
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


i 

 

Master's Thesis 

 
 

Numerical Studies of Self-Modulation Instability in 

the Beam-Driven Plasma Wakefield Experiments 

  

 

 

 

 

 

 

 

 

 

Kook-Jin Moon 

 

Department of Physics 

 
 

 

 

Graduate School of UNIST 

 

2017 

 



ii 

 

Numerical Studies of Self-Modulation Instability in the 

Beam-Driven Plasma Wakefield Experiments 

 
 
 
 
 
 
 
 

 

 

 

 

 

Kook-Jin Moon 

 

 

 

 

 

 

 

 

 

Department of Physics 

 

 

 

Graduate School of UNIST 



iii 

 

Numerical Studies of Self-Modulation Instability in the 

Beam-Driven Plasma Wakefield Experiments 

 

 

 

 

 

 

 

 

 

A thesis submitted to 

the Graduate School of UNIST 

in partial fulfillment of the 

requirements for the degree of 

Master of Science 

 

 

 

 

 

Kook-Jin Moon 

 

 

 

1. 19. 2017 of submission 

Approved by 

 

Advisor 

Moses Chung 



iv 

 

 



v 

 

Abstract 

 

The plasma wakefield accelerator is one of promising and advanced particle accelerator models. It can make 

particle accelerator more compact and cheaper. A beam bunch propagating through plasma excites the plasma 

wakefield at some conditions. The optimum wake is obtained for k = 2  and k ≤ 1. Where k  is 

plasma wave number and σ  (or σ ) is RMS beam length (or RMS beam radius). But we are interested in 

using CERN’s long and high-energy proton beams. The CERN’s proton beams are much longer (~12 cm) than 

the optimum driving beam length (in order of plasma wavelength λ ). Here we focus on the instability which 

occurs based on the interaction between beam and plasma electrons. By this instability, the long driving beam is 

modulated along the propagation direction, so it makes the beam satisfy the optimum size for excitation of 

plasma waves. What we should know is that the plasma oscillation which is initially and axi-symmetrically 

excited by beam head will seed self-modulation of driving beam. Therefore, we first study fundamental theories 

of excitation of plasma waves by the charged particle beam. It’s about the response of plasma electrons to 

driving beam. The driving beam doesn’t interact with and only affects plasma. Here excited plasma wakefields 

should be considered. As the next step, the dynamics of plasma wakefield accelerator is introduced. Evolution of 

beam envelope in time could result in beam centroid offset or radius pinching. Where the two phenomena, 

centroid offset and radius pinching of the beam in plasma are called ‘Self-modulation instability’ and ‘Hose 

instability’. Those two instabilities compete each other. As the last step, the parameters of Injector Test Facility 

(ITF) at Pohang Accelerator Laboratory (PAL) is used to demonstrate the self-modulation instability. 
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Chapter 1. Introduction: Why Self Modulation Instability? 

 

As particle physics community gets on a step for the new discovery, a teraelectronvolt-scale electron-positron 

collider (for example, the International Linear Collider) is needed for the next large-scale project for high-

energy particle physics. Due to the energy loss by synchrotron radiation it should be built as a one pass linear 

collider, so it will be huge in machine size (~ 30 km long) and very expensive for construction. In this 

circumstance, investigating new schemes based on the plasma wakefield acceleration, which would be compact 

in size, might be one of the promising alternative approaches for the realization of the electron-positron collider 

[1]. To reach for the new energy frontier of electron acceleration using plasma wakefield accelerator, how 

parameters of driving beam and plasma should be determined must be discussed. 

Since Tajima and Dawson proposed plasma wakefield generation by a short (pulse length L < λ ) laser 

pulse for electron acceleration in 1979 [2], various methods and associated theories to excite plasma waves have 

been proposed and developed by many brilliant researchers. Pisin Chen introduced the interaction of a bunched 

electron beam with a plasma in 1985 [3]. In this paper, to resonantly excite the plasma waves the driver beam 

should be shorter than plasma wavelength λ  [3]. As another important work, R. D. Ruth et al. proposed that 

for an axisymmetric charged particle beam, the transformer ratio is generally given by R = E /E ≤ 2 −

N /N  in 1984 [4]. (Here, E  and E_ are the maximum accelerating and decelerating fields induced 

by the driving beam, and N  and  N  are the number of witness and driving beam particles, 

respectively.) From the transformer ratio argument, we would think that to reach for the TeV energy range in a 

single stage (a few tens of meters long) of the beam-driven plasma acceleration, the TeV proton bunch from the 

CERN LHC can be used as a driver beam. However, the TeV proton bunch from the SPS (injector for the LHC) 

would usually be about 12-centimeter long. Based on the previous theoretical works, we note that it is too long 

to resonantly excite the plasma waves. This is a critical issue to be addressed.  

Generating short drivers which are of the order of a plasma wavelength long has been one of the key technical 

challenges in both laser and charged particle beam communities. Various methods to excite plasma wakefields 

using long laser pulse or long charged particle beam have been proposed to overcome the technical limits. In 

this study, we particularly focus on the Self-Modulation Instability (SMI) of a long charged particle beam in 

plasma. In this chapter, we first review fundamental theories of beam-plasma interactions, which will form the 

basis of the numerical studies on the SMI given in this study. 
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1.1 Interaction of a relativistic electron bunch with a plasma 

 

The scheme of linearized plasma system makes it possible to determine the frequencies of oscillation and to 

discuss the part played by temperature effects, which turn out in general to be unimportant, even more so in the 

study of plasma oscillations in electron beams, where the temperature is practically zero [6]. There could be 

numerous ways of basic interpretation of the excitation of plasma waves by a charged particle beam though, in 

this study we introduce two well-known methods. The first method is from the paper of Pisin Chen (1985) [2]. 

Another one will be covered in Chapter 3. 

We first consider that a negatively charged relativistic particle beam with β = v /c ≲ 1 goes through a 

cold, uniform plasma along the z axis. The beam is assumed to be a bunch of q electrons, and thus the total 

beam charge is Q = qe. Here, the beam is treated as a single particle with the magnitude of charge Q = qe. To 

describe the small amplitudes and nonrelativistic plasma oscillations, we use linearized equations, such as 

equation of motion and continuity equation for the cold, non-relativistic background plasma. All the equations of 

electromagnetism which are used in this study are expressed in the Gaussian unit.  

 

 

 

Fig. 1.1. A short electron beam which propagates in plasma wakes the plasma waves. Here the excited plasma 

waves have no group velocity and their amplitudes are very small. The density variation of plasma electron is 

quite exaggerated to provide a simple picture of the beam-driven plasma wakefield concept. 
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Here, n  is the background plasma electron density ∂n / ∂t = 0  and n  is the density perturbed by 

the driving beam (n ≫ n ). The elementary charge is defined by e ≡ |e| = 1.602×10  C. Note that the 

definition of the elementary charge ‘e’. It could be defined in a little different way that e ≡ −|e| = −1.602×

10  C. Originally plasma has no net flow and external magnetic field is zero ( = = 0). We only kept 

linear terms. For the driving-electron bunch, the charge and current densities are 

 

Net charge density, ρ( ) = −en ( ) − Qδ( − ), (1.3) 

  

Net current density, ( ) = −en ( ) − Q δ( − ). (1.4) 

 

Here = ρ + z  in cylindrical coordinates and  is position of the bunch. Each density contains both 

contributions from the plasma and the driving beam. As remarked above, in this study we will discuss the 

features of the plasma wave for being used as the ion cavity accelerating charged particles. Because the electric 

field is calculated from magnetic vector potential  and electric potential V as  

 

= −
1
c

∂
∂t

− V , 
(1.5) 

 

we will derive two differential equations for obtaining  and V induced by plasma wave. Here we define ζ as 

relative coordinate from the driving beam position. 

 

ζ ≡ z − v t ≤ 0. (1.6) 

 

Applying chain rule on ζ and assuming β ≈ 1, we get the interaction formula between longitudinal electric 

field and two types of potentials.  

∂ = ∂ ∂ ζ = ∂ , 

∂ = ∂ ∂ ζ = −v ∂ , 

[ ] = −
1
c

∂
∂t

+ V = β ∂ A − ∂ V ≃ ∂ (A − V ). 
(1.7) 

 

We should obtain the solutions of Poisson equation and inhomogeneous wave equation for the magnetic vector 

potential. 

∇ V = −4πρ , (1.8) 

 

∇ −
1
c

∂
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= −
4π
c

−
1
c

∂V
∂t

. 
(1.9) 

 

 

 

 



4 

 

Here because the relativistic factor γ  is approximately constant, the second term of the left hand side in Eq. 

(1.9) is removed. Then now we can derive two differential equations and obtain two solutions of them. (see 

Appendix. 1)  

∂ + k V = −Q ∂
1

| − |
, (1.10) 

  

V (ζ) = −
2πQ
λ

1
k |ζ|

+ k dζ
sink (ζ − ζ)

k |ζ |
, (1.11) 

 

∇ − β k A = −β Q∇
1

| − |
, (1.12) 

  

A (ζ) = −
2πQ
λ

β dρ K β k ρ
ρ

[ρ + ζ ]
. (1.13) 

 

Here, λ = 2π/k . The maxima of E  are at |ζ| = n + λ , where n is any nonnegative integer, and the 

contribution to the maximum E  comes predominantly from the scalar potential. This treatment ignores 

nonlinear plasma effects and self-consistency effects that act to slow the driving bunches. It is only valid i) if the 

electric field does not approach the cold wave-breaking amplitude, and ii) if the electric energy is small 

compared to the free energy of the driving bunches. The first condition provides an upper limit on the maximum 

allowed energy gradient, i.e., maximum ε ≃ n  eV/cm ≃ 3.2 GeV/m. The second condition requires that 

(E /8π)L < qγ mc /A, where L is the length of the beam plasma interaction region and A is the beam area. II 

 

1.2 Beam-plasma instabilities 

The bunch transverse dimensions must be on the order of, or smaller than the cold plasma collisionless skin 

depth (σ ≈ c/ω ) to avoid transverse bunch filamentation. In this case, the relation between the primary beam 

and plasma becomes 

σ ≈
c

ω
= c

m ε
n e

∝ n . (1.14) 

The hose instability (HI) can occur in the limit, σ > λ . We consider the electron beam in an equilibrium state 

where the plasma electrons have been expelled from the region of the beam by the beam space charge. When the 

beam suffers a small transverse displacement, the plasma electrons at r = r  are also displaced in such a way 

that the interaction is unstable. It makes the driving beam twisted (or go wrong). Based on the similar physics, 

transverse two-stream instability (TTSI) can occur. When the beam envelope symmetrically evolves by the 

transverse wakefields induced by the beam head in the collisionless (n ≪ n ) region, it is called self-

modulation instability (SMI). Analytical approaches of the self-modulation instability and hose instability are 

given at Chapter 4. 
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Chapter 2. Particle-In-Cell (PIC) Method 

 

This work is based on the computer simulation. Especially Particle-In-cell (PIC) code WARP [17] is used to 

demonstrate the physics process in the charged particle beam and plasma system. In this chapter, fundamental 

concepts of the PIC method are briefly explained. 

  

2.1 Electrostatics and Electromagnetics 

 

The physical system we will study could be electrostatic or electromagnetic. The differences of the two limits 

are explained here. For the electrostatics, 

 

∂
∂t

≈ 0, (2.1) 

 

∙ = 4πρ. (2.2) 

 

Magnetic fields vary slowly and only external magnetic fields are considered. Thus, self-induced magnetic 

fields are neglected. Fast evolutions such as radiation, retardation and beam envelope evolution effects are also 

neglected. The particles are slow compared to c. The fields change adiabatically and depend only on the 

instantaneous positions of the particles. This system is considerably simplified and requires only two equations 

to get the solution of the problem. But for the electromagnetics, we need 

 

× = −
1
c

∂
∂t

, (2.3) 

 

× =
4π
c

+
1
c

∂
∂t

. (2.4) 

 

The four Maxwell’s equations are fully satisfied, but only the above two equations are enough to get the 

solution of the system. Above two equations already satisfy other two equations with continuity equation. This 

system self-consistently includes magnetic fields generated by the beams or plasmas and supports fast evolution 

of fields, radiation, retardation and beam envelope evolution effects. The particles move close to c and 

accelerate abruptly. So, the fields depend on the history of the particles, which means that the radiation effects 

should be considered. We are interested in the evolution of beam envelope in plasma. Therefore, the limit we are 

interested in is in electromagnetics. 
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2.2 Computational cycles for Particle-In-Cell simulations 

 

The Particle-In-Cell method is one of the first principle methods. The fundamental theories of electrodynamics 

are used. Basically, PIC simulation repeatedly calculates the specific computational cycles. The loops are listed 

below for the two cases of electrostatics and electromagnetics.  

 

The PIC loop in electrostatics 

 

For the PIC loop in electrostatics, only position of particle is used to obtain the source ρ. So, only electric field 

is calculated during the simulation steps. Magnetic field exists only externally.  

 

 

Fig. 2.1. After loading charged particles, charge and current depositions should be interpolated. Then from 

Gauss’s law, electric potential and field can be calculated. Before the step for integrating equation of motion of 

particles, fields which are calculated on grids around the particles should be interpolated. Once integrating the 

equation of motion of particles, updated charge depositions are calculated. Same steps are repeated. 
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d
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= q +
1
c

×  

Charge deposition
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Field solver

Calculate from ρ
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Field gathering
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The PIC loop in electromagnetics 

 

For the PIC loop in electromagnetics, position and momentum of particle is used to obtain the charge and 

current densities. So, electromagnetic fields can be calculated from electromagnetic field solver. Magnetic field 

can be induced in the system. 

 

 

 

Fig. 2.2. After loading charged particles, charge and current depositions should be interpolated. And next, 

electromagnetic fields in recent time can be calculated updating two fields of coupled differential equations in 

time. Before the step for integrating equation of motion of particles, fields which are calculated on grids around 

the particles should be interpolated. Once integrating the equation of motion of particles, updated charge and 

current depositions are calculated. Same steps are repeated. 
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2.3 Staggering in time and space 

 

∂
∂t

= −c × , (2.5) 

 

∂
∂t

= c × − 4π . (2.6) 

 

In the electromagnetic field solver from Maxwell’s equations, electric and magnetic fields are coupled to each 

other and derivatives of fields with respect to both time and space show up in the two equations above. Each 

component of two fields should exist in different memories from each other to realize the coupling with 

derivatives in time and space. In other words, the indices of fields (and other arguments for particle) alternately 

show up with respect to temporal and spatial grids. They are staggered at each step of both time and space to 

each other. 

 

Staggering in time 

 

Magnetic and electric fields should be staggered in time to perform time derivatives in Faraday’s law and 

Ampere’s law. Each field is on the same time step with its source. Momentum of particle corresponds to 

magnetic field in time, while position of particle corresponds to electric fields in time. Each of electric and 

magnetic fields alternate with each other in time. Magnetic field is on the half integer of upper index ‘n’, while 

electric field is on the integer of upper index ‘n’. 

 

 

 

Fig. 2.3. Staggering in time between momentum and position, current and charge, and magnetic and electric 

fields are depicted. Each field is on the same time step with its source. But each of electric and magnetic fields 

alternate with each other in time. Magnetic field is on the half integer of upper index ‘n’, whereas electric field 

is on the integer of upper index ‘n’.  
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Staggering in space: The Yee grid (Rectangular coordinates) 

 

Staggering in space of rectangular coordinates between current and charge, magnetic and electric fields are 

depicted here. The Yee grid [18] is proper for calculating ×. Each component of electric field is always on the 

grid which is parallel to that component and has half integer of index in that direction. On the other hand, each 

component of magnetic field is always among grids which are perpendicular to that component and has half 

integer of index in other directions. 

 

 

 

Fig. 2.4. Staggering in space of rectangular coordinates between current and charge and magnetic and electric 

fields are depicted. The Yee grid is proper for calculating ×. 
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2.4 Difference equations 

 

The four procedures contained in the PIC loop of electromagnetics are described in rectangular coordinates 

with numerical notations. Staggering in time and space is considered. The PIC scheme repeatedly updates the 

values for the particle and fields from initial to final time, step by step using these equations. 

 

Field solver 

Faraday and Ampere’s equations are used to calculate fields. We call those equations ‘field solver’ here.    

 

∂
∂t

= −c × , (2.7) 

 

B
, ,

− B
, ,

∆t
= −c

E
, ,

− E
, ,

∆y
−

E
, ,

− E
, ,

∆z
, 

B
, ,

− B
, ,

∆t
= +c

E
, ,

− E
, ,

∆z
−

E
, ,

− E
, ,

∆x
, 

B
, ,

− B
, ,

∆t
= −c

E
, ,

− E
, ,

∆x
−

E
, ,

− E
, ,

∆y
, 

(2.8) 

and 

∂
∂t

= c × − 4π , (2.9) 

 

E
, ,

− E
, ,

∆t
= c

B
, ,

− B
, ,

∆y
−

B
, ,

− B
, ,

∆z
− 4πJ

, ,
, 

E
, ,

− E
, ,

∆t
= c

B
, ,

− B
, ,

∆z
−

B
, ,

− B
, ,

∆x
− 4πJ

, ,
, 

E
, ,

− E
, ,

∆t
= c

B
, ,

− B
, ,

∆x
−

B
, ,

− B
, ,

∆y
− 4πJ

, ,
. 

(2.10) 

 

When there are no sources of fields such as charge or current, fields can be updated only by these two 

equations. Electromagnetic wave in vacuum is one of those examples. But when there are movable charged 

particles in the system, fields are affected by position and current of the particles, not only by previous fields. 
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Field gathering (Linear weights of fields) 

 

Because particles are not on the grids, the fields which are fixed on the grids should be interpolated to the 

places where the particles are located. Here only the linearly weighted fields are introduced. The linear 

interpolation is one of the most common weighting methods. It has the error whose size is in the order of ~∆x  

and is fast in calculation time. 

In Fig. 2.4. the s′th particle is at (x , y ), i∆x ≤ x ≤ (i + 1)∆x, j∆y ≤ y ≤ (j + 1)∆y. The specific 

position of the particle is expressed by x = (i + δ )∆x and y = j + δ ∆y (note that 0 ≤ δ ≤ 1 and 0 ≤

δ ≤ 1.). Then the interpolated field (x , y ) in 2-dimensional space is expressed by 

 

(x , y ) = (1 − δ ) 1 − δ , + δ 1 − δ , + (1 − δ )δ , + δ δ , . (2.11) 

 

 

 

Fig. 2.5. Scheme of 2-dimensional linear weighting. The s′th particle is at (x , y ), i∆x ≤ x ≤ (i + 1)∆x, 

j∆y ≤ y ≤ (j + 1)∆y . The specific position of the particle is expressed by x = (i + δ )∆x  and y =

j + δ ∆y (note that 0 ≤ δ ≤ 1 and 0 ≤ δ ≤ 1). 
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The interpolated electric field at s′th particle (x , y , z ) in 3-dimensional rectangular Yee grid is expressed 

by  

 

E ( ) = 1 −
i +

1
2 ∆x − x

∆x
1 −

|j∆y − y |

∆y
1 −

|k∆z − z |

∆z
E

, ,

+
i +

1
2 ∆x − x

∆x
1 −

|j∆y − y |

∆y
1 −

|k∆z − z |

∆z
E

, ,

+ 1 −
i +

1
2 ∆x − x

∆x

|j∆y − y |

∆y
1 −

|k∆z − z |

∆z
E

, ,

+ 1 −
i +

1
2 ∆x − x

∆x
1 −

|j∆y − y |

∆y

|k∆z − z |

∆z
E

, ,

+
i +

1
2 ∆x − x

∆x

|j∆y − y |

∆y
1 −

|k∆z − z |

∆z
E

, ,

+
i +

1
2 ∆x − x

∆x
1 −

|j∆y − y |

∆y

|k∆z − z |

∆z
E

, ,

+ 1 −
i +

1
2 ∆x − x

∆x

|j∆y − y |

∆y

|k∆z − z |

∆z
E

, ,

+
i +

1
2 ∆x − x

∆x

|j∆y − y |

∆y

|k∆z − z |

∆z
E

, ,
. 

(2.12) 

 

Here, s′th particle in the cell is defined in the region i + 1/2 ≤ x /∆x ≤ i + 3/2, j ≤ y /∆y ≤ j + 1 and 

k ≤ z /∆z ≤ k + 1 at the time n∆t, in which each of i + ∆x − x /∆x, |j∆y − y |/∆y and |k∆z − z |/

∆z corresponds to δ , δ  and δ  in Fig. 2.5, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 



13 

 

The interpolated magnetic field at s′th particle (x , y , z ) in 3-dimensional rectangular Yee grid is expressed 

by  

 

B = 1 −
|∆x − x |

∆x
1 −

j +
1
2 ∆y − y

∆y
1 −

k +
1
2 ∆z − z

∆z
B

, ,

+
|∆x − x |

∆x
1 −

j +
1
2 ∆y − y

∆y
1 −

k +
1
2 ∆z − z

∆z
B

, ,

+ 1 −
|∆x − x |

∆x

j +
1
2 ∆y − y

∆y
1 −

k +
1
2 ∆z − z

∆z
B

, ,

+ 1 −
|∆x − x |

∆x
1 −

j +
1
2 ∆y − y

∆y

k +
1
2 ∆z − z

∆z
B

, ,

+
|∆x − x |

∆x

j +
1
2 ∆y − y

∆y
1 −

k +
1
2 ∆z − z

∆z
B

, ,

+
|∆x − x |

∆x
1 −

j +
1
2 ∆y − y

∆y

k +
1
2 ∆z − z

∆z
B

, ,

+ 1 −
|∆x − x |

∆x

j +
1
2 ∆y − y

∆y

k +
1
2 ∆z − z

∆z
B

, ,

+
|∆x − x |

∆x

j +
1
2 ∆y − y

∆y

k +
1
2 ∆z − z

∆z
B

, ,
 

(2.13) 

 

B ( ) ≡
B + B

2
. 

(2.14) 

 

Here s′th particle in the cell is defined in the region i ≤ x /∆x ≤ i + 1, j + 1/2 ≤ y /∆y ≤ j + 3/2 and 

k + 1/2 ≤ z /∆z ≤ k + 3/2 at the time (n ± 1/2)∆t, in which each of |i∆x − x |/∆x, |(j + 1/2)∆y − y |/

∆y and |(k + 1/2)∆z − z |/∆z corresponds to δ , δ  and δ  in Fig. 2.5, respectively. 
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Particle pusher (Integration of equation of motion) 

 

Once fields are gathered at the position of a particle, the equation of motion can be updated in time. 

  

d
dt

≡
−
∆t

= q ( ) +
1
c

× ( ) , (2.15) 

 

p , − p ,

∆t
= q E (x , y , z ) +

1
c

v , − v ,

2
B (x , y , z ) −

v , − v ,

2
B (x , y , z ) , 

p , − p ,

∆t
= q E (x , y , z ) −

1
c

v , − v ,

2
B (x , y , z ) −

v , − v ,

2
B (x , y , z ) , 

p , − p ,

∆t
= q E (x , y , z ) +

1
c

v , − v ,

2
B (x , y , z ) −

v , − v ,

2
B (x , y , z ) . 

(2.16) 

 

Using updated momentum and previous position of the particle, new position can be obtained as follows. 

 

d
dt

≡
−

∆t
=

mγ
, (2.17) 

 

x − x
∆t

=
p ,

mγ
, 

y − y
∆t

=
p ,

mγ
, 

z − z
∆t

=
p ,

mγ
. 

(2.18) 

 

Particles are moved by the interpolated constant electromagnetic forces during the time interval ∆t at each 

time step. 
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Charge and current deposition (Linear weights of sources) 

 

Once a particle moves to a new position, new charge and current densities can be obtained (i.e., weighted) 

from the information of position and momentum. 

 

Linear weights, S(x − x , y − y , z − z ) = 1 −
|x − x |

∆x
1 −

|y − y |

∆y
1 −

|z − z |

∆z
,

only if |x − x | < ∆x and |y − y | < ∆y and |z − z | < ∆z 

(2.19) 

 

ρ , , =
1

∆x∆y∆z
q S(i∆x − x , j∆y − y , k∆z − z ), (2.20) 

 

j
, ,

=
1

∆x∆y∆z

q p ,

mγ
S i +

1
2

∆x −
x − x

2
, j∆y −

y − y
2

, k∆z −
z − z

2
, 

j
, ,

=
1

∆x∆y∆z

q p ,

mγ
S i∆x −

x − x
2

, j +
1
2

∆y −
y − y

2
, k∆z −

z − z
2

, 

j
, ,

=
1

∆x∆y∆z

q p ,

mγ
S i∆x −

x − x
2

, j∆y −
y − y

2
, k +

1
2

∆z −
z − z

2
. 

(2.21) 

 

The sources which are interpolated to grids are used to calculate new fields acting on particles. So, procedures 

are iterated. 
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Chapter 3. Plasma Wakefields of a Short Beam Bunch in Plasmas 

 

In this chapter, initially proposed linear beam-driven plasma wakefield theories of Refs [4] and [6] are 

introduced. As remarked above, linearly excited plasma wakefield would generates the self-modulation 

instability. Because the optimum condition for excitation of plasma wakefield is satisfied by a short beam, it is 

required to understand the physics of a short beam-driven plasma wakefield.   

 

3.1 Energy transfer in co-linear wakefield accelerator 

 

In this section, we discuss a general property of energy transfer in plasma wakefield accelerators. One of 

promising definitions of plasma wakefield accelerators described in this paper is that the ion cavity for 

accelerating charged particle in plasma has no stored energy before the driving (or leading) beam arrives. 

Considering the energy change of the bunch per unit length due to its own wake, 

 

d(N E )

dz
= −N e W(0), (3.1) 

 

where N  is the number of particles in the bunch and E  is the energy per particle. W(0) is a wakefield 

function of the plasma ion cavity structure at y = 0 from a elementary charge e. Here we regard bunches as 

rigid collections of particles which have zero length (i.e., point-like). The energy change of the secondary (or 

trailing or witness) beam injected at a distance y behind the driving beam is affected by both its own wake and 

the driving beam’s wake. These two effects are linearly superposed as 

 

d(N E )

dz
= −N e W(0) − N N e W(y), (3.2) 

 

where N  and E  meant the number of particles and energy per particles of the trailing bunch. Due to energy 

conservation, the total energy of driving and injected beam does not increase. 

 

d(N E )

dz
+

d(N E )

dz
= −(N + N )e W(0) − N N e W(y) ≤ 0 (3.3) 

 

Considering that it should be satisfied for all N  and N  (N = N ), 

 

[−W(y)] ≤ 2W(0). (3.4) 

 

Then the acceleration gradient seen by a single particle in the witness beam is 

 

G ≡
dE
dz

= −N e W(0) − N e W(y) ≤ (2N − N )e W(0). (3.5) 
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Assuming the energy of the driving beam will be fully transferred to plasma wave (wakefield), the driving 

beam will stop in a distance L,  

L =
E

N e W(0)
. (3.6) 

 

As the total charge of the driving beam increase, it makes high accelerating gradient for the secondary beam 

though, will last for a shorter distance L. Then the energy gain which secondary beam will obtain from the 

wakefield is  

∆E = GL ≤ E 2 −
N
N

. (3.7) 

 

Therefore, maximum energy gain of the secondary beam from the driving beam is about 2 times of the driving 

beam energy. Notice that the only assumptions necessary to derive this result are conservation of energy, linear 

superposition and a rigid point bunch. The inequality can be made for a single mode lossless medium in which 

the wakefield oscillates with a single frequency behind the driving bunch. Energy transfer efficiency from the 

driving beam to the secondary beam is 

 

η ≡
∆(N E )

N E
=

N
N

2 −
N
N

. (3.8) 

 

In such a case the maximum efficiency is achieved by choosing N = N . The energy of the leading bunch is 

then completely transferred to the trailing bunch and no wakefield is left after the trailing bunch. 

 

3.3 Blowing out and sucking in of plasma electrons due to the charged particle bunch’s field 

 

In this section, we analyze the response of a cold plasma to a driving bunch by calculating the wakefield for 

three cases: a one dimensional nonrelativistic plasma, a three-dimensional nonrelativistic plasma, and a one 

dimensional relativistic plasma. In all 3 cases the plasma is a single frequency medium. 

We use three linearized equations. 

 

Continuity equation,
∂n
∂t

+ n ∙ = 0, (3.9) 

 

Equation of  motion,
∂

∂t
=

e
m

, (3.10) 

 

Gauss s law, ∙ = 4πe(n + n ). (3.11) 

 

Here n  is the perturbed background plasma electron density, and n  is the driving beam density. The 

elementary charge is defined by e ≡ −|e| = −1.602×10  C. Note that this definition of e is different from 

the one in Chapter 1.1. When the driving beam consists of electrons, it has a negative value. When the driving 
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beam consists of protons, it has a positive value. Thus, the sign of n  is not explicitly shown by itself. 

Combining above equations, we get the equation of perturbed plasma electron density.  

 

∂ n
∂t

+ n ∙
∂

∂t
=

∂ n
∂t

+ n ∙
e
m

=
∂ n
∂t

+
en
m

4πe(n + n ) = 0, 

∂ n
∂t

+
4πe n

m
n = −

4πe n
m

n     ⇔     
∂ n
∂t

+ ω n = −ω n . 

(3.12) 

 

Here, plasma frequency ω ≡ 4πe n /  and driving beam density n = σδ(z − v t) are introduced. 

Defining the beam frame coordinate y = v t − z (∂y = v ∂t) and k ≡ ω /v , differential equation for the 

density perturbation is 

∂ n
∂y

+ k n = −k σδ(y) (3.13) 

 

Solving the second order differential equation that we obtained in the region, y > 0 

 

∂ n
∂y

= −k n , y > 0 

n = Asin(ky), y > 0 

( ∵ n (0) = 0. ) 

(3.14) 

 

And integrating our original differential equation for 0 < y ≤ 0 , 

 

∂ n

∂y
dy + k n dy = −k σ, 

∂n
∂y

−
∂n
∂y

= −k σ 

 ∵ n dy = A sin(ky)dy ≃ 0  

(3.15) 

 

Because the region y < 0 is out of our interest, we ignore the first order derivative of n  at y = 0 . 

 

∂n
∂y

= −k σ. (3.16) 

Assuming 

∂n
∂y

=
∂n
∂y

, 

∂n
∂y

= Akcos(0) = −k σ, 

A = −kσ, 

(3.17) 
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We have 

n =
−kσ sin(ky) , y > 0

    0     ,    y < 0
 (3.18) 

 

When the driving beam consists of electrons, σ > 0, and n  must be negative within the region 0 < y < π, 

i.e., in a half of the first period (or plasma wavelength). It means that background electrons are pulled out by 

Coulomb repulsive force of the driving beam. In the similar way, when the driving beam consists of protons or 

positrons, σ < 0, and n  must be positive within the region 0 < y < π, i.e., in a half of the first period (or 

plasma wavelength). It means that background electrons are sucked in by Coulomb attractive force of the 

driving beam. There is no plasma wave ahead of the driving beam. This is due to the fact that the plasma wave 

has zero group velocity. It does not propagate in space and therefore does not overtake the driving beam even if 

the driving beam moves non-relativistically. Mathematically, this is from the absence of spatial derivatives. 

From Gauss’s law, the electric field induced by the perturbed density is 

 

E =
−4πeσ cos(ky) , y > 0,

      0      ,    y < 0.
 (3.19) 

 

Considering the energy conservation law, 

 

u (the energy density of the electric field at the peak) 

=
E (peak)

8π
= 2πe σ = E(0)eσ = −∆Energy 

∴ ε(0) = −2πeσ 

(3.20) 

 

Note that there exists a phase retardation while the energy lost by the driving beam is fully deposited at the 

crest of plasma waves. Here the electric field ε(0) = −2πeσ is a half of the peak value. It well satisfies the 

upper limit of energy transfer efficiency. Here, to satisfy the linearity condition, energy density of the driving 

beam should be much larger than that of plasma waves. 

 

1
2

n mv ≫
E (peak)

8π
=

1
2

n mv (peak). (3.21) 

 

 

We now consider a cylindrically symmetric leading bunch with density given by  

 

n = σ(r)δ(z − v t) (3.22) 
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As in the one-dimensional case, the perturbed density is 

 

n =
−kσ(r) sin(ky), y > 0,
       0     , y < 0.

 (3.23) 

 

Note that the r dependence of n  is equal to that of the driving beam. This is again a consequence of zero 

group velocity. Introducing the electrostatic potential V = R(r)Z(z), we solve 

 

∇ V = 4πe(n + n ) 

1
r

∂
∂r

r
∂
∂r

V +
∂ V
∂ϕ

+
∂ V
∂z

= 4πe(n + n ) 
(3.24) 

 

Here ϕ dependence doesn’t exist. In other words, the driving beam is axisymmetric. Thus, the second term of 

left hand side should be removed. Specifically, we use a parabolic distribution for the surface charge density of 

the driving beam. 

σ(r) =

2N
πa

1 −
r
a

, r < a

     0     , r > a

 (3.25) 

 

Assuming Z(z) = Asin kz − ω t ≡ Asin(ky), given partial differential equation becomes 

 

ⅰ)  y > 0, r < a 

∂ R
∂r

+
1
r

∂R
∂r

− k R =
8eN
a

1 −
r
a

k (3.26) 

ⅱ) y > 0, r > a 

∂ R
∂r

+
1
r

∂R
∂r

− k R = 0 (3.27) 

 

Then the potential behind the bunch is given by  

 

V = R(r) sin(ky) (3.28) 

with (see Appendix 3.1) 

 

R(r) =
16eN
ka

K (ka)I (kr) +
1
2

−
2

(ka)
−

r
2a

, r < a

        I (ka)K (kr)        , r > a

 (3.29) 
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It yields the electric fields 

 

E = −kR(r) cos(ky)                  , r < a 

 

E = −
16eN

a
K (ka)I (kr) −

r
ka

sin(ky) .    r < a 

(3.30) 

 

where I  and K  are modified Bessel functions. Here, longitudinal electric field component can accelerate the 

injected witness beam. 

 

 

 

Fig. 3.1. The electric fields induced by disc-shaped electron beam within r < a are plotted. The relative 

coordinate of driving beam position y = v t − z increases in opposite direction of beam propagation. Note that 

there exist phase differences between plasma response and wakefields. 

 

 

 

 

 

 

 

 

 

(b) 

(a) 
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3.5 Nonlinear one dimensional relativistic plasma  

 

For the large amplitudes of plasma oscillations, we can neglect the thermal fluctuations of plasma. This 

approximation is reasonable even when we are investigating nonlinear oscillations in a high temperature plasma. 

Under the condition which is nearly in the zero temperature, we don’t have to introduce a distribution functions 

to specify the state of the plasma, but just use the electron density, which depends on the coordinates and time 

[5]. In this section, we study the nonlinear properties of plasma oscillation in one dimension, which is 

analytically solvable. The equation governing the nonlinear plasma oscillation in absence of the driving beam 

along the propagation direction of the plane wave (in one dimension) is (See Appendix 3.2) 

 

d
dτ

1 − βu

1 − u
= ω

β u
β − u

. (3.31) 

 

Here, each of β, u  and ω  is corresponding to the normalized phase velocity, the velocity of the plasma 

electrons in z direction and the plasma frequency, respectively. From now on, we follow the story of the paper 

written by Rosenzwig [6]. Replacing the variable τ = t − (ı̂ ∙ r/v ) with τ = ω t − ı̂ ∙  and adding 

the source of the drive beam in the right-hand side of Eq. (3.31), the differential equation of the nonlinear 

plasma oscillation driven by the charged particle beam will be 

 

d
dτ

1 − β β

1 − β
= β

β
β − β

+
n
n

. (3.32) 

 

Here β and u  were replaced by β  and β. Because we are investigating the application for the high-

energy physics, we assume the ultra-relativistic driving beam, β ≈ 1, and introduce a new variable below 

 

x(τ) =
1 − β
1 + β

. (3.33) 

 

Defining α = n /n , our differential equation becomes  

 

x (τ) =
1
2

1
x

− 1 + 2α . (3.34) 

 

Here, the prime indicates differentiation with respect to τ. Now we consider this equation in the case of an 

electron beam bunch whose longitudinal profile is constant over the full beam of length l . 

 

α =
 constant, 0 ≤ ct − z ≤ l

0   , elsewhere
 (3.35) 
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There is no plasma oscillation for τ < 0, so β = 0 and the initial conditions are x(0) = 1, x (0) = 0. The 

first integral of Eq. (3.34) is then (see Appendix 3.2) 

 

[x (τ)] = 2(1 − α) −
1
x

− (1 − 2α)x. (3.36) 

 

Solutions of real number exist for α < 1/2, and x (τ) = 0 at x = 1, 1/(1 − 2α). These points correspond 

(see Appendix 3.2) to perturbed plasma electron densities of  

 

n = n − n = 0, −2n (1 − α). (3.37) 

 

Now that the expression for x′ has been found, we may write an equation for the electric field inside the beam 

as a function of x(τ) (see Appendix 3.2) 

 

E(x) = −
mcω

e
(x ) = ±

mcω

e
2(1 − α) −

1
x

− (1 − 2α)x . (3.38) 

 

Integrating Eq. (3.36), we have T/2. 

 

T
2

= ∫ dτ = (1 − 2α)
x

(x − 1) 1
1 − 2α − x

dx =
2E(Ψ, k)

√1 − 2α
, (3.39) 

 

where E(Ψ, k) is the incomplete elliptic integral of the second kind and 

 

Ψ = sin [(x − 1)(1 − 2α)] , at x =
1

1 − 2α
 (k = 2α). (3.40) 

 

The frequency of the driven oscillation is 

  

ω =
2π
T

=
π√1 − 2α

E(Ψ, k)
=

π√1 − 2α
2E(k)

ω . (3.41) 

 

Here E(k) is the complete elliptic integral of the second kind and k is as defined above. The oscillation 

frequency ω is smaller than ω  for larger amplitude excitations, i.e., the larger beam density of the driving 

beam, n  makes frequency down shift. Because the plasma electron density n is always less than n  inside 

the driving beam, the nonlinearity in the oscillation is due mainly to the relativistic mass increase of the plasma 

electrons especially for α → 1/2. It causes the serious frequency downshift as shown from Eq. (3.41) in this 

limit. It means that plasma electrons become ultra-relativistic for α → 1/2. For the second turning point at α =

1/2 (or n = −n ), 
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β =
1 − x
1 + x

=
(1 − 2α) − 1
(1 − 2α) + 1

= −1, for α =
1
2

. (3.42) 

 

As n  goes to n /2, the plasma electron approaches the ultra-relativistic regime and makes turn at n = −n . 

The electric field near the turning point at n = −n  approaches the linear wave-breaking limit. Substituting 

α = 1/2 and 1/x = 0 into Eq. (3.38), we obtain the result below.  

 

E =
mcω

e
≃ 96 n (cm )     [V/m]. (3.43) 

 

This is the largest electric field obtainable inside the driving beam in the linear wave limit. 

 

 

 

Fig. 3.2. The normalized velocity of plasma electron at the end of the driving beam (the second turning point of 

x(τ) [x (τ) = 0]. At α = 1/2, β reaches −1. In the region where it is not satisfied that |β| ≪ 1 or |α| ≪ 1, 

the system has nonlinearity. It is the reason that we should have investigated the nonlinearity of the plasma 

oscillation. The region which is enough to be linearized would be within |α| ≪ 1.   
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Fig. 3.3. Inhomogeneous solution at α = 1/2. Each of (a) eE /mcω  and (b) n /n  asymptotically reaches -

1 and -0.5. It lasts until the end of the beam, i.e., α = 0. The pictures behind the beam are listed in Refs. [2] and 

[6], but it is not our interest. 

 

So far, we have investigated the properties of nonlinear oscillation of plasma electron inside the bunch. In the 

case of the electron beam, when n /n  goes to 1/2, β increases up to −1 at the end of the beam. In other 

words, n  reaches −n /2 and it lasts until the differential equation we have becomes homogeneous, i.e., 0 ≤

ct − z ≤ l . Behind the beam, solving the homogeneous equation using the continuity of n (τ) and E(τ), we 

get the response of plasma behind the beam. However, knowing the response of plasma behind the beam is not 

our interest. Here what we should note is that n = −n /2 lasts to the end of the beam. And as remarked above, 

because the larger beam density causes the more perturbed beam density, the oscillation frequency ω is a 

function of α and the modulation of the plasma electron density. It can be very unstable in the periodicity. 

Because we are interested in the condition which SMI will be developed in, then we realize that we don’t have 

to consider the nonlinearity of plasma for our purpose and our study would be in the limit of the linear system. 

But it is only before the SMI saturates. When the SMI is fully developed, the transition of plasma oscillations 

into nonlinear regime occurs. 

 

We have assumed the beam density n  is constant and the time scale of beam envelope evolution is much 

slower than the responses of plasma (the time scale of ω ). In Chapter 4, the dynamics of driving beam is 

briefly discussed, so the self-modulation instability is introduced. 
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3.6 Simulations of a short beam-driven plasma wakefields using WARP 

 

Referring to Ref. [8] is useful to demonstrate the plasma wakefields driven by the short and charged beams. 

The optimum condition to resonantly excite the plasma waves is satisfied with σ k ≤ 1 and σ k = √2 of 

the Gaussian beam profile. But here the former condition σ k ≪ 1 is not fully satisfied (σ k ≈ 1.4), where 

σ = σ = 382 μm and plasma electron density n = 3.8×10  m .  

 

1) The electron beam driven plasma wakefield at / = . . 

 

When the ratio of driving beam to plasma electron density is n /n ≪ 1, the system is in the linear regime. In 

this case, the longitudinal component of the wakefield has the trigonometric-like curve along the propagation 

axis of the beam. And the periodicity of the wake is about λ . 

 

 

Fig. 3.4. Plasma wakefield driven by a short electron beam at n /n ≪ 1. (a) Longitudinal component of 

wakefield has trigonometric-like curve along the propagation axis of the beam. (b) By this transverse wakefields, 

the rear part of the negatively charged driving beam will be focused. 

E − cB  [V/m] 

17 
E  [V/m] 

(a) 

(b) 
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2) The electron beam driven plasma wakefield at / = . . 

 

When the ratio of beam density to plasma electron density is n /n = 0.35, the system is nearly in the 

nonlinear regime. In this case, we see the steepening of the longitudinal component of the wakefield. It is not 

like trigonometric curve anymore. ‘Plasma bubbles’ which are formed by the largely perturbed plasma electrons 

are observed. Where we call it ‘pulling out of the plasma electrons’ and in this case the plasma electron density 

n = n + n  is not like constant value anymore. 

 

 

 

Fig. 3.5. The plasma wakefield driven by a short electron beam at n /n = 0.35. (a) The longitudinal 

component of the wakefield has the sawtooth-like curve along the propagation axis of the beam. And the 

periodicity of the wake is about λ . (b), (c) Charge density ρ is depicted. Background plasma electrons are 

pulled out by repulsive force of the electron beam. Magnitudes of plasma density peaks are very high compared 

with the equilibrium plasma electron density n . 
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4) The proton beam-driven plasma wakefield at / = . . 

 

The proton beam-driven wakefield is analogous to the electron beam-driven case, but here because the driving 

beam sucks in background plasma electrons, it has phase difference π from the electron beam case. This result 

corresponds to linear theory of Chapter 3.3.  

 

 

 

Fig. 3.6. The plasma wakefield driven by a short proton beam at n /n = 0.01. (a) The longitudinal component 

of the wakefield has the trigonometric-like curve along the propagation axis of the beam. (b) By this transverse 

wakefields, the rear part of the positively charged driving beam will be focused. 
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Chapter 4. Self-Modulation Instability of a Long Beam Bunch in Plasmas 

 

The self-modulation of the beam occurs through coupling of the transverse wakefield with the beam radius 

evolution. Periodic regions of focusing and defocusing modulate the beam density at λ , driving a larger plasma 

density modulation that further focuses the beam periodically. For beams long compared to λ , where self-

modulation occurs, the instability is enabled by the drive beam dynamics, and therefore the wakefield properties 

will be strongly affected by the drive beam dynamics [10]. In this chapter, we will see the evolution of the drive 

beam envelope in time τ and relative beam position ξ. For the analysis, analytical and semi-analytical 

approaches of the beam-envelope equation are introduced. But the details of derivation of the beam-envelope 

equation are not explained here. Next, we inspect the coupling of beam centroid offset and radius pinching. 

These two phenomena are called the hose and self-modulation instability, respectively. 

 

4.1 Analytical approach on the beam-envelope equation 

 

We begin with the analytical theory of the beam self-modulation based on the beam-envelope approach in Ref. 

[8]. As remarked before, the self-modulation instability or beam radius evolution can arise by the coupling of the 

transverse wakefield with the beam radius evolution when the drive beam length is longer than plasma 

wavelength λ . Following the approach of Ref. [15], we can write down the two-dimensional expressions for 

the wakefields of an axisymmetric beam driver of an arbitrary profile by utilizing the Euler variables ξ =

β − , where β = v , /  and τ ≡ t assuming the quasi-static approximation (∂ ≃ 0) for the beam 

driver. Inside the body of a long proton bunch (0 < ξ < L ), the longitudinal and transverse wakefields are 

 

E (r, ξ) = 4πk r dr ρ(r , ξ )I k r K k r dξ f(ξ )cosk (ξ − ξ ) (4.1) 

and 

 

W (r, ξ) ≃ (E − B )(r, ξ) = 4πk r dr ∂ ρ(r , ξ )I k r K k r dξ f(ξ )sink (ξ − ξ ), (4.2) 

 

where ρ(r, ξ) = ρ ψ(r)f(ξ) is the beam charge density with the Heaviside step-function profile ψ(r) =

Θ(r − r), I ( ) and K ( ) are the modified Bessel functions of order 0(1), r = min(r, r )  and  r =

max(r, r ), k = ω /  is the background plasma wave number, L  is the length of the bunch in the  

direction, and we have assumed β ≈ 1. Dynamics of the drive beam, especially in ultra-relativistic regime, 

could be considerably affected by this transverse wakefield W . So, from a precedent study of the general 

beam-envelope equation theory [16], the equation for the beam envelope for a long proton bunch in the plasma 

wakefields is written as 
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∂ r
∂τ

−
ℳ

r
= −

ω
γ

r (ξ )I k r (ξ ) K k r (ξ ) f(ξ )k sink (ξ − ξ )dξ , (4.3) 

 

where γ = (1 − β )  is the relativistic Lorentz factor of the beam, ω = 4πρ e/m  is the square of the 

non-relativistic beam-plasma frequency of the proton bunch, ρ = n e is the charge density of the proton 

bunch, and m  is the mass of the beam particle. Here r = r (ξ) is a function of ξ on account of pinching 

caused by the wakefield on the beam. The constant ℳ is from the integration of the θ component of the 

equation of motion for the beam electrons yielding the angular momentum constant, and is associated with the 

transverse emittance of the beam [16]. For the demonstration of the self-modulation instability of a proton beam, 

we consider a thin beam lim
≪

I k r (ξ ) K k r (ξ ) ≈ 1/2  with a Heaviside step-function profile 

[f(ξ ) ≡ Θ(ξ )] and take ℳ = ω r , where ω = ω /2  and r  is the initial radius of the beam. And 

we normalize the coordinates as r = r /r , r , , τ = ω τ, ξ = k ξ. So, normalized beam-envelope 

equation is simply written by 

 

∂ r (ξ)

∂τ
−

1

r (ξ)
= − r (ξ )sin(ξ − ξ )dξ . (4.4) 

 

 Assuming the beam radius is perturbed around the equilibrium radius [r = 1 + δr ] and the perturbation 

term has the phase which corresponds to the plasma wakefields spatially δr = δr exp(iξ)  when ∂ δr ≪

|δr | , we get an equation of δr  handling the beam-envelope equation (see Appendix. 4.). 

 

∂ + 1 (∂ + 3)δr = −δr , (4.5) 

 

where we see that δr  varies in time and space inside the beam. We assume that there is additional pinching 

which has any group velocity δr ~ exp(iδωτ − ikξ) , at k ≫ k . So, the dispersion relation of the wave 

which delivers the pinching inside the beam is obtained as (see Appendix. 4.) 

 

D ≡ (k − 1)(δω − ∆) = −1, ∆ ≡ 3. (4.6) 

 

For complex δω = δω + iδω , when Im(δω) → ∞ [Fig. 4.1(a)], k has real roots. 

 

k = ± lim
| |→

δω − (1 + ∆)

δω − ∆
= ±1 (4.7) 

 

So, instability is convective [δr ~ exp(iδωτ ± iξ)].  
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The dispersion relation gives two complex k roots (one in the upper half and another in the lower half of the 

complex k plane) for real δω = Re(δω) = δω  √∆< δω < √1 + ∆  (see Appendix. 4.) [Fig. 4.1(b)] 

 

k = ik = ±i
(1 + ∆) − δω

δω − ∆
. (4.8) 

 

When k is in the upper half of complex plane, the perturbation grows spatially in the ξ > 0 direction and 

when k is in the lower half of complex plane, the perturbation grows spatially in the ξ < 0 direction. 

 

δr ~ exp(iδωτ − ikξ) ~ exp(iδωτ − ik ) exp(k ξ) with k = ±
(1 + ∆) − δω

δω − ∆
. (4.9) 

 

 

 

Fig. 4.1 Dispersion relation of the SMI: (a) For Im(δω) → ∞, k has real roots (Curves are symmetric in the 

second quadrant.). So the instability is convective. (b) In √3 < δω < 2, k has complex roots (Curves are 

symmetric in the four’th quadrant.). Only when k is in the upper half of complex plane, the SMI grows. 

 

In this section, the self-modulation instability has been treated as a wave inside the beam. So, it has its own 

group velocity, and by inspecting the dispersion relation of the instability, we found that the instability could 

grow up. 

 

 

 

 

 

 

 

 

 

 

  

(a) (b) 
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4.2 Numerical solution of beam envelope equation 

 

Let’s assume the beam envelope for a long cylinder-shaped beam density profile. In normalized coordinates, 

the longitudinal point k ξ = 0 indicates the beam’s head and k ξ = k L  indicates the beam’s tail. The initial 

radius of the beam is r = 1. As remarked before, the normalized envelope equation we have is for the thin 

beam k ≪ 1 . Then the boundary conditions are r (ξ, 0) = 1 and ∂ r (ξ, 0) = 0. 

 

 

 

 

Fig. 4.2 A brief picture for the numerical study of beam envelope equation: The beam is initially cylinder-shaped 

and has a uniform beam profile. As time goes, it goes through radius evolution. 

 

Reminding (A.4.2), 

d y(ξ, τ)

dξ
+ y(ξ, τ) = r (ξ, τ), 

∂ r (ξ, τ)

∂τ
+

1

r (ξ, τ)
= −y(ξ, τ), 

(A.4.2) 

 

we solve the beam envelope-equation numerically. As remarked above, the Self-modulation instability becomes 

larger as increasing ξ and τ. Because we normalized the coordinates, the distance between nearest two peaks 

should be about 2π. Here the beam length is 62.8 ≈ 10×2π and the number of modulated beam peaks is 10. 

The numerical result of radius evolution in time is listed below. 

 

Beam head, ξ = 0 

+ξ = k (β ct − z) 

k r ≪ 1 

 

Beam tail, ξ = k L  
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Fig. 4.3 The beam radius evolution in time with beam-envelope equation: The time and beam position 

coordinates are normalized as beam-envelope equation was. The self-modulation instability grows as time goes 

and in the direction which ξ increases. The beam length is 62.8 ≈ 10×2π and the number of modulated beam 

peaks is 10. 

 

ω τ = 0 

ω τ = 1.2 

ω τ = 1.8 

ω τ = 0.6 

Head Tail 

ω τ = 2.4 

k ξ 
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4.3 Coupled beam hose and self-modulation instabilities and their growth rates 

 

As we have seen, transverse stability of the drive beam is critical to plasma wakefield accelerators. A long, 

relativistic particle beam propagating in an overdense plasma is subject to beam envelope modulation and 

centroid displacement instabilities. The beam envelope modulation is about the self-modulation instability. The 

latter one is called hose instability. Referring to Refs. [9,10], the equation for the centroid displacement 

instability is 

 

d x
dz

=
k
γ

I (r )

r
dζ sin(ζ − ζ )

r
r (ζ )

K r (ζ ) [x (ζ ) − x (ζ)], (4.10) 

 

and similarly, the equation for the beam envelope modulation instability is 

 

d r
dz

−
ϵ

r
= −

k
γ

4I (r )

r
dζ sin(ζ − ζ )

r
r (ζ )

K r (ζ ) , (4.11) 

 

where ζ = k (z − β t) is the normalized comoving variable with the plasma wavenumber k =  and β =

, x  is the averaged centroid offset of any slice of the beam, k =  is the square beam wavenumber, 

M  is the mass of the beam particle, γ is Lorentz factor, I ( ) and K  are modified bessel function, r  is the 

beam radius, and ϵ is the geometric emittance. Note that here the beam-envelope equation is not exactly same 

as Eq. (4.3) and the beam radius evolution couples to the centroid evolution. Obviously, the centroid evolution at 

any slice ζ is affected by the radius evolution. From these theories, assuming a slowly varying envelope 

r = + c. c. with ̂ ≪ ̂  and the strongly coupled regime where the growth length of the 

instability is short compared to √γk  [| ̂ ̂ | ≫ 2 | ̂|], the asymptotic solution of the beam envelope 

modulation is written by 

r = δr
3

√8π

e

N
cos

π
12

− k ζ −
N

√3
, (4.12) 

 

where the number of e-folds of the self-modulation instability is 

 

N =
3
4

ν
n m
n M γ

z , (4.13) 

 

where ν = 4I k r K (k r ), n  is the initial beam peak density, and n  is the equilibrium background 

plasma density.  
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Again, assuming the beam envelope is non-evolving [r = r = constant], i.e., for a rigid beam 

approximation, the asymptotic solution of the centroid evolution is written by 

 

x = δx
3

√8π

e

N
cos

π
12

− k ζ −
N

√3
, (4.14) 

 

where the number of e-folds of the hose instability is 

 

N =
3
4

μ
n m
n M γ

ζz , (4.15) 

 

where μ = 2I k r K k r . So, comparing the hosing growth rate to the self-modulation instability growth 

rate, 

N
N

=
μ

2ν
~1, (4.16) 

 

and in the narrow beam limit k r ≪ 1 , 

N
N

~0.8. (4.17) 

 

We note that i) both of the two instabilities exponentially grow in the direction ζ > 0. ii) Eq. (4.10) indicates 

that a beam tilt or non-uniform head-to-tail displacement with respect to the beam propagation direction 

x (ζ) x (ζ ) is required for the hose instability. iii) Seeding of the self-modulation instability interrupts the 

growth of the hose instability [10].  

Note that the envelope equation is defined in a little different form by Refs. [8,9] and their growth rates are not 

exactly same to each other. 
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4.4 Transverse equilibrium and stability of the primary beam in plasma 

 

When the driving beam propagates in plasmas, beam space charge, self-induced magnetic field, background 

plasma ions and electrons affect the transverse dynamics of the driving beam. For n < n , the plasma 

electrons neutralize the beam space charge E = 0 with k r < 1 . Referring to Ref. [11], transverse 

equilibrium and stability of the primary beam in over-dense plasma is written by    

 

R =
4ϵ ,

βγ
mc
e|I |

1 − 2
 R ω

c
1 − exp −

c
ω R

, (4.18) 

 

and for the narrow beam k r ≪ 1 , 

R = 2ϵ ,
mc

βγ e|I |
. (4.19) 

 

Equations (4.18) and (4.19) describe a balance between the focusing of the self-magnetic field of the beam and 

the beam emittance, with the result that R  decreases as |I | increases. The beam density can vary 

significantly versus both the beam position coordinates ζ and time τ as a result of the radial mismatch 

oscillations. The mismatched beam which damps to an approximate equilibrium state would produce a smaller 

wakefield than a matched beam with larger radius and emittance. In other words, the wakefield is reduced by the 

temporal and spatial fluctuations in the beam density. To circumvent the radial mismatch oscillations, we should 

be able to control the emittance of the beam. For an ultra-relativistic beam passing through a plasma in z 

direction, (assuming β ≃ 1), the invariant of transverse momentum is 

 

p , = γ m v , = p , = m v , , 

γ v , = v , , 
(4.20) 

 

and the relation between transverse temperature and emittance [12] is 

 

k T , = m 〈v , , 〉 = m γ 〈v , , 〉 = m γ (β c) 〈x , , 〉, 

= m (γ β c) γ ε , = m γ β c γ ε , . 
(4.21) 

 

By above equations, the equation of the normalized thermal electron momentum with respect to the normalized 

emittance and other parameters is written by 

 

u , = γ
〈v , , 〉

c
= γ β γ ε , ≃

γ ε ,

β
, (4.22) 

 

where u ,  is the normalized electron momentum from the transverse thermal kinetic energy.  
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4.5 Simulations of a long beam-driven plasma wakefields using WARP 

 

In this section, we see that how the theories of self-modulation and hose instabilities show up with the PIC 

code WARP. Most of the beam parameters are from the Brookhaven National Laboratory Accelerator Test 

Facility (ATF), and in the last part, we see the self-modulation instability using the parameters of the Injector 

Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). 

 

Perturbation of beam slice’s centroid of non-ideal axisymmetric smooth beam (Hose instability) 

 

Without any seeding of self-modulation instability, the beam centroid evolution is dominant. The beam 

generates the asymmetric instability, so induced plasma wakefields are also asymmetric. 

 

 
 
Fig. 4.4. The hose instability of smooth electron beam with ATF beam parameters: Here plasma electron density 
is n = 4.2e + 22 [m ] , beam energy is 58 MeV (γ = 114) , rms transverse momentum spread is 

〈p 〉/m c = 8.6×10 , transverse rms beam size is σ = 120 μm, longitudinal rms beam size is σ =

960 μm, beam density profile is n = n 1 + cos √ e , initial beam density peak is n =

3.6e + 18 [m ], beam length is L = 2σ √2π, and total beam charge is Q = 250 pC.  
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Perturbation of beam slice’s radius of non-ideal axisymmetric half-cut electron beam (Self-modulation 

instability) 

 

With the seeding of self-modulation instability, such as half-cut beam, the beam radius evolution is dominant. 

The beam generates the axisymmetric instability and wakefields. The wakefields are larger than those of the 

case in the hose instability. 

 

 

 

Fig. 4.5. The self-modulation instability of half-cut electron beam with ATF beam parameters:  Here plasma 
electron density is n = 4.2e + 22 [m ], beam energy is 58 MeV (γ = 114), rms transverse momentum 

spread is 〈p 〉/m c = 8.6×10 , transverse rms beam size is σ = 120 μm, longitudinal rms beam size is 

σ = 960 μm, beam density profile is n = n 1 + cos √ e , initial beam density peak is 

n = 3.6e + 18 [m ], beam length is L = σ √2π, and total beam charge is Q = 125 pC.  
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Self-modulation instability with varying plasma densities 

 

Because a long driving beam which excites the plasma waves along the beam propagation direction will be 

modulated into many micro-bunches whose lengths are in the order of λ . The number of modulated beam 

density peaks varies with plasma density. In the numerical examples presented here, the propagation distances of 

beams in plasmas are all about 10 cm.   

 

 

 

 

Fig. 4.6. The self-modulation instability of half-cut electron beam with ATF beam parameters in varying plasma 

densities: The number of modulated bunches increases as increasing plasma density. Here plasma electron 

density is n = 1.8e + 21 [m ] ~ 4.2e + 22 [m ] , = (a) 3,  (b) 6,  (c) 9,  (d) 12,  (e) 15 , beam 

energy is 58 MeV (γ = 114), rms transverse momentum spread is 〈p 〉/m c = 8.6×10 , transverse rms 

beam size is σ = 120 μm , longitudinal rms beam size is σ = 960 μm , beam density profile is n =

n 1 + cos √ e , initial beam density peak is n = 3.6e + 18 [m ], beam length is L =

σ √2π, and total beam charge is Q = 125 pC. 
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Perturbation of beam slice’s radius of non-ideal axisymmetric half-cut proton beam (Self-modulation 

instability) 

 

According to Ref. [10], because the number of exponentiation of SMI is ~(n ζz ) (n M γ )  and m ≈

1836m , when other parameters were fixed, the proton beam propagating in plasma takes 43 times longer 

distance to get the exponentiation of the electron beam case. So, here using γ = 25 is more useful. It is 0.22 

times of the electron beam case of this study.  

 

 

 

Fig. 4.7 The self-modulation instability of half-cut proton beam with ATF beam parameters: Here plasma 
electron density is n = 4.2e + 22 [m ], beam energy is 24 GeV (γ = 25), rms transverse momentum 

spread is 〈p 〉/m c = 4.5×10 , transverse rms beam size is σ = 120 μm, longitudinal rms beam size is 

σ = 960 μm, beam density profile is n = n 1 + cos √ e , initial beam density peak is 

n = 3.6e + 18 [m ], beam length is L = σ √2π, and total beam charge is Q = 125 pC.  
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The longitudinal accelerating and transverse focusing fields of Self-Modulated electron bunches (ATF) 

 

The longitudinal accelerating and transverse focusing fields of the self-modulated electron bunches are 

depicted in Fig. 4.8. Here the red curve of the third graph in Fig. 4.8 is showing the density of plasma electrons 

and driving beam together. We see that at the places where perturbed plasma electron density has positive value, 

the electron beam is defocused and at the places where perturbed plasma electron density has negative value, the 

electron beam is focused. The instability grows up with wakefields in the direction from beam’s head to tail. 

 

 
 

Fig. 4.8. The self-modulation instability of half-cut electron beam with ATF beam parameters: Here plasma 
electron density is n = 4.2e + 22 [m ], beam energy is 58 MeV (γ = 114), rms transverse momentum 

spread is 〈p 〉/m c = 8.6×10 , transverse rms beam size is σ = 120 μm, longitudinal rms beam size is 

σ = 960 μm, beam density profile is n = n 1 + cos √ e , initial beam density peak is 

n = 3.6e + 18 [m ], beam length is L = σ √2π, and total beam charge is Q = 125 pC.  
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Self-modulation instability with parameters of Injector Test Facility of Pohang Accelerator Laboratory 

 

Because the parameters of ITF beam are quite similar to those of the ATF, Ref. [13] is good reference for 

studying SMI with ITF beam parameters. So, we could build the experimental setup of SMI at PAL. 

 

 
Fig. 4.9. The self-modulation instability of half-cut electron beam with ITF beam parameters: Here plasma 

electron density is n = 2.5e + 22 [m ], beam energy is 60 MeV (γ = 114), rms transverse momentum 

spread is 〈p 〉/m c = 2.4×10 , transverse rms beam size is σ = 318 μm, longitudinal rms beam size is 

σ = 637 μm, beam density profile is n = n 1 + cos √ e , initial beam density peak is 

n = 3.6e + 18 [m ], beam length is L = σ √2π, and total beam charge is Q = 580 pC. 
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5. Summary and future works 

 

In this thesis, the fundamental concepts of beam-driven plasma wakefield are introduced. So, the self-

modulation instability of a long charged particle beam can be described. Here we use the PIC code WARP to 

check which the theories are properly described. Although in this thesis, any quantitative approaches are not 

covered explicitly, referring references especially for the simulation result from warp, we find out that the 

results are quite reasonable. 

 

A beam bunch propagating through plasma excites the plasma wakefield at some conditions. The optimum 

wake is obtained for k = 2  and k ≤ 1. Where k  is plasma wave number and σ  (or σ ) is RMS 

beam length (or RMS beam radius). But we are interested in using CERN’s long and high-energy proton beams. 

The CERN’s proton beams are much longer (~12 cm) than the optimum driving beam length (in order of 

plasma wavelength λ ). Here we focus on the instability which occurs based on the interaction between beam 

and plasma electrons. By this instability, the long driving beam is modulated along the propagation direction, so 

it makes the beam satisfy the optimum size for excitation of plasma waves. What we should know is that the 

plasma oscillation which is initially and axi-symmetrically excited by beam head seed self-modulation of 

driving beam. Evolution of beam envelope in time could result in beam centroid offset or radius pinching. 

Where the two phenomena, centroid offset and radius pinching of the beam in plasma are called ‘Self-

modulation instability’ and ‘Hose instability’. Those two instabilities compete each other. As the last step, the 

parameters of Injector Test Facility (ITF) at Pohang Accelerator Laboratory (PAL) was used to demonstrate the 

self-modulation instability. 

 

But in this thesis, there are a few results and concepts to be studied in the quantitative ways more. i) How the 

beam mismatching of the beam in plasma would affect the instabilities and wakefields, ii) why the self-

modulated long proton beam in plasma make wakefields stronger than those of electron beam case when only 

those beam particle species are different, and iii) the detailed organization of variation of growth rates with 

comparing the theories and the result of PIC code are those.  
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6. Appendix  

 

6.1 Fundamental equations 

 

Maxwell’s equations 

 Gaussian units SI units 

Gauss’s law (macroscopic) ∙ = 4πρ  ∙ = ρ  

Gauss’s law (microscopic) ∙ = 4πρ  ∙ =
ρ
ϵ

 

Gauss’s law for magnetism ∙ = 0 ∙ = 0 

Maxwell-Faraday equation × = −
1
c

∂
∂t

 × = −
∂
∂t

 

Ampere-Maxwell equation 

(macroscopic) 
× =

4π
c

+
1
c

∂
∂t

 × = +
∂
∂t

 

Ampere-Maxwell equation 

(microscopic) 
× =

4π
c

+
1
c

∂
∂t

 × = μ +
1
c

∂
∂t

 

 

Basic laws of electromagnetism 

 Gaussian units SI units 

Lorentz force = q +
1
c

×  = q( + × ) 

Coulomb’s law =
q q

r
 =

1
4πϵ

q q
r

 

Electric field of stationary point 

charge 
=

q
r

 =
1

4πϵ
q
r

 

Biot-Savart law =
1
c

Id ×
r

 =
μ
4π

Id ×
r

 

 

Vector and scalar potentials 

 Gaussian units SI units 

Electric field (static) = − ϕ = − ϕ 

Electric field (general) = − ϕ −
1
c

∂
∂t

 = − ϕ −
∂
∂t

 

Magnetic field = ×  = ×  
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6.2 Derivation and solving of differential equations from the body 

 

A. 1 

 

1.1 

 

∂ n + n ∙ = 0 

∂ ≃ −
e
m

+ = −
e
m

 
(A.1.1) 

 

ρ( ) = −en ( ) − Qδ( − ), 

J ( ) = −en ( ) − Q δ( − ), 
(A.1.2) 

 

∇ ϕ = −4πρ  

∇ −
1
c

∂ = −
4π
c

−
1
c

∂ ϕ  
(A.1.3) 

 

∇ ϕ = −4πρ = −4π −en ( ) − Qδ( − )  

∇ ∂ ϕ = −4π −e ∂ n ( ) − Q ∂ δ( − )  

4πe ∂ n ( ) =
4πe

v
∂ n ( ) =

4πe

v
∂ −n ∙ = −

4πen

v
∙ ∂  

= −
4πen

v
∙ −

e
m

=
4πe n

mv
∙ =

4πe n

mv
∙ (− ϕ) 

 k =
4πn e

mv
 

(A.1.4) 

 

∇ ∂ +
4πe n

mv
ϕ = 4πQ ∂ δ( − ) 

∇
1

|x − x |
= −4πδ( − ) 

∇ ∂ +
4πe n

mv
ϕ = −Q ∂ ∇

1
| − |

 

∇ ∂ + k ϕ = −Q ∂ ∇
1

| − |
 

∂ + k ϕ = −Q ∂
1

| − |
 

(A.1.5) 

 

ϕ (ζ) = −
2πQ
λ

1
k |ζ|

+ k dζ
sink (ζ − ζ)

k |ζ |
 (A.1.6) 
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∇ = −
4π
c

− β ∂ ϕ  

∂ = −
e
m

= −v ∂  

(A.1.7) 

 

 

∂ (x) =
e

mv
= −

e
mv

1
c

∂ + ϕ =
e

mv
1
c

v ∂ − ϕ  

∇ = −
4π
c

− β ∂ ϕ = −
4π
c

−en ( ) − Q δ( − ) − β ∂ ϕ  

∂ ∇ =
4π
c

en ∂ ( ) + Q ∂ δ( − ) − β ∂ ∂ ϕ  

(A.1.8) 

 

 

∂ ∇ =
4π
c

en
e

mv
1
c

v ∂ − ϕ + Q ∂ δ( − ) − β ∂ ϕ  

∂ ∇ − ∂
v
c

4πe n

v m
= −β ∂ ϕ −

v
c

4πe n

mv
ϕ +

c
4πQ ∂ δ( − ) 

∂ ∇ − β k = −β ∂ + k ϕ + 4πβ Q ∂ δ( − ) 

∂ ∇ − β k = Qβ ∂
1

| − |
+ 4πβ Q ∂ δ( − ) 

∇ − β k = Qβ ∂
1

| − |
+ 4πβ Qδ( − ) 

∇ − β k A = Qβ ∂
1

| − |
− β Q∇

1
| − |

= −β Q∇
1

| − |
 

(A.1.9) 

 

 

A (ζ) = −
2πQ
λ

β dρ K β k ρ
ρ

[ρ + ζ ]
 (A.1.10) 
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A. 3 

 

3.1.0 Wakefields of an axisymmetric beam driver 

  

d R
dr

+
1
r

dR
dr

− k R =

8eNk
a

1 −
r
a

, r < a

     0       , r > a

 (A.3.1) 

 

Now we will find the solutions of given differential equation in two parts, r < a and r > a. 

  

3.1.1 Inside of the beam ( < ) 

 

Let’s assume R (r) and R (r) satisfying equations below. 

 

d
dr

+
1
r

d
dr

− k R (r) = 0, 

d
dr

+
1
r

d
dr

− k R (r) =
8eNk

a
1 −

r
a

. 

(A.3.2) 

 

Summing up two equations, 

 

d
dr

+
1
r

d
dr

− k R (r) + R (r) =
8eNk

a
1 −

r
a

. (A.3.3) 

 

So, we obtain the form of R(r) we will solve. 

 

R(r) = R(r) + R(r) . (A.3.4) 

 

First of all, for the modified Bessel equation with azimuthal symmetry (m = 0) in the left-hand side, the general 

solution is 

R (r) = C K (kr) + C I (kr). (A.3.5) 

 

In the region, r < a, our homogeneous solution will be R(r) = C I  (∵ K (0) = ∞ and V(r = ∞, z) =

R(∞)Z(z)=Finite). Then the rest of the work which we should do is to find the particular solution R (r) 

satisfying our inhomogeneous differential equation. 

 

d
dr

+
1
r

d
dr

− k R (r) =
8eNk

a
1 −

r
a

. (A.3.6) 
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Assuming power series in r, 

R(r) = a r . (A.3.7) 

 

Our differential equation will be 

 

[a n(n − 1)r + a nr − k a r ] =
8eNk

a
1 −

r
a

. (A.3.8) 

 

To hold for all r > 0, each coefficient of r  in both sides should be equal for all n. Therefore, only zeroth and 

second order of r remain. 

[−k a + 4a − k a r ] =
8eNk

a
1 −

r
a

. (A.3.9) 

 

Separating it into two parts, 

For the zeroth order, −k a + 4a =
8eNk

a
, 

For the seconde order, k a =
8eNk

a
1
a

. 

(A.3.10) 

 

As results, 

a =
8eN
k a

4
ka

− k , 

a =
8eN
ka

. 

(A.3.11) 

Then, the particular solution is 

R(r) = a + a r . (A.3.12) 

 

Then, we obtain the result below. 

 

R(r) = R(r) + R(r) = C I (kr) + a + a r , r < a. (A.3.13) 

 

We will decide the coefficient of the first term in right hand side using boundary condition later. 

 

3.1.2 Outside of the beam ( > ) 

 

The homogeneous solution in this region will be R(r) = R(r) = C K (kr) due to I (0) = ∞. 
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3.1.3 Remaining boundary conditions, continuity of potential and electric field 

 

The potential V(r, z) = R(r)Z(z) and its partial derivative ∂ V(r, z) should be continuous at r = a.   

 

R (a ) = C I (ka) + a + a a = C K (ka) = R (a ), 

∂ R (r)| = C ∂ I (kr)| + 2a a = C ∂ K (kr)| = ∂ R (r)| . 
(A.3.14) 

 

Here it is used that the modified Bessel function I  and K  are already continuous. 

 

C = −
(a + a a )∂ I (kr)| − 2a aI (ka)

K (ka)∂ I (kr)| − I (ka)∂ K (kr)|
 (A.3.15) 

and 

C = −
(a + a a )∂ K (kr)| − 2a aK (ka)

K (ka)∂ I (kr)| − I (ka)∂ K (kr)|
. (A.3.16) 

 

From the properties of modified Bessel functions, Wronskian and recurrence relations of the modified Bessel 

equation [11] lead us to three equations below, 

 

1
K (ka)∂ I (kr)| − I (ka)∂ K (kr)|

= a (A.3.17) 

and 

∂ K (kr)| =
k a

2
[K (ka) − k (ka)] (A.3.18) 

and 

∂ I (kr)| =
k a

2
[I (ka) − I (ka)]. (A.3.19) 

 

Using listed equations above, we get final result. 

 

R(r) =
16eN
ka

K (ka)I (kr) +
1
2

−
2

(ka)
−

r
2a

, r < a

         I (ka)K (kr)       , r > a

 (A.3.20) 
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3.2 Nonlinear one dimensional relativistic plasma oscillation 

 

3.2.0 Here we introduce a very famous work of the general investigation of the nonlinear wave motions of the 

plasma electrons by Akhizer and Polovin in 1956 [5]. In different way from the linear case, we will not ignore 

the higher order terms. We reconsider the Maxwell’s equations and equation of motion in plasma electrons. 

 

∙ = 4πe(n − n ), 

× = −
1
c

∂
∂t

, 

∙ = 0, 

× =
1
c

∂
∂t

+
4π
c

ne , 

∂
∂t

+ ( ∙ ) = e +
e
c

× . 

(A.3.21) 

 

Where n  is the equilibrium electron density. Where the whole system is approximately neutral.  is the 

electron momentum, equal to [1 − β ] m . β is normalized phase velocity. All the equations above are 

functions of ( ̂ ∙ − Vt), which is one of the properties in the general wave motions of the plasma. Rewriting 

above equations,  

 

̂× = β , (A.3.22) 

̂× = −β +
4π
c

en , (A.3.23) 

̂ ∙ ′ = 0, (A.3.24) 

̂ ∙ = 4πe(n − n ), (A.3.25) 

( ̂ ∙ − V) = e +
e
c

× . (A.3.26) 

 

By integrating Eq. (A.3.22), we obtain 

=
1
β

̂× +  (A.3.27) 

 

3.2.1 The density of the background plasma electrons n is, combining Eqs. (A.3.23) and (A.3.25), 

 

̂ ∙ ( ̂× ) = ′ ∙ ( ̂× ̂) = 0 = −β ̂ ∙ ′ +
4π
c

en ̂ ∙  

−β4πe(n − n ) +
4π
c

en ̂ ∙ = 0 

n =
n V

V − ̂ ∙
 

(A.3.28) 
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3.2.2 We multiply Eq. (A.3.26) on the left vectorially by ̂ and use Eq. (A.3.27). Then, we obtain the equation 

of the magnetic field. 

( ̂ ∙ − V) ̂× = e ̂× +
e
c

̂×( × ), 

= eβ( − ) +
e
c

[ ( ̂ ∙ ) − ( ̂ ∙ )] =
e
c

(V − ̂ ∙ ) −
e
c

[V − ( ̂ ∙ )], 

= −
c
e

( ̂× ) +
V − ( ̂ ∙ )

V − ̂ ∙
. 

(A.3.29) 

 

Here it was used that ̂ ∙ = ̂ ∙ . 

 

3.2.3 We want to make the equation of motion in the parameters we can control. Taking the scalar product ̂ on 

Eq. (A.3.26) and using Eq. (A.3.29) and Eq. (A.3.25), 

 

( ̂ ∙ − V) ̂ ∙ = e ̂ ∙ +
e
c

̂ ∙ ( × ) = e ̂ ∙ +
e
c

̂ ∙ × −
c
e

( ̂× ) +
V − ( ̂ ∙ )

V − ̂ ∙
, 

( ̂ ∙ − V) ̂ ∙ + ̂ ∙ ×( ̂× ) − eβ
̂ ∙ ( × )

V − ̂ ∙
= e ̂ ∙ , 

( ̂ ∙ − V) ̂ ∙ ′ + ̂ ∙ ×( ̂× ′) − eβ
̂ ∙ ( × )

V − ̂ ∙
= e ̂ ∙ = 4πe (n − n ). 

(A.3.26) 

 

3.2.4 Taking the vector ̂ in the z direction and introducing normalized momentum = /mc and the 

normalized velocity = /c and using Eq. (A.3.28), we get the general form of the differential equation of 

longitudinal, nonlinear and relativistic plasma oscillation. Where τ = t − ( ̂ ∙ /V), ω = 4πe n /m, and Ω =

e /mc.  

d
dτ

(u − β)
dρ
dτ

+ u
dρ
dτ

+ u
dρ

dτ
+

β
β − u

u Ω − u Ω = ω
β u

β − u
. (A.3.27) 

 

When the external magnetic field  is not applied and especially only we want to consider longitudinal one-

dimensional cases, u = u = 0. In general, the plasma wave motions in large amplitudes are only analytically 

solvable when it is treated longitudinally in one-dimensional cases. Then we get another form of this equation 

by rewriting the normalized plasma electron momentum ρ  in terms of the normalized plasma electron velocity 

u = u . Using the fact that  

u
d

dτ
u

1 − u
=

d
dτ

1

1 − u
, (A.3.28) 

 

the one-dimensional nonlinear plasma oscillation in absence of the driving beam is  

  

d
dτ

1 − βu

1 − u
= ω

β u
β − u

. (A.3.29) 
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3.2.5 To obtain the longitudinal electric field by the modulation of the plasma electrons, we use again Eq. 

(A.3.26). 

 

=
1
e

( ̂ ∙ − V) −
1
c

( × ). (A.3.30) 

 

Where v = v = 0 and there exist only z-component. Checking it, we know the second term of left-hand side 

should be zero. Taking ı̂ in z (longitudinal) direction and introducing a new variable defined by τ = ω (t − ̂ ∙

/V) following Ref. [6], the result we want is 

 

E =
mcω

eV
(V − v )

p
mc

=
mcω

eβ
β − β

dρ
dτ

≃
mcω

e
(1 − β )

d
dτ

β

1 − β
 

=
mcω

e
d

dτ
β

1 − β
−

1

1 − β
=

mcω

e
d

dτ
1 − β
1 + β

.                

(A.3.31) 

 

 

Where V/c and v /c were written by β  and β . 

 

3.2.6 The first integral of our differential equation is obtained by the procedure below, using the initial 

conditions which are x(0) = 1, x (0) = 0. 

 

d x
dτ

=
1
2

1
x

− 1 + 2α , 

2
dx
dτ

d
dτ

dx
dτ

=
dx
dτ

1
x

− 1 + 2α , 

d
dτ

dx
dτ

=
d

dτ
−

1
x

− x + 2αx , 

d
dx
dτ′

= d −
1
x

− x + 2αx . 

 

dx
dτ

= 2(1 − α) −
1
x

− (1 − 2α)x. 

(A.3.32) 
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3.2.7 The perturbed plasma electron densities corresponding to turning points of oscillation are from x(β) and 

plasma electron density n. 

n =
n V

V − ̂ ∙
≡

n β

β − β
≃

n
1 − β

, 

x(τ, β ) = 1 =
1 − β
1 + β

, x(τ, β ) =
1

1 − 2α
=

1 − β
1 + β

. 

(A.3.33) 

For τ , 

β = 0, 

n − n = 0. 
(A.3.34) 

For τ , 

β =
−2α + 2α

1 − 2α + 2α
, 

n − n = −2n (1 − α). 

(A.3.35) 
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A.4 

 

4.1 Using Leibnitz’s rule, we obtain a second-order differential equation coupled to the beam-envelope equation. 

 

d
dx

f(x, t)dt =
∂f(x, t)

∂x
dt + f(x, B)

dB
dx

− f(x, A)
dA
dx 

  (A.4.1) 

 

So, we get two simultaneous second-order differential equations. 

 

∂ r (ξ, τ)

∂τ
−

1

r (ξ, τ)
= −y(ξ, τ) 

d y(ξ, τ)

dξ
+ y(ξ, τ) = r (ξ, τ) 

(A.4.2) 

 

4.2 Assuming the beam radius perturbation is enough small compared with the beam radius, 

 

y =
1

r
−

∂ r
∂τ

=
1

(1 + δr )
−

∂ δr
∂τ

≈ 1 − 3δr −
∂ δr

∂τ
 (A.4.3) 

 

and substituting y into the new equation we got, 

 

∂
∂ξ

1 − 3δr −
∂ δr

∂τ
+ 1 − 3δr −

∂ δr
∂τ

= 1 + δr  

∂
∂ξ

∂ δr
∂τ

+ 3
∂ δr
 ∂ξ

+
∂ δr

∂τ
+ 3δr = −δr  

(A.4.1) 

 

We obtain a new equation of δr . 

∂ + 1 (∂ + 3)δr = −δr  (A.4.1) 

 

4.3 Dispersion relation of the wave in the beam is 

 

∂
∂ξ

∂
∂τ

exp(iδωτ − ikξ) + 3
∂

 ∂ξ
exp(iδωτ − ikξ) +

∂
∂τ

exp(iδωτ − ikξ) + 3 exp(iδωτ − ikξ)

= − exp(iδωτ − ikξ) 

 

(−δω )(−k ) + 3(−k ) + (−δω ) + 3 = −1 

 

D ≡ (k − 1)(δω − ∆) = −1, ∆ ≡ 3 

(A.4.4) 
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4.4 Finding k = k + ik  with respect to δω = δω + iδω , dispersion relation of the instability is 

 

k =
δω − 4
δω − 3

. (A.4.1) 

 

With respect to the complex variables of k and δω, 

 

k + 2ik k − k =
δω + i2δω δω − δω − 4

δω + i2δω δω − δω − 3

=
δω + 2δω δω − 7δω + 2iδω δω + δω + 7δω + 12

δω + 2δω δω − 6δω + δω + 6δω + 9
, 

(A.4.1) 

 

Defining A ≡ δω + 2δω δω − 6δω + δω + 6δω + 9, (A.4.1) 

Real part is 

k − k =
A − δω + δω + 3

A
. (A.4.1) 

Imaginary part is 

k k =
δω δω

A
. (A.4.1) 

 

So, complex k in complex plane of δω will be calculated from two equations 

 

k −
A − δω + δω + 3

A
k −

δω δω
A

= 0 (A.4.1) 

and 

k +
A − δω + δω + 3

A
k −

δω δω
A

= 0. 

 

(A.4.1) 
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6. 3 Script of WARP for plasma wakefield acceleration 

 

""" 

This is a typical input script that runs a simulation of laser-wakefield acceleration using Warp in 2D / Circ / 3D. 

 

Usage 

--------------------------------------------------------------------------------------------------------------------------------------- 

- Modify the parameters below to suit your needs 

- Type "python -i lpa_script.py" in a terminal 

- When the simulation finishes, the python session will *not* quit. Therefore the simulation can be continued by 

running step(). Otherwise, one can just type exit() 

""" 

# Import warp-specific packages 

from warp.init_tools import * 

 

# ------------------------------------------------------------------------------------------------------------------------------------- 

# Parameters (Modify the values below to suit your needs) 

# ------------------------------------------------------------------------------------------------------------------------------------- 

 

# General parameters 

 

# Dimension of simulation ("3d", "circ", "2d", "1d") 

dim = "circ" 

# Number of azimuthal modes beyond m=0, for "circ" (not used for "2d" and "3d") 

circ_m = 1 

# Total number of timesteps in the simulation 

N_steps = 200000 

# Whether to run the simulation interactively (0:off, 1:on) 

interactive = 0 

 

# Simulation box 

 

# Number of grid cells in the longitudinal direction 

Nz = 240 

# Number of grid cells in transverse direction (represents Nr in "circ") 

Nx = 50 

# Number of grid cells in the 3rd dimension (not used for "2d" and "circ") 

Ny = 50 

# Dimension of the box in longitudinal direction (meters) 

zmin = -1.5*sqrt(2*pi)*637.e-6 
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zmax = 0. 

# Dimension of the box in transverse direction (box ranges from -xmax to xmax) 

xmax = 4.2*120.e-6 

# Dimension of the box in 3rd direction (not used for "2d" and "circ") 

ymax = 4.2*120.e-6 

# Field boundary conditions (longitudinal and transverse respectively) 

f_boundz  = openbc 

f_boundxy = openbc 

if dim == "circ": 

    f_boundxy = dirichlet 

# Particles boundary conditions (longitudinal and transverse respectively) 

p_boundz  = absorb 

p_boundxy = absorb 

# Moving window (0:off, 1:on) 

use_moving_window = 1 

# Speed of the moving window (ignored if use_moving_window = 0) 

v_moving_window = clight 

 

# Diagnostics 

 

# Period of diagnostics (in number of timesteps) 

diag_period = 10000 

# Whether to write the fields 

write_fields = 1 

# Whether to write the particles 

write_particles = 1 

# Whether to write the diagnostics in parallel 

parallel_output = False 

 

# Numerical parameters 

 

# Field solver (0:Yee, 1:Karkkainen on EF,B, 3:Lehe) 

stencil = 0 

# Particle shape (1:linear, 2:quadratic, 3:cubic) 

depos_order = 1 

# Gathering mode (1:from cell centers, 4:from Yee mesh) 

efetch = 1 

 

# Particle pusher (0:Boris, 1:Vay) 

particle_pusher = 1 
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# Current smoothing parameters 

 

# Turn current smoothing on or off (0:off; 1:on) 

use_smooth = 1  

# Number of passes of smoother and compensator in each direction (x, y, z) 

npass_smooth = array([[ 0 , 0 ], [ 0 , 0 ], [ 1 , 1 ]]) 

# Smoothing coefficients in each direction (x, y, z) 

alpha_smooth = array([[ 0.5, 3.], [ 0.5, 3.], [0.5, 3./2]]) 

# Stride in each direction (x, y, z) 

stride_smooth = array([[ 1 , 1 ], [ 1 , 1 ], [ 1 , 1 ]]) 

 

# Plasma macroparticles 

 

# Initialize some preexisting plasmas electrons (0:off, 1:on) 

# (Can be used in order to neutralize pre-ionized ions, if any, 

# or in order to simulate a plasma without having to initialize ions) 

use_preexisting_electrons = 1 

# Initialize plasma ions (0:off, 1:on) 

use_ions = 0 

# Number of macroparticles per cell in each direction 

# In Circ, nppcelly is the number of particles along the 

# azimuthal direction. Use a multiple of 4*circ_m 

plasma_nx = 2 

plasma_ny = 4 

plasma_nz = 3 

 

# Plasma content and profile 

 

# Reference plasma density (in number of particles per m^3) 

n_plasma = 2.8e22 

# Relative density of the preexisting electrons (relative to n_plasma) 

rel_dens_preexisting_electrons = 1. 

# The different elements used. (Only used if use_ions is different than 0.) 

# relative_density is the density relative to n_plasma. 

# q_start is the ionization state of the ions at the beginning of the simulation 

# q_max is the maximum ionization state 

 

# If q_start is not equal to q_max, ionization between states will be computed. 

ion_states = { 'Hydrogen': {'relative_density':1., 'q_start':1, 'q_max':1 }, 
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                 'Helium': {'relative_density':0.25, 'q_start':0, 'q_max':2 } } 

# Positions between which the plasma is initialized 

# (Transversally, the plasma is initialized between -plasma_xmax and 

# plasma_xmax, along x, and -plasma_ymax and plasma_ymax along y) 

plasma_zmin = 1.e-6 

plasma_zmax = 1. 

plasma_xmax = xmax 

plasma_ymax = ymax 

# Define your own profile and profile parameters below 

ramp_start = plasma_zmin 

ramp_length = plasma_zmin*10 

ramp_plateau = plasma_zmax 

 

def plasma_dens_func( x, y, z ): 

    """ 

    User-defined function: density profile of the plasma 

     

    It should return the relative density with respect to n_plasma, 

    at the position x, y, z (i.e. return a number between 0 and 1) 

 

    Parameters 

    --------------------------------------------------------------------------------------------------------------------------------- 

    x, y, z: 1darrays of floats 

        Arrays with one element per macroparticle 

    Returns 

    --------------------------------------------------------------------------------------------------------------------------------- 

    n : 1d array of floats 

        Array of relative density, with one element per macroparticles 

    """ 

    # Allocate relative density 

    n = ones_like(z) 

    # Make linear ramp 

    n = where( z<ramp_start+ramp_length, (z-ramp_start)/ramp_length, n ) 

    # Supress density before the ramp 

    n = where( z<ramp_start, 0., n ) 

    # Reduce density by half after the ramp 

    n = where( z> ramp_start+ramp_length+ramp_plateau, 0.5*n, n ) 

     

# Put the density to 0 later 

    n = where( z> ramp_start+ramp_length+2*ramp_plateau, 0., n ) 
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    return(n) 

 

# Relativistic beam 

 

# Initialize beam electrons (0:off, 1:on) 

# (Please be aware that initializing a beam in 2D geometry makes very little 

# physical sense, because of the long range of its space-charge fields)  

use_beam = 1 

# Longitudinal momentum of the beam 

beam_uz = 113.5 

beam_uxth = 0.0086 

beam_uyth = 0.0086 

beam_uzth = 0.01*113.5 

# Beam density 

n_beam = 3.6e18 

# Number of macroparticles per cell in each direction 

beam_nx = 2*plasma_nx 

beam_ny = 2*plasma_ny 

beam_nz = 2*plasma_nz 

# Positions between which the beam is initialized 

# (Transversally, the plasma is initialized between -plasma_xmax and 

# plasma_xmax, along x, and -plasma_ymax and plasma_ymax along y) 

beam_zmin = -sqrt(2*pi)*960.e-6 

beam_zmax = 0. 

beam_xmax = 3*120.e-6 

beam_ymax = 3*120.e-6 

 

# Define your own profile and profile parameters below 

beam_rmax = beam_xmax 

 

def beam_dens_func(x, y, z): 

    """ 

    User-defined function: density profile of the beam 

     

    It should return the relative density with respect to n_beam, 

    at the position x, y, z (i.e. return a number between 0 and 1) 

 

    Parameters 

--------------------------------------------------------------------------------------------------------------------------------------- 
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    x, y, z: 1darrays of floats 

        Arrays with one element per macroparticle 

    Returns 

--------------------------------------------------------------------------------------------------------------------------------------- 

    n : 1d array of floats 

        Array of relative density, with one element per macroparticles 

    """ 

    # Allocate relative density 

 

    sigz = 960.e-6 

    sigr = 120.e-6 

 

    n = ones_like(z) 

    n = n*(1+cos(sqrt(pi/2)*(z/sigz))) 

    r = sqrt(x**2 + y**2) 

    n = n*exp(-r**2/(2*(sigr**2))) 

    n[r > beam_rmax] = 0. 

 

    return(n) 

 

# ------------------------------------------------------------------------------------------------------------------------------------- 

# Initialization of the simulation (Normal users should not modify this part.) 

# ------------------------------------------------------------------------------------------------------------------------------------- 

 

# Set some general options for warp 

set_diagnostics( interactive ) 

set_boundary_conditions( f_boundz, f_boundxy, p_boundz, p_boundxy ) 

set_simulation_box( Nz, Nx, Ny, zmin, zmax, xmax, ymax, dim ) 

set_moving_window( use_moving_window, v_moving_window ) 

 

# See smoothing.py 

set_smoothing_parameters( use_smooth, dim, npass_smooth, 

                         alpha_smooth, stride_smooth ) 

# Creation of the species 

elec = None 

ions = None 

elec_from_ions = None 

beam = None 

# Create the plasma species 

# Reference weight for plasma species 
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plasma_weight = prepare_weights( n_plasma, plasma_nx, plasma_ny, 

                            plasma_nz, dim, circ_m ) 

if use_preexisting_electrons: 

    elec_weight = rel_dens_preexisting_electrons * plasma_weight 

    elec = Species(type=Electron, weight=elec_weight, name='electrons') 

if use_ions: 

    ions, elec_from_ions = initialize_ion_dict( ion_states, plasma_weight, 

                                                group_elec_by_element=True ) 

# Create the beam 

if use_beam: 

    beam_weight = prepare_weights( n_beam, beam_nx, beam_ny, 

                                   beam_nz, dim, circ_m ) 

    beam = Species(type=Proton, weight=beam_weight, name='beam') 

# Set the numerical parameters only now: they affect the newly created species 

set_numerics( depos_order, efetch, particle_pusher, dim) 

 

# Setup the field solver object 

em = initialize_em_solver( stencil, dim,  

    npass_smooth, alpha_smooth, stride_smooth, 

    circ_m = (dim =="circ")*circ_m ) 

registersolver(em) 

 

# Introduce the laser 

if use_laser==1: 

    add_laser( em, dim, laser_a0, laser_w0, laser_ctau, laser_z0, 

        zf=laser_zfoc, theta_pol=laser_polangle, source_z=laser_source_z, 

        laser_file=laser_file, laser_file_energy=laser_file_energy ) 

 

# Introduce the beam 

# Load the beam 

if use_beam: 

    PlasmaInjector( beam, None, w3d, top, dim, beam_nx, beam_ny, beam_nz, 

                beam_zmin, beam_zmax, beam_xmax, beam_ymax, 

                dens_func = beam_dens_func, uz_m=beam_uz, ux_th=beam_uxth, 

                uy_th=beam_uyth, uz_th=beam_uzth ) 

    initialize_beam_fields( em, dim, beam, w3d, top ) 

 

 

# Introduce the plasma 

# Create an object to store the information about plasma injection 
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plasma_injector = PlasmaInjector( elec, ions, w3d, top, dim, 

        plasma_nx, plasma_ny, plasma_nz, plasma_zmin, 

        plasma_zmax, plasma_xmax, plasma_ymax, plasma_dens_func ) 

# Continuously inject the plasma, if the moving window is on 

if use_moving_window : 

    installuserinjection( plasma_injector.continuous_injection ) 

         

# Setup the diagnostics 

remove_existing_directory( ['diags'] ) 

if write_fields == 1: 

    diag1 = FieldDiagnostic( period=diag_period, top=top, w3d=w3d, em=em, 

                comm_world=comm_world, lparallel_output=parallel_output ) 

    installafterstep( diag1.write ) 

if write_particles == 1: 

    diag2 = ParticleDiagnostic( period=diag_period, top=top, w3d=w3d, 

            species={ species.name : species for species in listofallspecies },  

            comm_world=comm_world, lparallel_output=parallel_output ) 

    installafterstep( diag2.write ) 

 

print('\nInitialization complete\n') 

 

# ------------------------------------------------------------------------------------------------------------------------------------- 

# Simulation loop (Normal users should not modify this part either.) 

# ------------------------------------------------------------------------------------------------------------------------------------- 

 

# Non-interactive mode 

if interactive==0: 

    n_stepped=0 

    while n_stepped < N_steps: 

        step(10) 

        n_stepped = n_stepped + 10 

 

    dump() 

    printtimers() 

         

# Interactive mode 

elif interactive==1: 

    print '<<< To execute n steps, type "step(n)" at the prompt >>>' 
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