

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

Improved Activation Functions of Deep Convolutional

Neural Networks for Image Classification

Dae-Sik Lee

Department of Electrical Engineering

Graduate School of UNIST

2017

Improved Activation Functions of Deep Convolutional

Neural Networks for Image Classification

Dae-Sik Lee

Department of Electrical Engineering

Graduate School of UNIST

Abstract

In this thesis, we investigate the performance of various activation functions of deep convolutional

neural networks (DCNNs) and propose new activation functions. First, we propose twofold

parametric ReLU. We observed that time complexity of S-shaped ReLU is relatively huge due to the

computation of forward and backward-pass propagation. Thus we removed translation parameters of

S-shaped ReLU and design twofold parametric ReLU. Second, inspired by just noticeable difference

of the Weber's law, we reflect the property that subjective sensation is proportional to the logarithm of

image intensity. We formulate an activation function by modifying the logarithm function which is

used only on the first layer of DCNNs. Experimental results show that the performances of the

proposed activation functions are better than that of the existing activation functions.

Contents

I. Introduction -- 1

II. Related Work -- 3

2.1 Network in Network. -- 3

2.2 Linear Units. -- 6

III. Proposed Functions --- 9

3.1 Twofold Parametric ReLU -- 9

3.2 LogUnits --- 12

IV. Experimental Results --- 15

4.1 Experiment Settings --- 15

4.2 Evaluation of ReLU-based Activation Functions --- 16

4.2.1 CIFAR-10 -- 16

4.2.2 CIFAR-100 --- 16

4.2.3 Trainable Parameter Analysis -- 16

4.2.4 Training Speed Analysis -- 17

4.3 Evaluation of LogUnits Activation Functions -- 27

V. Conclusion -- 32

References --- 33

List of Figures

Figure 1.1 Mathematical expression of neuron model. …………………......……… 1

Figure 2.1 Two characteristics of convolutional neural networks. Left: sparse

connectivity. Right: shared weights. ……………………………………. 3

Figure 2.2 One example of deep convolutional neural networks (LeNet-5) [17]. …. 4

Figure 2.3 Description of network in network [9]. ………………………………… 4

Figure 2.4 One layer in network in network. ……………………………………….. 5

Figure 2.5 Graph of rectified linear units. ………………………………………….. 6

Figure 2.6 Variants of rectified linear units (LeakyReLU / PReLU / RReLU). ……. 7

Figure 2.7 S-shaped ReLU. Left: log-shaped function. Right: power-shaped

function. …………………………….......………………………………. 8

Figure 2.8 Exponential Linear Units. ………………………………………………. 8

Figure 3.1 Parametric ReLU and Twofold Parametric ReLU. ……………………... 9

Figure 3.2 Trained activation function on first layer of NIN. Left: PReLU Right:

PReLU-all. ……………………………..……………………………….. 10

Figure 3.3 General shape of LogUnits activation function. ………………………... 13

Figure 4.1 Train and test loss/accuracy of Network in Network [9] on CIFAR-10

dataset [5] with several activation functions except LogUnits. ……….... 20

Figure 4.2 Train and test loss/accuracy of Network in Network [9] on CIFAR-100

dataset with several activation functions. …………………..................... 21

Figure 4.3 Graph of each layer with activation PReLU [3]. ……………….............. 22

Figure 4.4 Negative slope parameters (𝑎𝑖) of each layer with PReLU. ……………. 22

Figure 4.5 Graph of each layer with activation TPReLU. ………………………...... 23

Figure 4.6 Negative slope parameters (𝑎𝑖) of each layer with TPReLU. …………... 23

Figure 4.7 Positive slope parameters (𝑏𝑖) of each layer with TPReLU. ……………. 24

Figure 4.8 Graph of each layer with activation S-shaped ReLU [11]. ……………... 24

Figure 4.9 Negative translation parameters (𝑡𝑖
𝑙) of each layer with S-shaped ReLU. 25

Figure 4.10 Negative slope parameters (𝑎𝑖
𝑙) of each layer with S-shaped ReLU. …… 25

Figure 4.11 Positive translation parameters (𝑡𝑖
𝑟) of each layer with S-shaped ReLU. 26

Figure 4.12 Positive slope parameters (𝑎𝑖
𝑟) of each layer with S-shaped ReLU. ……. 26

Figure 4.13 Train and test loss/accuracy of Network in Network [9] on CIFAR-100

dataset with ReLU and LogUnit variants. ……………………………… 27

Figure 4.14 Trained parameters of LogUnits in NIN [9]. Each scattered point

represents parameter of each channel. From the upper left figure, each

plot shows parameter 𝐴, 𝐵, 𝐶, parameter 𝐴 and 𝐶, parameter 𝐵 and

𝐴, and parameter 𝐵 and 𝐶. ... 28

Figure 4.15 Training curves of parameter 𝐴, 𝐵, 𝐶. Left figure shows one example

among the 𝐵 → 0 cases, right figure shows one example of other cases

among all channels. ……………………………………………………... 29

Figure 4.16 The graph of activation function LogUnits. Left function plotted with

averaged parameters of the 𝐵 → 0 cases, right function plotted with

averaged parameters of other cases. …………………………………….. 30

Figure 4.17 Visualized 192 filters first convolutional layer. Left: activation function

of first layer is ReLU. Right: activation function of first layer is

LogUnits. In case of 𝐵 → 0, filter is activated as filters in right upper

figure, otherwise, filter is deactivated as filters in right lower figure. ….. 30

Figure 4.18 Train and test loss/accuracy of Network in Network [9] on CIFAR-100

dataset with ReLU, LogUnits and shrinked version of LogUnits. ……… 31

List of Tables

Table 4.1 Networks structure. ……………………………………………………... 15

Table 4.2 Training time per epoch with various activation functions. …………….. 17

Table 4.3 Implementation of various ReLU and computation time in seconds. The

size of input patch is 512 × 32 × 32 × 100. ………………………......

18

Table 4.4 Comparison of activation functions with formula and its test accuracy

on CIFAR-10 dataset. …………………………………………………… 20

Table 4.5 Comparison of activation functions with formula and its test accuracy

on CIFAR-100 dataset. ……….. 21

Table 4.6 Comparison of activation functions with LogUnits and its variants. …… 28

Nomenclature

DCNNs Deep Convolutional Neural Networks

ReLU Rectified Linear Units

PReLU Parametric ReLU

RReLU Randomized LeakyReLU

CReLU Concatenated ReLU

JND Just Noticeable Difference

ELUs Exponential Linear Units

1

 Chapter I

Introduction

Deep Convolutional Neural Networks (DCNNs) used in image processing or computer vision like

image classification or object detection are special case of neural networks. Neural networks are graph

structure composed of artificial neurons as described in Figure 1.1. Single artificial neuron consists of

multiple input signals and its weights and output signal is calculated by applying activation function

to weighted sum of input signal. Feed-forward neural networks are unidirectional for overall structure,

which dealt with in this thesis, can be trained by backpropagation. Backpropagation uses chain-rule to

update gradient of weights.

DCNNs have two additional core characteristics compared to neural networks, sparse connectivity,

shared weights to use less training parameters. In DCNNs, biologically plausible activation function

like sigmoid or hyperbolic tangent used to apply non-linearity to the networks. However, because

DCNNs optimized by using backpropagation with chain-rule, squashing part of sigmoid or tanh

function causes vanishing gradient problem when 𝑛 of small numbers are multiplied. This problem

slows the training speed of the front layers. To solve this problem, rectified linear units (ReLU) [1]

proposed. ReLU has no upper limit so that using this activation, networks converge faster than

sigmoid or hyperbolic tangent function, also achieve better performance. But hard-zero area of ReLU

function has never activated neuron problem. This problem is irreversible so that we should set proper

learning rate to prevent this problem.

 After ReLU proposed, several improved variants of ReLU has been proposed. LeakyReLU [2] to

solve never activated neuron problem, and Parametrized ReLU (PReLU) [3] which is parameterized

version of PReLU. Adaptive Piecewise Linear Units (APL) [7] defined as a sum of hinge-shaped

functions. Randomized ReLU (RReLU) [12] is randomized version of PReLU to prevent overfitting

Figure 1.1: Mathematical expression of neuron model.

2

in the small dataset. S-shaped ReLU [11] imitates shape of power function or logarithmic function to

describe the relation between physical intensity and perceived intensity. Exponential Linear Units

(ELUs) [13] mentioned about bias effect of ReLU and whether other advanced activations are noise-

robust deactivation state or not. Concatenated ReLU (CReLU) [14] and Max-Min CNN [15] uses

negative part of activation function by concatenating convolutional output and negate of this. But they

cannot be called activation function, because they are one of structure in DCNNs.

Meanwhile, as in Weber’s law [18], just noticeable difference (JND) of brightness is proportional to

physical brightness intensity. Based on this law, Fechner derived that the sensitivity of brightness is

proportional to logarithmic function of its physical intensity.

In this thesis, we refine the S-shaped ReLU. Although S-shaped ReLU shows state-of-the-art

performance compared to previous activations, this function has some weakness, slower training time

due to complexity of function and its computation of forward and backward-pass. Thus, we propose

improved version of S-shaped ReLU by reducing unnecessary parameters. Next, based on Fechner’s

law, we propose another activation function, LogUnits. We can imitate human’s vision system by

using LogUnits only on the first layer of DCNNs as human visual system contains reception of light

from real-world at the first part of this system. In the experiment, we show that the combination of

two proposed function shows best performance compared to previous activation functions.

 This thesis organized as follows. Chapter 2 presents the related work. Chapter 3 describes the

proposed activation functions to improve performance for DCNNs. Chapter 4 shows the experimental

results. Chapter 5 includes the conclusion of this thesis.

3

 Chapter II

Related Work

2.1 Network in Network

 Network in Network [9] is one of state-of-the-art deep convolutional neural networks(DCNNs)

structure. Before that, consider about DCNNs first. Training image data using general neural networks

causes overfitting because neural networks have too many weights and connections. Moreover, image

itself contains duplicated information. Deep Neural Networks are neural networks which consist more

than two layers. DCNNs have two characteristics compared to deep neural networks, sparse

connectivity and shared weights.

Figure 2.1 explains how two characteristics works and how to solve overfitting problem and reduce

the number of parameters. First, sparse connectivity is that the output of next layer is connected

locally with previous layer. For example, in the layer 𝑚, the value of neuron is calculated by values

of neurons in the range of filter of layer 𝑚− 1. Remaining neurons are same with first neuron. They

are only connected to spatially nearest neurons, not all neurons of previous layer. In the convolutional

layer, they control sparsity of connection by adjusting size of filter. Next, shared weights

characteristic use same filter on the over whole input as right figure describes. To apply this

characteristic on the multi-channel 2-d input, assume that we need 𝑛 output feature maps for the next

layer. Then we need 𝑛 filters to get the value of next layer. Thus, convolutional layer is defined as

𝑌(𝑓, 𝑟𝑜𝑤, 𝑐𝑜𝑙) = ∑ ∑ ∑ 𝑋(𝑐, 𝑖, 𝑗)𝑊(𝑓, 𝑐, 𝑖, 𝑗)
𝑐𝑜𝑙+𝑐𝑜𝑙𝑓−1

𝑗=𝑐𝑜𝑙

𝑟𝑜𝑤+𝑟𝑜𝑤𝑓−1

𝑖=𝑟𝑜𝑤
𝐶
𝑐=1 (2.1)

where 𝐶 is the number of input layer channels, 𝑁𝑓 is the number of output layer channels,

Figure 2.1: Two characteristics of convolutional neural networks. Left: sparse

connectivity. Right: shared weights.

4

𝑟𝑜𝑤𝑓 , 𝑐𝑜𝑙𝑓 are the length of filter row and col and 𝑓 ∈ {1, 2,… ,𝑁𝑓}. Using these characteristics,

neural networks deal with images. DCNNs are constructed with this layer and pooling layer and fully-

connected layer.

Figure 2.2 shows one example of DCNNs, LeNet-5 [17], which is common DCNNs architecture. For

example, DCNNs need to solving image classification problem, there are three mainly used layers,

convolution layer, sub-sampling layer and fully-connected layer. Convolution layer derives several

feature maps from the input of layer using convolutional filter. Sub-sampling layer (pooling layer)

reduces dimensionality and removes redundant data among the features. Two kinds of layers are

alternately to get higher level features from low-level features. On the top of the networks, several

fully-connected layers which have full connections to previous layer are used to classify label of the

input.

 Among several improvements since LeNet-5 proposed, NIN is one of the state-of-the-art DCNNs

structure which described in Figure 2.3. The overall structure of NIN is the stack of mlpconv layers.

This layer is universal approximator by using multilayer perceptron layers per pixel after

1 layer

Figure 2.3: Description of network in network [9].

Figure 2.2: One example of deep convolutional neural networks (LeNet-5) [17].

5

convolutional layer instead of only convolutional layer (generalized linear model) so called mlpconv

layer. On the top layer, NIN uses global average pooling which covers whole feature map instead of

fully-connected layers to prevent overfitting because this layer doesn’t need to any parameters. Before

global average pooling, the number of feature map tuned to the number of classes so that each feature

map represents the confidence map of each class. Since we don’t need to construct fully-connected

networks which comprise large proportion of networks parameter, we can reduce the number of

parameter. This layer also invariant to translation since it sums out values of feature.

 Figure 2.4 depicts details of one mlpconv layer of NIN. On the first layer of mlpconv layer, arrange

standard convolutional layer which is composed by 3 by 3 or 5 by 5 filters. From next, several

convolutional layers composed by 1 by 1 filters are sequentially arranged. They called these layers

cascaded cross-channel parametric pooling(CCCP) layer since multi-layer perceptron per pixel is

sequentially placed after one convolutional layer. This means procedure works only across channel. In

other words, values of pixel are not joined to one pixel on the next layer and each channel value of the

next layer is parametrically calculated by previous layer.

Figure 2.4: One layer in network in network.

6

2.2 Linear Units

 Rectified Linear Unit

Rectified Linear Unit (ReLU) [1] is defined as

𝑓(𝑥𝑖) = max⁡(𝑥𝑖, 0), (2.2)

where 𝑥𝑖 is channel-wise input vector. Simplicity and no upper limitation of ReLU makes faster

backpropagation and convergence than sigmoid or tanh function. But negative-input part of

ReLU causes dying neuron problem if weights of artificial neuron always export its output to

negative value in following equation where 𝑧𝑖 is output vector and 𝑤𝑖 is weight vector.

𝑧𝑖 = ∑ 𝑤𝑖𝑥𝑖
𝑘
𝑖=0 . (2.3)

This problem is amplified as learning rate is higher. Once this problem occurs, it cannot be

recovered by stochastic gradient descent because dead neuron cannot get any gradient.

 LeakyReLU and Parameteric ReLU

LeakyReLU [2] and Parametric ReLU (PReLU) [3] resolved dying neuron problem by defining

left-side slope to nonzero value at the expense of hard-zero sparsity. LeakyReLU and PReLU are

defined as

𝑓(𝑥𝑖) = {
𝑥𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑖 ≥ 0
𝑎𝑖𝑥𝑖,⁡⁡⁡⁡𝑥𝑖 < 0

, (2.4)

where 𝑎𝑖 is small constant on the LeakyReLU. But LeakyReLU didn’t increase the performance

but received slightly faster convergence speed. In case of PReLU, 𝑎𝑖 is channel-wise or channel-

shared (layer-wise) trainable parameters. By training channel-wise or channel-shared slope

Figure 2.5: Graph of rectified linear units.

7

parameters, PReLU can be trained as per-channel or per-layer optimized activation function so

that can control non-linearity of each channel.

 Randomized LeakyReLU

Randomized LeakyReLU (RReLU) [12] is randomized version of LeakyReLU. RReLU is

defined as

𝑓(𝑥𝑗𝑖) = {
𝑥𝑗𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑗𝑖 ≥ 0

𝑎𝑗𝑖𝑥𝑗𝑖,⁡⁡⁡⁡𝑥𝑗𝑖 < 0
, (2.5)+

where 𝑥𝑗𝑖 represents input value of single neuron. In the RReLU network, slope value of each

neuron is random number sampled from uniform distribution 𝑈(𝑙, 𝑢) in the training phase. In the

test phase, all slope values are set to average value of uniform distribution. Because this scheme

applies regularization as in dropout [16], this function prevents overfitting for small dataset.

Graphs of Figure 2.6 show LeakyReLU / PReLU and RReLU. In addition, when negative slope

of the function is less than one, function can be formulated as 𝑓(𝑥𝑖) = max⁡(𝑥𝑖 , 𝑎𝑖𝑥𝑖).

 S-shaped ReLU

S-shaped ReLU [11] imitate shape of power function or logarithmic function. These functions

mainly based on basic laws in psychophysics and neural sciences. Figure 2.7 shows examples of

S-shaped ReLU. In the left figure, S-shaped ReLU imitates shape of logarithmic function. On the

other hand, right figure imitates shape of power function. S-shaped ReLU defined as

𝑓(𝑥) = {

𝑡𝑖
𝑟 + 𝑎𝑖

𝑟(𝑥𝑖 − 𝑡𝑖
𝑟), 𝑥𝑖 ≥ 𝑡𝑖

𝑟

𝑥𝑖,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑖
𝑟 > 𝑥𝑖 > 𝑡𝑖

𝑙

𝑡𝑖
𝑙 + 𝑎𝑖

𝑙(𝑥𝑖 − 𝑡𝑖
𝑙), 𝑥𝑖 ≤ 𝑡𝑖

𝑙

 , (2.6)

where 𝑡𝑖
𝑙 , 𝑡𝑖

𝑟 are translation parameter of left part and right part and 𝑎𝑖
𝑙 , 𝑎𝑖

𝑟 are slope of left part

Figure 2.6: Variants of rectified linear units (LeakyReLU / PReLU / RReLU).

8

of 𝑡𝑖
𝑙 and right part of 𝑡𝑖

𝑟. S-shaped ReLU imitate several functions not only convex functions

but also non-convex functions since it composed with three linear pieces. S-shaped ReLU needs

initialization process to get optimal performance because translation parameters wouldn’t be

trained sufficiently if distribution of layer’s input is far away from initial translation parameters.

 Exponential Linear Units

Exponential Linear Units(ELUs) [13] reduced bias shift effect so that bring gradient to natural

gradient and ensure noise-robust deactivation state. ELU is defined as

𝑓(𝑥) = {
𝑥,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 0
𝛼(exp(𝑥) − 1), 𝑥 < 0

, (2.7)

where 𝛼 is constant of ELUs. Since ReLU is not centered zero. ReLU function has bias shift

effect. Because of this effect, networks don’t bring normal gradient to natural gradient (steepest

descent direction) of error function and this effect retards learning speed. ELUs speed up learning

speed of networks. Though LeakyReLU, PReLU or RReLU also brings mean of activation

toward zero, ELUs argue that previous activation functions don’t ensure the noise-robust

deactivation state since its deactivation state varies and it increases variance of single neuron but

ELUs are constant so that decreases variance. Two improvements of ELUs make learning faster

and show lower generalization error. Figure 2.8 shows the graph of ELUs.

Figure 2.8: Exponential Linear Units.

Figure 2.7: S-shaped ReLU. Left: log-shaped function. Right: power-shaped function.

9

 Chapter III

Proposed Functions

3.1 Twofold Parametric ReLU

We proposed function which is added parameters on positive part of PReLU [3] or is removed

translation parameters of S-shaped ReLU [12]. Proposed function is called twofold parametric ReLU

(TPReLU) because two part of activation is parameterized about slope while PReLU parameterized

negative part only. TPReLU is defined as

𝑓(𝑥𝑖) = {
𝑏𝑖𝑥𝑖,⁡⁡⁡𝑥𝑖 ≥ 0
𝑎𝑖𝑥𝑖,⁡⁡⁡𝑥𝑖 < 0

 (3.1)

where 𝑎𝑖, 𝑏𝑖 are channel-wise trainable parameter of TPReLU. Figure 3.1 shows possible operation

range of PReLU and TPReLU.

Even if this function is special case of S-shaped ReLU (𝑡𝑖
𝑙 = 0, 𝑡𝑖

𝑟 = 0), we propose this function

because translation parameters of S-shaped ReLU is hard to training as they mentioned so that they

initialized translation parameters 𝑡𝑖
𝑟 after pre-training networks. For empirically, we don’t need to

training these parameters since it doesn’t affect to performance of S-shaped ReLU significantly.

Although the number of additional parameters of S-shaped ReLU is negligible, these parameters of

activation function can cause high time complexity on the forward-pass and backward-pass when

activation function has complex formula and many trainable parameters. Also, if we failed to initialize

Figure 3.1: Parametric ReLU and Twofold Parametric ReLU.

10

translation parameters correctly, performance becomes worse than ReLU. In conclusion, if we are not

careful with translation parameters, they are just useless parameters of the network. Thus, we only

need to train slope parameters and proposed activation function doesn’t show any deterioration and

faster than S-shaped ReLU.

TPReLU can be optimized by backpropagation. The gradient of one layer is

𝜕ℇ

𝜕𝑝𝑖
= ∑

𝜕ℇ

𝜕𝑓(𝑥𝑖)

𝜕𝑓(𝑥𝑖)

𝜕𝑝𝑖
𝑥𝑖 (3.2)

where 𝑝𝑖 ∈ {𝑎𝑖, 𝑏𝑖} and ℇ represents the objective function and Σ𝑥𝑖 runs over the feature map. The

term
𝜕ℇ

𝜕𝑓(𝑥𝑖)
 propagated from deeper layer. The gradient of activation for each parameter is

𝜕𝑓(𝑥𝑖)

𝜕𝑎𝑖
= {

0,⁡⁡⁡⁡𝑥𝑖 ≥ 0
𝑥𝑖,⁡⁡⁡𝑥𝑖 < 0

, (3.3)

𝜕𝑓(𝑥𝑖)

𝜕𝑏𝑖
= {

𝑥𝑖,⁡⁡⁡𝑥𝑖 ≥ 0
0,⁡⁡⁡⁡𝑥𝑖 < 0

. (3.4)

Since TPReLU also optimize positive slope compared to PReLU, TPReLU controls non-linearity of

networks easier than PReLU.

Figure 3.2 shows example of trained activation function PReLU and TPReLU. Because initial shapes

of two activation functions are same (𝑓(𝑥) = max⁡(𝑥, 0.25𝑥)), though PReLU and TPReLU have

similar negative trained slope, TPReLU have higher positive slope so that TPReLU is more non-linear

than PReLU.

The number of activation function parameters is less than S-shaped ReLU because distribution of

layer’s input. It makes training translation parameters hard. Even if translation parameter initialized,

the performance of networks does not show conspicuous improvement. Furthermore, this initialization

Figure 3.2: Trained activation function on first layer of NIN. Left: PReLU Right: PReLU-all.

11

method occurs overfitting. Due to these characteristics, networks are trained more rapidly and show

similar performance with S-shaped ReLU by using TPReLU.

12

3.2 LogUnits

The Weber-Fechner’s law [18] formulated the relationship between physical stimuli and perceived

change. In general, we are less sensitive of intensity difference as signal strength increases, for

example, brightness or loudness. In other words, necessary intensity difference to sense difference of

signal is proportional to intensity of signal. Weber’s law summarized this phenomenon with just

noticeable difference (𝐽𝑁𝐷) of human sensitivity by defining following equation.

(𝐽𝑁𝐷)𝑑𝑆

𝑆
= constant (3.5)

where 𝑆 is signal strength and (𝐽𝑁𝐷)𝑑𝑆 means change of 𝑆 required for 𝐽𝑁𝐷 for a given signal

strength 𝑆. In the Weber’s law, sensation begins above zero, if signal strength is larger than certain

threshold. Thus, Fechner derived Fechner’s law after Weber’s law expressed mathematically by rule

of thumb.

𝑑𝑝 = 𝑘
𝑑𝑆

𝑆
 (3.6)

where 𝑝 is perceived intensity and 𝑘 is constant. By integrating this formula,

𝑝 = 𝑘ln𝑆 + 𝐶 (3.7)

since 𝑝 is zero when signal strength is threshold signal strength 𝑆0, we can solve 𝐶 = 𝑘ln𝑆0. Thus,

derived Fechner’s law defined as

𝑝 = 𝑘ln
𝑆

𝑆0
 (3.8)

 Fechner’s law indicates that sensation of physical signal intensity is proportional to signal intensity.

Based on the Fechner’s law [18], we derived LogUnits activation to imitate sensitivity of human’s

vision system. It is defined as

𝑓(𝑥𝑖) = sign(𝑥𝑖)𝐴𝑖log1+|𝐵𝑖|(1 + 𝐶𝑖|𝑥𝑖|) (3.9)

where 𝐴𝑖 is channel-wise input scaling parameter, 𝐵𝑖 is channel-wise base parameter, 𝐶𝑖 is

channel-wise output scaling parameter and all parameters are trainable parameter. If we bring

logarithmic function of Fechner’s law as it is, the output of activation function can be complex

13

number because input can be negative. Thus, LogUnits itself have many constraints to get real number,

first, we added sign function to enlarge scale of negative input because of the range of pre-processed

dataset. Next, we set base of logarithmic function as 1 + |𝐵𝑖| because base of logarithmic function

should be larger than 1. Also, we set the number as 1 + 𝐶𝑖|𝑥𝑖| because we need to make continuous

function for all range at 0. Figure 3.3 shows LogUnits function.

The most important parameter is base parameter 𝐵i. Input and output scaling parameter 𝐴𝑖 , 𝐶𝑖 are

similar with trainable parameters of PReLU or slope parameters of S-shaped ReLU so that somewhat

helpful to the networks. However, base parameter 𝐵𝑖 scale functions output exponentially as 𝐵𝑖 → 0

so that 𝑓(𝑥𝑖) → ∞.

 Since this activation derived from sensitivity of human’s vision system, we used this function on the

first layer of the networks. When this activation used in all layers of network, then networks cannot be

trained well. The gradient of one layer for LogUnits is same but 𝑝𝑖 ∈ {𝐴𝑖, 𝐵𝑖 , 𝐶𝑖}. The gradient of

activation for each parameter is

𝜕𝑓(𝑥𝑖)

𝜕𝐴𝑖
= sign(𝑥𝑖) log1+|𝐵𝑖|(1 + 𝐶𝑖|𝑥𝑖|) (3.10)

𝜕𝑓(𝑥𝑖)

𝜕𝐵𝑖
= −sign(𝑥𝑖)

𝐴𝑖log(1+𝐶𝑖|𝑥𝑖|)

(1+|𝐵𝑖|) log
2(1+|𝐵𝑖|)

 (3.11)

𝜕𝑓(𝑥𝑖)

𝜕𝐶𝑖
= sign(𝑥𝑖)

𝐴𝑖𝑥𝑖

log(1+|𝐵𝑖|)(1+𝐶𝑖|𝑥𝑖|)
 (3.12)

though LogUnits activation takes long time to calculate the output or gradient of error, it doesn’t

affect much on the networks because LogUnits are used on the first layer only when networks are

deep.

 When we use LogUnits with ReLU, networks don’t show state-of-the-art performance compared to

current state-of-the-art activation function like ELUs or S-shaped ReLU. But since LogUnits are

Figure 3.3: General shape of LogUnits activation function.

14

perception activation of the vision system, we can use another activation function except first layer of

the networks. For example, we can use LeakyReLU or PReLU instead of ReLU to optimize

performance of networks and it is dealt on next chapter.

15

 Chapter IV

Experimental Results

4.1 Experiment Settings

In this experiment, we evaluate our activation function to compare with other functions. To evaluate

activation functions, we constructed networks with 3 mlpconv layers and global average pooling(GAP)

proposed in NIN [9]. NIN is basis of GoogLeNet [10] and used to evaluate performance of RReLU

[12] and S-shaped ReLU [11]. We used NIN which is same structure with [9] as Table 4.1.

Name # of Channels / patch size Note

Conv1 192 / 5x5

Cccp1 160 / 1x1

Cccp2 96 / 1x1
Max-pooling stride 3, pool size 2

50% dropout

Conv2 192 / 5x5

Cccp3 192 / 1x1

Cccp4 192 / 1x1
Avg-pooling stride 3, pool size 2

50% dropout

Conv3 192 / 3x3

Cccp5 192 / 1x1

Cccp6 10 / 1x1

GAP 8x8

Table 4.1: Networks structure.

The networks are trained with mini-batches of size 100, and initialized weights with uniform

distribution scaled by fan_in+fan_out [8]. Learning rate starts from 0.02, and divided by 10 after 200,

250, 300 epochs and set weight regularization 0.0005. We choose Keras as the platform to perform

our experiments. Our hardware information of the PCs we use includes Intel Core i7 4.0GHz CPU,

32G RAM and 1T hard disk, and NVIDIA GTX 960.

16

4.2 Evaluation of ReLU-based Activation Functions

4.2.1 CIFAR-10

 The CIFAR-10 dataset [5] is composed of 10 classes of natural images with 50,000 training image

set and 10,000 testing image set. Each class have the same number of training and test images (5000,

1000). Each image has size 32x32. For dataset, we apply global contrast normalization and ZCA

whitening to shifted mean to zero and form it into a sphere as was used in the maxout networks [6].

 Since LogUnits used in first layer of the network, we compare previous activations and except

LogUnits. Also, we divided S-shaped ReLU [11] into two cases whether applying adaptive

initialization after pre-training with same condition in S-shaped ReLU or not. Figure 4.1 and Table 4.4

shows comparison with TPReLU and previous activation functions on the CIFAR-10 dataset. In the

figure, SReLU refers S-shaped ReLU. We obtain a 91.60% test accuracy with TPReLU on this dataset,

which is 0.57% higher than S-shaped ReLU which is the state-of-the-art activation function. We pre-

trained S-shaped ReLU doesn’t outperform no pre-trained S-shaped ReLU because of overfitting.

4.2.2 CIFAR-100

CIFAR-100 dataset is same dataset with CIFAR-10 dataset but it divided into 100 classes with same

number of datasets. Thus, this dataset contains 500 training images and 100 test images per class.

Experimental settings are same with CIFAR-10 dataset. Figure 4.2 and Table shows comparison with

TPReLU and previous activation functions on CIFAR-100 dataset. We also outperform S-shaped

ReLU on this dataset by 0.33% higher test accuracy with TPReLU.

4.2.3 Trainable Parameter Analysis

PReLU [3], TPReLU, and S-shaped ReLU have trainable parameters. Thus, we analyze parameters

of each activation function when networks trained on CIFAR-10. From Figure 4.3 to 4.12 show these

parameters. Figure 4.3, 4.5 and 4.8 are graph of each layer, Figure 4.4, 4.6, 4.7 and 4.9-12 are the

histogram of the parameters of each layer. The graph of each layer is drawn with averaged parameter

of all channel values. We bring parameters of S-shaped ReLU which is not initialized by input of

layers after pre-training.

Generally, the parameters of PReLU and TPReLU show Gaussian distribution throughout layers.

Since we have too small number of channels on the last layer (cccp6, 10 channels), we cannot observe

distribution on that layer. Thus, we assume that the average parameter of channels represents

activation function of layer except last activation layer. The activation function tends to linear on the

17

last layer of single mlpconv layer except last layer of the whole network. Except cccp2 and cccp4

layers, activation functions are analogous or more non-linear than ReLU [1]. This tendency appears

on both activation functions. However, TPReLU are more non-linear than PReLU except last layer so

that TPReLU deals with non-linearity better than PReLU.

Another observation with two activations is how many CCCP layers we need to construct one NIN-

layer. In this experiment, to generate one level of feature maps, mlpconv layer using one

convolutional layer and two CCCP layers. For example, activations of cccp2, cccp4 layer close to

linear function with PReLU. We need non-linear function because multi-layer perceptron with linear

function are same with single layer perceptron. Thus, we can see how many CCCP layers we need

with the linearity of PReLU or TPReLU.

The parameters of S-shaped ReLU 𝑎𝑖
𝑙 , 𝑡𝑖

𝑟 are almost unchanged. The left part of function almost

same with ShiftedReLU (= max⁡(𝑥, 𝑡𝑙
𝑙)) because most of parameters 𝑎𝑖

𝑙 are not trained though 𝑡𝑖
𝑙 are

trained. Because 𝑡𝑖
𝑟 should be larger than 𝑡𝑖

𝑙, we constrained to 𝑡𝑖
𝑟 ≥ 0 and its initial value set to

zero. After training, all 𝑡𝑖
𝑟 trained to zero, 𝑎𝑖

𝑟 is larger than one. Roughly speaking, all activations of

networks imitated shape of power function.

4.2.4 Training Speed Analysis

Table 4.2 shows training time per epoch on the networks with various activation functions and how

TPReLU is faster than S-shaped ReLU.

Activation Function Training time of networks per epoch

No activation 75s

Linear Unit 75s

ReLU 83.5s

PReLU 105.1s

TPReLU 117.4s

S-shaped ReLU 211.1s

Table 4.2: Training time per epoch with various activation functions.

To compare with ReLU and other activation function, first we need to select proper implementation

of ReLU. Table 4.3 shows five different implementations of ReLU and its benchmark by comparing

computation time of forward-pass and backward-pass.

18

ReLU(𝑥) Forward-pass Backward-pass Total

= max⁡(𝑥, 0) 1.022 0.915 1.937

= 𝑥 ⋅ (𝑥 > 0) 1.104 0.835 1.939

= 0.5(𝑥 + |𝑥|) 1.018 0.828 1.846

= 0.5𝑥(sign(𝑥) + 1) 1.017 0.827 1.844

= {
𝑥,⁡⁡⁡𝑥 ≥ 0
0,⁡⁡⁡𝑥 < 0

 1.104 0.836 1.94

Table 4.3: Implementation of various ReLU and computation time in seconds. The size of input patch

is 512 × 32 × 32 × 100.

Among five implementations, third and fourth implementations are best. But the third and fifth

implementations must be used to implement PReLU, so that third one is used to implement remaining

activation functions. Based on this implementation, function relu is defined to make activation

functions as following equation.

relu(𝑥, 𝛼 = 0,𝑀) = min⁡(0.5(1 + 𝛼)𝑥 + 0.5(1 − 𝛼)|𝑥|,𝑀) (4.1)

where 𝑥 is input, 𝛼 is slope of negative part, 𝑀 is max value to limit of formula but only used in

S-shaped ReLU. In this function, only input 𝑥 is a required parameter. With this formula, we can

make formula of remaining activation functions.

ReLU(𝑥) = relu(𝑥) = ⁡0.5(𝑥 + |𝑥|) (4.2)

 PReLU(𝑥, 𝑎) = relu(𝑥, 𝑎) = 0.5(𝑥 + |𝑥|) + 0.5𝑎(𝑥 − |𝑥|) (4.3)

TPReLU(𝑥, 𝑎, 𝑏) = 𝑏 ⋅ relu(𝑥, 𝑎/𝑏) = 0.5𝑏(𝑥 + |𝑥|) + 0.5𝑎(𝑥 − |𝑥|) (4.4)

S − shaped⁡ReLU(𝑥, 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟, 𝑎𝑟) = 𝑡𝑙 + relu(𝑥 − 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟𝑎 − 𝑡𝑙) + 𝑎𝑟 ⋅ relu(𝑥 − 𝑡𝑟𝑎) (4.5)

where 𝑎, 𝑏 of PReLU and TPReLU are slope parameters of negative and positive part, and parameter

𝑡𝑟𝑎 of S-shaped ReLU added to prevent 𝑡𝑙 > 𝑡𝑟 case. Since S-shaped ReLU composed three linear

pieces, we need two relu functions to make this function because relu function can represent only two

linear pieces. Thus, we formulate left and center part of S-shaped ReLU as relu(𝑥 − 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟𝑎 − 𝑡𝑙),

and right part as 𝑎𝑟 ⋅ relu(𝑥 − 𝑡𝑟𝑎).

By comparing training time of networks whether ReLU is used or not, we can derive that ReLU

takes 8.5 seconds due to absolute function of ReLU because linear component doesn’t affect

computation time. Next, PReLU takes 21.6 seconds longer than ReLU since PReLU contains

additional component 0.5𝑎(𝑥 − |𝑥|). This component also contains absolute operation, but due to

trainable parameter 𝑎 , two components 0.5(𝑥 + |𝑥|) and 0.5𝑎(𝑥 − |𝑥|) are distinguished.

19

Therefore, the reason why PReLU takes 21.6 seconds longer than ReLU are absolute operation (8.5s)

and training parameters (13.1s). Also, add positive slope trainable parameters on the PReLU to make

TPReLU, it only takes 12.3 seconds longer than PReLU and taking time to training additional

parameter 𝑏 of TPReLU is similar to training parameter 𝑎 of PReLU. Because S-shaped ReLU

have two relu functions and each relu of S-shaped ReLU takes many parameters, S-shaped ReLU

takes twice as long as PReLU, whereas TPReLU only takes about 10% longer than PReLU. In

conclusion, PReLU takes 44% less time than S-shaped ReLU to training.

20

Activation 𝒇(𝒙𝒊) Initial Parameters Test Accuracy

ReLU max⁡(𝑥𝑖, 0) - 88.56

LeakyReLU max⁡(𝑥𝑖, 0.01𝑥𝑖) - 88.33

PReLU {
𝑥𝑖, 𝑥𝑖 ≥ 0

𝑎𝑖𝑥𝑖 , 𝑥𝑖 < 0
 𝑎𝑖 = 0.25 90.25

RReLU {
𝑥𝑗𝑖 , ⁡ 𝑥𝑗𝑖 ≥ 0

𝑎𝑗𝑖𝑥𝑗𝑖 , 𝑥𝑗𝑖 < 0
 1/𝑎𝑗𝑖 ∈ 𝑈(3,8) 88.32

TPReLU {
𝑏𝑖𝑥𝑖, 𝑥𝑖 ≥ 0

𝑎𝑖𝑥𝑖 , 𝑥𝑖 < 0
 𝑎𝑖 = 0.25, 𝑏𝑖 = 1 91.60

SReLU {

𝑡𝑖
𝑟 + 𝑎𝑖

𝑟(𝑥𝑖 − 𝑡𝑖
𝑟), 𝑥𝑖 ≥ 𝑡𝑖

𝑟

𝑥𝑖, ⁡𝑡𝑖
𝑟 > 𝑥𝑖 > 𝑡𝑖

𝑙

𝑡𝑖
𝑙 + 𝑎𝑖

𝑙(𝑥𝑖 − 𝑡𝑖
𝑙), ⁡𝑥𝑖 ≤ 𝑡𝑖

𝑙

𝑡𝑙 = 0, 𝑎𝑙 = 0.2,

𝑡𝑟 = 0, 𝑎𝑟 = 1
91.03

SReLU - Initialize after pre-train
1

89.65

ShiftedReLU max⁡(𝑥𝑖, −1) - 88.49

ELU {
𝑥, 𝑥 ≥ 0

𝛼(exp(𝑥) − 1), 𝑥 < 0
 𝛼 = 1 88.73

Table 4.4: Comparison of activation functions with formula and its test accuracy on CIFAR-10 dataset.

Figure 4.1: Train and test loss/accuracy of Network in Network [9] on CIFAR-10 dataset [5] with

several activation functions except LogUnits.

21

Activation Initial Parameters Test Accuracy

ReLU - 63.90

LeakyReLU - 61.64

PReLU 𝑎𝑖 = 0.25 66.96

RReLU 1/𝑎𝑗𝑖 ∈ 𝑈(3,8) 66.42

TPReLU 𝑎𝑖 = 0.25, 𝑏𝑖 = 1 69.27

SReLU
𝑡𝑙 = 0, 𝑎𝑙 = 0.2,

𝑡𝑟 = 0, 𝑎𝑟 = 1
68.94

SReLU Initialize after pre-train1 66.53

ShiftedReLU - 65.67

ELU 𝛼 = 1 64.79

Table 4.5: Comparison of activation functions with formula and its test accuracy on CIFAR-100

dataset.

1 Pre-trained after 10 epochs and initialize 𝑡𝑟 to 10% largest input of dataset. Thus, spiking epoch is different in this case.

Figure 4.2: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with

several activation functions.

22

Figure 4.4: Negative slope parameters (𝑎𝑖) of each layer with PReLU.

Figure 4.3: Graph of each layer with activation PReLU [3].

23

Figure 4.6: Negative slope parameters (𝑎𝑖) of each layer with TPReLU.

Figure 4.5: Graph of each layer with activation TPReLU.

24

Figure 4.7: Positive slope parameters (𝑏𝑖) of each layer with TPReLU.

Figure 4.8: Graph of each layer with activation S-shaped ReLU [11].

25

Figure 4.9: Negative translation parameters (𝑡𝑖
𝑙) of each layer with S-shaped ReLU.

Figure 4.10: Negative slope parameters (𝑎𝑖
𝑙) of each layer with S-shaped ReLU.

26

Figure 4.11: Positive translation parameters (𝑡𝑖
𝑟) of each layer with S-shaped ReLU.

Figure 4.12: Positive slope parameters (𝑎𝑖
𝑟) of each layer with S-shaped ReLU.

27

4.3 Evaluation of LogUnits Activation Functions

First, we compare LogUnits and its variants to check whether we need each scale parameter or we

need LogUnits. Figure 4.13 shows train/test loss and accuracy of each networks with LogUnits

variants. For each network, LogUnits variants are used on the first layer only, for remaining layers,

ReLU is used. We compared LogUnits with LnUnits where base parameter 𝐵 is fixed at Euler’s

number 𝑒. Also, we compared twofold version of LogUnits where each parameter 𝐴, 𝐵, 𝐶 are

divided into positive and negative part. Accordingly, each parameter is trained separately on each part.

Next, we observed that scale of the LogUnits output is different considerably in each channel. For

that reason, we found that LogUnits don’t need small output channel and removed them. Namely, we

reduced (shrinked) the number of channel of convolutional layer using LogUnits from 192 to 50.

Lastly, SignUnits and TanhUnits are used to check effectiveness of activation gradients and squashing

part. The formulas of these activation functions and initial parameters are arranged in Table 4.5.

Figure 4.13: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with

ReLU and LogUnits variants.

28

Activation 𝒇(𝒙𝒊) / Settings
Initial

Parameters

Test

Accuracy

LogUnits sign(𝑥𝑖) ⋅ 𝐴𝑖log1+|𝐵𝑖|(𝐶𝑖|𝑥𝑖| + 1) 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.4

LnUnits sign(𝑥𝑖) ⋅ 𝐴𝑖ln(𝐶|𝑥𝑖| + 1) 𝐴𝑖, 𝐶𝑖 = 1 89.01

LogUnits(twofold) {
sign(𝑥) ⋅ 𝐴𝑖

𝑝
log1+|𝐵𝑖

𝑝
|(𝐶𝑖

𝑝|𝑥𝑖| + 1), 𝑥𝑖 ≥ 0

sign(𝑥) ⋅ 𝐴𝑖
𝑛log1+|𝐵𝑖

𝑛|(𝐶𝑖
𝑛|𝑥𝑖| + 1), 𝑥𝑖 < 0

 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.0

LogUnits(shrinked) - / Shrinked # of channels (192 → 50) 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.31

SignUnits 𝐴𝑖 ⋅ sign(𝑥𝑖) 𝐴𝑖 = 1 88.5

TanhUnits 𝐴𝑖 ⋅ tanh⁡(𝑥𝑖) 𝐴𝑖 = 1 89.01

Table 4.6: Comparison of activation functions with LogUnits and its variants.

In Figure 4.13 and Table 4.6 shows that the performances of shrinked version of LogUnits and

twofold LogUnits are similar to LogUnits. The performances of LnUnits, SignUnits, TanhUnits are

worse than LogUnits, rather similar to ReLU. Twofold LogUnits using three more parameters than

LogUnits but doesn’t show such a performance.

Figure 4.14: Trained parameters of LogUnits in NIN [9]. Each scattered

point represents parameter of each channel. From the upper left figure, each

plot shows parameter 𝐴, 𝐵, 𝐶, parameter 𝐴 and 𝐶, parameter 𝐵 and 𝐴, and

parameter 𝐵 and 𝐶.

29

Next, we analyzed trained parameters of LogUnits. Figure 4.14 shows trained parameters of each

channels. From the 3-d scattered upper left plot, we redraw a plot to verify the relationship of two

parameters. From these plots of Figure 4.14, we can simply figure out how each parameter associated

to others. As base parameter of LogUnits 𝐵 smaller (𝐵 → 0), output of activation will be larger and

𝐴, 𝐶 tends to increases to magnify output larger. If not, all parameters of LogUnits stop training as in

Figure 4.15.

The Figure 4.16 shows reason why parameters stop training. In case of 𝐵 ≫ 0, the magnitude of

activation incommensurably smaller than 𝐵 → 0 cases, these channels are neglected by next layer

when performing weighted sum also neglected when backpropagate gradients. In the Figure 4.17,

convolutional filters of first layer are displayed and compared two cases, ReLU activation on the first

layer, and LogUnits activation on the first layer. When LogUnits activation used on the first layer,

only some number of channels filters are activated as in right upper figure (𝐵 → 0). Activated filters

have relatively larger weight values (about 10−2) than deactivated filters (about 10−4) in right lower

figure. With these conditions, we derive deactivated filters do not need to classify images. For this

reason, we reduced the number of channel of first layer. We added Figure 4.18 to easily compare the

learning curve of LogUnits and shrinked version of LogUnits.

Figure 4.15: Training curves of parameter 𝐴, 𝐵, 𝐶. Left figure shows one example among the 𝐵 → 0

cases, right figure shows one example of other cases among all channels.

30

Figure 4.16: The graph of activation function LogUnits. Left function

plotted with averaged parameters of the 𝐵 → 0 cases, right function

plotted with averaged parameters of other cases.

Figure 4.17: Visualized 192 filters first convolutional layer. Left: activation function of first layer is

ReLU. Right: activation function of first layer is LogUnits. In case of 𝐵 → 0, filter is activated as

filters in right upper figure, otherwise, filter is deactivated as filters in right lower figure.

31

Figure 4.18: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with

ReLU, LogUnits and shrinked version of LogUnits.

32

 Chapter V

Conclusion

 In this thesis, we proposed two functions to improve image classification results with DCNNs. First,

we reduced parameters of S-shaped ReLU to overcome limitation of translation parameters from

implementation of ReLU. Due to complexity, computations of activation function occupy more than

computations of neuron. Thus, S-shaped ReLU takes twice time as long as PReLU to training

networks, so that we proposed TPReLU which takes only 10% longer than PReLU. Next, inspired by

perception function of psychophysics and neuroscience, we proposed usage of log function on first

layer of DCNNs and showed. The experiment results show DCNNs with two proposed activation

functions improved the performance of the image classification task.

33

 References

[1] X. Glorot, A. Bordes, and Y. Bengio, “Deep Sparse Rectifier Neural Networks,” in Proc.

International Conference on Artificial Intelligence and Statistics, vol. 15, no. 106, 2011.

[2] A. Maas, A. Hannun, and A. Ng, “Rectifier Nonlinearities Improve Neural Networks Acoustic

Models,” International Conference on Machine Learning, vol. 30, no. 1, 2013.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing Human-level

Performance on ImageNet Classification,” International Conference on Computer Vision, pp. 1026-

1034, 2015.

[4] V. Nair, and G.E. Hinton, “Rectified Linear Units Improve Restricted Boltzmann Machines,”

International Conference on Machine Learning, vol. 27, pp. 807-814, 2010.

[5] A. Krizhevsky. “Learning Multiple Layers of Features from Tiny Images,” Master’s thesis,

Department of Computer Science, University of Toronto, 2009.

[6] I.J. Goodfellow, D. Warde-Farley, M. Mirza, A.C. Courville, and Y. Bengio, “Maxout Networks,”

International Conference on Machine Learning, vol. 30, pp. 1319-1327, 2013.

[7] F. Agostinelli, M. Hoffman, P. Sadowski, and P. Baldi, “Learning Activation Functions to

Improve Deep Neural Networks,” Computing Research Repository, abs/1412.6830, 2014.

[8] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep Feedforward Neural

Networks,” in Proc. International Conference on Artificial Intelligence and Statistics, pp. 249-256,

2010.

[9] M. Lin, Q. Chen, and S. Yan, “Network in Network,” International Conference on Learning

Representations, 2014.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich, “Going Deeper with Convolutions,” Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 1-9, 2015.

[11] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan. “Deep Learning with S-Shaped Rectified

Linear Activation,” Units Association for the Advancement of Artificial Intelligence, pp. 1737-1743,

2016.

[12] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical Evaluation of Rectified Activations in

Convolutional Network,” Computing Research Repository, abs/1505.00853, 2015.

[13] D.A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and Accurate Deep Networks Learning by

Exponential Linear Units (ELUs),” International Conference on Learning Representations, 2016.

[14] W. Shang, K. Sohn, D. Almeida, and H. Lee, “Understanding and Improving Convolutional

Neural Networks via Concatenated Rectified Linear Units.” Computing Research Repository,

abs/1603.05201, 2016.

34

[15] M. Blot, M. Cord and N. Thome, “Max-min convolutional neural networks for image

classification,” International Conference on Image Processing, pp. 3678-3682, 2016,

[16] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a

simple way to prevent neural networks from overfitting.” Journal of Machine Learning Research, pp.

1929-1958, 2014.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proceedings of the IEEE, vol. 86, pp. 2278–2324, 1998.

[18] G. Fechner, “Elements of Psychophysics,” vol. 1, 1966. [First published .1860].

	I. Introduction
	II. Related Work
	2.1 Network in Network
	2.2 Linear Units

	III. Proposed Functions
	3.1 Twofold Parametric ReLU
	3.2 LogUnits

	IV. Experimental Results
	4.1 Experiment Settings
	4.2 Evaluation of ReLU-based Activation Functions
	4.2.1 CIFAR-10
	4.2.2 CIFAR-100
	4.2.3 Trainable Parameter Analysis
	4.2.4 Training Speed Analysis

	4.3 Evaluation of LogUnits Activation Functions

	V. Conclusion
	References

<startpage>13
I. Introduction 1
II. Related Work 3
 2.1 Network in Network 3
 2.2 Linear Units 6
III. Proposed Functions 9
 3.1 Twofold Parametric ReLU 9
 3.2 LogUnits 12
IV. Experimental Results 15
 4.1 Experiment Settings 15
 4.2 Evaluation of ReLU-based Activation Functions 16
 4.2.1 CIFAR-10 16
 4.2.2 CIFAR-100 16
 4.2.3 Trainable Parameter Analysis 16
 4.2.4 Training Speed Analysis 17
 4.3 Evaluation of LogUnits Activation Functions 27
V. Conclusion 32
References 33
</body>

