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ABSTRACT

The development of an automatic, dynamic, parallel, Cartesian, linear forest-of-octree grid

generator and partial differential equation (PDE) solver framework is presented. This research is

bundled into an application programmed with C++ which uses MPI for distributed parallelism. The

application is named paroswhich stands for PARallel Octree Solver. In its current implementation,

the application provides a ‘zeroth’ order representation of the target geometry, and as such, no cut-

cell algorithm, projection method, or immersed boundary condition are implemented. In this case,

‘zeroth’ ordermeans that no geometry is ever exactly represented in the final computationalmesh: an

octree element is either completely in the domain or entirely outside of it. Any element that contains

or is intersected by a geometry facet is removed from the final mesh which results in a ‘blocky’

or ‘stepped’ geometry representation and simplifies boundary computations. The computational

octree mesh creation is completely parallel and automated. The algorithm is dynamic in the sense

that it is repartitioned dynamically throughout the grid generation process to maintain optimal load

balancing during all phases of the mesh genesis. A linear octree data structure is used to store

the octree mesh elements and is leveraged for optimal load balancing. An additional hierarchical

octree is used to significantly improve algorithms that suffer from this linear storage paradigm.

This work focuses on, but is not limited to, applications related to urban simulations and may be

applied to plume/contaminant propagation. Within the PDE solution framework a cell-centered,

incompressible, unsteady, Navier-Stokes solverwith an energy term to account for thermal buoyancy
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is implemented and validated using canonical test cases. Turbulence closure is implemented in

the form of the Smagorinski large eddy simulation (LES) model. The parallel grid generation and

solution process is tested on a large scale cityscape geometry and shown to be robust and efficient.

Additionally, an implementation of the compressible Navier-Stokes equations is coded within the

framework. The framework is extensible such that adding other types of numerical PDE solvers

should not be difficult. Other features including adaptive mesh refinement (AMR) and contaminant

transport functionality are included.
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CHAPTER 1

INTRODUCTION

Computational Fluid Dynamics (CFD) has become amature and diverse field with innumer-

able and far-reaching applications. One important CFD application relates to the propagation of a

plume or contaminant at a cityscape scale. As concerns grow about the release of toxic chemicals

or biological agents into urban environments, either purposely or accidentally, there is increasing

interest in the role CFD can play in optimizing responses to such events [1–5]. It is valuable to be

able to predict where and how a potentially toxic contaminant might spread once released into a city

environment in order to provide first responders the means to perform focused disaster mitigation.

This type of application does not have to be limited to nefarious events; city planners may be

interested in air quality control as it relates to pollution [6–12]. For example, Huber et al. [9] use

FLUENT to simulate the events of September 11, 2001 in Manhattan in order to study the transport

and dispersion of smoke and particles into the surrounding metropolitan area. Additionally, Hanna

et al. [10] compare and contrast the simulations from five different CFD software in the Madison

Square Garden area of Manhattan, New York. Four of these CFD models were used to plan the

Department of Homeland Security’s Urban Dispersion Program MSG05 experiment [13].

Numerous models and software exist that specialize in performing urban simulations. Eich-

horn created MISKAM [14,15], a three-dimensional non-hydrostatic flow model with an Eulerian
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dispersion model. Michael Brown at Los Alamos National Laboratory, in collaboration with sev-

eral universities, developed QUIC: the Quick Urban & Industrial Complex Dispersion Modeling

System [16]. QUIC is a fast response urban dispersion model that may run on a laptop; it combines

a three-dimensional wind field model, a transport and dispersion model, and a pressure solver into

an application capable of running neighborhood scale simulations in minutes. It is also able to

simulate chemical, biological, and radiological agent dispersion. The Institute of Meteorology

and Climatology at the Leibniz Universität in Hannover, Germany has developed PALM: A PAr-

allelized Large-Eddy Simulation Model for Atmospheric and Oceanic Flows [17, 18] and while

it is not designed specifically for urban simulations, it has been used to simulate large swaths of

Japan by Kanda et al. [19]. Also, Keck et al. [20, 21] used PALM to simulate the city of Macau

China using a 6 km by 5 km computational domain with a minimum spacing of one meter. A finite

volume application called CFD-Urban, based on CFD-ACE+ [22], was developed by Coirier et

al. [23]. Löhner created FEFLO-CFD [24], Chan and Leach at Lawrence Livermore National Lab-

oratory developed FEM3MP [25]; these are two finite element applications for urban simulation.

The Defense Science and Technology Laboratory in the UK created the Urban Dispersion Model

(UDM) [26–28]. The Defense Threat Reduction Agency in the United States developed the Urban

Hazard Prediction Assessment Capability (Urban HPAC) transport and dispersion model [29, 30].

1.1 Literature Review

This research is mainly focused on the generation of urban scale computational meshes.

As such, the particulars of the various approaches these software take with regard to the physics

simulation will not be emphasized in this review. What follows is an overview of how some
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of the aforementioned software models address the difficulties associated with the generation of

the computational grid. PALM [18] uses a Cartesian topography based on the mask method

described by Briscolini and Santangelo [31]; the spatial discretization is uniform in the horizontal

direction but allows for vertical stretching. PALM uses 2.5 dimensional topological input, e.g.

digital elevation model (DEM) data, which means that building geometries are simply represented

by building outlines or footprints and an associated height. Using this input data the mesh elements

are separated into elements either 100% interior to the mesh (a fluid element) or 100% exterior (an

obstacle element); thus, the computational domain comprises three unique sub-domains: elements

without boundary faces (interior elements), elements with boundary faces (next to an obstacle)

within which wall functions are used, and elements within an obstacle that are excluded from any

computations. This implies that buildings are only approximated in the mesh and precludes exact

discretization of any building, especially those with holes, overhangs, or any significant three-

dimensionality. The computational domain is parallelized by a uniform two-dimensional domain

decomposition in the horizontal direction with equally sized sub-domains. MISKAM [14, 15]

also uses a Cartesian aligned hexahedral mesh to define its domain and, like PALM, buildings

and obstructions are blocked out such that elements are either entirely within or entirely outside

the computational mesh, resulting in similarly blocky discretizations. However, unlike PALM,

MISKAM allows for three dimensionality, e.g. spires, domes, or sloped roofs and holes/flow-

through areas in buildings, e.g. arcades or passageways, as well as anisotropy in all three dimensions.

TheWindows software, WinMISKAM [32], is a wrapper to the core MISKAMmodel and provides

a graphical user interface (GUI) that enables digitizing of building geometry from bitmaps as

well as an interactive meshing interface to aid in the creation of the mesh. QUIC [16] also uses

3



Cartesian grids to discretize its domain; the mesh is uniform in the horizontal directions but may

be non-uniform in the vertical direction. QUIC also allows for a coarser outer grid which may

be used to extend the domain well outside of the neighborhood of the building geometry without

having to maintain the same refinement in the farfield; it is unclear however, exactly how this

is implemented. There are two ways to define the building geometry: via a ‘City Builder’ GUI

interface or using an ESRI ArcGis shapefile [33]; there is support for vegetation and buildings with

courtyards as well as experimental support for parking garages and bridges. Likemany other similar

applications, a QUIC mesh element is either completely in or completely out of the computational

domain, which results in non-grid-aligned buildings being stair-stepped. QUIC is one of the few

applications—out of those that do not use a pre-built mesh—that support importing terrain data

instead of assuming a flat ground; implementation details are unclear, however. CFD-Urban [23]

provides two different meshing solutions: unstructured prismatic extrusion and prismatic quadtree

based approaches. Cityscape geometry is generated directly from geographical information system

(GIS) data, and buildings may be either explicitly resolved in the mesh or implicitly modeled by

introducing drag source terms into the equations within cells that would contain buildings. The

prismatic quadtree/octree mesh approach, explained by Coirier and Kim [34], creates a single root

Cartesian element spanning the domain of interest. This root element is then sub-divided in the

horizontal directions only in a quadtree manner until a specified element size is reached within a

target region of the domain. A 2:1 balance is enforced to keep the mesh ‘smooth’ by enforcing that

no element is ever more than twice the size of any of its neighboring elements. Upon completion

of this quadtree refinement, the root octree cell contains only one element in the vertical direction;

these cells are then recursively refined in the vertical direction until the desired number of layers in
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the z-direction has been obtained. These layers are subsequently mapped to a vertical clustering in

order to properly resolve the buildings and atmospheric boundary layer (ABL). This results in what

can bemost easily thought of as an extruded quadtreemesh. Using this meshing approach, buildings

are modeled implicitly by computing element porosity using the provided GIS data; elements with

a porosity under a certain threshold are eliminated from the mesh. CFD-Urban provides optional

terrain mapping functionality as well, where the lowest vertical plane in the grid may be projected

onto the underlying terrain, which may be provided using several standard digital elevation data

formats. Two different element mapping approaches are available: a displacement method or a

compression method. The displacement method simply displaces the vertical stack of elements

a distance prescribed by the terrain data at the current (x, y) location, whereas the compression

method keeps the uppermost vertical plane at its constant height and compresses the elements

between the terrain and the upper boundary. Coirier and Kim claim that the displacement method

is preferred as the compression method reduces mesh skew angle quality [34]. FEFLO-Urban [24]

uses unstructured body-fitted tetrahedral meshes or, for large urban simulation, building geometry is

modeled using an embedded boundary approach [35] on unstructured tetrahedral meshes. Camelli

et al. [36] describe its use in both modes: a body fitting tetrahedral mesh was used to model the

flow and dispersion patterns around Tysons Corner in Fairfax County Virginia, while a much larger

area around the Madison Square Garden area of Manhattan was simulated using the embedded

boundary paradigm to dramatically reduce the time-to-simulation. FEM3MP [25, 37] offers a

‘simplified CFD approach’ wherein there is an option to explicitly resolve a select few important

buildings, or none at all, and virtually model the remaining buildings with drag forces implemented

as sink terms in the mean momentum equations [25]. The underlying mesh is a structured mesh
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that may be stretched and distorted and is relatively coarse in regions containing the virtual building

geometry. The immersed boundary grid generator TOMMIE [38] generates potentially anisotropic

Cartesian meshes from geometry in ASCII Stereo-Lithography format (STL) and has been used in

urban scale simulation of downtown Oklahoma City [39,40]. Meteodyn [41] offers the commercial

software URBAWIND [42, 43] which claims to provide automatic, flow-aligned mesh generation

and refinement within a parallel unstructured multigrid solver framework. Technical details are not

readily available since this is a commercial code, but it appears that it uses hierarchical meshes and

perhaps some sort of immersed boundary conditions for the building geometries. See Fahssis et

al. [44] and Kalmikov et al. [45, 46] for examples of the use of UrbaWind in literature.

1.2 Motivation

There are many difficulties that must be overcome to reliably and accurately perform CFD

simulations at the urban environment scale; not the least of which is adequately modeling the

cityscape geometry. One of the biggest problems one faces when attempting to simulate a CFD

problem at a cityscape scale is the generation of the computational mesh. It is a non-trivial task to

accurately model a cityscape geometry in a manner amenable to the generation of quality volume

meshes. In fact, manual generation of grids on these types of geometries can easily take weeks—

even months. To further exacerbate the problem, viscous meshes adequate to accurately model

viscous stresses on solid surfaces at a cityscape scale strains the ability of most grid generation and

CFD software in terms of memory as well as CPU requirements. This is the case even in today’s

high performance computing (HPC) environments.
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However, in many cityscape scale simulations, the CFD practitioner may only be interested

in the macro-behavior of the flow physics. The micro-behavior of the flow, while it does play a

significant role in the macro-behavior, may not be the primary interest of the simulation. This

may be the case when considering how a contaminant propagates throughout a city landscape and

when the primary interest lies in knowing approximately where a contaminant goes, especially

when evacuation considerations are of primary concern. In this case, it is less important that the

micro-physics be modeled accurately and more important that the macro-physics are approximately

correct. When this is the case, certain liberties may be taken, both with regard to the mesh

generation, and the CFD implementation.

Regarding mesh generation, one of the easiest aspects that may be leveraged toward this

end is the viscous grid spacing; if the accuracy of the micro-physics may be sacrificed to gain a

computational edge, the boundary layer may be under-resolved or not resolved at all. In recent

simulations involving Chattanooga, TN and Washington, DC, (see Nichols et al. [47, 48]), the

computational mesh had nominal viscous spacing of around one meter on all viscous surfaces.

Currier [49] ranmulti-physics simulations onWashington, DC using similar grids. In fact, ‘viscous’

spacings akin to these are quite common in current urban simulations [9, 10, 19, 36, 39].

This research is mainly interested in ‘zeroth’ order geometric accuracy; this does not imply

that the spatial and temporal accuracy of the solution algorithms are poor. In fact, the spatial and

temporal accuracy are at least first order and up to second order in the current implementation

of this research. What ‘zeroth’ order geometric accuracy does mean, is that the geometry may

only be approximated in the mesh. The primary goal of the application is to approximate the

macro-physics in lieu of resolving the micro-physics. With this in mind, the boundary layer mesh
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may be exceedingly under resolved or even non-existent as long as appropriate steps are taken to

ensure that viscous flow physics are accounted for approximately. Furthermore, one could even

imagine a scenario where the accurate representation of the cityscape geometry could be sacrificed

for a ‘close-enough’ representation. Given these considerations, one attractive solution to the

geometrically ‘zeroth’ order meshing problem is non-conformal, octree style meshes.

Octree style meshes are not a new technology and date back to at least 1984 [50,51]. Other

early work, although technically not tree-based, include that of Quirk [52–54] and Berger [55].

Young et al. [56] andPowell [57]were early contributors to tree stylemeshing. Karman implemented

SPLITFLOW [58, 59], HUGG [60], PHUGG [61], and VoxelMesh [62]. Burstedde et al. created

p4est [63], and Tu et al. at Carnegie Mellon developed Octor [64]. Cambridge Flow Solutions [65]

provides a commercial solution inBOXERMesh [66,67], ITASCAConsultingGroup sellsKUBRIX

Geo [68]. NUMECA International [69] provides a grid generation tool called AutoMesh [70]

which includes the octree based software HEXPRESS [71]. This list only names a few octree-

based technologies/software; it is nowhere near a comprehensive list, nor is it presented as such.

Furthermore, numerous successful applications that solve partial differential equations (PDEs)

numerically have implemented native octree stylemeshing: NASAdevelopedCart3D [72], Sampath

et al. at Georgia Institute of Technology developed Dendro [73], Bungartz et al. created a parallel

adaptiveCartesian PDE solver using space-filling curves [74]. Most of the aforementioned software,

however, are designed to be geometry conforming and must take appropriate steps to accurately

represent the specified geometry using unstructured near bodymeshes, projection methods, or other

techniques.
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Optimally parallelizing the octree mesh generation process is a separate problem in and

of itself, and several approaches have been taken to achieve this goal. One popular method used

to obtain optimally parallelized and load balanced octrees is the use of a ‘linear’ octree storage

paradigm. Linear octrees store only leaf elements of the tree in linear arrays. Space filling curves,

like Morton or Z order curves and Hilbert curves, are often used to convert the multi dimensional

octree data into one dimensional arrays; in order to obtain ideal parallelization, these arrays are split

evenly between all available processors. This results in the ability to have functionally perfect load

balancing in terms of elements-per-processor; each processor has the same number of elements

plus or minus one. Additionally, where appropriate, weighting schemes may be used to give certain

elements more or less importance and the sum of the weights may be distributed evenly among

the processors in order to achieve load balancing by a different metric. While linear octrees are

extremely attractive from the parallelization point of view, they do present a problem in contrast with

their hierarchical counterparts: the ability to traverse the tree hierarchically is lost. In this regard,

linear octrees are inferior to hierarchical octrees as tree traversal is significantly slower. Whereas,

while hierarchical meshes offer fast traversal, parallelization of these types of data structures is

much more difficult. Karman and Betro [61] obtained distributed parallelism on hierarchical octree

meshes by uniformly refining a single root octree, or several root octrees, on a single processor until

there exists at least as many octants as the target number of parallel processes. In the event that

there are exactly the same number of octants as parallel processes, each processor is assigned one

of the resulting octants. If the ratio of leaf octants to processors is exactly two or four, each group

of eight leaf octants having the same parent is divided between four or two processors respectively,

otherwise, METIS [75, 76] is used to distribute the available octants. This is an acceptable way to
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generate an initial partitioning of a hierarchical octree data structure, but it does not address nor

provide for the all but inevitable load balancing issues that will arise upon further mesh refinement.

While the efficient, automatic, and parallel generation of an octree style computational

mesh is a significant part of this research, it is not the only aspect that must be considered. The

other major aspect of this work is the application of the resulting mesh to the simulation of large

urban environments. Thus, the physics of the problem must be identified and analyzed. At the

time of this writing, the National Centers for Environmental Information (NCEI) at the National

Oceanic and Atmospheric Administration (NOAA) [77] reports that the windiest location in the

U.S. over a 30 year average is Mount Washington, NH with a mean wind speed of 35.1 mph.

However, the windiest cities reported have much lower 30 year means; the top three cities are

Dodge City, KS, Amarillo, TX, and Cheyenne, WY with mean wind speeds of 13.9, 13.5, and 12.9

mph respectively. These data were last updated in 2008 [78]. This type of low speed fluid flow

can be considered functionally incompressible, however, buoyancy effects should be considered

because pavement, concrete, and buildings can be significantly hotter than the air surrounding them.

Turbulence must also be taken into consideration and an appropriate turbulence model chosen that

adequately resolves the physics without introducing excessive overhead. Therefore, the goal of

this research is to develop a parallel, geometrically zeroth order, incompressible Navier-Stokes

(NS) solver using an automatically generated Cartesian octree grid that approximates the urban

geometry as discussed throughout this introduction. This application takes advantage of the open

source software p4est [63], which provides a framework for parallel octree grid generation upon

which a parallel Navier-Stokes solver will be built.
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1.3 Outline

The remainder of this dissertation is organized as follows. In Chapter 2 the techniques,

algorithms, and design choices that were considered and implemented during the development

of the automatic, parallel, linear forest-of-octree grid generator are explained and demonstrated.

In Chapter 3 the governing equations are presented and the solution methodology explained. In

Chapter 4 various validation cases are presented in order to instill confidence in the quality of the

implementation of the research. Furthermore, several large-scale urban demonstration cases are

shown in order to exhibit the practical applicability of the code. Finally, in Chapter 5, the research

is summarized and recommendations for future work are given.
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CHAPTER 2

GRID GENERATION METHODOLOGY

This chapter explains the methods used to automatically generate the parallel octree grid

and discusses various aspects of the procedure that pose difficulties or present significant benefits

in the overall design process.

2.1 Grid Generation With p4est

The open source p4est library [63] is employed in this project as the framework for the

parallel octree grid generation tool. The p4est library generates a ‘forest-of-octrees’ mesh by

splitting the computational domain up into multiple single octrees via a provided connectivity

deemed the macromesh or macrostructure. Each of the macroelements in the macromesh is itself a

single octree, deemed themicromesh ormicrostructure, andmay be arbitrarily refined independently

of its neighboring octree elements. Figure 2.1 demonstrates what a simple macromesh comprising

eight trees might look like, as well as an example of a corresponding micromesh. The macromesh,

or connectivity, is allowed to take on almost any form as long as each macroface and macroedge

common between two neighboringmacroelements is shared completely or not at all; this implies that

any structured mesh may be used as a connectivity for the p4est. In this way, p4est allows for very

general connectivities, providing functionality for periodicities and rotations in the connectivity

and even degeneracies, e.g. a hexahedron with a collapsed face. This generality makes it possible
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(a) Macromesh (b) Micromesh

Figure 2.1 An example of a macromesh, colored by tree index, and an associated micromesh

to create quadtree representations of, e.g. a Möbius strip or a Klein bottle in two dimensions, and

octree representations of a torus or sphere in three dimensions. A p4estmay also be created out of a

tetrahedral mesh by converting each tetrahedron into four octrees by connecting edge midpoints to

face midpoints to the centroid of the element. This macrostructure defining the connectivity of the

forest is shared among all parallel processes; however, the micromesh is dynamic and completely

distributed in parallel. When an octree contains elements at various refinement levels, neighboring

elements may vary drastically in size; p4est does not restrict size relations between neighboring

microelements, but does provide balancing functions to enforce 1:1 and 2:1 size ratios. This

balancing feature is important as most PDE solvers capable of operating on octree meshes require a

2:1 balanced mesh. Only leaf octants or microelements are stored in the p4est and are given a linear

ordering that corresponds to an extension of the space filling z-shaped/Morton curve [79] that spans

all trees in the forest [63]. This distinction concerning the octree storage paradigm is important and

leads to some very distinct advantages, as well as some disadvantages which will be discussed later.

The parallel partitioning of the forest is trivially accomplished by simply dividing the linear array of

octants into p segments, where p corresponds to the number of parallel partitions; this results in an
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optimal partitioning such that every process owns the exact same number of octants plus or minus

one. The partitioning may also be weighted to give certain elements more importance/weight

during the partitioning. The p4est library is written in the C programming language designed

with distributed parallelism in mind using MPI, and provides the following high level functionality

discussed at length by Burstedde et al. [63]:

• New: Create a new forest.

• Refine: Refine the forest based on user defined callbacks.

• Coarsen: Coarsen the forest based on user defined callbacks.

• Partition: Rebalance the parallel partition.

• Balance: Enforce 2:1 size ratios throughout the forest.

• Ghost: Create inter-process ghost elements.

• Nodes: Create unique global node numbers.

• Checksum: Compute a partition-independent forest checksum.

Note thatNew,Refine, andCoarsen are processor local and do not require communication, whereas

the remaining functions require varying degrees of parallel communication.

2.1.1 Connectivity/Macromesh

For the current project, a connectivity spanning the computational domain must be provided

to p4est by the user. However, only very simple connectivities are required for this application
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and, as such, none of the exceedingly generic connectivities discussed in the previous section

are ever required. The only connectivities necessary for this project are very simple structured

connectivities which may be provided in a few different ways: by providing a structured ‘skeleton’

mesh, a bounding box around the geometry, or explicitly specifying the forest dimensions. The

bounding box approach is the mainmodus operandi and results in isotropic elements only; however,

manually specifying the forest dimensions gives finer control over the number of trees in the forest

and additionally allows for anisotropic mesh generation. This manual approach simply takes the

bounding box extracted from the geometry and splits it into the desired number of trees in each

of the coordinate directions. Lastly, supplying a structured mesh as a ‘skeleton’ for p4est is a

useful way to provide the connectivity when the geometry is planar and Cartesian aligned. Using

a structured mesh in this way guarantees that the geometry is exactly represented in the final grid

and is useful mostly for simple test cases like a flat plate, cavity cases, step cases, etc. when the

geometry must not be approximated and anisotropic grids are required. Grids generated in this way

take as input a structured ASCII AFLR3 UGRID [80] mesh; each hexahedron in the UGRID mesh

becomes a single octree in the forest-of-octrees grid. Internally, the UGRID mesh is converted into

the connectivity required by p4est and defines the computational domain. These structured UGRID

files may be anisotropic but must be planar and Cartesian aligned. In this manner, all elements in

the connectivity will exist in the final octree mesh.

In cases where it is not possible to use a planar, Cartesian aligned skeleton mesh for the

connectivity, i.e., for most real cases, bounding box approaches must be used. These methods

require that the discretized watertight geometry be provided via an Xpatch [81] facet file. However,

anywatertight geometry representation could in theory be used if the geometry library was extended
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to support it. The bounding box is extracted from the provided geometry representation and is

subsequently subdivided into some number of isotropic or anisotropic hexahedra to create a ‘brick’

connectivity for p4est. When isotropic elements are desired, the bounding box is tweaked/stretched

in any of the three directions if necessary such that the resulting connectivity will be isotropic. It

should be noted, though, that the bounding box is never shrunk to guarantee isotropy; it is only

stretched. This assures that the provided geometry is always present in the resulting octree grid.

However, if isotropic elements are not necessary, the generation of the connectivity is easier; the

desired forest dimensions may be specified at runtime, and the bounding box is simply subdivided

into said dimensions.

The main disadvantage of these bounding box approaches is that the geometry must be

provided as a water-tight discretization; for cityscape geometries, this may pose a significant

problem. One way that this could be significantly alleviated is by extracting the geometry from

available geographic information system (GIS) data like digital elevationmodel (DEM), triangulated

irregular network (TIN), shapefile, keyhole markup language (KML), or GeoTIFF data, to name

just a few. PALM [17,18], QUIC [16], and MISKAM [14,15] all provide functionality to generate

their grids this way. One disadvantage of this approach, however, is that significant building three-

dimensionality may not be properly represented in these formats, so buildings with curved surfaces

or complicated architecture may be difficult or impossible to represent or even approximate.

2.1.2 Refinement of the Micromesh

Once the brick connectivity has been created using the bounding box, the forest-of-octrees

meshmust be refined to capture the geometry. This refinement is achieved by iterating over the forest
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using the refinement function provided by p4est, which itself calls a custom geometry refinement

callback function. For each element in the forest, the callback function determines if the element

contains or is intersected by any of the geometry facets. If so, the element is refined if it has not yet

reached the maximum allowed refinement level defined by the user. The approach p4est employs to

achieve this is different from what is normally used to refine an octree since the p4est grid is stored

linearly, i.e., only octree leaves are stored, and no information about ancestors/descendants is kept.

The more traditional approach, which takes advantage of the hierarchical octree data structure, is to

pass facets one at a time down the tree hierarchically to determine which element(s) contain them;

this hierarchical traversal is optimal for searching an octree structure but is difficult to parallelize.

On the other hand, linear octree data structures are trivial to parallelize by dividing the linear array

of leaf octants among the available processors. This functionality comes, however, at the cost of a

less efficient, more complicated traversal [82]. Examples of this are shown in Figures 2.2 and 2.3,

demonstrating the worst case scenario. In this simple example, the red element is the traversal

target, and the green element is the first element in the linear storage. Hierarchical traversal takes 5

steps to reach the target element for both the quadtree and octree structures, whereas linear traversal

takes 12 steps for the quadtree structure and 28 steps for the octree structure, literally visiting every

element in the tree before finding the desired element. Note that this figure also clearly illustrates

the origin of the term ‘z-curve’, often associated with space-filling Morton curves. A consequence

of this linear storage is that as the p4est refinement function traverses the tree it must search the

entire geometry facet list for each element it finds in the tree in order to determine whether any of

the facets intersect the current octree element. A hierarchical octree has only to search decreasing

sets of facets for each element it visits as the hierarchical nature of the octree provides means to
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(a) Linear traversal (b) Hierarchical traversal

Figure 2.2 Differences between linear (a) and hierarchical (b) quadtree traversal

eliminate subsets of facets that are not contained by ‘parent’ elements. The p4est approach is

clearly sub-optimal and even prohibitive for large geometries. There are, however, a few things that

can be done to make this inefficiency less problematic. One involves dynamic repartitioning during

the refinement process, and the other uses a temporary hierarchical octree to store geometry facets

for rapid retrieval. These optimizations are explained below.

There are two refinement modes in p4est: recursive and non-recursive. The recursive mode

will refine an element and also consider the eight newly created children elements for refinement

recursively, whereas the non-recursivemodewill replace an element with its eight children elements

but will not consider any of the newly created elements for refinement. Each of these approaches

have certain advantages, but the non-recursive mode is preferred for geometry refinement for one

important reason: it allows for dynamic re-partitioning after each single non-recursive refinement

pass. This eliminates potentially large load imbalances caused by certain processors having refined
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(a) Linear traversal (b) Hierarchical traversal

Figure 2.3 Differences between linear (a) and hierarchical (b) octree traversal
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their portions of the forest more than others. Experience during this research shows that this

non-recursive approach can prove to be more than an order of magnitude faster than its recursive

alternative during geometry refinement.

This application further alleviates the octree traversal problem by creating a single, relatively

coarse, hierarchical octree that stores the entire geometry. This intermediate octree may be used to

quickly generate a list of facets contained in a specific spatial area. The p4est refinement callback

uses this hierarchical geometry octree each time it visits a new element to quickly generate a list of

facets spatially local to the current element, thus almost minimizing the number of facets it must

query for intersection. This procedure could be improved by creating subsets of processor local

facets, so that no processor ever needs to process facets outside of its spatial partition.

Elements containing or intersected by elements of the geometry will be refined provided that

they have not already reached the maximum octree level allowed. The software provides another

way to specify a refinement stopping criterion for finer control over this refinement process. This

approach causes the refinement to be based on the size of the current octree element as it compares

to the size of the intersecting geometry elements. It may be undesirable for the octree to refine

further in regions where the octree elements are already sized commensurately with the surrounding

geometry facets. The user may specify a factor that scales the ratio of the average dimensions of

both the octree element and geometry facets to give maximum control over this process. This logic

may also be disabled such that any intersected octree element will be refined down to the maximum

allowable level regardless of the relative size of the nearby geometry facets.

There are situations when parts of the geometry that are important for water tightness, extent

definition, etc., are not necessarily important for use during mesh refinement. One specific example
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of this is farfield and sometimes ground boundaries; while these are important for the definition

of the geometry/computational domain, it is undesirable to have mesh refinement in these areas,

or at least undesirable to have the same level of refinement in these areas as in areas near other

solid boundaries. This issue has been addressed herein by the addition of a boundary attribute

specifying that certain boundaries are not to be used for mesh refinement. The attribute is called

‘norefine’ and any boundary marked as a ‘norefine’ boundary will be ignored during the geometry

refinement callback execution, which ensures that mesh refinement will not happen in areas of the

domain where it is undesirable.

2.1.3 Quality Control

Once the refinement callback has completed, the forest-of-octrees has been refined down

to a maximum allowable level anywhere it is intersected by geometry facets. This refined forest

is of low quality as the 2:1 balance requirement is not yet enforced. Figure 2.4 demonstrates the

nature of this low quality; notice that near the spherical body, element sizes vary dramatically over

short distances, and many elements have neighbors whose level in the octrees differ by more than

one. This is an unbalanced octree, and the next step is to balance the refined forest; p4est also

provides a balancing function, and this function provides all necessary logic required to enforce

the specified balance throughout the forest in parallel. The balancing algorithms use non-iterative

communication afforded by the concept of the ‘insulation layer’ to optimally balance the forest

across processor boundaries; this approach and associated algorithms are explained in detail by

Sundar et al. [83]. When the 2:1 balancing p4est function has completed, the p4est mesh is now

refined and balanced wherever it is near geometry. This mesh is of much higher quality and is
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Figure 2.4 Poor quality mesh without 2:1 balance after geometry refinement

now technically a valid mesh for most finite volume Navier-Stokes solvers. Figure 2.5 shows a 2:1

balanced mesh. The main problem at this point is that the elements change size very rapidly as they

grow away from the geometry surfaces; every time an element has a neighbor at a different level

than its own, their volume ratio is eight. As such, it is desirable to control the number layers of

uniformly sized elements that must exist at a certain level before the refinement level may change.

The application requires the user to specify this number of layers—deemed buffer layers—which

allows for finer control over the gradation of element sizes. These buffer regions make for a higher

quality mesh. Note, because of the way octree refinement creates two layers at a time, precise

control over these buffer regions is not possible. For example, if there is only one layer of elements

at level x and the user specifies a two-layer buffer, the elements adjacent to the elements at level x

will be refined causing there to be three layers of elements at level x. This is the nature of octree

meshes and cannot be overcome. Quality control is implemented by looping over the balanced
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Figure 2.5 A 2:1 balanced mesh without buffer layers

forest from the deepest level up, i.e. from the bottom up†. During the loop, bounding boxes are

generated around each element at the current level and the dimensions of each bounding box are

extended by an appropriate factor to take into account the buffer region. For example, if a buffer

region of four layers has been specified, the dimensions of all bounding boxes are scaled by a factor

of eight so that they overlap all elements within four body lengths in all directions of each element

at the current level. The bounding boxes are then passed to the p4est refinement function using

a custom callback function, which enforces that each element overlapping any bounding box is

refined down to the target level. After each pass through the mesh, the 2:1 balance constraint must

be enforced for proper buffer region propagation. This quality refinement continues until the entire

mesh has been traversed from the bottom up, at which time the computational mesh is complete.

†As a consequence of the linear storage of the mesh elements, this ‘bottom up’ traversal is implemented as repeated
loops over the forest, each subsequent loop targets elements at a higher level.
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Figure 2.6 demonstrates how this buffer refinement process modifies the grid at each pass and

results in a higher quality final mesh.

(a) Pass one (b) Pass two

(c) Pass three (d) Pass four

(e) Pass five

Figure 2.6 An example of buffer control with a six element buffer

Support for areas of custom refinement has also been implemented. Two different types of

custom refinement are supported: bounding boxes and baffles. Bounding box custom refinement
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allows for a user to specify that the region in space bounded by a given box should be at a user-

specified refinement level. Baffle custom refinement has been implemented, such that a user may

input any arbitrarily shaped geometry in space—not just a plane—and any elements intersecting

said geometry will be refined to a specified level. This allows for finer control over refinement in

wake regions or other regions away from geometry.

2.1.4 Mesh Extraction and Boundary Recovery

Now that the grid has been generated, boundariesmust be found andmarked. This ‘marking’

process is one of the last phases of the grid generation process. There are two ways the marking may

occur depending on which mode is used to generate the p4est octree mesh. If a skeleton UGRID

mesh is provided, there are no elements cut by geometry. Thus, faces must be marked. However, if

a bounding box is used, there will be mesh elements intersected by geometry facets, thus elements

must be marked as either in or out of the geometry, or cut by it. Since the latter approach uses a

bounding box to define the computational domain, it is highly likely that some resulting elements

in the final octree discretization are outside of the domain of interest. For this reason, one must be

able to query whether a certain element is in or out of the geometry in order to determine which

elements in the computational mesh are actually inside the geometry and, thus, are a part of the

computational domain. This querying logic is provided by the library handling the geometry via a

ray-tracing algorithm†. Another p4est callback is used to mark either the mesh elements as cut, if

the geometry is not Cartesian aligned and provided by an Xpatch [81] facet file, or their faces, if a

†The geometry library that provides this ray-tracing functionality is an in-house library developed by Dr. Steve L.
Karman Jr. at the University of Tennessee at Chattanooga SimCenter.
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Cartesian geometry is provided via a UGRID [80] structured skeleton mesh. This callback works

much like the geometry refinement callback. It iterates over the p4est mesh elements and, using

the temporary hierarchical geometry octree, determines which facets, if any, are spatially local to

the element. If the method finds that the element contains or is intersected by any geometry facet

or facets, that element is marked as cut. This marking process is slightly different, and actually

easier, when a UGRID skeleton file has been provided. In this mode all elements are interior to

the mesh, so no element needs to be marked as cut. Also, boundary elements are found, and their

exposed faces are marked appropriately using tags from the adjacent geometry facet(s).

At this point, the p4est forest-of-octrees structure is complete, and a mesh object must be

extracted. This mesh provides element-to-element connectivity information, which is not explicitly

available from the native p4est data. Functionality is provided via the p4est API to loop through the

mesh while providing necessary information about all neighbors (e.g. the neighbor’s level, metrics,

etc.). It is important to note that this mesh contains all elements in the p4est forest-of-octrees, even

elements that are outside of the geometry. So, this algorithm requires that the elements be given

a ‘status’, i.e., they are marked as either part of the computational mesh or not part of it. There

are four valid statuses for elements in the p4est mesh: in, out, cut, or boundary. The boundary

status is the only status that might need explaining. It marks elements that contain boundary faces;

these elements are also in, but they are either next to elements marked cut, in the case of a mesh

generated using a bounding box, or one or more of their faces have no neighbors, in the case

of a mesh generated using a UGRID skeleton connectivity. Element statuses are generated via a

flood-fill algorithm. This procedure starts by iterating over the p4est mesh until an element with an

unknown status is located. The actual status of this element is then determined by querying whether
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the element is in or out of the geometry. Note that the only possible statuses in the mesh at this

point are either cut or unknown; all unknown elements should be delimited by cut elements. Then

the algorithm ‘floods’ through this element’s neighbors and its neighbor’s neighbors etc., marking

their statuses the same as its own and stopping only when it finds elements with cut statuses. This

flood-fill pass may occur multiple times, depending on the geometry, until all elements have one

of the four valid statuses. Also, boundary elements are marked during this pass. When an element

is adjacent to a cut element and it would normally be assigned an in status, it is marked instead as

a ‘boundary’ element. At this point, it is important to note that this flood-fill algorithm poses a

load-balancing challenge as the amount and locality of work depends highly on the geometry. This

is a difficult challenge to overcome and will be explored in more depth later.

Now that the mesh has been generated it is important to note that the manner in which the

forest is partitioned needs to change for optimal solver load balancing. Before this point, during

the mesh generation, it usually makes sense for each processor to have an equal number of mesh

elements, and this uniform partitioning be maintained dynamically as much as possible. This

element balancing is especially important during parts of the algorithm when many elements might

be added to the mesh. Now, however, load balancing must be obtained by a different metric. At

this point, the simulation is beginning, and only elements contained in the computational mesh,

i.e. elements with in or boundary statuses, have any work associated with them. For this reason

the partitioning approach now only gives weight to elements with these active statuses. With this

partitioning scheme, processors may have dramatically different total element counts, but as long as

they own equal numbers of active elements, load balancing is achieved because inactive elements

are simply ignored in the solver.
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2.2 Approximate Nature of Resulting Computational Mesh

One important distinction that must be made about the computational meshes that are

produced during this grid generation process is that the geometry is never exactly represented

in the final mesh, i.e., this algorithm does not implement a cut-cell, nor projection method. Any

element in the forest that contains or is intersected by any part of the geometry is eliminated from the

computational mesh. This procedure is different from grids that use a cut-cell or projection method,

which allows for exact representation of any geometry. This accurate geometry representation is

accomplished using a cut-cell method by modifying any element that is cut by geometry so that the

boundary facet is included in the mesh. This approach obviously creates a mesh that contains more

than just hexahedral elements near boundaries and has the potential to create poor quality ‘sliver’ or

‘small’ elements as well [84,85]. Projection methods are different from cut-cell methods, however,

they tend to exhibit similar difficulties. Since one of the goals of this project is to quickly generate

‘zeroth’ order solutions on cityscape geometries, it was decided that exact geometry representation

was not necessary nor desirable. Also, even highly curved geometries may be fairly accurately

approximated by allowing the forest to refine down to very low levels. Figure 2.7 demonstrates how

the accuracy of the representation improves as the maximum level in the octree mesh is allowed to

increase.

However, by eliminating elements that are cut by geometry, there is the potential to end

up with a highly undesirable ‘stair-stepping’ feature when increasingly larger elements are cut

by geometry and eliminated from the final computational mesh. Figure 2.8a demonstrates this

behavior, note that in this figure the red elements are intersected by the geometry and are not

part of the computational domain. This is exacerbated when combined with the ‘norefine’ feature
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(a) Refinement level: 8 (b) Refinement level: 9

(c) Refinement level: 10 (d) Refinement level: 11

(e) Refinement level: 12 (f) Refinement level: 13

Figure 2.7 Demonstration of improved geometry representation on a tractor trailer model as octree
refinement levels increase
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(a) Without keep attribute

(b) With keep attribute

Figure 2.8 Demonstration of the effect of the ‘keep’ boundary attribute on an urban geometry
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and usually happens in ‘farfield’ regions of the mesh. In order to fix this complication, a ‘keep’

boundary attribute has been added. Boundaries that do not require refinement, but that are in areas

where this ‘stair-stepping’ character of the grid is undesirable, may be marked with the ‘keep’

attribute. Any element intersected by a boundary marked with this attribute will be marked directly

as a boundary element in lieu of a cut element, forcing it to be a part of the final computational

mesh and eliminating the problematic ‘stair-stepping’ feature. Figure 2.8b shows how the ‘keep’

attribute improves the quality of the mesh.

Another place that the geometry-approximating characteristic of this software may produce

less than ideal grids is in urban geometries where the street canyons or alleys are not Cartesian

aligned. This leads to sub-optimal discretization of buildings in the mesh as seen in Figure 2.9.

While it is certainly not possible to completely fix this problem in any real situation, it may be

(a) Cartesian aligned street canyons (b) Non-Cartesian aligned street canyons

Figure 2.9 Cartesian versus non-Cartesian aligned street canyons
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significantly improved by rotating the urban geometry such that the majority of street canyons align

with the Cartesian axes.

2.3 Parallelism and Parallel Performance

As opposed to hierarchical octree data structures, linear octree storage provides for optimal

parallelism. In order to maintain this optimal parallelism however, octant repartitioning must

occur at appropriate times during the mesh creation process. As noted in Section 2.1, Refine is a

processor local routine so anytime a refinement callback is executed an octant imbalance is likely.

Furthermore, the Balance function has the potential to create many new octants while ensuring 2:1

balance, and, even though it employs communication during its execution, it does nothing to ensure

proper repartitioning. Therefore, calls to the p4est Partition function should be made after every

call to the Refine and Balance functions. These two p4est functions are used liberally, especially

during the quality refinement stages. A parallel framework is provided by p4est within which the

current application must function; thus, for ease of use, all data that may be required during parallel

communication should reside within the p4est data structures. Custom user data may be created

both at the forest level and at the individual octant level within p4est. Custom data not unique to

each octant may be stored at the forest level, whereas custom data that may vary from octant to

octant must be stored in each individual element; e.g., the connectivity/macromesh and geometry

are stored at the forest level, whereas the solution state vector, among other things, is stored in

each of the elements in the micromesh. Using the Ghost function, p4est provides an interprocess

neighbor mapping used to synchronize parallel data across partitions, as well as ways to perform

said synchronization.
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One great advantage of this approach to parallel grid generation is that the domain is not

statically decomposed a priori; it is decomposed dynamically throughout the generation process.

As mentioned earlier, one place where this dynamic decomposition is particularly advantageous is

during the geometry refinement stage. During this phase of the grid generation process, the grid

goes through the most dynamic changes and transforms from a simple connectivity of root octants

into a nearly final version of the mesh. As this refinement process evolves, areas of the mesh

that are near important parts of the geometry can see drastic changes in element counts. For this

reason, the refinement process is done non-recursively a single level at a time with repartitioning

occurring after each pass. Using this software, a mesh is generated on a large urban geometry,

shown in Figure 2.10, which comprises 927 buildings and 4.25 million facets. Figure 2.11 shows

the speedup curve attained while generating this mesh using a varying number of processors.

This strong scaling speedup curve demonstrates how advantageous this dynamic partitioning can

be in practice. While the speedup does taper off as the number of processors gets larger, it is

actually super-linear at first. This strong scaling behavior, where the speedup curve drops well

below the ideal speedup, is characteristic of many parallel applications and is often explained by a

communication imbalance and/or a load imbalance. In this specific case, where the grid contains

only approximately 6.2 million elements, there might simply be too few elements for the 256 and

512 processor cases, approximately 24 and 12 thousand elements per processor respectively, which

could cause the communication costs to take up a disproportionate amount of the grid generation

time. The potential impact of load imbalance on the parallel efficiency of the application is explored

in the remainder of this section.
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(a) Top view

(b) Perspective view

Figure 2.10 A large urban geometry containing 927 buildings colored by index
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Figure 2.11 Speedup curve obtained creating an urbanmesh containing approximately 6.2million
elements

Unfortunately, given the optimal partitioning of the grid afforded by p4est in terms of

elements per processor, there are still algorithms that are difficult to load-balance. The flood-fill

algorithm, among other methods that are highly dependent on the geometry, is a good example

of this and may play a role in the sub-optimal speedup shown in Figure 2.11. These algorithms

are much more sensitive to the geometry when it comes to load-balancing; while all processors

have functionally the same number of elements, they might have very different percentages of the

geometry which can cause significant load-imbalances. Repartitioning schemes that take proximity

to geometry into account as a weighting for the partitions will improve this imbalance. One such

scheme that has been explored during this research creates a ‘distance’ field by looping over the

mesh and marking each element with the number of elements or the number of levels that lie
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between it and the nearest target boundary; i.e., an element adjacent to a target boundary would

receive a level value of one, while all of its neighbors that are not directly adjacent to the boundary

would receive a value of two, and all of their neighbors not adjacent to any elements marked with

a value of one would get marked three, etc. For an example of this, see Figure 2.12. By choosing

Figure 2.12 Example of the distance map used to repartition the mesh for better load balancing
during the flood-fill algorithm

a weighting that favors elements near the target boundaries, i.e., with level values close to one, the

resulting partitions can be shown to contain approximately equal numbers of these elements. As

seen in Figure 2.13, this approach does produce better load balances for these geometry-centric

algorithms, but it does not completely alleviate the problem. In the case of the flood-fill algorithm,

it can be shown that the load balancing is directly proportional to the number of individual buildings

each process owns. This is because, for each building in a single partition, the owning processor

must query the underlying geometry to determine whether an element is inside or outside of the
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computational domain at least once per building. The root cause of this sub-optimal load balancing

stems from the fact that while each processor can be influenced to own an approximately equal

number of elements near target boundaries, it is difficult to enforce that each processor contains

approximately equal numbers of individual buildings. Therefore, some processors are required to

make many more queries to the geometry library than others.
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Figure 2.13 Improved distribution of target elements using new geometry-centric repartitioning
scheme

This inefficiency was explored further during this research, and a method to significantly

improve this load imbalance was discovered. As previously discussed, the source of the imbalance

is caused by certain processors owning disproportionately more buildings than others. As such, it

is desirable to weight the forest in such a way that all processors can own approximately the same
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number of buildings in their partitions. In order to count the number of buildings each processor

owns, each building must be identifiable as a single, unique structure in the geometry. Logic

has been added to the geometry library that is able to take a single geometry boundary tag that

is the same for all buildings and split it into one unique boundary tag for each distinct building

contained in the geometry. In the event that the buildings were not tagged separately from the

terrain, one could extend this logic to identify where buildings are located based on the angle

between adjacent facets. Now that each building has a unique boundary tag, each processor may

count the number of buildings it owns and identify which elements contain facets belonging to each

building. Since each building should ‘weigh’ the same, regardless of its size, the following scheme

has been implemented. After the forest has been refined and the intersected elements marked as

cut, the forest is traversed, and the maximum number of elements intersecting any single building

is counted. Once this number is known, all elements intersecting this building are assigned a

weight of one while all other element-per-building counts are normalized by this number in such a

way that the sum total of all element weights per building are approximately equal. For example,

if the maximum number of elements-per-building is 1000, each of these 1000 elements will be

assigned a weight of one, and if there is a building discretized by 500 elements, each of these

elements will get a weight of two, while each element associated with a building discretized by

100 elements will get a weight of ten, etc. Note that only intersected elements are assigned weights

using this approach. Repartitioning the forest using this new metric results in a much more uniform

distribution of buildings per process and this does improve the overall load balancing of the flood-fill

algorithm. Figures 2.14 and 2.15 demonstrate the improved building distribution facilitated by this

new load-balancing algorithm. Even this, however, does not completely eliminate the imbalance.
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Figure 2.14 Demonstration of how the distribution of buildings changes with geometry-optimized
partitioning on 32 processors

The required geometry query used to determine if an element is in or out of the geometry executes in

constant time and, even though the new building distribution is much improved, it is not completely

uniform, and, therefore, neither is the load balance. Another of the outstanding problems is that a

single process may own a single building, but it is not guaranteed to own the entire building, and,

as such, multiple geometry queries will need to be executed for the building in question instead of

only one. Table 2.1 quantifies the load balance improvements achieved for the flood-fill algorithm

run on the urban geometry shown in Figure 2.10. Notice how the difference between the minimum

and maximum times required by any single processor for this algorithm is relatively much smaller

after the repartitioning. While this is a difficult problem to optimally load-balance, the steps taken

do result in a significant improvement.
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Figure 2.15 Demonstration of how the distribution of buildings changes with geometry-optimized
partitioning on 64 processors

To be clear, this load-balancing problem is very geometry-specific; geometries that do not

exhibit the same type of complexity as urban geometries, i.e., ones that do not require hundreds

or thousands of ‘in/out’ queries to the geometry library, should not suffer as badly from this load

imbalance.

Finally, in Figure 2.16, the improved speedup curve is compared to the original. Notice

that the speedup curve is indeed better but still exhibits the same behavior at the higher end of the

curve. This seems to point to the fact that communication imbalances are the likely culprit in this

case and that the overhead incurred by the load balancing logic may outweigh the benefits as the

problem scales.
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Table 2.1 Minimum and maximum execution times required by the flood-fill algorithm on any
single processor in a parallel partition before and after the improved, geometry-centric
partitioning

partition
scheme

16 32 64 128 256 512

min max min max min max min max min max min max

old 17.18 115.73 7.16 76.69 1.17 60.47 0.57 37.85 0.56 24.53 0.55 14.9
new 41.58 56.56 19.22 37.31 11.64 22.76 5.05 16.89 2.75 15.54 1.15 12.31

A final note concerning the surprising ‘super-linear’ speedup results presented in this

section is given here before moving on. Super-linear speedup is a sought-after and not-often seen

phenomenon in speedup studies; it is usually caused by improvements in cache hits resulting from

optimal cache line sizes produced by a particular parallel partitioning. When the cache contains

much, or even all, of the data required for a set of computations, memory access times may decrease

dramatically; this reduction in memory access times may result in speedups in addition to those

obtained from the actual parallel computations. Furthermore, speedup studies are traditionally

performed in a manner different from the way speedup has been studied in this research. Usually,

a speedup plot will be generated on a static problem size, and the only variable is the number

of partitions used to decompose the problem. For example, in CFD, the scalability of particular

parallel solver may be of interest. The scalability of the solver would be studied by using a single,

static mesh and exploring the run-times of the parallel solver on this static mesh as the number of

processors grows. This approach is quite different from the one used in this research; the parallel

grid generation process herein is not static in any way, and the decomposition of the mesh may

change drastically within any single execution of the parallel code. What this means is that, not
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Figure 2.16 Speedup curve obtained after load balance improvements

only does the number of processors vary during the speedup study, the number of elements-per-

process also varies dynamically during the execution of the parallel code. This is in stark contrast

to the traditional approach described above. So, while it is possible that the optimal partitioning

provided by the underlying p4est code does yield optimal cache lines, which may contribute to the

observed ‘super-linear’ speedup, it might not be a fair comparison considering that this may not be

a conventional application of a speedup study. Nevertheless, the data does not lie: the observed

run-times exhibit very good trends regardless of whether this is a proper speedup study.

In order to give credence to a statement made earlier, alluding to the fact that the sub-optimal

speedup towards the higher end of the curve (as the processor count approaches its maximum) may

be related to low per-process element counts, the same case has been re-run two times on 128,
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256, and 512 processors, each time the maximum level allowed in the forest is increased by one.

The maximum level allowed in the original mesh is 9, the next larger case allows a maximum of

10 levels, and in the final case 11 levels of refinement is allowed. The original mesh contains

~6.2 million elements, the next mesh ~24.8 million elements, and the final mesh ~57.3 million

elements. Table 2.2 shows the approximate element-per-process count for all three cases; the two

larger cases both contain significantly more elements on each process than the original, and should

exhibit improved communication-to-work ratios (or surface-to-volume ratios). The grid-generation

Table 2.2 Approximate per-process element count distribution

Case Processor Count

128 256 512

Small 49,000 24,000 12,000
Medium 195,000 97,000 48,000
Large 449,000 224,000 112,000

times for each of the three cases are displayed in Figure 2.17; this plot corroborates the theory that

poor surface-to-volume ratios are at least partially to blame for the speedup degradation. Note that

even though Figure 2.17 is meant to illustrate grid generation speedup characteristics, it plots the

actual grid generation times in lieu of speedup, and thus, it may require some extra explanation as

it does not look like either of the speedup figures (Figures 2.11 and 2.16) presented previously. In

this plot, the dotted lines represent a perfect speedup for the actual case run, shown in the figure by

the solid lines of the same color. Each time the number of processors doubles, the runtime should

decrease by a factor of two, which is the same as saying that the slope of lines connecting each
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consecutive point should decrease by a factor of four. In this figure, notice that the actual timing

curve for the smallest case has all but leveled out by the time it reaches 512 processors and it is not

parallel to its associated ideal timing curve. However, as the cases get bigger, the slopes of the final

line segments connecting last two time points become much closer to being parallel to their ideal

timing curve.
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Figure 2.17 Grid generation timing curve demonstrating improved speedup behavior as the mesh
size grows

It is also worth noting, that since this process is so dynamic in nature, the end product is not

exactly the same as the number of processors varies. This slight variation in the final mesh is likely

not significant and can be explained by the fact that the ‘path’ taken to obtain the final product is

indeed different for each processor count. However, it is well known that numerical solutions to
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PDEs can be grid-dependent and so any variance in a grid caused simply by changing the number

of processors should be quantified to enable a user to gain an understanding about how changing

the number processors in a simulation might affect the overall flow solution.

2.4 Adaptive Mesh Refinement

This framework also provides solution-based adaptive mesh refinement (AMR); the mesh

may be refined and coarsened based on user specifiable threshold values of a user specified solution

feature. This functionality is built into the basic p4est framework and all that must be provided are

three callback functions: a refinement callback, coarsening callback, and agglomeration callback.

The refinement and coarsening callbacks must simply provide the appropriate logic to determine

whether the current element should be refined, or the current family of elements should be coarsened,

based on the particular solution feature and the input threshold values. The agglomeration callback

must also be provided to each of the refinement and coarsening callbacks and is used to either assign

solution values to the eight new child elements based on the solution state of the parent element

(in the case of refinement) or average/agglomerate the solution data from eight child elements

into a parent element (in the case of coarsening). Solution gradient data is used to extrapolate

solution data from a parent element onto each of its child elements during refinement if it is

available, whereas a simple averaging procedure is used to combine the solution data from all eight

child elements into their parent during coarsening. After the refinement and coarsening passes

are made through the mesh, the 2:1 balance restriction is almost certainly no longer enforced;

thus, the balancing function must be invoked. The same agglomeration callback provided to the
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refinement and coarsening functions must also be provided here during the balancing pass to allow

the redistribution of solution data while the mesh changes during balancing.

This logic does allow for boundary refinement; however, currently the representation of

the geometry in the mesh never actually changes. Existing boundary faces may be subdivided

potentially multiple times, but the original planar mesh face will always remain in the mesh. This

also means that when boundary elements are refined, none of the new elements are checked for

geometry intersection, which means the geometry must be adequately resolved in the originalmesh

as the original representation will never change during AMR. Figure 2.18 demonstrates this issue.

(a) Grid before AMR (b) Grid after AMR

Figure 2.18 A demonstration af AMR and boundary refinement; notice how the modified mesh
(b) contains all the boundary faces present in the original mesh (a) but they are more
refined, and the modified mesh does not represent the geometry better

Coarsening is not allowed when any child element in the group of eight children is not itself

part of the original mesh or is a boundary element; i.e., if any one of the children elements contains

a status of out, cut, or boundary, that group of elements is no longer considered for coarsening.

46



Boundary coarsening is a feature that may be valuable to include, but the logic required for its

implementation is significantly more difficult than that required for boundary refinement.

At runtime the user may specify the function used for AMR as well as the threshold values

used to determine when refinement or coarsening is required. Currently, only vorticity magnitude

is supported for solution mesh adaptation, but adding new functions is a trivial exercise. Also, the

frequency at which AMR occurs during the solution iteration is another parameter that the user

may specify at runtime. In this manner the AMR method may be called periodically (e.g., once

every five or ten time steps) as the user sees fit. Figure 2.19 demonstrates the AMR functionality

in action on the revised simple frigate shape (SFS2) geometry. As the grid changes dynamically

Figure 2.19 A demonstration of unsteady AMR on the SFS2 geometry
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during AMR, repartitioning is required to maintain an acceptable load balance. This balance is

achieved easily via the previously discussed Partition function provided by p4est. Figure 2.20

demonstrates how the parallel partitioning changes to accommodate the AMR mesh.

(a) Solution and grid before AMR (b) Parallel partition before AMR

(c) Solution and grid after AMR (d) Parallel partition after AMR

Figure 2.20 Dynamic AMR and load balancing
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CHAPTER 3

SOLUTION METHODOLOGY AND ALGORITHMS

An initial goal of this research is to simulate relatively low speed flows in urban environments

where buoyancy may play a significant role. As such, the appropriate physics are modeled by the

unsteady, incompressible, Navier-Stokes (NS) equations. However, there is a complication that

arises within the context of the incompressible NS equations: the pressure becomes decoupled

from the system when incompressibility is enforced, and, in order to maintain the hyperbolicity

required by most time-marching CFD schemes, pressure must be recoupled to the other equations.

The pseudo-compressibility method is the approach used herein to address the problems related to

pressure decoupling; see Chorin [86] and Taylor [87] for details about this method. Furthermore,

as heat transfer/buoyancy is important in the simulation of plume propagation, the energy equation

cannot be ignored, and requisite steps must be taken to ensure proper coupling with the energy

term. This work mimics the work of Kress [88] and Er [89]. This chapter defines the governing

equations utilized, as well as the numerical formulation, spatial and temporal discretizations, and

source and boundary terms used for their solution.

3.1 Governing Equations

In this section, the Navier-Stokes equations will be given, starting with the most general

compressible form of the equations, which will subsequently be simplified and augmented until
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the required incompressible NS equations with pseudo-compressibility and heat transfer terms are

presented. The resulting equations are a subset of the compressible NS equations.

3.1.1 Compressible Navier-Stokes Equations

The Navier-Stokes (NS) equations can be written in conservative form as

∂Q(x, t)
∂t

+ ∇ · (F − Fv ) = S in Ω (3.1)

where Ω is a closed domain. The vector of conservative flow variables, Q, and the inviscid and

viscous Cartesian flux vectors, F and Fv , are defined by

Q =




ρ

ρu

ρv

ρw

ρE




F x =




ρu

ρu2 + p

ρuv

ρuw

(ρE + p)u




F y =




ρv

ρuv

ρv2 + p

ρvw

(ρE + p)v




F z =




ρw

ρuw

ρvw

ρw2 + p

(ρE + p)w




(3.2)
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F x
v =




0
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τx y

τxz

uτxx + vτx y + wτxz + κ
∂T
∂x




F
y
v =




0

τyx

τy y

τy z

uτyx + vτy y + wτy z + κ
∂T
∂ y




F z
v =




0

τzx

τz y

τzz

uτzx + vτz y + wτzz + κ
∂T
∂z




(3.3)

where ρ, p, and E denote the fluid density, pressure, and specific total energy, respectively. The

vector u = (u, v, w) represents the Cartesian velocity vector. The pressure is determined by the

definition of total energy and the equation of state for an ideal gas,

p = (γ − 1)
(
ρE −

1
2
ρ(u2 + v2 + w2)

)
(3.4)

where γ is defined as the ratio of specific heats, which is 1.4 for air. Temperature and thermal

conductivity are represented byT and κ, respectively, and are related to the total energy and velocity

as

κT = γ
(
µ

Pr
+
µT

Pr T

) (
E −

1
2

(
u2 + v2 + w2

))
(3.5)
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where Pr and PrT are the ‘laminar’ Prandtl and turbulent Prandtl numbers which are set to 0.72

and 0.9, respectively. The fluid viscous stress tensor, τ, is defined for a Newtonian fluid as

τi j = (µ + µT ) *
,

∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j+

-
(3.6)

where the summation convention has been used. Subscripts i, j, k refer to the Cartesian coordinate

components of x = (x, y, z) and δi j is the Kronecker delta. In addition, µ refers to the fluid dynamic

viscosity and is obtained via Sutherland’s law, while µT denotes a turbulence eddy viscosity, which

is obtained from a turbulence model. The source term, S, in equation (3.1) may take on many

forms and often contains body force terms as well as turbulence model terms.

3.1.2 Incompressible Navier-Stokes Equations

In situations where the characteristic speed of the flow is significantly less than the fluid

speed of sound, c, i.e., u � c, fluid compressibility becomes negligible; i.e. density becomes a

very weak function of pressure. This implies that the fluid density ρ remains functionally constant,

both spatially and temporally, throughout the flow field. Therefore, the incompressible Navier-

Stokes equations may be derived from their compressible counterparts, again given in general

by equation (3.1), by treating ρ as a spatial and temporal constant ρ∞. Dividing each term of

equation (3.1) by ρ∞ yields the final form of these equations. In this case the vector of conservative
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flow variables Q and the inviscid Cartesian flux vector F given in equation (3.2) become

Q =




0

u

v

w




F x =




u

u2 +
p
ρ∞

uv

uw




F y =




v

uv

v2 +
p
ρ∞

vw




F z =




w

uw

vw

w2 +
p
ρ∞




(3.7)

Note that the viscous Cartesian flux vector Fv remains as defined in equation (3.3) except that the

terms belonging to the energy equation—the fifth element of the vectors—are eliminated. This

decoupling is because, in an incompressible fluid, the molecular viscosity is assumed to be constant

in addition to the fluid density. This causes the energy equation to become decoupled from the

system as it has no direct dependence on the other fluid properties besides the velocity, which

convects the energy along with the flow.

F x
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τx y

τxz
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0
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F z
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0

τzx
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τzz




(3.8)

Note, however, that the stress tensor for these incompressible equations, τi j , is slightly different

because the equations have been divided through by ρ∞. The incompressible form of τi j is

τi j = (ν + νT ) *
,

∂ui

∂x j
+
∂u j

∂xi
−

2
3
∂uk

∂xk
δi j+

-
(3.9)
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where ν = µ
ρ is the kinematic viscosity of the fluid.

3.1.3 Pseudo-Compressible Navier-Stokes Equations

Note that for the incompressible NS equations, equation (3.1) contains no time derivative

in the continuity equation; time-marching schemes cannot apply as the entire system is not time

dependent. Chorin [86] proposed a method, deemed the pseudo-compressibility or artificial com-

pressibility method, in which a fictitious time derivative of pressure is added to the continuity

equation. This method makes time-marching schemes applicable again as the pseudo-compressible

form of the incompressible Navier-Stokes equations regain their hyperbolic character. Using this

method, the continuity equation takes the form

∂ ρ̃

∂t
+ ∇ · u = 0 (3.10)

where ρ̃ = p/β and β is a constant artificial compressibility parameter which should be as large as

possible for accurate simulation of disturbance propagation in incompressible flow [87]. However,

in reality, stability, convergence, and accuracy are the limiting factors which put an upper bound

on its value. Pan and Chakravarthy [90] report a normal range is from 1 to 10. Hyams [91] reports

that a value of 15 is typical. Palacios et al. [92] demonstrate results using values ranging from 1 to

20, as well as quantify the effect of the value of β on convergence and solution accuracy.
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So, the pseudo-compressibility formulation of the unsteady, incompressible NS equations

can be written in conservative form as equation (3.1), where Q and F are defined by

Q =




p

u

v

w




F x =




βu

u2 +
p
ρ∞

uv

uw




F y =




βv

uv

v2 +
p
ρ∞

vw




F z =




βw

uw

vw

w2 +
p
ρ∞




(3.11)

Note that Fv does not change in form from equation (3.8).

3.1.4 Accounting for Buoyancy

Since thermal buoyancy is an important part of this research as it applies to urban simulation,

appropriate considerations must be taken to couple an energy equation to the pseudo-compressible

NS equations. This coupling is achieved by the addition of a temperature equation. The solution

vector is now

Q =




p

u

v

w

T




(3.12)

whereT represents fluid temperature. While the density variation as a result of temperature gradient

is small, it is not negligible. Following Er [89] and Kress [88], the Boussinesq approximation is
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applied to the momentum equation that acts in the direction of gravity. The Boussinesq approxi-

mation [93] treats the fluid density as a constant in every term of this momentum equation except

for the source term, where it is multiplied by the acceleration due to gravity g; there, density is

treated as a function of temperature. Thus, the source term may be written as

S =
1
ρ∞




0

0

−ρg

0

0




(3.13)

if gravity acts in the y direction, or in general

S =
1
ρ∞




0

ρgegx

ρgegy

ρgegz

0




(3.14)

where eg = (egx, egy, egz ) is a unit vector pointing in the direction of gravitational acceleration.

Using a truncated Taylor series expansion, density may be expressed as a function of temperature

ρ(T ) = ρ∞ +
(
∂ ρ

∂T

)
p
(T − T∞) (3.15)
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where ρ∞ is the density of the fluid at temperature T∞. The coefficient of thermal expansion, αT ,

in a fluid at constant pressure is

αT = −
1
ρ∞

(
∂ ρ

∂T

)
p

(3.16)

Substituting equation (3.16) into equation (3.15) yields

ρ(T ) = ρ∞[1 − αT (T − T∞)] (3.17)

which may be rewritten as

ρ(T ) = ρ∞[1 + ρ′] (3.18)

where ρ′ = −αT (T − T∞). By the Boussinesq approximation, equation (3.18) is substituted into

equation (3.13) or equation (3.14), while the other density terms are left unmodified. After some

rearranging, this final form of the pseudo-compressible buoyant NS equations is obtained

Q =




p∗

u

v

w

T




F x =




βu

u2 + p∗

uv

uw

Tu




F y =




βv

uv

v2 + p∗

vw

Tv




F z =




βw

uw

vw

w2 + p∗

Tw




(3.19)
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F x
v =




0

τxx

τx y

τxz

−
κ∞

ρ∞cp∞
∂T
∂x




F
y
v =




0

τyx

τy y

τy z

−
κ∞

ρ∞cp∞
∂T
∂ y




F z
v =




0

τzx

τz y

τzz

−
κ∞

ρ∞cp∞
∂T
∂z




S =




0

ρ′gegx

ρ′gegy

ρ′gegz

0




(3.20)

where p∗ absorbs the hydrostatic pressure into the definition of pressure and is defined as p∗ =

p
ρ∞
+ gy if gravity acts in the y direction, or p∗ = p

ρ∞
− gB, where B = x · eg, for an arbitrary

gravitational direction.

3.2 Non-Dimensionalization

The NS equations, in the pseudo-incompressible buoyant form defined by equation (3.1)

and equations (3.19) and (3.20), will now be non-dimensionalized. To this end, the following

definitions for the non-dimensional forms of the constituent variables will be used.

x̂ =
x

L
t̂ =

tu∞
L

û =
u

u∞
p̂ =

p − p∞
ρ∞u2

∞

ρ̂ =
ρ

ρ∞
µ̂ =

µ

µ∞
κ̂ =

κ

κ∞
T̂ =

T − T∞
∆T

τ̂ =
τL
µ∞u∞

(3.21)

where the subscript ∞ signifies a reference value and the circumflex, or hat (ˆ), represents a non-

dimensional variable. L is a representative characteristic length, ∆T = Twall − T∞, and Twall is a

referencewall temperature. The divergence and gradient operators non-dimensionalizewith a direct

application of the chain rule. Substituting the values from equations (3.21) into equation (3.1),
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rearranging, and dropping the circumflex, yields the non-dimensionalized form of the compressible

NS equations. The general form of the equations do not change from equation (3.1); however, the

specific forms of the flux functions and source terms will be different. For the buoyant NS equation

the solution vectorQ and the inviscid flux vectors remain unchanged by the non-dimensionalization.

However, the modified pressure p∗, viscous flux vectors, and source term have the following non-

dimensional forms

p∗ = p +
y

Fr2 (3.22)

if gravity acts in the y direction or

p∗ = p −
B̂

Fr2 (3.23)

for an arbitrary gravitational vector and B̂ = B
L =

x
L · eg.

F x
v =




0

1
Reτxx

1
Reτx y

1
Reτxz

− κ
Pe

∂T
∂x




F
y
v =




0

1
Reτyx

1
Reτy y

1
Reτy z

− κ
Pe

∂T
∂ y




F z
v =




0

1
Reτzx

1
Reτz y

1
Reτzz

− κ
Pe

∂T
∂z




S =
αTT∆T

Fr2




0

egx

egy

egz

0




(3.24)

In these equations, the non-dimensional parameters are the Reynolds number: Re = ρ∞u∞L
µ∞

, the

Froude number: Fr = u∞√
gL
, the Prandtl number: Pr = µ∞cp

κ∞
, the Peclet number: Pe = RePr =

ρ∞cpu∞L
κ∞

, and the Grashoff number: Gr = gαT∆T L3

ν2 . An additional non-dimensional parameter,

the Rayleigh number, will be used later and is defined as the product of the Grashoff and Prandtl
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numbers: Ra = GrPr . By a simple calculation, the coefficient on the source term vector may be

written as

αTT (Twall − T∞)
Fr2 =

αTT∆T
Fr2 = T

Gr
Re2 (3.25)

Although not included here, any other form of the NS equations may also be non-

dimensionalized following a similar approach.

3.3 Turbulence Modeling

The motivation of this research is to quickly generate flow field solutions in an urban setting

where viscous spacing can be very large and drag forces are not important nor desired; thus certain

liberties may be taken with the choice of turbulence models. Since the overall effect of blockages,

e.g., buildings and other features, is of main interest, and it is intractable to properly resolve

the boundary layer physics, the use of typical turbulence models that are designed to accurately

simulate surface phenomenonmay be overkill. As such, simple large eddy simulation (LES)models

seem a better fit and, consequently, the Smagorinski LES turbulence model has been chosen. In

1963 Joseph Smagorinski proposed a turbulence model, one which now bears his name, to simulate

atmospheric circulation [94]. This model is algebraic, and its simplicity makes it easy to implement

and also makes it faster than other standard turbulence models. Furthermore, Nichols [95] lauds

the effectiveness of this model as compared to other standard models like the SAS, SST, andWilcox

stress-ω models. Nichols [95] concluded that the Smagorinski model performed as well as the SST

and Wilcox stress-ω models on the surface mounted cube case and better than the SAS model. The
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Smagorinski model directly computes the eddy viscosity as

µT = (Cs∆)2 ���S̃
��� (3.26)

where Cs is the ‘Smagorinski constant’ and is set to 0.17 for this research. ∆ is a length scale

or filter width related to the size of the grid and is defined to be 3√V , where V is the volume

of the grid element. Lastly, | S̃ | =
√

2S̃i j S̃i j represents the magnitude of the strain rate tensor:

S̃i j =
1
2

(
∂ui
∂x j
+

∂u j

∂xi

)
.

3.4 Spatial Discretization on a p4est Grid

The integral form of the partial differential equations given in equation (3.1) is discretized

over the computational domain, Ω, using a cell-centered, finite-volume method on a Cartesian

octree style grid. Octree meshes contain hanging nodes in all but the unusual case of a uniformly

refined mesh; hanging nodes occur when an element in the mesh has neighbors at levels different

from its own. Figure 3.1 demonstrates the concept of a hanging node. Octree meshes used for finite

volume discretizations are generally required to be 2:1 balanced in order to maintain reasonable

volume/area ratios. This 2:1 balancing requires that neighboring elements differ by at most one

level in their octree. This requirement implies that neighboring elements never have volumes that

differ by more than a factor of eight. Extra care must be taken when calculating fluxes through

a face of an element when its neighbor across the face is at a different level: the flux must be

calculated through the smaller of the two faces. Higher order reconstruction must also be done with

care as the extrapolation occurs in different directions in each cell instead of along a single vector.
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Figure 3.1 An example of a hanging node; the red node is a hanging node that exists because of
the difference in refinement levels of the adjacent elements

Figure 3.2 shows the difference between extrapolation vectors for interfaces between two elements

at the same level and two elements at different levels.

Figure 3.2 An example of the difference between extrapolation vectors for elements at equal levels
and elements at different levels of refinement
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3.5 Solution Methodology

This section explains the solution methodology used in the current research as well as

specifics about certain algorithms implemented therein. The flow solver is written in C++ and is

implicit, time-accurate, and designed with a ‘plug-and-play’ style framework, which means that

any PDE may be solved as long as key methods (inviscid and viscous fluxes, Jacobians, etc.) are

derived that describe the appropriate physics. The resulting application is named paros (PARallel

Octree Solver).

3.5.1 Spatial Discretization

Spatial discretization is obtained herein using a cell-centered, finite-volume method on

the p4est octree meshes described in Section 2.1. This approach is much like the node-centered

approach described by Hyams [91], except for the cases where neighboring elements are at different

levels in the octree, which implies that there will be hanging nodes. These cases must be approached

with more care as was discussed in Section 3.4. If it is assumed that the solution state Q is constant

within each control volume, the volume-averaged state vector is

q =

∫
V QdV

V
(3.27)

Thus the spatial terms discretized over each control volume, i, may be expressed as

∂Viqi

∂t
+ Ri = 0 (3.28)
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whereVi represents the volume of the ith control volume, ∂qi
∂t the change in the conservative variables

in the ith cell with respect to time, and R the spatial residual containing all numerical fluxes and,

where applicable, any source terms. In general for this research R = Rinviscid + Rviscous + S.

3.5.2 Fluxes

The inviscid term in equation (3.1),∇·F, is integrated over the control volume and converted

into a surface integral by Gauss’ divergence theorem:

∫
Ω

(
∇ · F

)
dΩ =

∫
∂Ω

(
F · n̂

)
dS (3.29)

The surface integral is approximated discretely as a sum over the faces defining the cell-centered

control volume

Rinviscid =
∑
f ∈F

Φ f · n f (3.30)

where n f is the unnormalized face area vector, and F represents all the faces that make up the

surface of the control volume. The inviscid fluxes, Φ f , are approximated at each interface using

the HLLC flux [96] formulated for the incompressible NS equations [97]. The solution variables

can be reconstructed with first or second order accuracy; consequently, the fluxes may be first or

second order in space as well.

Using the same technique, the viscous term, ∇ · Fv , is discretized via the following sum-

mation

Rviscous =
1

Re

∑
f ∈F

Fv f · n f (3.31)
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where Fv f is the viscous flux evaluated using solution data at face f between two adjacent control

volumes. For the incompressible NS equations, the only solution data required for the viscous flux

are solution gradients. Also, it is typically considered more accurate to use weighted gradients for

the viscous fluxes when they are available [91, 98]. The default approach in this research is to use

the weighted least-squares gradients for these calculations if they are available. The gradients are

obtained at the face by using either a simple weighted average of the gradient data of the current

element and neighboring element or by using a directional derivative approach. See Hyams [91]

for a thorough definition of the directional derivative. Using a weighted average is vital in this

octree cell-centered paradigm because, when a face neighbor is at a different level in the octree, the

interface location is twice as far from the centroid of the larger element as it is from the centroid

of the smaller element; refer to Figures 3.1 and 3.2 for an illustration of this problem in two

dimensions. Thus, a simple average is inferior to a weighted average because the interface is not

halfway between both centroids.

3.5.3 Higher Order Spatial Accuracy

A spatially second order accurate reconstruction is implemented in this work by using solu-

tion gradient data to extrapolate cell-centered solution data to the flux interface. The extrapolation

is performed using a truncated Taylor series expansion as follows

φ f = φc + ∇φc · s (3.32)
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where φ f is any one of the components of Q extrapolated to the face, φc is a component of Q at

the cell centroid, and s is a vector from the cell centroid to the flux interface. That is, s = x f − xc

where x f is the midpoint of the flux interface and xc is the cell centroid. Green’s theorem and the

least-squares method are used in this work to obtain cell-centered solution gradients.

3.5.3.1 Green’s Theorem

Green’s theorem is defined as

∫
V
∇φdV =

∫
S
φ f n̂dA (3.33)

where again, φ f represents any component of the solution vector Q on the surface of the volume V

and n̂ is a unit surface normal. Assuming that the components of Q vary linearly (or∇Q is constant)

over V and replacing the surface integral with a summation over the faces of V , the discrete form

of equation (3.33) is

∇φ =
1
V

∑
f ∈F

φ f n (3.34)

where n is the area vector belonging to face f . Also, φ f is obtained by a weighted average of

solution values from either side of the face f ; the weighting procedure used here is a distance

weighted average which is essentially a linear interpolation of the solution data from each cell

centroid to the face midpoint.
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3.5.3.2 Least-Squares Gradient

The least-squares method for computing solution gradients is a much more complicated

approach. It may be derived generally using the following truncated Taylor series to express a

solution value at a neighboring cell center, e j , in terms of the solution data in a central cell, ei, as

follows

φ j = φi + (x j − xi) · ∇φi (3.35)

Writing this equation once for every neighboring cell, ei, usually leads to an over determined system

of equations, represented by equation (3.36), that must be solved in order to get an approximation

of the cell-centered solution gradient ∇φi.



∆x1 ∆y1 ∆z1

∆x2 ∆y2 ∆z2

...
...

...

∆xn ∆yn ∆zn





φxi

φyi

φzi



=



∆φ1

∆φ2

...

∆φn



(3.36)

Note that ∆() j = () j − ()i where () is any of x, y , z, or φ. Values in the central element are

represented by an i subscript, ()i, while an n subscript, ()n, represents data in a neighbor element,

en. Arbitrary weights may be assigned to each equation in equation (3.36) individually to obtain

weighted least-squares gradients. A common approach is to weight each equation by the inverse

of the distance between the two adjacent cell centroids. Notice that since the higher order terms

of the Taylor series expansion have been dropped, the least-squares method described here is only

able to exactly calculate gradients of a linear function.
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Since the system in equation (3.36) is over determined, a least-squares solution procedure

must be utilized. If the system is represented byAx = b, a least-squares solution may be obtained

by solving the system attained by pre-multiplying each side of the system by the transpose of A,

e.g.

ATAx = AT b (3.37)

In order to accomplish this, the matrix A is factorized using a QR algorithm, which employs the

Gram-Schmidt process for orthogonalization. This process is quite complicated to derive but, in

the end, turns out to be relatively simple to implement. For a thorough derivation of this method,

as well as some important implementation issues, see Appendix A of Hyams’ dissertation [91].

Gradient calculations must be carried out carefully in the context of an octree grid with

hanging nodes. An element with neighbors at different levels in the octree, i.e. with neighbors that

are significantly larger or smaller than itself, may have difficulty obtaining accurate gradients in the

direction of the larger neighbor. Green’s theorem and both weighted and unweighted least-squares

approaches have been examined for gradient computations in this research. The least-squares

approach has been shown to be superior to Green’s theorem in the context of a grid with hanging

nodes. The naïve implementation of Green’s theorem tends to introduce spurious solution gradients

in the case where a neighboring element is larger than the central element in which gradient data are

required. What follows is a specific example of this problem. It is well known that the least-squares

method exactly calculates the gradient of a linear function; in fact, even the Green-Gauss method

does the same in the case of a Cartesian aligned mesh. Furthermore, the least-squares method does

not care what the grid looks like nor about the relative size of neighboring elements. It still exactly
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represents a linear gradient even if there are hanging nodes. The Green-Gauss method, on the

other hand, breaks down in this situation; it produces significant errors in the gradients calculated

within any element that has neighbors that are bigger than the element itself. This phenomenon is

demonstrated by a very simple and standard test case which is set up as follows. The grid is a unit

cube with anisotropic spacing in all three directions, (see Figure 3.3), and the solution variables are

each initialized to a different linear function as follows:

p = 1.0x + 2.0y + 3.0z

u = 4.0x + 5.0y + 6.0z

v = 7.0x + 8.0y + 9.0z

w = 10.0x + 11.0y + 12.0z

T = 13.0x + 14.0y + 15.0z

(3.38)

Gradients of this solution state are calculated using each of the available gradient methods on both

Figure 3.3 Unit cube with anisotropy in all three dimensions used for gradient testing
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the uniformly and non-uniformly refined unit cube mesh. As stated before, both the Green-Gauss

andweighted/un-weighted least-squaresmethods have no difficulty recovering the exact gradients of

these linear solution states when the mesh is uniform. However, if non-uniform refinement is forced

in the center of the unit cube, the Green-Gauss method begins to break down. Figure 3.4 explicitly

demonstrates this behavior; there is no noticeable error in any of the least-squares gradients (the

actual error is around machine zero). Notice carefully, however, that the Green-Gauss gradients

demonstrate significant errors in the particular manner mentioned above. Any x gradient computed

using the Green-Gauss method on a non-uniform grid in an element that has a larger neighbor

across one of its x faces is markedly inaccurate. The same applies to y gradients and z gradients

in elements with larger neighbors across their y and z faces, respectively. Careful examination of

Figures 3.4a, 3.4c and 3.4e corroborates this description.

Tables 3.1 to 3.3 give a more quantitative overview of this shortcoming of the Green-Gauss

gradient method. As expected, the maximum percent error in both the least-squares and weighted

least-squares methods are very small. However, in at least one case, the maximum percent error in

the Green-Gauss method is over 200%, and the minimum percent error is around 50%, for this test

case.

There may be ways to alleviate or improve this shortcoming of the Green-Gauss method by

exploring different ways to ‘weight’ cell-centered values when averaging them to the face; currently,

a distance-weighted average is computed, but a volume-weighted approach could be tested, and

there are likely other more sophisticated methods that could be used as well.

Finally, it should be noted that it is commonly accepted that unweighted gradients are

best used for reconstruction of non-linear data, i.e., for higher order inviscid fluxes, while it is
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(a) Least-squares error of ∂p
∂x (b) Green-Gauss error of ∂p

∂x

(c) Least-squares error of ∂p
∂y (d) Green-Gauss error of ∂p

∂y

(e) Least-squares error of ∂p
∂z (f) Green-Gauss error of ∂p

∂z

Figure 3.4 Comparison of the errors produced by the least-squares and Green-Gauss gradient
methods on a non-uniform mesh; the error scale ranges from 0.0 to 1.0
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Table 3.1 Comparison of the maximum percent errors obtained using the weighted and un-
weighted least-squares and Green-Gauss gradient methods on the p and u solution
variables in equation (3.38) on the unit cube shown in Figure 3.3

Gradient method ∂ p
∂x

∂ p
∂ y

∂ p
∂z

∂u
∂x

∂u
∂ y

∂u
∂z

least-squares 1.4 × 10−11 5.4 × 10−12 6.5 × 10−12 8.5 × 10−12 4.3 × 10−12 6.4 × 10−12

weighted
least-squared 1.3 × 10−11 5.6 × 10−12 5.7 × 10−12 9.9 × 10−12 5.7 × 10−12 6.1 × 10−12

Green-Gauss 236.2 94.5 47.2 129.9 94.5 70.8

Table 3.2 Comparison of the maximum percent errors obtained using the weighted and un-
weighted least-squares and Green-Gauss gradient methods on the v and w solution
variables in equation (3.38) on the unit cube shown in Figure 3.3

Gradient method ∂v
∂x

∂v
∂ y

∂v
∂z

∂w
∂x

∂w
∂ y

∂w
∂z

least-squares 6.5 × 10−12 3.9 × 10−12 5.9 × 10−12 5.7 × 10−12 5.0 × 10−12 6.2 × 10−12

weighted
least-squared 6.9 × 10−12 6.4 × 10−12 7.0 × 10−12 6.3 × 10−12 8.2 × 10−12 5.4 × 10−12

Green-Gauss 114.7 94.5 78.7 108.6 94.5 82.7

Table 3.3 Comparison of the maximum percent errors obtained using the weighted and un-
weighted least-squares and Green-Gauss gradient methods on the T solution variable
in equation (3.38) on the unit cube shown in Figure 3.3

Gradient method ∂T
∂x

∂T
∂ y

∂T
∂z

least-squares 4.2 × 10−12 4.1 × 10−12 6.5 × 10−12

weighted
least-squared 4.9 × 10−12 5.5 × 10−12 6.8 × 10−12

Green-Gauss 105.4 94.5 85.0
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recommended to use their weighted counterparts when gradient data are being extrapolated, i.e.

for viscous fluxes [91, 98].

3.5.3.3 Boundary Gradients

Boundary gradients are handled differently than usual in this research; the boundary gradi-

ents are not calculated in the sameway as the interior gradients. The blocky and non-uniform nature

of the boundaries in the meshes produced by this application makes boundary gradients challenging

to implement. Thus, in the spirit of ‘zeroth’ order approximation, this issue has been addressed

by taking advantage of cell-centered gradient data to approximate boundary gradients. This means

that cell-centered gradient data from the element adjacent to the boundary face are used, either

directly or with modification, when boundary gradients are needed. When the boundary face is part

of a flow-through or farfield type boundary, the cell-centered gradients are used directly. However,

when the boundary face is part of a wall or symmetry boundary condition, the cell-centered gradient

data are copied and modified to take into account any Neumann type gradient conditions. This

includes zero-gradient temperature (adiabatic) or pressure conditions as well the buoyant condition

on the pressure gradient. Symmetry boundary conditions simply require that components of the

gradient normal to the boundary are eliminated. Most importantly, normal velocity gradients are

calculated on wall boundaries using a simple one-sided, two-point finite difference using both the

solution data at the wall and at the adjacent cell center. Since the normal wall velocity gradients

play such an important role in viscous flows, it is an unacceptably poor approximation to simply

use the values of the cell-centered velocity gradients at the wall. Transverse velocity gradients are

explicitly set to zero at the wall for no-slip walls or, in the case of inviscid walls, allowed to retain
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their cell-centered values. These approximations have proven to be acceptably accurate, and they

help keep the implementation simple and efficient.

3.5.4 Temporal Discretization

The temporal term in equation (3.1) remains to be approximated after the spatial terms have

been discretized. Following Beam and Warming [99], and Hyams [91], the following generalized

difference expression is used for the temporal discretization

∆(V q)n =
θ∆t

1 + ξ
∂ (∆(V q)n)

∂t
+
∆t

1 + ξ
∂ ((V q)n)

∂t
+

ξ

1 + ξ
∆(V q)n−1 (3.39)

where ∆(V q)n = (V q)n+1 − (V q)n. Various schemes with various orders of accuracy may be

chosen based on the values chosen for the parameters θ and ξ; e.g., θ = 1, ξ = 0 is a first-order

Euler implicit scheme, whereas θ = 1, ξ = 0.5 is an Euler implicit scheme with second-order

accuracy (the BDF2 scheme). Other combinations are presented by Beam and Warming [99]. For

this research only the two aforementioned Euler implicit schemes have been implemented, both of

which have θ = 1, thus equation (3.39) may be simplified into

∆(V q)n =
∆t

1 + ξ
∂ (V q)n+1

∂t
+

ξ

1 + ξ
∆(V q)n−1 (3.40)

Using equation (3.28) to eliminate the time derivative term gives

∆(V q)n −
ξ

1+ξ∆(V q)n−1

∆t
= −

Rn+1

1 + ξ
(3.41)
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Since in this research the grid is static,V does not vary in time and thus the Geometric Conservation

Law (GCL) does not need to be applied. Thus, equation (3.41) simplifies to

V
∆t

[
(1 + ξ)∆qn − ξ∆qn−1] = −Rn+1 (3.42)

For a good explanation of how the GCL terms would be added, see Hyams [91]. In order to maintain

a divergence free velocity field for incompressible flow regimes, the contribution from the time

derivative term (and potentially the GCL term) are explicitly left out of the continuity equation.

3.5.5 Time Evolution

Equation (3.42) is the final form of the temporal and spatial discretization; the implicit

nature of the temporal discretization requires that the spatial residual, R, be evaluated at time level

n + 1. Since the solution at this time level is unknown, Newton’s method will be used to linearize

the equations about the known solution state Qn. Note that the following derivation follows closely

with that of Hyams [91]. From equation (3.42) the following equation may be derived

Fn+1(Qn+1) =
V
∆t

[
(1 + ξ)∆qn − ξ∆qn−1] + Rn+1 (3.43)

where Fn+1 is the function that should be driven to zero by Newton’s method. Fn+1 is now expanded

using a Taylor series about a known level (n + 1,m)

F(n+1,m+1) ≈ F(n+1,m) +
∂F(n+1,m)

∂Q
∆Q(n+1,m) + O(∆Q2) (3.44)
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Lastly, since the left hand side of the equation above is zero upon convergence of the Newton’s

method, and after dropping the O(∆Q2) term, equation (3.44) may be written as

− F(n+1,m) =
∂F(n+1,m)

∂Q
∆Q(n+1,m) (3.45)

Expanding these terms and differentiating F yields the final, full expression for Newton’s method

−

[ V
∆t

[
(1 + ξ)∆qn − ξ∆qn−1] + Rn+1

]
=
∂R(n+1,m)

∂Q
∆Q(n+1,m) (3.46)

where ∂R
∂Q is the Jacobian matrix.

The sparse matrix system Ax = b, represented by equation (3.46), is solved iteratively

using an ‘improved’ Symmetric Gauss-Seidel method, which is explained in detail by Hyams [91]

in Section 4.4.2.

3.5.6 Boundary Conditions

This section gives an overview of the boundary condition implementation. Finite volume

schemes use the concept of ‘ghost’ elements—ghost nodes for node-centered schemes and ghost

cells for cell-centered schemes—to facilitate the implementation of boundary conditions. These

ghost elements store appropriate solution data, which are used to reconstruct solution values

required at the boundary sufficient to enforce the specified boundary condition. Since this research

implements a cell-centered scheme, the boundary values specified by each particular boundary

condition are reflected into the ghost element in such a way as to enforce that the average of the
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ghost and interior elements equals the boundary value unless otherwise noted, e.g.,

qinterior + qghost
2

=




pwall

uwall

vwall

wwall

Twall




(3.47)

3.5.6.1 Flow-Through/Far-Field Boundaries

Far-field boundaries are implemented using the standard Characteristic Variable Boundary

Conditions (CVBCs), wherein the governing equations are rewritten in the direction normal to

the boundary, and standard characteristic variable analysis is used to decouple the system. For a

detailed explanation of this method see Section 4.5.2 of Hyams’ dissertation [91].

3.5.6.2 Inviscid Solid Wall Boundaries

Inviscid solid wall boundary conditions are imposed by forcing tangential boundary flow;

this is done during the evaluation of the solid wall flux by enforcing u · n = unx + vny + wnz = 0,

where u is the fluid velocity vector and n is the boundary face area vector. This implies that the

only contributions to the inviscid flux at these boundaries come from the pressure terms in the

momentum equations. Neumann boundary conditions are used for the pressure and temperature

terms on slip boundaries; the condition on pressure is usually a zero pressure gradient, however,

in buoyant cases, the Neumann condition for pressure, presented in Section 3.5.6.4, must be used

instead.
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Two conditions for the wall temperature are supported: adiabatic or isothermal walls. For

adiabaticwalls the normal temperature gradient is simply enforced to be zero by setting the boundary

temperature to the same as the interior temperature, while for isothermal walls the temperature on

the wall is set to the specified boundary temperature in a Dirichlet manner. Solid wall inviscid

fluxes are evaluated in one of two ways, either by using the HLLC flux with the solution state in the

ghost element defined such that the average of the interior and ghost state results in the appropriate

boundary values for the inviscid wall, as specified in equation (3.47), or the inviscid flux vector F,

as defined in equation (3.2), is evaluated directly with boundary values appropriate for the boundary.

This last approach is necessary because in certain cases, notably the mixed convection cavity case

presented in Section 4.2.3, simulations do not fully converge, nor do they yield accurate solutions

using the HLLC flux. However, when evaluating the flux vector directly, the solution is accurate

and the convergence behavior is improved. In other cases this approach has been demonstrated to

make very little difference compared to using a left and right state to evaluate the HLLC flux, and,

for this reason, it has been adopted as the default method used to evaluate inviscid fluxes on solid

wall.

3.5.6.3 No-Slip Solid Wall Boundaries

No-slip walls have a straight forward implementation; wall velocities are imposed directly,

and this implementation supports imposing moving boundaries. The same Neumann boundary

conditions for the pressure and temperature terms used in the inviscid/slip wall boundary condition

defined above are used for no-slip boundaries as well. Since boundary data are not explicitly solved
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for in this cell-centered paradigm, nothing special must be done to the Jacobian for this boundary

condition.

3.5.6.4 Buoyant Solid Wall Boundary Condition

In cases where buoyancy is important, an additional Neumann boundary condition for pres-

sure on wall boundaries must be implemented. This boundary condition is outlined by Kress [88].

In this case, in lieu of using a zero pressure gradient, the buoyant pressure gradient is set equal to

the buoyant source term explained in Section 3.5.7. Namely,

∂p
∂η
=

Gr
Re2T (3.48)

where η represents the direction normal to the wall. This boundary condition must be used on both

slip and no-slip walls in simulations where buoyancy is important.

3.5.6.5 Percent-of-Slip Wall Boundaries

In certain situations neither the no-slip nor slipwall boundary conditions are fully applicable.

Specifically, in the types of urban simulations for which this application is designed, the elements

adjacent to the solid walls (buildings, blockages, ground, etc.) often have an off-the-wall spacing

of approximately 1 m to 10 m. At this resolution it does not make sense to impose a full no-slip

boundary condition at the solid wall boundary, as the solution data at the cell centroid is relatively

far from the boundary. In this scenario, it has been observed that the no-slip boundary condition

can overly influence the flow near the walls and retards the flow and turbulent mixing, especially

in street canyons. However, the viscous effect of the wall on the flow cannot be completely
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neglected as vorticity it generates is needed to model and generate turbulence. Thus, a full slip

boundary condition is arguably also inappropriate. For this reason, a parameterized ‘percent-of-

slip’ boundary condition, developed by Nichols [95], has been implemented. The intent of this

boundary condition is to provide viscous effects near viscous walls without overly damping the

flow. This boundary condition simply allows the user to decelerate the flow at the solid wall by

allowing only a specified percentage of the computed slip velocity at the wall to be used to compute

the final wall velocity. The implementation of this boundary condition is simple, yet effective. The

boundary velocity is calculated as with a slip boundary, but with the resulting velocity components

scaled by a user-specified percentage. This is functionally a parameterized wall boundary condition

that exists somewhere between the normal slip and no-slip wall boundary conditions.

In practice, this boundary condition proves to be very useful. With a full no-slip boundary

condition the velocity field does not mix very well; i.e., cross flows are inhibited and alleyways often

do not ‘feel’ the effect of the bulk flow. However, when this percent-of-slip boundary condition is

used, much better mixing is observed. This will be demonstrated in Chapter 4. However, it should

be noted that using this approximation is obviously a ‘modeling’ issue and more research is needed

to thoroughly ‘validate’ its use in urban environments that deviate substantially from those explored

in the present work.

3.5.6.6 Custom Inflow Boundary Conditions

This application supports two custom inflow boundary conditions: a parabolic profile (for

internal flow situations) and a power law profile (for atmospheric boundary layer type applications).
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All parameters for both inflow profiles are specifiable at runtime, and the interface is general enough

to allow for easy addition of new custom inflow boundary conditions.

3.5.7 Source Terms

If the source terms, S, in equation (3.1) are non-zero, as is the case for the buoyant NS

equations among others, it must be discretized. The source term in the buoyant NS equations,

described by equations (3.1) and (3.24), is applied as a volume weighted source term. In this

case, the residual associated with the momentum equations are augmented by the addition of the

following term

VGrT
Re2 eg (3.49)

where V is the volume of the current element, T is its temperature, and eg is the normalized vector

pointing in the direction of gravitational acceleration.
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CHAPTER 4

NUMERICAL RESULTS

This chapter will present and discuss various test cases used to validate the flow solver

implemented for this project.

4.1 Laminar Flat Plate

The flat plate is one of the fundamental test cases used to validate any implementation of

a Navier-Stokes solver. The theoretical solution to laminar flat plate flow was derived by Paul

Richard Heinrich Blasius [100] in 1908. The Blasius solution is the de facto laminar Navier-Stokes

test case and will be used here to verify the current implementation.

A structured UGRID mesh is provided to p4est as a skeleton for this test case and is run

without any extra refinement. The flat plate is two-dimensional, two units long and two-sided; it

is floating in free space with a farfield extending five units away from the plate in the x and y

directions. In the z direction there are four planes—corresponding to three elements—in order to

ensure that there is one slice of elements completely interior to the mesh. Since it is a two-sided

flat plate and p4est only supports Cartesian aligned elements, the leading and trailing edges are

planar with a thickness of 0.002 units; four elements span this distance. There are 200 elements in

the streamwise direction; the normal/off-the-wall spacing is 0.001 units, and points are clustered

toward the leading and trailing edge of the plate using a hyperbolic tangent distribution with leading
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and trailing initial spacing the same as the normal spacing. There are 34 elements above and below

the plate, 44 upstream, and 24 downstream. See Figure 4.1 for details about the grid.

(a) Zoomed out view (b) Leading edge veiw

Figure 4.1 Flat plate grid

The flat plate test case was run with a Reynolds number of 10,000, based on the plate length,

until steady state convergence was achieved. Three profiles were extracted and plotted against the

Blasius profile; profile one corresponds to L
3 , profile two

L
2 , and profile three

3L
4 where L = 2 is the

length of the plate. As seen in Figure 4.2 the three profiles are self similar and match the Blasius

solution well.
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Figure 4.2 Flat plate Blasius comparison solution with Re = 10,000

4.2 Cavity Validation Cases

This section presents various validation cases run on a square cavity geometry. The

following test cases are designed to test aspects of the code related to convection and heat transfer.

The geometry is a simple unit square extruded a small distance in the z direction so the simulation

may be treated as two-dimensional. These cases were run using two different types of grids: a

uniformmesh, i.e., all elements were required to be at the same refinement level, and a non-uniform

mesh containing elements at different refinement levels. The uniform cases were run using almost

the same 81× 81× 2 structured mesh that Kress [88] and Er [89] used to obtain their results, except

that it contains one more plane in the z direction in order to have a stack of completely interior

elements. Both grids have normal/viscous spacing of 1 × 10−3. This is easy to accomplish with
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the uniform grid; the non-uniform grid, however, requires more work. The non-uniform grid was

designed to have three levels of refinement such that the elements at level three were isotropic

cubes achieving the target normal spacing. As such the non-uniform meshes had a z dimension

of 8 × 10−3 with levels three, two, and one each containing eight, four, and two elements in the z

direction respectively. Given the way these grids are designed, they exhibit dramatically different

cell counts: the uniform grid comprises 19,200 elements while 429,192 elements compose the non-

uniform grid. This explicitly demonstrates a potential disadvantage of using isotropic, non-uniform

octree meshes as their cell counts can grow very quickly. In these cases, both types of meshes are

used to compare the accuracy of paros run on two fundamentally different mesh types. The case

using the non-uniform mesh exercises parts of the code that the uniform mesh does not: namely

the logic that deals with hanging nodes/faces. Refer to Figure 4.3 for a comparison of both cavity

grids used for the following simulations.
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(a) Anisotropic grid (b) Isotropic grid

(c) Zoomed in corner view of anisotropic
grid

(d) Zoomed in corner view of isotropic
grid

(e) Zoomed in side view of anisotropic
grid

(f) Zoomed in side view of isotropic grid

Figure 4.3 Comparison of anisotropic and isotropic cavity grids
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4.2.1 Natural Convection

The natural convection case is designed to test the heat transfer/buoyancy ability of the code.

The case is defined as follows: the flow is initialized at rest, adn the x-min no-slip solid wall is kept

at a constant non-dimensional temperature of one, while the x-max wall is kept at a constant non-

dimensional temperature of zero. Both the x-min and x-max walls have a zero pressure gradient

condition enforced. The y-min and y-max walls are adiabatic and have the non-zero Neumann

buoyancy source term condition enforced, ∂ p
∂η =

Gr
Re2 T , as described in Section 3.5.6.4. The z-min

and z-max walls have symmetry boundary conditions applied. Figure 4.4 shows a schematic of the

geometry, as well as the initial and boundary conditions for this natural convection cavity case.

(0, 0) (1, 0)

(1, 1)(0, 1)

Initial Conditions
p = u = v = T = 0

u = v = 0, ∂T
∂ y = 0, ∂ p

∂ y =
Gr
Re2 T

u
=
v
=

T
=

0,
∂

p
∂

x
=

0

u = v = 0, ∂T
∂ y = 0, ∂ p

∂ y =
Gr
Re2 T

u
=
v
=

0,
T
=

1,
∂

p
∂

x
=

0

Figure 4.4 Natural convection cavity geometry and boundary condition schematic
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The steady state solution for this case is shown in Figure 4.5; note the large recirculation zone

in the center of the cavity driven by the heated wall and buoyancy terms added to the equations. The

dashed black lines represent the lines alongwhich velocity profiles will be extracted for comparison.

Figure 4.5 Steady state solution showing velocity magnitude in the natural convection cavity case

Davis [101] presents a benchmark numerical solution to this problem, and Kress [88] and

Er [89] both present results obtained via the pseudo-compressibility approach. Themaximum value

of both the x and y velocity values, u and v , respectively, were tabulated by Davis in his benchmark

for three different Rayleigh numbers. Table 4.1 shows that the current results match well with these

values as well as those reported by Kress [88] and Er [89].
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Table 4.1 Comparison of the maximum velocity values along the center lines of the natural
convection cavity with Ra = 1 × 104

Davis Er Kress Current ansio Current iso

maximum u 0.192 0.192 0.191 0.191 0.192
maximum u location 0.823 0.850 0.816 0.825 0.822
maximum v 0.233 0.232 0.232 0.231 0.232
maximum v location 0.119 0.125 0.119 0.126 0.118

Velocity profiles along cavity center lines are shown below, and there is excellent agreement

between the results using both the anisotropic and isotropic meshes as well as the results presented

by Kress [88].

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

u

y distance

Isotropic
Anisotropic
Kress [88]

Figure 4.6 Comparison of the vertical velocity profile for natural convection with Re = 1000
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Figure 4.7 Comparison of the horizontal velocity profile for natural convection with Re = 1000

4.2.2 Forced Convection

Presented here is the canonical lid driven cavity test case used to validate the convective

terms of the code. The x-min, x-max, y-min, and y-max boundaries are no-slip solid walls and

have zero pressure and temperature gradient conditions enforced. The y-max boundary has an

imposed non-dimensional velocity of u = 1.0 and w = v = 0.0, which drives the flow in the cavity.

Again, the z-min and z-max walls have symmetry boundary conditions applied. The velocity

is initialized to zero everywhere else. The geometry, initial, and boundary condition schematic

corresponding to this case is given in Figure 4.8.

The case is run viscous and steady and, depending on the Reynolds number, may have

multiple recirculation zones. Ghia et al. [102] and Mandal et al. [103] study this case in depth.
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Figure 4.8 Forced convection cavity geometry and boundary condition schematic
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Ghia et al. [102] studies this case with Reynolds numbers ranging from one hundred to ten thousand

and presents ample solution data, which are used for validation in this case.

With a Reynolds number of one thousand, the steady solution has one large vortex that fills

most of the cavity with two secondary, counter rotating vortices in the bottom right corner and a

single counter rotating vortex in the bottom left corner. The steady state solution for this case is

shown in Figure 4.9; note the large recirculation zone in the center of the cavity which, in this case,

is forced by the moving top boundary of the cavity. The dashed black lines represent the lines along

which velocity profiles are extracted for comparison. Streamlines and stagnation points agree well

Figure 4.9 Steady state solution showing velocity magnitude in the forced convection cavity case

with Ghia et al. Velocity profiles extracted from the center lines of the cavity are also in excellent
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agreement with Ghia et al., as demonstrated in Figures 4.10 and 4.11. The numerical profiles used

for comparison were extracted from Tables I and II in the paper by Ghia et al. [102].

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

u

y distance

Isotropic
Anisotropic
Ghia [102]

Figure 4.10 Comparison of the vertical velocity profile for the lid driven cavity with Re = 1000

93



−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0 0.2 0.4 0.6 0.8 1

v

x distance

Isotropic
Anisotropic
Ghia [102]

Figure 4.11 Comparison of the horizontal velocity profile for the lid driven cavity with Re = 1000

4.2.3 Mixed Convection

The mixed convection test case presented here is designed to simultaneously test both the

convective terms and the heat transfer/buoyancy capability of the code. This problem is set up

almost exactly the same as the forced convection case, presented in Section 4.2.2, except now the

moving top boundary is also maintained at a constant non-dimensional temperature of one, making

it an isothermal boundary in lieu of an adiabatic boundary. The Reynolds number is 1000, and since

there is heat transfer, a Grashof number is required; for this case the Grashof number is 1 × 106.

Furthermore, the top and bottom walls have the Neumann buoyant source term condition applied

as described in Section 4.2.1. Once again, the geometry, initial, and boundary condition schematic

is shown in Figure 4.12. The steady state solution for this mixed convection case is shown in
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Figure 4.12 Mixed convection cavity geometry and boundary condition schematic
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Figure 4.13; note the relatively smaller recirculation zone (compared to both the natural and forced

convection cases presented above) towards the top right corner of the cavity. In this particular case,

the moving top boundary causes the fluid to circulate, however, since this boundary is also heated,

buoyancy effects restrict the recirculation zone from filling up the entire cavity. Once again, the

dashed black lines represent the lines along which velocity profiles are extracted for comparison.

Figure 4.13 Steady state solution showing velocity magnitude in the mixed convection cavity case

Iwatsu [104] and Agrawal et al. [105] have studied mixed convection in a cavity extensively;

the current work is compared to their results and is shown in Figures 4.14 and 4.15. While

agreement with previous results by Iwatsu [104] and Agrawal et al. [105] is not as good as the
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agreement seen in both the natural and forced cavity cases presented earlier in this chapter, similar

levels of disagreement are observed in the results presented by Kress [88].
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Figure 4.14 Comparison of the vertical velocity profile for mixed convection with Re = 1000

97



−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

v

x distance

Anisotropic
Isotropic
Iwatsu [104]
Agrawal [105]

Figure 4.15 Comparison of the horizontal velocity profile for mixed convection with Re = 1000

4.3 Square Cylinder

This section presents laminar validation cases—both steady and unsteady—on a square

cylinder. Although the square cylinder is not as ubiquitous as its circular counterpart, it is judged to

be a very good test case given the Cartesian aligned nature of the research herein. It is recognized

that validation of a numerical result is usually performed using information with a ‘pedigree;’

e.g., measurements with known and/or accepted uncertainties. However, it is difficult to identify

laminar test cases—especially unsteady ones—similar to the unit cavity problems presented herein

that are available on Cartesian aligned geometries. Consequently, the decision has beenmade to use

computed results from a trusted computational methodology as a standard for comparison (Tenasi,

see Hyams et al. [106] and Taylor et al. [107]).
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The mesh used for these square cylinder validation cases is a structured UGRID mesh. The

cylinder is a unit square centered in a square mesh dimensioned 100 × 100. The normal spacing

is 1 × 10−3 units off the wall, with a wake refinement region stretching downstream of the cylinder

10 units. This grid was extruded four planes in the z direction such that there is an entire slice

of elements interior to the mesh. The cylinder boundaries have the standard no-slip boundary

condition enforced, while the x and y planes are far-field/flow-through boundaries enforced with a

characteristic variable boundary condition. The z planes are symmetry boundary conditions.

4.3.1 Steady

For Reynolds numbers that are low enough, flows past circular and square cylinders are

steady, and there exists a recirculation zone in the wake region of the blockage. The size of this

recirculation zone will vary with the Reynolds number—the larger the Reynolds number, the larger

the recirculation zone—until some critical Reynolds number is reached, and the flow transitions

to unsteady flow. Figure 4.16 demonstrates the recirculation length, Lr , for a steady flow with

Re = 10. The contours shown in this figure are lines of constant velocity magnitude and are present

to make visualizing the recirculation zone easier.

Zdravkovich [108] shows that for a circular cylinder there exists an empirical relationship

between recirculation length, Lr , and Reynolds number

Lr

D
= 0.05Re : Re ∈ [4.4, 40] (4.1)
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Figure 4.16 An example of steady flow (Re = 10) past a square cylinder; the recirculation length,
Lr , is shown by the white line

Breuer et al. [109] demonstrated a linear relationship, shown in equation (4.2), between Reynolds

number and recirculation length in laminar flow past a square cylinder with a blockage ratio of 1
8 ,

or 12.5%, where blockage is defined as the cross-sectional area of the cylinder perpendicular to the

flow, compared to the cross-sectional area of the test section with no cylinder present.

Lr

D
= −0.065 + 0.0554Re : Re ∈ [5, 60] (4.2)

Sharma and Eswaran [110] also show a linear relationship for laminar flow past a square cylinder

with a blockage ratio of 5%

Lr

D
= 0.0672Re : Re ∈ [5, 40] (4.3)

Sharma reports that this curve fit has a maximum deviation of 5%.

Various steady square cylinder cases were run, and recirculation lengths were compared

against the results above. As seen in Figure 4.17, the results compare well with those of Sharma.
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Note that, in this plot, the data corresponding to the results presented by Zdravkovich and Breuer

et al. are simply to show a trend; they are not expected to match well with results obtained with

paros as the simulation by Breuer et al. had a blockage ratio of 12.5% compared to the present

computations with no blockage, and Zdravkovich’s results were obtained on a circular cylinder.
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Figure 4.17 Comparison of recirculation length versus Re for the steady square cylinder

4.3.2 Unsteady

Within a certain range of Reynolds numbers, the laminar flow past a square cylinder

transitions from steady to unsteady and vortex shedding occurs. Specific values of Reynolds

numbers atwhich shedding begins vary significantly in the literature and depend on factors including

blockage ratio, and inflow and outflow boundary placement. Sohankar et al. [111] report the critical
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Reynolds number between 50 and 55 for a blockage ratio of 5%; Breuer et al. [109] cite a critical

Reynolds number of approximately 60 for a blockage ratio of 12.5%, and Sharma et al. [110] report

a critical Reynolds number of 50 with a blockage ratio of 5%. Note that Sohankar et al. [112]

imply that if the wall boundaries are sufficiently far away from the cylinder, i.e., a blockage ratio

less than 5%, the effect of these boundaries on the flow near the body is minimal. Figure 4.18

and Table 4.2 demonstrate the unsteady results as they compare against those of the University of

Tennessee SimCenter at Chattanooga code Tenasi [106,107]; the Strouhal number associated with

vortex shedding is compared to assess the time accuracy of the simulation. The Strouhal number

is defined as St = f L
U ; f is the shedding frequency computed using forces exerted on the square

cylinder by the steady-periodic flow, L is a characteristic length, and U is the free stream fluid

velocity.

Table 4.2 Comparison of St versus Re data obtained using paros and Tenasi

St

paros Tenasi

Re

50 0.099 0.104
60 0.111 0.114
70 0.120 0.122
80 0.127 0.128
90 0.132 0.133
100 0.137 0.137
110 0.141 0.141
120 0.144 0.144
130 0.147 0.146
140 0.149 0.148
150 0.150 0.149
160 0.151 0.150
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Figure 4.18 Comparison of Strouhal number St versus Re for the unsteady square cylinder

4.4 Turbulent Flow Over a Surface-Mounted Cube in a Tunnel

This final validation case examines the validity of the implemented Smagorinski LES turbu-

lencemodel by comparing simulation results against the experiment ofMartinuzzi and Tropea [113]

as well as results obtained using Tenasi [106, 107]. Martinuzzi and Tropea explore the effects of

various surface-mounted, prismatic, and fully three-dimensional obstacles in fully developed tur-

bulent channel flow. The specific case used for this validation is that of a square cube of dimension

H = 1 mounted in a channel with dimensions l = 24H , w = 16H , and h = 2H . The cube is

mounted in the center of the channel 5H downstream of the inlet. This setup is chosen because it

is a widely studied test case with ample experimental data, that exhibits fully three-dimensional,

highly turbulent flow. Furthermore, the features of this flow are representative of those that might
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occur around buildings in an urban environment. Since the Smagorinski turbulence model is likely

insufficient to accurately model the type of turbulent flow exhibited by this test case, good agree-

ment with experimental data is not expected. For this reason, Tenasi is also used to simulate this

test case using the same Smagorinski turbulence model, boundary, and initial conditions, as well as

an analogous grid in order to have baseline information for comparison against the current results.

The grid used for this simulation is completely structured; however two distinct meshes

were built: one for paros and one for Tenasi. The version of the grid designed for Tenasi was built

in the traditional manner, meaning that the grid exported from the grid generation software was

used directly in Tenasi with no further refinement or modification. However, the grid for paros had

to be designed for a target refinement level of two in order to keep the ‘tree’ count manageable. As

such, the element dimensions of the original structured mesh designed for Tenasi were reduced by

approximately a factor of four and the off-the-wall spacing increased by the same factor to create the

skeleton mesh/connectivity used as the initial discretization for paros. The target normal spacing

is 0.002 non-dimensional units, so the initial off-the-wall spacing for the skeleton mesh is 0.016.

This design causes the final mesh used by paros to have a slightly less smooth variation of elements

as they grow away from the boundaries, because every macroelement is uniformly refined twice

to create the final mesh. However, it is anticipated that difference in the final meshes should have

minimal effect on the accuracy of the results.

The Reynolds number, based on the height, H , of the cube, is 40,000. A parabolic velocity

profile is imposed at the inflow boundary and the exit boundary condition is implemented such that

the back/exit pressure is the reference/free-stream pressure, and the fluid is allowed to simply exit

the boundary. All other boundaries are no-slip solid walls. This case is run spatially first order for
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several hundred iterations; second order spatial accuracy is then activated, and the simulation run

for a few hundred more iterations to obtain an initial state for unsteady time stepping. After the

unsteady solution evolves several hundred iterations into a physically realistic state, time averaging

begins. The period over which to time average the unsteady solution is chosen in order to mimic

the approach taken by Hajjawi [114], who time averages over a non-dimensional time period of 50

units by setting ∆t = 0.05 and averaging over 1000 iterations. Unfortunately, for this grid, paros

proved to be unstable using time steps of this size. Instead, a time step of ∆t = 0.01 is found to

be stable and time averaging is performed over 5000 iterations. Experience suggests that dual time

stepping [115] could alleviate this stability problem

The data to be extracted for comparison come from two profiles downstream of the cube;

the first profile is extracted 0.08 units behind the center of the cube ( x
H = 0.08), while the second

is located 0.5 units ( x
H = 0.5) in the wake. The streamwise velocity component from both paros

and Tenasi are compared to those recorded by Martinuzzi and Tropea in Figures 4.19 and 4.20.

As seen in these profiles, neither simulation results compare well with experiment, although

the overall trends are captured reasonably well. The lack of detailed agreement is due to several

reasons, two of which are that neither the grid nor the turbulence model are sufficient to accurately

resolve the turbulent physics inherent to this problem. Also, there are distinct differences between

the time-averaged profiles produced by paros and Tenasi; there are numerous differences between

the implementation specifics in these two codes that could play a role in the observed discrepancies.

Notably, Tenasi is a node-centered solver while paros is cell-centered. Also, there are significant

differences between the two codes regarding how the surface gradients are computed, and Tenasi

has been validated much more thoroughly than the current implementation of paros. However, the
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results are similar enough to inspire confidence in the implementation of the turbulence model. In

fact, the profiles produced by paros in Figures 4.19 and 4.20 are closer to experiment than those

of Tenasi in certain places. Recall that a goal of the present work is to provide fast simulations

while preserving enough of the physics to be meaningful in a disaster situation, where simulation

speedup is tantamount to being an effective mitigation tool. However, although the present tool

can provide simulations considerably faster than existing methods, whether the degree of ‘captured

physics’ shown in Figures 4.19 and 4.20 is accurate enough to satisfy this goal, is not known.

4.5 Large Scale Urban Simulation

This section will demonstrate the ability of the application as it is applied to a large urban

geometry. Multiple cases will be run, compared, and summarized in this section. These cases will

be unsteady, with and without buoyancy. In addition, cases exercising the contaminant transport

functionality will be shown. The geometry used for these test cases is the same one used for

the parallel grid generation speedup analysis previously shown in Section 2.3 and contains 927

buildings and 4.25 million facets. Refer to Figure 2.10 which shows this geometry.

4.5.1 Buoyant Versus Non-Buoyant Cases

The results in this sectionwill demonstrate the differences in the unsteady solutions obtained

with andwithout heat transfer and buoyancy. Both cases are runwith a Reynolds number of 137,014,

which corresponds to a free stream velocity of 2 m s−1 based on a reference length of 1 m, reference

density of 1.22217 kg m−3, and a reference viscosity of 1.784 × 10−5 kg m−1 s−1. The incoming

flow is from the south-west: 46° south of due west, where ‘west’ corresponds to the negative

x-direction. The simulation is run in the following manner: 1000 steady first order steps are

107



taken, followed by 500 steady second order steps in order to get a developed flow field as an initial

condition for the time-accurate simulation, which begins after the prescribed number of steady

second order steps have completed. A non-dimensional time step of 7.5 is taken which corresponds

to a physical time step of 2.5 seconds per iteration. In the cases where buoyancy is considered, a

Grashof number of 1.12 × 109 is used; this corresponds to an ambient temperature of 60 degrees

Fahrenheit (15.6 ◦C), an isothermal wall temperature of 90 degrees Fahrenheit (32.2 ◦C), and a

volumetric thermal expansion coefficient of 1.47 × 10−3 K−1.

The following figures demonstrate the effectiveness of the buoyant source terms and bound-

ary conditions in the context of this urban simulation. The temperature field shown in Figure 4.21

clearly shows the heat rising in the buoyant simulation, whereas the non-buoyant case shows a

higher heat concentration near the ground because the lack of buoyancy does not allow the heat

to rise. Figure 4.22 shows how, at this relatively low speed flow and high temperature difference,

effects of buoyancy are even visible in the velocity field.
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(a) Non-Buoyant Simulation

(b) Buoyant Simulation

Figure 4.21 Temperature distribution with and without buoyancy
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(a) Non-Buoyant Simulation

(b) Buoyant Simulation

Figure 4.22 Velocity field with and without buoyancy
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4.5.2 Buoyant Versus Non-Buoyant Cases Including Contaminant Transport

This section presents a case similar to one given by Nichols et al. [5]. After 500 unsteady

steps, or 1250 seconds in real time, a constant release of a neutrally buoyant contaminant is

initiated, and the contaminant convects downstream with the prevailing wind which originates

from the south-west and propagates toward the north-east. The release point, in the south-west

portion of the cityscape, is shown by the red box in the inset of Figure 4.23. This box accurately

represents the size of the release location in this simulation; it is 9 m by 9 m wide and 6 m high.

Figure 4.23 Contaminant release location

111



Figures 4.24 and 4.25 demonstrate how the plume evolves in both simulations after 3500

unsteady time steps (8750 seconds, real time). The plume is represented in these figures by

isolating all elements in the solution that contain contaminant levels in the non-dimensional range

from 0.0001 to 1.0; the plume is colored using a log scale to accentuate the contaminant levels.

Notice how in Figures 4.24b and 4.25b the buoyant effects have clearly caused the plume to risemore

vertically, as well as spread outward less into the lower alleyways as compared to Figures 4.24a

and 4.25a. Although this is the expected behavior from a qualitative perspective, a dearth of

validation-quality measurements makes it very difficult to make quantitative speculations about

specifics of the contamination spread (e.g., rates of horizontal and vertical spreading). Figure 4.26

demonstrates contaminant levels of the same simulation at various horizontal slices through the

urban geometry. One indication that the buoyancy terms are having the desired effect is that the

contaminant levels at street level are much lower for the buoyant case than the levels in the case

without heat transfer, especially well downstream of the release point. The effect of buoyancy is

more clearly viewed in the vertical slices, shown in Figure 4.28, where the contaminant is obviously

convected upwards by buoyantly driven updrafts. Figure 4.27 shows the location of each of the

five stations. Station one is located 25 m downstream of the release location in the x direction,

while stations two, three, four, and five are located 425 m, 825 m, 1425 m and 1925 m respectively

downstream of the release location. Note that even though the contaminant itself is neutrally

buoyant, it is being convected by flow that is experiencing buoyant effects because of a temperature

gradient present in the simulation.
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(a) Non-Buoyant Simulation

(b) Buoyant Simulation

Figure 4.24 A side view of two unsteady solutions demonstrating contaminant plume propagation
( 2.43 hours after release, real time)
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(a) Non-Buoyant Simulation

(b) Buoyant Simulation

Figure 4.25 A view from behind of two unsteady solutions demonstrating contaminant plume
propagation ( 2.43 hours after release, real time)
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(a) Non-Buoyant 1 meter (b) Buoyant 1 meter

(c) Non-Buoyant 10 meters (d) Buoyant 10 meters

(e) Non-Buoyant 20 meters (f) Buoyant 20 meters

(g) Non-Buoyant 40 meters (h) Buoyant 40 meters

(i) Non-Buoyant 50 meters (j) Buoyant 50 meters

Figure 4.26 Two unsteady solutions showing contaminant concentrations at various elevations
( 2.43 hours after release, real time)
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Figure 4.27 Station location schematic
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(a) Non-Buoyant station 1 (b) Buoyant station 1

(c) Non-Buoyant station 2 (d) Buoyant station 2

(e) Non-Buoyant station 3 (f) Buoyant station 3

(g) Non-Buoyant station 4 (h) Buoyant station 4

(i) Non-Buoyant station 5 (j) Buoyant station 5

Figure 4.28 Twounsteady solutions showing contaminant concentrations at various stations down-
stream of the release point ( 2.43 hours after release, real time)
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4.5.3 The Effect of the Percent-of-Slip Boundary Condition on Urban Contaminant

Transport

This section demonstrates the effect of the percent-of-slip boundary condition on contami-

nant transport in an urban setting. The following figures show the results of different simulations,

each run with and without the percent-of-slip boundary condition. For all cases a 90% slip con-

dition has been applied, which means that all solid wall boundaries are treated as inviscid walls.

However, only 90% of the resulting tangential flow velocity components are used as a boundary

condition; see Section 3.5.6.5 for more detail. The results in Figure 4.29 are obtained at a Reynolds

number of 2.06 × 105 (for a one meter characteristic length), which corresponds to a free stream

flow of 3 m s−1; all other parameters are the same as were presented in the beginning of this chapter.

The results in Figure 4.39 are the same in every way except that the free stream flow is 5 m s−1

which corresponds to a Reynolds number of 3.4 × 105. Once again, after 500 unsteady steps, a

constant release of a neutrally buoyant contaminant is released into the flow field. The contaminant

levels are presented using a non-dimensional log scale ranging from 9.5 × 10−6 to 9.5 × 10−1. The

simulation using the percent-of-slip boundary condition shows, at least qualitatively, improved

mixing and convection of the contaminant throughout the urban environment, especially at the

lower elevations. Once again, without measurements or other corroborative information, it is not

possible to offer a quantitative assessment about the accuracy of these simulations.

In order to better quantify the effect of the percent-of-slip boundary condition on the

contaminate spreading, four different profile locations are set up and contaminate levels are extracted

from them for both cases presented in this section. These profiles extend perpendicular to the flow

direction and into street canyons. Figure 4.30 shows where the profiles are extracted fromwithin the
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(a) No-slip 1 meter (b) Percent-of-slip 1 meter

(c) No-slip 10 meters (d) Percent-of-slip 10 meters

(e) No-slip 20 meters (f) Percent-of-slip 20 meters

(g) No-slip 40 meters (h) Percent-of-slip 40 meters

(i) No-slip 50 meters (j) Percent-of-slip 50 meters

Figure 4.29 Comparison of no-slip versus percent-of-slip boundary conditions in an urban setting
with a free stream velocity of 3 m s−1
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urban environment; the solution data shown in this figure represents an instantaneous snapshot of

a contaminant release and is only present to help justify the placement of the extraction lines. Note

that data are extracted from these profiles both at ground level (0 m), and at an elevation of 5 m. As

seen in some of the plots, especially Figures 4.31, 4.35, 4.40 and 4.44, the percent-of-slip condition

does improve the lateral spreading of the contaminate into the street canyons. However, as seen in

Figures 4.32, 4.36, 4.41 and 4.46, it does not always make a significant difference. These profiles

are extracted from time-accurate solutions instantaneously, i.e., from a single moment in time, and,

as such, do not necessarily present an accurate assessment of the effect of this boundary condition

on the contaminate spreading. A better way to quantify the effect of this boundary condition would

be to extract the profiles from time-averaged solutions. Unfortunately, a lack of time prevented

time-averaged profiles from being presented in this document.
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Figure 4.30 Profiles along which contaminate levels are plotted
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Figure 4.31 Urban contaminate levels for profile one at ground level for Re = 205522
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Figure 4.32 Urban contaminate levels for profile two at ground level for Re = 205522
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Figure 4.33 Urban contaminate levels for profile three at ground level for Re = 205522
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Figure 4.34 Urban contaminate levels for profile four at ground level for Re = 205522
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Figure 4.35 Urban contaminate levels for profile one at an altidude of fivemeters for Re = 205522
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Figure 4.36 Urban contaminate levels for profile two at an altidude of fivemeters for Re = 205522
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Figure 4.37 Urban contaminate levels for profile three at an altidude of five meters for Re =
205522
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Figure 4.38 Urban contaminate levels for profile four at an altidude of fivemeters for Re = 205522
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(a) No-slip 1 meter (b) Percent-of-slip 1 meter

(c) No-slip 10 meters (d) Percent-of-slip 10 meters

(e) No-slip 20 meters (f) Percent-of-slip 20 meters

(g) No-slip 40 meters (h) Percent-of-slip 40 meters

(i) No-slip 50 meters (j) Percent-of-slip 50 meters

Figure 4.39 Comparison of no-slip versus percent-of-slip boundary conditions in an urban setting
with a free stream velocity of 5 m s−1
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Figure 4.40 Urban contaminate levels for profile one at ground level for Re = 342189
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Figure 4.41 Urban contaminate levels for profile two at ground level for Re = 342189
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Figure 4.42 Urban contaminate levels for profile three at ground level for Re = 342189
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Figure 4.43 Urban contaminate levels for profile four at ground level for Re = 342189
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Figure 4.44 Urban contaminate levels for profile one at five meters for Re = 342189

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 200 400 600 800 1000 1200 1400

C
on

ta
m
in
an
tl
ev
el

Distance in meters along profile

90% slip
no-slip

Figure 4.45 Urban contaminate levels for profile two at five meters for Re = 342189
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Figure 4.46 Urban contaminate levels for profile three at five meters for Re = 342189
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Figure 4.47 Urban contaminate levels for profile four at five meters for Re = 342189
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CHAPTER 5

CONCLUSION

During this research a parallel, dynamic, automatic, strictly Cartesian aligned, linear forest-

of-octrees grid generation application has been developed. Within the application, a generic and

extensible PDE solver framework has been developed and tested using a form of the Navier-Stokes

equations capable of addressing flows where buoyancy is non-trivial. This application is developed

with distributed parallelism in mind and is realized with the MPI library. The main focus of

the solver framework is to simulate urban scale problems, viz. plume/contaminant propagation,

using the buoyant incompressible NS equations. However, any hyperbolic PDE could in theory

be solved within the framework. This software leverages the open source project p4est to create

an application that demonstrates excellent parallel grid generation speedup behavior and results in

a computational mesh that is optimally load balanced. This application does not use cut-cell or

projection methods, nor does it implement immersed boundary type algorithms; this means that

the resulting computational mesh does not accurately represent any input geometry and is ‘blocky’

in nature. However, the software does provide a mechanism whereby certain specific geometries

may be represented exactly in the final mesh. This mode is possible only when the geometry is

itself planar and Cartesian aligned, e.g., a flat plate, square cylinder, forward or backward facing

step, etc. A challenge pertaining to load balancing in certain algorithms used during the grid
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generation phase, specifically geometry-centric algorithms, has been identified, explained, and

improved significantly.

The forest-of-octrees structure is stored using a linear storage paradigm implemented using

Morton encoding. Ramifications of this storage paradigm are far reaching—in both positive and

negative ways. The main advantage is the functionally perfect load balancing it affords in terms

of elements-per-process. One of the major drawbacks of this decision is the loss of hierarchical

traversal and the benefits that come with hierarchical data structures. Certain portions of this

application suffer significantly from the inability to traverse the octrees structure hierarchically. In

order to lessen this impact, a single, coarser hierarchical octree is created in the geometry library

and stores the geometry facets. This work leverages both types of octree structures during the

creation of the computational mesh: the linear paradigm is used as a data-structure to store mesh

elements because of its optimal parallel partitioning properties, while the hierarchical paradigm

is leveraged for speed during geometry queries that benefit from spatial ‘knowledge’. This mixed

approach has proven to be an important feature as algorithms that benefit from the hierarchical

storage do so significantly, sometimes gaining speedups greater than an order of magnitude.

Within the PDE solution framework, the buoyant incompressible NS PDEs are implemented

using the pseudo-compressibility approach. This implementation is thoroughly tested and validated

using various canonical test cases appropriate to the physics in question. The software is then

successfully tested on a large scale urban geometry, both with and without heat and contaminant

transfer.

To the author’s knowledge, this is the first application of its type to use a linear forest-of-

octrees data structure for its mesh generation. The forest of trees aspect of the mesh generation
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affords greater flexibility with respect to the size and shape of mesh elements; it provides mecha-

nisms to easily and naturally create meshes with isotropic or anisotropic elements without stringent

requirements on the shape of the root element. For example, the only way to have isotropic ele-

ments in a single tree structure is if the root element itself is isotropic and, conversely, the only

way to have anisotropic elements in the mesh using a single tree structure is if the root element is

anisotropic. These restrictions go away when using a forest-of-trees structure, i.e. an anisotropic

forest can include isotropic mesh elements and vice versa. Furthermore, the octree aspect of the

application makes it possible to approximate buildings with significant three dimensionality, e.g.

domes, spires, overhangs, or even bridges, whereas many other similar applications only support

‘2.5’ dimensional building geometry.

Also, advances made regarding the load balancing of the flood-fill routine provide tangible

benefits. The approach developed provides a method to significantly improve the balance of work

during the flood-fill algorithm and leads to faster grid generation times. Although this method

yields diminishing returns as the number of processes increases, it is still a valuable contribution.

5.1 Recommendations for Future Work

While this software has the potential to become a valuable tool with many areas of applica-

tion, it is still very young and immature. There are many aspects of this research that would benefit

from further development, refinement, validation, and research.

5.1.1 Grid Generation Considerations

The current adaptive grid refinement (AMR) functionality is sufficiently robust, but the

coarsening logic needs to be extended to support the coarsening of boundary elements. The
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addition of this feature is encumbered by the fact that the initial discretization of the geometry

is also the final discretization; i.e., any boundary face present in the original discretization must

always be present in any subsequent form of the grid. These faces may be refined or coarsened as

long as the underlying shape of the initial discretization is maintained; unfortunately, this is more

difficult during the coarsening phase of AMR. This application does not currently support exact

discretization of curved geometry; all geometry is approximated by explicitly removing any mesh

element that intersects the geometry resulting in ‘blocky’ or ‘stepped’ computational meshes. A

cut-cell, immersed boundary, or projection method should be implemented in order to accurately

represent any arbitrary geometry. These methods are well established and their implementation

within the application should not be exceedingly difficult. Meshmovement would also be a valuable

addition to the application. In order to do this however, the robustness of the application will need

to be explored to make sure it is able to regenerate the computational mesh reliably every time

geometry moves; currently the mesh is static once it has been created, except for when AMR is

being used. This should not be a monumental task but one that must be approached with thought

and care.

Another limitation of this application within the context of urban simulation is the manner

in which the cityscape geometry must be represented. Currently, the building and terrain must be

represented with a water-tight tessellation that the software uses to define the computational domain

and determine the in-out status of elements therein. Obtaining said water-tight geometry may be a

difficult task in and of itself and may prove to be equally prohibitive as the manual generation of

the computational domain itself. There are a number of ways this could be assuaged. For example,

many similar applications leverage commonly available GIS data directly for the definition of the
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geometry without the need to generate a water-tight representation. Furthermore, for significant

urban areas, if there does exist a water-tight representation, it will likely be too big for each process

to load into memory; a client-server model could be implemented such that a single, larger-memory

machine may load the geometry and handle all the related queries. This approach may pose a bit of

a bottleneck; but given that the grid generation portion of the run-time is relatively small compared

to the simulation time, this drawback should not present a significant problem.

Another aspect of this application that could use refinement pertains to urban simulations

where there are significant features in the terrain: e.g., mountainous regions or places where humans

have significantly modified the urban landscape during urban planning and development. Given

the nature of the grid generation regarding its inability to exactly represent curved geometries,

terrain poses an interesting problem, especially in regions near farfield boundaries where large

mesh elements are desired. Succinctly, the ‘blocky’ or ‘stepped’ nature of the mesh creates large,

physically unrealistic features in the mesh near areas of significant terrain curvature. This problem

makes urban areas with appreciable variation in terrain more difficult to run and has the potential

to adversely affect the solution quality because of non-physical boundaries present in the final

computational domain. The implementation of proper boundary resolving mesh generation would

clearly eliminate this problem but may add to the computational overhead. It may be possible for

elements near terrain boundaries to be treated as porous media in such a way to model the effect of

the terrain on the flow without explicitly resolving it.
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5.1.2 Computational Considerations

An original goal of this research also entails developing a method for rapid simulation of

an urban disaster scenario in order to provide real-time feedback to first responders. While the

current state of the application does provide a significant automated advantage in such an event, the

time-to-solution still requires concentrated optimization. Part of this goal is realized by the nature

of the computational mesh generated by the software wherein geometry is under-resolved and full

viscous resolution relaxed in favor of smaller representative meshes that afford an acceptable level

of solution fidelity. Effort could be spent to maximize the unsteady time-step while maintaining

stability in order to simulate larger physical time periods in a minimum number of time-steps.

One way this could be improved is by implementing dual time-stepping. However, the most

ground stands to be gained by taking advantage of hardware solutions and leveraging multiple

appropriate parallelization paradigms. The state-of-the-art in high performance computing (HPC)

is moving toward heterogeneous systems that take advantage of both distributed and sharedmemory

paradigms, as well as accelerators, to attain maximum parallel performance. Significant effort must

be put forth to take advantage of shared memory and accelerator paradigms within the context of a

distributed memory application; non-trivial algorithmic and programming changes must be thought

out and implemented. However, in order to achieve this level of parallel efficiency, these options

must be explored thoroughly.

There are outstanding load-balancing issues that do not pose significant bottlenecks, but

could benefit from some focused attention. The main difficulty is in achieving optimal load

balancing when considering parts of the application that deal directly with geometry and geometry-

centric functionality, e.g., boundary condition implementation, surface force calculations, etc.
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This application provides nearly perfect load-balancing when it comes to volume-to-volume type

computations, but it is more difficult to assure that all processors have been assigned an equal

amount of boundary work. However, this problem is not specific to this application, it is a

challenge common to many applications that perform the same types of computations.

The contaminant transport functionality of the code seems to work well, but for more

realistic plume simulations the application should be modified to support non-neutrally buoyant

contaminants. Many contaminants of interest are either heavier or lighter than air, and this char-

acteristic of the particular contaminant will significantly affect the way that it propagates. That is,

heavier plumes will tend to sink and spread outwardly more, while lighter plumes will rise more

quickly and spread outwardly less. Integrating these effects more accurately into the solver will

result in more accurate plume propagation simulations.
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APPENDIX A

BUOYANT INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
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This appendix will give more details about how the buoyant Navier-Stokes equations used

during this research are derived. I am indebted to Dr. D. Steven Nichols for his contributions to

this derivation; this entire appendix is an almost verbatim replication of notes he provided to me

outlining this approach.

To start out, the equations will be derived assuming that gravity acts in the negative y-

direction; in this case only the y-momentum equation needs to be considered as it is the only

equation that is modified by the addition of buoyancy terms. Starting with the compressible

y-momentum equation with a gravitational source term

∂ ρv

∂t
+ ∇ · (ρvu) = −

∂p
∂ y
+ ∇ ·

[
(µ + µT )

(
∂ui

∂ y
+
∂v

∂xi

)]
− ρg (A.1)

and assuming incompressibility and dividing through by the constant reference density ρ∞ yields

the incompressible y-momentum equation

∂v

∂t
+ ∇ · (vu) = −

1
ρ∞

∂p
∂ y
+ ∇ ·

[
(ν + νT )

(
∂ui

∂ y
+
∂v

∂xi

)]
− g (A.2)
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Thus, the source term vector, S, in equation (3.1) is

S =




0

0

−g

0

0




(A.3)

or, in another way

S =
1
ρ∞




0

0

−ρg

0

0




(A.4)

By the Boussinesq approximation [93], the density may be written as a function of temperature as

ρ(T ) = ρ∞(1 + ρ′) (A.5)
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where ρ′ = −αT (T − T∞). Substituting equation (A.5) into equation (A.4) yields

S =
1
ρ∞




0

0

−ρ∞(1 + ρ′)g

0

0




=




0

0

−g − ρ′g

0

0




(A.6)

Now, in order to write the equations in conservation form, the−g term needs to be combined into the

pressure without affecting the − 1
ρ∞

∂ p
∂x and − 1

ρ∞

∂ p
∂z terms. Recall that for this part of the derivation,

gravity acts in the y-direction only, so gravity needs to be accounted for in the y-direction without

affecting the x and z directions. The pressure gradients and the gravity term for all momentum

equations are

x-direction: −
1
ρ∞

∂p
∂x
+ 0 = −

1
ρ∞

∂p
∂x
−
∂δ

∂x

y-direction: −
1
ρ∞

∂p
∂ y
− g = −

1
ρ∞

∂p
∂ y
−
∂δ

∂ y

z-direction: −
1
ρ∞

∂p
∂z
+ 0 = −

1
ρ∞

∂p
∂z
−
∂δ

∂z

(A.7)

where δ needs to be chosen to satisfy the equations. Assuming that g is constant, it is easy to see

that δ = gy works, i.e. ∂gy∂x =
∂gy
∂z = 0 and ∂gy

∂ y = g. Now, the terms may be combined

x-direction: −
∂

∂x

(
p
ρ∞
+ gy

)
= −

∂p∗

∂x

y-direction: −
∂

∂ y

(
p
ρ∞
+ gy

)
= −

∂p∗

∂ y

z-direction: −
∂

∂z

(
p
ρ∞
+ gy

)
= −

∂p∗

∂z

(A.8)
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where p∗ = p
ρ∞
+ gy is the modified pressure. Applying the non-dimensionalization discussed

in Section 3.2 to p∗ and the y-momentum equation using equations (3.21) yields the following

non-dimensional equations

p∗ = p +
y

Fr2 (A.9)

and

∂v

∂t
+ ∇ · (vu) = −

∂p∗

∂ y
+ ∇ ·

[
(ν + νT )

Re

(
∂ui

∂ y
+
∂v

∂xi

)]
−

ρ′

Fr2 (A.10)

where Fr = u∞√
gL
, is the Froude number. At this point, the source term vector is

S =




0

0

−
ρ′

Fr2

0

0




(A.11)

The source term needs to be rewritten in order to arrive at the final form used in this work. This

form is required because it is written in terms of temperature, and temperature drives the buoyancy.

Start with the dimensional source term ρ′g = αT (T − T∞)g, (although, note that ρ′ is already

non-dimensional) and recall that during the non-dimensionalization, this term gets multiplied by

L
u∞

and that the non-dimensional temperature is T̂ = T−T∞
Tw−T∞

. Performing the non-dimensionalization
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to the source term yields
L

u2
∞

(−ρ′g) =
L

u2
∞

[
αT (T̂∆T )g

]

−ρ′
gL
u2
∞

= αT
Lg
u2
∞

T̂∆T

−
ρ′

Fr2 =
αTT̂∆T

Fr2

(A.12)

Thus, dropping the hat (ˆ) syntax, the source term vector may be written as

S =




0

0

αTT∆T
Fr2

0

0




(A.13)

Recall that αTT∆T
Fr2 may be easilywritten asT Gr

Re2 , which is the final formused in this dissertation. This

is the derivation for the simple case where gravity is aligned in a coordinate direction, specifically,

the negative y-direction.

A generalization is outlined below that allows for gravity to be aligned arbitrarily in lieu

of choosing a Cartesian axis. Beginning with the compressible momentum equations written in

tensor form with an unaligned gravity vector

∂ ρui

∂t
+ ∇ · (ρuiu) = −

∂p
∂xi
+ [viscous terms] + ρgei (A.14)
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The gravity vector is g = ge where e is a unit vector defined as

e =



ex

ey

ez



(A.15)

and g ≈ 9.81 m s−2 or g ≈ 32.19 ft s−2. In order to recover the original formulation with gravity

aligned in the negative y-direction, e may be written as

e =



0

−1

0



(A.16)

Applying the Boussinesq approximation as before and dividing through by ρ∞ gives the incom-

pressible momentum equations

∂ui

∂t
+ ∇ · (uiu) = −

1
ρ∞

∂p
∂xi
+ [viscous terms] + (1 + ρ′)gei

= −
1
ρ∞

∂p
∂xi
+ [viscous terms] + gei + ρ

′gei

(A.17)
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As before, the − 1
ρ∞

∂ p
∂xi
+ gei term needs to be combined into the modified pressure term p∗.

Expanding the tensor notation gives

x-direction: −
1
ρ∞

∂p
∂x
+ gex =

∂p∗

∂x

y-direction: −
1
ρ∞

∂p
∂ y
+ gey =

∂p∗

∂ y

z-direction: −
1
ρ∞

∂p
∂z
+ gez =

∂p∗

∂z

(A.18)

where p∗ = p
ρ∞
− gδ such that ∂δ∂x = ex , ∂δ∂ y = ey , and ∂δ

∂z = ez. One simple form for δ that satisfies

these constraints is

δ = xex + yey + zez = x · e (A.19)

Now equation (A.17) may be written as

∂ui

∂t
+ ∇ · (uiu) = −

∂p∗

∂xi
+ [viscous terms] + ρ′gei (A.20)

Performing the non-dimensionalization on equation (A.20) yields

∂ui

∂t
+ ∇ · (uiu) = −

∂p∗

∂xi
+ [viscous terms] +

ρ′ei

Fr2 (A.21)
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where ρ′ei
Fr2 = −

αTT∆T
Fr2 ei, p∗ = p − δ̂

Fr2 , and δ̂ = δ
L =

x
L · e. Finally, the final form of the source term

vector for an arbitrarily aligned gravitational vector is

S =
ρ′

Fr2




0

ex

ey

ez

0




= −
αTT∆T

Fr2




0

ex

ey

ez

0




(A.22)

Using this approach, δ is the distance between the control volume centroid and a plane

perpendicular to e that intersects with the origin. This plane does not have to be specified, only the

‘down’ direction must be known.
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