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Abstract 

 

In this thesis, we investigate the performance of various activation functions of deep convolutional 

neural networks (DCNNs) and propose new activation functions. First, we propose twofold 

parametric ReLU. We observed that time complexity of S-shaped ReLU is relatively huge due to the 

computation of forward and backward-pass propagation. Thus we removed translation parameters of 

S-shaped ReLU and design twofold parametric ReLU. Second, inspired by just noticeable difference 

of the Weber's law, we reflect the property that subjective sensation is proportional to the logarithm of 

image intensity. We formulate an activation function by modifying the logarithm function which is 

used only on the first layer of DCNNs. Experimental results show that the performances of the 

proposed activation functions are better than that of the existing activation functions. 
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 Chapter I 

 

Introduction 

 

Deep Convolutional Neural Networks (DCNNs) used in image processing or computer vision like 

image classification or object detection are special case of neural networks. Neural networks are graph 

structure composed of artificial neurons as described in Figure 1.1. Single artificial neuron consists of 

multiple input signals and its weights and output signal is calculated by applying activation function 

to weighted sum of input signal. Feed-forward neural networks are unidirectional for overall structure, 

which dealt with in this thesis, can be trained by backpropagation. Backpropagation uses chain-rule to 

update gradient of weights. 

 

 

DCNNs have two additional core characteristics compared to neural networks, sparse connectivity, 

shared weights to use less training parameters. In DCNNs, biologically plausible activation function 

like sigmoid or hyperbolic tangent used to apply non-linearity to the networks. However, because 

DCNNs optimized by using backpropagation with chain-rule, squashing part of sigmoid or tanh 

function causes vanishing gradient problem when 𝑛 of small numbers are multiplied. This problem 

slows the training speed of the front layers. To solve this problem, rectified linear units (ReLU) [1] 

proposed. ReLU has no upper limit so that using this activation, networks converge faster than 

sigmoid or hyperbolic tangent function, also achieve better performance. But hard-zero area of ReLU 

function has never activated neuron problem. This problem is irreversible so that we should set proper 

learning rate to prevent this problem. 

 After ReLU proposed, several improved variants of ReLU has been proposed. LeakyReLU [2] to 

solve never activated neuron problem, and Parametrized ReLU (PReLU) [3] which is parameterized 

version of PReLU. Adaptive Piecewise Linear Units (APL) [7] defined as a sum of hinge-shaped 

functions. Randomized ReLU (RReLU) [12] is randomized version of PReLU to prevent overfitting 

Figure 1.1: Mathematical expression of neuron model. 
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in the small dataset. S-shaped ReLU [11] imitates shape of power function or logarithmic function to 

describe the relation between physical intensity and perceived intensity. Exponential Linear Units 

(ELUs) [13] mentioned about bias effect of ReLU and whether other advanced activations are noise-

robust deactivation state or not. Concatenated ReLU (CReLU) [14] and Max-Min CNN [15] uses 

negative part of activation function by concatenating convolutional output and negate of this. But they 

cannot be called activation function, because they are one of structure in DCNNs. 

Meanwhile, as in Weber’s law [18], just noticeable difference (JND) of brightness is proportional to 

physical brightness intensity. Based on this law, Fechner derived that the sensitivity of brightness is 

proportional to logarithmic function of its physical intensity. 

In this thesis, we refine the S-shaped ReLU. Although S-shaped ReLU shows state-of-the-art 

performance compared to previous activations, this function has some weakness, slower training time 

due to complexity of function and its computation of forward and backward-pass. Thus, we propose 

improved version of S-shaped ReLU by reducing unnecessary parameters. Next, based on Fechner’s 

law, we propose another activation function, LogUnits. We can imitate human’s vision system by 

using LogUnits only on the first layer of DCNNs as human visual system contains reception of light 

from real-world at the first part of this system. In the experiment, we show that the combination of 

two proposed function shows best performance compared to previous activation functions. 

 This thesis organized as follows. Chapter 2 presents the related work. Chapter 3 describes the 

proposed activation functions to improve performance for DCNNs. Chapter 4 shows the experimental 

results. Chapter 5 includes the conclusion of this thesis. 
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 Chapter II 

 

Related Work 

 

2.1 Network in Network 

 

 Network in Network [9] is one of state-of-the-art deep convolutional neural networks(DCNNs) 

structure. Before that, consider about DCNNs first. Training image data using general neural networks 

causes overfitting because neural networks have too many weights and connections. Moreover, image 

itself contains duplicated information. Deep Neural Networks are neural networks which consist more 

than two layers. DCNNs have two characteristics compared to deep neural networks, sparse 

connectivity and shared weights. 

 

 

Figure 2.1 explains how two characteristics works and how to solve overfitting problem and reduce 

the number of parameters. First, sparse connectivity is that the output of next layer is connected 

locally with previous layer. For example, in the layer 𝑚, the value of neuron is calculated by values 

of neurons in the range of filter of layer 𝑚− 1. Remaining neurons are same with first neuron. They 

are only connected to spatially nearest neurons, not all neurons of previous layer. In the convolutional 

layer, they control sparsity of connection by adjusting size of filter. Next, shared weights 

characteristic use same filter on the over whole input as right figure describes. To apply this 

characteristic on the multi-channel 2-d input, assume that we need 𝑛 output feature maps for the next 

layer. Then we need 𝑛 filters to get the value of next layer. Thus, convolutional layer is defined as 

 

𝑌(𝑓, 𝑟𝑜𝑤, 𝑐𝑜𝑙) = ∑ ∑ ∑ 𝑋(𝑐, 𝑖, 𝑗)𝑊(𝑓, 𝑐, 𝑖, 𝑗)
𝑐𝑜𝑙+𝑐𝑜𝑙𝑓−1

𝑗=𝑐𝑜𝑙

𝑟𝑜𝑤+𝑟𝑜𝑤𝑓−1

𝑖=𝑟𝑜𝑤
𝐶
𝑐=1   (2.1) 

 

where 𝐶  is the number of input layer channels, 𝑁𝑓  is the number of output layer channels, 

Figure 2.1: Two characteristics of convolutional neural networks. Left: sparse 

connectivity. Right: shared weights. 
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𝑟𝑜𝑤𝑓 , 𝑐𝑜𝑙𝑓 are the length of filter row and col and 𝑓 ∈ {1, 2,… ,𝑁𝑓}. Using these characteristics, 

neural networks deal with images. DCNNs are constructed with this layer and pooling layer and fully-

connected layer. 

 

 

Figure 2.2 shows one example of DCNNs, LeNet-5 [17], which is common DCNNs architecture. For 

example, DCNNs need to solving image classification problem, there are three mainly used layers, 

convolution layer, sub-sampling layer and fully-connected layer. Convolution layer derives several 

feature maps from the input of layer using convolutional filter. Sub-sampling layer (pooling layer) 

reduces dimensionality and removes redundant data among the features. Two kinds of layers are 

alternately to get higher level features from low-level features. On the top of the networks, several 

fully-connected layers which have full connections to previous layer are used to classify label of the 

input. 

 

 

 Among several improvements since LeNet-5 proposed, NIN is one of the state-of-the-art DCNNs 

structure which described in Figure 2.3. The overall structure of NIN is the stack of mlpconv layers. 

This layer is universal approximator by using multilayer perceptron layers per pixel after 

1 layer 

 
Figure 2.3: Description of network in network [9]. 

Figure 2.2: One example of deep convolutional neural networks (LeNet-5) [17]. 
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convolutional layer instead of only convolutional layer (generalized linear model) so called mlpconv 

layer. On the top layer, NIN uses global average pooling which covers whole feature map instead of 

fully-connected layers to prevent overfitting because this layer doesn’t need to any parameters. Before 

global average pooling, the number of feature map tuned to the number of classes so that each feature 

map represents the confidence map of each class. Since we don’t need to construct fully-connected 

networks which comprise large proportion of networks parameter, we can reduce the number of 

parameter. This layer also invariant to translation since it sums out values of feature. 

 

 

 Figure 2.4 depicts details of one mlpconv layer of NIN. On the first layer of mlpconv layer, arrange 

standard convolutional layer which is composed by 3 by 3 or 5 by 5 filters. From next, several 

convolutional layers composed by 1 by 1 filters are sequentially arranged. They called these layers 

cascaded cross-channel parametric pooling(CCCP) layer since multi-layer perceptron per pixel is 

sequentially placed after one convolutional layer. This means procedure works only across channel. In 

other words, values of pixel are not joined to one pixel on the next layer and each channel value of the 

next layer is parametrically calculated by previous layer. 

  

Figure 2.4: One layer in network in network. 
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2.2 Linear Units 

 

 Rectified Linear Unit 

Rectified Linear Unit (ReLU) [1] is defined as 

 

𝑓(𝑥𝑖) = max⁡(𝑥𝑖, 0),      (2.2) 

 

where 𝑥𝑖 is channel-wise input vector. Simplicity and no upper limitation of ReLU makes faster 

backpropagation and convergence than sigmoid or tanh function. But negative-input part of 

ReLU causes dying neuron problem if weights of artificial neuron always export its output to 

negative value in following equation where 𝑧𝑖 is output vector and 𝑤𝑖 is weight vector. 

 

𝑧𝑖 = ∑ 𝑤𝑖𝑥𝑖
𝑘
𝑖=0 .     (2.3) 

 

This problem is amplified as learning rate is higher. Once this problem occurs, it cannot be 

recovered by stochastic gradient descent because dead neuron cannot get any gradient. 

 

 

 LeakyReLU and Parameteric ReLU 

LeakyReLU [2] and Parametric ReLU (PReLU) [3] resolved dying neuron problem by defining 

left-side slope to nonzero value at the expense of hard-zero sparsity. LeakyReLU and PReLU are 

defined as 

 

𝑓(𝑥𝑖) = {
𝑥𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑖 ≥ 0
𝑎𝑖𝑥𝑖,⁡⁡⁡⁡𝑥𝑖 < 0

,      (2.4) 

 

where 𝑎𝑖 is small constant on the LeakyReLU. But LeakyReLU didn’t increase the performance 

but received slightly faster convergence speed. In case of PReLU, 𝑎𝑖 is channel-wise or channel-

shared (layer-wise) trainable parameters. By training channel-wise or channel-shared slope 

Figure 2.5: Graph of rectified linear units. 
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parameters, PReLU can be trained as per-channel or per-layer optimized activation function so 

that can control non-linearity of each channel. 

 

 Randomized LeakyReLU 

Randomized LeakyReLU (RReLU) [12] is randomized version of LeakyReLU. RReLU is 

defined as 

 

𝑓(𝑥𝑗𝑖) = {
𝑥𝑗𝑖 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥𝑗𝑖 ≥ 0

𝑎𝑗𝑖𝑥𝑗𝑖,⁡⁡⁡⁡𝑥𝑗𝑖 < 0
,       (2.5)+ 

 

where 𝑥𝑗𝑖 represents input value of single neuron. In the RReLU network, slope value of each 

neuron is random number sampled from uniform distribution 𝑈(𝑙, 𝑢) in the training phase. In the 

test phase, all slope values are set to average value of uniform distribution. Because this scheme 

applies regularization as in dropout [16], this function prevents overfitting for small dataset. 

Graphs of Figure 2.6 show LeakyReLU / PReLU and RReLU. In addition, when negative slope 

of the function is less than one, function can be formulated as 𝑓(𝑥𝑖) = max⁡(𝑥𝑖 , 𝑎𝑖𝑥𝑖). 

 

 

 S-shaped ReLU 

S-shaped ReLU [11] imitate shape of power function or logarithmic function. These functions 

mainly based on basic laws in psychophysics and neural sciences. Figure 2.7 shows examples of 

S-shaped ReLU. In the left figure, S-shaped ReLU imitates shape of logarithmic function. On the 

other hand, right figure imitates shape of power function. S-shaped ReLU defined as 

 

𝑓(𝑥) = {

𝑡𝑖
𝑟 + 𝑎𝑖

𝑟(𝑥𝑖 − 𝑡𝑖
𝑟), 𝑥𝑖 ≥ 𝑡𝑖

𝑟

𝑥𝑖,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑡𝑖
𝑟 > 𝑥𝑖 > 𝑡𝑖

𝑙

𝑡𝑖
𝑙 + 𝑎𝑖

𝑙(𝑥𝑖 − 𝑡𝑖
𝑙), 𝑥𝑖 ≤ 𝑡𝑖

𝑙

 ,   (2.6) 

 

where 𝑡𝑖
𝑙 , 𝑡𝑖

𝑟 are translation parameter of left part and right part and 𝑎𝑖
𝑙 , 𝑎𝑖

𝑟 are slope of left part 

Figure 2.6: Variants of rectified linear units (LeakyReLU / PReLU / RReLU). 
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of 𝑡𝑖
𝑙 and right part of 𝑡𝑖

𝑟. S-shaped ReLU imitate several functions not only convex functions 

but also non-convex functions since it composed with three linear pieces. S-shaped ReLU needs 

initialization process to get optimal performance because translation parameters wouldn’t be 

trained sufficiently if distribution of layer’s input is far away from initial translation parameters. 

 

 

 Exponential Linear Units 

Exponential Linear Units(ELUs) [13] reduced bias shift effect so that bring gradient to natural 

gradient and ensure noise-robust deactivation state. ELU is defined as 

 

𝑓(𝑥) = {
𝑥,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≥ 0
𝛼(exp(𝑥) − 1), 𝑥 < 0

,    (2.7) 

 

where 𝛼 is constant of ELUs. Since ReLU is not centered zero. ReLU function has bias shift 

effect. Because of this effect, networks don’t bring normal gradient to natural gradient (steepest 

descent direction) of error function and this effect retards learning speed. ELUs speed up learning 

speed of networks. Though LeakyReLU, PReLU or RReLU also brings mean of activation 

toward zero, ELUs argue that previous activation functions don’t ensure the noise-robust 

deactivation state since its deactivation state varies and it increases variance of single neuron but 

ELUs are constant so that decreases variance. Two improvements of ELUs make learning faster 

and show lower generalization error. Figure 2.8 shows the graph of ELUs. 

Figure 2.8: Exponential Linear Units. 

Figure 2.7: S-shaped ReLU. Left: log-shaped function. Right: power-shaped function. 
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 Chapter III 

 

Proposed Functions 

 

3.1 Twofold Parametric ReLU 

 

We proposed function which is added parameters on positive part of PReLU [3] or is removed 

translation parameters of S-shaped ReLU [12]. Proposed function is called twofold parametric ReLU 

(TPReLU) because two part of activation is parameterized about slope while PReLU parameterized 

negative part only. TPReLU is defined as 

 

𝑓(𝑥𝑖) = {
𝑏𝑖𝑥𝑖,⁡⁡⁡𝑥𝑖 ≥ 0
𝑎𝑖𝑥𝑖,⁡⁡⁡𝑥𝑖 < 0

       (3.1) 

 

where 𝑎𝑖, 𝑏𝑖 are channel-wise trainable parameter of TPReLU. Figure 3.1 shows possible operation 

range of PReLU and TPReLU. 

 

 

Even if this function is special case of S-shaped ReLU (𝑡𝑖
𝑙 = 0, 𝑡𝑖

𝑟 = 0), we propose this function 

because translation parameters of S-shaped ReLU is hard to training as they mentioned so that they 

initialized translation parameters 𝑡𝑖
𝑟 after pre-training networks. For empirically, we don’t need to 

training these parameters since it doesn’t affect to performance of S-shaped ReLU significantly. 

Although the number of additional parameters of S-shaped ReLU is negligible, these parameters of 

activation function can cause high time complexity on the forward-pass and backward-pass when 

activation function has complex formula and many trainable parameters. Also, if we failed to initialize 

Figure 3.1: Parametric ReLU and Twofold Parametric ReLU. 
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translation parameters correctly, performance becomes worse than ReLU. In conclusion, if we are not 

careful with translation parameters, they are just useless parameters of the network. Thus, we only 

need to train slope parameters and proposed activation function doesn’t show any deterioration and 

faster than S-shaped ReLU.  

TPReLU can be optimized by backpropagation. The gradient of one layer is 

 

𝜕ℇ

𝜕𝑝𝑖
= ∑

𝜕ℇ

𝜕𝑓(𝑥𝑖)

𝜕𝑓(𝑥𝑖)

𝜕𝑝𝑖
𝑥𝑖     (3.2) 

 

where 𝑝𝑖 ∈ {𝑎𝑖, 𝑏𝑖} and ℇ represents the objective function and Σ𝑥𝑖 runs over the feature map. The 

term 
𝜕ℇ

𝜕𝑓(𝑥𝑖)
 propagated from deeper layer. The gradient of activation for each parameter is 

 

𝜕𝑓(𝑥𝑖)

𝜕𝑎𝑖
= {

0,⁡⁡⁡⁡𝑥𝑖 ≥ 0
𝑥𝑖,⁡⁡⁡𝑥𝑖 < 0

,    (3.3) 

𝜕𝑓(𝑥𝑖)

𝜕𝑏𝑖
= {

𝑥𝑖,⁡⁡⁡𝑥𝑖 ≥ 0
0,⁡⁡⁡⁡𝑥𝑖 < 0

.    (3.4) 

 

Since TPReLU also optimize positive slope compared to PReLU, TPReLU controls non-linearity of 

networks easier than PReLU. 

 

 

Figure 3.2 shows example of trained activation function PReLU and TPReLU. Because initial shapes 

of two activation functions are same (𝑓(𝑥) = max⁡(𝑥, 0.25𝑥)), though PReLU and TPReLU have 

similar negative trained slope, TPReLU have higher positive slope so that TPReLU is more non-linear 

than PReLU. 

The number of activation function parameters is less than S-shaped ReLU because distribution of 

layer’s input. It makes training translation parameters hard. Even if translation parameter initialized, 

the performance of networks does not show conspicuous improvement. Furthermore, this initialization 

Figure 3.2: Trained activation function on first layer of NIN. Left: PReLU Right: PReLU-all. 
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method occurs overfitting. Due to these characteristics, networks are trained more rapidly and show 

similar performance with S-shaped ReLU by using TPReLU. 
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3.2 LogUnits 

 

The Weber-Fechner’s law [18] formulated the relationship between physical stimuli and perceived 

change. In general, we are less sensitive of intensity difference as signal strength increases, for 

example, brightness or loudness. In other words, necessary intensity difference to sense difference of 

signal is proportional to intensity of signal. Weber’s law summarized this phenomenon with just 

noticeable difference (𝐽𝑁𝐷) of human sensitivity by defining following equation. 

 

(𝐽𝑁𝐷)𝑑𝑆

𝑆
= constant    (3.5) 

 

where 𝑆 is signal strength and (𝐽𝑁𝐷)𝑑𝑆 means change of 𝑆 required for 𝐽𝑁𝐷 for a given signal 

strength 𝑆. In the Weber’s law, sensation begins above zero, if signal strength is larger than certain 

threshold. Thus, Fechner derived Fechner’s law after Weber’s law expressed mathematically by rule 

of thumb. 

 

𝑑𝑝 = 𝑘
𝑑𝑆

𝑆
        (3.6) 

 

where 𝑝 is perceived intensity and 𝑘 is constant. By integrating this formula, 

 

𝑝 = 𝑘ln𝑆 + 𝐶         (3.7) 

 

since 𝑝 is zero when signal strength is threshold signal strength 𝑆0, we can solve 𝐶 = 𝑘ln𝑆0. Thus, 

derived Fechner’s law defined as 

 

𝑝 = 𝑘ln
𝑆

𝑆0
     (3.8) 

 

 Fechner’s law indicates that sensation of physical signal intensity is proportional to signal intensity. 

Based on the Fechner’s law [18], we derived LogUnits activation to imitate sensitivity of human’s 

vision system. It is defined as 

 

𝑓(𝑥𝑖) = sign(𝑥𝑖)𝐴𝑖log1+|𝐵𝑖|(1 + 𝐶𝑖|𝑥𝑖|)   (3.9) 

 

where 𝐴𝑖  is channel-wise input scaling parameter, 𝐵𝑖  is channel-wise base parameter, 𝐶𝑖  is 

channel-wise output scaling parameter and all parameters are trainable parameter. If we bring 

logarithmic function of Fechner’s law as it is, the output of activation function can be complex 



13 

number because input can be negative. Thus, LogUnits itself have many constraints to get real number, 

first, we added sign function to enlarge scale of negative input because of the range of pre-processed 

dataset. Next, we set base of logarithmic function as 1 + |𝐵𝑖| because base of logarithmic function 

should be larger than 1. Also, we set the number as 1 + 𝐶𝑖|𝑥𝑖| because we need to make continuous 

function for all range at 0. Figure 3.3 shows LogUnits function. 

 

 

The most important parameter is base parameter 𝐵i. Input and output scaling parameter 𝐴𝑖 , 𝐶𝑖 are 

similar with trainable parameters of PReLU or slope parameters of S-shaped ReLU so that somewhat 

helpful to the networks. However, base parameter 𝐵𝑖 scale functions output exponentially as 𝐵𝑖 → 0 

so that 𝑓(𝑥𝑖) → ∞. 

 Since this activation derived from sensitivity of human’s vision system, we used this function on the 

first layer of the networks. When this activation used in all layers of network, then networks cannot be 

trained well. The gradient of one layer for LogUnits is same but 𝑝𝑖 ∈ {𝐴𝑖, 𝐵𝑖 , 𝐶𝑖}. The gradient of 

activation for each parameter is 

 

𝜕𝑓(𝑥𝑖)

𝜕𝐴𝑖
= sign(𝑥𝑖) log1+|𝐵𝑖|(1 + 𝐶𝑖|𝑥𝑖|)   (3.10) 

𝜕𝑓(𝑥𝑖)

𝜕𝐵𝑖
= −sign(𝑥𝑖)

𝐴𝑖log(1+𝐶𝑖|𝑥𝑖|)

(1+|𝐵𝑖|) log
2(1+|𝐵𝑖|)

   (3.11) 

𝜕𝑓(𝑥𝑖)

𝜕𝐶𝑖
= sign(𝑥𝑖)

𝐴𝑖𝑥𝑖

log(1+|𝐵𝑖|)(1+𝐶𝑖|𝑥𝑖|)
    (3.12) 

 

though LogUnits activation takes long time to calculate the output or gradient of error, it doesn’t 

affect much on the networks because LogUnits are used on the first layer only when networks are 

deep. 

 When we use LogUnits with ReLU, networks don’t show state-of-the-art performance compared to 

current state-of-the-art activation function like ELUs or S-shaped ReLU. But since LogUnits are 

Figure 3.3: General shape of LogUnits activation function. 
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perception activation of the vision system, we can use another activation function except first layer of 

the networks. For example, we can use LeakyReLU or PReLU instead of ReLU to optimize 

performance of networks and it is dealt on next chapter. 
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 Chapter IV 

 

Experimental Results 

 

4.1 Experiment Settings 

 

In this experiment, we evaluate our activation function to compare with other functions. To evaluate 

activation functions, we constructed networks with 3 mlpconv layers and global average pooling(GAP) 

proposed in NIN [9]. NIN is basis of GoogLeNet [10] and used to evaluate performance of RReLU 

[12] and S-shaped ReLU [11]. We used NIN which is same structure with [9] as Table 4.1. 

 

Name # of Channels / patch size Note 

Conv1 192 / 5x5  

Cccp1 160 / 1x1  

Cccp2 96 / 1x1 
Max-pooling stride 3, pool size 2 

50% dropout 

Conv2 192 / 5x5  

Cccp3 192 / 1x1  

Cccp4 192 / 1x1 
Avg-pooling stride 3, pool size 2 

50% dropout 

Conv3 192 / 3x3  

Cccp5 192 / 1x1  

Cccp6 10 / 1x1  

GAP 8x8  

Table 4.1: Networks structure. 

  

The networks are trained with mini-batches of size 100, and initialized weights with uniform 

distribution scaled by fan_in+fan_out [8]. Learning rate starts from 0.02, and divided by 10 after 200, 

250, 300 epochs and set weight regularization 0.0005. We choose Keras as the platform to perform 

our experiments. Our hardware information of the PCs we use includes Intel Core i7 4.0GHz CPU, 

32G RAM and 1T hard disk, and NVIDIA GTX 960. 
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4.2 Evaluation of ReLU-based Activation Functions 

 

4.2.1 CIFAR-10 

 

 The CIFAR-10 dataset [5] is composed of 10 classes of natural images with 50,000 training image 

set and 10,000 testing image set. Each class have the same number of training and test images (5000, 

1000). Each image has size 32x32. For dataset, we apply global contrast normalization and ZCA 

whitening to shifted mean to zero and form it into a sphere as was used in the maxout networks [6]. 

 Since LogUnits used in first layer of the network, we compare previous activations and except 

LogUnits. Also, we divided S-shaped ReLU [11] into two cases whether applying adaptive 

initialization after pre-training with same condition in S-shaped ReLU or not. Figure 4.1 and Table 4.4 

shows comparison with TPReLU and previous activation functions on the CIFAR-10 dataset. In the 

figure, SReLU refers S-shaped ReLU. We obtain a 91.60% test accuracy with TPReLU on this dataset, 

which is 0.57% higher than S-shaped ReLU which is the state-of-the-art activation function. We pre-

trained S-shaped ReLU doesn’t outperform no pre-trained S-shaped ReLU because of overfitting. 

 

4.2.2 CIFAR-100 

 

CIFAR-100 dataset is same dataset with CIFAR-10 dataset but it divided into 100 classes with same 

number of datasets. Thus, this dataset contains 500 training images and 100 test images per class. 

Experimental settings are same with CIFAR-10 dataset. Figure 4.2 and Table shows comparison with 

TPReLU and previous activation functions on CIFAR-100 dataset. We also outperform S-shaped 

ReLU on this dataset by 0.33% higher test accuracy with TPReLU. 

 

4.2.3 Trainable Parameter Analysis 

 

PReLU [3], TPReLU, and S-shaped ReLU have trainable parameters. Thus, we analyze parameters 

of each activation function when networks trained on CIFAR-10. From Figure 4.3 to 4.12 show these 

parameters. Figure 4.3, 4.5 and 4.8 are graph of each layer, Figure 4.4, 4.6, 4.7 and 4.9-12 are the 

histogram of the parameters of each layer. The graph of each layer is drawn with averaged parameter 

of all channel values. We bring parameters of S-shaped ReLU which is not initialized by input of 

layers after pre-training. 

Generally, the parameters of PReLU and TPReLU show Gaussian distribution throughout layers. 

Since we have too small number of channels on the last layer (cccp6, 10 channels), we cannot observe 

distribution on that layer. Thus, we assume that the average parameter of channels represents 

activation function of layer except last activation layer. The activation function tends to linear on the 
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last layer of single mlpconv layer except last layer of the whole network. Except cccp2 and cccp4 

layers, activation functions are analogous or more non-linear than ReLU [1]. This tendency appears 

on both activation functions. However, TPReLU are more non-linear than PReLU except last layer so 

that TPReLU deals with non-linearity better than PReLU.  

Another observation with two activations is how many CCCP layers we need to construct one NIN-

layer. In this experiment, to generate one level of feature maps, mlpconv layer using one 

convolutional layer and two CCCP layers. For example, activations of cccp2, cccp4 layer close to 

linear function with PReLU. We need non-linear function because multi-layer perceptron with linear 

function are same with single layer perceptron. Thus, we can see how many CCCP layers we need 

with the linearity of PReLU or TPReLU. 

The parameters of S-shaped ReLU 𝑎𝑖
𝑙 , 𝑡𝑖

𝑟 are almost unchanged. The left part of function almost 

same with ShiftedReLU (= max⁡(𝑥, 𝑡𝑙
𝑙)) because most of parameters 𝑎𝑖

𝑙 are not trained though 𝑡𝑖
𝑙 are 

trained. Because 𝑡𝑖
𝑟 should be larger than 𝑡𝑖

𝑙, we constrained to 𝑡𝑖
𝑟 ≥ 0 and its initial value set to 

zero. After training, all 𝑡𝑖
𝑟 trained to zero, 𝑎𝑖

𝑟 is larger than one. Roughly speaking, all activations of 

networks imitated shape of power function. 

 

4.2.4 Training Speed Analysis 

 

Table 4.2 shows training time per epoch on the networks with various activation functions and how 

TPReLU is faster than S-shaped ReLU. 

 

Activation Function Training time of networks per epoch 

No activation 75s 

Linear Unit 75s 

ReLU 83.5s 

PReLU 105.1s 

TPReLU 117.4s 

S-shaped ReLU 211.1s 

Table 4.2: Training time per epoch with various activation functions. 

  

To compare with ReLU and other activation function, first we need to select proper implementation 

of ReLU. Table 4.3 shows five different implementations of ReLU and its benchmark by comparing 

computation time of forward-pass and backward-pass. 
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ReLU(𝑥)  Forward-pass Backward-pass Total 

= max⁡(𝑥, 0)  1.022 0.915 1.937 

= 𝑥 ⋅ (𝑥 > 0)  1.104 0.835 1.939 

= 0.5(𝑥 + |𝑥|)  1.018 0.828 1.846 

= 0.5𝑥(sign(𝑥) + 1)  1.017 0.827 1.844 

= {
𝑥,⁡⁡⁡𝑥 ≥ 0
0,⁡⁡⁡𝑥 < 0

  1.104 0.836 1.94 

Table 4.3: Implementation of various ReLU and computation time in seconds. The size of input patch 

is 512 × 32 × 32 × 100. 

 

Among five implementations, third and fourth implementations are best. But the third and fifth 

implementations must be used to implement PReLU, so that third one is used to implement remaining 

activation functions. Based on this implementation, function relu is defined to make activation 

functions as following equation. 

 

relu(𝑥, 𝛼 = 0,𝑀) = min⁡(0.5(1 + 𝛼)𝑥 + 0.5(1 − 𝛼)|𝑥|,𝑀)  (4.1) 

 

where 𝑥 is input, 𝛼 is slope of negative part, 𝑀 is max value to limit of formula but only used in 

S-shaped ReLU. In this function, only input 𝑥 is a required parameter. With this formula, we can 

make formula of remaining activation functions. 

 

ReLU(𝑥) = relu(𝑥) = ⁡0.5(𝑥 + |𝑥|)   (4.2) 

 PReLU(𝑥, 𝑎) = relu(𝑥, 𝑎) = 0.5(𝑥 + |𝑥|) + 0.5𝑎(𝑥 − |𝑥|)     (4.3) 

TPReLU(𝑥, 𝑎, 𝑏) = 𝑏 ⋅ relu(𝑥, 𝑎/𝑏) = 0.5𝑏(𝑥 + |𝑥|) + 0.5𝑎(𝑥 − |𝑥|)  (4.4) 

S − shaped⁡ReLU(𝑥, 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟, 𝑎𝑟) = 𝑡𝑙 + relu(𝑥 − 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟𝑎 − 𝑡𝑙) + 𝑎𝑟 ⋅ relu(𝑥 − 𝑡𝑟𝑎) (4.5) 

 

where 𝑎, 𝑏 of PReLU and TPReLU are slope parameters of negative and positive part, and parameter 

𝑡𝑟𝑎 of S-shaped ReLU added to prevent 𝑡𝑙 > 𝑡𝑟 case. Since S-shaped ReLU composed three linear 

pieces, we need two relu functions to make this function because relu function can represent only two 

linear pieces. Thus, we formulate left and center part of S-shaped ReLU as relu(𝑥 − 𝑡𝑙 , 𝑎𝑙 , 𝑡𝑟𝑎 − 𝑡𝑙), 

and right part as 𝑎𝑟 ⋅ relu(𝑥 − 𝑡𝑟𝑎). 

By comparing training time of networks whether ReLU is used or not, we can derive that ReLU 

takes 8.5 seconds due to absolute function of ReLU because linear component doesn’t affect 

computation time. Next, PReLU takes 21.6 seconds longer than ReLU since PReLU contains 

additional component 0.5𝑎(𝑥 − |𝑥|). This component also contains absolute operation, but due to 

trainable parameter 𝑎 , two components 0.5(𝑥 + |𝑥|)  and 0.5𝑎(𝑥 − |𝑥|)  are distinguished. 
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Therefore, the reason why PReLU takes 21.6 seconds longer than ReLU are absolute operation (8.5s) 

and training parameters (13.1s). Also, add positive slope trainable parameters on the PReLU to make 

TPReLU, it only takes 12.3 seconds longer than PReLU and taking time to training additional 

parameter 𝑏 of TPReLU is similar to training parameter 𝑎 of PReLU. Because S-shaped ReLU 

have two relu functions and each relu of S-shaped ReLU takes many parameters, S-shaped ReLU 

takes twice as long as PReLU, whereas TPReLU only takes about 10% longer than PReLU. In 

conclusion, PReLU takes 44% less time than S-shaped ReLU to training. 
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Activation 𝒇(𝒙𝒊) Initial Parameters Test Accuracy 

ReLU max⁡(𝑥𝑖, 0)  - 88.56 

LeakyReLU max⁡(𝑥𝑖, 0.01𝑥𝑖)  - 88.33 

PReLU {
𝑥𝑖,       𝑥𝑖 ≥ 0

𝑎𝑖𝑥𝑖 ,    𝑥𝑖 < 0
  𝑎𝑖 = 0.25 90.25 

RReLU {
𝑥𝑗𝑖 ,    ⁡   𝑥𝑗𝑖 ≥ 0

𝑎𝑗𝑖𝑥𝑗𝑖 ,    𝑥𝑗𝑖 < 0
  1/𝑎𝑗𝑖 ∈ 𝑈(3,8) 88.32 

TPReLU {
𝑏𝑖𝑥𝑖,       𝑥𝑖 ≥ 0

𝑎𝑖𝑥𝑖 ,       𝑥𝑖 < 0
  𝑎𝑖 = 0.25, 𝑏𝑖 = 1 91.60 

SReLU {

𝑡𝑖
𝑟 + 𝑎𝑖

𝑟(𝑥𝑖 − 𝑡𝑖
𝑟),   𝑥𝑖 ≥ 𝑡𝑖

𝑟

𝑥𝑖,                   ⁡𝑡𝑖
𝑟 > 𝑥𝑖 > 𝑡𝑖

𝑙

𝑡𝑖
𝑙 + 𝑎𝑖

𝑙(𝑥𝑖 − 𝑡𝑖
𝑙),   ⁡𝑥𝑖 ≤ 𝑡𝑖

𝑙

  
𝑡𝑙 = 0, 𝑎𝑙 = 0.2, 

𝑡𝑟 = 0, 𝑎𝑟 = 1 
91.03 

SReLU -  Initialize after pre-train
1 

89.65 

ShiftedReLU max⁡(𝑥𝑖, −1)  - 88.49 

ELU {
𝑥,                          𝑥 ≥ 0

𝛼(exp(𝑥) − 1),  𝑥 < 0
  𝛼 = 1 88.73 

Table 4.4: Comparison of activation functions with formula and its test accuracy on CIFAR-10 dataset. 

Figure 4.1: Train and test loss/accuracy of Network in Network [9] on CIFAR-10 dataset [5] with 

several activation functions except LogUnits. 
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Activation Initial Parameters Test Accuracy 

ReLU - 63.90 

LeakyReLU - 61.64 

PReLU 𝑎𝑖 = 0.25 66.96 

RReLU 1/𝑎𝑗𝑖 ∈ 𝑈(3,8) 66.42 

TPReLU 𝑎𝑖 = 0.25, 𝑏𝑖 = 1 69.27 

SReLU 
𝑡𝑙 = 0, 𝑎𝑙 = 0.2, 

𝑡𝑟 = 0, 𝑎𝑟 = 1 
68.94 

SReLU Initialize after pre-train1 66.53 

ShiftedReLU - 65.67 

ELU 𝛼 = 1 64.79 

Table 4.5: Comparison of activation functions with formula and its test accuracy on CIFAR-100 

dataset. 

                                           

1 Pre-trained after 10 epochs and initialize 𝑡𝑟 to 10% largest input of dataset. Thus, spiking epoch is different in this case. 

Figure 4.2: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with 

several activation functions. 
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Figure 4.4: Negative slope parameters (𝑎𝑖) of each layer with PReLU. 

Figure 4.3: Graph of each layer with activation PReLU [3]. 
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Figure 4.6: Negative slope parameters (𝑎𝑖) of each layer with TPReLU. 

Figure 4.5: Graph of each layer with activation TPReLU. 
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Figure 4.7: Positive slope parameters (𝑏𝑖) of each layer with TPReLU. 

Figure 4.8: Graph of each layer with activation S-shaped ReLU [11]. 
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Figure 4.9: Negative translation parameters (𝑡𝑖
𝑙) of each layer with S-shaped ReLU. 

Figure 4.10: Negative slope parameters (𝑎𝑖
𝑙) of each layer with S-shaped ReLU. 
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Figure 4.11: Positive translation parameters (𝑡𝑖
𝑟) of each layer with S-shaped ReLU. 

Figure 4.12: Positive slope parameters (𝑎𝑖
𝑟) of each layer with S-shaped ReLU. 
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4.3 Evaluation of LogUnits Activation Functions 

 

First, we compare LogUnits and its variants to check whether we need each scale parameter or we 

need LogUnits. Figure 4.13 shows train/test loss and accuracy of each networks with LogUnits 

variants. For each network, LogUnits variants are used on the first layer only, for remaining layers, 

ReLU is used. We compared LogUnits with LnUnits where base parameter 𝐵 is fixed at Euler’s 

number 𝑒. Also, we compared twofold version of LogUnits where each parameter 𝐴, 𝐵, 𝐶  are 

divided into positive and negative part. Accordingly, each parameter is trained separately on each part. 

Next, we observed that scale of the LogUnits output is different considerably in each channel. For 

that reason, we found that LogUnits don’t need small output channel and removed them. Namely, we 

reduced (shrinked) the number of channel of convolutional layer using LogUnits from 192 to 50. 

Lastly, SignUnits and TanhUnits are used to check effectiveness of activation gradients and squashing 

part. The formulas of these activation functions and initial parameters are arranged in Table 4.5. 

 

 

Figure 4.13: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with 

ReLU and LogUnits variants. 
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Activation 𝒇(𝒙𝒊) / Settings 
Initial 

Parameters 

Test 

Accuracy 

LogUnits sign(𝑥𝑖) ⋅ 𝐴𝑖log1+|𝐵𝑖|(𝐶𝑖|𝑥𝑖| + 1) 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.4 

LnUnits sign(𝑥𝑖) ⋅ 𝐴𝑖ln(𝐶|𝑥𝑖| + 1) 𝐴𝑖, 𝐶𝑖 = 1 89.01 

LogUnits(twofold) {
sign(𝑥) ⋅ 𝐴𝑖

𝑝
log1+|𝐵𝑖

𝑝
|(𝐶𝑖

𝑝|𝑥𝑖| + 1), 𝑥𝑖 ≥ 0 

sign(𝑥) ⋅ 𝐴𝑖
𝑛log1+|𝐵𝑖

𝑛|(𝐶𝑖
𝑛|𝑥𝑖| + 1), 𝑥𝑖 < 0 

 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.0 

LogUnits(shrinked) - / Shrinked # of channels (192 → 50) 𝐴𝑖, 𝐶𝑖 = 1, 𝐵𝑖 = 𝑒 90.31 

SignUnits 𝐴𝑖 ⋅ sign(𝑥𝑖) 𝐴𝑖 = 1 88.5 

TanhUnits 𝐴𝑖 ⋅ tanh⁡(𝑥𝑖) 𝐴𝑖 = 1 89.01 

Table 4.6: Comparison of activation functions with LogUnits and its variants. 

 

In Figure 4.13 and Table 4.6 shows that the performances of shrinked version of LogUnits and 

twofold LogUnits are similar to LogUnits. The performances of LnUnits, SignUnits, TanhUnits are 

worse than LogUnits, rather similar to ReLU. Twofold LogUnits using three more parameters than 

LogUnits but doesn’t show such a performance. 

 

Figure 4.14: Trained parameters of LogUnits in NIN [9]. Each scattered 

point represents parameter of each channel. From the upper left figure, each 

plot shows parameter 𝐴, 𝐵, 𝐶, parameter 𝐴 and 𝐶, parameter 𝐵 and 𝐴, and 

parameter 𝐵 and 𝐶. 
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Next, we analyzed trained parameters of LogUnits. Figure 4.14 shows trained parameters of each 

channels. From the 3-d scattered upper left plot, we redraw a plot to verify the relationship of two 

parameters. From these plots of Figure 4.14, we can simply figure out how each parameter associated 

to others. As base parameter of LogUnits 𝐵 smaller (𝐵 → 0), output of activation will be larger and 

𝐴, 𝐶 tends to increases to magnify output larger. If not, all parameters of LogUnits stop training as in 

Figure 4.15. 

The Figure 4.16 shows reason why parameters stop training. In case of 𝐵 ≫ 0, the magnitude of 

activation incommensurably smaller than 𝐵 → 0 cases, these channels are neglected by next layer 

when performing weighted sum also neglected when backpropagate gradients. In the Figure 4.17, 

convolutional filters of first layer are displayed and compared two cases, ReLU activation on the first 

layer, and LogUnits activation on the first layer. When LogUnits activation used on the first layer, 

only some number of channels filters are activated as in right upper figure (𝐵 → 0). Activated filters 

have relatively larger weight values (about 10−2) than deactivated filters (about 10−4) in right lower 

figure. With these conditions, we derive deactivated filters do not need to classify images. For this 

reason, we reduced the number of channel of first layer. We added Figure 4.18 to easily compare the 

learning curve of LogUnits and shrinked version of LogUnits. 

 

 

 

Figure 4.15: Training curves of parameter 𝐴, 𝐵, 𝐶. Left figure shows one example among the 𝐵 → 0 

cases, right figure shows one example of other cases among all channels. 
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Figure 4.16: The graph of activation function LogUnits. Left function 

plotted with averaged parameters of the 𝐵 → 0  cases, right function 

plotted with averaged parameters of other cases. 

Figure 4.17: Visualized 192 filters first convolutional layer. Left: activation function of first layer is 

ReLU. Right: activation function of first layer is LogUnits. In case of 𝐵 → 0, filter is activated as 

filters in right upper figure, otherwise, filter is deactivated as filters in right lower figure. 
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Figure 4.18: Train and test loss/accuracy of Network in Network [9] on CIFAR-100 dataset with 

ReLU, LogUnits and shrinked version of LogUnits. 
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 Chapter V 

 

Conclusion 

 

 In this thesis, we proposed two functions to improve image classification results with DCNNs. First, 

we reduced parameters of S-shaped ReLU to overcome limitation of translation parameters from 

implementation of ReLU. Due to complexity, computations of activation function occupy more than 

computations of neuron. Thus, S-shaped ReLU takes twice time as long as PReLU to training 

networks, so that we proposed TPReLU which takes only 10% longer than PReLU. Next, inspired by 

perception function of psychophysics and neuroscience, we proposed usage of log function on first 

layer of DCNNs and showed. The experiment results show DCNNs with two proposed activation 

functions improved the performance of the image classification task. 
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