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Abstract 

 

In the past decades, many optical imaging modalities have played a key role to understand how neurons 

connect and mediate their function. Especially, deep brain imaging has been crucial in neural anatomy 

research by providing brain-wide structural information. Although the optical imaging renders the high 

resolution brain image, it has restriction to perform the deep brain imaging due to inherent scattering 

problem of light. 

To enhance the imaging depth, many optical imaging modalities have combined with serial sectioning. 

As name suggests, serial sectioning solves the penetration depth problem by successively sectioning 

the tissue and imaging the remained tissue. Although serial sectioning techniques enable us to visualize 

whole brain, these techniques still have remained challenging in terms of labor intensive technique as 

well as tissue damages due to physical sectioning. Therefore, it is very demanding the new approach 

for whole brain imaging while preserving the intact brain.  

In recent years, development of tissue clearing which renders biological sample transparent proposes a 

solution to solve the penetration depth issue. It reduces the problematic light scattering and thus extends 

the limited penetration depth by either matching the refractive index or removing the lipid. As 

mentioned above, many researchers have developed various optical clearing agents such as Scale, 

3DISCO, SeeDB, CLARITY, and ClearT. Scale and CLARITY increase the imaging depth by removing 

the lipid which is scattering factor, whereas 3DISCO, SeeDB, and ClearT increase the imaging depth 

through the index matching. Because scattering is proportional to refractive index gap, index matching 

reduces the scattering. These clearing techniques open up the possibility of the deep brain imaging. 

With the help of this modern pioneering tissue clearing technique, fluorescence microscopy including 

confocal microscopy (CM), multi-photon microscopy (MPM), and single plane illumination 

microscopy (SPIM) now enables us to image brain much deeper than ever before. 

Although efforts to eliminate the problematic light scattering have been ongoing for past decades, 

previous research has rarely reported quantification of enhancement light penetration into the cleared 

brain. They have only focused on the capability of three-dimensional visualization; A few quantification 

studies end up in measurement of transmittance or depth profile. Limitation of these studies was not 

able to provide the analysis of tissue property change induced by tissue clearing and to compare the 

tissue clearing characteristics. That is, there have not been standardized techniques to measure the 

clearing efficiency of regional differences and to investigate the principle of various tissue clearing 

methods, despite its significant need for reliability and reproducibility. 

Here, we present optical coherence tomography (OCT) and magnetic resonance imaging (MRI) to 

quantitatively assess the tissue clearing technique. OCT can perform label-free, non-invasive optical 

imaging by using Michelson interferometer. Thanks to these strong characteristics, OCT is appropriate 

tool to validate increase of imaging depth through the analysis of A-line profile. Therefore, we 
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quantitatively measured the effect of diverse clearing even each brain region by using OCT. On the 

other hands, MRI is also non-invasive imaging technique based on nuclear magnetic resonance (NMR). 

Because MRI signal is based on atomic characteristics, we can physically investigate the fundamental 

principle of tissue clearing by monitoring the tissue atomic properties change.  

Through this study, we can investigate the diverse tissue clearing characteristics and compare the 

existing clearing technique. Furthermore, we provide the standard to evaluate the various tissue clearing 

and it allows the choice of proper tissue clearing for experimental purpose. Therefore, this study is able 

to increase the reliability and reproducibility of experimental results. 
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Chapter 1. Introduction 

 

1.1. Optical Imaging for Neuroanatomy Research 

 

1.1.1. Optical Imaging Modalities 

 

Visualizing neural network in the brain would be the key tool to understand how the brain structure 

mediates their function[1]. In the past decades, multiple approaches have been taken at different spatial 

scales. In particular, optical imaging techniques have come into the spotlight because it has great 

potential to investigate how neurons connect and mediate their function by providing high-resolution 

brain imaging [2-4]. 

Above all confocal microscopy (CM), two photon microscopy (TPM), single plane illumination 

microscopy (SPIM)[5] are representative optical imaging technique for high-resolution imaging. 

Although these optical imaging techniques are proper for 2D high-resolution brain imaging, they have 

difficulties in 3D brain imaging due to imaging depth, filed of view. 

Confocal microscopy, two photon microscopy[6] illuminate the plane of below and above imaging 

plane, which can cause a photo bleaching and a lot of imaging time. On the other hand, single plane 

illumination microscopy[7] illuminate the specimen from the side with a thin light sheet. Thus single 

plane illumination microscopy can reduce the photo bleaching effect and imaging time. Moreover, 

single plane illumination microscopy allow the three dimensional imaging easily compared to confocal 

microscopy, two photon microscopy because single plane illumination microscopy provide the large 

field of view by using low-power objectives with a low numerical aperture(NA). Therefore, single plane 

illumination microscopy allows one to observe macroscopic specimens with microscopic resolution. 

However, single plane illumination microscopy was developed for optically transparent objects such as 

zebra fish, tadpole because thin light sheet cannot propagate the opaque tissue[8, 9]. That is single plane 

microscopy also was not applicable to whole mouse brains imaging, which are opaque. Although the 

optical imaging techniques hold the unique advantageous feature of performing cell-level resolution 

brain imaging, they are inherently limited to 2D imaging around few micrometers due to light scattering. 
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1.1.2. Limitation of Optical Imaging 

 

Although 3D brain imaging is more crucial in neural anatomy research by providing brain structural 

information than 2D brain imaging, 3D optical brain imaging is very challenging because optical 

imaging has restriction to perform deep tissue imaging due to inherent scattering problem of light. 

Due to light scattering, light is attenuated in tissue[10, 11]. The irradiance of a coherent light that 

propagates into brain is attenuated with depth because of scattering and absorption. If incident light 

encounter the material, it can be scattered, absorbed or transmitted. Transmitted light means that light 

emerges propagating in same direction as the incident light. On the other hand, scattered light emerges 

in a different direction from incident light and absorbed light is absorbed of their energy in material.  

In both cases, the transmitted intensity will decrease exponentially with the thickness x of the material 

the light is passing through[12, 13]. If the attenuation is due to absorption the transmitted intensity I is 

usually written 

 

𝐼 = 𝐼0 ∙ 𝑒−𝛼𝑥 

 

whereas if the attenuation is due to scattering the intensity is written 

 

𝐼 = 𝐼0 ∙ 𝑒−𝜏𝑥 

 

where I0 is the incident intensity (before attenuation). And attenuation is sum of scattering and 

absorption. In order to quantify the attenuation of the light, attenuation coefficient was defined. 

According to Beer Lambert’s law, attenuation coefficient (μ) is defined as following equation. 

 

 

Figure 1-1 Optical imaging modalities for brain imaging. (A) Single plane illumination microscopy; 

(B) Two photon microscopy.  
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𝐼(𝑥) =  𝐼0 ∙ 𝑒−𝜇𝑥 

 

where I(x) is light intensity after propagating through the medium over a distance x, I0 is the initial light 

intensity. For the reflectivity of tissue, we define it as the ratio the light intensity obtained from the 

cover glass and the tissue surface. In the single scattering region, attenuation coefficient is defined as 

the slope of the first-order fitting curve. In other words, the region where its signal attenuated to 37% 

(1/e) from the initial intensity was chosen to calculate the attenuation coefficient. Mean free path is 

calculated as the reciprocal of the attenuation coefficient[14, 15]. 

 

 

 

1.1.3. Techniques to Overcome Light Penetration Issue 

 

Although optical imaging modalities render the high resolution brain imaging, they have limitation of 

imaging depth. Therefore, many researchers developed the techniques to compensate the defect of light 

penetration such as serial block face (SBF) imaging, tissue clearing. SBF imaging collects the whole 

brain imaging data by repeating the sectioning and imaging[2-4]. And then people build up a whole 

brain imaging by reconstructing the piece of data with software. Thanks to SBF imaging, people 

visualize the high resolution optical whole brain imaging. However, this technique is labor intensive 

and time consuming because one brain requires around 200~15000 slice depending on imaging 

techniques. Furthermore, it is invasive and irreversible technique due to tissue cutting which can cause 

tissue loss. As the alternative way, tissue clearing has received attention in the past decades. Tissue 

clearing is technique to make sample transparent for increase of imaging depth. By reducing the 

scattering, tissue clearing increases the light transmission and allows the deep tissue imaging. Tissue 

clearing is non-invasive and reversible, so it can render the intact deep brain imaging.  

 

 

Figure 1-2 Light propagation in the tissue. The propagating light is attenuated due to absorption and 

scattering.  
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Table 1-1 Techniques to overcome the limitation of optical imaging depth: Serial block-face 

imaging and tissue clearing are used for deep tissue imaging. 

 

Table 1-2 Overview of tissue clearing techniques. This table explains the existing tissue clearing 

characteristics. 
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1.2. Overview of Tissue Clearing Technique 

 

1.2.1. Tissue Clearing by Reducing Refractive Index Gap 

 

Principle of tissue clearing is to reduce the scattering and manner is divided into two. One is to reduce 

the scattering by decreasing the refractive index gap, and another is to reduce the scattering by removing 

the lipid. First of all, tissue clearing by reducing the refractive index gap uses the following equation. 

 

Reflection coefficnet R ≡ (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
)2 

 

Because scattering is a kind of reflection; diffused reflection is scattering, scattering is also proportional 

to refractive index gap[16-18]. Therefore, tissue clearing solution matches tissue refractive index with 

their refractive index. Example of tissue clearing with index matching is BABB (RI: 1.55)[19], 3DISCO 

(RI: 1.56)[20-22], SeeDB (RI: 1.48)[23, 24], ClearT (RI: 1.44)[25], etc. BABB, 3DISCO are organic 

solvent[26], they have two steps for tissue clearing. First step is dehydration and second step is 

refractive index matching and lipid solvation. At first step, ethanol or methanol remove the water and 

this process makes the sample homogeneous. And then sample is immersed in organic solvent solution 

for index matching. Although this technique performs a high transparency in short time, this technique 

has difficulty in preserving the florescent protein. Furthermore, this technique cause the tissue shrink 

because it require dehydration. And SeeDB, ClearT use index matching based on aqueous and high 

refractive index molecules. In case of SeeDB, it is inconvenient to deal with clearing solution because 

SeeDB uses a high concentration of fructose and result in a high viscosity. To avoid this problem, many 

lower viscosity clearing solutions were developed and one of them is ClearT. These aqueous based 

clearing techniques have weakness of low transparency, but they can maintain the fluorescent protein.  

 

 

 

Figure 1-3 Tissue clearing by refractive index matching. Because reflection coefficient is 

proportional to refractive index gap, index matching reduces scattering. 
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1.2.2. Tissue Clearing by Removing Lipid 

 

The reason why brain is turbid is that brain includes a lot of lipid which is a scattering factor[27-30]. 

Therefore, if the lipid is removed without the tissue destruction, brain could be transparent, as a result 

light is able to penetrate into the deep brain. Representative of tissue clearing by removing lipid is 

CLARITY[31-33] technique. At first, hydrogel monomer is infused into brain for supporting the brain 

structure, hydrogel monomer hybrid with tissue at 37℃. And then brain is dipped into the SDS buffer 

which is a detergent, so SDS makes a micelle by surrounding the lipid. Therefore, if electric force is 

applied into brain in the SDS buffer, micelle including the lipid will go to the positive pole because SDS 

is negative charge. That is, we can remove the lipid using electrophoresis while preserving the brain 

structure due to cross linked biomolecule. And another tissue clearing method by removing the lipid is 

Scale[34, 35]. In case of Scale, urea plays the key role to make sample transparent. Urea is used to 

penetrate, partially denature, and thus hydrate even the hydrophobic regions of high refractive index 

proteins and lipid. Furthermore, glycerol matched the refractive index and triton-x remove the lipid 

because triton-x is detergent. In this process, sample size expands because of osmotic pressure. This 

expansion can be controlled by using glycerol. Compared to CALRITY, Scale has drawback of long 

incubation time. 
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Figure 1-4 Tissue clearing by removing the lipid. Because lipid is the main scattering factor, 

brain becomes transparent with the removal of lipid. This figure refers to Chung, K. and K. 

Deisseroth, CLARITY for mapping the nervous system. Nature methods, 2013. 10(6): p. 508-

513. 
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1.3. New Approach for Quantification of Tissue Clearing 

 

1.3.1. Needs on Quantitative Analysis of Tissue Clearing 

 

In recent decade, many tissue-clearing researches had attention as techniques to enhance imaging depth. 

However, previous researches have focused on the development of tissue clearing techniques itself. 

That is, although many tissue clearing techniques were developed, there was no study to assess the 

existing tissue clearing techniques. Only a few studies investigated the quantification of tissue clearing, 

they also end up in measurement of transmittance or depth profile[36-40]. Limitation of these studies 

was not able to provide the analysis of property change induced by tissue clearing. That is, there have 

not been standardized techniques to compare the regional differences and even each clearing methods, 

despite its significant need. Therefore, it is very demanding to analyze the diverse tissue clearing 

characteristics and to provide the criteria of tissue clearing. Because many tissue clearing techniques 

have diverse characteristics, systematic organization of tissue clearing techniques is needed for proper 

application. If we analyze the tissue clearing quantitatively, we can predict the experimental result 

exactly, furthermore, this standard of tissue clearing increase the reliability and reproducibility by 

proposing numerical value. 

Therefore, I propose the quantitative analysis of tissue clearing by using optical coherence tomography 

(OCT)[41, 42] and magnetic resonance imaging (MRI)[43, 44]. OCT measure the effectiveness of tissue 

clearing quantitatively, MRI is able to investigate the fundamental principle in the tissue clearing.  
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Figure 1-5 Previous researches for quantification of tissue clearing. Previous research mainly 

focused on transmittance and fluorescence lifetime. This figure refers to Ke, M.-T., S. Fujimoto, and T. 

Imai, SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit 

reconstruction. Nature neuroscience, 2013. 16(8): p. 1154-1161. 
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Chapter 2. Experimental Materials and Methods 

 

2.1. Optical Coherence Tomography 

 

2.1.1. Characteristics of Optical Coherence Tomography 

 

Optical coherence tomography performs label-free, non-invasive and cross-sectional tissue morphology 

based on Michelson interferometer. In Michelson interferometer, light is divided into reference arm, 

sample arm through coupler. Each of backscattered light is back toward the coupler and make 

interference. This interference is transformed to information of wavelength due to grating in 

spectrometer and then information of wavelength is transformed to depth information (A line scan) by 

using Fourier transform. In spectral domain optical coherence tomography (SD-OCT)[45], light is low 

coherent it means that bandwidth of light is broad. Because incoherent light such as white light makes 

interference which can’t be detectable, on the other hand, high coherent light performs a low axial 

resolution. Because axial resolution (∆z) of OCT is given by following equation. 

 

∆z =
2 ln 2

𝑛𝜋

𝜆0
2

∆𝜆
≈

0.44

𝑛
∙

𝜆0
2

∆𝜆
 

 

Where n is refractive index of sample, 𝜆0 is center wavelength of light source and ∆𝜆 is bandwidth 

of light source. This equation implies the axial resolution of OCT depends on the light source. For high 

axial resolution, bandwidth have to be broad and center wavelength have to be short. Meanwhile, lateral 

resolution relies on objective because lateral resolution (∆χ) is given by following equation. 

 

∆χ =
4𝜆0

𝜋
∙

𝑓

𝑑
 

 

Where 𝑑 is beam diameter, 𝑓 is its focal length of objective lens. For high lateral resolution, center 

wavelength and focal length have to be short, beam diameter have to large. However, there is a trade-

off between the lateral resolution and depth of focus. That is, depth of focus will decrease for high 

lateral resolution. Depth of focus is given by following equation. 

 

2𝑧𝑅 =
𝜋∆χ2

2𝜆
 

 

In conclusion, SD-OCT have to use broad band light source for proper interference because interference 
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of white light can’t be detected and monochromatic light’s axial resolution is infinite.  

 

 

 

2.1.2. Brain Imaging with Optical Coherence Tomography 

 

Figure 2-2 illustrates a custom-built spectral-domain OCT (SD-OCT) system. The system used a 

superluminescent diode (EXS210046-02, Exalos) which operates at center wavelength of 1310 nm with 

bandwidth of 70 nm, providing axial resolution of 10.7 µm in tissue. A 2 × 2 fused fiber optic coupler 

divides the incident light into sample and reference arms. In each path, objective lenses having focal 

length of 40 mm, providing lateral resolution of 5.7 µm, were used. In the sample arms, a dual-axis 

galvanometer scanners (GVS012, Thorlabs) were used to scan the incident light over the imaging tissue 

laterally. The lights back scattered or reflected from each path are combined at the fiber coupler, and 

interference occurs. A spectrometer consisted of a transmission grating (Wasatch Photonics), a lens, and 

a line scan camera (SU1024-LDH2, Sensors Unlimited) with 1024 pixels. The interference signal was 

acquired from the camera, and processed with a custom-built software written in LabVIEW, supporting 

standard SD-OCT signal processing such as wavenumber linearization, dispersion compensation, and 

inverse Fourier transformation. The imaging time for volumetric scanning of 2.5 × 2.5 × 1.7 mm, 

composed of 500 × 500 × 512 pixels, was 12.5 seconds. The system had a sensitivity of 98.6 dB. 

To achieve wide-field imaging while fixing the focal plane at the top surface of tissue, we specially 

designed a sample holder mounted on the two-axis linear motorized stages as shown in Figure. It 

enabled tissue being flatten and immersed in various solutions such as PBS and clearing solutions 

during imaging. The overall imaging area was 12.5 × 10 mm (horizontal × vertical). 

 

 

Figure 2-1 Michelson interferometer. This is the fundamental basis for OCT setup. 
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2.2. Magnetic Resonance Imaging 

 

2.2.1. Characteristics of Magnetic Resonance Imaging 

 

Although verification of tissue clearing principle is crucial, there is no research to investigate the 

principle of tissue clearing fundamentally. Therefore, I analyze the tissue clearing principle physically 

by using magnetic resonance imaging (MRI). MRI is non-invasive imaging that provides the brain 

structures in three dimensions based on nuclear magnetic resonance (NMR)[46]. NMR means that 

nuclei in a magnetic field absorb and re-emit electromagnetic radiation that is at a specific resonance 

frequency. However, atomic nuclei with an odd number of protons can absorb and emit radio frequency 

energy when placed in an external magnetic field. Therefore, nuclei with an odd number of proton is 

‘MR active’. In MRI, hydrogen atoms are often used to generate a detectable radio frequency signal. In 

external magnetic field, hydrogen’s magnetic moments line up with the magnetic flux lines. Magnetic 

moments of hydrogen nuclei align in two energy states: Spin-up, Spin-down. When we apply a 

radiofrequency pulse (RF pulse), energy transition occur and resonance is also induced. At that time, 

some low energy (spin-up) nuclei gain enough energy to go to the high energy (spin-down) population. 

Then, the net magnetization vector flips toward the transverse plane and rotates at Lamor frequency, ωL 

= γB0. This precession induces current in the receiver coil, so we can capture the ‘MR signal’.  

 

Figure 2-2 OCT schematic used for the quantification of tissue clearing. This schematic shows the 

1300nm spectral domain OCT system. 
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2.2.2. Brain Imaging with Magnetic Resonance Imaging 

 

Because hydrogen is abundant in living organism due to water and fat, distribution of water and fat 

makes a MR contrast. MR contrast is controlled by repetition time (TR) and echo time (TE). TR is the 

time from the one excitation RF pulse to the next excitation RF pulse for a particular slice. TE is the 

time between an RF excitation pulse and the collection of the signal (‘echo’). MRI contrast between 

different types of tissues are generated by proton density, T1 recovery and T2 decay[47]. 

T1 weighted image, T2 weighted image, proton density image are usually used for brain imaging with 

MRI. To comprehend the T1 weighted image, T2 weighted image, proton density image, understanding 

of T1 recovery, T2 decay should be preceded.  

T1 recovery is caused by the exchange of energy from nuclei to their surrounding environment or lattice 

by RF pulse. It is called spin lattice energy transfer. T1 recovery is a measure of how quickly the net 

magnetisation vector (NMV) recovers to its ground state in the direction of B0. As the nuclei dissipate 

their energy, their magnetic moments relax or return to B0. That is, nuclei regain their longitudinal 

magnetization. T1 recovery time is defined as the time it takes for 63% of the longitudinal magnetization 

to recover in that tissue. Therefore, T1 recovery is an intrinsic contrast parameter that is inherent to the 

tissue. Because fat absorb energy quickly, the T1 recovery time of fat is short. On the other hands, T1 

recovery time of water is long, because water is inefficient at receiving energy from nuclei.  

T2 decay is caused by interaction between the magnetic fields of neighboring spins. It is called spin-

spin interaction. Nuclei interaction produces a loss of phase coherence or dephasing, and results in 

decay of the NMV in the transverse plane. T2 decay time is defined as time it takes for 37% of the 

transverse magnetization to be lost due to dephasing. That is, transverse magnetization is reduced by 

 

Figure 2-3 Basic pulse sequence showing the TR and TE. Extrinsic parameters of TR and TE control 

MRI contrast. 

https://radiopaedia.org/articles/net-magnetisation-vector
https://radiopaedia.org/articles/net-magnetisation-vector
https://radiopaedia.org/articles/b0
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37% of its original value. T2 decay depends on how closely packed the molecules are to each other. 

Because fat molecules are more closely packed together than in water, T2 time of fat is short compared 

to that of water.  

T1 weighted image use the difference of T1 recovery time in each tissue. Therefore, T1 weighted image 

use short TR, TE in order to emphasize the T1 effect and reduce the T2 effect. Whereas, T2 weighted 

image use the difference of T2 decay time in each tissue. So T2 weighted image use long TR, TE in 

order to accentuate T2 effect and reduce the T1 effect. Meanwhile, proton density image use the 

difference in the amount of hydrogen in tissue. So T1, T2 effect must be diminished. By selecting the 

long TR, short TE, we can obtain the proton density.  

In T1 image, fat is hyper intense and water is hypo intense because fat recover most of their longitudinal 

magnetization during short TR whereas water don’t recover much of their longitudinal magnetization 

during short TR. In case of T2 image, fat is low signal and water is high signal because fat lose most of 

their coherent transverse magnetization during the TE period whereas water retain most of their 

transverse coherence during the TE period. In proton density image, high proton density has hyper 

intense and low proton density has hypo intense. 

 

 

 

2.2.3. Multi-Slice Multi-Echo (MSME) Sequence 

 

All MRI experiments have been performed at the Bruker 7T scanner operated by a Bruker console. The 

initial anatomical image was obtained with high spatial resolution using a 2D-RARE pulse sequence 

with a turbo factor of 4 and the following parameters: TR = 2500 ms, TE = 10.9 ms, matrix size = 256 

x 256, field of view (FOV) = 15 x 15 mm, slice thickness = 0.4 mm, slice gap = 0.1 mm, number of 

slices = 25 (interleaved acquisition order), voxel resolution = 58 x 58 x 500 μm. Then, we used the 

multi-slice multi-echo (MSME) sequence to acquire a series of spin echo T2-weighted images along 

TE = 10, 20, 30, …, 100 ms. This pulse sequence is composed of a 90° RF pulse followed by multiple 

180° refocusing pulses. In contrast to conventional single-echo pulse sequences it monitors a sequence 

Figure 2-4 T1 recovery and T2 decay. MRI contrast is explained with T1 recovery and T2 decay. 
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of many echoes nE for each voxel, addressed by the slice selective initial 90° pulse, the phase encoding 

(pe) and the read-out (ro) gradients. Thus, it is ideal for fitting T2 decay curve along multiple TEs which 

is shown in following equation. 

 

S(𝑛𝐸𝑇𝐸) = 𝑆0 exp (
−𝑛𝐸𝑇𝐸

𝑇2
)  

 

nE and TE are the number of echoes and echo time, respectively. S0 is the initial signal amplitude which 

is proportional to the proton density and the water content in individual voxels. We used the following 

imaging parameters: TR = 3000 ms, TE = 10 ms, nE = 10, matrix size = 256 x 256, field of view (FOV) 

= 15 x 15 mm, slice thickness = 0.4 mm, slice gap = 0.1 mm, number of slices = 25 (interleaved 

acquisition), voxel resolution = 58 x 58 x 500 μm, number of average = 30, scan time = 6 hr 24 min. 

 

2.3. Tissue Preparation and Clearing 

 

2.3.1. Perfusion and Dissection 

 

Animal procedures were approved by the In Vivo Research Center and carried out in accordance with 

Institutional Animal Care and Use Committee standards. We obtained mouse brains from 4-week-old 

C57BL/6 mice. Mice were deeply anesthetized by intraperitoneal injection of Zoletil (30 mg/kg) and 

Rompun (10 mg/kg). Then, the mice were transcardially perfused with 30 ml of phosphate buffer saline 

(PBS) followed by 60 ml of 10% neutral buffered formalin (NBF). The brains were dissected out and 

incubated in 10% NBF for 1 day at 4 °C. Using vibratome (VT 1000S, Leica), the brains were cut to 

obtain 3-mm-thick coronal slices with highly uniform surface. 

 

2.3.2. Tissue Clearing 

 

We then cleared the brain slices with four clearing techniques of ClearT, BABB, Scale, and PACT. The 

ClearT was used for the quantification study of clearing efficacy, and others for the comparison study 

of clearing efficacy. For ClearT clearing[25], tissues were cleared in a series of increasingly graded 

formamide solutions (20%, 40%, 60%, 80%, and 100%) for 12 hours each, except the last step overnight. 

The incubation times in each solution were determined according to tissue thickness for the desired 

transparency. For BABB clearing[19], tissues were firstly dehydrated in ethanol solution (100%), and 

transferred into a solution containing 1:2 mixture of benzyl alcohol and benzyl benzoate (BABB). For 

Scale[34] clearing, tissues were cleared in a solution of 4 M urea, 10% glycerol and 0.1% Triton X-100 

for 1 month. Incubation time depends on the sample size. That is, bigger sample size requires the longer 
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incubation time. For PACT[48], we use the PACT solution. Before immersing the PACT solution, we 

have to hybridize the brain tissue with hydrogel. Because hydrogel monomer have tendency to 

polymerize at high temperature, all process should proceed on ice. Hydrogel monomer is composed of 

4% acrylamide, 0.25% initiator, 1X PBS, and 4% PFA in distilled water. Therefore, 40ml monomer 

solution requires 26 mL distilled Water, 4 mL 40% acrylamide solution, 1 mL 10% initiator solution, 4 

mL 10X PBS, and 5 mL 32% PFA. Other step of perfusion with hydrogel monomer is equal with 

perfusion with NBF. For hydrogel monomer infusion, harvested brain is immerse in the monomer 

solution for 3 days at 4℃. Then, we increase the temperature while immersing the infused brain in 

monomer solution for polymerization. After the hybridization of tissue with monomer, brain will be 

cleared with PACT solution (8% SDS solution). Our clearing setting parameter is 30 days. This process 

removes the lipid because SDS is negative charge. We stored the cleared brain in each clearing solution 

before and during image acquisition. 
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Figure 2-5 Photos of brain slices with BABB, ClearT, Scale and PACT. These tissue clearing 

techniques render brain transparent. 
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2.4. Image Processing 

 

2.4.1. Image Processing for OCT Analysis 

 

To evaluate the change in tissue dimensions resulting from clearing techniques, we used OCT en-face images. 

The images firstly were filtered with a 3×3 median filter to reduce shot noise. Then, the filtered image was 

converted into binary values using Otsu’s global threshold method. Lastly, the Sobel operator was applied on the 

binarized image to detect its boundary. Using the boundary information, we measured the shift in boundary 

induced by clearing techniques. Firstly, two extracted boundaries before and after the clearing application were 

aligned based on their centroid and principal axes. Next, we found the intersecting points between the boundaries 

and the straight lines which are spaced 1 degree apart. Here, we assumed that the points expand uniformly. Lastly, 

we measured the spacing between two intersecting points on the same straight line, and defined the spacing as the 

shift in the boundaries.  

To investigate the effect of ClearT clearing on cellular morphology, we prepared a brain slice and cut it along the 

mid-sagittal plane. One half of the slice was immersed in PBS solution, and the other half was subjected to ClearT 

clearing. After the clearing was finished, OCT imaged the slices and they went through histological processing. 

Tissues were firstly dehydrated and then embedded in paraffin. Next, the tissues were sectioned as four-μm-thick 

coronal slices with a microtome (RM2255, Leica). For histology staining, hematoxylin and eosin were used. The 

stained slices were imaged using a virtual microscope equipped with a 20× objective lens (dot Slide, Olympus). 

The intensity of light is attenuated with depth as it penetrates through a biological tissue. According to the Beer 

Lambert’s law, the light intensity after propagating through the tissue over a depth x is formulated as in the 

following equation: 

 

𝐼(𝑥) =  𝐼(0)𝑒−𝜇𝑥 

 

where I(x) is the light intensity at distance x, I(0) is the initial intensity and μ is total attenuation coefficient of the 

tissue. Here, we reduced the total attenuation coefficient to the scattering coefficient because the scattering 

coefficient dominates over the absorption coefficient in biological tissue. 

Based on this relation, we can measure reflectivity, attenuation coefficient and mean free path from OCT signal. 

To begin with, we define the reflectivity the OCT signal attained at the top surface of the tissue. Then, we define 

the attenuation coefficient as the slope of the first-order fitting curve on OCT signal[49]. The curve fitting was 

performed on the regions of the OCT signals where its signal is attenuated to 37% (1/e) from the initial signal. 

Lastly, we define the mean free path as the inverse of the corresponding value of the attenuation coefficient. 
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2.4.2. Image Processing for MRI Analysis 

 

Using MATLAB (Mathworks, Natick, MA), we calculated the proton density S0 and spin-spin 

interaction parameter T2 from the MRI data acquired with the MSME sequence. MRI signal intensity 

along multiple TEs in each voxels was converted to logarithmic scale first, then S0 and T2 was fitted 

by linear regression of following equation. 

 

log S(𝑛𝐸𝑇𝐸) = log 𝑆0 − 𝑛𝐸𝑇𝐸/𝑇2 

 

Proton density signal S0 is the MRI signal amplitude at TE = 0 ms which is extrapolated from the T2 

decay curve and proportional to water content in the individual voxels. We normalized the proton 

density S0 in the brain with the proton density S0 in 1.5% agarose gel area for comparison across 

multiple samples. Proton density S0 in agarose gel was estimated from the manually drawn region of 

interest (ROI) for gel area in each sample, and proton density S0 in the agarose gel area is generally 

uniform. In the present study, proton density S0 was used as the quantitative parameter of 

hydration/dehydration effect for each type of tissue clearing method. 

T2 is the time constant of T2 decay effect arising from spin-spin interaction parameter. T2 value in each 

voxel was estimated by linear regression of above equation. T2 values were given in millisecond, and 

generally between 50~100 ms for the normal brain tissue. T2 decay is faster (smaller T2) in the region 

where the large molecules such as fat are abundant because the protons are closely packed and easy to 

interact with each other. On the contrary, T2 decay is slower (longer T2) in tissues abundant with water 

as the water molecules are more freely moving and reduce the close interaction between proton spins. 

We visualized the change in proton density S0 and spin-spin interaction parameter T2 in the brain before 

and after each type of tissue clearing. In addition, we manually drew ROIs for the cerebral cortex and 

the corpus callosum regions in each sample in order to compare MRI parameter changes in gray matter 

and white matter regions in the brain. We calculated the average S0 and T2 values for the cortical region 

(gray matter) and the corpus callosum region (white matter) for each sample, and compared these value 

before and after each type of tissue clearing methods. 
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Chapter 3. Results 

 

3.1. Investigation of Tissue Clearing Efficiency with OCT 

 

3.1.1. Confirmation of Morphological Change 

 

To evaluate the tissue change resulted from clearing, we imaged brain slices during clearing progression. 

Figure 3-1 shows histology, microscope photos and OCT en-face images of the brain slice. Histology 

of a brain slices shows that ClearT does not cause the morphological change. As previously reported the 

brain slice was originally opaque and became optically transparent without significant tissue shrinkage 

or expansion. The OCT enface image also verifies that tissue contrast is also preserved with ClearT.  

 

 

 

 

 

 

 

Figure 3-1 Monitoring the tissue characteristics change. We monitor the tissue characteristics 

change such as histological change, enface image, OCT contrast.  
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3.1.2. Quantification of Tissue Size Change 

 

The change of tissue size was assessed from the surface areas of the OCT images as shown in Figure 

3-2. Figure 3-2 visualizes the vector field comparison and histogram based on the vector field. Vector 

field shows not only the change rate but also directionality of change. Vector field shows that ClearT 

clearing results in a moderate shrinkage, whereas BABB clearing causes shrinkage due to the 

dehydration step, Scale and PACT clearing cause expansion due to the osmolality. To investigate the 

variation of tissue size change, we analyze the histogram of vector field. Histogram shows the 

distribution of △x which is the length of arrow indicating boundary displacement. As shown in 

histogram, standard deviation of BABB, Scale and PACT is significantly wide compared to standard 

deviation of ClearT. It means that tissue change of BABB, Scale and PACT is non-linear. Therefore, 

predicting the tissue size change is difficult and dynamic monitoring is also challenging. Whereas, tissue 

change of ClearT is predictable and dynamic monitoring is possible. Regarding the measurements, we 

can verify the changes of tissue size during various clearing progression much easier compared with 

previously used method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Tissue size change measurement. Left image shows enface imaging of cleared brain, right 

image shows the distribution of vector change. 
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3.1.3. Visualization of Imaging Depth Enhancement 

 

Figure 3-3 displays cross sectional OCT images of a brain slice with the course of ClearT. OCT brain 

slice image without clearing had limited imaging depth. After the application of clearing solutions, it 

can be found that the imaging depth was significantly improved, and thus tissue structures in the deeper 

regions become detectable. For the fully cleared brain slice, the imaging depth had found to be 

approximately more than 2 mm, which permits us to image deep tissue structure. This is because tissue 

clearing reduces the scattering; it allows the deep light penetration. Concentration of formamide is 

critical for tissue clearing because principle of the ClearT is to reduce the scattering by refractive index 

matching. Since scattering is proportional to refractive index gap, we use a clearing solution whose 

refractive index is similar to that of tissue. Therefore, high concentration of formamide causes a deeper 

imaging depth. 

 

 

 

 

 

 

 

 

Figure 3-3 Cross-sectional OCT images of a brain slice with ClearT. With the tissue clearing, 

imaging depth increases and thus the deeper structures become visible. 



29 

 

3.1.4. Quantification of Imaging Depth Enhancement 

 

To quantify the increase of imaging depth, we measure the depth profile. Figure 3-4 plots relative OCT 

signals from a region of interest (ROI) at cortical region with ClearT. Relative intensity is obtained by 

averaging the value of OCT signal from ROI. ROI is indicated as red box and size is 50 X 50μm. As 

tissue clearing progress, relative intensity of cleared brain is maintained better than that of control brain. 

By reducing the scattering on the surface, tissue clearing allows the deep light transmission and 

maintainence of light intensity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-4 OCT signals in depth with ClearT. As the tissue clearing progresses, the signals is changed 

to maintain their initial intensities better than the signal of the brain slice in PBS solution. Red 

rectangular inset indicates the ROI where the signals are obtained. Scale bar represents 2 mm. 
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3.1.5. Reflectivity and Attenuation Coefficient 

 

Prior to analyze the OCT signal change due to tissue clearing, I investigated the OCT signals 

characteristics. OCT signal along with depth provide the not only reflectivity but also attenuation 

coefficient. Reflectivity is ratio of tissue surface light intensity to the cover glass intensity and 

attenuation coefficient is slope of first order fitting on the depth profile. Figure 3-5 visualize the 

reflectivity map and attenuation coefficient map. As shown in figure, attenuation coefficient has better 

imaging contrast; it means that attenuation coefficient is more sensitive for analysis of tissue 

characteristics. The graph of left side verifies that attenuation coefficient is more sensitive to investigate 

tissue properties. Hippocampus, cortex and fiber tract have similar distribution in case of reflectivity. 

On the other hand, hippocampus, cortex and fiber tract have different distributions in attenuation 

coefficient. Therefore, attenuation coefficient account for detailed tissue characterization. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Reflectivity and attenuation coefficient. Scattering plot shows the difference in regional 

sensitivity of reflectivity and attenuation coefficient. 



31 

 

3.1.6. Reflectivity and Attenuation Coefficient Varying with Tissue Clearing 

 

To further investigate the imaging depth enhancement induced by ClearT, we analyzed optical properties 

of brain slice based on OCT signals along with depth. Figure 3-6 shows reflectivity and attenuation 

coefficient change depending on tissue clearing. Tissue clearing reduces the reflectivity and attenuation 

coefficient, moreover attenuation coefficient is found to be proportional to the reflectivity at every 

region. This is because tissue clearing increases the light transmission by reducing the reflection, it 

causes decrease of attenuation. Therefore, as tissue clearing concentration increase, reflectivity and 

attenuation coefficient is reduced simultaneously. Meanwhile, reflectivity has similar variation in each 

region whereas attenuation coefficient has wider variation at diverse region. This character explains that 

attenuation coefficient has better imaging contrast than reflectivity. 

 

 

 

 

 

Figure 3-6 Scattering plots of reflectivity and attenuation coefficient with ClearT. Reflectivity is 

proportional to attenuation coefficient and tissue clearing reduces the reflectivity, attenuation 

coefficient. 



32 

 

3.1.7. Mean Free Path for quantification of tissue clearing 

 

As shown in figure 3-7, difference of attenuation coefficient (Δμ) is higher in Corpus callosum than 

cortex whereas difference of mean free path (Δls) is higher in cortex than corpus callosum. This is 

because attenuation coefficient is reciprocal of mean free path. That is, attenuation coefficient has 

possibility to confuse the concept, because attenuation coefficient is indirect dimension. Therefore, we 

use the mean free path for quantification of tissue clearing efficiency. Mean free path is the depth where 

is governed by single scattering. Because tissue clearing reduces the scattering, tissue clearing increases 

single scattering, which result in increase of the mean free path. Mean free path is more intuitive length 

dimension (μm), moreover, most of optical imaging modalities obtained the signal in the mean free path. 

Therefore, mean free path is appropriate to explain the tissue clearing concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7 Relation of attenuation coefficient and mean free path. Mean free path is inversely 

proportional to attenuation coefficient.  
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3.1.8. Mean Free Path Varying with ClearT 

 

Figure 3-8 shows mean free path is proportional to clearing concentration. It means that tissue clearing 

increases the mean free path where the single scattering is governed. Specifically, mean free path of 

corpus callosum shows the lowest value, whereas mean free path of cortex has the highest value. That 

is, light is less scattered in cortex compared to corpus callosum, imaging depth in cortex is deeper than 

corpus callosum. It means that mean free path have faster increase rate in water contents whereas mean 

free path have slower increase rate in lipid contents. In other words, ClearT have less effectiveness of 

larger lipid region such as corpus callosum. This result shows that tissue clearing effectiveness depends 

on the brain region and tissue clearing principle. Therefore, we investigate the correlation of optical 

properties change with each tissue clearing and regional difference. 

 

 

 

 

 

 

Figure 3-8 Plots of mean free path change with ClearT. Tissue clearing increases mean free path by 

reducing the scattering on the surface. 
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3.1.9. Mapping of Reflectivity, Attenuation Coefficient and Mean Free Path 

 

Since OCT performs 3D imaging, we can calculate the reflectivity, attenuation coefficient and mean 

free path for every en-face point. Brain map visualize the regional difference at a glance compared to 

graph, we decide to use brain map for monitoring the tissue clearing change. Figure 3-9 shows 

reflectivity map, attenuation coefficient map and mean free path map of a brain slice, respectively. 

Attenuation coefficient and mean free path have better imaging contrast on lipid compared to 

reflectivity image. The reason of this phenomenon is explained by figure 3-5. From the foregoing 

discussion, we use the mean free path map to monitor the tissue clearing efficiency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9 En-face maps of reflectivity, attenuation coefficient and mean free path. Diverse 

imaging contrast such as reflectivity, attenuation coefficient, and mean free path. Scale bars represent 

2 mm. 
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3.1.10. Mapping Mean Free Path with Tissue Clearing 

 

To understand increase of imaging depth intuitively, color mapping brain is considered based on mean 

free path as shown in figure 3-10. The fiber tracts show low mean free path and other regions show high 

mean free path. It means that other region make less scattering due to its low density of lipid-based 

substances. By using mean free path, we monitor the optical properties change depending on tissue 

clearing concentration as shown in figure 3-10. However, brain slice with ClearT resulted in the loss of 

the imaging contrast over tissue regions by increasing the mean free path simultaneously. Most of 

regions have high mean free path value in the cleared brain, cleared brain loss the imaging contrast. It 

represents that ClearT normalize brain refractive index by index matching. And change rate of mean 

free path vary with brain region. Through this result, we can know that tissue clearing increase the mean 

free path by reducing the scattering and the efficiency of tissue clearing differ to brain region. 

 

 

 

 

 

 

 

Figure 3-10 En-face maps of mean free path map with the concentration of ClearT. (A) 0%, (B) 

20%, (C) 40%, (D) 60%, (E) 80% and (F) 100% of formamide. Scale bars represent 2 mm. 
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3.1.11. Comparing Tissue Clearing Efficiency 

 

We demonstrated that ClearT enhances the imaging depth and increases the mean free path by reducing 

the scattering. To assess the other tissue clearing efficiency, we compared the mean free path of existing 

tissue clearing. As shown in Figure 3-11, ClearT increase the mean free path by preserving imaging 

contrast. Although BABB also increase the mean free path, imaging contrast is not good enough and 

sample shrink as shown in Figure 3-11. Because sample shrink is non-linear, imaging plane is not flat 

and focusing is challenging. Meanwhile, Figure 3-11 shows that Scale makes sample expansion during 

clearing process due to hyperhydration and fiber tract loss the imaging contrast. In case of PACT, 

transparency is the high and sample expansion is also severe. Because PACT make the sample fully 

transparent, OCT imaging contrast is improper. To compare the improvement of mean free path 

quantitatively, we analyze the average of mean free path as shown in figure 3-11. In this graph, the value 

is obtained by averaging the mean free path in every area of brain. BABB transparency is the highest 

while ClearT transparency is the lowest. Actually mean free path map of BABB is converge to blue, on 

the other hand, mean free path map of ClearT has diverse imaging contrast compared to that of other 

clearing method. This analysis allows the evaluation of tissue clearing transparency; furthermore, 

provide the regional difference and dynamic monitoring. 
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Figure 3-11 Comparison study of the tissue clearing efficiencies of three different techniques: 

BABB, ClearT and Scale. En-face maps of mean free path of brain slices cleared by PACT, Scale, ClearT, 

and BABB are shown. Scale bars represent 1 mm. Plots of mean free path varying with clearing 

techniques and brain regions. 
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3.2. Investigation of Tissue Clearing Principle with MRI 

 

3.2.1. Tissue Clearing Analysis with S0 Map 

 

MRI is good at investigating water contents, because PD image has advantage of analyzing the 

hydrogen distribution. Therefore, PD image quantifies the water distribution in brain. As shown in 

figures 3-12 and 3-13, we compared S0 images that quantify principle and effect of various clearing 

techniques. The S0 value of agarose was normalized to be “1”. Blue region represents the low water 

contents. On the other hand, red region represents the high water contents. 

Because PACT and Scale remove the lipid and infiltrate water, PACT and Scale cause hyperhydration. 

Therefore, PACT and Scale expand the brain sample because of osmosis. S0 maps of PACT and Scale 

verify the hyperhydration by visualizing high water distribution. 

Before immersing tissue in the BABB, tissue has to be dehydrated with ethanol or methanol because 

BABB is hydrophobic. Therefore, BABB clearing reduces the water so that S0 map of BABB shows 

the low intensity. Aqueous index matching method such as ClearT also causes the dehydration. Because 

ClearT is a kind of hypertonic solution which includes high concentration of solute. Therefore, ClearT 

cause the brain tissue dehydration due to osmosis. Thus, ClearT and BABB cause the sample shrinkage. 

These dehydration phenomena were verified through S0 map.  

These observations perfectly coincide with reference papers [26]. Thus, S0 contrast can be used to 

measure the change in water content and find out the principle of tissue clearing. 
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Figure 3-12 S0 maps of cleared brain with PACT and Scale. (A,C) S0 map of control brain, (B) S0 

map of cleared brain with PACT, (D) S0 map of cleared brain with Scale. 
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Figure 3-13 S0 maps of cleared brain with ClearT and BABB. (A,C) S0 map of control brain, (B) 

S0 map of cleared brain with ClearT, (D) S0 map of cleared brain with BABB. 
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3.2.2. ROI Analysis of S0 map 

 

In order to investigate the regional difference, we measured the S0 values in 25 slices by making. In 

ROI regions, mean of S0 was obtained in every single slice, and then we calculated the mean and 

standard deviation of in 25 slices. As shown in figure 3-14, PACT increases the S0 value because PACT 

causes the hyperhydration by removing lipid. However, increase rate is variant from each region. In 

PACT, increase rate of S0 value in corpus callosum is ~48% whereas increase rate of S0 value in cortex 

is ~13%. Although final S0 value in cortex (1.14) and corpus callosum (1.16) is pretty similar, increase 

rate is different depending on brain region because pre data of S0 value is different in cortex (1.01), 

corpus callosum (0.79). It means that S0 value in corpus callosum is more affected by PACT clearing 

than S0 value in cortex. This is because corpus callosum includes more lipid than cortex and corpus 

callosum is more affected by hyperhydration. Therefore, we figure out that PACT clearing more 

influence on corpus callosum than cortex. Similarly, Scale also increases the S0 value because Scale 

removes the lipid and hydrate the tissue. Because lipid is more affected by Scale, increase rate of S0 

value in corpus callosum is ~34%, on the other hand, increase rate of S0 value in cortex is ~15%. 

Although Scale also make the final S0 value similar in cortex (1.20) and corpus callosum (1.18), 

increase rate is variant because pre S0 value is variant in cortex (1.05) and corpus callosum (0.88). This 

result shows that PACT and Scale clearing techniques more effect on the brain regions which includes 

high lipid contents such as corpus callosum, because principle of PACT, Scale is removal of lipid. 

On the other hands, ClearT dehydrate the brain tissue and reduce the S0 value. Because dehydration 

means decrease of water, proton density decrease. In particular, decrease rate of S0 value in cortex is 

~16% whereas decrease rate of S0 value in corpus callosum is ~4%. Moreover, absolute value of S0 

difference is larger in the cortex (-0.15) than in corpus callosum (-0.03). BABB also cause dehydration 

because BABB require the dehydration step with methanol or ethanol. Therefore, S0 value of BABB is 

reduced compared to pre data. Decrease rate of S0 value in cortex is ~77% whereas decrease rate of S0 

value in corpus callosum is ~70%. That is, decrease rate of S0 value in cortex is larger than that of 

corpus callosum. In fact, BABB clearing equalize the final S0 value in cortex (0.23) and corpus 

callosum (0.24). Nevertheless, decrease rate of S0 and absolute difference of S0 vary in cortex and 

corpus callosum this is because S0 value of pre data in cortex (1.0) is variant from S0 value of pre data 

in corpus callosum (0.8). Because cortex has high water contents compared to corpus callosum, cortex 

is more affected by BABB tissue clearing. This result explains that tissue clearing such as ClearT, BABB 

reduce the S0 value because they cause the dehydration. Furthermore, their tissue clearing efficiency is 

depending on brain region. This result explains the diverse tissue clearing efficiency and brain regional 

characteristics.  
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Figure 3-14 S0 change rate depending on brain region. S0 change rate due to tissue clearing vary 

with brain region even each clearing techniques. 

 

Table 3-1 Absolute S0 value of brain. This table compares the absolute S0 value of pre data with that 

of post data in cortex, corpus callosum. 

 

Table 3-2 S0 difference and S0 change rate (%). This table compares the S0 difference and S0 change 

rate in cortex, corpus callosum. 
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3.2.3. Tissue Clearing Analysis with T2 Map 

 

Technically speaking, S0 image shows hydrogen distribution not water distribution. That is, water 

content can be different in spite of same S0 value. On the other hand, T2 image shows the properties of 

substance. In T2 images, water has high signal because water retain most of their transverse 

magnetization during the TE period whereas lipid has low signal because lipid lose their transverse 

magnetization during the TE period. That is, S0 image and T2 image shows similar tendency, however, 

T2 image is more sensitive to analyze the characteristics of substance.  

Because PACT and Scale remove the most of lipid and cause the hyperhydration, cleared brain with 

PACT and Scale have similar properties of water. Therefore, T2 image of cleared brain with PACT and 

Scale is hyper intense. Figure 3-15 represent the hyperhydration, removal of lipid with PACT and Scale 

by showing the increase of T2. On the other hand, ClearT and BABB clearing have hypo intense in the 

T2 image because cleared brain with ClearT and BABB loss the characteristics of water due to 

dehydration. In figure 3-16, cleared brain with ClearT and BABB have reduced T2 value because of 

dehydration. This tendency correlates with S0 image and correspond with tissue clearing principle. 
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Figure 3-15 T2 maps of cleared brain with PACT and Scale. (A,C) T2 map of control brain, (B) T2 

map of cleared brain with PACT, (D) T2 map of cleared brain with Scale. 
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Figure 3-16 T2 maps of cleared brain with ClearT and BABB. (A,C) T2 map of control brain, (B) 

T2 map of cleared brain with PACT, (D) T2 map of cleared brain with Scale.  
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3.2.4. ROI Analysis of T2 map 

 

Likewise, we measure the T2 value in 25 slices by making the ROI mask. In ROI region, mean of T2 is 

obtained in every single slice and we calculated the mean, standard deviation of T2 value in 25 slices. 

As shown in figure 3-17, PACT increases the T2 value because PACT cause the hyper hydration and 

removal of lipid. However, increase rate is variant from each region. In PACT, increase rate of T2 value 

in corpus callosum is ~80% whereas increase rate of T2 value in cortex is ~28%. It means that PACT 

tissue clearing have more effect on corpus callosum this is because lipid is easily affect by PACT. 

Although final S0 value in cortex and corpus callosum is similar, final T2 value in cortex (93.19) and 

corpus callosum (104.05) is different. This absolute T2 information explains that corpus callosum is 

more close to water characteristics than cortex. Moreover, it represents that T2 is more sensitive than 

S0. Similarly, Scale also increases the T2 value because Scale removes the lipid and hydrate the tissue. 

Because corpus callosum have more lipid contents, increase rate of T2 value in corpus callosum is ~66% 

whereas increase rate of T2 value in cortex is ~18%. In addition, final T2 value in corpus callosum 

(97.60) is higher than that in cortex (85.33). It means that corpus callosum is easily affected by Scale 

clearing and close to water characteristics, furthermore, clearing is not saturated yet. If clearing is 

saturated, T2 value in cortex and corpus callosum will be equal. That is, brain region with high lipid 

contents is more easily affected by Scale, PACT clearing because principle of PACT, Scale is removal 

of lipid. 

On the other hands, ClearT dehydrate the brain tissue and reduce the T2 value. Because dehydration 

means decrease of water, T2 decrease. However, decrease rate varies according to brain region. In 

particular, decrease rate of T2 value in cortex is ~70% whereas decrease rate of T2 value in corpus 

callosum is ~66%. It represents that cortex is easily affected by ClearT compared to corpus callosum. 

This is because cortex includes much more water; cortex is more affected by dehydration. The 

remarkable information is that decrease rate of S0 value in cortex is lower than that in corpus callosum 

whereas decrease rate of T2 value in cortex is higher than corpus callosum. This information shows that 

T2 is more sensitive than S0 in analysis of brain regional characteristics. BABB also cause dehydration 

because BABB require the dehydration step with methanol or ethanol. Therefore, T2 value of BABB is 

reduced compared to pre data. Decrease rate of T2 value in cortex is ~51%, on the other hand, decrease 

rate of T2 value in corpus callosum is ~37%. That is, cortex is more affected by BABB clearing because 

cortex include more water. This result shows that tissue clearing such as ClearT, BABB reduce the T2 

value and their tissue clearing efficiency is depending on brain region. The interesting information is 

that S0 change rate is higher in BABB whereas T2 change rate is higher in ClearT. These tendencies 

analyze the tissue clearing characteristics and we can choose the tissue clearing for purpose of 

experiment.  
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Figure 3-17 T2 change rate depending on brain region. T2 change rate due to tissue clearing vary 

with brain region even each clearing techniques. 

 

Table 3-3 Absolute T2 value of brain. This table compares the absolute T2 value of pre data with that 

of post data in cortex, corpus callosum. 

 

Table 3-4 T2 difference and T2 change rate (%). This table compares the T2 difference and T2 change 

rate in cortex, corpus callosum. 
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3.2.5. Comparison of MRI Data with OCT Data 

 

As shown in figure 3-18, Scale and PACT more influence corpus callosum compared to cortex because 

principle of Scale and PACT remove the lipid. In addition, corpus callosum is composed of much lipid. 

Whereas ClearT and BABB more effect on cortex compared to corpus callosum because ClearT and 

BABB cause the dehydration. Moreover, cortex is composed of much water. I compared this data with 

OCT data. OCT data shows the mean free path change and mean free path represent the transparency. 

As shown in figure 3-18, BABB cause the highest transparency and ClearT cause the lowest 

transparency. Mean free path difference of cortex is higher than corpus callosum with BABB, ClearT. 

That is, transparency change rate correlate with the S0, T2 change rate with BABB, ClearT. Similarly, 

PACT, Scale transparency change rate correlates with MRI data. Mean free path difference of corpus 

callosum is higher than cortex with Scale, PACT. These data explain that tissue clearing efficiency is 

closely related to lipid and water distribution. Because lipid and water distribution vary with each brain 

region, clearing efficiency is variant from each brain region. Furthermore, each clearing efficiency is 

also various depending on clearing principle. Therefore, by analyzing the each clearing principle with 

MRI and each clearing efficiency with OCT, we can choose the proper clearing technique to serve 

experimental purpose. Through the quantitative analysis of tissue clearing with MRI, OCT, we can 

maximize the experimental efficiency by using proper tissue clearing techniques for experimental 

purpose. That is, this study provides the standard to evaluate the diverse tissue clearing and increase the 

reliability and reproducibility of experiment. 

 

 

 

 

 

 



49 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-18 Comparison of S0 difference, T2 difference, mean free path difference. Difference of 

S0, T2, mean free path shows the similar tendency.  
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Chapter 4. Discussion 

 

In case of OCT analysis, optical path length is changed due to refractive index change because optical 

path length is defined as refractive index*physical length. That is, mean free path is influenced by 

refractive index of tissue clearing, therefore, we have to divide mean free path by refractive index. In 

this correction, we assume that brain tissue refractive index (1.36) became equal to clearing solution 

refractive index. Although table 4-1, 4-3 shows the mean free path change due to the tissue clearing, 

they do not consider the optical path length change due to refractive index. On the other hand, table 4-

2, 4-4 consider the optical path length change due to refractive index. Figure 4-1 visualize the mean 

free path difference due to tissue clearing while considering refractive index. As shown in these data, 

tendency of corrected mean free path change is similar with previous data. And our method is limited 

in 2D monitoring of the change in mean free path, because it is hard to quantify the mean free path in 

3D using OCT. However, monitoring the effect of tissue clearing is undoubtedly better to be performed 

in 3D, because the aim of tissue clearing is to enable light microscopy to image the 3D structure of 

biological tissue. Previously, a number of studies on the OCT technique have reported on the 3D 

measurement of the attenuation coefficient of phantom and retina which is based on a mathematical 

model of single scattering[50]. However, due to the imperfection of the scattering model, the technique 

is still difficult to apply in other tissues that have complicated structures like the brain. Regarding the 

present limitation, our method is difficult to monitor the effect of tissue clearing in 3D, but we positively 

anticipate that our application will be expanded to 3D in the near future, when a proper scattering model 

is developed. 

 

 

 

 

 

Figure 4-1 Corrected mean free path(µm) difference due to tissue clearing. This figure shows the 

mean free path difference depending on tissue clearing. This mean free path value consider the optical 

path length change due to refractive index.  
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Table 4-1 Mean free path(µm) change due to tissue clearing. This table compares the mean free path 

change depending on tissue clearing. This mean free path value does not consider the optical path length 

change due to refractive index.  

 

Table 4-2 Corrected mean free(µm) path change due to tissue clearing. This table compares the 

mean free path change depending on tissue clearing. This mean free path value consider the optical 

path length change due to refractive index.  

 

Table 4-3 Mean free path(µm) difference. This table compares the mean free path change depending 

on tissue clearing. This mean free path value consider the optical path length change due to refractive 

index.  

 

Table 4-4 Corrected mean free path(µm) difference. This table compares the mean free path change 

depending on tissue clearing. This mean free path value consider the optical path length change due to 

refractive index.  
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In case of MRI analysis, we confirmed that MRI fitting well match with data point except for ClearT. 

As shown in figure 4-2, 4-3, previous ClearT fitting does not match with data point, so we modify the 

MRI fitted line. Therefore, S0, T2 value is changed and we reflect these change. And we want to 

investigate the water and lipid coupling. S0, T2 map is useful for monitoring the water distribution; 

however, lipid is coupled with water. Therefore, we have difficulty in monitoring the lipid change. 

Because lipid is scattering factor, it is important to analyze the lipid change due to tissue clearing. In 

order to monitor the lipid change due to tissue clearing, we plan to do magnetic resonance spectroscopy 

(MRS)[51-54] analysis or fat suppression[55-57]. MRS has advantage at investigating the biochemical 

change in the brain, because it picks up the signal from the different biochemical nuclei. Therefore, 

MRS can analyze the several substances such as lipid, amino acid, etc. Moreover, fat suppression 

subtracts lipid frequency from the original frequency. Thus, fat suppression obtains the information of 

lipid distribution. Lipid analysis through MRS or fat suppression will contribute to lipid change due to 

tissue clearing, which will be helpful for understanding the principle of tissue clearing with lipid.  

 

 

 

 

 

Figure 4-2 Modification of MRI fitting with ClearT in Cortex. (A) Previous MRI fitting with ClearT 

(B) Modified MRI fitting with ClearT. Other MRI fitting lines well match with data point, however, 

MRI fitting with ClearT does not math with data point. So we modify the MRI fitting lines. 
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Figure 4-3 Modification of MRI fitting with ClearT in Corpus Callosum. (A) Previous MRI fitting 

with ClearT (B) Modified MRI fitting with ClearT. Other MRI fitting lines well match with data point, 

however, MRI fitting with ClearT does not math with data point. So we modify the MRI fitting lines. 
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Chapter 5. Conclusion 

 

Three-dimensional brain imaging is important to understand a neuroanatomy research. However optical 

imaging modalities have inherent limitation of imaging depth due to light scattering. To overcome the 

limitation of imaging depth, various tissue clearing methods were developed. Tissue clearing improves 

the light penetration and allows the deep tissue imaging by reducing the scattering. However, it is 

difficult to find the optimal tissue clearing condition among the diverse tissue clearing techniques 

because there is no proper method to assess the tissue clearing technique. In this research, we provide 

the standard to evaluate tissue clearing with OCT and MRI. OCT analyze the tissue clearing 

effectiveness by monitoring the optical properties change, MRI analyze the tissue clearing principle by 

measuring the atomic characteristics change in the brain tissue. 

At first, we measured the tissue size change due to tissue clearing. PACT and Scale cause the tissue 

expansion, on the other hand, BABB and ClearT cause tissue shrink. Because ClearT have the smallest 

the change rate of sample size, we monitor the optical properties change with ClearT. To quantify the 

light intensity change in the brain tissue, we measure depth profile in the brain. Light intensity in the 

cleared brain is maintained better compared to that of control brain this is because tissue clearing 

reduces the surface scattering, it prevents light loss. Because attenuation coefficient, mean free path 

explain the optical properties well compared to reflectivity, we monitor not only reflectivity change but 

also attenuation coefficient, mean free path change. In particular, mean free path is more intuitive 

because of direct length dimension. Moreover, the definition of mean free path is the depth where is 

governed by single scattering and most of optics obtain the signal in the mean free path. Therefore, we 

decided to analyze the tissue clearing efficiency with mean free path. Through the mean free path 

analysis, we can know that tissue clearing increase mean free path. This is because tissue clearing 

reduces the scattering, as a result, the depth where is governed by single scattering increase. In order to 

compare the regional difference of tissue clearing efficiency, we measure the mean free path change 

due to ClearT according to brain region. After the tissue clearing, change rate of mean free path is various. 

For example, mean free path of cortex increases sharply, whereas mean free path of corpus callosum 

increases slightly. This is because cortex is more affected by ClearT tissue clearing. Through this 

analysis, we compare the existing tissue clearing efficiency. BABB has the highest mean free path and 

ClearT has the lowest mean free path. Through these results, this study demonstrates that tissue clearing 

increase the imaging depth by reducing scattering however increase rate of imaging depth is various 

according to clearing technique.  

In order to investigate the fundamental principle of tissue clearing, we monitor the brain tissue change 

with MRI. Hydrogen is MR active because hydrogen has odd number of proton. Therefore, hydrogen 

is aligned in magnetic field and hydrogen make resonance if RF pulse is applied. As a result of resonance, 
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NMV vector rotates around the transverse plane, this precession induces current in the receiver coil. We 

call this current ‘MR signal’. Among the diverse MR imaging, we decided to use S0, T2 image for 

analysis of tissue clearing principle. Thanks to S0, T2 map, we can verify that PACT, Scale clearing 

cause a hyperhydration by showing the high water distribution. Thus, PACT, Scale clearing expand the 

brain tissue due to osmosis. On the other hand, S0, T2 map visualize that ClearT, BABB clearing cause 

a dehydration. This phenomenon is identified by showing the low water contents. Therefore, ClearT, 

BABB cause sample shrink. Like this, MRI analysis inquire into the actual basis of tissue clearing 

techniques. Through this analysis, we can understand the cause and effect of tissue clearing. To 

investigate the regional difference of S0, T2 map, we measure the S0, T2 value by making ROI mask. 

In case of PACT and Scale, S0, T2 value difference in corpus callosum is higher than that in cortex, this 

is because lipid is more affected by PACT, Scale. In case of ClearT and BABB, S0, T2 value difference 

in cortex is higher than that in corpus callosum, this is because water is more affected by ClearT, BABB. 

That is, we can predict the tissue clearing efficiency depending on brain region with MRI analysis.  

Finally, we compare the OCT data with MRI data to comprehend tendency of tissue clearing effect. 

OCT mean free path data also show that lipid is more affected by PACT, Scale clearing whereas water 

is more affected by ClearT, BABB clearing. That is, OCT data have correlation with MRI data because 

tissue clearing effect is closely related to lipid, water distribution. Therefore, we can investigate the 

relation of tissue clearing with water and lipid distribution, furthermore, we can predict the experimental 

result depending on brain region even each clearing and increase the accuracy precession of 

experimental results. That is, this analysis will contribute to evaluation of diverse clearing and provide 

the general standard of tissue clearing principle. In the future study, we will investigate the 3D mean 

free path map with OCT and fat suppression with MRI.  
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