

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79716399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master's Thesis

QuickTalk: An Association-Free Communication

Method for IoT Devices in Proximity

Seongmin Ham

Department of Computer Science and Engineering

Graduate School of UNIST

2017

QuickTalk: An Association-Free Communication

Method for IoT Devices in Proximity

Seongmin Ham

Department of Computer Science and Engineering

Graduate School of UNIST

Abstract

IoT devices are in general considered to be straightforward to use. However, we find that there are a

number of situations where the usability becomes poor. The situations include but not limited to the

followings: 1) when initializing an IoT device, 2) when trying to control an IoT device which is initialized

and registered by another person, and 3) when trying to control an IoT device out of many of the same

type. We tackle these situations by proposing a new association-free communication method, QuickTalk.

QuickTalk lets a user device such as a smartphone pinpoint and activate an IoT device with the help of an

IR transmitter and communicate with the pinpointed IoT device through the broadcast channel of WiFi.

By the nature of its association-free communication, QuickTalk allows a user device to immediately give

a command to a specific IoT device in proximity even when the IoT device is uninitialized, unregistered to

the control interface of the user, or registered but being physically confused with others. Our experiments

of QuickTalk implemented on Raspberry Pi 2 devices show that the end-to-end delay of QuickTalk is

upper bounded by 2.5 seconds and its median is only about 0.74 seconds. We further confirm that even

when an IoT device has ongoing data sessions, QuickTalk can still establish a reliable communication

channel to the IoT device with little impact to the ongoing sessions.

Contents

1 INTRODUCTION 1

2 RELATED WORK 4

2.1 Networking Architecture . 4

2.2 Control Interface . 5

3 SYSTEM DESIGN 6

3.1 Problem Statement . 6

3.2 QuickTalk Architecture . 7

3.2.1 User Device . 7

3.2.2 IoT Device . 8

3.3 Technical Challenges . 8

3.3.1 IR Pinpointing . 8

3.3.2 Association-Free WiFi Communication . 9

4 PROPOSED METHODS 10

4.1 IR Pinpointing . 10

4.1.1 Validation . 11

4.2 Association-Free WiFi Communication . 12

4.2.1 Validation . 13

5 IMPLEMENTATION 15

5.1 User Device Implementation . 15

5.2 IoT Device Implementation . 17

6 EVALUATION 18

6.1 End-to-end delay of QuickTalk . 18

6.2 Coexistence with Ongoing Sessions . 21

7 CONCLUDING REMARKS 22

i

List of Figures

1 Controlling the IoT devices in proximity is not always straightforward. 1

2 Overview of the architecture of QuickTalk. 6

3 Vertical and horizontal views of the test platform. The distance and angles are controllable

as the IR transmitter is on a rotatable and movable cart and the IR receiver is on a rotational

cart. 10

4 The probability distribution of the received IR signal over the cases: decodable, partially

decodable, and undetectable, where the IR signal exchange is experimented at indoor

with varying (a) transmission angle (θ), (b) reception angle (φ), and (c) at outdoor with

aligned angles. 11

5 The CDFs of RTT from the association-free communication exploiting packet broadcasts.

(a) When there is no application-level retransmission, about 93.6% and 67.6% of packets

are replied within 0.5 seconds at an outdoor and an indoor environment, respectively.

(b) The percentages increase to 99.5% and 86.5% when adding the application-level

retransmission that retries after 0.25 seconds. 13

6 QuickTalk implementation for a user device (left) and for an IoT device (right). The

screen attached to the user device shows our user interface. 15

7 The topology used for the evaluations of QuickTalk. Ii denotes the packet arrival rate

(packets per second) of i-th ongoing CoAP communication session whereas IQuickTalk

stands for the packet arrival rate of QuickTalk. 18

8 We find that the end-to-end delay of QuickTalk is mainly affected by two major compo-

nents: Tsearch and Tbroadcast. 19

9 CDFs of (a) Tbroadcast when there are 4 competing CoAP sessions that have 2 or 10 packets

per second for each session and (b) Tsearch and the end-to-end delay. The end-to-end delay

of QuickTalk has its median at 0.74 seconds. 19

10 (a) The throughput of an download session at an IoT device and (b) the success rate of

QuickTalk communication with that IoT device when the download session coexists with

QuickTalk of various communication intervals. 20

ii

IoT
Device

?
?

IoT
Device

IoT
Device?

Access Point

Control interface in the cloudIoT Devices in Proximity

The user who set up
those IoT devices

A visitor who wants to
immediately control the
IoT devices at a place

control

Figure 1: Controlling the IoT devices in proximity is not always straightforward.

1 INTRODUCTION

In the last few years, IoT (Internet of Things) has been arguably one of the most commercially promoted

technical terms in the field of computer networks. Comparing to its early stage where IoT was just a

concept of connecting numerous small devices such as sensors, actuators, and embedded systems to

Internet, now it has become much more mature with a number of in-situ realizations. Such realizations that

are often found in the area of home automation include thermal controller [8], wattage monitor [9], gas

valve [7], and lighting controller [10]. These IoT devices are distinguished from their conventional forms

by having not only the ubiquitous accessibility but also the software control interface that guarantees

virtually the same or even improved usability compared to local transactions. Thanks to these properties,

IoT devices are considered to be convenient and easy to use.

However, we find that there are critical situations where the recognition of the high usability of IoT

devices becomes untrue. The critical situations and the problems therein are revealed by the following

use cases: a) Alice visited her parents’ house and found an IoT thermal controller. She wanted to change

the setting of the device but noticed that she cannot do anything without having the smartphone of her

mother, which previously set up the device, b) Bob who manages a restaurant bought a bunch of IoT

bulbs that can dynamically change brightness and color by programmed presets, but he realized that

controlling the bulbs individually is painful since putting separate names on all the densely installed bulbs

in a control interface and memorizing the names is far from being intuitive, and c) Charlie who wants

to publicize information such as air quality and traffic situation through outdoor IoT sensors planned

to distribute these information to the passing-by users. But he realized that there is no way to directly

deliver information to the users and the only solution is to display a web address or a QR code [11] to

access at each sensor, which is never friendly to the passing-by users. These problematic situations are

abstracted in Figure 1.

1

Situation a) points out that most IoT devices are only controllable by the user device which was used

to set up the IoT devices. As this situation exemplifies, even though she is one of the persons who are

authorized to control that IoT device, her smartphone is useless as a controller of that IoT device. It is

counter-intuitive to most non-tech savvy users.

Situation b) brings up a naming challenge. When there are only few IoT devices of the same type

in a place, naming is not an issue. However, as shown in the scenario, if a user has to control a set of

bulbs, for instance a hundred, that are installed closely to each other, a typical naming scheme such as

bulb:1 or bulb:living-room no longer works. Given the widely agreed future of IoT environments that

are of high-density deployments, the difficulty in controlling the devices by their names would be more

prominent in the near future.

Situation c) pulls out a more technical issue in which an IoT device that is already equipped with a

communication chipset such as WiFi is incapable of directly communicating with a user. This happens

because the WiFi of an IoT device is occupied by the purpose of communicating with its control interface

and is not listening to the users in proximity. There is no practical solution to this matter.

From the aforementioned problem statements, we observe that these problems root from a single

cause, that is lack of a feature which allows a user device to communicate with a specific IoT device

without going through an association process. We call this feature association-free communication for

the IoT devices in proximity. Once this feature is enabled, a user no longer suffers from the exemplified

situations. However implementing the feature brings new technical challenges: 1) how to pinpoint a

device in proximity and 2) how to set up a communication channel without an association process while

preserving existing sessions if there is any. We tackle these challenges by proposing QuickTalk that

uniquely combines IR (Infrared) signal emission and WiFi overhearing over the broadcast channel.

In a nutshell, QuickTalk at a user device utilizes IR to pinpoint and trigger an IoT device and to

deliver the ID of the user device (e.g., WiFi MAC address). Upon reception of the ID, the IoT device

keeps broadcasting the ID through its WiFi interface to its current WiFi channel so that the user device

can detect the channel of the IoT device by extracting the ID while sweeping the WiFi channels. Once

the channel is known, QuickTalk lets them to communicate with each other by WiFi broadcasts at that

channel.

We implement QuickTalk as software stacks for Raspberry Pi 2 devices that emulate a user device

and an IoT device with IR and WiFi interfaces. Our validation reveals that thanks to the strong directivity

nature of IR, QuickTalk can pinpoint and trigger an IoT device almost immediately with a narrow angle

of ±10 degree and also thanks to the nature of broadcast communication, QuickTalk allows ongoing

communications at the IoT device, if any, to coexist with the newly established broadcast communication.

These advantages make QuickTalk to be applicable to the IoT devices that are fresh out of the box and

2

even to the IoT devices that are densely deployed.

3

2 RELATED WORK

There exist a huge number of studies in the context of designing IoT systems. In this section, instead of

providing a broad introduction, we give our focus to the previous studies that are highly relevant to our

work in the following two aspects: 1) networking architecture and 2) control interface for IoT devices.

2.1 Networking Architecture

Early-stage IoT devices that showed little difference to the nodes of sensor networks were mostly relying

on synchronization-based networking methods, where each device accumulates its sensor readings and

periodically synchronizes the readings to a local or a remote server in batches [14]. Guinard et al. [19]

pointed out the networking inefficiency (e.g., overhead, data freshness) of using synchronized-based

methods in IoT systems and proposed a resource-oriented networking architecture which conforms to the

principles of REST (Representational State Transfer) and utilizes embedded HTTP (Hypertext Transfer

Protocol).

Later, IETF 6LoWPAN working group [16] raised performance issues of using HTTP or other TCP-

based protocols in the typical environment of operating IoT systems, which is highly constrained mainly

due to instability of network links, limited computing capability, and relative small battery capacity of

IoT devices.

To alleviate those issues, a light-weight protocol, CoAP (Constrained Application Protocol) was

proposed [25] and then was standardized by IETF (Internet Engineering Task Force) as RFC 7252 [24].

An experimental study by Leva et al. [22] showed that CoAP is indeed light-weight by demonstrating

that an IoT device can save about 70% of maintenance cost of battery when using CoAP compared to

using HTTP with total cost of ownership model. To achieve its goal, CoAP is designed to use UDP (User

Datagram Protocol), to be RESTful, and to be easily translatable to HTTP. Although CoAP allows direct

communication between IoT devices and their user devices, RFC 7252 suggests to use CoAP mainly

between the IoT devices and a HTTP proxy that serves as a gateway or a control hub for the user devices.

Because a HTTP proxy and user devices can communicate with HTTP in a regular manner, when a HTTP

proxy exists, it is not essential for the user devices to understand CoAP. A HTTP proxy can be typically

placed in the same network where IoT devices belong to but it is possible for the proxy to be placed in a

cloud platform to enable ubiquitous accessibility toward IoT devices. Placing a HTTP proxy in a cloud is

proposed by Kovatsch et al. [21] and this idea is now implemented in various commercial cloud platforms

such as Microsoft Azure [15], Amazon Web Service [5], and Apple iCloud [12].

4

2.2 Control Interface

Recent commercial IoT devices are mostly designed to be controlled by a web (e.g., Google The Physical

Web) or an application (e.g., Apple iHome) interface. Such interfaces are provided by the computational

capability of a HTTP proxy (or a control hub) which is located either at a local server (e.g., inside a

WiFi access point) or at a cloud platform. To hook up a new IoT device to such an interface, a user in

general is required to operate a simplistic web interface pre-installed in an IoT device through an open

WiFi connection [1]. Once the user interface is ready, it is often considered easy-to-use. However, as

aforementioned in the introduction, there are numerous situations where the web-based or app-based user

interface becomes unintuitive. This mostly happens when IoT devices to be controlled are many and hard

to be specifically identified in the interface which is virtual. We list a few representative previous studies

that tried to make a device specification process more straightforward.

Swindells et al. [27] proposed an IR-based transceiver for a user device (i.e., controller), from which

a tiny ping message that wakes up a target device is transmitted and by which the replied target device

address information is received back. Using the received information, the transceiver lets the WiFi

interface of the user device be automatically connected to its target device, by which the NLOS (Non Line

of Sight) communication between them is enabled. Spartacus [26] uses an acoustic technique exploiting

the Doppler effect. Spartacus lets a user device emit a continuous audio tone and asks its user to perform

a pointing gesture toward a target device. If the target device detects the Doppler shift, then it reports the

shift value and its ID back to the user device through a wireless channel. When the maximum shift value is

found in the user device, Spartacus assumes that the target device with that value is actually pointed by the

user and communicates with that device. In a similar context but to achieve higher precision of pointing,

Zhang et al. [28] designed a system called HOBS utilizing an IR emitter attached on a head-mounted

device, Google Glass [4]. HOBS lets the IR emitter work as a pointer toward target devices and make all

the pointed devices simultaneously to be connected to HOBS via XBee interface [13], especially when

the devices are located closely to each other. HOBS then asks its user to browse among the connected

devices by giving an input and makes each device reacts upon the selection by blinking an LED attached

to the device. Through a visual inspection, HOBS lets the user finally decide who to communicate with.

These techniques improve the convenience involved in the device specification and association, their

coexistence with the aforementioned CoAP-based control framework is under-explored.

5

Figure 2: Overview of the architecture of QuickTalk.

3 SYSTEM DESIGN

In this section, we first provide a problem statement that we are trying to solve through this work. Then,

with an overview of the software architecture of QuickTalk, we explain the required function blocks of a

user device and an IoT device that use QuickTalk. Lastly, we introduce technical challenges involved in

enabling QuickTalk in a mobile device.

3.1 Problem Statement

The state of an IoT device can be roughly classified into two categories: 1) uninitialized and 2) registered.

Uninitialized state of an IoT device means that the device is just taken out of its box and it is not currently

connected to a control hub (or a control interface provided by the control hub). Every IoT device is given

to a user at its uninitialized state and requires the user to go through a certain setup procedure. Once the

setup procedure is completed, the state of an IoT device changes to registered and becomes controllable

by the associated control interface. When becoming registered, IoT devices in the market are mostly

connected to their own control interfaces through WiFi connections. It is important to note that once an

IoT device is registered to a control interface, its control permission is given to the person or the group of

persons who own the access permission to the control interface. Thus, users who are not reachable to the

control interface of an IoT device, are all prevented from controlling the IoT device.

The above-mentioned method of controlling IoT devices though a control interface is reasonable in

6

general, but gives challenges to an IoT novice when she is visiting a new place and is seeing many IoT

devices in the place that are open to any visitor. One way of guiding her to use those IoT devices is to

authorize her to access the control interface in which all those IoT devices are pre-registered. However,

when the place has a large number of visitors, authorizing individual visitors is not secure given that

the control interface is accessible from anywhere through Internet once authorized. Invalidating the

authorization when she leaves the place is possible but is of a too much complication. Also, when there

are too many of IoT devices in the place, it is difficult for her and other visitors to identify which entity in

the control interface corresponds to which actual IoT device.

As a solution to these matters, our goal is to provide an immediate and intuitive method of controlling

IoT devices to a user who is in the proximity of those IoT devices. We aim at designing the method to be

able to physically pinpoint an IoT device and to work with any IoT device that is either uninitialized or

registered.

3.2 QuickTalk Architecture

In order to achieve the objectives, we design the architecture of QuickTalk as it is depicted in Figure 2.

To enable QuickTalk between a user device and an IoT device, QuickTalk requires a user device to have

an IR transmitter, a WiFi interface, and an IoT control application. Note that because the user device in

QuickTalk uses only the IR transmitter to pinpoint an IoT device and does not use IR for communication,

it is not necessary to have an IR receiver in the user device. In contrast, an IoT device for QuickTalk

needs an IR receiver and a WiFi interface, where the IR receiver is used to detect if the IoT device

itself is pointed or not by the IR transmitter and to activate its WiFi when being pointed. More detailed

specifications of a user device and an IoT device are provided below.

3.2.1 User Device

For an immediate control of an IoT device from a user device, the user device for QuickTalk utilizes

a concept of filter, called device-type filter, and asks a user to provide the type of the IoT device to be

controlled when emitting a command to that IoT device. The filter is also helpful to significantly reduce

the possibility of experiencing confusion in pointing an IoT device, especially when there are many IoT

devices in close proximity. For instance, when trying to control an IoT bulb out of many IoT devices in

the same place, a user of QuickTalk may point to the bulb with the filter specified asBULB to maximize

the pinpointing efficiency. Once a user device succeeds in specifying and activating an IoT device within

a very short time, QuickTalk switches to utilize WiFi instead of IR for the reliable (i.e., NLOS) delivery

of user commands to the IoT device. We will discuss about the challenges involved in switching to WiFi

7

in the next subsection.

3.2.2 IoT Device

An IoT device with an IR receiver reacts when an IR signal is detected at its IR receiver. As will be

shown later, it is possible to enable QuickTalk without having an IR receiver in an IoT device. However,

having an IR receiver which is of low-cost adds two major benefits to an IoT device: 1) intuitive pointing

(i.e., specification) and 2) energy efficiency. By the nature of strong directionality of IR signal, when

IR transmitter and receiver are properly installed, a very narrow pinpointing ability is achievable. We

will discuss about the pinpointing ability of IR signal in the following section. Regarding the energy

efficiency, an IR receiver does an important role. Suppose that there is an uninitialized IoT device or an

IoT device that is registered but in a power saving mode. In both cases without having an always-on

low-power channel that immediately activates the WiFi interface, a user who wants to deliver a command

should wait until the WiFi interface becomes active (e.g., until the duty cycle of power saving ends).

Thus, installing a small IR receiver in an IoT device that consumes only less than 10mW is a reasonable

choice to achieve energy efficiency while keeping the property of immediate control. To improve the

energy efficiency, QuickTalk utilizes the device-type filter that arrives at an IoT device inside the pointing

IR signal, and selectively activates the IoT device of the matching type (e.g., aTHERMAL Controlleron

the same line of sight or IR signal is not activated when a device type is specified asPOWER PLUG).

3.3 Technical Challenges

There are two major technical challenges that need to be tackled to enable QuickTalk. The first is to

reveal the pinpointing ability of IR signal in real IoT environments and to design the frame structure of

the IR signal for reliable message delivery. The second is to design and implement a WiFi communication

method that can exchange packets either with uninitialized IoT devices or registered IoT devices.

3.3.1 IR Pinpointing

The most important feature of the IR signal to be studied for QuickTalk is its ability of pinpointing an

IoT device. Given that most remote controllers using IR work well in an indoor situation, our focus is

given more onto the pinpointing ability at an outdoor environment. Also, the reachable distance and

the allowed amount of slanted angle for pinpointing are also of our interest. In addition to the study of

these properties, engineering decisions related to the channel coding of the information bits in an IR

transmission, the types of information bits to be included, and the length of information bits for an IR

transmission are all to be discussed and designed in detail. We provide our answers to these matters in

8

the next section.

3.3.2 Association-Free WiFi Communication

In order to make QuickTalk to be an immediate control method that works universally to any IoT device,

a WiFi communication method that works before a user device is associated with an IoT device is

essential. Because WiFi association generally requires scanning and authentication procedures, it incurs

a non-negligible amount of delay. Thus, it is most desirable if an IoT device can immediately accept a

message when it is triggered by an IR signal without going through an association process. We call such

a method as Association-Free communication. The benefit of association-free communication is not only

its latency but also its capability of coexistence with ongoing WiFi communication. How to implement an

association-free communication and how to let it give negligible impact to the ongoing communication if

any are on our technical challenges, which will be answered in the next section.

9

Figure 3: Vertical and horizontal views of the test platform. The distance and angles are controllable as

the IR transmitter is on a rotatable and movable cart and the IR receiver is on a rotational cart.

4 PROPOSED METHODS

In this section, we propose our systems designs as solutions to the challenges raised in implementing IR

pinpointing and association-free communication, and validate our proposed designs using Raspberry Pi

version 2 devices with 4.1.19 Linux kernel installed, which emulate both user devices and IoT devices.

4.1 IR Pinpointing

The purpose of IR pinpointing is twofold: 1) to specify an IoT device to control and 2) to trigger the WiFi

interface hence enabling association-free communication. In order to achieve both, we design the data

frame emitted whenever a user device pinpoints an IoT device. Our design is to emit the ID of the user

device in the form of its WiFi MAC address (24bits) and emit device type filters in a hierarchical manner

(total 14 bits that are divided into 4, 4, and 6 bits by the levels of categorization) along with parity bits

(2bits). In total, each IR signal emission delivers 40 bits of information to an IoT device, which typically

takes less than 95 milliseconds. The reason why we have hierarchical device type filters is to maximally

narrow down the pointed candidates, hence finally pinpointing a device. For instance, an interactive IoT

advertisement display can be hierarchically classified as DISPLAY:AD-DISPLAY:INTERACTIVE-AD-

DISPLAY. Using the concept of hierarchical filter, a user device may trade off the user convenience (e.g.,

10

0

0.2

0.4

0.6

0.8

1

Distance (m)

P
ro

b
a

b
ili

ty

Decodable

Partially Decodable

Undetectable

1 3 5

0
o
 5

o
 10

o
 15

o
 0

o
 5

o
 10

o
 15

o
 0

o
 5

o
 10

o
 15

o

(a) Indoor: Transmission angle (θ) varies while φ = 0.

1 3 5 7
0

0.2

0.4

0.6

0.8

1

Distance (m)

P
ro

b
a

b
ili

ty

Decodable

Partially Decodable

Undetectable

0
o
 45

o
 90

o
 0

o
 45

o
 90

o
 0

o
 45

o
 90

o
 0

o
 45

o
 90

o

(b) Indoor: Reception angle (φ) varies while θ = 0.

1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Distance (m)

P
ro

b
a

b
ili

ty

Decodable

Partially Decodable

Undetectable

(c) Outdoor: The case of aligned angles, θ = φ = 0.

Figure 4: The probability distribution of the received IR signal over the cases: decodable, partially

decodable, and undetectable, where the IR signal exchange is experimented at indoor with varying (a)

transmission angle (θ), (b) reception angle (φ), and (c) at outdoor with aligned angles.

user knowledge) of pinpointing and the precision of pinpointing, which is out of the scope of this work

and will be of a separate study.

4.1.1 Validation

Using one of de-facto standard of IR communication, called NEC format [2], we validate if our data

frame delivery through IR can pinpoint an IoT device. For the validation, we made a test platform as

described in Figure 3. As it is shown, it is to easily test various factors such as transmission distance (d),

transmission angle (φ), and reception angle (θ). By using the rail and the rotational and movable cart, we

performed extensive validations on IR transmitter and receiver that are both operated at the modulation

rate of 38 KHz. As the NEC format specifies, our IR signal transmission accompanies 13.5ms(9ms of

11

ON period and 4.5ms of OFF period) of lead code emission at the beginning for the purpose of separating

each IR signal. After the leader code emission, our data frame of 40 bits is followed. Since we find that

the repetition of the entire bits followed by the data frame transmission, which is specified in NEC format

does not critically affect the success rate of IR transmissions, we intentionally omitted this repetition part

for simplicity. Figure 4 (a), (b), and (c) show that how the data frame sent from a user device is delivered

to an IoT device at different settings. We classify the situations by whether the delivered bits are fully

decodable, partially decodable, or undetectable. As shown in Figure 4 (a), it is natural to observe that the

longer the distance, the narrower the decodable angle is. However, it is important to note that even at

the distance of 5 meters, we can manage to narrow down the decodable angle to be less than 10 degree,

meaning that IoT devices in 5 meter distance will be activated when they are located at a circle of 88.2

centimeters at that distance. Considering the typical spacing of IoT devices, it is fair to say that it is

of a sharp pinpointing. According to a recent study [17], the decodable angle of an IR transmitter can

be physically controlled without manufacturing a high-cost transmitter only by adjusting the depth of

installing an IR transmitter in its housing. Figure 4 (b) further shows that when it is well pointed by an

IR transmitter, the mismatch in the reception angle of an IR receiver does not degrade the decodability.

Considering that IoT devices can be installed in various postures, hence having their IR receivers headed

toward random directions, our observation in Figure 4 (b) is optimistic to the users who want to remotely

control such IoT devices. Finally, Figure 4 (c) reveals that IR signal exchange up to 2.5 meters is even

possible at a sunny outdoor environment as long as an IR receiver is shaded from the direct sunlight.

Overall, we confirm that our IR system design is practically viable in pinpointing an IoT device.

4.2 Association-Free WiFi Communication

To our knowledge, there can be two different ways of implementing a WiFi communication method for

QuickTalk, which can coexist with established WiFi sessions if any.

The first is to use a fake PS poll, where PS poll stands for the power save poll defined in the 802.11

standard [6]. The main idea behind this method is to let an IoT device previously registered to a control

interface send a fake PS poll to the access point that the IoT device is being associated upon reception

of IR signal. When a fake PS poll is received at the access point, it is known by a work [18] that the

access point suspends all the ongoing sessions and queue the undelivered packets in the access point.

Thus, the IoT device is able to secure a certain amount of period that can be used to communicate with

a user device who triggered the IoT device by an IR signal. This is a working method but is of a hack,

which is not recommended.

The second is to use the intrinsic packet broadcast ability and the packet monitoring (i.e., capturing)

ability of WiFi. We name such a method as association-free communication. To enable association-free

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

X: RTT (sec)

P
(X

 ≤
 x

)

Outdoor

Indoor

(a) Without retransmission

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

X: RTT (sec)

P
(X

 ≤
 x

)

Outdoor

Indoor

(b) With retransmission

Figure 5: The CDFs of RTT from the association-free communication exploiting packet broadcasts. (a)

When there is no application-level retransmission, about 93.6% and 67.6% of packets are replied within

0.5 seconds at an outdoor and an indoor environment, respectively. (b) The percentages increase to 99.5%

and 86.5% when adding the application-level retransmission that retries after 0.25 seconds.

communication, upon reception of an IR signal, we let the IoT device broadcast the MAC address of

the user device which is received through the IR signal and let the user device go to the packet monitor

mode and switch WiFi channels to detect in which channel the broadcast MAC address is received

back. Once the channel is identified, we let the user device also send out its data packets and commands

through the same broadcast method and let the IoT device do the same for data exchange. Because packet

broadcasts can coexist with any ongoing WiFi sessions, the coexistence of immediate communication in

proximity and communication through a control interface is guaranteed. We adopt this association-free

communication as our default communication method for QuickTalk.

4.2.1 Validation

To validate the proposed association-free communication, we perform the following experiment either at

an indoor environment and at an outdoor environment. The experiment is to measure the RTT (Round-Trip

Time) between the broadcast of a random payload of 24 bits at every 3 seconds from a user device to an

13

IoT device and its reply of the same payload to the user device from the IoT device. For this experiment,

we first do not use any application-level packet retransmission scheme in order to identify the pure

performance of the proposed method 1 and keep the signal strength between the user device and the IoT

device between -30 and -60 dBm.

Figure 5 (a) shows the CDFs (Cumulative Density Functions) of RTT measured either at an indoor and

an outdoor environment when there is no application-level packet retransmission. As shown in the figure,

at an outdoor environment where there is almost no interfering WiFi signal, about 80% of broadcast

packets are successfully replied within in 0.01 seconds. At an indoor environment where we were able

to scan about 30 interfering WiFi access points, within 0.01 seconds of RTT, about 60% of broadcast

packets are successfully replied. We further validate the performance of association-free communication

when an application-level packet retransmission is implemented. Figure 5 (b) shows the CDFs of RTT

measured either at an indoor and an outdoor environment when we set the retransmission happens at

every 0.25 seconds when the packet reception is not successful. As shown in the figure, we can observe

substantial improvement in the reply rate as in both indoor and outdoor environments more than 85 % of

broadcast packets are replied within 0.5 seconds, confirming that the association-free communication is

practically viable.

1Although there is no application-level retransmission, link-level retransmissions from 802.11 standard may work.

14

User device (with IR transmitter)

IoT device (with IR receiver)

Figure 6: QuickTalk implementation for a user device (left) and for an IoT device (right). The screen

attached to the user device shows our user interface.

5 IMPLEMENTATION

In this section, we present implementation detail of a user device and an IoT device that use QuickTalk.

As it is aforementioned, we exploit the Raspberry Pi 2 platform with IR circuits connected through GPIO

(General Purpose Input/Output) in order to prototype both devices as shown in Figure 6.

5.1 User Device Implementation

Our implementation of user device consists of two parts: 1) user interface and 2) IR and WiFi services. The

user interface is designed to get commands from a user either by clicking buttons, by typing commands,

or by voice commanding. Our graphical user interface (GUI) is currently implemented by HTML and

C++ using CGI (Common Gateway Interface) [23] and the voice commanding function uses Google

speech recognition APIs [3]. For an immediate commanding to an IoT device, our user interface asks to

provide the device type information along with a command. When the type information and the command

are given, IR service first sends out the device type information and the MAC address of the user device

as described in Section 4, then WiFi service captures (i.e., monitors) the MAC address broadcasted by the

triggered IT device and delivers the command to that IoT device. Including this initial command delivery,

all the following data exchanges through packet broadcasts use CoAP format provided Californium (Cf)

JAVA library [20].

Figure 6 shows how the user interface implemented on a Raspberry Pi 2 device is presented to a

user. IR and WiFi services therein are both implemented by C++ and use LIRC (Linux Infrared Remote

15

Algorithm 1 User device algorithm
1: procedure IR SERVICE

2: (categoryin, commandin) = userinput()

3: sendEncodedIRMessage(categoryin)

1: procedure WIFI SERVICE

2: if !channelDetected() then

3: setRandomChannel()

4: for i = 1 to CHANNELS do

5: setNextChannel()

6: if (chIoT, MACuser)= receiveResponse() then

7: break

8: broadcastMessage(commandin, chIoT)

9: startPacketMonitor()

10: while TRUE do

11: if responseIoT = receiveResponse() then

12: displayResult(responseIoT)

13: break

14: if needRETRANSMISSION() then

15: broadcastMessage(commandin, chIoT)

Control) API for the operations of IR functions and socket API and MediaTek driver API for the packet

broadcast and broadcast packet capture. The driver API is currently limited to the chipsets of MediaTek

which includes MediaTek MT7601U (802.11 b/g/n) chipset that we connected to Raspberry Pi 2 devices

through USB, but it is possible to extend the API for other WiFi chipsets. Upon capturing a broadcast

packet, our WiFi service utilizes the packet capture library, libpcap, to extract the contents from the

broadcast packets and to detect the identity (i.e., WiFi MAC address) of the triggered IoT device.

Because the IR module in the user device for QuickTalk is intentionally designed not to receive

any information through IR communication, how to find the channel where the triggered IoT device

broadcasts packets is of a challenge. To tackle this problem, our WiFi service is designed to randomly

choose a channel and sweeps the channels one by one for two times. Having two runs of sweeping is

to reliable detect the channel where the IoT device is in. We describe the overall procedures that a user

device goes through for commanding an IoT device as a pseudo code in Algorithm 1.

16

Algorithm 2 IoT device algorithm
1: procedure IR SERVICE

2: MACuser = parseIRMessage()

3: if !checkParity() or !checkCategory() then

4: endProcedure()

5: else

6: startWiFiservice()

1: procedure WIFI SERVICE

2: while SWEEPING_TIME_OUT do

3: broadcastMessage(MACuser, MACIoT)

4: startPacketMonitor()

5: wait(BROADCAST_INTERVAL)

6: if commanduser = commandReceived() then

7: responseout = processCommand(commanduser)

8: broadcastMessage(responseout)

9: break

5.2 IoT Device Implementation

Our implementation of an IoT device consists of two parts: 1) data processing service and 2) IR and WiFi

services. The data processing service serves as the core of each IoT device, where the user command

is processed and responded. The data processing service is also implemented by Californium library

because it parses the CoAP queries and packages data in the CoAP format. Our implementation of the data

processing service is general in that it can adapt to any form of IoT devices by a simple modification. Our

current prototyping of IoT devices includes IoT bulb, IoT advertisement display, and IoT environmental

sensor but not limited to those. The data processing service interacts with IR and WiFi services through

the loopback interface.

The IR service in an IoT device is to receive an IR signal which include the MAC address of a user

device and the hierarchically designed device type filters and triggers the WiFi service to broadcast the

MAC address when the device type filters match with the properties of the IoT device itself. For the

reception of broadcast packets, the WiFi service in the IoT device also uses MediaTek driver API to active

the monitor mode (i.e., packet capture mode). We describe the overall procedures that an IoT device goes

through as a pseudo code in Algorithm 2.

17

IoT
Device

IoT
Device

IoT
Device

IoT
Device

!" !#

!$!%

!&'()*+,-*

CoAP session
QuickTalk

Figure 7: The topology used for the evaluations of QuickTalk. Ii denotes the packet arrival rate (packets

per second) of i-th ongoing CoAP communication session whereasIQuickTalk stands for the packet arrival

rate of QuickTalk.

6 EVALUATION

We evaluate the performance of QuickTalk in a challenging situation where the candidate IoT devices to

be controlled are previously registered to a control hub and are communicating with the hub through an

WiFi access point as depicted in Figure 7. We assume that there are 4 registered IoT devices and a user

device tries QuickTalk to one of those IoT devices. In such a situation, we first test if QuickTalk indeed

enables an immediate commanding to an IoT device by measuring the end-to-end delay of QuickTalk,

and then we further test how much performance degradation of the ongoing sessions between the IoT

devices and the control hub experience when a user device communicates with one of the IoT devices

through QuickTalk.

6.1 End-to-end delay of QuickTalk

The end-to-end delay of QuickTalk from its IR signal transmission to the WiFi packet reception of the

acknowledgement for an IoT command is mainly composed of two delay components: Tsearch and Tbroadcast

as depicted in Figure 8. Here, Tsearch denotes the time duration of scanning channels to detect in which

channel the IoT device triggered by an IR signal makes the broadcast. Since we set the channel switching

duration as 40 ms in our experiment, the worst case of Tsearch becomes 2 seconds given that our design

takes two rounds of channel sweeping. The average delay for Tsearch simply becomes the half of the worst

case value. When the channel of interest is detected, the remaining delay is determined by Tbroadcast where

Tbroadcast denotes the time duration between sending a command and receiving its acknowledgement

through the broadcast channel of the WiFi interface. There are other delays in QuickTalk such as

18

IoT
Device

User
Device

User
Input

IR Listening

WiFi Channel Sweeping

WiFi MAC Broadcast

WiFi Broadcast
and Listening

IR Emission !"#$%&' !(%)$*&$"+

WiFi
Listening

x
WiFi

Broadcast

x

time

Figure 8: We find that the end-to-end delay of QuickTalk is mainly affected by two major components:

Tsearch and Tbroadcast.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

X: T
broadcast

 (sec)

P
(X

 ≤
 x

)

QuickTalk only

2 packets/s

10 packets/s

(a) CDFs of Tbroadcast with competing CoAP sessions

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

X: Time (sec)

P
(X

 ≤
 x

)

T
search

End−to−end Delay

(b) CDFs of Tsearch and the end-to-end delay

Figure 9: CDFs of (a) Tbroadcast when there are 4 competing CoAP sessions that have 2 or 10 packets per

second for each session and (b)Tsearch and the end-to-end delay. The end-to-end delay of QuickTalk has

its median at 0.74 seconds.

processing time for an IoT command, packet extraction time from a broadcast channel, and context

switching delay from the IR service to the WiFi service, but we find that all such delays are in the scale of

a few milliseconds in the processor of Raspberry Pi 2 (ARM Cortex A7, Quad-core, 900 MHz). Thus, we

mainly focus on Tsearch and Tbroadcast.

Figure 9 (a) shows the CDF of Tbroadcast when there is no ongoing CoAP session or when there are 4

19

Download Only 10 5 3
0

10

20

30

Interval of QuickTalk communication (sec)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

(a) Average download throughput

10 5 3

60

80

100

Interval of QuickTalk communication (sec)

S
u

c
c
e

s
s
 R

a
te

 (
%

)

(b) Success rate of QuickTalk

Figure 10: (a) The throughput of an download session at an IoT device and (b) the success rate of

QuickTalk communication with that IoT device when the download session coexists with QuickTalk of

various communication intervals.

ongoing sessions as shown in Figure 7. For each ongoing session, we vary the packet arrival rate (i.e.,

Ii) by 2 and 10 packets per second. As Figure 9 (a) confirms, QuickTalk mostly experiences less than

0.5 seconds for Tbroadcast when there is no ongoing CoAP session and experiences less than 1 second for

Tbroadcast at 80% of the cases, when there are 4 busy CoAP sessions that exchange 10 packets per second

each.

Figure 9 (b) shows the CDF of Tsearch where is no ongoing CoAP session. Because we observe that

having a number of ongoing CoAP sessions does not affect Tsearch, we only present the result with no

ongoing CoAP session. As shown in Figure 9 (b), Tsearch is relatively widely distributed from 0.04 seconds

to 2 seconds since our channel sweeping algorithm naively starts from a randomly chosen channel. Note

that we can linearly speed up Tsearch by reducing the channel switching delay, but for this, the hardware

support is essential as the switching delay is currently bounded by the chipset delay. Also note that Tsearch

can be completely eliminated when a user device for QuickTalk is redesigned to receive IR signal from

an IoT device regarding its current WiFi channel, but we consider that this is not user-friendly since this

compels the user to keep its posture until the IR signal is successfully returned.

20

The end-to-end delay of QuickTalk is also presented in Figure 9 (b) for the case where there is no

ongoing CoAP session. As aforementioned, we find that the end-to-end delay is not much different from

Tsearch +Tbroadcast and is upper limited by 2.5 seconds while its median is only about 0.74 seconds. Note

that once the WiFi channel is detected, the end-to-end delay of QuickTalk approaches to Tbroadcast, which

is roughly upper bounded by 1 second.

6.2 Coexistence with Ongoing Sessions

The coexistence of QuickTalk with ongoing communication sessions at an IoT device is an important

matter given that there can be many IoT devices in practice, which are previously registered to control hubs

but need to be immediately controlled by a user in proximity. To test the coexistence, we let one IoT device

shown in Figure 7 perform TCP-based file download and evaluate how much throughput degradation is

observed when QuickTalk starts communicating with that IoT device for various commanding intervals,

10, 5, and 3 seconds. Figure 10 (a) shows the download throughput with 95% confidence interval, which

is measured at the IoT device without and with QuickTalk. Figure 10 (b) further shows the success rate

of QuickTalk communication with an ongoing download session for various QuickTalk communication

intervals. As the graphs show, the degradation of the throughput is limited to about 20% when QuickTalk

commands at every 3 seconds, compared to the download only case. Also, the success rate of QuickTalk

communication stays over 92% while the interval varies from 10 seconds to 3 seconds. This experiment

reveals that QuickTalk can reliably coexist with ongoing communication sessions in IoT devices.

21

7 CONCLUDING REMARKS

In this work, we proposed QuickTalk, an association-free communication method for IoT devices in

proximity that is designed to enable intuitive, immediate and pinpointed communications with IoT

devices around an IoT user. Our implementation of QuickTalk using Raspberry Pi 2 devices confirms

that QuickTalk works reliably in realistic environments and further shows that its end-to-end delay for

delivering a command is reasonably low with the worst case bound of 2.5 seconds. We believe that

QuickTalk that can be activated in every IoT device only by adding an IR receiver of a few cents can give

a whole new user experience for IoT devices especially to non-tech savvy users.

22

References

[1] ARENA Solutions. Connecting devices to the Internet of Things with Wi-Fi, 2015. http://embedded-

computing.com/white-papers/white-beyond-bom-101/.

[2] Data Formats for IR Remote Control, 2013. http://www.vishay.com/docs/80071/dataform.pdf.

[3] Google Cloud Speech API. https://cloud.google.com/speech/.

[4] Google Glass. https://developers.google.com/glass/.

[5] How the AWS IoT Platform Works. https://aws.amazon.com/iot/how-it-works/?nc1=f_ls.

[6] IEEE std 802.11e-2005. IEEE Standard for Information technology–Local and metropolitan area

networks–Specific requirements–Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications.

[7] LG U+ launches “U+ Gaslock”, the Home IoT Service enabling Gas Valve Remote-Control, 2014.

http://www.netmanias.com/en/post/korea_ict_news/7004/iot-lg-u/.

[8] Nest. https://nest.com/thermostat/meet-nest-thermostat/.

[9] Neurio. http://neur.io/products/.

[10] Philips hue. http://www.developers.meethue.com/documentation/how-hue-works.

[11] QRCode. http://www.qrcode.com/en/about/.

[12] Use the Home app on your iPhone, iPad, and iPod touch. https://support.apple.com/en-us/

HT204893.

[13] XBee: Connect Devices To The Cloud - Digi International. https://www.digi.com/lp/xbee.

[14] ATZORI, L., IERA, A., AND MORABITO, G. The internet of things: A survey. Elsevier Computer

networks 54, 15 (2010), 2787–2805.

[15] BETTS, D. Microsoft Azure IoT services: reference architecture. https://azure.microsoft.com/

en-us/documentation/articles/iot-suite-what-is-azure-iot.

[16] BORMANN, C., STUREK, D., AND SHELBY, Z. 6LowApp: Problem Statement

for 6LoWPAN and LLN Application Protocols, 2009. https://tools.ietf.org/html/

draft-bormann-6lowpan-6lowapp-problem-01.

23

http://www.vishay.com/docs/80071/dataform.pdf
https://cloud.google.com/speech/
https://developers.google.com/glass/
https://aws.amazon.com/iot/how-it-works/?nc1=f_ls
http://www.netmanias.com/en/post/korea_ict_news/7004/iot-lg-u/
https://nest.com/thermostat/meet-nest-thermostat/
http://neur.io/products/
http://www.developers.meethue.com/documentation/how-hue-works
http://www.qrcode.com/en/about/
https://support.apple.com/en-us/HT204893
https://support.apple.com/en-us/HT204893
https://www.digi.com/lp/xbee
https://azure.microsoft.com/en-us/documentation/articles/iot-suite-what-is-azure-iot
https://azure.microsoft.com/en-us/documentation/articles/iot-suite-what-is-azure-iot
https://tools.ietf.org/html/draft-bormann-6lowpan-6lowapp-problem-01
https://tools.ietf.org/html/draft-bormann-6lowpan-6lowapp-problem-01

[17] CHEN, Y.-H., ZHANG, B., TUNA, C., LI, Y., LEE, E. A., AND HARTMANN, B. A context menu

for the real world: Controlling physical appliances through head-worn infrared targeting. Tech. rep.,

2013.

[18] GU, W., YANG, Z., QUE, C., XUAN, D., AND JIA, W. On security vulnerabilities of null data

frames in ieee 802.11 based wlans. In IEEE ICDCS (2008).

[19] GUINARD, D., AND TRIFA, V. Towards the web of things: Web mashups for embedded devices. In

Workshop on Mashups, Enterprise Mashups and Lightweight Composition on the Web (2009).

[20] KOVATSCH, M., LANTER, M., AND SHELBY, Z. Californium: Scalable cloud services for the

internet of things with coap. IEEE International Conference on the Internet of Things (2014).

[21] KOVATSCH, M., MAYER, S., AND OSTERMAIER, B. Moving application logic from the firmware

to the cloud: Towards the thin server architecture for the internet of things. In IEEE International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (2012).

[22] LEVÄ, T., MAZHELIS, O., AND SUOMI, H. Comparing the cost-efficiency of CoAP and HTTP in

web of things applications. Elsevier Decision Support Systems 63 (2014), 23–38.

[23] ROBINSON, D. The common gateway interface (CGI) version 1.1, 2004. https://tools.ietf.

org/html/rfc3875.

[24] SHELBY, Z., HARTKE, K., AND BORMANN, C. The constrained application protocol (CoAP).

Tech. rep., 2014.

[25] SHELBY, Z., STUBER, M. G., STUREK, D., FRANK, B., AND KELSEY, R. CoAP feature analysis,

2009. https://tools.ietf.org/html/draft-shelby-6lowapp-coap-00.

[26] SUN, Z., PUROHIT, A., BOSE, R., AND ZHANG, P. Spartacus: spatially-aware interaction for

mobile devices through energy-efficient audio sensing. In ACM MobiSys (2013).

[27] SWINDELLS, C., INKPEN, K. M., DILL, J. C., AND TORY, M. That one there! pointing to

establish device identity. In ACM UIST (2002).

[28] ZHANG, B., CHEN, Y.-H., TUNA, C., DAVE, A., LI, Y., LEE, E., AND HARTMANN, B. HOBS:

head orientation-based selection in physical spaces. In ACM symposium on Spatial user interaction

(2014).

24

https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/rfc3875
https://tools.ietf.org/html/draft-shelby-6lowapp-coap-00

	1 INTRODUCTION
	2 RELATED WORK
	2.1 Networking Architecture
	2.2 Control Interface

	3 SYSTEM DESIGN
	3.1 Problem Statement
	3.2 QuickTalk Architecture
	3.2.1 User Device
	3.2.2 IoT Device

	3.3 Technical Challenges
	3.3.1 IR Pinpointing
	3.3.2 Association-Free WiFi Communication

	4 PROPOSED METHODS
	4.1 IR Pinpointing
	4.1.1 Validation

	4.2 Association-Free WiFi Communication
	4.2.1 Validation

	5 IMPLEMENTATION
	5.1 User Device Implementation
	5.2 IoT Device Implementation

	6 EVALUATION
	6.1 End-to-end delay of QuickTalk
	6.2 Coexistence with Ongoing Sessions

	7 CONCLUDING REMARKS
	References

<startpage>11
1 INTRODUCTION 1
2 RELATED WORK 4
 2.1 Networking Architecture 4
 2.2 Control Interface 5
3 SYSTEM DESIGN 6
 3.1 Problem Statement 6
 3.2 QuickTalk Architecture 7
 3.2.1 User Device 7
 3.2.2 IoT Device 8
 3.3 Technical Challenges 8
 3.3.1 IR Pinpointing 8
 3.3.2 Association-Free WiFi Communication 9
4 PROPOSED METHODS 10
 4.1 IR Pinpointing 10
 4.1.1 Validation 11
 4.2 Association-Free WiFi Communication 12
 4.2.1 Validation 13
5 IMPLEMENTATION 15
 5.1 User Device Implementation 15
 5.2 IoT Device Implementation 17
6 EVALUATION 18
 6.1 End-to-end delay of QuickTalk 18
 6.2 Coexistence with Ongoing Sessions 21
7 CONCLUDING REMARKS 22
References 23
</body>

