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Abstract

The plasma wakefield accelerator is one of promising and advanced particle accelerator models. It can make

particle accelerator more compact and cheaper. A beam bunch propagating through plasma excites the plasma

1
wakefield at some conditions. The optimum wake is obtained for kpo, = 22 and k,o, < 1. Where k,, is

plasma wave number and o, (or o.) is RMS beam length (or RMS beam radius). But we are interested in
using CERN’s long and high-energy proton beams. The CERN’s proton beams are much longer (~12 cm) than
the optimum driving beam length (in order of plasma wavelength A;). Here we focus on the instability which
occurs based on the interaction between beam and plasma electrons. By this instability, the long driving beam is
modulated along the propagation direction, so it makes the beam satisfy the optimum size for excitation of
plasma waves. What we should know is that the plasma oscillation which is initially and axi-symmetrically
excited by beam head will seed self-modulation of driving beam. Therefore, we first study fundamental theories
of excitation of plasma waves by the charged particle beam. It’s about the response of plasma electrons to
driving beam. The driving beam doesn’t interact with and only affects plasma. Here excited plasma wakefields
should be considered. As the next step, the dynamics of plasma wakefield accelerator is introduced. Evolution of
beam envelope in time could result in beam centroid offset or radius pinching. Where the two phenomena,
centroid offset and radius pinching of the beam in plasma are called ‘Self-modulation instability’ and ‘Hose
instability’. Those two instabilities compete each other. As the last step, the parameters of Injector Test Facility

(ITF) at Pohang Accelerator Laboratory (PAL) is used to demonstrate the self-modulation instability.
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Chapter 1. Introduction: Why Self Modulation Instability?

As particle physics community gets on a step for the new discovery, a teraelectronvolt-scale electron-positron
collider (for example, the International Linear Collider) is needed for the next large-scale project for high-
energy particle physics. Due to the energy loss by synchrotron radiation it should be built as a one pass linear
collider, so it will be huge in machine size (~ 30 km long) and very expensive for construction. In this
circumstance, investigating new schemes based on the plasma wakefield acceleration, which would be compact
in size, might be one of the promising alternative approaches for the realization of the electron-positron collider
[1]. To reach for the new energy frontier of electron acceleration using plasma wakefield accelerator, how
parameters of driving beam and plasma should be determined must be discussed.

Since Tajima and Dawson proposed plasma wakefield generation by a short (pulse length L, <A,) laser
pulse for electron acceleration in 1979 [2], various methods and associated theories to excite plasma waves have
been proposed and developed by many brilliant researchers. Pisin Chen introduced the interaction of a bunched
electron beam with a plasma in 1985 [3]. In this paper, to resonantly excite the plasma waves the driver beam

should be shorter than plasma wavelength A,. [3]. As another important work, R. D. Ruth et al. proposed that

for an axisymmetric charged particle beam, the transformer ratio is generally givenby R=E,/E_ <2 —
Nwitness/Narive 11 1984 [4]. (Here, E, and E_ are the maximum accelerating and decelerating fields induced
by the driving beam, and Nyjtness and Ngrive are the number of witness and driving beam particles,
respectively.) From the transformer ratio argument, we would think that to reach for the TeV energy range in a
single stage (a few tens of meters long) of the beam-driven plasma acceleration, the TeV proton bunch from the
CERN LHC can be used as a driver beam. However, the TeV proton bunch from the SPS (injector for the LHC)
would usually be about 12-centimeter long. Based on the previous theoretical works, we note that it is too long
to resonantly excite the plasma waves. This is a critical issue to be addressed.

Generating short drivers which are of the order of a plasma wavelength long has been one of the key technical
challenges in both laser and charged particle beam communities. Various methods to excite plasma wakefields
using long laser pulse or long charged particle beam have been proposed to overcome the technical limits. In
this study, we particularly focus on the Self-Modulation Instability (SMI) of a long charged particle beam in
plasma. In this chapter, we first review fundamental theories of beam-plasma interactions, which will form the

basis of the numerical studies on the SMI given in this study.



1.1 Interaction of a relativistic electron bunch with a plasma

The scheme of linearized plasma system makes it possible to determine the frequencies of oscillation and to
discuss the part played by temperature effects, which turn out in general to be unimportant, even more so in the
study of plasma oscillations in electron beams, where the temperature is practically zero [6]. There could be
numerous ways of basic interpretation of the excitation of plasma waves by a charged particle beam though, in
this study we introduce two well-known methods. The first method is from the paper of Pisin Chen (1985) [2].
Another one will be covered in Chapter 3.

We first consider that a negatively charged relativistic particle beam with 3, = v, /c < 1 goes through a
cold, uniform plasma along the z axis. The beam is assumed to be a bunch of q electrons, and thus the total
beam charge is Q = ge. Here, the beam is treated as a single particle with the magnitude of charge Q = qe. To
describe the small amplitudes and nonrelativistic plasma oscillations, we use linearized equations, such as
equation of motion and continuity equation for the cold, non-relativistic background plasma. All the equations of

electromagnetism which are used in this study are expressed in the Gaussian unit.

Plasma electrons

Fig. 1.1. A short electron beam which propagates in plasma wakes the plasma waves. Here the excited plasma
waves have no group velocity and their amplitudes are very small. The density variation of plasma electron is

quite exaggerated to provide a simple picture of the beam-driven plasma wakefield concept.

on d(n,y +n
6_tp + V- (npvp) = ( poat pl) + \" ((npo + npl)(vpo + Vpl))'
o (1.1)
6};1 TV =0,
dv, v, e
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Here, np, is the background plasma electron density (anpo /ot = 0) and n;, is the density perturbed by
the driving beam (npo > np,,). The elementary charge is defined by e = e = 1.602x1071 C. Note that the
definition of the elementary charge ‘e’. It could be defined in a little different way that e = —|e| = —1.602X
10719 C. Originally plasma has no net flow and external magnetic field is zero (Vpo = By = 0). We only kept

linear terms. For the driving-electron bunch, the charge and current densities are
Net charge density, p(x) = —enp; (X) — Q8(x — Xo), (1.3)
Net current density, j1(X) = —enyvp; (X) — Qvp8(x — Xo). (1.4)

Here x = pe; + ze; in cylindrical coordinates and X, is position of the bunch. Each density contains both
contributions from the plasma and the driving beam. As remarked above, in this study we will discuss the
features of the plasma wave for being used as the ion cavity accelerating charged particles. Because the electric

field is calculated from magnetic vector potential A and electric potential V as

10A, (1.5)

we will derive two differential equations for obtaining A and V induced by plasma wave. Here we define { as

relative coordinate from the driving beam position.
(=z—vpt<0. (1.6)

Applying chain rule on { and assuming , = 1, we get the interaction formula between longitudinal electric
field and two types of potentials.
0, =0¢0,0= 0y
0y = 070G = —vp 0,

10A 1.7
[E{], = — Ea_tl + VV1]Z =Bo azAlz - azvl = a((A1z - V. (.7

We should obtain the solutions of Poisson equation and inhomogeneous wave equation for the magnetic vector

potential.
V2V1 = _4’1-[p1, (1.8)
VZA i_aZAl = _4_1T' _1 % (1.9)
L7 ez g2 c 1T o



Here because the relativistic factor y, is approximately constant, the second term of the left hand side in Eq:
(1.9) is removed. Then now we can derive two differential equations and obtain two solutions of them. (see

Appendix. 1)

1
(07 +kj)vi = —Qo% (m) (1.10)
2nQ( 1 @ ,sinkp(i’—i)}
=Tk | e — o ,
ho=-3 {kpm* pf( C T (11D
1
(V3 — B2k2)A;, = —BoQV3 (m) (1.12)

!

p

o7 + 22 1

2 [ee)
A0 = _)\LQ%J- dp,Kl(Bokpp,)
p 0

Here, A, = 2m/k,. The maxima of E;, areat (| = (n + %) Ap, where n is any nonnegative integer, and the

contribution to the maximum E,;, comes predominantly from the scalar potential. This treatment ignores
nonlinear plasma effects and self-consistency effects that act to slow the driving bunches. It is only valid i) if the
electric field does not approach the cold wave-breaking amplitude, and ii) if the electric energy is small

compared to the free energy of the driving bunches. The first condition provides an upper limit on the maximum

1
allowed energy gradient, i.e., maximum € = (npo)2 eV/cm = 3.2 GeV/m. The second condition requires that

(E2,/8m)L < qyomc?/A, where L is the length of the beam plasma interaction region and A is the beam area. I

1.2 Beam-plasma instabilities

The bunch transverse dimensions must be on the order of, or smaller than the cold plasma collisionless skin
depth (0, = c¢/wp) to avoid transverse bunch filamentation. In this case, the relation between the primary beam

and plasma becomes

wp ngye? X T (1.14)

The hose instability (HI) can occur in the limit, 6, > A,. We consider the electron beam in an equilibrium state
where the plasma electrons have been expelled from the region of the beam by the beam space charge. When the
beam suffers a small transverse displacement, the plasma electrons at r = r, are also displaced in such a way
that the interaction is unstable. It makes the driving beam twisted (or go wrong). Based on the similar physics,
transverse two-stream instability (TTSI) can occur. When the beam envelope symmetrically evolves by the
transverse wakefields induced by the beam head in the collisionless (n, < ng) region, it is called self-
modulation instability (SMI). Analytical approaches of the self-modulation instability and hose instability are
given at Chapter 4.



Chapter 2. Particle-In-Cell (PIC) Method

This work is based on the computer simulation. Especially Particle-In-cell (PIC) code WARP [17] is used to
demonstrate the physics process in the charged particle beam and plasma system. In this chapter, fundamental

concepts of the PIC method are briefly explained.
2.1 Electrostatics and Electromagnetics

The physical system we will study could be electrostatic or electromagnetic. The differences of the two limits

are explained here. For the electrostatics,

0B

—= 0, 2.1

ot (2.1)
V-E = 4mp. 2.2)

Magnetic fields vary slowly and only external magnetic fields are considered. Thus, self-induced magnetic
fields are neglected. Fast evolutions such as radiation, retardation and beam envelope evolution effects are also
neglected. The particles are slow compared to c. The fields change adiabatically and depend only on the
instantaneous positions of the particles. This system is considerably simplified and requires only two equations

to get the solution of the problem. But for the electromagnetics, we need

10B

VXE = ———, 23
c ot @3)

41 10E
VxXB = — P 2.4
c J+ c ot @4

The four Maxwell’s equations are fully satisfied, but only the above two equations are enough to get the
solution of the system. Above two equations already satisfy other two equations with continuity equation. This
system self-consistently includes magnetic fields generated by the beams or plasmas and supports fast evolution
of fields, radiation, retardation and beam envelope evolution effects. The particles move close to ¢ and
accelerate abruptly. So, the fields depend on the history of the particles, which means that the radiation effects
should be considered. We are interested in the evolution of beam envelope in plasma. Therefore, the limit we are

interested in is in electromagnetics.



GUhhsT

2.2 Computational cycles for Particle-In-Cell simulations . =CIEN

The Particle-In-Cell method is one of the first principle methods. The fundamental theories of electrodynamics
are used. Basically, PIC simulation repeatedly calculates the specific computational cycles. The loops are listed
below for the two cases of electrostatics and electromagnetics.

The PIC loop in electrostatics

For the PIC loop in electrostatics, only position of particle is used to obtain the source p. So, only electric field

is calculated during the simulation steps. Magnetic field exists only externally.

Fig. 2.1. After loading charged particles, charge and current depositions should be interpolated. Then from
Gauss’s law, electric potential and field can be calculated. Before the step for integrating equation of motion of
particles, fields which are calculated on grids around the particles should be interpolated. Once integrating the

equation of motion of particles, updated charge depositions are calculated. Same steps are repeated.



GUhhsT

The PIC loop in electromagnetics

For the PIC loop in electromagnetics, position and momentum of particle is used to obtain the charge and
current densities. So, electromagnetic fields can be calculated from electromagnetic field solver. Magnetic field

can be induced in the system.

Fig. 2.2. After loading charged particles, charge and current depositions should be interpolated. And next,
electromagnetic fields in recent time can be calculated updating two fields of coupled differential equations in
time. Before the step for integrating equation of motion of particles, fields which are calculated on grids around
the particles should be interpolated. Once integrating the equation of motion of particles, updated charge and

current depositions are calculated. Same steps are repeated.



2.3 Staggering in time and space

OB
5o = —CVXE, (2.5)

OE
= = CVXB — 4. (2.6)

In the electromagnetic field solver from Maxwell’s equations, electric and magnetic fields are coupled to each
other and derivatives of fields with respect to both time and space show up in the two equations above. Each
component of two fields should exist in different memories from each other to realize the coupling with
derivatives in time and space. In other words, the indices of fields (and other arguments for particle) alternately
show up with respect to temporal and spatial grids. They are staggered at each step of both time and space to

each other.
Staggering in time

Magnetic and electric fields should be staggered in time to perform time derivatives in Faraday’s law and
Ampere’s law. Each field is on the same time step with its source. Momentum of particle corresponds to
magnetic field in time, while position of particle corresponds to electric fields in time. Each of electric and
magnetic fields alternate with each other in time. Magnetic field is on the half integer of upper index ‘n’, while

electric field is on the integer of upper index ‘n’.

1 1 3
—-= += n+7
Particles p; 2 X p, ? xgt! p, 2
O O O O O

\) \J

1

jn_% pn .n+E pr1+1 jn+§
Grid 1 1 3
Bn_z gD Bn+5 En+1 B“+2

Fig. 2.3. Staggering in time between momentum and position, current and charge, and magnetic and electric

fields are depicted. Each field is on the same time step with its source. But each of electric and magnetic fields
alternate with each other in time. Magnetic field is on the half integer of upper index ‘n’, whereas electric field

is on the integer of upper index ‘n’.



Staggering in space: The Yee grid (Rectangular coordinates)

Staggering in space of rectangular coordinates between current and charge, magnetic and electric fields are
depicted here. The Yee grid [18] is proper for calculating VX. Each component of electric field is always on the
grid which is parallel to that component and has half integer of index in that direction. On the other hand, each
component of magnetic field is always among grids which are perpendicular to that component and has half

integer of index in other directions.

A E;?" '!E L
(i+1)Az -~
[ ] 2z
/ Yy
o—— B,
B.
pe ® 5 ---JAy
/EU ’Ih’ l
iAx ---+ ——-(j+1)Ay

kA2 (k+1)Az

Fig. 2.4. Staggering in space of rectangular coordinates between current and charge and magnetic and electric

fields are depicted. The Yee grid is proper for calculating VX.



2.4 Difference equations

The four procedures contained in the PIC loop of electromagnetics are described in rectangular coordinates

with numerical notations. Staggering in time and space is considered. The PIC scheme repeatedly updates the

values for the particle and fields from initial to final time, step by step using these equations.

Field solver

Faraday and Ampere’s equations are used to calculate fields. We call those equations ‘field solver” here.
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1 1
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E l’1+1 E H+E l’l+E H+E l’l+E
Y1]+ k Y1]+ k ,]+ k+ 1]+ k 1+1,]+ k 2,]+2,k 4m] n+%
= —4m
At Az Ax Vijtok
1 1 1 1
E n+1 _ l’l+E l’l+E ]’l+E _ n+i
ij, k+l Zi,j,k+% y1+l]k+— Yi %,j,k+— ,]+ k+— i %,k+2 4m n+%
— — 41 .
At Ax Ay “ijkrd

2.7)

(2.8)

(2.9)

, (2.10)

When there are no sources of fields such as charge or current, fields can be updated only by these two

equations. Electromagnetic wave in vacuum is one of those examples. But when there are movable charged

particles in the system, fields are affected by position and current of the particles, not only by previous fields.
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Field gathering (Linear weights of fields)

Because particles are not on the grids, the fields which are fixed on the grids should be interpolated to the
places where the particles are located. Here only the linearly weighted fields are introduced. The linear
interpolation is one of the most common weighting methods. It has the error whose size is in the order of ~Ax?
and is fast in calculation time.

In Fig. 2.4. the s'th particle is at (xq,ys), iAx < xg < (i + 1)Ax, jAy < ys < (j + 1)Ay. The specific
position of the particle is expressed by xg = (i + §;,)Ax and yg = (j + 8y)Ay (note that 0 <8, <1 and 0 <

8y < 1.). Then the interpolated field W(xg,ys) in 2-dimensional space is expressed by

W(Xs' YS) = (1 - ax)(l - ay)wi,j + 5x(1 - ay)wi+1,j + (1 - ax)aywi,j+1 + 5x8ywi+1,j+1- (2-11)

i i+1

Fig. 2.5. Scheme of 2-dimensional linear weighting. The s'th particle is at (xg,ys), iAx < x¢ < (i + 1)Ax,
jAy <ys < (j+ 1)Ay. The specific position of the particle is expressed by xg = (i + 6,)Ax and ys =
(j + 8,)Ay (note that 0 < 8, <1 and 0 < &, < 1).
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The interpolated electric field at s'th particle (x,Vs, Zs) in 3-dimensional rectangular. Yee grid is expressed
by

.1
E.(x") = 1_|(1+§)AX—XS 1_|jAy—yS| 1_|kAZ-ZS| n
X S AX —Ay —AZ

Xipdik
|(i + %) Ax — x4

2

jAy — kAz — z
Ly =y (] s BN,
Ay Az i+5ik

Ay —ysl (| [KAz—z])
Ay Az Xi+%,j+1,k

(1_ |]Ay_YS|> |kAZ_Zs|E n

+

—Xs

(o
( — X

Ay Az Xi+l,j,k+1
? 2.12)
1 A

|(1+§) x = (2=l

Ay Az Xi+%,j+1,k
1\, ,

N |(1+§) X — Xg - liAy — ysl |kAZ_Zs|E n

Ax Ay Az Xi4djk+1

N 1_|(i+%)Ax—xS

|JAy - YSl |kAZ - Zsl

n
Ax Ay Az 1+—1+1k+1
o1
LNirg)ax kb2 =z,
AX Ay Az Xi+%,j+1,k+1'

Here, s’th particle in the cell is defined in the region i+ 1/2 < x;/Ax<i+3/2, j<ys/Ay <j+1 and

k <z,/Az <k+ 1 atthetime nAt, in which each of |(1 + %) AXx — Xg

Az corresponds to 6,8, and 6, in Fig. 2.5, respectively.

/Ax, |jAy — ys|/Ay and |kAz — zg|/

12



The interpolated magnetic field at s'th particle (Xq,Vs,Zs) in 3-dimensional rectangular Yee grid is expressed

by

§X<Xn+%>=<1_|AX—XS|> 1_|(j+%)Ay_YS 1_|( Zs>an+%

s Ax Ay 1]+lk+—
1
|Ax — x| ) |(J+§>AY S (4 |( AZ—ZS -
Ax Ay X1+11+ k+—
IAX — X Ay Vs |( — 7 nak
+ By 2
1]+—k+—
N |Ax—xS AY Vs |(k+§) Az — zg B n+s
y Az ij+5k+5
(2.13)
1 A K 1 A )
|Ax — x| (J+§) Yy — Vs _|( +§) Z—Zs n+3
Ax Ay Az Xi+1,j+%,k+%
.1 1
[+l [(c+ Deama]_
Ax Ay Az i1kt
1 1
oy |Ax — x| |(1 +§)Ay—ys (k+7)Az—Zs nis
Ax Ay Az i ks
('+1)A - (k+1)AZ—Z 1
+|AX—XS| JT5)BY — Vs 2 s B n+;
Ax Ay Az Xi+1,j+%,k+%
— [ n+2\ = [ n-2
B, [ X 2]+ By X 2 (2.14)
B, (x2) = '
X S - "

Here s'th particle in the cell is defined in the region i < x,/Ax <i+1, j+1/2 <y,/Ay <j+3/2 and
k+1/2 <z,/Az < k+ 3/2 atthetime (n =+ 1/2)At, in which each of |iAx — x¢|/Ax, |(j+ 1/2)Ay — |/
Ay and |(k+ 1/2)Az — zs|/Az corresponds to 8,6, and §, in Fig. 2.5, respectively.
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Particle pusher (Integration of equation of motion)

Once fields are gathered at the position of a particle, the equation of motion can be updated in time.

n-l
2
~ Psx
At

ntg
2
ps,x

ol

2
_—
At

!
n+3
ps‘y

1

n+s n-s
2 _ 2
Psz” 7 Psz

At

=q

=q

=q

n
dps|” _ ps

dtl —

- 1
B8, y8,78) + <

- 1
Ey(Xg' y?, Z;l) - E

o1
2

- 1|v
EZ(X;I, y;l, Z;l) + E

n—=
- pS ? — n 1 n
=q|E(x3) + - vsXB(x3)]|,
At c
[ el 1 1 1 i
n 2 _ n 2 n+i _ l’l—E
Vs,y VS.y n n ,n ,n Vsz Vsz & n n ,n
2 BZ(XS'YS'ZS)_ 2 By(Xs'YS'Zs) g
K n+:r  n-:
—v_ 2 Vg, 2 — Vg
S,X SX T S,z Z 5
BZ(Xg,yg,Z;I) - BX(Xg'yng?) )
2 2
[ n+l n—l ﬂ+1 Il—l
2 2 2 __ 2
sx  Vsx = n.n .n VS.Y VS’y 5 n ,n ,n
2 By(XerSrZs) - 2 BX(XS'yS'ZS)

(2.15)

(2.16)

Using updated momentum and previous position of the particle, new position can be obtained as follows.

1
+_
dxs|""2 _ xg*! —x?

dt

n+s
P2
- At n+%’
mys
n+s
n+1 n 2
Xs =~ —Xs Psx
At n+%‘
mys
n+1 n n+%
s —Ys pS.Y
At n+%‘
mys
1
n+s
n+1 n 2
Zs " —Zs _ Ps,z
At n+%.
mys

(2.17)

(2.18)

Particles are moved by the interpolated constant electromagnetic forces during the time interval At at each

time step.
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Charge and current deposition (Linear weights of sources)

Once a particle moves to a new position, new charge and current densities can be obtained (i.e., weighted)

from the information of position and momentum.

X—X - Z—1Z
Linear weights, SX— X5,y — V5,2 — Z5) = (1 _! Sl) (1 _b ys') (1 | S|>,

Ax Ay Az (2.19)
only if |x — x| < Ax and |y —ys| < Ay and |z —z4| < Az
1 . .
Pijk = mz qsS(1Ax — xg,jAy — y¢, kAz — zg), (2.20)
S
1 n+% n+1 n n+1 n n+1 n
. nt3 _ 1 qsPsx S (i_l_l)AX_Xs — Xs ‘A _YS —¥s kAZ—ZS — Zg
1 T Axayaz A 2 2 Y 2 2 )
2 S my, Z
1 n+§ n+1 n n+1 n n+1 n
j n+y — 1 zqsps,y S iAX—XS — Xs (] +E)Ay_}’s —Ys kAZ—ZS — Zg 2.21)
Yi_j+%_k AxAyAz - erH% 2 ’ 2 2 ) 2 ,
S
1 n+% n+1 n n+1 n n+1 n
L0ty 1 9sPs,. s(iAx — Xs " T Xs Ay — Ys = Vs (k + 1) Az — Zs = —Zs
2, 1l T AxAyhz ! 2 Y 2 872 2/
2 S my,

The sources which are interpolated to grids are used to calculate new fields acting on particles. So, procedures

are iterated.
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Chapter 3. Plasma Wakefields of a Short Beam Bunch in Plasmas

In this chapter, initially proposed linear beam-driven plasma wakefield theories of Refs [4] and [6] are
introduced. As remarked above, linearly excited plasma wakefield would generates the self-modulation
instability. Because the optimum condition for excitation of plasma wakefield is satisfied by a short beam, it is

required to understand the physics of a short beam-driven plasma wakefield.

3.1 Energy transfer in co-linear wakefield accelerator

In this section, we discuss a general property of energy transfer in plasma wakefield accelerators. One of
promising definitions of plasma wakefield accelerators described in this paper is that the ion cavity for
accelerating charged particle in plasma has no stored energy before the driving (or leading) beam arrives.

Considering the energy change of the bunch per unit length due to its own wake,

dN,E,) = —NZ?e2W(0), (3.1
dz

where N; is the number of particles in the bunch and E; is the energy per particle. W(0) is a wakefield
function of the plasma ion cavity structure at y = 0 from a elementary charge e. Here we regard bunches as
rigid collections of particles which have zero length (i.e., point-like). The energy change of the secondary (or
trailing or witness) beam injected at a distance y behind the driving beam is affected by both its own wake and

the driving beam’s wake. These two effects are linearly superposed as

d(N,E
d(NzE;) =z 2) _ _N3e2W(0) — NyNye?W(y), (3.2)

where N, and E, meant the number of particles and energy per particles of the trailing bunch. Due to energy

conservation, the total energy of driving and injected beam does not increase.

d(N;E;)  d(N,E
(dlz 2 (dzz 2) _ _(N? 4 N2)E2W(0) — NyN,e?W(y) < 0 (3.3)

Considering that it should be satisfied for all N; and N, (N; = N,),
[-W({H)] < 2W(0). 3.4)
Then the acceleration gradient seen by a single particle in the witness beam is

dE
G= d—; = —N,e2W(0) — N;e2W(y) < (2N; — N,)e?W(0). 3.5)
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Assuming the energy of the driving beam will be fully transferred to plasma wave (wakefield), the driving
beam will stop in a distance L,
L= L (3.6)
N;e2W(0)
As the total charge of the driving beam increase, it makes high accelerating gradient for the secondary beam
though, will last for a shorter distance L. Then the energy gain which secondary beam will obtain from the
wakefield is

N,
AE, = GL < E, (2 - N—). 3.7)

1

Therefore, maximum energy gain of the secondary beam from the driving beam is about 2 times of the driving
beam energy. Notice that the only assumptions necessary to derive this result are conservation of energy, linear
superposition and a rigid point bunch. The inequality can be made for a single mode lossless medium in which
the wakefield oscillates with a single frequency behind the driving bunch. Energy transfer efficiency from the

driving beam to the secondary beam is

A(N;E;) &(2 B &) (3.8)

TETNE NN,
In such a case the maximum efficiency is achieved by choosing N, = N;. The energy of the leading bunch is

then completely transferred to the trailing bunch and no wakefield is left after the trailing bunch.
3.3 Blowing out and sucking in of plasma electrons due to the charged particle bunch’s field

In this section, we analyze the response of a cold plasma to a driving bunch by calculating the wakefield for
three cases: a one dimensional nonrelativistic plasma, a three-dimensional nonrelativistic plasma, and a one
dimensional relativistic plasma. In all 3 cases the plasma is a single frequency medium.

We use three linearized equations.

on
Continuity equation, a_tl +1ny(V-v,) =0, (3.9)

v, _ cE (3.10)

Equation of motion, - =—
q ot m

Gauss's law, V- E = 4me(n, + ny). (3.11)

Here n, is the perturbed background plasma electron density, and ny, is the driving beam density. The
elementary charge is defined by e = —|e|] = —1.602%x1071° C. Note that this definition of e is different from

the one in Chapter 1.1. When the driving beam consists of electrons, it has a negative value. When the driving
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beam consists of protons, it has a positive value. Thus, the sign of n;, is not explicitly shown by itself.

Combining above equations, we get the equation of perturbed plasma electron density.

9°n, ovy\ 0%ng eE\ 0°n; en,
——+n,({ V- =—+n0<V-E)=—+F4He(n1+nb)=0,

ot ot ) T o2 ot
(3.12)
0°n; 4me’n, 4me?n, 0°n, ) )
T = ———m, & ez T @ty = —wpny,.

Here, plasma frequency oolzJ = 4me®ny/m, and driving beam density n,, = 68(z — vpt) are introduced.
Defining the beam frame coordinate y = vyt —z (dy = v, dt) and k = w, /vy, differential equation for the

density perturbation is
0°n,
dy?

+ k?n; = —k?068(y) (3.13)

Solving the second order differential equation that we obtained in the region, y > 0

0°n
le = —kznl, y >0

n; = Asin(ky), y>0
( *ny(0) =0.)

(3.14)

And integrating our original differential equation for 0_ <y <0,

0+azn1 , ) 04 , )
f > dy +kf n,dy’ = —k*o,
o 0y’

ony
dy

ony
dy

— 2

= —kZ¢ (3.15)

y=0_

y=0+

04 04
( f n,dy’ = A sin(ky)dy’ = 0 )

- 0-
Because the region y < 0 is out of our interest, we ignore the first order derivative of n; at y = 0_.

dn
- =Ko (3.16)
y y=04

Assuming

on,
dy

_ Oy
=%

)
y=04 y=0
dn,

ady

= Akcos(0) = —k?o, (3.17)

y=0

A = —ko,

18



We have

—ko sin(ky), y>0
n; = (3.18)
0 , y<O0

When the driving beam consists of electrons, ¢ > 0, and n; must be negative within the region 0 <y <,
i.e., in a half of the first period (or plasma wavelength). It means that background electrons are pulled out by
Coulomb repulsive force of the driving beam. In the similar way, when the driving beam consists of protons or
positrons, 0 < 0, and n; must be positive within the region 0 <y < m, i.e., in a half of the first period (or
plasma wavelength). It means that background electrons are sucked in by Coulomb attractive force of the
driving beam. There is no plasma wave ahead of the driving beam. This is due to the fact that the plasma wave
has zero group velocity. It does not propagate in space and therefore does not overtake the driving beam even if
the driving beam moves non-relativistically. Mathematically, this is from the absence of spatial derivatives.

From Gauss’s law, the electric field induced by the perturbed density is

—4meo cos(ky), y >0,
E= (3.19)
0 , y <0.

Considering the energy conservation law,

Ucr, (the energy density of the electric field at the peak)

_ E?(peak)

e = 2me?0? = E(0)ec = —AEnergy (3.20)

~ £(0) = —2meo

Note that there exists a phase retardation while the energy lost by the driving beam is fully deposited at the
crest of plasma waves. Here the electric field €(0) = —2meo is a half of the peak value. It well satisfies the
upper limit of energy transfer efficiency. Here, to satisfy the linearity condition, energy density of the driving

beam should be much larger than that of plasma waves.

1 E%(peak) 1
Enomvg »——= Enomv2 (peak). (3.21)

We now consider a cylindrically symmetric leading bunch with density given by

np = o(r)6(z — vpt) (3.22)
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As in the one-dimensional case, the perturbed density is

n o= {—ko(r) sin(ky), y >0,
1= 0 , y < 0.

(3.23)
Note that the r dependence of n, is equal to that of the driving beam. This is again a consequence of zero

group velocity. Introducing the electrostatic potential V = R(r)Z(z), we solve

V2V = 4me(n; + ny)
d ( d ) 9’V 9%V (3.24)

e r—V + — = 4me(n; + ny)

ar +67¢2 9z2

Here ¢ dependence doesn’t exist. In other words, the driving beam is axisymmetric. Thus, the second term of

left hand side should be removed. Specifically, we use a parabolic distribution for the surface charge density of

2N r?
—2<1 - —2> ) r<a
o) = { ma a (3.25)

k 0 ) r>a

the driving beam.

Assuming Z(z) = Asin(kz — u)pt) = Asin(ky), given partial differential equation becomes

i) y>0, r<a

62R+16R kZR_8eN L r? y 326
e T\l (3:26)
i) y>0,r>a
9’R 10R
4 _K?2R= 3.27
dr? * r or kKR=0 (327)
Then the potential behind the bunch is given by
V = R(r) sin(ky) (3.28)
with (see Appendix 3.1)
K, (ka)ly (ke) + ~ — 2 — <
16eN [R2K)K) T5 =73 7552, =4
R(r) = F{ (ka)?  2a (3.29)
k I, (ka)K,(kr) , r>a
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It yields the electric fields

E, = —kR(r) cos(ky) , r<a
(3.30)
16eN ry .
E. = —a—z{Kz (ka)I, (kr) — @} sin(ky) . r<a

where [, and K,, are modified Bessel functions. Here, longitudinal electric field component can accelerate the

injected witness beam.

g E [Gaussian unit
a0 % ]
0.15
0.8 ol
N 06F 0.05
i ¢
04r 0.05
0.1
021 a
@) 0.15
0 |
-4 -3 -2 -1 0 1 2 3 4
X %1074
E [Gaussian unit]
1.5 — '
] —
0.5 —
0— =)
-0.5 —
41— (b)
-1.3 \ | \ \ [ \ \ |
9 8 7 6 = 4 3 2 1 0

Fig. 3.1. The electric fields induced by disc-shaped electron beam within r < a are plotted. The relative

coordinate of driving beam position y = v,t — z increases in opposite direction of beam propagation. Note that

there exist phase differences between plasma response and wakefields.
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3.5 Nonlinear one dimensional relativistic plasma

For the large amplitudes of plasma oscillations, we can neglect the thermal fluctuations of plasma. This
approximation is reasonable even when we are investigating nonlinear oscillations in a high temperature plasma.
Under the condition which is nearly in the zero temperature, we don’t have to introduce a distribution functions
to specify the state of the plasma, but just use the electron density, which depends on the coordinates and time
[5]. In this section, we study the nonlinear properties of plasma oscillation in one dimension, which is
analytically solvable. The equation governing the nonlinear plasma oscillation in absence of the driving beam

along the propagation direction of the plane wave (in one dimension) is (See Appendix 3.2)

2 _ 2
d (1 Buz>_ 2 P (3.31)

Y =W .
dt? w/l—u% pB_uz

Here, each of B, u, and w, is corresponding to the normalized phase velocity, the velocity of the plasma

electrons in z direction and the plasma frequency, respectively. From now on, we follow the story of the paper

written by Rosenzwig [6]. Replacing the variable T =t— (i-T/vp,) with T= w, [t — (i . %)] and adding
P
the source of the drive beam in the right-hand side of Eq. (3.31), the differential equation of the nonlinear

plasma oscillation driven by the charged particle beam will be

a2 1—BphB>_ 2< B @)
e (—1—82 = B2, Bph—6+no' (3.32)

Here B and u, were replaced by Bp, and B. Because we are investigating the application for the high-

energy physics, we assume the ultra-relativistic driving beam, B, = 1, and introduce a new variable below

1

x(1) = (%)E (3.33)

Defining o = ny/ny, our differential equation becomes

Xx"(1) = %(Xlz 14 20(). (3.34)

Here, the prime indicates differentiation with respect to t. Now we consider this equation in the case of an

electron beam bunch whose longitudinal profile is constant over the full beam of length 1,.

_ { constant, 0<ct—z<l,

o , elsewhere (3.35)
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There is no plasma oscillation for T < 0, so B = 0 and the initial conditions are x(0) =1, x'(0) =0. The

first integral of Eq. (3.34) is then (see Appendix 3.2)
1
X(M®P?=21-0a) - < 1 -20)x. (3.36)

Solutions of real number exist for « < 1/2,and x'(t) =0 at x =1, 1/(1 — 2a). These points correspond

(see Appendix 3.2) to perturbed plasma electron densities of
n; =n—ng =0,-2n,(1 — ). (3.37)

Now that the expression for x’ has been found, we may write an equation for the electric field inside the beam

as a function of x(t) (see Appendix 3.2)

1
mcw 1 z
B = - 2(x) = T 2(1—0()—;—(1—20())(] . (3.38)
Integrating Eq. (3.36), we have T/2.
1
2E(Y,k
= far= (1_2a)-—f1 = ax = E&H (3.39)
x- 1) x) V1-2a
where E(W,K) is the incomplete elliptic integral of the second kind and
1 1
Y =sin"[(x— 1)1 -2a)]z, at x = T (k? = 2a). (3.40)

The frequency of the driven oscillation is

2 1-2a 1-2a
w2 _w o.. (3.41)
T ~ E(¥,K 2E(k) P

Here E(k) is the complete elliptic integral of the second kind and k is as defined above. The oscillation
frequency w is smaller than w,, for larger amplitude excitations, i.e., the larger beam density of the driving
beam, n;,, makes frequency down shift. Because the plasma electron density n is always less than n, inside
the driving beam, the nonlinearity in the oscillation is due mainly to the relativistic mass increase of the plasma
electrons especially for a — 1/2. It causes the serious frequency downshift as shown from Eq. (3.41) in this
limit. It means that plasma electrons become ultra-relativistic for o = 1/2. For the second turning point at o =

1/2 (or ny = —ny),
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1-x2 (1-20)?-1 1

- = =—1, f = 3.42

P =T " 0207 +1 ora=3 S

As ny goes to ngy/2, the plasma electron approaches the ultra-relativistic regime and makes turn at n; = —ny,.
The electric field near the turning point at n; = —n;, approaches the linear wave-breaking limit. Substituting
a=1/2 and 1/x = 0 into Eq. (3.38), we obtain the result below.
mcwy, —
0="% =~ 96,/ny(cm=3) [V/m]. (3.43)

This is the largest electric field obtainable inside the driving beam in the linear wave limit.

0.5 i}

th

-1 :
5 0 10

Fig. 3.2. The normalized velocity of plasma electron at the end of the driving beam (the second turning point of
x(t) [x'(t) =0]. At a =1/2, B reaches —1. In the region where it is not satisfied that |B| << 1 or |a| «< 1,

the system has nonlinearity. It is the reason that we should have investigated the nonlinearity of the plasma

oscillation. The region which is enough to be linearized would be within |a| « 1.
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—(a) Normalized electric field
I\ ——(b) Normalized perturbed electron density
=02

04|
0.6 |

AN
-0.8 | A

I5 20 25 30
T=wy(t—2z/vp,)

Fig. 3.3. Inhomogeneous solution at o

1/2. Each of (a) eE;/mcw, and (b) n;/n, asymptotically reaches -
1 and -0.5. It lasts until the end of the beam, i.e., a = 0. The pictures behind the beam are listed in Refs. [2] and
[6], but it is not our interest.

So far, we have investigated the properties of nonlinear oscillation of plasma electron inside the bunch. In the
case of the electron beam, when ny,/n, goesto 1/2, ( increases upto —1 at the end of the beam. In other
words, n; reaches —ng/2 and it lasts until the differential equation we have becomes homogeneous, i.e., 0 <
ct — z < ],. Behind the beam, solving the homogeneous equation using the continuity of n;(t) and E(t), we
get the response of plasma behind the beam. However, knowing the response of plasma behind the beam is not
our interest. Here what we should note is that n; = —n,/2 lasts to the end of the beam. And as remarked above,
because the larger beam density causes the more perturbed beam density, the oscillation frequency w is a
function of a and the modulation of the plasma electron density. It can be very unstable in the periodicity.
Because we are interested in the condition which SMI will be developed in, then we realize that we don’t have
to consider the nonlinearity of plasma for our purpose and our study would be in the limit of the linear system.

But it is only before the SMI saturates. When the SMI is fully developed, the transition of plasma oscillations
into nonlinear regime occurs.

We have assumed the beam density ny, is constant and the time scale of beam envelope evolution is much

slower than the responses of plasma (the time scale of w™?). In Chapter 4, the dynamics of driving beam is
briefly discussed, so the self-modulation instability is introduced.
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3.6 Simulations of a short beam-driven plasma wakefields using WARP

Referring to Ref. [8] is useful to demonstrate the plasma wakefields driven by the short and charged beams.
The optimum condition to resonantly excite the plasma waves is satisfied with 0.k, <1 and ok, = V2 of
the Gaussian beam profile. But here the former condition ok, < 1 is not fully satisfied (o.k, = 1.4), where

o, = 0, = 382 um and plasma electron density n, = 3.8x10%° m™3,
1) The electron beam driven plasma wakefield at n,/n, = 0.01.
When the ratio of driving beam to plasma electron density is ny/ny < 1, the system is in the linear regime. In

this case, the longitudinal component of the wakefield has the trigonometric-like curve along the propagation

axis of the beam. And the periodicity of the wake is about A;,.

E, [V/m] v
16
1500
a
(@) 12
1000
08
00 04
N
g
=1 0 0.0
S
~ -
-500 04
-0.8
-1000
-1.2
-1500 16
23000 23500 24000 24500 25000 25500 26000
z (um)
E, —cBg [V/m]
1500 s E R i
(b) 6000000
1000 4500000
500 . - 3000000
= 1500000
S 0
N 0
~ =
-500 { -1500000
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Fig. 3.4. Plasma wakefield driven by a short electron beam at n,/n, << 1. (a) Longitudinal component of
wakefield has trigonometric-like curve along the propagation axis of the beam. (b) By this transverse wakefields,

the rear part of the negatively charged driving beam will be focused.

26



2) The electron beam driven plasma wakefield at n,/ny = 0.35.

When the ratio of beam density to plasma electron density is ny/ny = 0.35, the system is nearly in the
nonlinear regime. In this case, we see the steepening of the longitudinal component of the wakefield. It is not
like trigonometric curve anymore. ‘Plasma bubbles’ which are formed by the largely perturbed plasma electrons
are observed. Where we call it ‘pulling out of the plasma electrons’ and in this case the plasma electron density

n =n, + n,; is not like constant value anymore.
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Fig. 3.5. The plasma wakefield driven by a short electron beam at n,/n, = 0.35. (a) The longitudinal
component of the wakefield has the sawtooth-like curve along the propagation axis of the beam. And the
periodicity of the wake is about A,. (b), (c) Charge density p is depicted. Background plasma electrons are
pulled out by repulsive force of the electron beam. Magnitudes of plasma density peaks are very high compared

with the equilibrium plasma electron density ng.
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4) The proton beam-driven plasma wakefield at n;/n, = 0.01.

The proton beam-driven wakefield is analogous to the electron beam-driven case, but here because the driving
beam sucks in background plasma electrons, it has phase difference T from the electron beam case. This result

corresponds to linear theory of Chapter 3.3.
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Fig. 3.6. The plasma wakefield driven by a short proton beam at n,/n, = 0.01. (a) The longitudinal component
of the wakefield has the trigonometric-like curve along the propagation axis of the beam. (b) By this transverse

wakefields, the rear part of the positively charged driving beam will be focused.

28



Chapter 4. Self-Modulation Instability of a Long Beam Bunch in Plasmas

The self-modulation of the beam occurs through coupling of the transverse wakefield with the beam radius
evolution. Periodic regions of focusing and defocusing modulate the beam density at A, driving a larger plasma
density modulation that further focuses the beam periodically. For beams long compared to A, where self-
modulation occurs, the instability is enabled by the drive beam dynamics, and therefore the wakefield properties
will be strongly affected by the drive beam dynamics [10]. In this chapter, we will see the evolution of the drive
beam envelope in time T and relative beam position &. For the analysis, analytical and semi-analytical
approaches of the beam-envelope equation are introduced. But the details of derivation of the beam-envelope
equation are not explained here. Next, we inspect the coupling of beam centroid offset and radius pinching.

These two phenomena are called the hose and self-modulation instability, respectively.

4.1 Analytical approach on the beam-envelope equation

We begin with the analytical theory of the beam self-modulation based on the beam-envelope approach in Ref.
[8]. As remarked before, the self-modulation instability or beam radius evolution can arise by the coupling of the
transverse wakefield with the beam radius evolution when the drive beam length is longer than plasma
wavelength A,. Following the approach of Ref. [15], we can write down the two-dimensional expressions for
the wakefields of an axisymmetric beam driver of an arbitrary profile by utilizing the Euler variables § =
Boct — z, where By = vy, ,/c and T =t assuming the quasi-static approximation (9, = 0) for the beam

driver. Inside the body of a long proton bunch (0 < & < Ly,), the longitudinal and transverse wakefields are

£ ro0
E,(r,§) = 41Tk]23f f r’dr’p(r’,E’)Io(kpr<)K0(kpr>)dE’f(E’)coskp(E -%) 4.1

and

§ roo
W, (r,§) = (E, — Bo)(r,§) = 4nk, f f rdr’ 9p(r, Bl (kpro)K; (lprs ) dE F(E )sink, (E — ), (4.2)
0 Yo

where p(r, &) = poW(r)f() is the beam charge density with the Heaviside step-function profile y(r) =

O(r, — 1), Iyq) and Koy are the modified Bessel functions of order 0(1), ro = min(r,r") and r, =
max(r,r"), k, = wy/c is the background plasma wave number, Ly, is the length of the bunch in the Z
direction, and we have assumed 3, = 1. Dynamics of the drive beam, especially in ultra-relativistic regime,
could be considerably affected by this transverse wakefield W, . So, from a precedent study of the general
beam-envelope equation theory [16], the equation for the beam envelope for a long proton bunch in the plasma

wakefields is written as
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= = =2 [ @y €I (i GO iysinky € — )8 (43)

. _
ry Yo

where vy, = (1 — B%)_% is the relativistic Lorentz factor of the beam, w3 = 4mpye/my, is the square of the
non-relativistic beam-plasma frequency of the proton bunch, p, = nype is the charge density of the proton
bunch, and my, is the mass of the beam particle. Here ry, = ry () is a function of & on account of pinching
caused by the wakefield on the beam. The constant M is from the integration of the 8 component of the
equation of motion for the beam electrons yielding the angular momentum constant, and is associated with the

transverse emittance of the beam [16]. For the demonstration of the self-modulation instability of a proton beam,
we consider a thin beam [k lirrg<1 Il{kprb (E’)}K1 {kp Iy (E’)} ~1/ 2] with a Heaviside step-function profile
prb

[f(¥) = O(¢)] and take M = wﬁorﬁo, where wéo = w /2y, and 1y, is the initial radius of the beam. And
we normalize the coordinates as Ty, = I'y/Tpg, T'ho, » T = WgeT, § = Kp&. So, normalized beam-envelope

equation is simply written by

02 1 3
%E) Rne fo rp (§)sin(§ — §)dg’. (4.4)

Assuming the beam radius is perturbed around the equilibrium radius [r, = 1 + 6ry,] and the perturbation

term has the phase which corresponds to the plasma wakefields spatially [Srb = 6t exp(i&) when |6§8?b| «

|61, |], we get an equation of 6%}, handling the beam-envelope equation (see Appendix. 4.).
(0% +1)(92 + 3)8ty, = —&8y, 4.5)
where we see that 8Ty, varies in time and space inside the beam. We assume that there is additional pinching

which has any group velocity [8?b~ exp(idwt — ik§), at k, » k]. So, the dispersion relation of the wave

which delivers the pinching inside the beam is obtained as (see Appendix. 4.)
D= (k?—-1)(6w?—A4A) =-1, A =3. (4.6)

For complex Sw = 8w, + i6w;, when Im(8w) — oo [Fig. 4.1(a)], k has real roots.

k=% lim |[—————=4%1 4.7

So, instability is convective [8f,~ exp(iSwT =+ if)].
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The dispersion relation gives two complex k roots (one in the upper half and another in the lower half of the

complex k plane) for real 6w = Re(dw) = dw, (\/Z< Sw <V1+ A) (see Appendix. 4.) [Fig. 4.1(b)]

) (1 +4) - 8w?
k= lki = il 8(1)12——A (48)
When k is in the upper half of complex plane, the perturbation grows spatially in the € > 0 direction and
when k is in the lower half of complex plane, the perturbation grows spatially in the § < 0 direction.
1+ A) —dw?
8ty ~ exp(i8wt — ik&) ~ exp(idwt — ik£&) exp(k;E) with k; = + (Swz)—Ar (4.9)
2 _
k
() (b)
1 0.5%
— real part | — real part
0.5 1.0 1.5 2.0~ imaginary part 0.5 L0 L5 2.0 2.5 3.0 T imaginary part

Fig. 4.1 Dispersion relation of the SMI: (a) For Im(8w) — oo, k has real roots (Curves are symmetric in the

second quadrant.). So the instability is convective. (b) In V3 < 8w < 2, k has complex roots (Curves are

symmetric in the four’th quadrant.). Only when k is in the upper half of complex plane, the SMI grows.
In this section, the self-modulation instability has been treated as a wave inside the beam. So, it has its own

group velocity, and by inspecting the dispersion relation of the instability, we found that the instability could

grow up.

31



4.2 Numerical solution of beam envelope equation

Let’s assume the beam envelope for a long cylinder-shaped beam density profile. In normalized coordinates,
the longitudinal point kp& = 0 indicates the beam’s head and k,& = k,L}, indicates the beam’s tail. The initial
radius of the beam is 1,y = 1. As remarked before, the normalized envelope equation we have is for the thin

beam [kprb & 1]. Then the boundary conditions are r,(§,0) =1 and 9.1,(§,0) = 0.

Beam tail, § = kL, kprp <1 Beam head, § =0

Vb

+& =k, (Boct —2)

Fig. 4.2 A brief picture for the numerical study of beam envelope equation: The beam is initially cylinder-shaped

and has a uniform beam profile. As time goes, it goes through radius evolution.

Reminding (A.4.2),

d?y(§,
DD 4y6 0 =160,

01, (&, 1) 1
012 ri (€ 1)

(A.4.2)

= —Y(E» T);

we solve the beam envelope-equation numerically. As remarked above, the Self-modulation instability becomes
larger as increasing § and t. Because we normalized the coordinates, the distance between nearest two peaks
should be about 2m. Here the beam length is 62.8 ~ 10X2m and the number of modulated beam peaks is 10.

The numerical result of radius evolution in time is listed below.

32



30 T T T

25 wgoT =0 E

30 T T T

25 wgoT = 0.6 s

30 T T
o5 |- wgoT = 1.2 =

=15 |- =

10 - B

30 T T T T

25 - wgoT = 1.8 B

Fig. 4.3 The beam radius evolution in time with beam-envelope equation: The time and beam position
coordinates are normalized as beam-envelope equation was. The self-modulation instability grows as time goes
and in the direction which € increases. The beam length is 62.8 = 10x2m and the number of modulated beam

peaks is 10.
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4.3 Coupled beam hose and self-modulation instabilities and their growth rates

As we have seen, transverse stability of the drive beam is critical to plasma wakefield accelerators. A long,
relativistic particle beam propagating in an overdense plasma is subject to beam envelope modulation and
centroid displacement instabilities. The beam envelope modulation is about the self-modulation instability. The
latter one is called hose instability. Referring to Refs. [9,10], the equation for the centroid displacement

instability is

dZXC _ kb Il
dz2 vy

g") f d’sin(g ~ 7) ()Kl(rb@)) (@) = %) (4.10)

¢

and similarly, the equation for the beam envelope modulation instability is

2

d?r, € kZ 41,(ry)
sz‘ﬁz yb zrbbfdi sin(¢ =) "° K (), @.11)

where ¢ = kp(z — Bpt) is the normalized comoving variable with the plasma wavenumber k, = % and B, =

Vb

~ Xc is the averaged centroid offset of any slice of the beam, k2 = 4mipe?

My 2 is the square beam wavenumber,
My, is the mass of the beam particle, y is Lorentz factor, 1;;) and K; are modified bessel function, ry, is the
beam radius, and € is the geometric emittance. Note that here the beam-envelope equation is not exactly same
as Eq. (4.3) and the beam radius evolution couples to the centroid evolution. Obviously, the centroid evolution at
any slice ( is affected by the radius evolution. From these theories, assuming a slowly varying envelope

[r1 = M + c.c. with |6<r| < |k r|] and the strongly coupled regime where the growth length of the

instability is short compared to vykp® [|9;7] > 2k|#|], the asymptotic solution of the beam envelope

modulation is written by

1
5| elom ( LA Nsmi) (4.12)
r; =0r|— cos|—=— - , .
! vV 81'[ Nsmi 12 P \/§
where the number of e-folds of the self-modulation instability is

3§ 1

2 nbome §
N .=_< NpoMe z), (4.13)

smi 4 \ noMbY (Z

where v = 412(kpr0)K2 (kpro), my is the initial beam peak density, and n, is the equilibrium background

plasma density.
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Again, assuming the beam envelope is non-evolving [r, = ry = constant], i.e., for a rigid beam

approximation, the asymptotic solution of the centroid evolution is written by

1

o A (“ kyQ N“) (4.14)
Xe = 06X, |—= cos|—=— -—), .
¢ ‘ V8T ,[Nh 12 P \/§
where the number of e-folds of the hose instability is
3§ 1
2 nbome 5
N =_( NpoMe 2>’ (4.15)
= (M ooMoy (z

where | = ZIl(kpro)K1 (kpro). So, comparing the hosing growth rate to the self-modulation instability growth

rate,
N i 3
h 3
=(=)" ~1, (4.16)
Nsmi (ZV)
and in the narrow beam limit [kpro « 1],
N s, (4.17)
Nsmi

We note that i) both of the two instabilities exponentially grow in the direction ¢ > 0. ii) Eq. (4.10) indicates
that a beam tilt or non-uniform head-to-tail displacement with respect to the beam propagation direction
Xc(Q) # x.(T") is required for the hose instability. iii) Seeding of the self-modulation instability interrupts the
growth of the hose instability [10].

Note that the envelope equation is defined in a little different form by Refs. [8,9] and their growth rates are not

exactly same to each other.
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4.4 Transverse equilibrium and stability of the primary beam in plasma

When the driving beam propagates in plasmas, beam space charge, self-induced magnetic field, background
plasma ions and electrons affect the transverse dynamics of the driving beam. For ny, < n,, the plasma
electrons neutralize the beam space charge [Er =0 with kpr, < 1]. Referring to Ref. [11], transverse

equilibrium and stability of the primary beam in over-dense plasma is written by

4¢? mc3 R, w,\2 c?
RZ. — T€nRrMs 1-2 ( eq p) 1— _ ‘ 4.18
17 "By, el c P\ T wiR @19

and for the narrow beam [kprb < 1],

1
3 \2

mc
_ 4.19
Req = 2€,rMs (BYbe|Ib|> . ( )

Equations (4.18) and (4.19) describe a balance between the focusing of the self-magnetic field of the beam and
the beam emittance, with the result that R, decreases as |Ip| increases. The beam density can vary
significantly versus both the beam position coordinates { and time Tt as a result of the radial mismatch
oscillations. The mismatched beam which damps to an approximate equilibrium state would produce a smaller
wakefield than a matched beam with larger radius and emittance. In other words, the wakefield is reduced by the
temporal and spatial fluctuations in the beam density. To circumvent the radial mismatch oscillations, we should
be able to control the emittance of the beam. For an ultra-relativistic beam passing through a plasma in z

direction, (assuming (3, = 1), the invariant of transverse momentum is

px,lab = YOmOVX,lab = px,beam = mOVX,beamr

(4.20)
YoVxlab = Vxbeam’
and the relation between transverse temperature and emittance [12] is
_ 2 _ 2(,2 _ 2 22
Ky Theamx = Mo{Vih xbeam) = MoY5{Vihx1ab) = MoY5s (BoC)*{Xth x 1ab)» 420

=my (Yo BOC)ZYXEX,rms = mOYOBOCZYXEX,N-

By above equations, the equation of the normalized thermal electron momentum with respect to the normalized

emittance and other parameters is written by

2
<Vth,x,lab)

Yo€xN
Uthx = Yo =4 YOBOYXSX,N = BX ) (4.22)
X

C

where uy,y is the normalized electron momentum from the transverse thermal kinetic energy.
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4.5 Simulations of a long beam-driven plasma wakefields using WARP

In this section, we see that how the theories of self-modulation and hose instabilities show up with the PIC

code WARP. Most of the beam parameters are from the Brookhaven National Laboratory Accelerator Test

Facility (ATF), and in the last part, we see the self-modulation instability using the parameters of the Injector

Test Facility (ITF) of Pohang Accelerator Laboratory (PAL).

Perturbation of beam slice’s centroid of non-ideal axisymmetric smooth beam (Hose instability)

Without any seeding of self-modulation instability, the beam centroid evolution is dominant. The beam

generates the asymmetric instability, so induced plasma wakefields are also asymmetric.
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Fig. 4.4. The hose instability of smooth electron beam with ATF beam parameters: Here plasma electron density

is ng = 4.2e+ 22 [m™3], beam energy is 58 MeV (y, = 114), rms transverse momentum spread
V{p%)/mpc = 8.6X1073, transverse rms beam size is o, = 120 pm, longitudinal rms beam size is o,

Z+047V2T
Oz

960 pm, beam density profile is n, = ny, [1 + cos (\/g

3.6e + 18 [m~3], beam length is Ly, = 20,V2T, and total beam charge is Q = 250 pC.
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Perturbation of beam slice’s radius of non-ideal axisymmetric half-cut electron beam (Self-modulation

instability)
With the seeding of self-modulation instability, such as half-cut beam, the beam radius evolution is dominant.
The beam generates the axisymmetric instability and wakefields. The wakefields are larger than those of the

case in the hose instability.

beam: t= 256681.4 fs (iteration 20000)
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Fig. 4.5. The self-modulation instability of half-cut electron beam with ATF beam parameters: Here plasma
electron density is ny = 4.2e + 22 [m™3], beam energy is 58 MeV (y, = 114), rms transverse momentum

spread is /(p3)/myc = 8.6X1073, transverse rms beam size is o, = 120 pm, longitudinal rms beam size is
zZ+0,2T

r2
. )]e 26f initial beam density peak is
Z

0, = 960 pm, beam density profile is n, = ny, [1 + cos (\/g
Npo = 3.6e + 18 [m~3], beam length is Ly, = 0,v2m, and total beam charge is Q = 125 pC.
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Self-modulation instability with varying plasma densities

Because a long driving beam which excites the plasma waves along the beam propagation direction will be
modulated into many micro-bunches whose lengths are in the order of A,. The number of modulated beam
density peaks varies with plasma density. In the numerical examples presented here, the propagation distances of

beams in plasmas are all about 10 cm.

| (a)

| (b)

| (©)

(d)

g ot |

O)

e R

Tail Head

Fig. 4.6. The self-modulation instability of half-cut electron beam with ATF beam parameters in varying plasma

densities: The number of modulated bunches increases as increasing plasma density. Here plasma electron

density is ny = 1.8e + 21 [m™3] ~ 4.2e + 22 [m~3] , ;—b =(@) 3, (b) 6 (c) 9, (d) 12, (e) 15, beam
pe

energy is 58 MeV (y, = 114), rms transverse momentum spread is /{p?)/myc = 8.6x1073, transverse rms

beam size is o, = 120 pum, longitudinal rms beam size is 6, = 960 pm, beam density profile is n, =

Oz

r2
Npo [1 + cos (\EM)] e 2°%, initial beam density peak is ny, = 3.6e + 18 [m~3], beam length is Ly, =

0,V 2, and total beam charge is Q = 125 pC.
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Perturbation of beam slice’s radius of non-ideal axisymmetric half-cut proton beam (Self-modulation

instability)

1 1
According to Ref. [10], because the number of exponentiation of SMI is ~(np,{z?)z(noMpY,) 3 and my, =~
1836m,, when other parameters were fixed, the proton beam propagating in plasma takes 43 times longer
distance to get the exponentiation of the electron beam case. So, here using y, = 25 is more useful. It is 0.22

times of the electron beam case of this study.

beam: t= 641703.6 fs (iteration 50000) le7 1 o
400 | ' ' ' ' 1 0.9
0.8
200 | 0.7
o~ .r"" - 2 i 0.6
< o} - - 1-{: - 05
. \ . { A 0.4
—200 | . 0.3
0.2
—400 | 1 0.1
1 1 1 1 1 00
190000 190500 191000 191500 192000
z
Er in the mode all at 641703.6 fs (iteration 50000) 1e9
_— ) 45
3.0
—  200F 1 1.5
E - :::- B v 5 = G i - - - o
It SR G S =SS S S S e
& 00 [ | -1.5
-3.0
—400 F J -4.5
190000 190500 191000 191500 192000
z (um)
Ez in the mode all at 641703.6 fs (iteration 50000) 1e9
. : ' . . 8
400 i 6
200 i a
g : 2
ERUEE AL £ T EL EL T T EL L - 0
~ \ -2
—200 T -4
—400 - —6
. . 1 ) . =8
190000 190500 191000 191500 192000

z (um)

Fig. 4.7 The self-modulation instability of half-cut proton beam with ATF beam parameters: Here plasma
electron density is ny = 4.2e + 22 [m™3], beam energy is 24 GeV (y, = 25), rms transverse momentum

spread is +/(p%)/myc = 4.5%1073, transverse rms beam size is o, = 120 pm, longitudinal rms beam size is

Z+04V2T

2
I
- )] e 20f, initial beam density peak is
Z

0, = 960 pm, beam density profile is n, = ny, [1 + cos (\E
Ny, = 3.6e + 18 [m~3], beam length is Ly, = 0,2, and total beam charge is Q = 125 pC.
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The longitudinal accelerating and transverse focusing fields of Self-Modulated electron bunches (ATF)

The longitudinal accelerating and transverse focusing fields of the self-modulated electron bunches are
depicted in Fig. 4.8. Here the red curve of the third graph in Fig. 4.8 is showing the density of plasma electrons
and driving beam together. We see that at the places where perturbed plasma electron density has positive value,
the electron beam is defocused and at the places where perturbed plasma electron density has negative value, the

electron beam is focused. The instability grows up with wakefields in the direction from beam’s head to tail.
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Fig. 4.8. The self-modulation instability of half-cut electron beam with ATF beam parameters: Here plasma
electron density is ny = 4.2e + 22 [m™3], beam energy is 58 MeV (y, = 114), rms transverse momentum

spread is +/(p%)/myc = 8.6X1073, transverse rms beam size is o, = 120 pm, longitudinal rms beam size is

0, = 960 pm, beam density profile is n, = ny, [1 + cos ( \EM)] e_ﬁ, initial beam density peak is

Oz

Npo = 3.6e + 18 [m~3], beam length is Ly, = 0,v2m, and total beam charge is Q = 125 pC.
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Self-modulation instability with parameters of Injector Test Facility of Pohang Accelerator Laboratory

Because the parameters of ITF beam are quite similar to those of the ATF, Ref. [13] is good reference for

studying SMI with ITF beam parameters. So, we could build the experimental setup of SMI at PAL.
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Fig. 4.9. The self-modulation instability of half-cut electron beam with ITF beam parameters: Here plasma

electron density is ny = 2.5e + 22 [m~3], beam energy is 60 MeV (y, = 114), rms transverse momentum

spread is /(p3)/myc = 2.4x1073, transverse rms beam size is o, = 318 um, longitudinal rms beam size is

Z+07V2T

r2
. )] e 20t initial beam density peak is
Z

0, = 637 pm, beam density profile is n, = ny, [1 + cos (\E

Npo = 3.6e + 18 [m~3], beam length is Ly, = 0,v2m, and total beam charge is Q = 580 pC.
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5. Summary and future works

In this thesis, the fundamental concepts of beam-driven plasma wakefield are introduced. So, the self-
modulation instability of a long charged particle beam can be described. Here we use the PIC code WARP to
check which the theories are properly described. Although in this thesis, any quantitative approaches are not
covered explicitly, referring references especially for the simulation result from warp, we find out that the

results are quite reasonable.

A beam bunch propagating through plasma excites the plasma wakefield at some conditions. The optimum

wake is obtained for kyo, = 2% and k,o, < 1. Where k;, is plasma wave number and o, (or o;) is RMS
beam length (or RMS beam radius). But we are interested in using CERN’s long and high-energy proton beams.
The CERN’s proton beams are much longer (~12 cm) than the optimum driving beam length (in order of
plasma wavelength A;). Here we focus on the instability which occurs based on the interaction between beam
and plasma electrons. By this instability, the long driving beam is modulated along the propagation direction, so
it makes the beam satisfy the optimum size for excitation of plasma waves. What we should know is that the
plasma oscillation which is initially and axi-symmetrically excited by beam head seed self-modulation of
driving beam. Evolution of beam envelope in time could result in beam centroid offset or radius pinching.
Where the two phenomena, centroid offset and radius pinching of the beam in plasma are called ‘Self-
modulation instability’ and ‘Hose instability’. Those two instabilities compete each other. As the last step, the
parameters of Injector Test Facility (ITF) at Pohang Accelerator Laboratory (PAL) was used to demonstrate the

self-modulation instability.

But in this thesis, there are a few results and concepts to be studied in the quantitative ways more. i) How the
beam mismatching of the beam in plasma would affect the instabilities and wakefields, ii) why the self-
modulated long proton beam in plasma make wakefields stronger than those of electron beam case when only
those beam particle species are different, and iii) the detailed organization of variation of growth rates with

comparing the theories and the result of PIC code are those.
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6. Appendix

6.1 Fundamental equations

Maxwell’s equations

Gaussian units ST units
Gauss’s law (macroscopic) VD = 4mps V-D=ps
. . Pt
Gauss’s law (microscopic) V-E = 4mp; V-E= =
0
Gauss’s law for magnetism V-B=0 V-B=0
Maxwell-Faraday equation VXE = — la_B VXE = _a_B
c ot at
Ampere-Maxwell equation 41t 10D D
. VXHZ—]f‘l'—_ VXH=]f+_
(macroscopic) c c ot at
Ampere-Maxwell equation 41t 10E 1 0E
VXB=—]+—— VXB = +—=—
(microscopic) c J c ot HoJ c? ot
Basic laws of electromagnetism
Gaussian units ST units

Lorentz force

1
F=q|E+-vxB
c

F = q(E + vxB)

1
Coulomb’s law F = 192 r = R
r? 4me, 12
Electric field of stationary point q 1 q
E = —¥7 = —F
charge r? r 4me, 1 '
. 1 [ IdIxF Ko [ IdIXf
Biot-Savart law = _§ =2
c r? 41 r?
Vector and scalar potentials
Gaussian units SI units
Electric field (static) =-V¢ E=-V¢
10A JA
Electric field (general E=-Vd——— E=-Vd— —
(general) ¢ ot LT
Magnetic field B = VXA B = VXA
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6.2 Derivation and solving of differential equations from the body

1.1

atnpl + npov : Vpl = 0

e e (A.1.1)
0yVpy = —E(Epl + Ebl) = _EEl
p(x) = —enp; (X) — Q8(X — Xo),
. (A.12)
Ji(x) = _enpon1(X) — Qv,8(x — Xo),
Vi, = —4mp,
, 1, am 1 (A.13)
ViA, _c_zatAl = _Th _Evatq)l
V2¢1 = —4mp, = —4n (—enpl(x) —Qé(x— Xo))
V207, = —4m (—e 07np; (x) —Q0%8(x — xo))
4me 4me 4meny,
2 — _62 =——9.(- V- - _ p V-o.v
000 = g (00 = 0oV o) v (A1)
4meny,, e 4me?npyg 4me? npo
vi v ( mEl) mv{ VE=— vV =V
2 = 4mn,e?
P mv2
b
o Amednp )
Y a( + sz (I) = 41TQ6(8(X - Xi)
b
2 = — —
v (Ii—m) 4TS (x — x;)
4me’n 1
2| o2 P0) § = —Qa2v? A.1.5)
Y <6< vi )q) % <|X_Xi> (
1
2( A2 2\ — () A2U2
V(9% + K2) = —Q02V <|x—xil>
(0% +12)0 = ~Qa? ()
[x — x;]
ZHQ sinkp (' — ()]
= T K f dy e Y AL6
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4m
Vi 1A, = _Th - Bovazdh

R (A.1.7)
athl = _aEl = _Vb acvpl

e e /1 e /1
0vp1 (X) = m—VbEl = —m—vb(zatfh + V¢1) = m—Vb<EVb 0:A; — V¢1)

4 4
VEA, = =1, — BoV dydpy = —— (—enpoVpu () — QuB(x — X)) = BoV Iy (A-18)

4m
a(ViAl = T (enpo azvpl(x) + va 6(8()( - Xi)) - BO 6(V 6<¢1

) 4T e /1 )

4me“ny,
a.ViA, — 0 P
oin o552

Vb41're Ny
=—B0V6 ‘1)1__ p

V(bl _41TQ GCS(X - Xi)

0¢(V3 — PAKkE)A; = —BoV(07 + k2)d + 41BoQ 0:8(x — X;)
(A.1.9)

—1 0;:6
_Xi|)+4ﬂBoQ B(x = %))

(V2 — B3kE)A, = 0oV 32 I

1
m) + 4T[BOQ8(X — Xi)

(V2 — BEKZ)A,, = QBOaZ(lxlxl) BoQV2(|X_1Xi|) ~BoQV (le_xl)

(V2 - B3i2)A, = BV (

I

A (D) = ——Bof dp'K; (Bok pp)— (A.1.10)
[p? +3?]2
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A.3

3.1.0 Wakefields of an axisymmetric beam driver

8eNk<1 r2> <
d?R 1dR 2 -2 r<a
_+___sz={ a a (A3.1)

Now we will find the solutions of given differential equation in two parts, r < a and r > a.
3.1.1 Inside of the beam (r < a)
Let’s assume Rp(r) and Ry(r) satisfying equations below.

e 1d
Fﬁ';a—k Rh(r) =0,

(A3.2)
d? +1d 2\ R ()_SeNk N r?
drz  rdr P = T2 az)
Summing up two equations,
e (Ro(0) + Ry(®) = ¥ (1 - A33
drz  rdr pth i) = T2 az) (A-33)
So, we obtain the form of R(r) we will solve.
R(r) = Ry, + R(r)y,. (A3.4)

First of all, for the modified Bessel equation with azimuthal symmetry (m = 0) in the left-hand side, the general

solution is

Rp(r) = C;Ky(kr) + C,Io(kr). (A3.5)
In the region, r < a, our homogeneous solution will be R(r)y, = C,I; (~ Ky(0) = o0 and V(r = 0,7) =

R()Z(z)=Finite). Then the rest of the work which we should do is to find the particular solution R, (r)

satisfying our inhomogeneous differential equation.
d2+1d sz()_SeNkl r? A36
drz  rdr P = T2 ' (A.3.6)

a2
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Assuming power series in T,

[ee)

R(r) = Z aprt.

n

Our differential equation will be

N 8eNk r?
Z[ann(n - 1)1‘“_2 + annr“‘z — kzanr“] = " (1 — ;)
n

(A3.7)

(A3.8)

To hold for all r > 0, each coefficient of r™ in both sides should be equal for all n. Therefore, only zeroth and

second order of r remain.

8eNk r?
[_kzao + 432 - kzazrz] = aZ (1 J— a_2>.

Separating it into two parts,

8eNk
For the zeroth order, —k?a, + 4a, = —
8eNk 1
For the seconde order, k?a, = —
a2 a

As results,

8eN 7/ 4
B = 17,2 (@ - k)'

8eN

dp _W.

Then, the particular solution is

R(r), = ap + a,r?.
Then, we obtain the result below.
R(r) = Ry + R(@), = Colp(kr) +ag + a,r?, r<a.
We will decide the coefficient of the first term in right hand side using boundary condition later.
3.1.2 Outside of the beam (r > a)

The homogeneous solution in this region will be R(r) = R(r);, = C;K,(kr) due to [4(0) = oo.
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3.1.3 Remaining boundary conditions, continuity of potential and electric field

The potential V(r,z) = R(r)Z(z) and its partial derivative 9,.V(r,z) should be continuous at r = a.

R_(a_) = Gyl (ka) + ag + a,a? = C;Ky(ka) = R.(a,),

(A.3.14)
0rR_(1)|r=a_ = C20,I(kr)|=a + 2852 = C;0,Kq (kr)|,—, = arR+(r)|r=a+-
Here it is used that the modified Bessel function I, and K, are already continuous.
C = — (ag +a,a*)0,lo(kr) |-, — 2a,aly(ka) (A3.15)
Ko (ka)d,lo(Kr)|r=a — Io(ka)d,Ko (kr) | =a
and
C, = (2 +2a,a%)0, Ko (kr)|,—, — 2a,aK, (ka) (A3.16)

"~ Ko(ka)d,lo(kr)[r—q — o (ka),Ko (kN [r=a

From the properties of modified Bessel functions, Wronskian and recurrence relations of the modified Bessel

equation [11] lead us to three equations below,

1
=a A3.17
Ko 0a)d, 1o (<) 123 — 1o (<3, Ko (kD)1 (317
and
k?a
0:Ko(kr)lr=a = —~[Ko(ka) — ky(ka)] (A.3.18)
and
k?a
0.1 (kr)| =g = - [1,(ka) — I, (ka)]. (A.3.19)
Using listed equations above, we get final result.
K, (ka)ly (ke) + ~ — 2 — <
16eN |B2\KD KD T5 =7~ —55,  I'<a
R(r) = — { 2 (ka)* 2a (A.3.20)
ka2
I,(ka)K, (kr) , r>a
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3.2 Nonlinear one dimensional relativistic plasma oscillation

3.2.0 Here we introduce a very famous work of the general investigation of the nonlinear wave motions of the
plasma electrons by Akhizer and Polovin in 1956 [5]. In different way from the linear case, we will not ignore

the higher order terms. We reconsider the Maxwell’s equations and equation of motion in plasma electrons.

V-E = 4me(n — ny),
10H
VXE = ———,
c ot

V-H=0, (A3.21)

ap

e
-V)p = eE + -vXxH.
at—i—(v Jp=e +Cv

Where n is the equilibrium electron density. Where the whole system is approximately neutral. p is the

1
electron momentum, equal to [1 — B2]"zmv. B is normalized phase velocity. All the equations above are
functions of (i-r — Vt), which is one of the properties in the general wave motions of the plasma. Rewriting

above equations,

ixE' = BH’, (A.3.22)
ixH = —BE’' + 4TT[env, (A.3.23)
i-H =0, (A.3.24)
i-E' = 4me(n —ny), (A.3.25)
(i-v—V)p' =eE + %va. (A.3.26)
By integrating Eq. (A.3.22), we obtain
H= %ixE + H, (A3.27)

3.2.1 The density of the background plasma electrons n is, combining Eqs. (A.3.23) and (A.3.25),

4mn
i-(ixH) =H'-(ixi) =0=—Bi-E +?eni-v

4m
—B4me(n —ny) + Teni v=0 (A.3.28)

n,V
V—-i-v
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3.2.2 We multiply Eq. (A.3.26) on the left vectorially by 1 and use Eq. (A.3.27). Then, we obtain the equation
of the magnetic field.

e
(i-v—V)ixp' =eixE + Eix (vxH),

= eB(H — Ho) +=[v(i-H) — HG-v)] = H(V = 1-v) = < [VH, = v(i- )], (A3.29)

C VHO_V(i'Ho)
H=—--(xp)+——F——.

e(l P V—-i-v
Here it was used that i-H =1-H,.

3.2.3 We want to make the equation of motion in the parameters we can control. Taking the scalar product i on

Eq. (A.3.26) and using Eq. (A.3.29) and Eq. (A.3.25),

i Vi-p N E+eA (vxH) ) E+eA C(A ,)+VH0—v(i-H0)

. — . — . —71- X — . -1 X | ——-(1X - o ,
i-v i-p =ei C1 \% el Cl \% el p V_i-v
i-(vxHp)
V—i-v

= el E' = 4me?(n — ny).

@-v—WVi-p +1i-vx(@ixp')—ep ei-E, (A.3.26)

(A V)A /+A X(AX /) i'(VXHO)
i-v i-p'+1-vx(xp eBV—i-v

a

3.2.4 Taking the vector 1 in the z direction and introducing normalized momentum p = p/mc and the
normalized velocity u = v/c and using Eq. (A.3.28), we get the general form of the differential equation of
longitudinal, nonlinear and relativistic plasma oscillation. Where T =t — (i-r/V), w3 = 4me’n,/m, and Q =
eH,/mc.

d dp, dp, d 2y,
p Px doy B , B

_ — - - = . A.3.2
d‘r{(uz B) it + uy i TWae B_uz(uxﬂy uyﬂx)} wOB_uZ (A.3.27)

When the external magnetic field H, is not applied and especially only we want to consider longitudinal one-
dimensional cases, uy = u, = 0. In general, the plasma wave motions in large amplitudes are only analytically
solvable when it is treated longitudinally in one-dimensional cases. Then we get another form of this equation
by rewriting the normalized plasma electron momentum p, in terms of the normalized plasma electron velocity

u = u,. Using the fact that
d ( u, > d ( 1 ) (A328)
u —_— — = —_— _— ) od e
LAWY dt\,/1 - u2

the one-dimensional nonlinear plasma oscillation in absence of the driving beam is

d? (1—Buz)_ , By,

i \/1——11% = Wy B—u, (A.3.29)
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3.2.5 To obtain the longitudinal electric field by the modulation of the plasma electrons, we use again Eq.
(A.3.26).

1 1
E= S d-v—-V)p' — < (vxH). (A.3.30)

Where v, = v, = 0 and there exist only z-component. Checking it, we know the second term of left-hand side
should be zero. Taking 1 in z (longitudinal) direction and introducing a new variable defined by T = w,(t—1-

r/V) following Ref. [6], the result we want is

mcw o mcoop dp, mcoop d B,
E,=——(V-v,)—= ~ -
Z eV ( Vz) mc (Bph ) dt ( BZ) dt \/1——6%
1 (A.3.31)
_ mcw, d B, 1 _ mcw, d (1 - BZ)E
e dr J1-p2 J1-2 e dt\1+8,/°
Where V/c and v,/c were written by By, and (.
3.2.6 The first integral of our differential equation is obtained by the procedure below, using the initial
conditions which are x(0) =1, x'(0) = 0.
d’x 1,1
-t
dxd(dx> (1 1+2>
dT dt\dt x?2 &)
1
( ) —(———x+2ax)
X (A.3.32)

[ o) = [ o),

dx\? 1
(E) =201-@) -~ (1 - 20)x
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3.2.7 The perturbed plasma electron densities corresponding to turning points of oscillation are from x() jand

plasma electron density n.

n= nyV = nOBph ~ Ng
V—iv Bpn—B 1-p
1 1
x(wp) =1= G ; Ei)z x(wB2) = 7 —12(x - G ; Ej)z
For T4,
B.=0,
n—n, = 0.
For T1,,
_ —2a+2a?
b2 =T 2t 20
n—ny, = —2n,(1 — a).
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A4

4.1 Using Leibnitz’s rule, we obtain a second-order differential equation coupled to the beam-envelope equation.

fB 6f()§; t)

- 2dt + (% B) (j—i) — f(x, A) (dA)

d B
&fA f(x,t)dt = x

A

So, we get two simultaneous second-order differential equations.

62 rb (E, T) 1 _
arz - rg (E; T) - _Y(E' T)
d’y(§ D)

d—§2+ y& 1 =1, 1)

4.2 Assuming the beam radius perturbation is enough small compared with the beam radius,

1 azrb 1 628rb 628rb
=-S5 = - ~1—30r, ———
rp Ot (1+6r,)® or? at?

y=

and substituting y into the new equation we got,

62 628rb 628rb

a—zz 1—38rb— 912 +1—38rb—W=1+8rb
0% 9%6r 0%8r, 0%6r
v b + b + b
082 92 oe2 © or2

+ 38rb = —8rb

We obtain a new equation of 8T},

(0% +1)(92 + 3)8ty, = —5fy,

4.3 Dispersion relation of the wave in the beam is

62 az 2 2

a_gzﬁeXp(lsz —ikg) + 3 IS

= —exp(idwt — ikE)

(—8w?)(=k?) + 3(=k?) + (—8w?) +3 = -1

D=(k?>-1)(w?—-A) =-1, A =3
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exp(idwt — ikE) + F) exp(idwt — ikE) + 3 exp(idwTt — ikE)

(A4.1)

(A.4.2)

(A4.3)

(A4.1)

(A4.1)

(A4.4)



4.4 Finding k = k, + ik; with respect to dw = dw, + ibw;, dispersion relation of the instability is

2 _
, 0”4 (A4.1)
Sw? — 3
With respect to the complex variables of k and dw,
Sw? + i28w,8w; — Sw? — 4
k2 + 2ik k; —k? = — — =
P AR T 8w? + 26w, 8w; — §w? — 3
(A4.1)
_ 8w} + 28wisw! — 78w? + 2i6w Sw; + Swi + 78wf + 12
8wf + 28wEdw? — 68w} + dw} + 68w? + 9 '
Defining A = Swf + 26w?28w? — 68w? + Swi + 66w? + 9, (A4.1)
Real part is
— 5w2 2
K2 — 12 =A Sw; + dwj +3. (A41)
! A
Imaginary part is
0w, Ow;
k.k; = %. (A4.1)
So, complex k in complex plane of 6w will be calculated from two equations
— 2 2 NG
k;‘—A Smrz&nl +3k$—<8wr:wl) —0 (A4.1)
and
” +A — 8w? + sw? + 3k-2 B (SwrSwi)z “o
! A ! A (A4.1)
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6. 3 Script of WARP for plasma wakefield acceleration

nmn

This is a typical input script that runs a simulation of laser-wakefield acceleration using Warp in 2D / Circ / 3D.

Usage

- Modify the parameters below to suit your needs

- Type "python -i Ipa_script.py" in a terminal

- When the simulation finishes, the python session will *not* quit. Therefore the simulation can be continued by
running step(). Otherwise, one can just type exit()

# Import warp-specific packages

from warp.init_tools import *

#

# Parameters (Modify the values below to suit your needs)

#

# General parameters

# Dimension of simulation ("3d", "circ", "2d", "1d")

dim = "circ"

# Number of azimuthal modes beyond m=0, for "circ" (not used for "2d" and "3d")
circ m=1

# Total number of timesteps in the simulation

N_steps = 200000

# Whether to run the simulation interactively (0:o0ff, 1:0n)

interactive = 0

# Simulation box

# Number of grid cells in the longitudinal direction

Nz =240

# Number of grid cells in transverse direction (represents Nr in "circ")
Nx =50

# Number of grid cells in the 3rd dimension (not used for "2d" and "circ")
Ny =50

# Dimension of the box in longitudinal direction (meters)

zmin = -1.5%sqrt(2*pi)*637.e-6
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zmax = (.
# Dimension of the box in transverse direction (box ranges from -xmax to xmax)
xmax = 4.2*120.e-6
# Dimension of the box in 3rd direction (not used for "2d" and "circ")
ymax = 4.2*120.e-6
# Field boundary conditions (longitudinal and transverse respectively)
f boundz = openbc
f boundxy = openbc

dim == "circ":

f boundxy = dirichlet

# Particles boundary conditions (longitudinal and transverse respectively)
p_boundz = absorb
p_boundxy = absorb
# Moving window (0:0ff, 1:0n)
use_moving_window = 1
# Speed of the moving window (ignored if use_moving_window = 0)

v_moving_window = clight

# Diagnostics

# Period of diagnostics (in number of timesteps)
diag_period = 10000

# Whether to write the fields

write_fields =1

# Whether to write the particles

write_particles = 1

# Whether to write the diagnostics in parallel

parallel_output = False

# Numerical parameters

# Field solver (0:Yee, 1:Karkkainen on EF,B, 3:Lehe)
stencil =0

# Particle shape (1:linear, 2:quadratic, 3:cubic)
depos_order =1

# Gathering mode (1:from cell centers, 4:from Yee mesh)

efetch=1

# Particle pusher (0:Boris, 1:Vay)
particle pusher = 1
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# Current smoothing parameters

# Turn current smoothing on or off (0:0ff; 1:0n)

use_smooth =1

# Number of passes of smoother and compensator in each direction (X, y, z)
npass_smooth = array([[0,0],[0,0],[1,11])

# Smoothing coefficients in each direction (X, y, z)

alpha_smooth = array([[ 0.5, 3.],[ 0.5, 3.], [0.5, 3./2]])

# Stride in each direction (X, y, z)

stride smooth=array([[ 1, 1],[1,1],[1,1]])

# Plasma macroparticles

# Initialize some preexisting plasmas electrons (0:off, 1:on)
# (Can be used in order to neutralize pre-ionized ions, if any,
# or in order to simulate a plasma without having to initialize ions)
use_preexisting_electrons = 1

# Initialize plasma ions (0:0ff, 1:0n)

use_ions =0

# Number of macroparticles per cell in each direction

# In Circ, nppcelly is the number of particles along the

# azimuthal direction. Use a multiple of 4*circ_m
plasma nx =2

plasma ny =4

plasma nz=3

# Plasma content and profile

# Reference plasma density (in number of particles per m"3)

n_plasma = 2.8e22

# Relative density of the preexisting electrons (relative to n_plasma)

rel dens preexisting electrons = 1.

# The different elements used. (Only used if use ions is different than 0.)

# relative density is the density relative to n_plasma.

# q_start is the ionization state of the ions at the beginning of the simulation

# q_max is the maximum ionization state

# 1f q_start is not equal to q_max, ionization between states will be computed.

ion_states = { 'Hydrogen': {'relative density"1.,'q start":1, 'q max":1 },
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'Helium': {'relative_density":0.25, 'q_start"0, 'q_max"2 } }

# Positions between which the plasma is initialized

# (Transversally, the plasma is initialized between -plasma_xmax and

# plasma_xmax, along x, and -plasma_ymax and plasma_ymax along y)
plasma zmin = 1.e-6

plasma zmax = 1.

plasma_xmax = xmax

plasma_ymax = ymax

# Define your own profile and profile parameters below

ramp_start = plasma_zmin

ramp_length = plasma_zmin*10

ramp_plateau = plasma_zmax
plasma dens func(x,y,z):

User-defined function: density profile of the plasma

It should return the relative density with respect to n_plasma,

at the position X, y, z (i.e. return a number between 0 and 1)

Parameters

X, Y, z: ldarrays of floats
Arrays with one element per macroparticle

Returns

n : 1d array of floats

Array of relative density, with one element per macroparticles
# Allocate relative density
n = ones_like(z)

# Make linear ramp

n = where( z<ramp_start+tramp_length, (z-ramp_start)/ramp length, n )

# Supress density before the ramp
n = where( z<ramp_start, 0., n)
# Reduce density by half after the ramp

n = where( z> ramp_start+tramp_length+ramp_plateau, 0.5*n, n)

# Put the density to 0 later

n = where( z> ramp_start+ramp_length+2*ramp_plateau, 0., n )
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(n)

# Relativistic beam

# Initialize beam electrons (0:off, 1:0n)

# (Please be aware that initializing a beam in 2D geometry makes very little
# physical sense, because of the long range of its space-charge fields)
use_beam = 1

# Longitudinal momentum of the beam

beam uz=113.5

beam_uxth = 0.0086

beam_uyth = 0.0086

beam_uzth=0.01*113.5

# Beam density

n_beam =3.6e18

# Number of macroparticles per cell in each direction

beam nx =2*plasma nx

beam ny =2*plasma_ny

beam nz = 2*plasma nz

# Positions between which the beam is initialized

# (Transversally, the plasma is initialized between -plasma_xmax and
# plasma_xmax, along X, and -plasma_ymax and plasma ymax along y)
beam_zmin = -sqrt(2*pi)*960.e-6

beam_zmax = 0.

beam xmax = 3*120.e-6

beam ymax = 3*120.e-6

# Define your own profile and profile parameters below

beam rmax =beam xmax
beam dens func(x,y, z):
nnn

User-defined function: density profile of the beam

It should return the relative density with respect to n_beam,

at the position X, y, z (i.e. return a number between 0 and 1)

Parameters
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X, Y, z: ldarrays of floats
Arrays with one element per macroparticle

Returns

n : 1d array of floats
Array of relative density, with one element per macroparticles

nnn

# Allocate relative density

sigz = 960.e-6
sigr = 120.e-6

n =ones_like(z)

n = n*(1+cos(sqrt(pi/2)*(z/sigz)))
r = sqrt(x**2 + y**2)

n = n¥*exp(-r**2/(2*(sigr**2)))

n[r > beam_rmax] = 0.

(n)

#

# Initialization of the simulation (Normal users should not modify this part.)

#

# Set some general options for warp

set_diagnostics( interactive )

set_boundary conditions( f boundz, f boundxy, p_boundz, p_boundxy )
set_simulation_box( Nz, Nx, Ny, zmin, zmax, xmax, ymax, dim )

set moving window( use_moving_window, v_moving window )

# See smoothing.py

set_smoothing parameters( use_smooth, dim, npass_smooth,
alpha smooth, stride _smooth )

# Creation of the species

elec = None

ions = None

elec_from ions = None

beam = None

# Create the plasma species

# Reference weight for plasma species
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plasma weight = prepare_weights( n_plasma, plasma nx, plasma ny,
plasma nz, dim, circ_ m)
use_preexisting_electrons:
elec_weight =rel dens_preexisting_electrons * plasma_weight
elec = Species(type=Electron, weight=elec_weight, name='electrons')
use_ions:
ions, elec_from ions = initialize ion_dict( ion_states, plasma_weight,
group_elec by element=True )
# Create the beam
use_beam:
beam weight = prepare weights( n_beam, beam nx, beam_ny,
beam nz, dim, circ m)
beam = Species(type=Proton, weight=beam weight, name="beam")
# Set the numerical parameters only now: they affect the newly created species

set_numerics( depos_order, efetch, particle pusher, dim)

# Setup the field solver object
em = initialize_em_solver( stencil, dim,
npass_smooth, alpha _smooth, stride smooth,
p— |

circ. m = (dim =="circ")*circ_ m)

registersolver(em)

# Introduce the laser
use laser==1:
add laser( em, dim, laser_a0, laser w0, laser_ctau, laser_z0,
zf=laser zfoc, theta pol=laser polangle, source z=laser source z,

laser_file=laser file, laser file energy=laser file energy)

# Introduce the beam
# Load the beam
use_beam:
Plasmalnjector( beam, None, w3d, top, dim, beam_nx, beam_ny, beam nz,
beam zmin, beam zmax, beam xmax, beam_ ymax,
dens func =beam dens func, uz_ m=beam uz, ux th=beam uxth,
uy_th=beam uyth, uz _th=beam uzth)

initialize_beam_fields( em, dim, beam, w3d, top )

# Introduce the plasma

# Create an object to store the information about plasma injection
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plasma_injector = Plasmalnjector( elec, ions, w3d, top, dim,
plasma nx, plasma ny, plasma nz, plasma_zmin,
plasma zmax, plasma xmax, plasma_ymax, plasma dens func )
# Continuously inject the plasma, if the moving window is on
use_moving_window :

installuserinjection( plasma_injector.continuous_injection )

# Setup the diagnostics
remove_existing_directory( ['diags'] )
write fields == 1:
diagl = FieldDiagnostic( period=diag_period, top=top, w3d=w3d, em=em,
comm_world=comm_world, Iparallel output=parallel output)
installafterstep( diagl.write )
write_particles == 1:
diag2 = ParticleDiagnostic( period=diag_period, top=top, w3d=w3d,
species={ species.name : species for species in listofallspecies },
comm_world=comm_world, lparallel output=parallel output )

installafterstep( diag2.write )

("nInitialization complete\n")

#

# Simulation loop (Normal users should not modify this part either.)

#

# Non-interactive mode
interactive==0:
n_stepped=0
n_stepped <N_steps:
step(10)
n_stepped =n_stepped + 10

dump()

printtimers()
# Interactive mode

interactive==1:

'<<< To execute n steps, type "step(n)" at the prompt >>>'
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