− S
L[

l=S+1

exp[−cR(l)s,k]
,
, (4.15)

and in a similar fashion, we can easily find the BCI as well as HPDI Rs,k under LINEX function.
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CHAPTER V

EXAMPLES

Practical application study

The monthly water capacity of the Shasta reservoir of the Shasta Dam (USBR SHA operated by

the U.S. Bureau of Reclamation, United States Department of the Interior) in Sacramento, Califor-

nia, USA, especially the month of April for the maximum water level, and the mean annual capac-

ity from 1974 to 2016 are considered (see, http://cdec.water.ca.gov/cgi-progs/queryMonthly?SHA;

Source: California Data Exchange Center, Department of Water Resources (DWR), Government

of California). The maximum and the minimum water levels of the reservoir are generally ob-

served on April and October (or November), respectively. To take the precautions for the excessive

drought, the following scenario can be constructed. In the five-year period, if the water capacity

of the reservoir on each April is more than the average water capacity of the previous year (which

is the preceding year of the five-year period) at least three (3) times, it is claimed that there will

be no excessive drought in the months of October and November afterwards. Using these data, an

s-out-of-k : G system as given above has the following description.

We assume that s = 3 and k = 5, and X denotes the water capacity in April, and this has been

taken fro seven (N = 7) five-year periods such as 1975−1979, 1981−1985, 1987−1991, 1993−1997,

1999− 2003, 2005− 2009, and 2011− 2016 thus Xij represents the water capacity in April for the
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jth year of the ith five-year period; where i = 1, 2, ..., N = 7, j = 1, 2, ...k = 5. Nevertheless, due

to the time limitation and/or other restrictions (such as financial, material resources, mechanical

or experimental difficulties) on data collection, we observe type-II progressively censored data with

random removals, thus we have the X �
ijs for i = 1, 2, ..., n = 4, j = 1, 2, ...k = 5 with random

removals R = (R1 = 2, R2 = 0, R3 = 0, R4 = 1) creating four (n = 4) five-year periods 1975− 1979,

1993− 1997, 1999− 2003, and 2005− 2009 Similarly, Yi is the mean annual water capacity of the

ith year in-between two consecutive five-year periods, where i = 1, 2, ...,M = 7, but again due to

the restrictions on data collection and to keep the consistency with the water capacity in April of

each five-year period, we consider the mean annual capacity of only four (m = 4) years such as

1974, 1992, 1998, and 2004. To remove (or to reduce) the dependency between Xij and Yi; the

years of Yi are not used for obtaining the data Xij. Thus, we obtain the 3-out-of-5 : G system and

observed data (X,Y). For computational ease, all of the values divided by the total capacity of

Shasta reservoir 4:552:000 acre-foot and these transformed data are obtained as

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.9366 0.7763 0.9150 0.9463 0.8649

0.9350 0.9124 0.8831 0.9439 0.9966

0.9243 0.8913 0.8570 0.6490 0.6587

0.9372 0.9754 0.8322 0.5292 0.5849

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4529

0.8222

0.6730

0.7985

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
First we want to check whether the GCEIE distribution fits the data (X,Y) or not. For this reason,
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the MLE of the unknown parameters are obtained separately for X and Y.

In the case of real-world data, use the least squares estimation method which is based on the

minimum Error Sum of Squares (SSE) for various values of λ and the “shape-first” approach (that

is to fit the shape parameter λ before fitting the parameter α) to fit the optimal value of λ and

estimate of α such that SSE is minimized for progressively type-II right censored data. Then, λ is

defined as known. The procedure is as follows:

Step 1. Let Xj ∼ GCEIE (α1,λ), j = 1, 2, ..., k whose common pdf is given by

fX(x;α1,λ) = α1λQ
�
(1/x) exp{−λQ(1/x)}[1− exp{λQ(1/x)}]α1 − 1;

x > 0, α1 > 0, λ > 0,

and the common cdf is

FX(x;α1,λ) = 1− [1− exp{λQ(1/x)}]α1 ;x > 0, α1 > 0, λ > 0,

and FX(x;α1,λ) satisfies

ln [1− FX(x;α1,λ)] = α1 ln[1− exp{λQ(1/x)}], x > 0, α1 > 0, λ > 0,

Consider that X1:n:N ≤ X2:n:N ≤···≤ Xn:n:N is the corresponding
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progressively type-II right censored sample, with observed censoring

scheme r = (r1, r2, ..., rn). The expectation of FX(xi:n:N ;α1,λ) is

1 − Tn
j = n−i+1(aj/(aj + 1)), i = 1, ..., n, where aj = j +

Sn
i = n−j+1Ri

(see, Gail and Gastwirth 1978). By using the approximate

equation ln
�
1−

�
1−Tn

j = n−i+1(aj/(aj + 1))
��
≈ α1i×

ln[1− exp{λQ(1/xi:n:N)}], i = 1, ..., n, we get

α1i ≈ −
ln
�
1−

�
1−Tn

j = n−i+1(aj/(aj + 1))
��

ln[1− exp{λQ(1/xi:n:N)}] for i = 1, ..., n.

Then using the least squares estimation method for various values of λ

and the “shape-first” approach to fit the optimal value of λ,calculate

the SSE for given each value of λ, that is,

SSEλ =
n[
i=1

(α1i − eα1)2, where eα1=nkwλ

with wλ = −
[n

i=1

[k

j=1
(1 +Rij) ln(1− e−λQ(1/xij))

Now, find the optimal value of λ (say λfit)) and estimate α1 such that
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SSE is minimized. The density of the fitted GCEIE distribution is now

fX(x;λfit,α1) = α1λfit)Q
�
(1/x) exp{−λfit)Q(1/x)}[1− exp{λfit)Q(1/x)}]α1 − 1;

x > 0, α1 > 0.

Step 2. Use the scale-free goodness-of-fit test for GCEIE distribution based on

the Gini statistic due to Gail and Gastwirth (1978) for the progressively

type-II right censored data X1:n:N ≤ X2:n:N ≤···≤ Xn:n:N . The procedure

is as follows:

The null hypothesis is H0: X ∼ GCEIE distribution with the pdf

fX(x;λfit,α1) = α1λfitQ
�
(1/x) exp{−λfitQ(1/x)}×

[1− exp{λfitQ(1/x)}]α1 − 1

The Gini statistic given as follows:

Gn =

Sn−1
i = 1 iWi+1

(n− 1)Sn
i = 1Wi

,

where Wi = (n− i+ 1)(Z(i) − Z(i−1)), Z(0) = 0, i = 1, ..., n, Z1 = NY1, Zi =

[N −Si−1
j = 1(Rj + 1)](Yi − Yi−1), i = 1, ..., n, and the data transformation

Yi = 1− [1− exp{λfitQ(1/x)}]α1 .

For n = 3, ..., 20, the rejection region is given by
�
Gn > ξ

1−γ/2 or Gn < ξγ/2
�
,
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where the critical value ξγ/2 is the 100(γ/2)th percentile of the Gn statistic

and is available on p. 352 in Gail and Gastwirth (1978).

Y ∼ GCEIE (α2,λ) is also treated in a similar fashion to see whether Y

values are fitted to a GCEIE .

Once the procedure for handling real-world data described above, the value of λ (out of various λ

values) that minimizes SSEXλ is found to be λ = 1.4 which is very close to the optimum (minimum)

value of the graph of SSE versus λ. (These graphs have been omitted for saving space and can be

produced upon request). Further, eα1 value corresponds to λ = 1.4 is 0.22. Then, λ is defined as

known. That is,

fX(x;λfit,α1) = 1.4α1Q
�
(1/x) exp{−1.4Q(1/x)}[1− exp{1.4Q(1/x)}]α1 − 1;

x > 0, α1 > 0.

The goodness of fit test for testing H0: X ∼ GCEIE distribution with the pdf fX(x; 1.4,α1)

= 1.4α1Q
�
(1/x) exp{−1.4Q(1/x)}[1 − exp{1.4Q(1/x)}]α1 − 1 at level γ = 0.05 based on the Gini

statistic for the progressively type-II right censored observed sample. Since the theory has been

built up for the general class of exponentiated exponential distribution, we have to make sure that

one of the members in this family would be the best distributional candidate for this particular

data. Therefore, we hypothesized that H0: X ∼ exponentiated inverted Rayleigh distribution (EIR
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distribution) with the pdf fX(x; 1.4,α1) = (2.8α1/x3) exp{−1.4/x2)}[1− exp{1.4/x2)}]α1 − 1, where

Q(1/x) = 1/x2 and Q�(1/x) = −2/x3.

This procedure has been explained in the previous section, and the Gini statistics is found to be

G4 =

S(4−1)
i = 1 iWi+1

(4− 1)S4
i = 1Wi

=

S3
i = 1 iWi+1

3
S4

i = 1Wi

= 0.41920.

whereWi = (n− i+1)(Z(i)−Z(i−1)), Z(0) = 0, i = 1, ..., n, Z1 = nY1, Zi = [N −
Si−1

j = 1(Rj+1)](Yi−

Yi−1), i = 1, ..., n, and the data transformation Yi = 1− [1− exp{λfitQ(1/x)}]α1

Since ξ0.025 = 0.28748 < G4 = 0.41920 < ξ0.975 = 0.71252,we cannot rejectH0 at the 0.05 level of

significance, and we can conclude the observed strength components are from the EIR distribution

with the pdf is fX(x; 1.4,α1) = (2.8α1/x3)

exp{−1.4/x2)}[1 − exp{1.4/x2)}]α1 − 1, x > 0, α1 > 0, at level γ = 0.05. Y ∼ GCEIE (α2,λ) (or

simply Y ∼ EIR (α2,λ)) is also treated in a similar fashion to see whether Y values are fitted to

an EIR. Then,

eα1 = 0.2433,where wλ = −
[3

i=1

[5

j=1
(1 +Rij) ln(1− e−1.4Q(1/xij)) = 32.8879

eα2 = 0.8314,where vλ = −
[3

i=1
(1 +R�i) ln(1− e−1.4Q(1/yi)) = 25.7612

To fully explore the advantage of the newly introduced generalized variable method, classical

and generalized point and 95% interval estimates are compared for the reliability function Rs,k. In
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addition, p-values for testing reliability function are also compared. The numerical results for these

data are presented in Table 5.1 and 5.2. Posterior distributions are obtained from 10,000 Gibbs

samplings after a burn-in period of 1,000 iterations.

Table 5.1 Comparison of Point Estimates of Rs,k

Bayesian Classical Generalized

eRSEs,k 0.6781 eRMs,k 0.6987 eRGs,k 0.6781

eRLINEXs,k 0.6875 eRUs,k 0.6988

SE eRLins,k 0.6985 BP eR∗s,k 0.6701

LINEX eRLins,k 0.6855 BT eR∗s,k 0.6898

SE eRMCMCs,k 0.7101

LINEX eRMCMCs,k 0.6998
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Table 5.2 Comparison of Interval Estimates of Rs,k

Bayesian Classical Generalized

SEBCIMCMC (0.57− 0.95) ACI (0.51− 1.5) GCI (0.65− 0.75)
SEHDPIMCMC (0.51− 0.88) PBCI (0.58− 0.95)
LINEXBCIMCMC (0.55− 1.5) BBCACI (0.61− 1.00)
LINEXHPDIMCMC (0.55− 1.5) BTCI (0.51− 1.7)

Both these arguments clearly show that the generalized variable method (GV-Method) provides

accurate, reliable, and non-misleading results, while the classical method (C-Method) and Bayesian

method (B-Method) approaches fail to do so for this particular case. Hence, the GV-Method

outperforms the C—and B-Method for this particular practical application.

Simulation study

In this section, to illustrate the benefit of the generalized variable method for this problem,

we present some numerical results for the inverted exponentiated Rayleigh distribution (Q(1/x) =

1/x2). Those random variables are simulated in the following manner.

For given β = (α1,α2) and λ, and (n, k) :

1. Generate uniform random numbers, i.e.„ U ∼ U(n, 0, 1), where U(n, 0, 1) is the

standard continuous uniform distribution with boundary parameters 0 and 1,
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and n is the sample size,

2. Generate pseudo general inverse exponentiated random variates for X :

{xij}i=1,2,...,n;j=1,2,...,k =
t

λ [ln(−u1/α1)−1]−1,

3. Generate pseudo general inverse exponentiated random variates for Y : yi=1,2,...,n

=
t

λ [ln(−u1/α2)−1]−1.

The performances of the point estimators are compared by using estimated risks (ERs) or

estimate of the mean squared errors (MSE’s), and biases. The ER and bias of eθ relative to an
known parameter θ, when it is estimated by eθ, is given by

ER(eθ) = _
MSE(eθ) = 1

N

N[
i=1

(eθi − θ)2 and _
Bias(eθ) = 1

N

N[
i=1

(eθi − θ),

under ER has been calculated under the squared error function.

The performances of the confidence intervals are compared by using average confidence lengths

and coverage probabilities. The coverage probability (CP ) of a confidence interval is the proportion

of the time that the interval contains the true value of interest. That is,

CP =
[Number of intervals that contain the true value of interest θ]

The total number of simulations

(the total number of intervals that contain the true value of interest)/the total number of simula-

tions. The performances of the hypothesis testing are compared by using average empirical Type-I
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error rate (or the actual size) of the test, and the unadjusted and adjusted powers of the test.

Actual size (AS) for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0 is the proportion of p-values that are

less than the nominal value γ. That is,

AS =
Number of p-values for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0 that are less than γ

The total number of simulations
.

When θ = θ0, unadjusted power (UP ) for testing H0 : θ ≤ θ∗0 vs. Ha : θ > θ∗0, where θ
∗
0 < θ0, is

the proportion of p-values that are less than the nominal value γ. That is,

UP =
Number of p-values for testing H0 : θ ≤ θ∗0 vs. Ha : θ > θ∗0 that are less than γ

The total number of simulations
,

where θ∗0 < θ0.

When θ = θ0, adjusted power (AP ) for testing H0 : θ ≤ θ∗0 vs. Ha : θ > θ∗0, where θ
∗
0 < θ0, is

the proportion of p-values for testing H0 : θ ≤ θ∗0 vs. Ha : θ > θ∗0 that are less than the p-value

(pγ) for testing H0 : θ ≤ θ0 vs. Ha : θ > θ0. That is,

AP =
Number of p-values for testing H0 : θ ≤ θ∗0 vs. Ha : θ > θ∗0 that are less than pγ

The total number of simulations
,

where θ∗0 < θ0.

The performance of the estimates of Rs,k are obtained by using the classical and generalized

methods for different sample sizes. All of the computations are performed by using R×643.1.3. All
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the results are based on N = 10, 000 replications

In Table 5.3(a),(b),(c),and (d) when the common scale parameter is known (λ = 3), strength

and stress populations are generated for β = (α1,α2) = (4, 2), (4, 4), (4, 6), and (4, 8) and different

sample sizes n = 10, 15, 25 and 35. The corresponding true values of reliability in multicomponent

stress-strength with the given combinations for (s; k) = (1, 3) are 0.5429, 0.7500, 0.8476 and 0.9000;

and for (s; k) = (2, 4) are 0.3905, 0.6000, 0.7229 and 0.8000.

In Table 5.4(a),(b), (c), and (b) when λ = 10, strength and stress populations are gener-

ated for β = (α1,α2) = (18, 5), (12, 5), (6, 5), (1, 5) and different sample sizes n = 10, 15, 25 and

35. The corresponding true values of reliability in multicomponent stress-strength with the given

combinations for (s; k) = (1, 3) are 0.3711, 0.4871, 0.6987 and 0.9821; and for (s, k) = (2, 4) are

0.2485, 0.3419, 0.5428 and 0.9524.

From Table 5.3(a),(b0-4.5(b), we observe that the average ERs for the estimates of Rs,k decrease

as the sample size increases in all cases and all tables, as expected. The ERs of the ML, UMVU and

generalized estimates have generally following order of ER( eRGs,k) < ER( eRMLEs,k ) < ER( eRUs,k) except
for the cases when the true value of Rs,k is not close to extreme values. On the other hand, when the

true value of Rs,k approaches the extreme values, we have following order of ER( eRGs,k) < ER( eRUs,k)
< ER( eRMLEs,k ) and all ERs are close the each other as the sample size increases. The average

lengths of the intervals decrease as the sample size increases. The average lengths of the generalized

intervals are smaller than those of the classical confidence intervals. Furthermore, the coverage
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probabilities of the generalized intervals are more close to the nominal level 95% than the classical

confidence intervals.

Table 5.3(a), (b), 5.4 (a), (b), 5.5 (a), (b), and 5.6 (a),and (b).show the point and interval

estimates when (s; k) = {(1, 3), (2, 4)} and λ = 3. The first rows under the point estimates represent

the average estimates and the second row represents corresponding ERs. The first row under the

interval estimates represent a 95%confidence interval and the second rows represent their expected

lengths and coverage probabilities.
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Table 5.3(a) C lassical and Generalized Point Estim ates of Rs,k when the Common Scale

Parameter λ is known (λ = 3)

Sample size Parameters Reliab ility C lassica l G eneralized

n β R1,3 eRMs,k eRUs,k eR∗s,k eRGs,k
10 (4, 2) 0.5429 0.5595 0.5488 0.5480 0.5450

0.0135 0.0138 0.0088 0.0056

15 0.5521 0.5444 0.5450 0.5446

0.0086 0.0090 0.0061 0.0062

25 0.5485 0.5439 0.5447 0.5446

0.0050 0.0051 0.0040 0.0040

35 0.5461 0.5429 0.5435 0.5434

0.0036 0.0036 0.0031 0.0031

10 (4, 4) 0.7500 0.7522 0.7521 0.7389 0.7392

0.0091 0.0102 0.0049 0.0049

15 0.7518 0.7517 0.7421 0.7423

0.0060 0.0065 0.0039 0.0039

25 0.7502 0.7501 0.7441 0.7442

0.0038 0.0040 0.0029 0.0029

35 0.7505 0.7504 0.7459 0.7459

0.0026 0.0027 0.0021 0.0021

10 (4, 6) 0.8476 0.8453 0.8499 0.8345 0.8348

0.0053 0.0057 0.0026 0.0026

15 0.8449 0.8480 0.8367 0.8370

0.0036 0.0038 0.0022 0.0022

25 0.8462 0.8481 0.8405 0.8406

0.0023 0.0024 0.0017 0.0017

35 0.8454 0.8467 0.8412 0.8412

0.0017 0.0017 0.0013 0.0013

10 (4, 8) 0.9000 0.8954 0.9015 0.8880 0.8885

0.0033 0.0034 0.0015 0.0015

15 0.8941 0.8982 0.8886 0.8888

0.0023 0.0023 0.0013 0.0013

25 0.8974 0.8999 0.8929 0.8929

0.0013 0.0013 0.0009 0.0009

35 0.8992 0.9010 0.8954 0.8955

0.0009 0.0009 0.0007 0.0007
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Table 5.3(b) Bayesian Point Estim ates of R1,3 when the Common Scale Param eter λ is Known (λ = 3)

Sample size Parameters Reliab ility Bayesian

n β R1,3 eRSEs,k eRLINEX
s,k

SE eRLins,k
LINEX eRLins,k

SE eRMCMC
s,k

LINEX eRMCMC
s,k

10 (4, 2) 0.5429 0.5593 0.5489 0.5486 0.5454 0.5454 0.5454

0.0145 0.0138 0.0088 0.0056 0.0138 0.0017

15 0.5521 0.5444 0.5450 0.5446 0.5446 0.5446

0.0086 0.0090 0.0061 0.0062 0.0138 0.0138

25 0.5485 0.5439 0.5447 0.5446 0.5446 0.5446

0.0050 0.0051 0.0040 0.0040 0.0138 0.0138

35 0.5461 0.5429 0.5435 0.5434 0.5454 0.5429

0.0036 0.0036 0.0031 0.0031 0.0031 0.0031

10 (4, 4) 0.7500 0.7522 0.7521 0.7389 0.7392 0.5461 0.0039

0.0091 0.0102 0.0049 0.0049 0.0031 0.0031

15 0.7518 0.7517 0.7421 0.7423 0.5454 0.5461

0.0060 0.0065 0.0039 0.0039 0.0039 0.0039

25 0.7502 0.7501 0.7441 0.7442 0.5444 0.7504

0.0038 0.0040 0.0029 0.0029 0.0029 0.0017

35 0.7505 0.7504 0.7459 0.7459 0.7504 0.7504

0.0026 0.0027 0.0021 0.0021 0.0029 0.0029

10 (4, 6) 0.8476 0.8453 0.8499 0.8345 0.8348 0.7442 0.7442

0.0053 0.0057 0.0026 0.0026 0.0029 0.0029

15 0.8449 0.8480 0.8367 0.8370 0.8370 0.8370

0.0036 0.0038 0.0022 0.0022 0.0029 0.0017

25 0.8462 0.8481 0.8405 0.8406 0.7442 0.7442

0.0023 0.0024 0.0017 0.0017 0.0017 0.0029

35 0.8454 0.8467 0.8412 0.8412 0.8370 0.8370

0.0017 0.0017 0.0013 0.0013 0.0057 0.0057

10 (4, 8) 0.9000 0.8954 0.9015 0.8880 0.8885 0.8449 0.8449

0.0033 0.0034 0.0015 0.0015 0.0057 0.0057

15 0.8941 0.8982 0.8886 0.8888 0.8941 0.8941

0.0023 0.0023 0.0013 0.0013 0.0023 0.0007

25 0.8974 0.8999 0.8929 0.8929 0.8992 0.8992

0.0013 0.0013 0.0009 0.0009 0.0007 0.0007

35 0.8992 0.9010 0.8954 0.8955 0.8955 0.8955

0.0009 0.0009 0.0007 0.0007 0.0023 0.0007
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Table 5.3(c) C lassica l and generalized interval estim ates of R1,3 when the common scale param eter λ is known (λ = 3)

Sample size Param eters Reliab ility C lassica l G eneralized

n β R1,3 ACI PBCI BTCI GCI

10 (4, 2) 0.5429 (0.3475, 0.7704) (0.3459, 0.7745) (0.3474, 0.7733) (0.3591, 0.7319)

0.4229/0.9092 0.4230/0.9070 0.4230/0.9091 0.3728/0.9552

15 (0.3764, 0.7269) (0.3721, 0.7261) (0.3765, 0.7270) (0.3844, 0.7030)

0.3506/0.9228 0.3498/0.9201 0.3501/0.9212 0.3186/0.9476

25 (0.4109, 0.6860) (0.4095, 0.6840) (0.4100, 0.6862) (0.4152, 0.6726)

0.2752/0.9412 0.2725/0.9422 0.2735/0.9410 0.2573/0.9520

35 (0.4293, 0.6630) (0.4278, 0.6622) (0.4292, 0.6638) (0.4321, 0.6538)

0.2336/0.9400 0.2331/0.9401 0.2333/0.9395 0.2217/0.9456

10 (4, 4) 0.7500 (0.5698, 0.9346) (0.5648, 0.9326) (0.5658, 0.9336) (0.5763, 0.8872)

0.3648/0.9076 0.3635/0.9065 0.3644/0.9070 0.3109/0.9692

15 (0.5998, 0.9038) (0.5988, 0.9030) (0.5998, 0.9033) (0.6022, 0.8712)

0.3040/0.9212 0.3035/0.9200 0.3025/0.9211 0.2690/0.9588

25 (0.6304, 0.8700) (0.6300, 0.8701) (0.6302, 0.8705) (0.6307, 0.8505)

0.2395/0.9312 0.2394/0.9300 0.2388/0.9310 0.2197/0.9568

35 (0.6486, 0.8524) (0.6477, 0.8511) (0.6478, 0.8520) (0.6480, 0.8385)

0.2038/0.9416 0.2033/0.9410 0.2028/0.9405 0.1905/0.9552

10 (4, 6) 0.8476 (0.7036, 0.9869) (0.7030, 0.9861) (0.7031, 0.9861) (0.7097, 0.9431)

0.2833/0.8892 0.2828/0.8878 0.2830/0.8890 0.2334/0.9832

15 (0.7269, 0.9628) (0.7255, 0.9618) (0.7263, 0.9629) (0.7290, 0.9323

0.2359/0.9068 0.2355/0.9063 0.2360/0.9065 0.2033/0.9712

25 (0.7541, 0.9384) (0.7538, 0.9378) (0.7540, 0.9380) (0.7532, 0.9196)

0.1843/0.9224 0.1837/0.9219 0.1838/0.9225 0.1664/0.9628

35 (0.7667, 0.9241) (0.7665, 0.9237) (0.7670, 0.9240) (0.7656, 0.9109

0.1574/0.9336 0.1565/0.9330 0.1570/0.9340 0.1453/0.9564

10 (4, 8) 0.9000 (0.7862, 1.0046) (0.7858, 1.0044) (0.7860, 1.0040) (0.7941, 0.9667)

0.2183/0.8844 0.2178/0.8840 0.2180/0.8840 0.1726/0.9824

15 (0.8024, 0.9857) (0.8017, 0.9844) (0.8019, 0.9851) (0.8064, 0.9593)

0.1834/0.9116 0.1831/0.9109 0.1833/0.9115 0.1528/0.9768

25 (0.8269, 0.9679) (0.8258, 0.9677) (0.8255, 0.9677) (0.8264, 0.9514)

0.1410/0.9188 0.1405/0.9177 0.1405/0.9177 0.1250/0.9708

35 (0.8399, 0.9585) (0.8387, 0.9578) (0.8389, 0.9584) (0.8384, 0.9465)

0.1186/0.9352 0.1179/0.9348 0.1179/0.9350 0.1081/0.9660
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Table 5.3(d) Bayesian interval estimates of R1,3 when the common scale param eter λ is known (λ = 3)

Sample size Param eters Reliab ility Bayesian

n β R1,3
SEBCIMCMC SEHDPIMCMC LINEXBCIMCMC LINEXHPDIMCMC

10 (4, 2) 0.5429 (0.3475, 0.7704) (0.3459, 0.7745) (0.3474, 0.7733) (0.3591, 0.7319)

0.4229/0.9092 0.4230/0.9070 0.4230/0.9091 0.3728/0.9552

15 (0.3764, 0.7269) (0.3721, 0.7261) (0.3765, 0.7270) (0.3844, 0.7030)

0.3506/0.9228 0.3498/0.9201 0.3501/0.9212 0.3186/0.9476

25 (0.4109, 0.6860) (0.4095, 0.6840) (0.4100, 0.6862) (0.4152, 0.6726)

0.2752/0.9412 0.2725/0.9422 0.2735/0.9410 0.2573/0.9520

35 (0.4293, 0.6630) (0.4278, 0.6622) (0.4292, 0.6638) (0.4321, 0.6538)

0.2336/0.9400 0.2331/0.9401 0.2333/0.9395 0.2217/0.9456

10 (4, 4) 0.7500 (0.5698, 0.9346) (0.5648, 0.9326) (0.5658, 0.9336) (0.5763, 0.8872)

0.3648/0.9076 0.3635/0.9065 0.3644/0.9070 0.3109/0.9692

15 (0.5998, 0.9038) (0.5988, 0.9030) (0.5998, 0.9033) (0.6022, 0.8712)

0.3040/0.9212 0.3035/0.9200 0.3025/0.9211 0.2690/0.9588

25 (0.6304, 0.8700) (0.6300, 0.8701) (0.6302, 0.8705) (0.6307, 0.8505)

0.2395/0.9312 0.2394/0.9300 0.2388/0.9310 0.2197/0.9568

35 (0.6486, 0.8524) (0.6477, 0.8511) (0.6478, 0.8520) (0.6480, 0.8385)

0.2038/0.9416 0.2033/0.9410 0.2028/0.9405 0.1905/0.9552

10 (4, 6) 0.8476 (0.7036, 0.9869) (0.7030, 0.9861) (0.7031, 0.9861) (0.7097, 0.9431)

0.2833/0.8892 0.2828/0.8878 0.2830/0.8890 0.2334/0.9832

15 (0.7269, 0.9628) (0.7255, 0.9618) (0.7263, 0.9629) (0.7290, 0.9323

0.2359/0.9068 0.2355/0.9063 0.2360/0.9065 0.2033/0.9712

25 (0.7541, 0.9384) (0.7538, 0.9378) (0.7540, 0.9380) (0.7532, 0.9196)

0.1843/0.9224 0.1837/0.9219 0.1838/0.9225 0.1664/0.9628

35 (0.7667, 0.9241) (0.7665, 0.9237) (0.7670, 0.9240) (0.7656, 0.9109

0.1574/0.9336 0.1565/0.9330 0.1570/0.9340 0.1453/0.9564

10 (4, 8) 0.9000 (0.7862, 1.0046) (0.7858, 1.0044) (0.7860, 1.0040) (0.7941, 0.9667)

0.2183/0.8844 0.2178/0.8840 0.2180/0.8840 0.1726/0.9824

15 (0.8024, 0.9857) (0.8017, 0.9844) (0.8019, 0.9851) (0.8064, 0.9593)

0.1834/0.9116 0.1831/0.9109 0.1833/0.9115 0.1528/0.9768

25 (0.8269, 0.9679) (0.8258, 0.9677) (0.8255, 0.9677) (0.8264, 0.9514)

0.1410/0.9188 0.1405/0.9177 0.1405/0.9177 0.1250/0.9708

35 (0.8399, 0.9585) (0.8387, 0.9578) (0.8389, 0.9584) (0.8384, 0.9465)

0.1186/0.9352 0.1179/0.9348 0.1179/0.9350 0.1081/0.9660
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Table 5.4(a) C lassical and generalized point estimates of R2,4 when the common scale

parameter λ is known (λ = 3)

Sample size Parameters Reliab ility C lassica l G eneralized

n β R2,4 eRMs,k eRUs,k eR∗s,k eRGs,k
10 0.3905 0.4071 0.3905 0.3982 0.3989

0.0108 0.0108 0.0066 0.0066

15 0.3998 0.3886 0.3952 0.3956

0.0064 0.0064 0.0046 0.0046

25 0.3980 0.3913 0.3955 0.3957

0.0038 0.0038 0.0031 0.0031

35 0.3957 0.3909 0.3942 0.3942

0.0029 0.0029 0.0025 0.0025

10 0.6000 0.6085 0.5986 0.5950 0.5953

0.0115 0.0126 0.0059 0.0059

15 0.6074 0.6006 0.5981 0.5983

0.0077 0.0081 0.0047 0.0047

25 0.6045 0.6004 0.5989 0.5990

0.0048 0.0050 0.0036 0.0036

35 0.6031 0.6001 0.5992 0.5992

0.0034 0.0035 0.0027 0.0027

10 0.7229 0.7267 0.7235 0.7130 0.7129

0.0093 0.0105 0.0043 0.0042

15 0.7257 0.7235 0.7158 0.7158

0.0064 0.0069 0.0036 0.0036

25 0.7246 0.7232 0.7181 0.7181

0.0040 0.0042 0.0027 0.0027

35 0.7239 0.7229 0.7192 0.7192

0.0029 0.0030 0.0022 0.0022

10 0.8000 0.7995 0.8005 0.7880 0.7878

0.0070 0.0077 0.0029 0.0029

15 0.8016 0.8024 0.7922 0.7921

0.0048 0.0052 0.0025 0.0025

25 0.7989 0.7992 0.7929 0.7928

0.0030 0.0031 0.0019 0.0019

35 0.7998 0.8000 0.7952 0.7952

0.0020 0.0021 0.0015 0.0015
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Table 5.4(b) Bayesian point estimates of R2,4 when the common scale param eter λ is known (λ = 3)

Sample size Parameters Reliab ility Bayesian

n β R2,4 eRSEs,k eRLINEX
s,k

SE eRLins,k
LINEX eRLins,k

SE eRMCMC
s,k

LINEX eRMCMC
s,k

10 0.3905 0.4071 0.3905 0.3982 0.3989 0.3982 0.3982

0.0108 0.0108 0.0066 0.0066 0.0046 0.0077

15 0.3998 0.3886 0.3952 0.3956 0.3982 0.3982

0.0064 0.0064 0.0046 0.0046 0.0046 0.0077

25 0.3980 0.3913 0.3955 0.3957 0.3982 0.5950

0.0038 0.0038 0.0031 0.0031 0.0025 0.0031

35 0.3957 0.3909 0.3942 0.3942 0.3942 0.3942

0.0029 0.0029 0.0025 0.0025 0.0025 0.5986

10 0.6000 0.6085 0.5986 0.5950 0.5953 0.3942 0.5950

0.0115 0.0126 0.0059 0.0059 0.0025 0.0025

15 0.6074 0.6006 0.5981 0.5983 0.5983 0.0025

0.0077 0.0081 0.0047 0.0047 0.0047 0.0077

25 0.6045 0.6004 0.5989 0.5990 0.5992 0.5992

0.0048 0.0050 0.0036 0.0036 0.0025 0.0025

35 0.6031 0.6001 0.5992 0.5992 0.5992 0.5992

0.0034 0.0035 0.0027 0.0027 0.0025 0.0042

10 0.7229 0.7267 0.7235 0.7130 0.7129 0.5992 0.7192

0.0093 0.0105 0.0043 0.0042 0.0042 0.0042

15 0.7257 0.7235 0.7158 0.7158 0.5992 0.7192

0.0064 0.0069 0.0036 0.0036 0.0042 0.0042

25 0.7246 0.7232 0.7181 0.7181 0.5992 0.7192

0.0040 0.0042 0.0027 0.0027 0.0027 0.0042

35 0.7239 0.7229 0.7192 0.7192 0.7181 0.7181

0.0029 0.0030 0.0022 0.0022 0.0019 0.0019

10 0.8000 0.7995 0.8005 0.7880 0.7878 0.7181 0.7181

0.0070 0.0077 0.0029 0.0029 0.0027 0.0018

15 0.8016 0.8024 0.7922 0.7921 0.7181 0.7880

0.0048 0.0052 0.0025 0.0025 0.0019 0.0042

25 0.7989 0.7992 0.7929 0.7928 0.7952 0.7880

0.0030 0.0031 0.0019 0.0019 0.0019 0.0017

35 0.7998 0.8000 0.7952 0.7952 0.7953 (0.7952

0.0020 0.0021 0.0015 0.0015 0.0019 0.0019
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Table 5.4(c) C lassica l and generalized interval estim ates of R2,4 when the common scale param eter λ is known (λ = 3)

Sample size Param eters Reliab ility C lassica l G eneralized

n β R2,4 ACI PBCI BTCI GCI

10 0.3905 (0.2182, 0.5960) (0.2180, 0.5959) (0.218, 0.5949) (0.2340, 0.5663)

0.3779/0.9272 0.3770/0.9270 0.3775/0.9265 0.3322/0.9548

15 (0.2447, 0.5550) (0.2444, 0.5555) (0.2441, 0.5548) (0.2553, 0.5375)

0.3103/0.9432 0.3100/0.9428 0.3103/0.9432 0.2822/0.9604

25 (0.2771, 0.5190) (0.2758, 0.5188) (0.2765, 0.5175) (0.2830, 0.5100)

0.2419/0.9448 0.2415/0.9440 0.2410/0.9440 0.2269/0.9556

35 (0.2935, 0.4980) (0.2930, 0.4975) (0.2933, 0.4977) (0.2975, 0.4920)

0.2045/0.9412 0.2044/0.9412 0.2040/0.9410 0.1945/0.9432

10 0.6000 (0.4018, 0.8153) (0.4015, 0.8150) (0.4010, 0.8152) (0.4172, 0.7667)

0.4134/0.9200 0.4130/0.9189 0.4128/0.9190 0.3495/0.9672

15 (0.4357, 0.7790) (0.4351, 0.7777) (0.4355, 0.7788) (0.4447, 0.7467)

0.3432/0.9372 0.3429/0.9365 0.3425/0.9365 0.3020/0.9716

25 (0.4699, 0.7391) (0.4688, 0.7389) (0.4688, 0.7389) (0.4740, 0.7206)

0.2692/0.9364 0.2689/0.9365 0.2687/0.9360 0.2466/0.9572

35 (0.4886, 0.7175) (0.4883, 0.7177) (0.4885, 0.7170) (0.4911, 0.7047)

0.2289/0.9480 0.2282/0.9479 0.2284/0.9477 0.2136/0.9576

10 0.7229 (0.5394, 0.9141) (0.5388, 0.9138) (0.5389, 0.9138) (0.5537, 0.8601)

0.3747/0.9032 0.3739/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699, 0.8816) (0.5688, 0.8810) (0.5688, 0.8811) (0.5776, 0.8450)

0.3117/0.9172 0.3111/0.9165 0.3115/0.9165 0.2674/0.9700

25 (0.6019, 0.8472) (0.6018, 0.8468) (0.6010, 0.8468) (0.6051, 0.8254)

0.2452/0.9308 0.2444/0.9300 0.2449/0.9300 0.2203/0.9596

35 (0.6196, 0.8283) (0.6190, 0.8280) (0.6195, 0.8282) (0.6209, 0.8127)

0.2087/0.9332 0.2085/0.9331 0.2080/0.9328 0.1918/0.9540

10 0.8000 (0.6376, 0.9614) (0.6372, 0.9601) (0.6365, 0.9610) (0.6531, 0.9092)

0.3238/0.8992 0.3228/0.8985 0.3230/0.8960 0.2561/0.9844

15 (0.6680, 0.9353) (0.6677, 0.9344) (0.6677, 0.9350) (0.6750, 0.8988)

0.2674/0.9040 0.2670/0.9039 0.2666/0.9033 0.2239/0.9664

25 (0.6929, 0.9048) (0.6920, 0.9040) (0.6918, 0.9040) (0.6961, 0.8826)

0.2119/0.9252 0.2111/0.9248 0.2108/0.9238 0.1866/0.9648

35 (0.7098, 0.8897) (0.7098, 0.8897) (0.7088, 0.8885) (0.7110, 0.8739)

0.1799/0.9372 0.1799/0.9372 0.1789/0.9365 0.1630/0.9628
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Table 5.4(d) Bayesian interval estimates of R2,4 when the common scale param eter λ is known (λ = 3)

Sample size Param eters Reliab ility Bayesian

n β R2,4
SEBCIMCMC SEHDPIMCMC LINEXBCIMCMC LINEXHPDIMCMC

10 0.3905 (0.2182, 0.5960) (0.2180, 0.5959) (0.218, 0.5949) (0.2340, 0.5663)

0.3779/0.9272 0.3770/0.9270 0.3775/0.9265 0.3322/0.9548

15 (0.2447, 0.5550) (0.2444, 0.5555) (0.2441, 0.5548) (0.2553, 0.5375)

0.3103/0.9432 0.3100/0.9428 0.3103/0.9432 0.2822/0.9604

25 (0.2771, 0.5190) (0.2758, 0.5188) (0.2765, 0.5175) (0.2830, 0.5100)

0.2419/0.9448 0.2415/0.9440 0.2410/0.9440 0.2269/0.9556

35 (0.2935, 0.4980) (0.2930, 0.4975) (0.2933, 0.4977) (0.2975, 0.4920)

0.2045/0.9412 0.2044/0.9412 0.2040/0.9410 0.1945/0.9432

10 0.6000 (0.4018, 0.8153) (0.4015, 0.8150) (0.4010, 0.8152) (0.4172, 0.7667)

0.4134/0.9200 0.4130/0.9189 0.4128/0.9190 0.3495/0.9672

15 (0.4357, 0.7790) (0.4351, 0.7777) (0.4355, 0.7788) (0.4447, 0.7467)

0.3432/0.9372 0.3429/0.9365 0.3425/0.9365 0.3020/0.9716

25 (0.4699, 0.7391) (0.4688, 0.7389) (0.4688, 0.7389) (0.4740, 0.7206)

0.2692/0.9364 0.2689/0.9365 0.2687/0.9360 0.2466/0.9572

35 (0.4886, 0.7175) (0.4883, 0.7177) (0.4885, 0.7170) (0.4911, 0.7047)

0.2289/0.9480 0.2282/0.9479 0.2284/0.9477 0.2136/0.9576

10 0.7229 (0.5394, 0.9141) (0.5388, 0.9138) (0.5389, 0.9138) (0.5537, 0.8601)

0.3747/0.9032 0.3739/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699, 0.8816) (0.5688, 0.8810) (0.5688, 0.8811) (0.5776, 0.8450)

0.3117/0.9172 0.3111/0.9165 0.3115/0.9165 0.2674/0.9700

25 (0.6019, 0.8472) (0.6018, 0.8468) (0.6010, 0.8468) (0.6051, 0.8254)

0.2452/0.9308 0.2444/0.9300 0.2449/0.9300 0.2203/0.9596

35 (0.6196, 0.8283) (0.6190, 0.8280) (0.6195, 0.8282) (0.6209, 0.8127)

0.2087/0.9332 0.2085/0.9331 0.2080/0.9328 0.1918/0.9540

10 0.8000 (0.6376, 0.9614) (0.6372, 0.9601) (0.6365, 0.9610) (0.6531, 0.9092)

0.3238/0.8992 0.3228/0.8985 0.3230/0.8960 0.2561/0.9844

15 (0.6680, 0.9353) (0.6677, 0.9344) (0.6677, 0.9350) (0.6750, 0.8988)

0.2674/0.9040 0.2670/0.9039 0.2666/0.9033 0.2239/0.9664

25 (0.6929, 0.9048) (0.6920, 0.9040) (0.6918, 0.9040) (0.6961, 0.8826)

0.2119/0.9252 0.2111/0.9248 0.2108/0.9238 0.1866/0.9648

35 (0.7098, 0.8897) (0.7098, 0.8897) (0.7088, 0.8885) (0.7110, 0.8739)

0.1799/0.9372 0.1799/0.9372 0.1789/0.9365 0.1630/0.9628

Table 5.5(a), (b), (c), (d), and 5.6 (a), (b), (c), (d) show the point and interval estimates when
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(s; k) = {(1, 3), (2, 4)} and λ = 10. The first rows under the point estimates represent the average

estimates and the second row represents corresponding ERs. The first row under the interval

estimates represent a 95%confidence interval and the second rows represent their expected lengths

and coverage probabilities.
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Table 5.5(a) C lassical and generalized point estimates of R1,3 when the common scale

param eter λ is known (λ = 10)

Sample size Parameters Reliab ility C lassica l G eneralized

n β R1,3 eRMs,k eRUs,k eR∗s,k eRGs,k
10 (4, 2) 0.5429 0.5590 0.5483 0.5478 0.5473

0.0128 0.0138 0.0078 0.0079

15 0.5517 0.5442 0.5449 0.5446

0.0086 0.0090 0.0061 0.0062

25 0.5485 0.5439 0.5447 0.5446

0.0050 0.0051 0.0040 0.0040

35 0.5461 0.5429 0.5435 0.5434

0.0036 0.0036 0.0031 0.0031

10 (4, 4) 0.7500 0.7522 0.7521 0.7389 0.7392

0.0091 0.0102 0.0049 0.0049

15 0.7518 0.7517 0.7421 0.7423

0.0060 0.0065 0.0039 0.0039

25 0.7502 0.7501 0.7441 0.7442

0.0038 0.0040 0.0029 0.0029

35 0.7505 0.7504 0.7459 0.7459

0.0026 0.0027 0.0021 0.0021

10 (4, 6) 0.8476 0.8453 0.8499 0.8345 0.8348

0.0053 0.0057 0.0026 0.0026

15 0.8449 0.8480 0.8367 0.8370

0.0036 0.0038 0.0022 0.0022

25 0.8462 0.8481 0.8405 0.8406

0.0023 0.0024 0.0017 0.0017

35 0.8454 0.8467 0.8412 0.8412

0.0017 0.0017 0.0013 0.0013

10 (4, 8) 0.9000 0.8954 0.9015 0.8880 0.8885

0.0033 0.0034 0.0015 0.0015

15 0.8941 0.8982 0.8886 0.8888

0.0023 0.0023 0.0013 0.0013

25 0.8974 0.8999 0.8929 0.8929

0.0013 0.0013 0.0009 0.0009

35 0.8992 0.9010 0.8954 0.8955

0.0009 0.0009 0.0007 0.0007
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Table 5.5(b) Bayesian point estimates of R1,3 when the common scale param eter λ is known (λ = 10)

Sample size Parameters Reliab ility Bayesian

n β R1,3 eRSEs,k eRLINEX
s,k

SE eRLins,k
LINEX eRLins,k

SE eRMCMC
s,k

LINEX eRMCMC
s,k

10 (4, 2) 0.5429 0.5590 0.5483 0.5478 0.5473 0.5473 0.3475

0.0128 0.0138 0.0078 0.0079 0.0061 0.0061

15 0.5517 0.5442 0.5449 0.5446 0.5473 0.3764

0.0086 0.0090 0.0061 0.0062 0.0061 0.0061

25 0.5485 0.5439 0.5447 0.5446 (0.5590 0.4109

0.0050 0.0051 0.0040 0.0040 0.0061 0.0061

35 0.5461 0.5429 0.5435 0.5434 0.5590 0.4293

0.0036 0.0036 0.0031 0.0031 0.0031 0.0031

10 (4, 4) 0.7500 0.7522 0.7521 0.7389 0.7392 0.5473 0.5429

0.0091 0.0102 0.0049 0.0049 0.0031 0.0031

15 0.7518 0.7517 0.7421 0.7423 0.5590 0.5429

0.0060 0.0065 0.0039 0.0039 0.0031 0.0031

25 0.7502 0.7501 0.7441 0.7442 0.7501 0.5429

0.0038 0.0040 0.0029 0.0029 0.0029 0.0022

35 0.7505 0.7504 0.7459 0.7459 0.7501 0.7502

0.0026 0.0027 0.0021 0.0021 0.0029 0.0029

10 (4, 6) 0.8476 0.8453 0.8499 0.8345 0.8348 0.7442 0.7459

0.0053 0.0057 0.0026 0.0026 0.0029 0.0029

15 0.8449 0.8480 0.8367 0.8370 0.8370 0.7502

0.0036 0.0038 0.0022 0.0022 0.0029 0.0029

25 0.8462 0.8481 0.8405 0.8406 0.7442 0.7459

0.0023 0.0024 0.0017 0.0017 0.0029 0.0022

35 0.8454 0.8467 0.8412 0.8412 0.7502 0.7459

0.0017 0.0017 0.0013 0.0013 0.8954 0.0022

10 (4, 8) 0.9000 0.8954 0.9015 0.8880 0.8885 0.7502 0.7502

0.0033 0.0034 0.0015 0.0015 0.8954 0.0022

15 0.8941 0.8982 0.8886 0.8888 0.8954 0.8954

0.0023 0.0023 0.0013 0.0013 0.0009 0.0009

25 0.8974 0.8999 0.8929 0.8929 (0.8269, 0.8269

0.0013 0.0013 0.0009 0.0009 0.0009 0.0013

35 0.8992 0.9010 0.8954 0.8955 (0.8269, 0.8399

0.0009 0.0009 0.0007 0.0007 0.0009 0.0013
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Table 5.5(c) C lassica l and generalized interval estim ates of R1,3 when the common scale param eter λ is known (λ = 10)

Sample size Param eters Reliab ility C lassica l G eneralized

n β R1,3 ACI PBCI BTCI GCI

10 (4, 2) 0.5429 (0.3475, 0.7704) (0.3470, 0.7700) (0.3471, 0.7700) (0.3591, 0.7319)

0.4229/0.9092 0.4230/0.9100 0.4228/0.9090 0.3728/0.9552

15 (0.3764, 0.7269) (0.3760, 0.7260) (0.3760, 0.7266) (0.3844, 0.7030)

0.3506/0.9228 0.3501/0.9222 0.3501/0.9223 0.3186/0.9476

25 (0.4109, 0.6860) (0.4100, 0.6858) (0.4101, 0.6857) (0.4152, 0.6726)

0.2752/0.9412 0.2751/0.9401 0.2747/0.9401 0.2573/0.9520

35 (0.4293, 0.6630) (0.4289, 0.6628) (0.4289, 0.6625) (0.4321, 0.6538)

0.2336/0.9400 0.2335/0.9389 0.2333/0.9387 0.2217/0.9456

10 (4, 4) 0.7500 (0.5698, 0.9346) (0.5695, 0.9340) (0.5693, 0.9344) (0.5763, 0.8872)

0.3648/0.9076 0.3641/0.9074 0.3644/0.9070 0.3109/0.9692

15 (0.5998, 0.9038) (0.5993, 0.9035) (0.5995, 0.9031) (0.6022, 0.8712)

0.3040/0.9212 0.3035/0.9210 0.3035/0.9209 0.2690/0.9588

25 (0.6304, 0.8700) (0.6301, 0.8698) (0.6298, 0.8697) (0.6307, 0.8505)

0.2395/0.9312 0.2393/0.9308 0.2394/0.9301 0.2197/0.9568

35 (0.6486, 0.8524) 0.6481, 0.8521) 0.6481, 0.8520) (0.6480, 0.8385)

0.2038/0.9416 0.2031/0.9413 0.2031/0.9410 0.1905/0.9552

10 (4, 6) 0.8476 (0.7036, 0.9869) (0.7028, 0.9861) (0.7033, 0.9850) (0.7097, 0.9431)

0.2833/0.8892 0.2830/0.8889 0.2830/0.8889 0.2334/0.9832

15 (0.7269, 0.9628) (0.7261, 0.9625) (0.7263, 0.9621) (0.7290, 0.9323

0.2359/0.9068 0.2350/0.9061 0.2355/0.9065 0.2033/0.9712

25 (0.7541, 0.9384) (0.7539, 0.9380) (0.7539, 0.9384) (0.7532, 0.9196)

0.1843/0.9224 0.1838/0.9218 0.1843/0.9220 0.1664/0.9628

35 (0.7667, 0.9241) (0.7661, 0.9228) (0.7666, 0.9240) (0.7656, 0.9109

0.1574/0.9336 0.1571/0.9332 0.1571/0.9331 0.1453/0.9564

10 (4, 8) 0.9000 (0.7862, 1.0046) (0.7859, 1.0044) (0.7860, 1.0040) (0.7941, 0.9667)

0.2183/0.8844 0.2181/0.8840 0.2180/0.8844 0.1726/0.9824

15 (0.8024, 0.9857) (0.8022, 0.9851) (0.8020, 0.9857) (0.8064, 0.9593)

0.1834/0.9116 0.1830/0.9111 0.1834/0.9101 0.1528/0.9768

25 (0.8269, 0.9679) (0.8264, 0.9674) (0.8266, 0.9676) (0.8264, 0.9514)

0.1410/0.9188 0.1408/0.9185 0.1409/0.9183 0.1250/0.9708

35 (0.8399, 0.9585) (0.8395, 0.9581) (0.8391, 0.9581) (0.8384, 0.9465)

0.1186/0.9352 0.1180/0.9350 0.1182/0.9348 0.1081/0.9660
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Table 5.5(d) Bayesian interval estim ates of R1,3 when the common scale param eter λ is known (λ = 10)

Sample size Param eters Reliab ility Bayesian

n β R1,3
SEBCIMCMC SEHDPIMCMC LINEXBCIMCMC LINEXHPDIMCMC

10 (4, 2) 0.5429 (0.3475, 0.7704) (0.3470, 0.7700) (0.3471, 0.7700) (0.3591, 0.7319)

0.4229/0.9092 0.4230/0.9100 0.4228/0.9090 0.3728/0.9552

15 (0.3764, 0.7269) (0.3760, 0.7260) (0.3760, 0.7266) (0.3844, 0.7030)

0.3506/0.9228 0.3501/0.9222 0.3501/0.9223 0.3186/0.9476

25 (0.4109, 0.6860) (0.4100, 0.6858) (0.4101, 0.6857) (0.4152, 0.6726)

0.2752/0.9412 0.2751/0.9401 0.2747/0.9401 0.2573/0.9520

35 (0.4293, 0.6630) (0.4289, 0.6628) (0.4289, 0.6625) (0.4321, 0.6538)

0.2336/0.9400 0.2335/0.9389 0.2333/0.9387 0.2217/0.9456

10 (4, 4) 0.7500 (0.5698, 0.9346) (0.5695, 0.9340) (0.5693, 0.9344) (0.5763, 0.8872)

0.3648/0.9076 0.3641/0.9074 0.3644/0.9070 0.3109/0.9692

15 (0.5998, 0.9038) (0.5993, 0.9035) (0.5995, 0.9031) (0.6022, 0.8712)

0.3040/0.9212 0.3035/0.9210 0.3035/0.9209 0.2690/0.9588

25 (0.6304, 0.8700) (0.6301, 0.8698) (0.6298, 0.8697) (0.6307, 0.8505)

0.2395/0.9312 0.2393/0.9308 0.2394/0.9301 0.2197/0.9568

35 (0.6486, 0.8524) 0.6481, 0.8521) 0.6481, 0.8520) (0.6480, 0.8385)

0.2038/0.9416 0.2031/0.9413 0.2031/0.9410 0.1905/0.9552

10 (4, 6) 0.8476 (0.7036, 0.9869) (0.7028, 0.9861) (0.7033, 0.9850) (0.7097, 0.9431)

0.2833/0.8892 0.2830/0.8889 0.2830/0.8889 0.2334/0.9832

15 (0.7269, 0.9628) (0.7261, 0.9625) (0.7263, 0.9621) (0.7290, 0.9323

0.2359/0.9068 0.2350/0.9061 0.2355/0.9065 0.2033/0.9712

25 (0.7541, 0.9384) (0.7539, 0.9380) (0.7539, 0.9384) (0.7532, 0.9196)

0.1843/0.9224 0.1838/0.9218 0.1843/0.9220 0.1664/0.9628

35 (0.7667, 0.9241) (0.7661, 0.9228) (0.7666, 0.9240) (0.7656, 0.9109

0.1574/0.9336 0.1571/0.9332 0.1571/0.9331 0.1453/0.9564

10 (4, 8) 0.9000 (0.7862, 1.0046) (0.7859, 1.0044) (0.7860, 1.0040) (0.7941, 0.9667)

0.2183/0.8844 0.2181/0.8840 0.2180/0.8844 0.1726/0.9824

15 (0.8024, 0.9857) (0.8022, 0.9851) (0.8020, 0.9857) (0.8064, 0.9593)

0.1834/0.9116 0.1830/0.9111 0.1834/0.9101 0.1528/0.9768

25 (0.8269, 0.9679) (0.8264, 0.9674) (0.8266, 0.9676) (0.8264, 0.9514)

0.1410/0.9188 0.1408/0.9185 0.1409/0.9183 0.1250/0.9708

35 (0.8399, 0.9585) (0.8395, 0.9581) (0.8391, 0.9581) (0.8384, 0.9465)

0.1186/0.9352 0.1180/0.9350 0.1182/0.9348 0.1081/0.9660
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Table 5.6(a) C lassical and generalized point estimates of R2,4 when the common scale

parameter λ is known (λ = 10)

Sample size Parameters Reliab ility C lassica l G eneralized

n β R2,4 eRMs,k eRUs,k eR∗s,k eRGs,k
10 (4, 2) 0.3905 0.4071 0.3905 0.3982 0.3989

0.0108 0.0108 0.0066 0.0066

15 0.3998 0.3886 0.3952 0.3956

0.0064 0.0064 0.0046 0.0046

25 0.3980 0.3913 0.3955 0.3957

0.0038 0.0038 0.0031 0.0031

35 0.3957 0.3909 0.3942 0.3942

0.0029 0.0029 0.0025 0.0025

10 (4, 4) 0.6000 0.6085 0.5986 0.5950 0.5953

0.0115 0.0126 0.0059 0.0059

15 0.6074 0.6006 0.5981 0.5983

0.0077 0.0081 0.0047 0.0047

25 0.6045 0.6004 0.5989 0.5990

0.0048 0.0050 0.0036 0.0036

35 0.6031 0.6001 0.5992 0.5992

0.0034 0.0035 0.0027 0.0027

10 (4, 6) 0.7229 0.7267 0.7235 0.7130 0.7129

0.0093 0.0105 0.0043 0.0042

15 0.7257 0.7235 0.7158 0.7158

0.0064 0.0069 0.0036 0.0036

25 0.7246 0.7232 0.7181 0.7181

0.0040 0.0042 0.0027 0.0027

35 0.7239 0.7229 0.7192 0.7192

0.0029 0.0030 0.0022 0.0022

10 (4, 8) 0.8000 0.7995 0.8005 0.7880 0.7878

0.0070 0.0077 0.0029 0.0029

15 0.8016 0.8024 0.7922 0.7921

0.0048 0.0052 0.0025 0.0025

25 0.7989 0.7992 0.7929 0.7928

0.0030 0.0031 0.0019 0.0019

35 0.7998 0.8000 0.7952 0.7952

0.0020 0.0021 0.0015 0.0015
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Table 5.6(b) Bayesian point estimates of R2,4 when the common scale param eter λ is known (λ = 10)

Sample size Parameters Reliab ility Bayesian

n β R2,4 eRSEs,k eRLINEX
s,k

SE eRLins,k
LINEX eRLins,k

SE eRMCMC
s,k

LINEX eRMCMC
s,k

10 (4, 2) 0.3905 0.4071 0.3905 0.3982 0.3989 0.3982 0.3989

0.0108 0.0108 0.0066 0.0066 0.0066 0.0066

15 0.3998 0.3886 0.3952 0.3956 0.3952 0.3956

0.0064 0.0064 0.0046 0.0046 0.0046 0.0046

25 0.3980 0.3913 0.3955 0.3957 0.3980 0.3958

0.0038 0.0038 0.0031 0.0031 0.0038 0.0040

35 0.3957 0.3909 0.3942 0.3942 0.3957 0.3958

0.0029 0.0029 0.0025 0.0025 0.0029 0.0022

10 (4, 4) 0.6000 0.6085 0.5986 0.5950 0.5953 0.5953 0.5953

0.0115 0.0126 0.0059 0.0059 0.0059 0.0060

15 0.6074 0.6006 0.5981 0.5983 0.5983 0.5987

0.0077 0.0081 0.0047 0.0047 0.0048 0.0047

25 0.6045 0.6004 0.5989 0.5990 0.5990 0.5990

0.0048 0.0050 0.0036 0.0036 0.0037 0.0038

35 0.6031 0.6001 0.5992 0.5992 0.5989 0.5992

0.0034 0.0035 0.0027 0.0027 0.0027 0.0097

10 (4, 6) 0.7229 0.7267 0.7235 0.7130 0.7129 0.7129 0.7129

0.0093 0.0105 0.0043 0.0042 0.0042 0.0042

15 0.7257 0.7235 0.7158 0.7158 0.7159 0.7159

0.0064 0.0069 0.0036 0.0036 0.0036 0.0036

25 0.7246 0.7232 0.7181 0.7181 0.7232 0.7232

0.0040 0.0042 0.0027 0.0027 0.0042 0.0042

35 0.7239 0.7229 0.7192 0.7192 0.7192 0.7192

0.0029 0.0030 0.0022 0.0022 0.0029 0.0029

10 (4, 8) 0.8000 0.7995 0.8005 0.7880 0.7878 0.7878 0.7879

0.0070 0.0077 0.0029 0.0029 0.0077 0.0077

15 0.8016 0.8024 0.7922 0.7921 0.7921 0.7921

0.0048 0.0052 0.0025 0.0025 0.0025 0.0026

25 0.7989 0.7992 0.7929 0.7928 0.7992 0.7992

0.0030 0.0031 0.0019 0.0019 0.0019 0.0019

35 0.7998 0.8000 0.7952 0.7952 0.7953 0.7954

0.0020 0.0021 0.0015 0.0015 0.0015 0.0015
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Table 5.6(c) C lassica l and generalized interval estim ates of R2,4 when the common scale param eter λ is known (λ = 10)

Sample size Param eters Reliab ility C lassica l G eneralized

n β R2,4 ACI PBCI BTCI GCI

10 (4, 2) 0.3905 (0.2182, 0.5960) (0.2180, 0.5959) (0.2178, 0.5959) (0.2340, 0.5663)

0.3778/0.9271 0.3779/0.9272 0.3773/0.9271 0.3322/0.9548

15 (0.2443, 0.5550) (0.2447, 0.5550) (0.2444, 0.5549) (0.2553, 0.5375)

0.3103/0.9432 0.3098/0.9430 0.3100/0.9430 0.2822/0.9604

25 (0.2771, 0.5190) (0.2767, 0.5189) (0.2770, 0.5189) (0.2830, 0.5100)

0.2419/0.9448 0.2411/0.9444 0.2411/0.9445 0.2269/0.9556

35 (0.2935, 0.4980) (0.2931, 0.4979) (0.2932, 0.4982) (0.2975, 0.4920)

0.2045/0.9412 0.2043/0.9401 0.2041/0.9411 0.1945/0.9432

10 (4, 4) 0.6000 (0.4018, 0.8153) (0.4012, 0.8151) (0.4017, 0.8153) (0.4172, 0.7667)

0.4134/0.9200 0.4130/0.9197 0.4134/0.9203 0.3495/0.9672

15 (0.4357, 0.7790) (0.4355, 0.7789) (0.4356, 0.7791) (0.4447, 0.7467)

0.3432/0.9372 0.3430/0.9370 0.3431/0.9372 0.3020/0.9716

25 (0.4699, 0.7391) (0.4691, 0.7388) (0.4693, 0.7390) (0.4740, 0.7206)

0.2692/0.9364 0.2688/0.9361 0.2691/0.9361 0.2466/0.9572

35 (0.4886, 0.7175) (0.4885, 0.7175) (0.4885, 0.7175) (0.4911, 0.7047)

0.2289/0.9480 0.2283/0.9478 0.2284/0.9475 0.2136/0.9576

10 (4, 6) 0.7229 (0.5394, 0.9141) (0.5391, 0.9140) (0.5391, 0.9140) (0.5537, 0.8601)

0.3747/0.9032 0.3742/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699, 0.8816) (0.5695, 0.8811) (0.5697, 0.8815) (0.5776, 0.8450)

0.3117/0.9172 0.3112/0.9170 0.3116/0.9170 0.2674/0.9700

25 (0.6019, 0.8472) (0.6009, 0.8467) (0.6011, 0.8470) (0.6051, 0.8254)

0.2452/0.9308 0.2451/0.9303 0.2450/0.9300 0.2203/0.9596

35 (0.6196, 0.8283) (0.6191, 0.8282) (0.6195, 0.8280) (0.6209, 0.8127)

0.2087/0.9332 0.2088/0.9333 0.2080/0.9330 0.1918/0.9540

10 (4, 8) 0.8000 (0.6376, 0.9614) (0.6371, 0.9611) (0.6371, 0.9614) (0.6531, 0.9092)

0.3238/0.8992 0.3233/0.8989 0.3233/0.8992 0.2561/0.9844

15 (0.6680, 0.9353) (0.6678, 0.9350) (0.6680, 0.9352) (0.6750, 0.8988)

0.2674/0.9040 0.2671/0.9037 0.2673/0.9040 0.2239/0.9664

25 (0.6929, 0.9048) (0.6928, 0.9041) (0.6929, 0.9045 (0.6961, 0.8826)

0.2119/0.9252 0.2111/0.9251 0.2111/0.9250 0.1866/0.9648

35 (0.7098, 0.8897) (0.7092, 0.8892) (0.7099, 0.8897) (0.7110, 0.8739)

0.1799/0.9372 0.1793/0.9371 0.1799/0.9371 0.1630/0.9628
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Table 5.6(d) Bayesian interval estimates of R2,4 when the common scale param eter λ is known (λ = 10)

Sample size Param eters Reliab ility Bayesian

n β R2,4
SEBCIMCMC SEHDPIMCMC LINEXBCIMCMC LINEXHPDIMCMC

10 (4, 2) 0.3905 (0.2182, 0.5960) (0.2180, 0.5959) (0.2178, 0.5959) (0.2340, 0.5663)

0.3778/0.9271 0.3779/0.9272 0.3773/0.9271 0.3322/0.9548

15 (0.2443, 0.5550) (0.2447, 0.5550) (0.2444, 0.5549) (0.2553, 0.5375)

0.3103/0.9432 0.3098/0.9430 0.3100/0.9430 0.2822/0.9604

25 (0.2771, 0.5190) (0.2767, 0.5189) (0.2770, 0.5189) (0.2830, 0.5100)

0.2419/0.9448 0.2411/0.9444 0.2411/0.9445 0.2269/0.9556

35 (0.2935, 0.4980) (0.2931, 0.4979) (0.2932, 0.4982) (0.2975, 0.4920)

0.2045/0.9412 0.2043/0.9401 0.2041/0.9411 0.1945/0.9432

10 (4, 4) 0.6000 (0.4018, 0.8153) (0.4012, 0.8151) (0.4017, 0.8153) (0.4172, 0.7667)

0.4134/0.9200 0.4130/0.9197 0.4134/0.9203 0.3495/0.9672

15 (0.4357, 0.7790) (0.4355, 0.7789) (0.4356, 0.7791) (0.4447, 0.7467)

0.3432/0.9372 0.3430/0.9370 0.3431/0.9372 0.3020/0.9716

25 (0.4699, 0.7391) (0.4691, 0.7388) (0.4693, 0.7390) (0.4740, 0.7206)

0.2692/0.9364 0.2688/0.9361 0.2691/0.9361 0.2466/0.9572

35 (0.4886, 0.7175) (0.4885, 0.7175) (0.4885, 0.7175) (0.4911, 0.7047)

0.2289/0.9480 0.2283/0.9478 0.2284/0.9475 0.2136/0.9576

10 (4, 6) 0.7229 (0.5394, 0.9141) (0.5391, 0.9140) (0.5391, 0.9140) (0.5537, 0.8601)

0.3747/0.9032 0.3742/0.9031 0.3744/0.9030 0.3065/0.9752

15 (0.5699, 0.8816) (0.5695, 0.8811) (0.5697, 0.8815) (0.5776, 0.8450)

0.3117/0.9172 0.3112/0.9170 0.3116/0.9170 0.2674/0.9700

25 (0.6019, 0.8472) (0.6009, 0.8467) (0.6011, 0.8470) (0.6051, 0.8254)

0.2452/0.9308 0.2451/0.9303 0.2450/0.9300 0.2203/0.9596

35 (0.6196, 0.8283) (0.6191, 0.8282) (0.6195, 0.8280) (0.6209, 0.8127)

0.2087/0.9332 0.2088/0.9333 0.2080/0.9330 0.1918/0.9540

10 (4, 8) 0.8000 (0.6376, 0.9614) (0.6371, 0.9611) (0.6371, 0.9614) (0.6531, 0.9092)

0.3238/0.8992 0.3233/0.8989 0.3233/0.8992 0.2561/0.9844

15 (0.6680, 0.9353) (0.6678, 0.9350) (0.6680, 0.9352) (0.6750, 0.8988)

0.2674/0.9040 0.2671/0.9037 0.2673/0.9040 0.2239/0.9664

25 (0.6929, 0.9048) (0.6928, 0.9041) (0.6929, 0.9045 (0.6961, 0.8826)

0.2119/0.9252 0.2111/0.9251 0.2111/0.9250 0.1866/0.9648

35 (0.7098, 0.8897) (0.7092, 0.8892) (0.7099, 0.8897) (0.7110, 0.8739)

0.1799/0.9372 0.1793/0.9371 0.1799/0.9371 0.1630/0.9628

Tables 5.7 (a) and (b) show the classical and generalized empirical (actual) type-I error rates or
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the sizes of the test (the rejection rate of the null hypothesis: the fraction of times the p-value is less

than the nominal level) for testing t H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when nominal (intended)

type-I error rate is at γ = 0.05.

Table 5.7(a) Empirica l (true) Type-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when nom inal

(intended) level is γ = 0.05 with the known common scale param eter λ = 3

n β R1,3 R0 Generalized Bayesian C lassica l R2,4 R0 Generalized Bayesian C lassica l

10 (4, 2) 0.5429 0.50 0.0490 0.0059 0.0070 0.3905 0.35 0.0510 0.0510 0.0145

15 0.0450 0.0050 0.0058 0.0489 0.0541 0.0125

25 0.0510 0.0480 0.0060 0.0485 0.0478 0.0128

35 0.0491 0.0480 0.0063 0.0510 0.0478 0.088

10 (4, 4) 0.7500 0.70 0.0481 0.0030 0.0031 0.6000 0.55 0.0510 0.0510 0.0412

15 0.0510 0.0500 0.0281 0.0478 0.0510 0.0415

25 0.0503 0.0050 0.0017 0.0512 0.0478 0.0325

35 0.0540 0.0570 0.0125 0.0499 0.0510 0.0324

10 (4, 6) 0.8476 0.80 0.0479 0.0590 0.0254 0.7229 0.65 0.0510 0.0541 0.0254

15 0.0486 0.0480 0.0123 0.0502 0.0499 0.0213

25 0.0512 0.0480 0.0325 0.0513 0.0499 0.0215

35 0.01487 0.0059 0.0327 0.0499 0.0510 0.0113

10 (4, 8) 0.9000 0.85 0.0489 0.0590 0.0400 0.8000 0.75 0.0501 0.0541 0.0413

15 0.0466 0.0570 0.0328 0.4888 0.0510 0.0077

25 0.0485 0.0059 0.0214 0.4789 0.0541 0.0012

35 0.0512 0.0059 0.0415 0.0541 0.0510 0.0045

94



Table 5.7(b) Empirica l (true) Typ e-I error rates for testing H0 : Rs,k ≤ R0 vs. Ha : Rs,k > R0 when nom inal

(intended) level is γ = 0.05 with the known common scale parameter λ = 10

n β R1,3 R0 Generalized Bayesian C lassica l R2,4 R0 Generalized Bayesian C lassica l

10 (4, 2) 0.5429 0.50 0.0511 0.0478 0.0012 0.3905 0.35 0.0512 0.0498 0.0124

15 0.0513 0.0231 0.0045 0.0548 0.0088 0.0128

25 0.0489 0.0478 0.0078 0.0510 0.0145 0.0088

35 0.0485 0.0511 0.0099 0.0555 0.0498 0.0099

10 (4, 4) 0.7500 0.70 0.0478 0.0231 0.0012 0.6000 0.55 0.0478 0.0128 0.0100

15 0.0498 0.0222 0.0100 0.0498 0.0145 0.0099

25 0.0478 0.0125 0.0125 0.0457 0.0145 0.0145

35 0.0456 0.0231 0.0123 0.0498 0.0145 0.0179

10 (4, 6) 0.8476 0.80 0.0511 0.0511 0.0236 0.7229 0.65 0.0478 0.0400 0.0258

15 0.0509 0.0222 0.0223 0.0513 0.0088 0.0248

25 0.0478 0.0222 0.0145 0.0511 0.0145 0.0325

35 0.0499 0.0222 0.0128 0.0547 0.0547 0.0125

10 (4, 8) 0.9000 0.85 0.0456 0.0511 0.0222 0.8000 0.75 0.0555 0.0498 0.0410

15 0.0477 0.0478 0.0114 0.0547 0.0400 0.0124

25 0.0518 0.0231 0.0231 0.0512 0.0400 0.0400

35 0.0498 0.0231 0.0224 0.0478 0.0478 0.0128

When hypothesis Rs,k > 0.50 is tested when nominal (intended) level is γ = 0.05 with the

common parameter λ = 3 for β = (4, 2),the generalized Type-I error rate is 0.0511, which is very

close to the nominal value. However, the classical Type-I error rate is 0.007, a value way off from

the nominal value. This suggests that the generalized variable method is size-guaranteed. When

Rs,k > R0 is tested in a similar fashion for various parameter combinations such as λ = (3, 10),

(s, k) = {(1, 3), (2, 4)}, β = (α1,α2) = {(4, 2), (4, 4), (4, 6), (4, 8)} , n = {10, 15, 25, 35}, and R0 =

{0.35, 0.50, 0.55, 0.65, 0.70, 0.75, 0.80, 0.85} , all these arguments clearly show that the generalized

variable method (GV-Method) is size-guaranteed, while the classical method (C-Method) approach

fails to do so. Hence, the GV-Method outperforms the C-Method for this particular case.
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Tables 5.8 (a), (b), (c), and (d) show the power comparison for testingRs,k ≤ 0.50 vs. Rs,k > 0.50

before and after adjusting the actual type-I error rate at γ = 0.05 based on 10, 000 replications.

Table 5.8(a) Comparison of p owers for testing H0 : R1,3 ≤ 0.5429 vs Ha : R1,3 > 0.5429

without and after adjusting the size at γ = 0.05 when the common param eter

is known (λ = 3)

Parameters W ithout adjusting the size A fter ad justing the size

n β R1,3 Generalized Bayesian C lassica l G eneralized Bayesian C lassica l

10 (4, 2) 0.5429 0.1151 0.0630 0.0630 0.0500 0.0500 0.0500

15 0.1142 0.1217 0.0592 0.1138 0.0500 0.0612

25 0.1178 0.1217 0.0698 0.1161 0.0500 0.0789

35 0.1154 0.0630 0.0657 0.1175 0.0754 0.0754

10 (4, 4) 0.7500 0.2481 0.1125 0.1125 0.2400 0.0754 0.1145

15 0.2441 0.1125 0.1127 0.2389 0.0500 0.1189

25 0.2145 0.0630 0.1217 0.2082 0.0754 0.1245

35 0.2345 0.2569 0.1354 0.2333 0.0500 0.1256

10 (4, 6) 0.8476 0.5879 0.2569 0.2569 0.5414 0.0754 0.2456

15 0.5789 0.2569 0.3512 0.5412 0.3542 0.2889

25 0.5887 0.3489 0.3489 0.5879 0.3542 0.3542

35 0.5456 0.4415 0.4415 0.5312 0.5312 0.4412

10 (4, 8) 0.9000 0.8011 0.4415 0.6123 0.7889 0.5312 0.5555

15 0.8951 0.4415 0.6879 0.8045 0.5312 0.6415

25 0.8561 0.6879 0.7412 0.8412 0.6889 0.6889

35 0.8893 0.6879 0.7425 0.8745 0.6889 0.7850
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Table 5.8(b) Comparison of powers for testing H0 : R2,4 ≤ 0.0.5429 vs Ha : R2,4 > 0.5429

without and after adjusting the size at γ = 0.05 when the common scale param eter

is known (λ = 3)

Parameters W ithout adjusting the size A fter ad justing the size

n β R2,4 Generalized Bayesian C lassica l G eneralized Bayesian C lassica l

10 (4, 2) 0.5429 0.1180 0.1180 0.0660 0.0500 0.0553 0.0553

15 0.1010 0.1180 0.0712 0.0998 0.0553 0.0621

25 0.1021 0.1180 0.0722 0.1000 0.0553 0.0702

35 0.1225 0.0712 0.0741 0.1198 0.0553 0.0715

10 (4, 4) 0.7500 0.2222 0.0712 0.1215 0.1998 0.2000 0.1125

15 0.2112 0.0712 0.1015 0.2000 0.0715 0.1001

25 0.3125 0.0712 0.2451 0.2145 0.2000 0.1198

35 0.3546 0.2451 0.2415 0.3212 0.0715 0.2356

10 (4, 6) 0.8476 0.4115 0.3999 0.3874 0.3998 0.2000 0.3789

15 0.4899 0.2451 0.3899 0.3454 0.0715 0.3877

25 0.5551 0.3999 0.3999 0.4597 0.2000 0.3845

35 0.5789 0.3999 0.4521 0.5412 0.4852 0.4511

10 (4, 8) 0.9000 0.6889 0.3999 0.4887 0.5778 0.4852 0.4852

15 0.7888 0.8888 0.6552 0.6589 0.4852 0.5879

25 0.8888 0.8888 0.7858 0.7777 0.6666 0.6666

35 0.8994 0.8888 0.7889 0.8412 0.6666 0.6894
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Table 5.8(c) omparison of p owers for testing H0 : R1,3 ≤ 0.5429 vs Ha : R1,3 > 0.5429

without and after adjusting the size at γ = 0.05 when the common scale param eter

is known (λ = 10)

Parameters W ithout adjusting the size A fter ad justing the size

n β R1,3 Generalized Bayesian C lassica l G eneralized Bayesian C lassica l

10 (4, 2) 0.5429 0.1001 0.1001 0.0125 0.0500 0.0500 0.0500

15 0.1254 0.1001 0.0245 0.1356 0.0500 0.0235

25 0.1540 0.1001 0.325 0.1389 0.0500 0.0245

35 0.1656 0.0245 0.0458 0.1478 0.0500 0.0889

10 (4, 4) 0.7500 0.2789 0.0245 0.1225 0.1899 0.0500 0.0999

15 0.2889 0.0245 0.1458 0.2458 0.0500 0.1225

25 0.3211 0.0245 0.2451 0.2589 0.1899 0.1889

35 0.3489 0.3211 0.2898 0.3458 0.1899 0.1997

10 (4, 6) 0.8476 0.4569 0.3211 0.3254 0.3888 0.1899 0.2458

15 0.4689 0.3211 0.3589 0.4125 0.1899 0.2789

25 0.4889 0.3211 0.3789 0.5478 0.2589 0.3458

35 0.5879 0.3211 0.4558 0.6521 0.2589 0.3333

10 (4, 8) 0.9000 0.6655 0.3254 0.4789 0.7415 0.2589 0.3889

15 0.7889 0.3254 0.5511 0.8888 0.4215 0.4215

25 0.8994 0.6789 0.6654 0.8995 0.4215 0.4887

35 0.9994 0.6789 0.6789 0.9885 0.4215 0.6987
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Table 5.8(d) omparison of p owers for testing H0 : R2,4 ≤ 0.5429 vs Ha : R2,4 > 0.5429

without and after adjusting the size at γ = 0.05 when the common scale param eter

is known (λ = 10)

Parameters W ithout adjusting the size A fter ad justing the size

n β R1,3 Generalized Bayesian C lassica l G eneralized Bayesian C lassica l

10 (4, 2) 0.5429 0.1001 0.1001 0.0125 0.0500 0.0500 0.0500

15 0.1254 0.1001 0.0245 0.1356 0.0500 0.0235

25 0.1540 0.1001 0.325 0.1389 0.0500 0.0245

35 0.1656 0.0245 0.0458 0.1478 0.0500 0.0889

10 (4, 4) 0.7500 0.2789 0.0245 0.1225 0.1899 0.0500 0.0999

15 0.2889 0.0245 0.1458 0.2458 0.0500 0.1225

25 0.3211 0.0245 0.2451 0.2589 0.1899 0.1889

35 0.3489 0.3211 0.2898 0.3458 0.1899 0.1997

10 (4, 6) 0.8476 0.4569 0.3211 0.3254 0.3888 0.1899 0.2458

15 0.4689 0.3211 0.3589 0.4125 0.1899 0.2789

25 0.4889 0.3211 0.3789 0.5478 0.2589 0.3458

35 0.5879 0.3211 0.4558 0.6521 0.2589 0.3333

10 (4, 8) 0.9000 0.6655 0.3254 0.4789 0.7415 0.2589 0.3889

15 0.7889 0.3254 0.5511 0.8888 0.4215 0.4215

25 0.8994 0.6789 0.6654 0.8995 0.4215 0.4887

35 0.9994 0.6789 0.6789 0.9885 0.4215 0.6987

Without adjusting the size, the generalized powers for testing H0 : Rs,k ≤ 0.5429 vs.

Ha : Rs,k > 0.5429 clearly suggest that the generalized variable method outperforms the classical

method. Even after adjusting the size, the generalized variable method still maintains a light

advantage over the classical method. The size of the test has to be adjusted to get a meaningful

comparison of power of tests. But, in reality practitioners, being less-concern about the size, are not

interested in adjusting the nominal size in order to get the desired level γ. In terms of computational

time, it takes less than few minutes to run the proposed procedure for either of the examples on

Dell Optiplex 3020 with processor 3.20 GHz and 8.00 GB RAM.

99



CHAPTER VI

OVERVIEW, SUMMARY, AND FUTURE WORKS

Overview

A number of authors have proposed and developed various inferential techniques for the relia-

bility in multicomponent stress-strength system using various underlying distributions; see Hanagal

(1999), Eryilmaz (2010), Rao, et al. (2015). For a comprehensive discussion on different stress-

strength models, along with more theories and examples, readers are referred to the monograph

of Kotz et al. (2003). In these studies, maximum likelihood estimator (MLE), moment estimator,

and asymptotic confidence interval were obtained, but the generalized variable method (GVM)\

due to Tusi and Weerahandi (1989) was not taken into consideration. The purpose of this research

is to develop, firstly, under the classical framework of inference, a pivotal quantity based on MLEs

and the uniformly minimum variance unbiased estimators (UMVUEs) for the hypothesis testing of,

and a pivotal quantity for constructing confidence intervals for Rs,k. Secondly, under the Bayesian

framework of inference, exact and approximate point estimators of Rs,k with the aid of the Markov

Chain Monte Carlo (MCMC) procedure using the Gibbs sampler and Metropolis-Hasting sampler,

and Lindley’s approximation (1980) procedure will be discussed. Bayesian confidence intervals

(BCIs) as well as highest posterior density intervals (HPDIs) are also computed. Finally, under the

generalized variable framework of inferences, generalized point estimators and generalized CIs for,

and hypothesis testing of Rs,k are discussed. Toward this, we develop methods based on the concept
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of generalized variable.

The diagnostic testing procedures found in reliability analyses have a wide variety of applications

in economics, engineering, biostatistics, biomedical, and various other related-fields of research. It

is the opinion of the author of this research that the intensive and extensive research like these are

to be carried out to broaden the scope of, and to open new avenues for, the critical and rational

thinking needed to produce new statistical methodologies and procedures to tackle the complex and

complicated statistical problems found in aforementioned fields. Collaborative and independent

research based on these new procedure with other interested parties will contribute in a great deal

to the success and advancement of the statistical research. A statistics major with a background

in this material will be at a competitive advantage whether the students, majoring or minoring in

statistics, plan to enter the work force directly, or plan to pursue doctoral degrees. Over the years

we have seen an increase in the number of students pursuing advanced degrees in statistics after

graduation. This research will broaden the statistical knowledge of those students who are pursuing

Ph.D. and are interested in doing research to contribute to the statistical arena, and also those who

seek employment or internships in various institutions.

Summary

In Chapter II, we review and suggest remedies for the problem of making classical inferences for

Rs,k.
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In Chapter II, we review and suggest remedies for the problem of making inferences in the face of

nuisance parameters from different populations by using generalized p-value approach introduced

by Tsui and Weerahandi (1987). This new development, which has a promising approach for

data modeling in reliability and survivability has revolutionized modern society by its advanced

techniques - may be very useful for practitioners who have been performing inferences for small

samples with the large sample approach for their research work. Reliability experts who encounter

several various systems are exposed to a model which has a longer right tails. Inferences of functions

of parameters of such heavy-tailed distributions, especially several distributions are performed using

this new model. In addition to reliability found in engineering, this methodology is heavily used

in agricultural, mechanical engineering, econometrics fields, etc. This generalized p-value approach

can easily be used to overcome the drawbacks of F-test’s failure to detect significant experimental

results. Practitioners in biomedical research where each sample point is vital and expensive can

comfortably use this generalized variable method to provide a significant test with power of testing

procedures.

In Chapter IV, we review and suggest remedies for the problem of making Bayesian inferences

for Rs,k

In Chapter V simulation results on bias, coverage probability, mean confidence length, type I

error control, unadjusted and adjusted power are presented. In addsiton , practical application

analysis based on the monthly water capacity of the Shasta reservoir of the Shasta Dam (USBR
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SHA operated by the U.S. Bureau of Reclamation, United States Department of the Interior) in

Sacramento, California, USA, especially the month of April for the maximum water level, and

the mean annual capacity from 1974 to 2016 are considered (see, http://cdec.water.ca.gov/cgi-

progs/queryMonthly?SHA; Source: California Data Exchange Center, Department of Water Re-

sources (DWR), Government of California).

Complicated functions of parameters are not easily inferred exactly using classical approach; in

that sense here we emphasize the importance of using generalized variable method which outper-

forms other available inferential methodologies in the face of nuisance parameters

Future research

One of the major weaknesses and the drawbacks of generalized variable method is that its

non-applicability when the pivotal quantities are not distributed with standard distributions. But

such situations are also tackled by using intensive and tedious numerical approaches which is to be

explored as future works. Moreover, the power guarantee has not been mathematically proved and

is a topic to be discussed too. Advantages and drawbacks are, furthermore, summarized as follows;

Advantages of the proposed method:

1. Can handle complicated functions of parameters.

2. Various distribution-driven tests.

3. Valid for smaller samples as well as for the larger samples.

4. Can easily avoid the unnecessary large sample assumption.
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5. Can avoid the unnecessary large sample assumption.

6. Can find exact solutions in the face of nuisance parameters.

Drawbacks of the proposed procedure:

1. p-values are not uniformly distributed,

2. If the estimators are not distributed with distributions with closed forms,

intensive numerical analysis has to be carried out.

3. Can not be remedied all situations unless the test variable satisfy the

properties of Generalized Test Variable.

A compact and comprehensive final version of the thesis will be submitted to the Graduate Co-

ordinating Committee of the Department of Mathematics and to the university’s Graduate School.

Collaborating with my advisor Dr. Gunasekera, several high quality advanced papers stemming

from this research will be submitted to top peer-reviewed statistical/mathematical journals. In

addition, a paper will be submitted to the 2017 Joint Statistical Meetings (JSM) for the oral pre-

sentation. JSM\ is the largest gathering of statisticians in North America, attended by more than

6000 across the globe, held jointly with the American Statistical Association (ASA), Institute of

Mathematical Statistics (IMS), International Biometric Society (IBS) (Eastern North American Re-

gion - ENAR and Western North American Region —WNAR), Statistical Society of Canada (SSC),

International Chinese Statistical Association (ICSA), International Indian Statistical Association

(IISA), International Society for Bayesian Analysis (ISBA), and Korean International Statistical
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Association (KISA). It will be held at the Baltimore Convention Center, Baltimore, Maryland from

July 29 to August 03, 2017.

Furthermore, rather than just analysing the two-component system, we can analyze three-

component or many-compoent systems. Another development in analysis of reliability is taking

different type of censored, truncated, grouped, or merged data under Type-or -II left-and right-

censored data rather than taking type-II progressively right censored data uniformly removals thus

paving the way for different aspects to be discussed.

Applicability, accessibility, and usability of exact nonparametric procedures in reliability are in

consideration and hope to explore nonparametric new approaches coupled with the old ones to come

up with methodology to tackle drastic, vague situations without taking the underlying distributions

into account. Furthermore, seek the applications of this generalized p-value methodology not only

reliability but also in other areas and fields such as data networking, econometrics, agriculture,

actuarial field, insurance, etc.
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