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Abstract

In this thesis, we investigate the performance of various activation functions of deep convolutional
neural networks (DCNNs) and propose new activation functions. First, we propose twofold
parametric ReLU. We observed that time complexity of S-shaped ReL U is relatively huge due to the
computation of forward and backward-pass propagation. Thus we removed translation parameters of
S-shaped ReLU and design twofold parametric ReLU. Second, inspired by just noticeable difference
of the Weber's law, we reflect the property that subjective sensation is proportional to the logarithm of
image intensity. We formulate an activation function by modifying the logarithm function which is
used only on the first layer of DCNNs. Experimental results show that the performances of the

proposed activation functions are better than that of the existing activation functions.
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Nomenclature

DCNNs Deep Convolutional Neural Networks
ReL U Rectified Linear Units

PReLU Parametric ReLU

RReLU Randomized LeakyRelLU

CReLU Concatenated ReLU

JND Just Noticeable Difference

ELUs Exponential Linear Units



Chapter |

Introduction

Deep Convolutional Neural Networks (DCNNSs) used in image processing or computer vision like
image classification or object detection are special case of neural networks. Neural networks are graph
structure composed of artificial neurons as described in Figure 1.1. Single artificial neuron consists of
multiple input signals and its weights and output signal is calculated by applying activation function
to weighted sum of input signal. Feed-forward neural networks are unidirectional for overall structure,
which dealt with in this thesis, can be trained by backpropagation. Backpropagation uses chain-rule to

update gradient of weights.

Input Weight

X1 Wy

Activation

function

Output

Weighted sum

Figure 1.1: Mathematical expression of neuron model.

DCNNs have two additional core characteristics compared to neural networks, sparse connectivity,
shared weights to use less training parameters. In DCNNs, biologically plausible activation function
like sigmoid or hyperbolic tangent used to apply non-linearity to the networks. However, because
DCNNs optimized by using backpropagation with chain-rule, squashing part of sigmoid or tanh
function causes vanishing gradient problem when n of small numbers are multiplied. This problem
slows the training speed of the front layers. To solve this problem, rectified linear units (ReLU) [1]
proposed. ReLU has no upper limit so that using this activation, networks converge faster than
sigmoid or hyperbolic tangent function, also achieve better performance. But hard-zero area of ReLU
function has never activated neuron problem. This problem is irreversible so that we should set proper
learning rate to prevent this problem.

After ReLU proposed, several improved variants of ReLU has been proposed. LeakyReLU [2] to
solve never activated neuron problem, and Parametrized ReLU (PReLU) [3] which is parameterized
version of PReLU. Adaptive Piecewise Linear Units (APL) [7] defined as a sum of hinge-shaped
functions. Randomized ReLU (RReLU) [12] is randomized version of PReLU to prevent overfitting



in the small dataset. S-shaped ReLU [11] imitates shape of power function or logarithmic function to
describe the relation between physical intensity and perceived intensity. Exponential Linear Units
(ELUs) [13] mentioned about bias effect of ReLU and whether other advanced activations are noise-
robust deactivation state or not. Concatenated ReLU (CReLU) [14] and Max-Min CNN [15] uses
negative part of activation function by concatenating convolutional output and negate of this. But they
cannot be called activation function, because they are one of structure in DCNNSs.

Meanwhile, as in Weber’s law [18], just noticeable difference (JND) of brightness is proportional to
physical brightness intensity. Based on this law, Fechner derived that the sensitivity of brightness is
proportional to logarithmic function of its physical intensity.

In this thesis, we refine the S-shaped ReLU. Although S-shaped ReLU shows state-of-the-art
performance compared to previous activations, this function has some weakness, slower training time
due to complexity of function and its computation of forward and backward-pass. Thus, we propose
improved version of S-shaped ReLU by reducing unnecessary parameters. Next, based on Fechner’s
law, we propose another activation function, LogUnits. We can imitate human’s vision system by
using LogUnits only on the first layer of DCNNs as human visual system contains reception of light
from real-world at the first part of this system. In the experiment, we show that the combination of
two proposed function shows best performance compared to previous activation functions.

This thesis organized as follows. Chapter 2 presents the related work. Chapter 3 describes the
proposed activation functions to improve performance for DCNNs. Chapter 4 shows the experimental

results. Chapter 5 includes the conclusion of this thesis.



Chapter |1

Related Work

2.1 Network in Network

Network in Network [9] is one of state-of-the-art deep convolutional neural networks(DCNNSs)
structure. Before that, consider about DCNNSs first. Training image data using general neural networks
causes overfitting because neural networks have too many weights and connections. Moreover, image
itself contains duplicated information. Deep Neural Networks are neural networks which consist more
than two layers. DCNNs have two characteristics compared to deep neural networks, sparse

connectivity and shared weights.

Layerm +1 f ; // Layerm
e\ £ /
Layer m i ; /
£ / Layerm —1

/ y
Layerm — 1 / /

Figure 2.1: Two characteristics of convolutional neural networks. Left: sparse

connectivity. Right: shared weights.

Figure 2.1 explains how two characteristics works and how to solve overfitting problem and reduce
the number of parameters. First, sparse connectivity is that the output of next layer is connected
locally with previous layer. For example, in the layer m, the value of neuron is calculated by values
of neurons in the range of filter of layer m — 1. Remaining neurons are same with first neuron. They
are only connected to spatially nearest neurons, not all neurons of previous layer. In the convolutional
layer, they control sparsity of connection by adjusting size of filter. Next, shared weights
characteristic use same filter on the over whole input as right figure describes. To apply this
characteristic on the multi-channel 2-d input, assume that we need n output feature maps for the next

layer. Then we need n filters to get the value of next layer. Thus, convolutional layer is defined as

row+rows—1 col+colf—1

Y(f! row, COl) = g=12i=mw Z]'=COI X(Cr l'])W(f' G l,]) (21)

where C is the number of input layer channels, Ny is the number of output layer channels,



rowy, coly are the length of filter row and col and f € {1,2, ..., N¢}. Using these characteristics,

neural networks deal with images. DCNNs are constructed with this layer and pooling layer and fully-
connected layer.

Inpuc layer (S1) 4 feacure maps

(C1) 4 feature maps (S2) 6 feature maps  (C2) 6 feature maps

l convolution layer | sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP |

Figure 2.2: One example of deep convolutional neural networks (LeNet-5) [17].

Figure 2.2 shows one example of DCNNSs, LeNet-5 [17], which is common DCNNSs architecture. For
example, DCNNs need to solving image classification problem, there are three mainly used layers,
convolution layer, sub-sampling layer and fully-connected layer. Convolution layer derives several
feature maps from the input of layer using convolutional filter. Sub-sampling layer (pooling layer)
reduces dimensionality and removes redundant data among the features. Two kinds of layers are
alternately to get higher level features from low-level features. On the top of the networks, several
fully-connected layers which have full connections to previous layer are used to classify label of the
input.

Multilayer Perceptron Convolution

Global Average Pooling

Feed to Softmax

Figure 2.3: Description of network in network [9].

Among several improvements since LeNet-5 proposed, NIN is one of the state-of-the-art DCNNs
structure which described in Figure 2.3. The overall structure of NIN is the stack of mlpconv layers.

This layer is universal approximator by using multilayer perceptron layers per pixel after



convolutional layer instead of only convolutional layer (generalized linear model) so called mlpconv
layer. On the top layer, NIN uses global average pooling which covers whole feature map instead of
fully-connected layers to prevent overfitting because this layer doesn’t need to any parameters. Before
global average pooling, the number of feature map tuned to the number of classes so that each feature
map represents the confidence map of each class. Since we don’t need to construct fully-connected
networks which comprise large proportion of networks parameter, we can reduce the number of

parameter. This layer also invariant to translation since it sums out values of feature.

Input patch Output feature vector Output feature vector
(cl xhxw) (e2x1x1) (e3x1Ixl)
Convolutional Filter : 3
(@xcl xhxw) D) C(in\olunonal Filter RN
(c3xc2xIxl)
: > —_—
Convolutional layer CCCP layer

Figure 2.4: One layer in network in network.

Figure 2.4 depicts details of one mlpconv layer of NIN. On the first layer of mlpconv layer, arrange
standard convolutional layer which is composed by 3 by 3 or 5 by 5 filters. From next, several
convolutional layers composed by 1 by 1 filters are sequentially arranged. They called these layers
cascaded cross-channel parametric pooling(CCCP) layer since multi-layer perceptron per pixel is
sequentially placed after one convolutional layer. This means procedure works only across channel. In
other words, values of pixel are not joined to one pixel on the next layer and each channel value of the

next layer is parametrically calculated by previous layer.



2.2 Linear Units

* Rectified Linear Unit
Rectified Linear Unit (ReLU) [1] is defined as

f(x;) = max(x;, 0), (2.2)
where x; is channel-wise input vector. Simplicity and no upper limitation of ReLU makes faster
backpropagation and convergence than sigmoid or tanh function. But negative-input part of

ReLU causes dying neuron problem if weights of artificial neuron always export its output to

negative value in following equation where z; is output vector and w; is weight vector.

zi = Do Wix;. (2.3)

This problem is amplified as learning rate is higher. Once this problem occurs, it cannot be

recovered by stochastic gradient descent because dead neuron cannot get any gradient.

<
-

»=0

ReLU

Figure 2.5: Graph of rectified linear units.

* LeakyReLU and Parameteric ReLU
LeakyReLU [2] and Parametric ReLU (PReLU) [3] resolved dying neuron problem by defining
left-side slope to nonzero value at the expense of hard-zero sparsity. LeakyReLU and PReLU are

defined as

_{xi xX; = 0
flx) = {aixl-. X < 0" (2.4)
where q; is small constant on the LeakyReLU. But LeakyReLU didn’t increase the performance
but received slightly faster convergence speed. In case of PReLU, a; is channel-wise or channel-

shared (layer-wise) trainable parameters. By training channel-wise or channel-shared slope

6



parameters, PReLU can be trained as per-channel or per-layer optimized activation function so
that can control non-linearity of each channel.

Randomized LeakyRelL U
Randomized LeakyReLU (RReLU) [12] is randomized version of LeakyRelLU. RReLU is
defined as

Xjis Xji =0
Xji) = , 2.5)+
f( Jl) {aﬁxﬁ, in <0 ( )

where x;; represents input value of single neuron. In the RReL U network, slope value of each

neuron is random number sampled from uniform distribution U(l,u) in the training phase. In the
test phase, all slope values are set to average value of uniform distribution. Because this scheme
applies regularization as in dropout [16], this function prevents overfitting for small dataset.
Graphs of Figure 2.6 show LeakyRelLU / PReLU and RReLU. In addition, when negative slope

of the function is less than one, function can be formulated as f(x;) = max(x;, a;x;).

—————————

Yi = aiX;

Vji = ajiXji1
LeakyReLU/PReLU RRelU

Figure 2.6: Variants of rectified linear units (LeakyReLU / PReLU / RReLU).

S-shaped RelLLU

S-shaped ReLU [11] imitate shape of power function or logarithmic function. These functions
mainly based on basic laws in psychophysics and neural sciences. Figure 2.7 shows examples of
S-shaped ReLU. In the left figure, S-shaped ReL U imitates shape of logarithmic function. On the
other hand, right figure imitates shape of power function. S-shaped ReLU defined as

ti +aj (o —t]), x; =t]
f(x) =4 x, th > x; >t} (2.6)
ti+al(x—t}), x; <t

where t}, tI are translation parameter of left part and right part and a!, al are slope of left part

7



of t! and right part of /. S-shaped ReLU imitate several functions not only convex functions
but also non-convex functions since it composed with three linear pieces. S-shaped ReLU needs
initialization process to get optimal performance because translation parameters wouldn’t be

trained sufficiently if distribution of layer’s input is far away from initial translation parameters.

yi =t +ai(x—t) y v, =t +al(x; — t)

—————————
————————

———— g ->

Vi =X

!
yiztf+af(xi—til)i yi =t +aj(x; —tf)
1

tT =04,a" =02,t' = —0.4,a' = 0.2 tT =0.4,a" = 2.0,t! = —0.4,a' = 0.4

Figure 2.7: S-shaped ReLU. Left: log-shaped function. Right: power-shaped function.

Exponential Linear Units
Exponential Linear Units(ELUs) [13] reduced bias shift effect so that bring gradient to natural
gradient and ensure noise-robust deactivation state. ELU is defined as

X, x=0
flx) = {a(exp(x) -1), x<0

2.7
where « is constant of ELUs. Since ReLU is not centered zero. ReLU function has bias shift
effect. Because of this effect, networks don’t bring normal gradient to natural gradient (steepest
descent direction) of error function and this effect retards learning speed. ELUs speed up learning
speed of networks. Though LeakyReLU, PReLU or RReLU also brings mean of activation
toward zero, ELUs argue that previous activation functions don’t ensure the noise-robust
deactivation state since its deactivation state varies and it increases variance of single neuron but
ELUs are constant so that decreases variance. Two improvements of ELUs make learning faster

and show lower generalization error. Figure 2.8 shows the graph of ELUSs.

<

i

y = a(exp(x) — 1)

Figure 2.8: Exponential Linear Units.
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Chapter I11

Proposed Functions

3.1 Twofold Parametric ReLU

We proposed function which is added parameters on positive part of PReLU [3] or is removed
translation parameters of S-shaped ReLU [12]. Proposed function is called twofold parametric ReLU
(TPReLU) because two part of activation is parameterized about slope while PReLU parameterized

negative part only. TPReLU is defined as

bixi, Xi = 0

a;xi, Xi <0 (31)

f = {

where a;, b; are channel-wise trainable parameter of TPReLU. Figure 3.1 shows possible operation
range of PReLU and TPReLU.

——————————
——————————

({i = a;pX;

PReLU TPReLU

<y
[l
8
Rl

Figure 3.1: Parametric ReLU and Twofold Parametric ReLU.

Even if this function is special case of S-shaped ReLU (t/ = 0, t! = 0), we propose this function
because translation parameters of S-shaped ReLU is hard to training as they mentioned so that they
initialized translation parameters t; after pre-training networks. For empirically, we don’t need to
training these parameters since it doesn’t affect to performance of S-shaped ReLU significantly.
Although the number of additional parameters of S-shaped ReLU is negligible, these parameters of
activation function can cause high time complexity on the forward-pass and backward-pass when

activation function has complex formula and many trainable parameters. Also, if we failed to initialize



translation parameters correctly, performance becomes worse than ReLU. In conclusion, if we are not
careful with translation parameters, they are just useless parameters of the network. Thus, we only
need to train slope parameters and proposed activation function doesn’t show any deterioration and
faster than S-shaped ReLU.

TPReLU can be optimized by backpropagation. The gradient of one layer is

E_ e of(x;)
P00~ LxiorGe) ow] (32)

where p; € {a;, b;} and € represents the objective function and X, runs over the feature map. The

o€

term 3 o)

propagated from deeper layer. The gradient of activation for each parameter is

of (xy)

_ 0, X =0
da; - {xi, X <0 (33)
af(x) _ (xi x; =0
ST (R 4

Since TPReLU also optimize positive slope compared to PReLU, TPReLU controls non-linearity of

networks easier than PReLU.

PRelLU, a=-0.06 PRelLU-all, a=0.08, b=1.70

2.0

2.0

15}
1.0}
0.5

0.0F ]
—-1.0 —0.5 0.0 0.5 10 —-1.0 —0.5 0.0 0.5 1.0

Figure 3.2: Trained activation function on first layer of NIN. Left: PReLU Right: PReLU-all.

Figure 3.2 shows example of trained activation function PReLU and TPReLU. Because initial shapes
of two activation functions are same (f(x) = max(x, 0.25x)), though PReLU and TPReLU have
similar negative trained slope, TPReLU have higher positive slope so that TPReLU is more non-linear
than PReLU.

The number of activation function parameters is less than S-shaped ReLU because distribution of
layer’s input. It makes training translation parameters hard. Even if translation parameter initialized,

the performance of networks does not show conspicuous improvement. Furthermore, this initialization

10



method occurs overfitting. Due to these characteristics, networks are trained more rapidly and show
similar performance with S-shaped ReLU by using TPReLU.

11



3.2 LogUnits

The Weber-Fechner’s law [18] formulated the relationship between physical stimuli and perceived
change. In general, we are less sensitive of intensity difference as signal strength increases, for
example, brightness or loudness. In other words, necessary intensity difference to sense difference of
signal is proportional to intensity of signal. Weber’s law summarized this phenomenon with just
noticeable difference (JND) of human sensitivity by defining following equation.

UND)S _ constant (3.5)

where S is signal strength and (JND)dS means change of S required for JND for a given signal
strength S. In the Weber’s law, sensation begins above zero, if signal strength is larger than certain
threshold. Thus, Fechner derived Fechner’s law after Weber’s law expressed mathematically by rule
of thumb.

dp = k% (3.6)

where p is perceived intensity and k is constant. By integrating this formula,

p=kInS+C (3.7)

since p is zero when signal strength is threshold signal strength S,, we can solve C = kInS,. Thus,

derived Fechner’s law defined as
p= kln= (3.8)
So

Fechner’s law indicates that sensation of physical signal intensity is proportional to signal intensity.
Based on the Fechner’s law [18], we derived LogUnits activation to imitate sensitivity of human’s

vision system. It is defined as
f(x;) = sign(x;)Ailogy g, (1 + Cilx;]) (3.9)

where A; is channel-wise input scaling parameter, B; is channel-wise base parameter, C; is
channel-wise output scaling parameter and all parameters are trainable parameter. If we bring

logarithmic function of Fechner’s law as it is, the output of activation function can be complex

12



number because input can be negative. Thus, LogUnits itself have many constraints to get real number,
first, we added sign function to enlarge scale of negative input because of the range of pre-processed
dataset. Next, we set base of logarithmic function as 1 + |B;| because base of logarithmic function
should be larger than 1. Also, we set the number as 1 + C;|x;| because we need to make continuous

function for all range at 0. Figure 3.3 shows LogUnits function.

yi = sign(x;)A; logy4p, (1 + Gilx;|)
yt

LogUnits

Figure 3.3: General shape of LogUnits activation function.

The most important parameter is base parameter B;. Input and output scaling parameter A;,C; are
similar with trainable parameters of PReLU or slope parameters of S-shaped ReLU so that somewhat
helpful to the networks. However, base parameter B; scale functions output exponentially as B; = 0
so that f(x;) = oo.

Since this activation derived from sensitivity of human’s vision system, we used this function on the
first layer of the networks. When this activation used in all layers of network, then networks cannot be
trained well. The gradient of one layer for LogUnits is same but p; € {4;, B;, C;}. The gradient of

activation for each parameter is

oFCc) _ .
Lo = sign(xp) 10gys (1 + Cilx) (3.10)
of(x) _ . ' Ailog(1+Cilx;)

om, — S G gz el (3.11)
af(xi) R . Aixi

ac, S8 {oam e (3.12)

though LogUnits activation takes long time to calculate the output or gradient of error, it doesn’t
affect much on the networks because LogUnits are used on the first layer only when networks are
deep.

When we use LogUnits with ReLU, networks don’t show state-0f-the-art performance compared to

current state-of-the-art activation function like ELUs or S-shaped ReLU. But since LogUnits are

13



perception activation of the vision system, we can use another activation function except first layer of
the networks. For example, we can use LeakyReLU or PReLU instead of ReLU to optimize
performance of networks and it is dealt on next chapter.

14



Chapter IV

Experimental Results

4.1 Experiment Settings

In this experiment, we evaluate our activation function to compare with other functions. To evaluate

activation functions, we constructed networks with 3 mlpconv layers and global average pooling(GAP)
proposed in NIN [9]. NIN is basis of GooglLeNet [10] and used to evaluate performance of RReLU

[12] and S-shaped ReLU [11]. We used NIN which is same structure with [9] as Table 4.1.

Name # of Channels / patch size Note

Convl 192 / 5x5

Ceepl 160/ 1x1

Ceep2 96/ 1x1 Max-pooling stride 3, pool size 2
50% dropout

Conv2 192 / 5x5

Ccecp3 192/ 1x1

Cccp4 192 / 1x1 Avg-pooling stride 3, pool size 2
50% dropout

Conv3 192/ 3x3

Coepd 192/ 1x1

Cocpb 10/ 1x1

GAP 8x8

Table 4.1: Networks structure.

The networks are trained with mini-batches of size 100, and initialized weights with uniform
distribution scaled by fan_in+fan_out [8]. Learning rate starts from 0.02, and divided by 10 after 200,
250, 300 epochs and set weight regularization 0.0005. We choose Keras as the platform to perform
our experiments. Our hardware information of the PCs we use includes Intel Core i7 4.0GHz CPU,
32G RAM and 1T hard disk, and NVIDIA GTX 960.
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4.2 Evaluation of ReLLU-based Activation Functions

4.2.1 CIFAR-10

The CIFAR-10 dataset [5] is composed of 10 classes of natural images with 50,000 training image
set and 10,000 testing image set. Each class have the same number of training and test images (5000,
1000). Each image has size 32x32. For dataset, we apply global contrast normalization and ZCA
whitening to shifted mean to zero and form it into a sphere as was used in the maxout networks [6].

Since LogUnits used in first layer of the network, we compare previous activations and except
LogUnits. Also, we divided S-shaped ReLU [11] into two cases whether applying adaptive
initialization after pre-training with same condition in S-shaped ReL U or not. Figure 4.1 and Table 4.4
shows comparison with TPReLU and previous activation functions on the CIFAR-10 dataset. In the
figure, SReL U refers S-shaped ReLU. We obtain a 91.60% test accuracy with TPReLU on this dataset,
which is 0.57% higher than S-shaped ReLU which is the state-of-the-art activation function. We pre-

trained S-shaped ReLU doesn’t outperform no pre-trained S-shaped ReLU because of overfitting.

4.2.2 CIFAR-100

CIFAR-100 dataset is same dataset with CIFAR-10 dataset but it divided into 100 classes with same
number of datasets. Thus, this dataset contains 500 training images and 100 test images per class.
Experimental settings are same with CIFAR-10 dataset. Figure 4.2 and Table shows comparison with
TPReLU and previous activation functions on CIFAR-100 dataset. We also outperform S-shaped
ReLU on this dataset by 0.33% higher test accuracy with TPReLU.

4.2.3 Trainable Parameter Analysis

PReLU [3], TPReLU, and S-shaped ReLU have trainable parameters. Thus, we analyze parameters
of each activation function when networks trained on CIFAR-10. From Figure 4.3 to 4.12 show these
parameters. Figure 4.3, 4.5 and 4.8 are graph of each layer, Figure 4.4, 4.6, 4.7 and 4.9-12 are the
histogram of the parameters of each layer. The graph of each layer is drawn with averaged parameter
of all channel values. We bring parameters of S-shaped ReLU which is not initialized by input of
layers after pre-training.

Generally, the parameters of PReLU and TPReLU show Gaussian distribution throughout layers.
Since we have too small number of channels on the last layer (cccp6, 10 channels), we cannot observe
distribution on that layer. Thus, we assume that the average parameter of channels represents

activation function of layer except last activation layer. The activation function tends to linear on the
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last layer of single mlpconv layer except last layer of the whole network. Except cccp2 and cccp4
layers, activation functions are analogous or more non-linear than ReLU [1]. This tendency appears
on both activation functions. However, TPReLU are more non-linear than PReLU except last layer so
that TPReLU deals with non-linearity better than PReLU.

Another observation with two activations is how many CCCP layers we need to construct one NIN-
layer. In this experiment, to generate one level of feature maps, mlpconv layer using one
convolutional layer and two CCCP layers. For example, activations of cccp2, cccp4 layer close to
linear function with PReLU. We need non-linear function because multi-layer perceptron with linear
function are same with single layer perceptron. Thus, we can see how many CCCP layers we need
with the linearity of PReLU or TPReLU.

The parameters of S-shaped ReLU a!,t! are almost unchanged. The left part of function almost
same with ShiftedReLU (= max(x, t|)) because most of parameters a! are not trained though t! are
trained. Because t! should be larger than t!, we constrained to t/ > 0 and its initial value set to
zero. After training, all t] trained to zero, a] is larger than one. Roughly speaking, all activations of

networks imitated shape of power function.
4.2.4 Training Speed Analysis

Table 4.2 shows training time per epoch on the networks with various activation functions and how
TPReLU is faster than S-shaped ReLU.

Activation Function | Training time of networks per epoch
No activation 755

Linear Unit 755

RelLU 83.5s

PReLU 105.1s

TPReLU 117.4s

S-shaped ReLU 211.1s

Table 4.2: Training time per epoch with various activation functions.
To compare with ReLU and other activation function, first we need to select proper implementation

of ReLU. Table 4.3 shows five different implementations of ReLU and its benchmark by comparing

computation time of forward-pass and backward-pass.
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ReLU(x) Forward-pass Backward-pass | Total
= max(x, 0) 1.022 0.915 1.937
=x-(x>0) 1.104 0.835 1.939
= 0.5(x + |x|) 1.018 0.828 1.846
= 0.5x(sign(x) + 1) 1.017 0.827 1.844
-{ 3 20 1.104 0.836 1.94

Table 4.3: Implementation of various ReLU and computation time in seconds. The size of input patch
is 512 x 32 x 32 x 100.

Among five implementations, third and fourth implementations are best. But the third and fifth
implementations must be used to implement PReL U, so that third one is used to implement remaining
activation functions. Based on this implementation, function relu is defined to make activation

functions as following equation.
relu(x,a = 0,M) = min(0.5(1 + a)x + 0.5(1 — a)|x|, M) 4.1)
where x is input, a is slope of negative part, M is max value to limit of formula but only used in

S-shaped ReLU. In this function, only input x is a required parameter. With this formula, we can

make formula of remaining activation functions.

ReLU(x) = relu(x) = 0.5(x + |x]) 4.2)
PReLU(x, a) = relu(x,a) = 0.5(x + |x]) + 0.5a(x — |x|) (4.3
TPReLU(x,a,b) = b - relu(x,a/b) = 0.5b(x + |x|) + 0.5a(x — |x|) (4.4)

S — shaped ReLU(x, t;, a;, t,, a,) = t; + relu(x — t;, a;, trq — t;) + a, - relu(x — t,.,) (4.5)

where a,b of PReLU and TPReLU are slope parameters of negative and positive part, and parameter
t,, Of S-shaped RelLU added to prevent t; > t, case. Since S-shaped ReLU composed three linear
pieces, we need two relu functions to make this function because relu function can represent only two

linear pieces. Thus, we formulate left and center part of S-shaped ReLU as relu(x — t;, a;, tyq — t;),
and right part as a, - relu(x — t,).

By comparing training time of networks whether ReLU is used or not, we can derive that ReLU
takes 8.5 seconds due to absolute function of ReLU because linear component doesn’t affect
computation time. Next, PReLU takes 21.6 seconds longer than ReLU since PReLU contains
additional component 0.5a(x — |x|). This component also contains absolute operation, but due to

trainable parameter a, two components 0.5(x + |x|) and 0.5a(x — |x|) are distinguished.
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Therefore, the reason why PReL U takes 21.6 seconds longer than ReLU are absolute operation (8.5s)
and training parameters (13.1s). Also, add positive slope trainable parameters on the PReLU to make
TPReLU, it only takes 12.3 seconds longer than PReLU and taking time to training additional
parameter b of TPReLU is similar to training parameter a of PReLU. Because S-shaped RelLU
have two relu functions and each relu of S-shaped ReLU takes many parameters, S-shaped RelLU
takes twice as long as PReLU, whereas TPReLU only takes about 10% longer than PReLU. In
conclusion, PReLU takes 44% less time than S-shaped ReLU to training.
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Figure 4.1: Train and test loss/accuracy of Network in Network [9] on CIFAR-10 dataset [5] with

several activation functions except LogUnits.

Activation f(xp) Initial Parameters Test Accuracy
ReLU max(x;, 0) - 88.56
LeakyRelLU max(x;, 0.01x;) - 88.33
. >
PReLU {x" X 20 a; = 0.25 90.25
a;xi, X <0
Xji» Xji =0
RReLU 1/a;; € U(3,8) 88.32
ajixji, in <0
b:x: >0
TPReLU { o = a; =025, b =1 91.60
a;Xxi, X <0
Gai(n —t) x 24 t;=0,a, =02,
SReLU X, th >x; >t 91.03
Ly gl ! ! tr=0,a,=1
i+ai(x —t), x <t
SRelLU - Initialize after pre-train® 89.65
ShiftedReLU | max(x;, —1) - 88.49
>
ELU {x’ x =20 a=1 88.73
alexp(x) —1), x <0

Table 4.4: Comparison of activation functions with formula and its test accuracy on CIFAR-10 dataset.
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Figure 4.2: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with

several activation functions.

Activation Initial Parameters Test Accuracy
ReLU - 63.90
LeakyReLU - 61.64
PReLU a; =0.25 66.96
RReLU 1/a; € U(3,8) 66.42
TPReLU a; =025 b =1 69.27
SRelU h=0a=02 68.94
r=0a.=1
SReLU Initialize after pre-train? 66.53
ShiftedReLU - 65.67
ELU a=1 64.79

Table 4.5: Comparison of activation functions with formula and its test accuracy on CIFAR-100

dataset.

L Pre-trained after 10 epochs and initialize t” to 10% largest input of dataset. Thus, spiking epoch is different in this case.
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Figure 4.3: Graph of each layer with activation PReLU [3].
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4.3 Evaluation of LogUnits Activation Functions

First, we compare LogUnits and its variants to check whether we need each scale parameter or we
need LogUnits. Figure 4.13 shows train/test loss and accuracy of each networks with LogUnits
variants. For each network, LogUnits variants are used on the first layer only, for remaining layers,
RelLU is used. We compared LogUnits with LnUnits where base parameter B is fixed at Euler’s
number e. Also, we compared twofold version of LogUnits where each parameter A,B,C are
divided into positive and negative part. Accordingly, each parameter is trained separately on each part.

Next, we observed that scale of the LogUnits output is different considerably in each channel. For
that reason, we found that LogUnits don’t need small output channel and removed them. Namely, we
reduced (shrinked) the number of channel of convolutional layer using LogUnits from 192 to 50.
Lastly, SignUnits and TanhUnits are used to check effectiveness of activation gradients and squashing

part. The formulas of these activation functions and initial parameters are arranged in Table 4.5.
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Figure 4.13: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with
ReLU and LogUnits variants.
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Initial Test

Activation f(x;) / Settings

Parameters Accuracy
LogUnits sign(x;) - A;logy 41, (Cilx;| + 1) A;,C;=1,B;=e| 904
LnUnits sign(x;) - A;In(C|x;| + 1) A, Ci=1 89.01

sign(x) 'Aflog1+|Bl_p|(Cf|xi| + 1),xi =0

LogUnits(twofold) ] n n
sign(x) - 4] log1+|Bln|(Cl- lx;] +1),x;, <0

AilCi = 1!Bi =e 90.0

LogUnits(shrinked) - [ Shrinked # of channels (192 — 50) A, Ci=1,B;=e 90.31
SignUnits A; - sign(x;) A =1 88.5
TanhUnits A; - tanh(x;) Ai=1 89.01

Table 4.6: Comparison of activation functions with LogUnits and its variants.

In Figure 4.13 and Table 4.6 shows that the performances of shrinked version of LogUnits and
twofold LogUnits are similar to LogUnits. The performances of LnUnits, SignUnits, TanhUnits are
worse than LogUnits, rather similar to ReLU. Twofold LogUnits using three more parameters than

LogUnits but doesn’t show such a performance.
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Figure 4.14: Trained parameters of LogUnits in NIN [9]. Each scattered
point represents parameter of each channel. From the upper left figure, each
plot shows parameter A, B, C, parameter A and C, parameter B and A, and

parameter B and C.
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Next, we analyzed trained parameters of LogUnits. Figure 4.14 shows trained parameters of each
channels. From the 3-d scattered upper left plot, we redraw a plot to verify the relationship of two
parameters. From these plots of Figure 4.14, we can simply figure out how each parameter associated
to others. As base parameter of LogUnits B smaller (B — 0), output of activation will be larger and
A, C tends to increases to magnify output larger. If not, all parameters of LogUnits stop training as in
Figure 4.15.

The Figure 4.16 shows reason why parameters stop training. In case of B > 0, the magnitude of
activation incommensurably smaller than B — 0 cases, these channels are neglected by next layer
when performing weighted sum also neglected when backpropagate gradients. In the Figure 4.17,
convolutional filters of first layer are displayed and compared two cases, ReLU activation on the first
layer, and LogUnits activation on the first layer. When LogUnits activation used on the first layer,
only some number of channels filters are activated as in right upper figure (B — 0). Activated filters
have relatively larger weight values (about 10~2) than deactivated filters (about 10~%) in right lower
figure. With these conditions, we derive deactivated filters do not need to classify images. For this
reason, we reduced the number of channel of first layer. We added Figure 4.18 to easily compare the
learning curve of LogUnits and shrinked version of LogUnits.
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Figure 4.15: Training curves of parameter A, B, C. Left figure shows one example among the B — 0

cases, right figure shows one example of other cases among all channels.
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Figure 4.16: The graph of activation function LogUnits. Left function

plotted with averaged parameters of the B — 0 cases, right function

plotted with averaged parameters of other cases.
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Figure 4.17: Visualized 192 filters first convolutional layer. Left: activation function of first layer is

ReLU. Right: activation function of first layer is LogUnits. In case of B — 0, filter is activated as

filters in right upper figure, otherwise, filter is deactivated as filters in right lower figure.
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Figure 4.18: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with

ReLU, LogUnits and shrinked version of LogUnits.
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Chapter V

Conclusion

In this thesis, we proposed two functions to improve image classification results with DCNNSs. First,
we reduced parameters of S-shaped ReLU to overcome limitation of translation parameters from
implementation of ReLU. Due to complexity, computations of activation function occupy more than
computations of neuron. Thus, S-shaped RelLU takes twice time as long as PReLU to training
networks, so that we proposed TPReLU which takes only 10% longer than PReLU. Next, inspired by
perception function of psychophysics and neuroscience, we proposed usage of log function on first
layer of DCNNs and showed. The experiment results show DCNNs with two proposed activation

functions improved the performance of the image classification task.
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