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Abstract 

Synthesis and Characterization of  

Paintable Bi2Te3-based Thermoelectric Materials 

 

Sung Hoon Park 

School of Materials Science and Engineering 

The Graduate School 

Ulsan National Institute of Science and Technology 

 

The thermoelectric (TE) effect has attracted considerable attention from a number of different research 

areas, as its ability to directly convert between thermal and electrical energy offers a unique solution 

for sustainable power generation from waste heat sources. The power generation performance of solid-

state TE devices largely depends on the characteristics of the TE materials from which they are made, 

such as the energy conversion efficiency. This efficiency is estimated from a dimensionless figure-of-

merit: ZT = (S2σT/κ), where S, σ, κ, and T are the Seebeck coefficient, electrical conductivity, thermal 

conductivity, and temperature, respectively. The shape and dimensions of TE materials are also crucial 

to efficient energy conversion in system-level TE modules with minimum heat loss. Typically, TE legs 

chipped into planar-structured TE devices are fabricated by means of a top-down dicing process to 

produce cube or cuboid-shaped TE blocks, in which TE ingots are synthesized through energy intensive 

processes such as zone-melting or hot-pressing. Although these conventional technologies can produce 

bulk-scale TE legs with well-established TE properties and moderately high ZT values, a key constraint 

lies in the difficulty in engineering the shapes and dimensions of the TE legs. This restricts the flexibility 

in designing TE devices for efficient thermal energy transfer from heat sources with various shapes. A 

few attempts have been made to design and fabricate ring-shaped TE legs chipped into tubular TE 

devices for energy harvesting from exhaust pipes, but achieving suitable performance and process 

simplicity remains a challenge. This dissertation describes the synthesis and characterization of Bi2Te3-

based TE paints. In particular, the bulk-level TE properties of the painted materials are reported. In 
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addition, the power generating performance of TE devices fabricated on curved heat sources via the 

painting process is discussed.  

First, the background of TE research area is briefly described. The basic principles of TE phenomenon 

such as the Seebeck effect, the Peltier effect, and the Thompson effect are described. Furthermore, the 

structural and TE characteristics of Bi2Te3-based TE materials, arguably the best TE materials at near 

room temperature are discussed. Finally, the measurement methods of TE devices and their types are 

described. 

Second, it has been described that the Bi2Te3-based TE paints aided by Sb2Te3-based molecular 

chalcogenidometalate (ChaM) are synthesized and their TE properties are characterized. ChaM ions are 

known for soluble precursor and widely utilized these molecules as inorganic ligands and solders for 

nano- and meso-scale semiconductor particles, and so I simply expand this concept to TE paints. 

Molecular Sb2Te3 based ChaM is used as a solder or a sintering aid for n-type BiTeSe and p-type BiSbTe 

TE particles. The Sb2Te3-ChaM easily fills the voids and interfaces between these TE particles, forming 

interconnecting crystalline phases without the need for external pressure. The soldering effect 

substantially influence TE properties of the painted materials, of which ZT values increase up to 1.21 

and 0.69 for p-and n-type materials. Furthermore, the fabricated in-plane TE power generators via the 

painting process exhibits remarkably high output power density of 4.0 mW/cm2 under the temperature 

difference of 50 oC. In particular, the thourgh-plane TE power generator chipped with the molded TE 

blocks shows ~30 mW/cm2 under the temperature difference of 50 oC, competing the commercial 

planar-structured TE module. This painting approach therefore provides a simple and cost-effective 

way to design and fabricate TE devices directly onto any shaped heat source using a brush, thereby 

eliminating the need for additional equipment. What makes this painting process suitable for preparing 

TE devices is the fact that they are less sensitive to the resolution of the mm-scale TE legs than other 

electronic devices.   
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Chapter 1.   Introduction 

 

1.1  Back ground of thermoelectric phenomenon  

 

1.1.1 The Seebeck effect 

Thermoelectric (TE) effect was discovered by German Physicist Thomas Johann Seebeck in 1821. 

T.J. Seebeck formed a closed circuit with hetero-materials which consist of Bi /Sb or Cu/ Bi. He found 

unusual phenomenon when the heat was applied to one side of the circuit, the needle of a compass 

deviated from the north and south orientation due to polarization of conductors. The Seebeck effect 

generates TE power when there is a temperature difference between the junctions of different kinds of 

materials. (Figure 1.1a) In other words, the ratio of generated voltage(V) and temperature(T) gradient is 

called the Seebeck coefficient(S).  

𝑆 = 𝑑𝑉
𝑑𝑇⁄                                   (1.1) 

A typical example of applying the principle of Seebeck effect is a thermocouple formed by joining 

materials that have different Seebeck coefficients. These thermocouples have a variety of Seebeck 

coefficients depending on the temperature, and they are very useful for measuring temperature. At the 

atomic scale, when TE material is heated, the charge carriers spread to the cold side which leads to the 

production of electrostatic potential energy due to the accumulation of charge carriers at the cold end2. 

(Figure 1.1b)  

 

(a) 
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(b) 

Fig. 1.1. Basic principle of Seebeck effect in TE materials.  

 

1.1.2 The Peltier effect 

Peltier effect is the creation of endothermal and exothermal reaction when the current is flowed to 

the junction of hetero-materials1. This effect is named after Jean Charles Peltier who first observed it in 

1834. When the current is applied in a reverse direction, the endothermal and exothermal reaction occurs 

in reverse at the junction. Peltier effect is thermodynamically reversible and is also inverse of Seebeck 

effect. The Peltier coefficient (𝛱) is defined as the ratio of heat flow (𝑄) to current flow (I).    

𝛱 = 𝑄
𝐼⁄                                   (1.2) 

 

Fig. 1.2. Schematic illustration of the Peltier effect. 

 

The band diagram of charge carrier mechanism in using semiconductor is shown in Figure 1.3. When 

the heat is transported along the direction of the charge carrier, the charge carrier needs enough energy 

as much as the gap of metal and semiconductors to move to the valance band (hole) or conduction band 

(electron). 
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Fig. 1.3. band diagram for Peltier effect. 

 

 

1.1.3 The Thomson Effect 

When the current is applied to TE material, generating of heat reactions are called Thomson Effect. 

If a current is passed through a conducting material, heat production per unit volume is 

𝑞 = −ρ𝐽2𝜏𝐼𝛥𝑇                             (1.3) 

Where ρ  is the resistivity, 𝐼  is current density, 𝛥𝑇  is temperature difference at both end of 

material, 𝜏 is the Thomson coefficient. The term of 𝜏𝐼𝛥𝑇 means Thomson heat and ρ𝐽2 imply Joule 

heating effect. 

 

Fig. 1.4. Schematic illustration of the Thomson effect. 
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1.1.4 Evaluation of thermoelectric materials 

The performance of TE materials (ZT = dimensionless figure of merit) is generally defined by 

calculating Seebeck coefficient (𝑆), electrical conductivity (𝜎), thermal conductivity (𝐾), and operation 

temperature. The equation of ZT is shown in equation 1.4. 

𝑍𝑇 =  
𝑆2𝜎

𝑘
𝑇                              (1.4) 

𝑆2𝜎 is typically called a power factor (PF). The ZT values is proportional to the square of Seebeck 

coefficient and electrical conductivity and is inversely proportional to the thermal conductivity. High 

Seebeck coefficient and electrical conductivity is essential for the maximum TE power and to minimize 

the energy leakage. The thermal conductivity must be low to keep the temperature gradient. The 

equation is in dimensionless form that is multiplied by the operation temperature because all parameters 

vary with the operation temperature. 

It is very difficult to enhance ZT property since the TE performance has a trade-off relationship among 

TE properties. For degenerate semiconductor, Seebeck coefficient (S) can be expressed by Mott 

expression4 

𝑆 =
𝜋2𝑘2𝑚∗𝑇

3𝑒ℎ2
(

𝜋

3𝑛
)

2
3

                        (1.5) 

, where λ, k, T, m*, e, h, and n are the scattering parameter, Boltzmann’s constant, absolute temperature, 

effective mass, electronic charge, Planck’s constant and carrier concentration. The electrical 

conductivity (𝜎) express by following equation. 

σ =
1

𝜌
= 𝑛𝑒𝜇                               (1.6) 

, where 𝜌, and 𝜇 are the electrical resistivity and mobility.  

As shown in equation 1.5, the S is proportional to m* and inversely is proportional to n. Also, as 

represented in equation 1.6, the σ is proportional to n and 𝜇 that lead to trade off relationship of S 

and 𝜎 . The thermal conductivity (𝑘)  comes from two parts which consist of electron and phonon 

components. (1.7) The electron term is related to the σ through the Wiedemann-Franz law. (1.8)    

𝑘 =  𝑘𝑒𝑙 + 𝑘ph                             (1.7)    

𝑘𝑒𝑙 = 𝐿𝜎𝑇                               (1.8) 

, where 𝑘𝑒𝑙, 𝑘ph and 𝐿 is the Lorenz factor. (2.4 X 10-8J2K-2C-2 for free electron)  

According to the Wiedemann-Franz law, it is impossible to independently control the electron 

contribution of thermal conductivity and electrical conductivity. However, the phonon contribution of 

thermal conductivity could be controlled by introducing the molecular nano-sized particles into 

microparticles which are under tens of nanometer in scale5.       

The figure 1.5 shows interrelationship about the conflicted terms of TE properties depending on carrier 
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concentration which can be easily varied by the addition of dopant concentration and the exchange the 

polarity by added the doping type. If the carrier concentration is low, it has high thermopower but it 

shows extremely low electrical conductivity and thermal conductivity similar to that of an insulator and 

if the carrier concentration is high, it shows considerably low seebeck coefficient and have high thermal 

conductivity similar to that of a metal.      

  

 

Fig. 1.5. Interrelation of the TE properties. 

 

1.2  Thermoelectric materials 

The most widely used TE materials for generator or refrigerator near room temperatures (~200℃) is 

bismuth telluride based alloys. Bi2Te3 material have been proved to alloy easily with Sb2Te3, and Sb2Se3 

enables to adjust the carrier concentration and reduces lattice thermal conductivity. Up to date, Bi2Te3 

based n- and p-type TE material provide us with reliable energy source as generator or cooling device. 

Group-Ⅳ tellurides (PbTe, GeTe and SnTe) materials are typically used in mid-temperature TE system. 
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Also, the figure of merit of AgSbTe2-based materials indicated above the ZT=1. For high temperature 

(600℃~) TE generator, SiGe alloys have been utilized for n- and p-type TE materials2.    

 

Fig. 1.6. State of the art TE materials depending on temperature. 

 

1.2.1 Characteristic of Bismuth-Telluride material  

The crystal structure of Bi2Te3 material is shown Figure. 1.7.   

-Te(1)-Bi-Te(2)-Bi-Te(1)- 

Above five-layer structure is named a quintet in which the rhombohedral structure consists of three 

quintets. The layer of -Te(1)-Bi- and -Bi-Te(2)- are held together by strong ionic-covalent bonds and 

covalent bonds while the -Te(1)-Te(1)- layer is held by Van Der Waals bond6. The mechanical strength 

of Bi2Te3 is very weak due to the existence of cleavage along the basal plane perpendicular to the c-axis. 

Therefore, the mechanical strength and the transport properties of Bi2Te3 based TE materials have a 

strong anisotropy7. 
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Fig. 1.7. Crystal structure of bismuth telluride. 

 

The band structure of Bi2Te3 has been proved to have several-valley model. This material has an 

indirect band gap of 0.13 eV at 300 K8.   

 

Fig. 1.8. Band structure of bismuth telluride.  

The figure is reproduced with permission from Ref. [8], APS. 
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The (Bi1-xSbx)2Te3 is p-type TE materials which is formed by adding the Sb2Te3 to Bi2Te3 and Bi2(Te1-

xSex)3 solid solutions are constituted from n-type Bi2Te3 and Bi2Se3. Those compounds are all same 

rhombohedral structure with Van der Waals bonding. Generally, excess of Bi or Sb exist in (Bi1-

xSbx)2Te3 solid solution due to Te evaporation9. The Te(2) place is occupied by Bi or Sb atoms that result 

in anti-site defect which make p-type materials by forming each five excess Bi or Sb in three hole. The 

Bi2(Te1-xSex)3 solid solutions are produced by substituting Te atoms with Se. At first, the Se atoms 

occupy the Te(2) atoms and the Te(1) places are filled with Se atoms. Because Se is more electronegative 

than Te, the bad gap increases to 0.31eV for x=0.3[ref. 10]. The defect equilibrium equations of Bi2Te3, 

Sb2Te3, Bi2Se3 are presented below     

Bi2Te3 = 2BiTe' + VTe +2VBi + (3/2)Te2(g) + 2h 

Sb2Te3 = 2SbTe' + VTe +2VSb + (3/2)Te2(g) + 2h                  (1.9) 

3Bi2Te3 = 4BiBi + 2BiSe' + 7VSe + 2V1.5
Bi' + (9/2)Se2(g) + 2e 

Based on the above equation11,12, the TE properties are presented with carrier type and concentration. 

 

1.2.2 The strategies to enhance the ZT value 

Until now, the efficiency of TE bulk materials have been indicated ZT=1. As aforementioned, finding 

a proper carrier concentration and new method to decrease thermal conductivity is essential to produce 

the maximum power factor. In the mid-1990s, the Slack insisted well-established concept referred as 

the “phonon glass electron crystal” (PGEC)13. It means that a structure has a low Klattice similar to a glass 

and simultaneously a crystal-like high electrical conductivity. The crystal structure of the PGEC 

materials show a large cage-like empty space which has massive atoms (rattling atoms) that result in a 

phonon damping effect that can extremely reduce the lattice thermal conductivity. Also, this crystal 

structure coexists with charge carrier of high mobility.  

 

Fig. 1.9. The Schematic illustration of PGEC concept 
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The representative example with a PGEC structure is skutterudites14, clathrates15, half-heusler16, and 

metal oxide17. Skutterudites are CoAs3-type compounds and their space group is cubic Im3 with the 

general formula XY3 (X= Co, Rh, Ir and Y=P, As, Sb). The CoSb3 has been the most widely-studied 

material due to its high-power factor that originates form the high weighted carrier mobility. The 

clathrates are generally low-thermal conductivity compounds with open frameworks composed of 

tetrahedrally coordinate Al, Ga, Si, Ge, or Sn. The framework has cages that can incorporates large 

electropositive atoms. Half-Heusler is a combination of a rocksalt-type and a zincblende-type crystal 

structure which consists of three filled interpenetrating FCC sub-lattices and one vacant sub-lattice. The 

general formula is XYZ, where X and Y are transition metals and Z is a main-group element18. 

 

Fig. 1.10. The examples of PGEC crystal structure (a) clathrates, (b) skutterudites, (c) half-

heusler. The figure is reproduced with permission from Ref. [2,15,16], AAAS, NPG and RSC. 

 

 

Other ideas to increase TE efficiency is using low dimensionality. In 1993, Dresselhaus implemented 

a theoretical analysis on enhanced Seebeck coefficient for quantum wires and wells19,20. The high 

electronic density of state(DOS) near EF due to quantum confinement effects from low-dimensional 
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materials lead to increase the seebeck coefficient. 

 Based on the Mott equation (1.10), The Figure 1.11 indicated the quickly changing DOS is needed 

to achieve the high Seebeck coefficent . This theory has been demonstrated experimentally in quantum 

dots, quantum wire and quantum well21. 

 

S ≈
𝑑In𝜎(𝐸)

𝑑𝐸
|𝐸=𝐸𝑓

                              (1.10) 

 

 

Fig. 1.11. Hypothetical DOS with a large slope. 

 

Another approach to increase the ZT is energy filtering effect. When the metallic material introduces 

into host semiconductor materials, it produces the potential wall which confined the low energy carrier. 

So the only high energy carrier go by the interface without disturbance that lead to increase for Seebeck 

coefficient. The relationship between of energy and relaxation times (τ) can be described as τ ≈ τ0𝐸𝑟, 

where the r is called the scattering parameter. Increase of the slope of the differential conductivity is 

from the increase of r and therefore increasing the Seebeck coefficient.  

The resonant doping is also a potential method for improving Seebeck coefficient. By introducing 

resonant impurity level into the conduction or valence band, sharp features in the DOS is created by the 

resonant states. Heremans et al. experimentally demonstrates the concept of the resonant doping in bulk 

TI-doped PbTe22. 

Nowadays, many scientists focus on reducing the thermal conductivity through the diverse 

nanostructuring approaches. By introducing nanoscale structure, preferential scattering is possible 

because the mean free paths (MFP) of phonons is much bigger than MFP of carrier. So, it enables to 

selectively scatter the phonon at grain boundary if the dimension or size of particles were properly 
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controlled and therefore the thermal conductivity significantly decreases without affecting the 

electronic transport properties. The most notable experiment to support this theory is conducted by 

Poudel23. He synthesized the polycrystalline p-type TE bulk alloy using hot press method of 

mechanically alloyed nanoscale powders and the morphology was thoroughly examined. This material 

exhibited a ZT of 1.2 at room temperature and impressive maximum ZT of 1.4 at 373 K due to reduction 

form Kl of 0.35–0.4 Wm-1K-1. The isotropic ZT resulted from the random grain orientation of the sample. 

Although the electrical conductivity was reduced at some extent, the thermal conductivity was reduced 

more significantly from the bulk ingot of the same material. The figure 1.13 shows SEM images of bulk 

p-type TE materials with the nanoscale grain, crystallinity, random orientation  

 

Fig. 1.12. The effect of resonant doping and energy filtering effect depend on energy.  

 

 

 Fig. 1.13. The SEM image of (left side) nano-grain boundaries and nano-precipitate (right side). 

The figure is reproduced with permission from Ref. [23], AAAS. 
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Melt spinning followed by spark plasma sintering process produced bulk amorphous nanocrystalline 

precipitates leading to significantly low thermal conductivity. Kim. et.al, produced the high 

performance ZT (p-type) of 1.86 at 46.85 oC from full-spectrum phonon scattering through the dense 

dislocation arrays formed at low-energy grain boundaries by liquid-phase compaction in Bi0.5Sb1.5Te3 

which effectively scatter mid-frequency phonons together with low-and high-frequency phonons 

originated form grain boundary and point-defect scattering24. Further enhancement of ZT of p-type TE 

material may be possible through the grain boundary engineering such as combination of nanograined 

bulk, nanoinclusion, high density grain boundary and hetero-nanograined composite  

 

 

Fig. 1.14. The TEM image of dislocation arrays embedded on grain boundaries 

The figure is reproduced with permission from Ref. [24], AAAS. 

 

The n-type TE materials have completely different mechanism compared with those of p-type. 

Typically, nanostructuring strategy works well with p-type TE polycrystalline materials. However, the 

performance of n-type TE materials is still low because anisotropy ratio of those materials is about 

twice as higher than p-type counterparts which would reduce PF rather than Kl
25. Several methods have 

been attempted to improve the performance of n-type TE materials through controlling the number of 

the operations with hot-press or spark plasma sintering. For example, adjusting the formation energy of 

point defects for donor-like effects by hot deforming26, texturing with optimal cupper doped 

nanocomposite lead to good reproducibility27 and broad wavelength phonon scattering via tuning 

multiscale microstructure by hot deforming the commercial zone melting ingots directly28. Despite these 

efforts, the maximum ZT is still around at ~1.2 due to the innate feature of n-Type which tempers with 

making high efficiency materials. Find a new method is needed to overcome this issue  
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1.3  Thermoelectric device 

 

1.3.1 Evaluation of thermoelectric device 

Equation (1.11) shows the voltage of a TE generator without the load. It depends on the number of 

the thermocouples n, operating temperature difference ΔT, and Seebeck coefficient of the used pair of 

materials S1(p-type), S2(n-type) 

𝑉𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑛Δ𝑇(𝑆1 − 𝑆2)                            (1.11) 

In general, the output power density (w, mW cm-2) is calculated as: 

𝑤 = 𝐼2𝑚𝑅 =
𝑚𝜎𝑆2

(1+𝑚)2𝑙
∆𝑇2

                                         (1.12) 

, where I is the electric current, R is the internal resistance, σ is the electrical conductivity of the leg, m 

is the ratio of the internal resistance to the external load resistance, l is the length of the leg, ∆𝑇 is the 

temperature difference across the leg.29 By matching the external load resistance to the internal 

resistance, this formulation is simplified to: 

𝑤 =
1

4𝑙
𝑃𝐹∆𝑇2

                                                 (1.13) 

, where PF is the power factor (σS2) of the leg. Assuming the thermal equilibrium, the output power per 

density depends solely on two factors of PF and l. 

On the other hand, one should note that the ∆𝑇 applied to the legs from a heat source strongly depends 

on the thermal conductivity (κ), l, and the thermal resistance (ψ) between the leg and a heat source: as 

shown in the following relation:  

∆𝑇

(𝑇𝑠−𝑇𝑎)
=

𝑙

𝑙+𝜅(𝑋+𝑌)
                            (1.14) 

, where (𝑇𝑠 − 𝑇𝑎) is the overall temperature difference, and X and Y are the factors proportional to ψ 

at hot and cold sides. Under the same (𝑇𝑠 − 𝑇𝑎), it is the higher ∆𝑇 across the leg that the longer l and 

lower κ cause29. Therefore, l dependence on the power output density has a trade-off relationship 

between R and ∆𝑇, which requires the optimum l to maximize the highest power output density (Figure 

1.15). 
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Figure 1.15. Power output normalized to the maximum as a function of normalized leg length (x-

axis) with the assumption of Ta/Ts=0.1 and Z=1. The figure is reproduced with permission from 

Ref. [29], AIP. 

 

1.3.2 Various types of thermoelectric materials and devices 

Generally, the conventional TE device has a planar-structure with several n-and p-type legs in which 

would be limited when applied on to unevenly niche heat source. The flexible or wearable TE device 

stands out as a new type of devices that solves the problem. Therefore, it is essential to create the 

different form of conventional TE materials and processes such a screen printing, inkjet printing, 

lithography, vacuum deposition, CNT composites, PEDOT (3,4-ethylenedioxythiophene): PSS 

(polystyrene sulfonate), PANI and so on30. 

 

Figure 1.16. Power factor of various TE materials. The figure is reproduced with permission from 

Ref. [30], RSC. 
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The figure 1.17 shows the property of newly emerging TE materials as used screen printing process 

that indicated lower PF than bulk materials due to low electric conductivity which has glass fabric or 

polymer binder. Those additives were effectively used to bond the TE microparticles but the impurities 

also blocked the charge transport, leading to significantly reduce the electrical conductivity. For 

example, Varghese et al. synthesize nanocrystal inks using microwave-stimulated wet-chemical method 

followed by cold compaction and sintering which presents n-type films of a peak ZT of 0.43 together 

with the highest flexibility among the ink-type TE materials31. However, the electrical conductivity 

(about a 300 Scm-1) and Seebeck coefficient (125 μV/K) are still lower than bulk. (Figure 1.16)  

 

Figure 1.17. Schematic illustration of TE device fabrication via printing process. The figure is 

reproduced with permission from Ref. [31], NPG. 

 

In other case, PEDOT: PSS is most widely used organic-based TE materials that has a good flexibility, 

stability air, and electrical conductivity. However, it shows one order lower PF compared to bulk 

material due to the Seebeck coefficient that has extremely low result from somewhat high carrier 

concentration. Kim at al. de-doped p-type PEDOT: PSS to reduce the counter ion volume by partially 

removing unionized counter ions that do not contribute to the charge density adversely reduced charge 

carrier mobility. Therefore, a high electrical conductivity and a reasonably high Seebeck coefficient 

were simultaneously achieved. These approach present ZT of 0.4 at room temperature that is highest 

value among the organic TE materials32. 

For aspect of device, the Kim et al. demonstrated the highest output power density of 3.8 mW cm-2 at 

temperature difference of 50 oC printing process using new device structure with a glass-fabric and a 

new electrode transfer technique. The material property of n-and p-type used in this work shows as low 

as ZT value of 0.35, 0.27. respectively33.  
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Figure 1.18 Photograph of Bi2Te3 and Sb2Te3 dots on a glass fabric of 40 mm X 40 mm. Power factor 

of various TE materials. The figure is reproduced with permission from Ref. [33], RSC. 

 

So far, we have briefly reviewed the evolution of TE materials through the complexity within the unit 

cell, nanostructuring, low dimensionality and defect controlling with wide range of frequency which 

would lead to high efficiency TE materials and fabrication of diverse TE devices. In recent years, 

wearable and flexible TE applications have been emerging as effective energy harvesting way. However, 

the power density of wearable and flexible TE applications are lower than that of the bulk, so we need 

to gather information on how to develop shapeless heat sources and new methods of TE device 

fabrication. 
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Chapter 2. High performance thermoelectric painting 

 

2.1 Sb2Te3-based chalcogenidometalate solution  

Soluble Sb2Te3-based molecular chalcogenidometalate were synthesized by modifying the 

methodologies reported by Dmitri et al1-4, who used N2H4 as solvents to dissolve bulk metal 

chalcogenides in the presence of elemental chalcogens. In the current study, instead of N2H4, thiol-

diamine mixture was used as co-solvent to synthesize Sb2Te3 based chalcogenidometalate5,6. Typically, 

elemental Sb and Te powder with stoichiometric ratio of Sb2Te4 were dissolved in co-solvent of 

ethanethiol and ethylenediamine at room temperature, producing dark-purple solutions that held a high 

solubility (>100mg/mL) (Figure 2.1). Elemental analysis of Sb2Te3-ChaM using inductively coupled 

plasma optical emission spectrometry (ICP-OES) indicated overall ratio of Sb/Te of 2/1, identical to 

initial elemental ratio (Figure 2.2).  

 

 

Fig. 2.1. Picture of Sb2Te3 based ChaM solution 

 

 

Fig. 2-2 ICP-OES result of dried Sb2Te3 based ChaM solution 

 

2.1.1 XPS and XRD analysis of Sb2Te3-based chalcogenidometalate  

In order to verify that successfully synthesized without the phase change or oxidization of Sb2Te3-

based chalcogenidometalate, The X-ray photoelectron spectra analysis was conducted for dried Sb2Te4 

clear solution. Figure 2.3 show that the peaks of Sb 3d3/2 and Sb 3d5/2 peaks correspond to Sb metallic 

bonding and the peaks of Te 3d3/2 and Te 3d5/2 peaks are Te homo-polar peak and Te metallic bonding.7 

These results indicate the formation of an ionic Sb2Te4 compound without phase change or oxidization  
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Fig. 2.3. XPS spectra of the Sb2Te3 ChaM dried at room temperature near 

(a) Sb region and (b) Te region. 

 

Figure 2.4 present X-ray diffraction patterns of the Sb2Te3 ChaM. The result indicates that Sb2Te3 

ChaM separate into two phase with formation of crystalline Sb2Te3 and Te phases during the heat 

treatment at 100 oC (red color), 200 oC (blue color), and 350 oC (green color). The peaks responding to 

Sb2Te3 and Te phases in the XRD pattern were more pronounced upon heating at more higher 

temperatures. The vertical dashed red and blue lines indicate the patterns of Te and Sb2Te3, respectively.  
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Fig. 2.4. XRD patterns for the Sb2Te3 ChaM annealed at various temperatures 

 

2.1.2 DSC and TGA analysis of Sb2Te3-based chalcogenidometalate 

Figure 2.5 shows the thermogravimetric (TGA) scan and Differential Scanning Calorimetry (DSC) of 

dried Sb2Te3-ChaM at room temperature. Dark cyan-coloured and navy-coloured lines indicate the heat 

flow and the weight loss respectively. The result presented that TGA scan of the dried Sb2Te3 ChaM 

sample at room temperature shows negligible weight loss until 450 oC which is consistent with 

previously reported Sb2Te3-based chalcogenidometalate8. The endothermal peak in DSC curve at about 

420 oC corresponds to the melting point of a Te phase formed from the Sb2Te3 ChaM. It indicates the 

complete decomposition of Sb2Te3-ChaM into crystalline phases 

 

Fig. 2.5. TGA and DSC graph for the Sb2Te3 ChaM annealed at various temperatures 
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2.1.3 Applicability of Sb2Te3–based chalcogenidometalate solution in various solvents  

Sb2Te3-ChaM was dispersible in various polar solvents with the dielectric constant (ε) ranging 10~50, 

including dimethyl sulfoxide (ε ≈ 47), dimethyl formamide (ε ≈ 36), and ethylenediamine (ε ≈ 13) and 

viscous polar solvents of ethylene glycol (ε ≈ 37) and glycerol (ε ≈ 43), which made it possible to adjust 

the properties of TE paints in terms of dielectric constant, solvent viscosity, and evaporation temperature.   

 

 

Fig. 2.6. (a) Photographs and (b) UV-visible absorption spectra of the Sb2Te3 ChaM dispersed in 

dimethyl sulfoxide (DMSO), dimethylformamide (DMF), and ethylene diamine (En) solvents. 
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2.2 Characterize of thermoelectric ink 

In order to prepare TE paints, the powder with the chemical composition of Bi2.0Te2.7Se0.3 (n-type) and 

Bi0.4Sb1.6Te3.0 (p-type) were mechanical alloyed under nitrogen atmosphere using high energy ball 

milling. The Figure 2.7 indicated that the XRD patterns of Bi2.0Te2.7Se0.3 and Bi0.4Sb1.6Te3.0 TE powder. 

The XRD patterns of Bi2Te2.7Se0.3 ball milled powder shift to the high angle in comparison with Bi2Te3 

due to the addition of Se and Bi0.4Sb1.6Te3.0 completely correspond to the bulk pattern9,10.  

 

 

Fig. 2.7. XRD patterns of mechanical alloyed (a) Bi2Te2.7Se0.3, (b) Bi0.4Sb1.6Te3.0 TE powder. 

 

We dispersed the Sb2Te3 ChaM with 20wt% of TE particles in a mixed viscous cosolvent of glycerol 

and ethylene glycol include of prepared n- and p-type TE microparticles. The viscosity and evaporation 

temperature of the TE paints were adjusted by controlling the ratio of glycerol (viscosity at room 
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temperature ≈ 934 mPs, boiling point ≈ 290 °C) and ethylene glycol (viscosity at room temperature ≈ 

62 mPs, boiling point ≈ 197 °C). Stable TE suspensions were finally synthesized that have no phase 

separation and precipitation for more than a week. (Figure 2.8) 

 

Fig. 2.8. Colloidal stability of the TE paint. 

 

2.2.1 The effect of addition with the Sb2Te4 as a sintering aid 

Painted and dried n- and p-type paints on aluminum plates were annealed at various elevated 

temperatures higher than 350 oC, producing mechanically robust TE samples with several hundred 

micrometers in thickness. To determine the proper sintering temperature, DSC and TGA analysis were 

conducted about painted n- and p-type TE sample. The DSC result shown in figure 2.9 indicated that 

the first endothermal peak at about 420 oC observed in both n-and p-type paints well agrees with the Te 

melting point and the next peaks at 590 oC and 610 oC correspond to melting point of a Bi2Te3 phase 

and a Sb2Te3 phase and TGA scan of TE paints showing no weight loss up to 450 oC. The weight loss 

above 450 oC due to the evaporation of liquid Te that those typically make Te vacancy defect which 

result in a slight degradation of properties defect11. Therefore, the optimum sintering temperature for 

the current study was taken at 450 oC 

  

Fig. 2.9. DSC and TGA scans for the n-and p-type paints. 
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Upon heating, these TE paints showed effective sintering behaviors on both n-type Bi2.0Te2.7Se0.3 and 

p-type Bi0.4Sb1.6Te3.0 TE particles arising from the molecular Sb2Te3-ChaM effect. To explore the 

sintering behaviors of painted samples, the scanning electron microscopy (SEM) image of TE samples 

with and without the Sb2Te3 ChaM sintered at 450 oC are shown in Figure 2.10a and c. The SEM image 

of n- and p-type samples with ChaM shows huge densification effect which is attributable to an 

interconnecting effect of TE particles by ChaM. As control experiments, the suspension of TE particles 

without ChaM was painted and annealed under identical conditions. The resulting materials were 

mechanically weak upon annealing at even 500 oC. As shown in Figure 2.10b and 2d, TE particles were 

just partially sintered with numerous voids. 

 

 

Fig. 2.10. SEM images of the annealed n-type materials (a) with and (b) without the ChaM, and the p-

type materials (c) with and (d) without the ChaM. 

 

The origin of microstructural characteristics of annealed TE paints should be related to Sb2Te3 ChaM 

placing between TE particles. The SEM images and elemental mapping images dried TE paints of ChaM 

obtained by the energy dispersive X-ray spectroscopy (EDS) indicated that molecular Sb2Te3-ChaM 

were homogeneously distributed into between TE particles without local agglomeration. (Figure 2.11) 
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Fig. 2.11. SEM images of the dried samples of (a) n-type and (c) p-type and EDS mapping of (c) n-

type and (d) p-type samples. 

 

The densities of annealed paints with ChaM increased with annealing temperatures up to 3.9 g/cm3 for 

n-type and 3.6 g/cm3 for p-type. On the other hand, the densities of those samples without ChaM were 

less than 3.0 g/cm3 and just 60~70% of materials prepared from TE paints with ChaM. (Figure 2.12) 

These results demonstrated effective densification and grain growth in all-inorganic TE paints due to 

Sb2Te3-ChaM effect. 

 

Fig. 2.12. Comparison of TE n- and p-type sample’s density of with and without ChaM  
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Figure 2.13 shows microstructures of grain morphology indicates the grain growth in a layer-by-layer 

mode, which requires 2-dimensional nucleation event from a liquid medium as a prerequisite12. SEM 

image of the fractured surface dictates the stereotypical microstructure formed by a lateral growth and 

nucleation12.(Figure. 2.13) This further suggests that the sintering aid formed a liquid phase at the 

sintering temperature, providing a diffusion path for grain growth. The DSC curves of n-and p-type 

paints (Figure 2.9)indicated that the Te phase formed from the Sb2Te3 ChaM sintering aid is melted at 

~420 oC. This evidence show that liquid phase sintering result from liquid form of Te. 

 

 

Fig. 2.13. SEM image of the fractured surface of annealed sample 

 

Based on the analysis on a time dependent shrinkage measurement as shown in figure 2.14, where the 

time exponent of 0.08 is much smaller than the theoretical value, Other factors from the viscous flow 

mechanism during the initial stage of the liquid phase sintering was exclude. The viscous flow 

mechanism during liquid-phase sintering is represented as the following relation13: Δl/l ∝ t1+y, where 

l is a linear dimension of the sample and t is sintering time. Because of enhanced driving force with 

reducing pore volume during the sintering process, the exponent 1+y is a little than unity. 



２８ 

 

 

Fig. 2.14.  A shrinkage vs. time plot of the n-type paint during sintering at 450 oC  

 

The temperature-dependent XRD patterns (Figure 2.15) manifested that the Sb2Te3 ChaM was 

completely consolidate into the host phase due to compositionally well harmony with host phases. It is 

more prominented in n-type materials. Figure 2.16 shows the existance of peak shift to lower angle with 

increasing the sintering temperature. It means the increase of Te stoichiometric ratio in a BiSbTe phase 

due to the combination between the Sb2Te3 ChaM with the host phase. 

 

 

Fig. 2.15. XRD patterns of n-type Bi0.4Sb1.6Te3-Sb2Te3 ChaM paint 
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Fig. 2.16. XRD patterns of n-type Bi2Te2.7Se3-Sb2Te3 ChaM paints. (a) XRD patterns of the n-type 

samples as a function of sintering temperatures. (b) Enlarged XRD patterns at the range from 26o to 31o 

 

Improved sintering properties of TE paints with ChaM critically influenced the electrical charge 

transport. The electrical conductivity of n- and p-type materials prepared from TE paints with ChaM 

increased up to 650–750 S cm-1 at room temperature, which were one order of magnitude higher than 

the molded samples from TE suspension without ChaM. (Figure 2.17) 
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Fig. 2.17. Comparison of TE n- and p-type sample’s Electrical conductivity of with and without 

ChaM  

2.2.2 Thermoelectric properties of n- and p-type sintered sample 

Dense and well-sintered grains in painted TE samples resulted in excellent TE properties in both n-

and p-type samples. TE properties of painted n- and p-type samples annealed at 450 oC were 

characterized at measuring temperatures ranging from 25 oC to 125 oC.  

The temperature dependence of electrical conductivities of n-and p-type samples in Figure 2.18. The 

electrical conductivity of the n-and p-type samples gradually decreased as the ambient temperature 

increased to 125 oC, which indicates a metallic conducting behavior. The maximum electrical 

conductivity of the n-and p-type samples 650–750 S cm-1 at room temperature which were similar with 

the properties of hot-pressed or spark plasma sintered Bi2Te3 based TE materials with 700~1100 S cm-

1. These high electrical conductivities arise from the appropriately high carrier mobility of 149 cm2 V-1 

s-1 for the n-type and 141 cm2 V-1 s-1 for the p-type materials. 

 

Fig. 2.18. Temperature dependence of electrical conductivity for TE n- and p-type samples  
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The temperature dependence of electrical conductivities of n-and p-type samples in Figure 2.19. The 

absolute seebeck coefficient value of TE n- and p-type samples were increased as the temperature 

increased at 100 oC and then began to decrease. This behavior is characteristic feature of a highly 

degenerate semiconductor due to the reduction of carrier concentration result from the Fermi level is 

moving up to valence band maximum with temperature increased. The Seebeck coefficient of n- and p-

type samples were 115 μV/K and 170μV/K at room temperature and the peak value reached 135 μV/K 

and 190 μV/K at 375 K, respectively. The high carrier concentrations of 3.0 x 1019 cm-3 for n-type 

samples and 2.9 x 1019 cm-3 for p-type samples14,15 result in those relative low Seebeck coefficients. As 

well, It was  founded that the annealing temperature affected the electrical properties of n-and p-type 

painted samples. The figure 2.20 shows SEM images of n- and p-type painted samples with increasing 

annealing temperatures that could be attributed to the increased grain sizes and densities arising from 

Sb2Te3-ChaM effect to interconnect grains with the annealing temperatures. 

 

 Fig. 2.19. Temperature dependence of absolute Seebeck coefficient for TE n- and p-type samples  
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Fig. 2.20. SEM images of n-type (a) and p-type (p) TE paints sintered at various temperatures. 
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The most significant effect of molecular ChaM-assisted sintering is seen in the great reduction in the 

thermal conductivities of the n- and p-type samples (Figure 2.21), i.e., 0.5–0.6 W m-1 K-1 in comparison 

with the 1.5–2.5 W m-1 K-1 of bulk Bi2Te3-based materials16.  

 

Fig. 2.21 Temperature dependence of thermal conductivity for TE n- and p-type samples 

 

The thermal conductivity is the sum of electronic and phonon contribution, which is called the lattice 

thermal conductivity (κl). The lattice thermal conductivity can be calculated by subtracting the 

electronic contribution to the thermal conductivity (κe) from total thermal conductivity (κ), which was 

estimated by using the Wiedemann-Franz Law (κe= LTσ, where T is the absolute temperature, L is the 

Lorenz number, σ is the electrical conductivity). The Lorenz number of 2.0×10-8 V2 K-2 is the typically 

used value for a degenerate semiconductor. However, in the recently published papers, the more reliable 

calculated value of ~1.6×10-8 V2 K-2 was widely used in Bi2Te3 related materials. Based on this value, 

the minimum calculated κl was 0.19 W m-1 K-1 for n-type and 0.20 W m-1 K-1 for p-type painted materials. 

These values are lower or comparable than the predicted minimum κl of 0.31 W m-1 K-1 in n-type Bi2Te3 

and 0.20 W m-1 K-1 and p-type (Bi,Sb)2Te3.  It using the Debye-Callaway model17, whereas the 

densities of painted materials are at most 50~55% of full densities. (Figure 2.22) 
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Fig. 2.22. Temperature dependence of calculated lattice thermal conductivities of n- and p-type 

painted samples using the modified formulation of the effective medium theory 

 

The improvement of ZT values in nanostructured TE materials originates in the falloff of thermal 

conductivity by phonon-grain boundary scattering arising from the increased interface density. The 

grain sizes of the painted samples range from several hundred nanometres to several micrometres so 

that their ultralow lattice thermal conductivities are difficult to be explained solely by grain boundary 

scattering.  

One possible explanation for the ultralow lattice thermal conductivity is the porosity of materials 

because the porosity in the painted samples reach 45~50%, which suggest that the phonon scattering at 

multiple pore sites can be a crucial factor to the reduced thermal conductivity.  

The Brunauer Emmett and Teller (BET) measurement was conducted to analyse the porosity(Figure 

2.23). Both n-and p-type samples have pores with the size less than 50 nm, which should be located at 

the interfaces formed from Sb2Te4 sintering aids rather than grains insides. These small pores can act 

as scattering sites for phonons with short wavelengths. However, the volumes of these small pores are 

responsible for only 2~3% porosity in the painted samples, calculated based on the measured pore 

volumes, which suggests the existence of micro-scale pores.  
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Fig. 2.23. Nitrogen adsorption-desorption isotherms of the painted (a) n-and (b) p-type samples.  

The inset shows the pore size distributions. 

 

Figure 2.24. Low-magnification SEM images of fractured structure (a) and surface of painted sample. 

(b) n-type, (c) p-type. The red circles show the micro-scale pores in the samples.  

To confirm the micro-scale pores, the microstructure of the painted samples was analysed by the SEM. 

As shown in Figure 2.24, the multiple pores with the size ranging from several tens of nanometres to 

several microns were clearly observed in the SEM images. Given that the presence of multi-scale pores 

can reduce the thermal conductivity by phonon scattering with a broad range of wavelength at pore sites, 
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the ultralow thermal conductivities of painted TE materials can be explained by the porosity.  

To quantitatively estimate the porosity effect on the thermal transport, The thermal conductivity was 

compute the using the effective medium theory proposed by Lee et al.18 κl = κh((2-2Φ))/((2+Φ)), where 

κh and Φ is the lattice thermal conductivity of host materials and the porosity respectively. The 

calculated minimum κl of the n-and p-type painted samples are 0.44 W m-1 K-1 and 0.47 W m-1 K-1 

(Figure 2.22) respectively, which are comparable to those of typical nanostructured bulk materials 

prepared from ball-milled Bi2Te3-based TE materials. Consequently, these results suggest that the 

porosity of painted samples can be a crucial factor to the reduced latticed thermal conductivity for 

boundary scattering of phonons at pore sites, rather than grain boundaries.  

Generally, the porosity of solid materials strongly affects the charge carrier transport due to scattering 

of carriers at the pore sites.19 A charge carrier passing near a pore is scattered due to the potential 

perturbation18, degrading the carrier mobility and eventually the electrical conductivity. The carrier 

scattering effect on mobility can be qualitatively described by the Matthiessen’s rule18 

1

𝜇tot
=

1

𝜇bulk
+

1

𝜇impurity
+

1

𝜇boundary
+

1

𝜇pore
                                (1) 

Accordingly, the total scattering is the sum of the contribution of different carrier scattering 

mechanism. For example, μbulk is the mobility induced solely by the carrier scattering with acoustic 

phonons. In the painted materials, considering no additional impurity element except Bi, Sb and Te, 

μboundary and μpore should be the critical factors to determine the overall mobility. Lee et al. suggested 

that the porosity effect on electrical properties become weaker for larger grains18. Since the material 

with larger grains necessarily has larger pores with the lower number density under the same porosity, 

the scattering rate is reduced and mobility is enhanced for larger grain sizes. The fact that the grain size 

is in the range of several micrometres and the pores are mainly macro-scale in the painted materials 

(less than 3% of micro-pores in volume) suggests that the moderately high mobility is attributed to the 

lower number density of the pore.  

The efficiency of the TE material is represented by the dimensionless figure of merit(ZT) and ZT=1 

correspond to about 10% of total energy conversion efficiency. To reach the high value of ZT, It needs 

to have high Seebeck coefficient, high electrical conductivity and low thermal conductivity. The ZT 

value was calculated using the thermal conductivity, electrical conductivity and thermal conductivity. 

Figure 2.25 shows the temperature dependence of ZT for the n- and p-type sample. The highest values 

of ZT = 0.68 for n-type at 375 K and 1.15 for p-type at 350 K were achieved. It is noteworthy that those 

values were much higher than those of Bi2Te3 based bulk ingots with single crystal or Polycrystalline 

of ZT ≈ 0.8–1.016 and comparable to those of recent nanostructured TE materials with ZT ≈ 1.1–1.720-

23. Especially, as far as we know, these exceedingly high ZT values in current painted materials are 3–4 
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times higher than the best reported values of screen-printed TE pastes24. The high electrical 

conductivities and ultra-low thermal conductivities led to remarkably high TE ZT values of n-and p-

type painted samples.  

 

Fig. 2.25. Temperature dependence of ZT for TE n- and p-type samples 

2.3 Fabrication of in-plane type thermoelectric devices via painting process. 

2.3.1 The process of thermoelectric painting 

The synthesized n-and p-type TE paints were painted on glass, aluminum, polyimide, and alumina 

substrates with a flat painting brush. Painted layers on a substrate were sequentially dried on a hot-

plates at 90 oC for 30 min ~ 60 min, 120 oC for 30 min ~ 60 min, and 150 oC for 30 min ~ 60 min and 

then they were annealed at desired temperatures with 350~450 oC for 10~30 min. To obtain thick painted 

layers with several hundreds of micrometers in thickness, painting and drying processes were repeated 

by several times, followed by annealing. In-plane type TE devices were fabricated by painting five 

couples of Sb2Te3-ChaM assisted n-and p-type TE paints with the size of 5 mm x 10 mm on various 

substrates such as flat glass and polyimide, and curved hemi-cylindrical convex and concave glasses, 

and alumina hemi-sphere. Glass and alumina substrates were hydrophilized by a UV plasma treatment 

for 1 h before painting. Silver paste was painted electrically in series and thermally in parallel in order 

to interconnect n-and p-type TE legs. Nitrogen-filled glovebox is used for all experiment. 

 

2.3.2 Output characteristics of in-plane thermoelectric devices on flat substrates  

In the first case of all-painted TE devices, n-and p-type TE paints were painted on a flexible polyimide 

substrate with a brush and painted layers were dried. Surprisingly, the painted layers formed 

continuously uniform films with the thickness of ~50μm during annealing. It seemed to smooth out the 

uneven surfaces composed of TE particles via filling up void spaces with molecular Sb2Te3-ChaM. 
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Metal electrodes were also prepared by painting of Ag paste on pre-painted and annealed TE layers. 

This all-painted TE device was comprised of 5 couples of n-and p-type legs with the lateral dimension 

of 5 mm × 10 mm and the average thickness of ~50μm. (Figure 2.26) 

 

Fig. 2.26. (a) Scheme and photographs of an in-plane type TE devices composed of painted legs with 

silver electrodes on a (b) polyimide substrate and (c) glass substrate. (d) Cross-sectional SEM image 

of painted TE device 

In manufacturing the TE device, TE materials well attached to the electrode is highly important factor 

for determine the power of device. The internal resistance of this device was 25.8 Ω, higher than the 

expected resistance in relation with the electrical properties. It might be due to the high contact 

resistance between the Ag electrode and the TE leg. In order to investigate the cause for high resistance 

of the TE device, The contact resistance between the Ag electrode and the painted TE leg was measured 

by the transmission line method. The measured contact resistance is quite high at 4.8  × 10-2 Ω 

cm2.(Figure 2.27) That value is three or four orders of magnitude higher than the contact resistance 

observed in conventional module composed of Bi2Te3-based TE legs25. 
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Fig. 2.27. Contact resistance measurement by the transmission line method 

 

The output voltage of all-painted TE device on a polyimide substrate exhibited voltage of 79.4 mV 

and output power of 60.8 μW at temperature difference of 50 oC. (Figure 2.28a) The output power 

density reached 2.43 mW/cm2
 (Figure 2.28b), which considerably exceeded the best reported values of 

in-plane typed TE devices by ~2 times. Also, 60 μW-level output power offer the potential for wearable 

TE devices for harvesting energy from human body as an auxiliary power supply.  All-painted TE 

devices on a hydrophilized glass substrate were prepared under same preparation conditions. The 

internal resistance, output voltage, out power and density (Figure 2.28c and d) were ~20 Ω, 79 mV, 59 

μW, and 2.4 mW/cm2 respectively, which were almost identical to those of all-painted TE devices on a 

polyimide substrate, suggesting the consistency of TE painting process on various substrates.  
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Fig. 2.28. Output characteristics of in-plane TE devices painted on flat substrates.  

Output characteristics of in-plane TE devices painted on plate substrates. (a,b) Output power and power 

density of a polyimide substrate TE device (c,d) Output power and power density of a glass substrate 

TE 

 

2.3.3 Output characteristics of in-plane thermoelectric devices on curved substrates 

Such versatility of TE paints allowed us to apply TE layers on curved surfaces to directly prepare TE 

devices on curved heat sources. As shown in Figure 2.29, TE paints were painted on concave and convex 

surfaces of hydrophilized glass hemi-cylinder and were annealed at 450 oC, followed by painting of Ag 

pastes to interconnect n- and p-type layers. The resulting all-painted TE devices on curved surfaces 

were composed of 5 couples of n- and p-type layers with the lateral dimension of 5 mm × 10 mm and 

the expected thickness of ~50 μm (Figure 2.29a and 2.29b). Internal resistances of TE devices on convex 

and concave surfaces were identical values of ~20 Ω, which was consistent with those of the painted 

TE devices on flat substrates. Under temperature difference of 30 oC, these devices produced the output 

voltage of 31~35 mV and output power of 17~18 μW, respectively, leading to comparable values of 0.7 
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mW/cm2 to those of the painted TE devices on flat glass substrates under same temperature difference 

(Figure 2.29c and 2.29d for a concave device, and 2.29e and 2.29f for a convex device). Especially, 

output power densites of all TE devices painted on flat and curved substrates with same dimensions of 

TE layers reached into the same line, which demonstrated the applicability of TE paints on any-shaped 

surfaces.  
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Fig. 2.29. Output characteristics of in-plane TE devices painted on curved substrates. (a) Photo of a 

concave device, (b) Photo of a convex device (c,d) Output power and power density of a concave 

device (e,f) Output power and power density of a convex device 

 

2.4 Fabrication of hemispherical thermoelectric device via Painting process 

New-typed all-painted TE devices were prepared comprising 5.5 couples of triangle-shaped TE layers 

with ~20 mm in base and 25 mm in height on large-sized ceramic hemi-sphere (diameter~50 mm) which 

collected heat energy from a bottom side. Internal resistance of this TE device was ~32 Ω, higher than 

those of other devices due to large-sized TE layers with 25% higher aspect ratio.  
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Fig. 2.30. Photo of hemispherical TE device via Painting process 

 

2.4.1 Simulation study on the power output. 

The comparative simulation study was investigated on the power output of the painted TE generator 

and the conventional module on a curved heat source using COMSOL. The model calculates the 

temperature distribution and generated power of the TE generators integrated with a heated 

hemispherical alumina substrate. The TE generator composed of one pair of n-and p-types of TE layers 

and conductive paste layers where the thickness was assumed as 50 m. Each triangular TE layer has a 

width of 20 mm and a height of 60 mm such that the substrate has sufficient area for 5.5 couples of TE 

layers. The conductive paste was assumed to have the thermal conductivity of 9 W m-1·K-1 and the 

electrical conductivity of 103 S cm-1. Based on the geometry and the material properties, the electrical 

resistance was estimated as 3.5  per a pair of the TE layers. Based on the survey of the material 

properties and the geometry for commercial TE modules, It was defined that a standard TE module has 

a substrate area of 40 mm  40 mm and ~100 pairs of Bi-Te materials. The considered module has the 

thermal conductance of 0.65 W K-1, the electrical resistance of 2.3 , and the Seebeck coefficient of 

52.8 mV/K. For the simple modeling, the FEM for the conventional module includes only one leg of 

TE material. The heat loss in the FEM was considered by including the convective heat transfer. To 

simulate the natural convection over all the surfaces that are exposed to air, the convection heat transfer 

coefficient was 10 W m-2 K-1 with an ambient temperature of 25 oC. [ref. 26]  

The temperature distribution of the conventional module is greatly non-uniform (Figure 2.31) since 

the contact area (d) with a hemisphere is narrow which results in a significantly low output voltage of 

13.3 mV for d = 1 mm and 4.5 mV for d = 0.1 mm. Thus, conventional module generates the output 

power of 76.9 W and the output power density of 15 W cm-2 when d = 1mm. when d = 0.1mm, the 

output power of 8.6 W and the output power density of 1.7 W cm-2 which are considerably reduced 

values compared with the reported values of 4-10 mW cm-2 obtained on a flat heat source27.  
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Fig. 2.31. Calculated (a,c) temperature and (b,d) electrical potential distribution of a conventional TE 

module that is contact on a heated hemispherical substrate. 

 

On the other hand, the temperatures distribution of a hemispherical type module was kept at 45 oC and 

25 oC (Figure 2.32) the uniform temperature distribution and electrical potential field on the painted 

generator result in an order of magnitude higher power density of 205 W cm-2. (Figure 2.33) 

 

 

Fig. 2.32. A finite element model for a hemispherical heated substrate. 

(a) A meshed substrate that is subject to a uniform heat flux of 1.5 kW/m2, and natural convection (h = 

10 W m-2 K-1). The bottom surface is set at 25 oC. (b, c) Temperature distribution along an arc A-B. A 

and B indicates the apex and the bottom of an alumina hemisphere, respectively. Red arrows indicate 

the heat flux and blue arrows present the temperature on the bottom of hemisphere. 
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Fig. 2.33. Calculated (a) temperature and (b) electrical potential distribution of a pair of p- and n- 

types of painted TE generator. 

2.4.2 Output characteristics of hemispherical thermoelectric devices  

Figure 2.34 show output characteristics of painted hemispherical TE devices. Under temperature 

difference of 19.7oC, the output voltage was 18 mV and output power was 2.6 μW. A little lower output 

voltage than those of other devices could come from the deviation between actual temperatures applied 

to TE legs and temperatures at the hot and cold sides due to heat loss arising from small contact area of 

TE devices to the hot side. Lower output power was attributed to higher resistance and lower output 

voltage. Although this hemi-spherical TE device exhibited lower output power density due to large-

sized TE layers, these results validate that TE painting process facilitated shape engineering of TE 

materials on any-shaped surfaces while maintaining their high TE performance, which should be the 

most effective heat energy collection from any heat sources. 
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Fig. 2.34. Output characteristics of hemispherical TE devices 

 

The output power density of the hemispherical generator was calculated with the assumption of same 

dimensions of TE legs with others. The fact that the output power density of the TE devices painted on 

flat and curved substrates with the same dimension of TE legs merges into the same line validates the 

applicability of the TE paints to any-shaped surfaces. (Figure 2.35) 

 

 

Figure. 2.35. Comparison of output power densities of painted TE devices 
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2.5 Fabrication of through-plane type thermoelectric device using molding 

process 

In addition, the through-plane TE generator was fabricated using the molded disks prepared from the 

TE paints. The considerable sintering effects on TE paints function not only for 2D thick films in μm 

scale but also for 3D blocks in mm scale. For example, n- or p-type TE paints were added into ring-

shaped molds and were dried, followed by annealing at 450 oC for 30 min (Figure 2.36a and b) with no 

external pressure, generating the robust TE ring. This ring-shape TE block can be directly utilized for 

cylindrical TE generators with radial heat transfer combined with the pipe heat exchangers13. 

Furthermore, disk-, square-, and triangle-shaped 3D blocks were obtained via using same shaped molds 

(Figure 2.36a and b). The SEM image in Figure 2.36c reveals well-connected dense grains that are very 

uniform in the scale of several hundred micrometers. In the control experiments without the ChaM, the 

microparticles remained just powdery as observed in painted materials. This successful molding process 

shows the versatility of our TE paints for designing TE materials in 3D as well as 2D.  

 

 

Fig. 2.36. Moulding process of TE paints. (a) A photograph showing TE molding process. (b) A 

photograph showing molded 3D blocks with diverse shape such as ring, cube, triangle, and disk. (c) 

SEM image of the molded sample. 
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2.5.1 The process of through-plane type thermoelectric device 

Two pairs of n- and p-type molded disks with the diameter of 4.0 mm and thickness of 1.0 mm were 

assembled by soldering with a Bi-Sn solder to Cu foil electrodes on an alumina hemisphere (Figure 

2.37). The top sides of TE disks were electrically interconnected with Cu foil electrodes by soldering, 

which produced the through-plane TE generator on a hemisphere. The internal resistance was as low as 

0.014 Ω, comparable to that of the conventional module. (Figure 2.38) 

 

Fig. 2.37. Scheme for the fabrication of the TE generator. 

 

 

Fig. 2.38. A photograph of the fabricated TE generator. 
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2.5.2 Output voltage and power density of the through-plane thermoelectric device  

Under the temperature difference of 14 oC, this generator produced the voltage of 8.0 mV, output power 

of 1.1 mW, and output power density of 2.3 mW cm-2. (Figure 2.39) Furthermore, the predicted power 

output density on the fitted function with the data points is about 26.3 mW cm-2 under the temperature 

difference of 50 oC, which competes on a par with the conventional module27. These results clearly 

demonstrate the practicability of the painting technology in terms of the TE performance as well as the 

processability 

 

Fig. 2.39. Output voltage and output power density. 

 

2.6 Experimental details 

2.6.1 Synthesis of Bi2Te3-based inorganic thermoelectric paints. 

To synthesize Sb2Te3-ChaM solution, elemental Sb (0.32 g) and Te (0.68 g) powder with stoichiometric 

ratio of Sb2Te4 were dissolved in mixed co-solvent including 0.20 mL of ethanethiol (97%) and 0.80 ml 

of ethylenediamine (>99.5%). After stirring for over 6 h, elemental Sb and Te were fully dissolved in 

solvent and the resulting solution showed a dark purple color. And 40 ml of acetonitrile was added into 

Sb2Te3-ChaM solution, followed by the centrifuge at 7500 RPM for 10min. After the centrifuge, the 

precipitated Sb2Te3- ChaM was added into mixed solvents including 3.6 g of glycerol and 0.40 g of 

ethylene glycol and it was sonicated for 10 min, which produced a dark brown-coloured solution. Bi2Te3 

based TE powders were prepared by a mechanical alloying process. Typically, finely ground Bi, Sb, Te 
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and Se powder was weighed according to the stoichiometric ratios of Bi2Te2.7Se0.3 (BTS) for a n-type 

paint and Bi0.4Sb1.6Te3.0 (BST) for a p-type paint under N2 atmosphere, and they were ball-milled with 

stainless steel balls including two balls with 0.5 inch in diameter and four balls with 0.25-inch in 

diameter for 4 h. The formation of BTS and BST alloys were confirmed by the XRD analysis. The 

sieving process was carried out at 45 μm to remove some agglomerated BTS or BST particles. 4 g of 

sieved TE powders were added into Sb2Te3- ChaM solution, followed by the sonication for 1 h, which 

produced black-coloured viscous TE paints. The viscosity and evaporation temperatures were adjusted 

by controllably varying the amount of glycerol and ethylene glycol.  

 

2.6.2 Thermoelectric properties measurement 

 

TE properties measurement were conducted on the samples prepared by repeated painting and drying 

of n-and p-type paints on aluminum plates, and subsequent annealing at 450 oC. The final samples were 

~500 μm in thickness. To determine electrical conductivities at temperatures ranging from 27 oC to 127 

oC, the sheet resistance of the samples was measured by a four-point Van der Pauw method (Keithley 

2400 multimeter controlled Lab trace 2.0 software, Kiethley Instrument, Inc.) on a hot chuck plate. The 

four corners of the samples were contacted by sharp tips controlled by manipulators. The electrical 

conductivities were estimated with the thickness of the samples. To obtain the temperature-dependent 

Seebeck coefficients, the open circuit voltage and the temperature gradient were measured by two T-

type thermocouples using a Keithley 2400 source-meter and a Keithley 2000 multi-meter. The 

measuring set-up lied on a hot-plates and the measuring temperatures were controlled by heating a hot-

plate. To apply the temperature differences, applied powers of TE modules contacted with the samples 

was adjusted. Typically, 6 data points were obtained with the applied temperature differences at two 

points contacted by thermocouples across the sample ranging from ±1 oC to 5 oC. The Seebeck 

coefficient was calculated based on the slope of the voltage versus the temperature-difference curves. 

These set-up were confirmed by measuring the electrical conductivity and the Seebeck coefficient of n-

type Bi2Te3 and p-type BiSbTe ingot samples, and the accuracy was within ±3%. We extracted The 

thermal conductivity was extracted by using the equation 𝜅 = ρCpD, where ρ is the density, CP is the 

specific heat capacity, and D is the thermal diffusivity. The densities were measured by commercial 

equipment (BELPycno, microtracBEL). The specific heat capacities were calculated by assuming the 

law of mixture and by using the value of Bi0.4Sb1.6Te4, Sb2Te3, Bi2Te3, and Bi2Se3. Thermal diffusivities 

were measured in a temperature range from 300 oC to 450 oC by using laser flash analysis (LFA 457, 

Netzsch). Carrier concentration and mobility were measured by a Hall measurement system (BIO-PAD, 

HL5500PC) at room temperature. 
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2.6.3 Measurement of TE power generation 

Performance of TE power generator was investigated by measuring the I-V curve and the output power 

density under temperature differences across the devices using a home-built set-up. (Figure 3.1) In order 

to produce a reliable temperature difference ranging 5 oC to 50 oC across the TE devices, the hot side 

temperature was raised using a flat band heater, powered by a voltage converter. The cold side 

temperature was maintained at 20 ± 0.5 oC using a TE Peltier cooler. The temperature differences were 

measured by two T-type thermocouples that were in contact with hot and cold sides, by using Keithley 

2000 multimeter. Two Ag electrodes in prepared TE generators were connected to Keithley 2400 source-

meter and the I-V characteristics were measured by using Lab trace 2.0 software (Keithley Instrument, 

Inc) under desired temperature differences. The output power density (output power per unit area) was 

calculated with total cross-sectional areas of TE layers.  

 

 

Figure 2.40. TE power measurement set-up. (a) A photograph of TE device power measurement 

system. (b) The temperature differences between the cold and hot sides. Schematic illustrations for 

measuring the power of TE devices on (c) a flat substrate, (d) on a concave substrate, and (e) on a 

convex substrate.  

 



５２ 

 

2.7 Conclusion 

In summary, I report the first successful demonstration of the concept of TE painting using molecular 

Sb2Te3-ChaM assisted all-inorganic TE paints. Synthesized molecular Sb2Te3 based 

chalcogenidometalate acted as a solder for n-and p-type TE particles. This effect helped the bottom-up 

assembly of TE particles by interconnection of grains. It resulted in the huge densification and grain 

growth in TE particles upon heating, which led to the exceedingly high ZT values of 0.69 for n- and 

1.15 for p-type in painted materials. Furthermore, the versatility of TE paints was applied to 2D painted 

films as well as 3D molded blocks, suggesting a new way of dimension- and shape-engineering TE 

materials. Especially, all-painted TE generators exhibiting exceedingly high output power density were 

fabricated on flat and curved surfaces such as hemi-cylinders and hemi-spheres. The current study not 

only unveil previously unknown process for engineering efficient TE materials, but it also makes a 

significant contribution to the basic understanding on the bottom-up assembly of inorganic 

semiconductor particles with molecular ChaMs. This approach enables extraordinarily high TE 

performance of shape- and dimension-engineered TE materials, opening new design spaces of TE 

materials and devices beyond conventional technologies. At the same time, TE painting provides facile 

and cost-effective way to fabricate efficient TE generators directly on any heat sources. I strongly 

believe that this approach will widely be extended to various electronic materials and devices for future 

technologies development such as 3D printed electronics and painted electronic artwork. 

 

**Parts of this chapter were published in the article “High-performance shape-engineerable 

thermoelectric painting” Nature Communications 2016, 7, 13403. 
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 어느덧 2년의 시간이 지나고 UNIST 생활을 마무리 할 시점이 왔습니다. 생각보다 시간

이 너무 빠르게 지나간 듯해 너무나 아쉬운 마음이 가득합니다. 적지 않은 나이에 직장

생활을 하던 중 학업을 다시 하겠다는 결정을 하기에 쉽지 않았습니다. 하지만 지금 돌

이켜 보면 학업을 하기로 결정한 것은 매우 잘한 선택이 였다고 생각됩니다. 일단 실력

적으로나 성품적으로 너무나 훌륭하신 손재성을 교수님을 만나 좋은 연구성과를 만들 수 

있었고 좋은 랩원들을 만나서 평온히 학업을 마칠 수 있었기 때문입니다. 교수님께서 제

자들을 너무나도 사랑하시고 학생들이 학자로서 양성될 수 있도록 최선의 환경을 만들어 

주셨습니다. 사소한 일도 스스로 하는 것을 마다하지 않으셨고 같이 연구를 진행하는데 

어려움이 있을 때 마다 항상 같이 토론하며 새로운 아이디어를 만들어 더 좋은 연구를 

할 수 있게 도와 주셨습니다. 앞으로 항상 고마워 하는 마음을 가지며 지내도록 하겠습

니다. 또 같이 2년 동안 생활을 한 승기와 형우한테도 고맙다는 말을 하고 싶습니다. 동

기서로서 항상 같은 공간에서 공부와 실험했던 기억들은 아마 잊지 못할꺼야. 또한 랩 

상민이 민석이 혜원이와 곧 우리 랩에 들어올 다휘, 승회, 성헌이도 고마워 ㅎㅎ~      

또한 처음 UNIST에서 생활을 잘 수 있게 도와준 현도빈 박사님, 논문에 도움을 주신 

조욱 교수님 최경진 교수님 감사드린다는 말 전해드리고 싶고 좋은 학교 좋은교수님을 

만나게 해주신 김서영 대표님 이진영 전무님 감사합니다. 회사로 돌아가 배운것들을 적

용할 수 있도록 최선을 다 하도록 하겠습니다. 

마지막으로 사랑하는 엄마 아빠 누나 매형 항상 고맙고 엄마 지금은 많이 아프지만 곧 

건강해 질 꺼라 믿고 항상 내가 응원할께. 엄마 사랑해~~~~~~  
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