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a b s t r a c t 

Understanding atmospheric transport and dispersal events has an important role in a range of scenarios. 

Of particular importance is aiding in emergency response after an intentional or accidental chemical, bio- 

logical or radiological (CBR) release. In the event of a CBR release, it is desirable to know the current and 

future spatial extent of the contaminant as well as its location in order to aid decision makers in emer- 

gency response. Many dispersion phenomena may be opaque or clear, thus monitoring them using visual 

methods will be difficult or impossible. In these scenarios, relevant concentration sensors are required 

to detect the substance where they can form a static network on the ground or be placed upon mobile 

platforms. This paper presents a review of techniques used to gain information about atmospheric dis- 

persion events using static or mobile sensors. The review is concluded with a discussion on the current 

limitations of the state of the art and recommendations for future research. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

The growing threat of terrorism [1] , the Fukushima nuclear ac-

cident (2011) [2] and the Eyjafjallajökull volcanic eruption (2010)

[3] are significant events with a detrimental impact on public

health and several industries including aviation and transport.

What these events have in common is the dispersal of hazardous

material into the atmosphere. Atmospheric transport and disper-

sion (ATD) models are used to forecast the spread of the contami-

nants to provide emergency responders with crucial intelligence to

aid efficient response and post emergency assessment. For an accu-

rate forecast, several variables are needed as an input to the model

including, but not limited to: meteorological data, the strength of

the release and its location. In general, sparse meteorological data

are available from local weather stations or even across the globe.

The strength, location and time of the release are often unknown,

and thus should be inferred from relevant sensor measurements. 

For visibly detectable substances, such as volcanic ash, satellite

images are the preferred form of measurement data [3] ; however,

this approach is limited in terms of spatial and temporal resolu-

tion of the satellite and obstruction by clouds. Alternatively, sen-

sors that can measure the concentration of ash or a chemical, bio-
∗ Corresponding author. 
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ogical, radiological or nuclear (CBRN) substance are available. The

etermination of source parameters from these sensor measure-

ents is a problem in inverse modelling; the inverse problem is

ighly non-linear, ill-posed [4] and subject to input data that is

ypically sporadic, noisy and sparse [5] . Traditionally, with regards

o CBRN source term estimation (STE), a network of static sen-

ors on the ground are used to estimate the source term as illus-

rated in Fig. 1 . A benefit of this approach lies in early detection

ear places of strategic importance (e.g. nuclear power-plant sites).

owever, for accidents or deliberate attacks in random places, it is

nfeasible to cover all regions of importance with sensors dense

nough to determine the source before it has spread significantly. 

With the technological developments in sensing and robotics,

obile sensors such as unmanned aerial vehicles (UAVs) are now

ell equipped for STE. Mobile sensors provide the additional abil-

ty to perform boundary tracking of the contaminant and source

eeking to aid in the emergency response. Boundary tracking will

rovide a direct picture of the spatial extent of the contaminant

ithout modelling effort s. For inst ance, mobile sensors have been

mployed to determine the spread of a range of boundaries such

s oil spills [6] , forest fires [7] , ocean temperatures [8] and the

rowth of harmful algae bloom [9] . Since the ultimate goal of

TE is to predict the spread of hazardous material, the boundary

an be used as a means to verify the source estimate. In addi-

ion, the detected boundary can be used as additional observa-

https://core.ac.uk/display/79714568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.inffus.2016.11.010
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http://www.elsevier.com/locate/inffus
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2016.11.010&domain=pdf
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Fig. 1. Example of a static sensor network. 
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ional data within STE algorithms and to constrain the parameter

pace. Source seeking will attempt to drive the robot to the lo-

ation of an emitting source without a direct attempt to estimate

he release rate; similarly to boundary tracking, this provides an

stimate without modelling effort s. Using mobile sensors f or STE

ntroduces an additional area of research concerning how to op-

imally move the sensor in order to produce the best estimate of

ource parameters in the minimum amount of time or effort. The

ethod is related to a number of robotics research areas such as

utonomous search, multiple robot cooperation, informative path

lanning and control. 

In this paper, the techniques used to gain information about at-

ospheric dispersion events are explored where the substance is

ot detectable visibly. This includes STE using static or mobile sen-

ors, boundary tracking and source seeking. Although there are a

ew reviews on STE using static sensors [4,10,11] , this paper aims

o provide a more up to date and thorough review, featuring many

ew developments in the area and also an extension to the appli-

ation of mobile sensors. 

This paper is organised as follows. Section 2 provides a brief

iscussion of dispersion modelling, the adjoint source-receptor re-

ationship and STE datasets. Section 3 contains a review of STE

echniques using a static network of sensors. Section 4 presents

 review of the literature on the use of mobile sensors to gain in-

ormation of dispersing phenomena, specifically boundary tracking,

ource seeking and STE. Section 5 provides conclusions and recom-

endations for future research. 

. Preliminary background 

Dispersion modelling, the adjoint source-receptor relationship

nd experimental dispersion datasets are of high importance to

ource term estimation and will be referred to several times

hroughout this paper. However, since they are not the main fo-

us of this review, a brief outline is provided in this section. For

ore detailed information on atmospheric dispersion an interested

eader is referred to [12] . 

.1. Dispersion modelling 

Atmospheric transport and dispersion models are used to esti-

ate the dispersion of pollutants into the atmosphere. Models in

he literature vary in terms of applicable scenarios, assumptions

nd complexities. Five types of fundamental dispersion models ex-

st along with a number of hybrids and extensions of them as be-

ow: 

• Box models [13] 
• Gaussian plume models [14] 
• Lagrangian models [15] 
• Eulerian dispersion models [16] 
• Dense gas models [17,18] . 

A comprehensive list of atmospheric transport and dispersion

ATD) models is provided by the US Environmental Protection

gency (EPA), including sections for recommended and alternative

odels. For more information a review can be found in [19] . In this

ection, the Gaussian plume model is described in further detail

s it has been popular throughout the literature in STE due to its

implicity and fast computation. The key parameters in the model

re the atmospheric turbulence coefficients σ y and σ z which rep-

esent standard deviations that describe the crosswind and verti-

al mixing of the pollutant. Several derivations of these values ex-

st where a popular approach is based on Pasquill’s atmospheric

tability class [20] . The equation of the Gaussian plume is derived

rom the turbulent diffusion equation by assuming homogeneous,

teady state flow and a steady state point source, resulting in: 

 ( x, y, z, Q ) = 

Q 

ū σy σz 2 π

(
−y 2 

2 σ 2 
y 

)[
exp 

(
−( z − h ) 

2 

2 σ 2 
z 

)

+ exp 

(
−( z + h ) 

2 

2 σ 2 
z 

)]
(1) 

here C is a concentration at a given position, Q is the release rate,

, y and z are the downwind, crosswind and vertical distances, and

¯ is the mean wind speed at the height h of the release [3] . Several

xtensions of the Gaussian plume model exist to overcome some of

ts limiting assumptions such as the Gaussian puff model. 

.2. The adjoint source-receptor relationship 

The adjoint source-receptor relationship is created by an inverse

un of an ATD model from a sensor. Effectively the ATD model is

un where sensors act as sources and meteorological variables such

s wind speed are reversed. Concentrations expected at that sensor

an then be calculated for any source term by computing the inner

roduct of the source distribution and the adjoint concentration

eld [21] . 

Within the literature, the adjoint source-receptor relationship

as been used standalone to estimate the source term [22] , and to

uantify the uncertain relationship/sensitivity between source pa-

ameters and sensor concentration readings [23] . By using the ad-

oint, the number of potentially expensive dispersion model runs

an be significantly reduced as a single adjoint can be used to test

ultiple inferences [21] . This provides great benefit in scenarios

hich prefer a complex and computationally expensive ATD model.

owever, the adjoint can be limited by non-linearities in the con-

entration field and, in some complex scenarios (e.g. urban envi-

onments), the backwards and forwards dispersion runs will not

atch. This can be caused by effects from building interactions or

uff splitting. Nonetheless, these complex events have seen limited

esearch in the literature on STE. 

A simplified version of the adjoint models are back trajectory

echniques, where only the inverse run is used. The method is ef-

ective in splitting up regions where a source may occur by incor-

orating null sensor measurements to determine where it is likely

he source is not present [24] , effectively reducing the parameter

pace for the location estimate. The backward trajectory techniques

ave a number of limitations. The most critical of which is the re-

iance on accurate and rich meteorological information. Under situ-

tions where meteorological data are inaccurate, unreliable or un-

vailable, the accuracy of STE will suffer. Despite this, the method

s effective when used to define likely source regions as an initial

uess in estimation algorithms. 
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Fig. 2. Flow diagram of generic STE algorithm. 
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2.3. Datasets 

Experimental datasets are of high importance to validate STE

algorithms. When tested upon experimental data, significant per-

formance in STE accuracy is often lost. This is most likely due to

discrepancies between the ATD model simulations and real disper-

sion events and in the current ability (e.g. accuracy and resolu-

tion) of available sensors. Collecting atmospheric transport datasets

is an expensive task and significant planning is required. For this

reason, the number of available datasets is quite limited. Popu-

lar datasets used to validate STE algorithms are the Fusion Field

Trial 2007 (FFT07) experiment [25] and the Joint Urban Experi-

ment 2003 [26] . The datasets can vary among equipment used,

the amount of meteorological information available, the contami-

nant material and the experiment scale. Alternative experimental

methods use wind tunnels to validate STE algorithms, for example

the mock urban setting test (MUST) [27] . These experiments ben-

efit from better knowledge of the wind field, enabling researchers

to focus on refining STE algorithms with less meteorological or dis-

persion modelling uncertainties. A large collection of datasets and

their descriptions can be found at the Atmospheric Transport and

Diffusion Data Archive [28] and the Comprehensive Atmospheric

Modelling Program [29] . 

3. Source term estimation using static sensors 

The goal of STE is to estimate the parameters that describe the

source of a release: namely its location and strength. In the lit-

erature, meteorological variables have also been included as pa-

rameters to account for spatial variations in meteorological con-

ditions in order to find a better estimate of the overall source.

The most popular methods of STE use a network of concentration

sensors on the ground. Measurements of concentration are fused

with prior information such as meteorological data to estimate the

unknown source parameters. Estimation has been performed us-

ing two dominant approaches: (i) optimisation methods and (ii)

probabilistic approaches based on Bayesian inference. Regardless

of the approach, inferred source parameters are run in a forward

ATD model to generate predicted concentrations that are compared

with the observations in a cost or likelihood function. The overall

goal of these methods is to find the best or most likely match be-

tween the predicted and observed data, as illustrated in Fig. 2 . 

The major difference between the optimisation and Bayesian

approaches is in the probabilistic aspect of the Bayesian approach.

The Bayesian approach allows inputs and models used in the al-

gorithm to be specified via a probability density function (PDF),

taking into account uncertainties in the input data and the cho-

sen ATD model. With probabilistic inputs, the final output of the

algorithm will be in the form of a PDF, thereby, producing an esti-

mate of the source term with associated confidence levels. In con-

trast, the optimisation approach takes inputs without uncertainty

and attempts to find a single optimal solution to the problem. Both

methods have been shown to perform well in simulations; how-

ever, it was discovered that there is a significant room for improve-

ment for both when tested on experimental data [30] . Aside from

the main estimation algorithm used, the STE algorithms developed

have several other differences making a direct comparison difficult.

Some of the differences include: 

• The source term parameters 
• Likelihood/Cost function used to measure the goodness of fit 
• Type of release 
• Atmospheric dispersion model 
• Domain size 
•
 Prior information s
As mentioned earlier, the STE parameters include the source

trength or release rate, its location, the number of sources, and

eteorological variables. Note that this review has been limited

o models that estimate at least the source strength and location.

nder such scenarios, it is common to assume a constant release

ate. The literature is rich with estimation methods for releases of

nown origin and varying release rate such as the Fukushima acci-

ent. For this scenario, Kalman filters and variational data assimi-

ation approaches have been more popular [11] . Source estimation

f multiple releases is a particularly complex problem which has

een tackled in more recent research [23,24,31–40] . Several forms

f likelihood and cost functions have been used throughout the lit-

rature which will be discussed in the following sections. The type

f release has varied from: (i) a steady state plume [21,23,31,37,41–

1] , (ii) a dynamic plume [24,32–36,38,39,52–55] and (iii) an in-

tantaneous release or puff [24,39,55] . Most research has focused

n continuous steady state plumes using the Gaussian plume equa-

ion. Dynamic plumes and instantaneous releases yield a more de-

anding problem which is more applicable to emergency response

ituations. The domain size can range from small scale ( < km) to

ontinental scale; however, with a relevant dispersion model, the

ajority of techniques can be applied to any domain size [10] .

everal forms of prior information have been used throughout the

iterature including meteorological variables, the geometry of the

etwork and parameter bounds such as the time of release, release

ate and domain size. 

The following section is organised as follows. Section 3.1 re-

iews STE solutions using the optimisation approach. In

ection 3.2 , this process is done for solutions formulated in

he Bayesian framework. Finally, the work on STE using static

ensor networks is summarised in Section 3.3 . 
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.1. Optimisation 

The optimisation approach to STE aims to find the combination

f parameters that minimises a cost/objective function J . The objec-

ive function has taken many forms, although most often it is de-

ived from the sum of the squared differences between predicted

 r and observed concentrations D r . C r are obtained from an ATD

odel run using the inferred source term and D r are concentra-

ion data from deployed sensors. It is assumed that the parameter

ombination that produces the minimal difference is the optimal

stimate of the source term. Most optimisation techniques employ

n iterative process, where the objective function is minimised by

sing different update rules to provide new improved estimates of

he parameters. 

The main focus of research on the optimisation approach has

een on assessing the performance of existing algorithms in opti-

ising a cost function, however the different methods have also

xplored various cost functions and the use of better initial esti-

ates. A variety of methods have been used to optimise the objec-

ive function such as gradient-based methods [23,56] , direct search

ethods (e.g. the pattern search method [54] ), and intelligent op-

imisation methods (e.g. simulated annealing [51] and the genetic

lgorithm [38,57–60] ). Details about the specific optimisation ap-

roaches are described in this section. 

.1.1. Gradient based 

This sub-section describes gradient-based STE algorithms found

n the literature. The methods used are the extension of the least

quares technique known as Re-normalisation or regularised least

quares. 

) Least squares. The aim of least squares estimation is to min-

mise the sum of the squares of the residuals between measured

 r and predicted C r concentrations for the total number of sensors

 . The cost function can be written as: 

 = 

N ∑ 

r=1 

( C r − D r ) 
2 
. (2) 

The least-squares method is applicable only for an over-

etermined inverse problem. The iterative minimisation of the cost

unction Eq. (2) requires an initial guess of source term [61] . Since

he least squares optimisation method is not a global optimisation

echnique, it is largely dependent on a good initial guess, otherwise

t may get stuck in a local minimum leading to a poor solution due

o the non-linearity of the solution space. 

) Re-normalisation. Re-normalisation or regularised least squares

s a strategy for linear assimilation of concentration measurements

o identify the unknown releases [62,63] . The method exploits the

atural statistics provided by the geometry of the monitoring net-

ork. These statistics are expressed in the form of a weight func-

ion derived by a minimum entropy criterion, which prevents the

ver-estimation of the available information that would lead to

he artefacts especially close to the detectors. These weight func-

ions serve as a priori information about the release apparent

o the monitoring network and provide regularisation, thus lim-

ting the search space of the algorithm and providing an initial

uess. The weight functions could be computed iteratively using

n algorithm proposed by Issartel [63] ; besides, a minimum norm

eighted solution provides an estimate for the distributed emis-

ions and is seen as a generalised inverse solution to the under-

etermined class of linear inverse problems [64] . Overall, the re-

ormalisation approach utilises the adjoint source-receptor rela-

ionship mentioned in Section 2.2 and constructs a source estimate
mong a vector space of acceptable sources, which describes the

ossible distribution of the emission sources [65] . The method is

pplicable for both over-determined and under-determined prob-

ems. 

Sharan et al. [56] used regularised least squares to determine

he source term of a point release using the fact that the maxi-

um of the source estimate will coincide with the location of the

elease. An advection-diffusion based dispersion model [66] was

sed to generate an adjoint model of the source-receptor relation-

hip. Unlike many other STE methods, the domain was discretised

nto a grid, where the size was dependant on the density of the

ensor network. The method was extended in [67] for identifica-

ion of an elevated release with an inversion error estimate. The

lgorithm was further extended to identify multiple-point releases

68] where the number of releases was known. Two steps were ap-

lied to reduce the computational time of the algorithm. First, re-

ions associated with weak weight functions were removed. Then,

nly one in five grid points in each direction were considered, and

his was iteratively refined to obtain an estimate of the source. In

23] , Singh and Rani applied the algorithm to data from the FFT07

xperiment [25] . A sensitivity analysis was performed to determine

he effect of the number of measurements on the inversion re-

ults. It was found that on average nine measurements were re-

uired to sufficiently identify the source parameters and the accu-

acy of estimation was subject to the locations of sensors down-

ind and crosswind of the release. In [40] , Singh and Rani applied

he framework to multiple source scenarios of the FFT07 dataset.

ecently, Kumar et al. [69,70] have extended the regularised least

quares inversion approach to urban environments, where CFD has

eplaced the underlying ATD model [71] . The method is tested on

xperimental data from the Mock Urban Setting Test (MUST) field

xperiment under various stability conditions. Reasonable accuracy

as demonstrated in an experimental setting with an idealised ur-

an geometry. 

) Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS). The BFGS al-

orithm [72–75] is one of the most popular quasi-Newton optimi-

ation techniques [75] . The method is used to rapidly search for

xtrema of a function. It is similar to Newton’s method however

he inverse of the Hessian is approximated directly, greatly reduc-

ng computational requirements. On its own, the algorithm would

truggle to determine the source term since it can become stuck in

ocal minima. To overcome this issue, the Inverse ATD models have

een used to generate a suitable initial guess. 

In [24] , Bieringer et al. used the BFGS algorithm to refine an ini-

ial guess of source parameters obtained from an inverse SCIPUFF

un. To reduce computation, the simple Gaussian plume equation

as used in the iterative optimisation. This equation was enhanced

y using dispersion coefficients generated from the SCIPUFF run.

he paper attempted to produce a final estimate where the final

CIPUFF and Gaussian plume runs matched as closely as possible

ith each other and the sensor readings. The algorithm was tested

n experimental data from the FFT07 experiment to show similar

erformance to previous SCIPUFF based methods however with re-

uced computational complexity. The method was created to be

omputationally efficient for emergency scenarios where a timely

olution would be critical. It was tested more rigorously than pre-

ious algorithms under scenarios including: different numbers of

ensors, inconsistencies in observations and large distances be-

ween sensors and source. The performance was degraded in cases

here the measured gradients in the concentration field were re-

uced (such as longer source to sensor distances, fewer sensors,

arger sensor spacing etc.). The need for proper concentration gra-

ients highlights the importance of having null sensor measure-

ents that effectively characterise the spatial extent of the plume.
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3.1.2. Meta-heuristics 

Meta-heuristic optimisation algorithms have been among the

most popular of the STE algorithms in the literature. They bene-

fit from their global search performance in order to prevent the

estimate from becoming stuck in a local minimum. The algorithms

reviewed in this section include the pattern search method (PSM),

simulated annealing (SA) and the genetic algorithm (GA). The al-

gorithms use different methods to iterate until convergence to a

solution based on evaluation of a cost function. The methods differ

by the means in which they alter the parameters to find improved

solutions. 

a) Pattern search method. The pattern search method (PSM) is one

of the basic optimisation methods, consisting of two simple steps.

The first step defines the theoretical parameters (source strength Q

and location x, y ) and their initial values. In the second step, the

algorithm varies each parameter by increasing or decreasing their

values from the current point applying a constant factor, known

as the axis direction move. The cost function is then calculated for

the new set of parameter values (the difference between calculated

and measured concentration). If there is no increase or decrease of

the cost function value compared with the values of the previous

points, the step size is halved (the pattern move) and the process

is repeated until the termination criteria are reached [76] . 

In [54] , Zheng and Chen developed a PSM to determine the

strength and locations of a contaminant source. The method was

shown to be more efficient than other intelligent optimisation

methods such as the GA, however it was limited as the PSM is a

local optimisation method, meaning that it was highly dependent

on its initial value. To overcome this limitation, Zheng and Chen

[77] developed a hybrid algorithm that incorporated the global

search performance of the GA with local search performance of the

PSM. The GA algorithm was used to produce a reasonable initial

value for use in the PSM. The algorithm was able to define the lo-

cation and strength of a contaminant source with great accuracy.

The algorithms performance was compared with that of an origi-

nal GA to find an increase in accuracy and efficiency [77] . 

b) Simulated annealing. The simulated annealing (SA) algorithm is

a global optimisation algorithm that was introduced by Kirkpatrick

et al. [78] . It is based on an analogy of thermodynamics, specifi-

cally the process of heating and controlled cooling of a material to

reduce defects. This process directly depends on thermodynamic

energy E . Once applying this thermodynamic analogy to the op-

timisation problem, the goal is to bring the system from its ini-

tial state to a convergent state in which the system uses minimum

possible energy. The rule for accepting change in state is based on

the Boltzmann probability distribution [51] , given as: 

R ∼ u ( 0 , 1 ) < exp 

(
−E n − E n −1 

T n 

)
(3)

where R is a random number from the uniform distribution u be-

tween zero and one, E n is the energy of the system (similar to

a cost function) and T n is the temperature or cooling parameter.

This enables the algorithm to occasionally accept parameter sets

that increase E n , thus achieving global search performance as it is

able to escape from local minima. The algorithm repeats, generat-

ing new parameter estimates randomly, until it converges to a so-

lution. Throughout the simulation, T n is decreased to improve the

convergence behaviour of the system. 

Thomson et al. [51] applied SA to locate a gas source from mea-

surements of concentration and wind data. The search algorithm

was employed to find the source location and emission rate. SA

was found to be advantageous as it helps prevent the search al-

gorithm from converging to local minima that might surround the
argeted global minimum. Three cost functions with different reg-

larisation terms were evaluated, and the cost function that min-

mises the total source emissions was found to be the most ro-

ust, producing successful event reconstructions. In addition, SA

as also used by Newman et al. [79] to determine contaminant

ource zones in natural ground water. The paper compares SA with

inimum Relative Entropy (MRE) methods for STE, and concluded

hat SA was more robust and converged more quickly than MRE;

owever, it was found that the optimal solution was to use a hy-

rid algorithm, which ran MRE after SA in order to refine the so-

ution and add confidence limits to the parameter space. 

) Genetic algorithm. The genetic algorithm (GA) is a popular

lobal optimisation technique used in numerous STE algorithms. It

s classified as one of the artificial intelligent optimisation meth-

ds. Similarly to most optimisation techniques, the GA is based on

terations, but the major difference of the algorithm is in the alter-

tion of parameter estimates to generate new solution candidates.

his is inspired by the process of natural evolution [80] . The pro-

ess of the GA can be summarised by the following steps: 

1) Initialisation: A random population of candidate solutions

called chromosomes are generated. 

2) Selection: A cost function is evaluated to measure the quality

(fitness) of the solutions. 

3) Mating: High quality solutions are mated with each other to

generate new parameter estimates while creating a second gen-

eration population of solutions. The second generation contains

a higher quality of chromosomes than the earlier generation. 

4) Mutation: As is the process in evolution, a selection of chromo-

somes are mutated in order to generate more new solutions. 

5) Convergence or termination check is performed. 

6) Repeat (2) ∼ (5) 

Several variations of the GA exist: incorporating different mu-

ation, mating and population generation strategies. It is important

o tune parameters such as population size and mutation rate to

ptimise the performance of the algorithm with regards to effi-

iency, accuracy and avoidance of local minima. In [59,81] , Haupt

t al. first demonstrated the ability of the GA to link readings from

eceptor data with the Gaussian plume ATD model. Later in [57] ,

llen et al. used this method to characterise a pollutant source

y estimating its two dimensional location, strength and the sur-

ace wind direction. Including the surface wind direction as a pa-

ameter to be optimised in the GA could account for the sparse

esolution of meteorological wind field data and any error therein

57] . The algorithm performed very well during twin experiments

where the Gaussian plume was used to create synthetic data), and

erformance was decreased with sensor grids with less than 8x8

eceptors. It is worthwhile noting that the algorithm showed rea-

onable performance under sensor noise provided that the noise

as less than the signal [57] . To further refine the final estimate of

he source term, a hybrid GA was formulated in [58] . A traditional

radient descent algorithm (the Nelder-Meade Downhill Simplex

NMDS)) was run after the GA. The GA produced a suitable ini-

ial estimate to prevent the NMDS from becoming stuck in a non

lobal minima. The hybrid algorithm was benefited from the speed

nd performance of NMDS in a local search with the global search

erformance of the GA. 

To improve the performance of the algorithm in more realis-

ic scenarios, Allen et al. [38] replaced the simple Gaussian plume

odel with SCIPUFF. This was also used by Long et al. [60] to de-

ermine the location of a contaminant release. The sensitivity of

he GA in STE was assessed in [82] . The paper investigated the

umber of sensors necessary to identify source location, height,

trength, surface wind direction, surface wind speed, and time of



M. Hutchinson et al. / Information Fusion 36 (2017) 130–148 135 

r  

d

 

m  

s  

b  

o  

e  

t  

w  

s

 

A  

p  

c  

i  

a  

t  

a  

a  

M  

F  

l  

b

3

 

p  

m  

i  

a  

m  

t  

a  

i  

a  

t

 

s

 

 

 

 

 

 

 

 

 

f  

o  

e  

A  

a  

t  

r  

c

3

 

t  

c  

a  

o  

s  

o  

s  

p  

s  

l  

p

 

f

P

w  

i  

i  

k  

f  

i  

d  

t  

p  

o  

r  

s  

d  

e

 

P  

p  

h  

a  

t  

s  

s  

I  

w  

g

P

T  

c  

e  

e  

p  

a  

b  

t  

p  

s  

i

 

m  

p  

m  

a  
elease. It was found that the number of sensors required varied

epending on the signal to noise ratio. 

In [55] Annunzio et al. combined the GA with the adjoint

ethod in an Entity and Field framework (where entities are Gaus-

ian plumes) for an improved estimate of the source term. This had

een demonstrated by Young et al. [83] , and this required an input

f a large amount of wind and concentration data. The approach

stimates the axis of the plume/puff while providing an estimate of

he wind direction and the spread of the contaminant. The source

as located using a GA with a cost function based on contaminant

pread. 

To estimate the source terms in a scenario of multiple releases,

nnunzio et al. [39] extend the Entity and Field framework ap-

roach to use multiple entities. The number of entities was in-

reased to improve the concentration field approximation. When

ncreasing the number of entities did not yield an improved field

pproximation, the number of sources was found. As there were

oo many correlated unknowns (i.e. entity mass M , release time t

nd wind speed U ), the source strength was not estimated. Instead,

 scaling variable was determined during the optimisation process

 / U �t . Based on a comparison by Platt and Deriggi [30] using the

FT07 experimental data, the algorithm obtained a better source

ocation estimate than several other optimisation and Bayesian-

ased approaches. 

.1.3. Summary on optimisation 

Optimisation methods provide a single point estimate of source

arameters by minimising discrepancies between predicted and

easured concentrations. The gradient climbing methods are lim-

ted as without a suitable initial guess they can become stuck in

n incorrect local minima. However, with a reasonable initial esti-

ate, for instance by using the adjoint, the algorithm can converge

o a solution quite rapidly. Intelligent global search algorithms such

s the GA, SA and the PSM have been classified as Meta-heuristics

n this paper. The methods benefit over gradient descent methods

s they can handle poor initial estimates as they employ methods

o prevent becoming stuck in local minima. 

Many modifications of the original algorithms have been pre-

ented, in which some interesting features include: 

• The wind direction in the parameter space to account for sparse

meteorological data [57] . 
• Hybrid algorithms to gain the benefits of global and local search

[58] . 
• Prior information to limit the search space of the algorithms

[63] . 
• The combination of global search algorithms or the adjoint to

generate a good initial guess to be refined by a local search al-

gorithm [55] . 
• Complex ATD models to improve the simple Gaussian plume

equation resulting in improved accuracy without increasing too

much computational load [24] . 
• Null sensor readings to narrow down where the source is not

present [24] . 

In twin experiments, the majority of optimisation methods per-

orm well [84] . When tested upon experimental data, the accuracy

f the solution is heavily reliant upon the ATD model and knowl-

dge of the atmospheric conditions/stability. Several more complex

TD models exist that may overcome this issue. Unfortunately, for

n accurate simulation, a vast amount of meteorological parame-

ers were also required. Furthermore, the benefit of a more accu-

ate dispersion model may be outweighed by the increase in the

omputational time. 
.2. Bayesian inference 

Bayesian-based methods of STE allow probabilistic considera-

ions to be introduced to the problem in order to account for un-

ertainties in input data. Another way of exploiting the Bayesian

pproach consists in seeking not just for one optimal solution, but

btaining the probability density function (PDF) of the estimated

ource parameters. In this case, the source is defined by a set

f parameters, which are the quantities of interest. By means of

tochastic sampling, the posterior probability distribution of these

arameters is evaluated to fully describe the parameters of the

ource and the uncertainty on them. The goal of STE is then to

ook for the most probable parameters for the source in terms of

osterior probability. 

Bayes theorem estimates the probability of a hypothesis or in-

erence being true, given a new piece of evidence as given [85] : 

 osterior ∝ 

P rior × Likelihood 

Ev idence 
→ P (θ | D, M, I) 

∝ 

P (θ | I) × P (D | θ, M, I) 

P (D | M, I) 
(4) 

here the theorem estimates the probability of a hypothesis θ be-

ng true, given the data (measurements) D , model M and prior

nformation I . The prior distribution P ( θ | I ) expresses the state of

nowledge about θ prior to the arrival of data D . The likelihood

unction P ( D | θ , M, I ) describes the probability of the data D , assum-

ng the hypothesis θ is true. This is also known as the sampling

istribution when considered as a function of the data. The pos-

erior distribution P ( θ | D, M, I ) is the full solution to the inference

roblem and, converse to the likelihood, expresses the probability

f θ given D . The final goal is to conduct inference over the pa-

ameters which define θ , and the posterior expresses the complete

tate of knowledge of these parameters given all of the available

ata. Once completed, post processing is often required in order to

xtract useful summary information from the posterior. 

The evidence (sometimes known as the marginal likelihood)

 ( D | M, I ) is so-named because it measures the support for the hy-

othesis of interest. For inference problems where only a single

ypothesis has been or will ever be considered, the evidence is

n unimportant constant of proportionality. When applied to STE,

he hypothesis θ is an inferred set of parameters that describe the

ource term, the data D are the measured concentrations from the

ensors, the model M is an ATD model, and the prior information

 can be any information related to the problem. In early work

here only a single source is considered, the evidence term is ne-

lected so Eq. (4) may be simplified to: 

 osterior ∝ P rior × Likelihood → P (θ | D, M, I ) ∝ P (θ | I ) 
× P (D | θ, M, I) . (5) 

he likelihood function is used to quantify the probability of dis-

repancy between the measured and predicted concentrations at

ach sensor. Predictions are made by inputting the inferred param-

ters into an ATD model. The prior probability is used to encom-

ass any information about the source parameters known prior to

ny detection. It is often assumed no prior information is known

eforehand and therefore this is often initially given a uniform dis-

ribution. The posterior probability of the parameters is then pro-

ortional to the likelihood. When the inference is performed in a

equential process, the prior is set as the posterior of the previous

teration. 

Monte Carlo (MC) sampling methods are employed to deter-

ine an accurate estimate of the posterior PDF for the source

arameters θ . Parameter estimates and uncertainty can be deter-

ined from the statistics of the posterior, commonly the mean

nd the standard deviations. In a high dimensional space, where
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there are many parameters inferred, the computational effort in-

creases exponentially. For this reason, efficient sampling techniques

are used such as the popular Markov Chain Monte Carlo (MCMC)

and Sequential Monte Carlo (SMC). The sequential aspect of SMC

enables it to update the data as it arrives making it more appli-

cable to dynamic plumes. In the following sections, different im-

provements and modifications of the Bayesian approach to STE

conducted in the literature are discussed. Improvements have been

made in terms of computational efficiency of the algorithms, ac-

curacy, improvements to the likelihood function, extension of the

methods to handle multiple-source release scenarios and urban

environments and how the algorithm could be enhanced to gain

robustness under sensor noise. The Bayesian-based methods ex-

plored in this section include: MCMC [21,41,52] , SMC [36,43,52,86] ,

differential evolution Monte Carlo (DEMC) [53] and polynomial

chaos quadrature (PCQ) [49] among others. 

3.2.1. Markov chain Monte Carlo (MCMC) 

MCMC methods are used to efficiently sample from probabil-

ity distributions by constructing a Markov Chain with the desired

distribution equivalent to its equilibrium distribution [87] . With an

initial random or informed starting point, a Markov chain is cre-

ated where new inferences are drawn from the current link in

the chain. The likelihood of the current inference is evaluated and

based on acceptance criteria, it is either rejected or accepted as

the next link in the Markov chain. Several techniques have been

proposed to generate and accept new inferences. The most popu-

lar one is the Metropolis-Hastings (MH) algorithm [88] , described

by the following steps. 

Step 1 Initialisation: Propose a starting estimate of the source

parameters: θ1 

For i = 1 : N

Step 2 Proposal: Generate a new estimate θ̄ . Sample from

the proposal distribution q ( ·): 
θ̄ ∼ g( ̄θ | θi ) 

Step 3 Evaluate the MH acceptance probability: 

α = 

P ( ̄θ | D, M, I) q (θi | ̄θ ) 

P (θi ) | D, M, I) q ( ̄θ | θi ) 

Step 4 Accept or reject new parameters into the Markov

chain: 

θi +1 = 

{
θ̄ if α ≥ u [0 , 1] , 
θi otherwise, 

where u represents the uniform distribution. The initialisation pro-

cess involves selecting an initial guess of the source parameters.

This should be based on prior information as the initial guess can

have a significant impact on the convergence of the algorithm. The

next proposal is generated by sampling from the end of the pre-

vious link in the Markov Chain. A random walk is the most popu-

lar technique, however in the literature more informed techniques

have been proposed. During Step 3, the probability of the proposal

being accepted is calculated based on the posterior distribution

and proposal density of the prior estimate and of that proposed.

In Step 4, this is compared with a random number to determine

whether or not it is accepted as the next link in the Markov Chain

[52] . 

The MCMC algorithms have been popular in STE due to the

computational benefit over the more traditional Monte Carlo

method. In [52] , Johannesson et al. proposed a number of benefits

and implementations of the MCMC algorithms for inverse prob-

lems including STE of ATD events. Several approaches to generat-

ing proposals were discussed including the Gibbs sampler, random

walk and Langevin diffusion which was suggested to yield the most
ffective random walk. In [41] Borysiewicz et al. compared several

CMC algorithms for STE. Those compared include: 

• Standard MCMC 

• MCMC via maximal likelihood 

• MCMC via rejuvenation and extension 

• MCMC via rejuvenation, modification and extension 

MCMC via rejuvenation, modification and extension was pro-

osed to be the most effective during a number of synthetic tests

hich included an assessment of their efficiency when smaller

mounts of measurements were available. In [42] , Senocak et al.

xtended the MCMC algorithm for STE to incorporate null/zero

ensor measurements. Another extension was an enhancement of

he simple Gaussian plume model by incorporating the turbulent

iffusion parameters into the parameter space, thus better match-

ng of predicted and observed concentrations. 

In [21] , Keats et al. estimated the source strength and location

f a contaminant plume in an urban environment with the MCMC

H algorithm. A key feature of the method was the adjoint based

ource-receptor relationship which greatly reduced the computa-

ional burden as the advection-diffusion equation was solved only

nce for each detector as opposed to solving for every combination

f source parameters. The method was tested on experimental data

rom the Joint Urban 2003 atmospheric dispersion study, and the

rue parameters were shown to be located within one standard de-

iation of the estimate. In [31] , Yee et al. successfully extended the

forementioned method [21] to estimate the parameters of mul-

iple sources during synthetic simulations where the number of

ources was known a priori. Here the MH procedure was applied

ith simulated tempering (ST) [89] . ST was used to alter the like-

ihood function in a way that the effects of the measured con-

entration data were introduced gradually. This allowed the algo-

ithm to explore the prior distribution for a number of different

ource parameter hypotheses, helping with the burn in phase of

he MCMC algorithm by delaying sampling from the posterior. In

32] , Yee used a reversible jump MCMC algorithm to detect mul-

iple sources where the number of sources was unknown a priori.

he reversible jump sampling algorithm which was first introduced

y Green. [90] enables the Markov Chain to jump between model

paces of different dimensions. In this STE case, a different dimen-

ion referred to a different number of sources. The jump could ei-

her add a single new source or remove an existing source from

he inferred parameters. The methods successfully estimated the

umber of sources when tested on synthetic data. 

In [33] , Yee improved the method by employing a simulated an-

ealing scheme to move between the hypothesis space, increasing

he mixing rate of the Markov Chains, which leads to faster con-

ergence. Similarly to ST in [31] , the algorithm alters the likelihood

unction over time to facilitate the burn-in phase of MCMC. The al-

orithm was tested on data from the FFT07 experiment, resulting

n good performance of identifying the parameters of up to four

ources along with their associated uncertainties. However, large

arameter space by adding the number of sources into the estima-

ion problem caused a slow computational speed. This issue was

ddressed in [34] , where a model selection approach was proposed

o determine the number of sources. The number of sources was

etermined by finding the minimum number of sources necessary

o represent the concentration signal in the data. The accuracy of

he method was similar to [31,33] with the computational load sig-

ificantly reduced. 

In [37] , Wade and Senocak. presented another method to de-

ermine the parameters of an unknown number of sources using

he Bayesian MCMC algorithm. The method used a ranking system

nspired by the environmental protection agencies (EPA) metric to

etermine the quality of ATD models. The method successfully de-

ermined the correct number of sources on experimental data from
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he FFT07 experiment. The major drawback of the method, how-

ver, was its need to run simulations for each number of sources. 

It is worthwhile noting that most algorithms above performed

ell on synthetic data and on data from the FFT07 experiment.

his experiment was conducted in an idealistic scenario, featuring

 high number of sensors, releases in the vicinity of the sensor

rray and a rich amount of meteorological data available. A real

orld application was presented in [91,92] by Yee et al. Here, the

ocation and emission rate of a source (from the Chalk River Lab-

ratories medical isotope production facility) was estimated using

 small number of activity concentration measurements of a noble

as (Xenon-133) obtained from three stations that form part of the

nternational Monitoring System radionuclide network [92] . It was

iscovered that the key difficulty in the STE lay in the correct spec-

fication of the model errors. The initial algorithm obtained a rea-

onable estimate of the source parameters though the precision of

he estimate was poor as the uncertainty bounds of the estimated

ource parameters did not include the actual values. An alternative

easurement model was proposed, which incorporated scale fac-

ors of the predicted concentrations in order to compensate for the

odel errors [92] . 

.2.2. Sequential Monte Carlo (SMC) 

SMC is another technique used for efficient sampling. Unlike

CMC, the method is inherently parallel which allows all Monte

arlo proposals to be generated and evaluated simultaneously [93] .

or this reason, it is considered to be computationally more ef-

cient than MCMC provided the algorithm converges well. An-

ther benefit is the sequential nature of SMC, allowing new data to

un in the algorithm as it becomes available [93] . A popular SMC

ethod uses importance sampling (IS). This involves taking a cer-

ain number of samples from the current estimate of the source

arameters, weighting them and using these weights to form a

ew posterior distribution, which new samples are drawn from.

he steps are outlined as follows: 

Step 1 Initialisation: Propose an initial importance sample: 

1: t 0 = { θ (i ) 
1: t 0 

, w 

(i ) 
1: t 0 

: i = 1 , . . . , N} 
For t = t 0 : T 

Step 2 Proposal: Generate a new estimate. Sample from

he proposal distribution q ( ·): 
For i = 1 : N, sample 

˜ (i ) 
1: t 

∼ q t ( ̃  θ1: t ) = q t ( ̃  θt | ̃  θ1: t−1 ) q t ( ̃  θ1: t−1 ) 

Step 3 Update importance weights: 

For i = 1 : N, evaluate importance weights 

˜ 
 

(i ) 
1: t 

∝ 

πt ( ̃  θ (i ) 
1: t 

) 

q t ( ̃  θ (i ) 
1: t 

) 
∝ 

P (D t | ̃  θ i 
t , M, I) P ( ̃  θt | ̃  θ1: t−1 ) 

q t ( ̃  θt | ̃  θ1: t−1 ) 

πt−1 ( ̃  θ (i ) 
1: t−1 

) 

q t ( ̃  θ (i ) 
1: t−1 

) 

Step 4 Normalise weightings: 

et θ (i ) 
1: t 

= 

˜ θ (i ) 
1: t 

and w 

(i ) 
1: t 

= 

˜ w 

(i ) 
1: t ∑ N 

j=1 ˜ w 

( j) 
1: t 

Step 5 Approximate the posterior distribution: 

(θt ) � 

N ∑ 

i =1 

w 

i 
t δ(θt − θ i 

t ) 

In [52] , Johannesson et al. first proposed SMC for STE of an

tmospheric release. The article provides an introduction to the

MC algorithm for Bayesian inference and some sampling tech-

iques including a hybrid MCMC-SMC algorithm. In [43] , Gunati-

aka et al. used SMC with a progressive correction (PC) technique

o converge to a solution for STE. Some limitations of the Gaussian

lume model were addressed. In particular, as the assumption of
niform wind speed and diffusivity caused the plume height and

round level concentration to be underestimated. The concentra-

ion read by the sensors was represented by the sum of the mean

nd fluctuating components where the mean was derived from an

nalytic solution of the turbulent diffusion equation and the fluc-

uating part modelled by a PDF. The performance of the algorithm

as tested on synthetic data for a range of sensor grid densities.

easonable performance was attained using grid densities as small

s three by three. 

In [86] , Wawrzynczak et al. estimated the source strength, lo-

ation, and ATD coefficients using SMC. Sequential importance re-

ampling (SIR) was used which combines IS with a re-sampling

rocedure. Re-sampling was used to replace samples with low im-

ortance weights with those from a higher weighting. The algo-

ithm was implemented first by running several iterations of mul-

iple MCMC chains using MH and a random walk. After a number

f iterations, the importance weights were found and the initial

MC sample was drawn. The paper compared the performance of

he MCMC and SMC algorithms using synthetic data generated us-

ng SCIPUFF. It was found that SMC performed significantly bet-

er in obtaining the location estimate of the source. However, nei-

her found the correct release rate. This was expected to be caused

y differences among the Gaussian dispersion model and SCIPUFF.

dditionally, no results were presented for the estimate of the

TD coefficients, which were said to differ among the SCIPUFF and

aussian puff models in its estimation. 

One reason many STE algorithms lose substantial performance

hen tested on experimental data arise from poor probabilistic

odels of the likelihood function. Errors in the measurements

ome from both sensor noise and modelling inaccuracies, both of

hich are difficult to specify precisely. Issues due to a lack of

nowledge of the correct form of the likelihood function were ad-

ressed by Lane et al. [36] . Approximate Bayesian computation

ABC) was used to replace the likelihood function in the SMC al-

orithm with a measure of the difference between predicted and

easured concentrations. The method was able to estimate the

trength and location of a release, in addition to the release time.

ultiple hazardous releases were handled via a trans-dimensional

ersion of the ABC-SMC algorithm. Ristic et al. [46] used ABC-

MC with multiple dispersion models to find the most relevant

TD model for the release scenario. A rejection sampler was used,

hich removes inferences that do not match the observed data

ithin a specified tolerance. An adaptive iterative multiple model

BC sampler was proposed to increase the acceptance rate of the

ejection sampler by adaptively generating the proposal distribu-

ion for each sample. The algorithm was tested on experimental

ata sets collected by COANDA Research and Development Corpo-

ation which used a recirculating water channel specifically de-

igned for dispersion modelling. Results were shown for scenarios

ith and without obstacles. Without obstacles, very good results

ere obtained although, in the presence of obstacles, the estimate

f the upwind source location was affected by producing a bimodal

osterior distribution. 

In [47] , Gunatilaka et al. used binary sensor measurements

here the threshold was unknown to determine the parameters

f a biochemical source. The achievable accuracy of binary mea-

urements for dispersion events was previously explored using the

ramer Rao bounds by Ristic et al. [45] resulting in promising re-

ults. The algorithm found a solution iteratively using SMC IS with

C. The wind speed was included in the parameter space to ac-

ount for uncertainty in the prior meteorological data. The method

as tested on experimental data showing that the algorithm could

easonably estimate the source location, wind speed and a nor-

alised release rate. Due to the unknown sensor threshold, it was

nable to determine the exact source strength; only the source
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strength normalised by the assumed sensor threshold could be es-

timated. 

3.2.3. Differential evolution Monte Carlo (DEMC) 

DEMC is a combination of differential evolution (DE) and the

Bayesian MCMC methods. Essentially, it is an MCMC version of the

GA [94] . The method is a population MCMC algorithm in which

multiple Markov Chains are run in parallel. The selection process

is based on the Metropolis acceptance ratio and the main differ-

ence to the MCMC lies in the generation of new proposals via a

jump. Instead of a tuned random walk or multivariate normal dis-

tribution, DEMC uses multiple chains to adaptively determine the

jump proposal based on the difference among them. 

In [53] , Robins et al. used DEMC to determine the source term

of a biological [95] or chemical [96] release. DEMC was used to

enable the jump size to adapt itself to the current state of the

posterior estimate, thus alleviating responsibility from the user to

specify a reasonable jump size. To reduce the number of expensive

dispersion calculation runs, a two step decision process was used.

The first accepted or rejected the proposal based on prior infor-

mation. If it was accepted, it was passed to the dispersion model.

Unlike much of the related work, the method had a large focus on

operational aspects in emergency response such as incorporating

time variant data, additional data collected by newly alerted sen-

sors, and the removal of older data and inferences. The approach

used a probabilistic sensor model proposed in [97] based on an

analysis of experimental data. 

3.2.4. Polynomial chaos expansion (PCE) 

The polynomial chaos-based estimation algorithms have re-

ceived increasing attention in research recently. They arise from

an extension of the homogeneous chaos idea developed by Wiener

[98] as a non-sampling based method to determine the evolution

of uncertainty in a dynamical system. The main principle of the

PCE approach when applied to inverse problems such as STE is to

expand random variables using polynomial basis functions. Suit-

ably chosen polynomials converge rapidly to a solution of the pos-

terior probability distribution. To manage the non-polynomial non-

linearity difficulties in polynomial chaos integration, Dalbey et al.

proposed a formulation known as polynomial chaos quadrature

(PCQ) [99] . PCQ replaces the projection step of PCE with numerical

quadrature. The resulting method can be viewed as a Monte Carlo

evaluation of system equations with sample points being selected

by quadrature rules. 

In [49] , Madankan et al. used a PCE based minimum variance

approach for STE. PCQ was implemented using the conjugate un-

scented transform method [100] to generate new sampling points

from the posterior distribution using the Bayesian framework. The

paper compared the performance of PCQ with SMC and an ex-

tended Kalman filter (EKF) to determine the source parameters

of an atmospheric release using SCIPUFF as the underlying ATD

model. It was found that the PCQ technique outperformed the EKF

in terms of accuracy and the SMC method in computational speed.

3.2.5. Summary on Bayesian inference 

Bayesian-based approaches to STE were described in this sec-

tion. The major benefit of methods was in the output of posterior

PDFs to determine parameter estimates with associated uncertain-

ties or confidence level. The methods presented implementations

of efficient sampling methods to determine the source term. The

algorithms varied in the source parameters estimated, specification

of the likelihood function, ATD models used and several schemes

to improve performance with regards to computational efficiency,

solution accuracy and robustness. A range of scenarios have been

considered including utilising varying meteorological information,
teady or dynamic plumes, long/short range dispersion events, ur-

an/plain environments and single/multiple releases. 

One of the advantages of the Bayesian-based approaches was in

pecifying probability distributions of the measured and modelled

ata. In most cases, this had been assumed to take a Gaussian dis-

ribution. In [53] , more complex models were derived based on the

haracteristics of particular sensors and the agent. 

Several approaches have been proposed to reduce the compu-

ational time of the algorithms. This was predominantly done by

educing the number of ATD model runs. This was achieved via:

i) a two step inference acceptance criteria so poor samples are

ot run in a dispersion model [53] ; (ii) the adjoint source-receptor

elationship [21] and (iii) by storing a library of pre-computed ATD

imulations. The focus of DEMC and PCQ was on reducing the

umber of iterations required in an MCMC-like algorithm by gen-

rating better inferences. 

The event of multiple releases posed a significant problem.

ethods to determine the number of sources and to correctly

haracterise them required significantly more computational time.

arlier methods simply ran the original Bayesian algorithms with

 specified number of sources and parameters in the parame-

er space and determined the appropriate number which is most

losely matched with the data. Yee [33] determined the number of

ources using simulated annealing to move a Markov Chain among

arameter spaces and later work used a more efficient model se-

ection method [34] . 

Upon testing in realistic scenarios or on experimental data, sev-

ral problems were also identified including the limitation of the-

retical/ideal dispersion models (e.g. Gaussian plume model) and

he difficulty in attaining accurate representations of model er-

ors and noise. Yee discovered the significance of the represen-

ation of model errors and the loss in accuracy caused by differ-

nces between the dispersion model and the real dispersion event

92] . Other limitations included computational time despite sev-

ral improvements to reduce it, the amount of prior information

equired and the increase in computational cost when more vari-

bles are included in the parameter space. Ristic et al. proposed

everal strategies to overcome the problems such as: making use

f ABC to account for the fact it is nearly impossible to accurately

now the exact model and sensor errors [36] ; the use of multiple

ispersion models to find the most appropriate one for the current

cenario [46] ; the use of binary measurements to reduce noise ef-

ects and enable the use of cheaper sensors [45] ; and the use of

inary sensors where the threshold was unknown was explored in

47] to account for sensor bias/drift and for easy inclusion of alter-

ative data sources. 

An example of the limitation of the Gaussian dispersion model

as found in [86] , where the Gaussian plume dispersion model

as unable to accurately estimate the strength of release from sim-

lated data generated using SCIPUFF. A trade-off is required be-

ween the accuracy of the dispersion model and its calculation

peed. The difficulty of estimating the strength of the release was

ighlighted further in [30] where algorithms attempted to estimate

he strength of release from experimental data. Among eight dif-

erent algorithm developers, incorporating a number of techniques,

nly a few of them were able to consistently estimate the strength

o within a factor of ten. 

.3. Discussion on STE 

The STE methods examined have been split into optimisation

nd Bayesian-based approaches. At the end of each subsection, a

ummary of each of the techniques was given discussing innova-

ive ideas and problems found within the literature. Within each

ection, there was a range of ideas and implementations of the al-

orithms; in the following, we will discuss the application of the
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Table 1 

Variables and acronyms used in Table 2 . 

Variable Description 

rule q Source strength or release rate 

n Number of sources 

x,y,z Location coordinates, typically downwind, crosswind, height 

t 0 Release time 

t Release duration 

U Wind speed 

θ Wind direction 

ζ Dispersion model parameters, dependant on the model used 

SS Steady state 

LS Lagrangian stochastic 
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eneral frameworks and describe the key problems found within

he literature of STE. 

The Bayesian methods benefit from producing a final estimate

ith confidence levels and the fact that prior information can be

ncorporated into the algorithm with a probability distribution. Any

naccuracies due to modelling errors or sensor noise could be ac-

ounted for with appropriate distributions, though these might be

ifficult to characterise perfectly, in particular, when applied to a

eal scenario. 

The optimisation methods produce a single point estimate of

he source parameters. The methods suffer from their inability to

nclude confidence intervals on any prior information it may use

r in the final estimate. In spite of this, the optimisation methods

re often less computationally expensive and may converge faster

han Bayesian methods. They also benefit from the requirement of

ittle or no prior information, though the more available can result

n better performance. 

Incorporating the adjoint source-receptor relationship or back

rajectories methods produces a point estimate of the source by

nverting meteorological variables and back tracking from triggered

ensors. The method is very fast but highly dependent on accurate

ich meteorological information and accurate dispersion models.

s a technique to gain an initial estimate to be optimised, it has

hown significant performance benefits. The back trajectory algo-

ithms show how the system can benefit from null sensor readings,

s these can be used to narrow down the search space for possible

ource locations. In other words, it helps by providing more infor-

ation about where the source is not present. By narrowing down

he search space, the accuracy of the source term estimate can be

ncreased significantly and computational time reduced. A sum-

ary of the STE algorithms that have been reviewed is given in

able 2 which is accompanied by Table 1 to describe the variables

nd acronyms that have not been previously defined in the paper.

he algorithms described were created for a static network; how-

ver, with some modification, most would be applicable to data

athered by mobiles sensors. 

To summarise the literature in STE, it can be seen that a num-

er of methods produce very good performance in an idealistic

cenario of little or no noise, a plain flat environment, plenty of

ensors and a single source. Difficulties arise when these condi-

ions are not met, which is generally the case in real scenarios.

he difficulties found in STE when moving from a theoretical to a

ealistic setting are common to most research fields. Some of the

ey issues are listed in Table 3 . In the following section, the use of

obile sensors to solve atmospheric dispersion problems are re-

iewed. Mobile sensors provide several benefits to solve many of

he limitations encountered by static networks. 

. Boundary tracking and source estimation using mobile 

ensors 

The use of mobile sensors for STE is a relatively new area of

esearch. It incorporates many of the same research disciplines
s static networks for STE with the addition of sensor movement

trategies, cooperation between mobile sensors, and dynamics. In

stimation of environmental plumes, mobile sensors also provide

he ability to track the contaminant boundary directly and to per-

orm source seeking. Boundary tracking refers to approaches that

irect sensors along a contour of interest. Source seeking refers

o guiding sensors towards the location of a source. Both of these

re highly relevant to gain information in contaminant dispersal

vents. They can be used as data collection strategies for STE and

lso for verification of the source term estimate. For this reason, a

rief review of boundary tracking and source seeking approaches

s presented in Section 4.1 and 4.2 , followed by a review of al-

orithms developed specifically for STE using mobile sensors in

ection 4.3 . Note that source seeking and source term estimation

re considered differently as source seeking attempts to move the

ensor towards the source whereas source term estimation will es-

imate the source position and strength not necessarily attempting

o move towards it. 

.1. Boundary tracking 

Boundary tracking algorithms are used to determine the edge of

 region. Researchers have explored boundary tracking algorithms

o monitor oil spills, algae growth, volcanic ash clouds, contami-

ant gases and nuclear radiation levels. In the literature, bound-

ry tracking algorithms have taken the form of control approaches

101–113] and estimation and control approaches [114–129] where 

everal estimation techniques have been used to produce more in-

ormative trajectories. A major difference among methods lies in

he approximations of the concentration field. Most methods use

oint measurements of the concentration value of the substance

rovided by sensors on-board mobile robots, and with these mea-

urements, various approximations have been made. Many meth-

ds use the point measurement itself [107,109,110,118,119] or as a

inary signal to determine whether or not the sensor is inside or

ut of the affected/contaminated region [6,101–105,116,117] . Some

se an estimate of the gradient or Hessian of the contaminant ob-

ained either through spatially separated simultaneous measure-

ents by collaborating multiple sensors or via consecutive mea-

urements by a single sensor [106,111,112,121,124–129] . Another

ethod is to estimate the curvature of the boundary; this has been

one using several sensors in a formation or by visually estimating

he curvature using a camera [7] . The majority of researchers have

ssumed slow moving, clearly defined, 2-D boundaries with accu-

ate sensors. Some have attempted to extend the state of the art,

esearching the effect of sensor noise and studying 3-D boundaries

125] . The remainder of this section provides a brief description of

he boundary tracking algorithms found in the literature. 

.1.1. Control law 

) Bang-bang control. Bang-bang control is a simple algorithm

hich involves switching abruptly between two states. In the case

f tracking a boundary, the turning direction of the vehicle is

hanged upon crossing the contour boundary. Several papers in the

iterature have researched the use of bang-bang control for track-

ng an environmental boundary [101–106] . 

Kemp et al. [105] implemented a bang-bang control algorithm

hat required only a concentration sensor to monitor an underwa-

er perimeter using unmanned underwater vehicles (UUVs). Some

rawbacks of the method include: (i) with a large crossing angle,

he tracking can become very inefficient; (ii) noise can cause the

UV to turn the wrong way and fail to track the boundary; and

iii) narrow bottle necks in the boundary may cause sections to

e missed. A turning angle correction was proposed by Bertozzi

t al. [103] to improve efficiency and a cumulative sum algorithm
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Table 2 

Summary of STE methods. 

Ref. Date Paramters Type Source Algorithm Domain knowledge Met var Dispersion model 

[52] 2004 x,y,q Plume Single SMC-MCMC MH NA U, θ , ζ INPUFF 

[41] 2012 x,y,q, ζ SS plume Single MCMC MH NA U, θ Gaussian plume 

[42] 2008 x,y,q, θ , U,H, ζ SS plume Single MCMC MH Uniform priors NA Gaussian plume 

[21] 2007 x,y,z,q SS plume Single MCMC MH Urban map U, θ , ζ Adv-diff

[31] 2007 x,y,q,n SS plume Multiple MCMC SA n U, θ , ζ Adv-diff

[32] 2007 x,y,q,n,t Plume Multiple RJ MCMC Time prior U, θ , ζ Backward-time LS 

[33] 2010 x,y,q,n,t Plume Multiple MCMC SA Time prior U, θ , ζ Adv-diff

[34] 2012 x,y,q,n,t Plume Multiple MCMC MS Time prior U, θ , ζ Backward-time LS 

[35] 2010 x,y,t, θ , ζ Plume Multiple MCMC MH Informative priors, n U absorption-drift-diff

[43] 2008 x,y,q SS plume Single MC IS PC NA U, θ , ζ Turbulent diff equ 

[44] 2014 x,y,z,q,U, ζ SS plume Single MC IS MH PC NA U, θ Gaussian plume 

[45] 2014 x,y,z,q,U, ζ SS plume Single MCMC MH NA U, θ Gaussian plume 

[46] 2014 x,y,z, ζ , q/U, SS plume Single ABC-SMC Informative priors U, θ Various 

[36] 2009 x,y,z, t 0 , n,q Plume Multiple ABC-SMC Gaussian priors U, θ , ζ Gaussian plume 

[47] 2016 x,y,q,U SS plume Single MC IS PC Urban map U, θ , ζ Turbulent Adv-diff

[37] 2013 x,y,q/U, θ , ζ , n SS plume Multiple MCMC MH Uniform priors NA Gaussian plume 

[53] 2009 x,y,q, t 0 , t Plume Single DEMC Parameter bounds U, θ , ζ Gaussian plume 

[48] 2015 x,y,q SS plume Single EnKF NA U, θ , ζ Gaussian plume 

[49] 2012 x,y,q SS plume Single gPCq minVar NA U, θ , ζ SCIPUFF 

[23] 2014 x,y,q SS plume Single Least squares Geometry exploitation U, θ , ζ Advection-diffusion 

[40] 2015 x,y,q SS plume Multiple Least squares Geometry exploitation, n U, θ , ζ Advection-diffusion 

[69] 2015 x,y,q SS plume Single Least squares Urban geometry U, θ , ζ CFD 

[50] 2014 x,y,q SS plume Single MRE-PSO Parameter bounds U, θ , ζ Gaussian plume 

[54] 2010 x,y,q,t Plume Single PSM NA U, θ , ζ Gaussian plume 

[51] 2006 x,y,q SS plume Single SA NA U, θ , ζ Gaussian plume 

[57,58] 2007 x,y,q, θ SS plume Single GA-NMDS U ζ Gaussian plume 

[38] 2008 x,y,q,t,n Plume Multiple GA x,y,q,t Inv SCIPUFF U, θ , ζ SCIPUFF 

[39,55] 2012 x,y,q/tU, ζ , θ ,n Plume/Puff Multiple GA Plume axis/spread NA Gaussian plume/puff

[24] 2015 x,y,z,q,t,U, θ ,n Plume/Puff Multiple BFGS x,y,q,t Inv SCIPUFF U, θ , ζ SCIPUFF & HLEPM 

Table 3 

Key difficulties in STE. 

Prior knowledge Sensing Sensor locations 

rule Meteorological data Noise Not enough triggered sensors 

Parameter space Bias/drift Poor sensor locations 

Domain knowledge Sampling frequency 

Modelling issues Release scenario Computational time 

Dispersion modelling Multiple sources Accuracy vs. cost 

Accuracy Environment Estimation algorithms 

Modelling errors Release type 
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was implemented to provide robustness to noise. The turning an-

gle correction was based on the assumption that the boundary be-

tween the last two crossing points and beyond was a straight line.

In [104] , this method was extended to multiple vehicles where

separation was maintained between them by alternating the speed

should they come to close to one another. In [6] , the authors used

a random coverage controller, a collision avoidance controller and

a bang-bang angular velocity controller to detect and surround an

oil spill. In [102] , a bang-bang controller was used to follow con-

tours of a radiation field with an autonomous helicopter. The for-

ward speed of the helicopter was set at the beginning of the test

and could be adjusted to adapt to search area, the desired speed of

the search, and the desired accuracy of the finished contour. The

applicability of these sensor movement strategies has only been

evaluated for static phenomena, or the authors assumed that the

movement of the sensing vehicles was much faster than that of

the observed phenomenon. In [101] , Brink adapts the method in

[103] to track the boundary of a dynamic plume in an environ-

ment where a low-density static sensor network was installed. An

estimate of the plume centre movement was added to the sensors

to account for plume dynamics [101] . 

b) Sliding mode control. When applied to boundary tracking, slid-

ing mode control [107] is similar to bang-bang control as both
ethods change the turning direction of the vehicle based on its

osition relative to the contour. Sliding mode control can produce

ore efficient tracking as the vehicle turns before exiting/entering

he contour. The sliding variable was defined as the difference be-

ween the desired/threshold density and the measured density of

he contaminant. In [107] , a sliding mode control law was used

o steer a vehicle to a location where the distribution assumed a

re-specified value and afterwards ensured circulation of the ve-

icle along this set at the prescribed speed. In simulation, the al-

orithm tracked a boundary with noise added to the concentra-

ion data. In [108] , this method was extended to multiple vehicles

here a guidance law that altered the longitudinal speed was used

o ensure effective distribution of the team. In [109] , a real world

xperiment was performed to justify the navigation and guidance

lgorithms. The experiments showed some robustness to common

ources of uncertainties in robotic applications. The effect of chat-

ering which is common in sliding mode based approaches was

ot observed in the experiments. In [110,130] a sliding mode con-

rol algorithm was proposed that allowed a single, sensor enabled

gent to navigate along the boundary of a contaminated region.

he efficacy of the proposed approach was demonstrated on a re-

listic example pertaining to synthetic volcanic eruption dispersion

ata generated by the NAME ATD model [131] . 

) Formation control. Based on estimated concentration gradient,

essian matrix and curvature of the environmental contour line,

hang and Leonard [111] used a formation of Newtonian particles

o track level sets of a field at unitary speed. The desired forma-

ion was maintained by a formation shape control law based on

acobi transform. The Jacobi transform decoupled the dynamics of

he formation centre from the dynamics of the formation shape,

hich allowed separate control laws to be developed. Following a

ifferential geometric approach, steering control laws were devel-

ped separately that controlled the formation centre to detect and

ove to a desired level surface and track a curve on the surface

ith known curvatures. The particles’ relative position changed so



M. Hutchinson et al. / Information Fusion 36 (2017) 130–148 141 

t  

t  

f  

u  

c  

fi

4

a  

m  

d  

v  

t  

c  

g  

i  

d  

d  

p  

c  

e  

n  

u  

w  

T  

b  

t  

r  

t  

U  

w  

r  

p  

v  

s  

n  

t  

fi  

a  

i  

T  

a

b  

p  

i  

p  

t  

t  

w  

c  

d  

p  

s  

m  

t  

t  

s  

s  

d  

h  

i

 

t  

t  

b  

o  

c  

h  

T  

c  

c  

l  

c  

a  

a  

w  

t  

m  

j  

t  

n

c  

e  

b  

t  

p  

a  

o  

f  

w  

t  

d  

m  

t  

s  

fi  

b  

b

d  

t  

m  

t  

a  

t  

T  

t  

p  

b  

g  

p  

t  

c  

e  

o  

p  

s  

t  

i  

e  

t  

t  

o  

c  

a  

s  

r  

w  

b  

s  
hat they optimally measured the gradient, and the curvature of

he field in the centre of the formation was estimated using data

usion. In [112,113] , the estimates from the cooperative filter were

sed in a provable convergent motion control law that drove the

entre of the formation along level curves of an environmental

eld. The method was later extended [112] to track a 3-D surface. 

.1.2. Estimation and control 

) Approximation of boundaries. In [114] , White et al. presented a

ethod of approximating a cloud boundary using a 2-D splinegon

efined by a set of vertices linked by segments of constant cur-

ature. The method was inspired by the fact that it is beneficial

o be able to express the predicted dispersion of a contaminant

loud in a compact form so that it can be shared among a UAV

roup with minimal communication overhead and maximum util-

ty in guidance algorithms. Traditional methods of modelling cloud

ispersion are computationally expensive and have limited use for

irecting UAVs. The clouds behaviour must be expressed in a sim-

lified manner to allow fast algorithms to guide UAVs and track the

ontaminant. The research in [114] is one of very few methods that

stimate the dispersion of the cloud in a low computational man-

er. The splinegon algorithm was tested against contours produced

sing SCIPUFF and showed a good representation; however, there

as some error in predicting the future dispersion of the cloud.

he dispersion estimation used a simple linear equation and could

e a potential area for improvement using improved estimation

echniques. Subchan et al. [115] presented a path planning algo-

ithm comprised of Dubins paths and straight lines to guide UAVs

o approximate a boundary. Equipped with a relevant sensor, the

AVs recorded the entry and exit points of the cloud. These points

ere used as vertex data in construction of a splinegon [114] that

epresented the contaminant cloud. In [116,117] , Sinha et al. pro-

osed two methods for coordinating a group of UAVs to gather the

ertex data. In [117] , the paths of the UAVs were designed progres-

ively, after every transition through the cloud. A transition ended

ear the centre of the cloud, here the UAVs negotiated optimum

arget vertices based on the distance from them. Though it is ef-

cient, this method presented problems in collision and obstacle

voidance. In [116] , each UAV was assigned a sector. It circulated

n its sector and updated the location of two neighbouring vertices.

his provided collision avoidance among UAVs and obstacle avoid-

nce was achieved by a simple alteration of the planned path. 

) Model predictive control. In [118] , Zhang and Pei used model

redictive control (MPC) to track the boundary of an oil spill us-

ng a single UAV. Universal Kriging, otherwise known as Gaussian

rocess regression, was used to predict the future state of the sys-

em for use in the MPC. The advantage of the Kriging method was

hat it is an optimal interpolator in the sense that the estimates

ere unbiased and the minimum variance was known, so that it

ould relatively accurately construct the environment map. In ad-

ition, the advantage of the MPC was its constraint handling ca-

acity. Nonlinear MPC was used to estimate the future states at

ampling instants and determine the optimal manoeuvre based on

inimising a cost function with control constraints. The cost func-

ion was derived from the difference between measured concentra-

ion and the desired threshold with a penalty weight added to con-

train the angular rate of the vehicle. The method was tested on

imulated data based on the advection-diffusion equation which

emonstrated the proposed method was feasible and effective;

owever, this was in the absence of sensor noise and the contam-

nant boundary was relatively well defined and bounded. 

Euler et al. [119] proposed an adaptive sampling strategy to

rack multiple concentration levels of an atmospheric plume by a

eam of UAVs. The approach combined uncertainty and correlation-

ased concentration estimates to generate sampling points based
n already gathered data. The adaptive generation of sampling lo-

ations was coupled to a distributed MPC for planning optimal ve-

icle trajectories under collision and communication constraints.

he domain area was represented as a grid of discrete cells. Each

ell stored a Gaussian distribution defined by the expected con-

entration value and variance. A vehicle remained at a sampling

ocation for a number of time steps in order to successfully pro-

ess the sample. A correlation among adjacent measurements was

ssumed and used to infer information about the concentration

t locations surrounding the sampling point. New sampling points

ere selected based on the maximum variance of reachable posi-

ions. Numerical simulation results demonstrated the ability of the

ethod to track a boundary with noise added to the data. The ma-

or limitation was in the amount of time taken to generate an es-

imate of the perimeter, caused by sampling times used to handle

oise. 

) Support vector learning. Kim et al. [120] used mobile sensors to

stimate the boundary of physical events such as oil spills. The

oundary estimation problem was set in the form of a classifica-

ion problem of the region in which the physical events occur. Sup-

ort vector domain description (SVDD) was employed, which was

ble to represent boundaries in a mathematical form regardless

f the shape. Furthermore, by using the hyper-dimensional radius

unction obtained from SVDD, a velocity vector field was generated

hich gave asymptotic convergence to the boundary with circula-

ion at the desired speed. The desired speed was adjusted to coor-

inate the mobile sensor so that their intra-vehicular spaces were

aximised for efficient estimation of the boundary and fast reac-

ion when the boundary changes. The method was tested in both

imulations and experiments though the boundary was clearly de-

ned and bounded with no account for sensor noise. It was noted

y the authors [120] that future work would focus on time-varying

oundaries and other methods such as the MPC. 

) Optimisation. In [121] , Srinivasan and Ramamritham estimated

he contour of a specified concentration in a bounded region with

obile sensors. The spatial domain was modelled as a grid and

he sensor was assumed to be able to measure the concentration

t its current and neighbouring grid points. At each time step,

he sensors could remain still or move to a neighbouring point.

he contour was tracked by minimising a cost function based on

he difference between the desired and measured concentration of

ollutant. The ability to minimise the cost function and track the

oundary was assessed for three optimisation algorithms: (i) the

reedy algorithm; (ii) simulated annealing; and (iii) a newly pro-

osed collaborative algorithm based on minimising centroid dis-

ance. It was found that the collaborative method estimated the

ontour with less error and latency. The method was capable of

stimating complex shaped contours though it required a number

f assumptions such as: a well-defined closed curve, an interior

oint known by the sensors, no sensor error, and that the sen-

or could determine concentrations at its neighbouring grid loca-

ions. In [122] , Srinivasan et al. improved the method and named

t ACE (adaptive contour estimation). The method estimated and

xploited information regarding the gradients in the field to move

owards the contour. Instead of assuming knowledge of the cen-

roid, the centroid of the contour was estimated based on history

f movements, points already traced on the contour and sensor’s

urrent locations. A comparison was made among techniques of

pproaching the contour, including a direct descent algorithm, a

pread always algorithm and the newly proposed adaptive algo-

ithm. In ACE, at each step, a sensor decides whether to move to-

ards the contour or spread, (direct descent or spread always). A

ias parameter was used to determine whether the sensors should

pread or approach the contour, and it was computed based on the
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size of the contour, the spread of the sensors and distance from the

contour. In numerical simulations, ACE was shown to significantly

reduce latency in contour estimation when compared to directly

approaching the contour. 

Glow-worm swarm optimisation (GSO) is an algorithm origi-

nally proposed in [123] primarily to detect multiple optima of a

function and considered to be ideal for implementation in multi-

robotics platforms. It is used commonly for the detection of multi-

ple emission sources. In [124] , this method was extended to simul-

taneously detect multiple emission sources and map the bound-

ary. Subsequently, the methodology was also extended to map 3-

D boundaries [125] . The algorithm finds the source by following

the gradient until it reaches a maximum; conversely, it finds the

boundary by following the gradient in the negative direction un-

til it reaches a threshold concentration. Once on the boundary, the

swarm does not move. In order to prevent clumping up of swarm

agents, once on the boundary, they repel one another. The method

was successful in simulations [124] using 150 agents to map a

boundary and detect three sources. Although the algorithm per-

formed well, the use of such a large number of agents is not ideal.

Other problems arise in becoming stuck in local minima or max-

ima if the assumption of the distribution of the field does not hold.

e) Neural networks. Sun et al. [126] proposed a robust wavelet

neural network (WNN) control method to address the problem of

environmental contour line tracking using a Newtonian particle. It

was assumed that each vehicle was able to estimate the concen-

tration value, the gradient and its current location. To track the

contour line, a dynamic control law was designed using the ve-

hicle’s uncertain dynamics and the Hessian matrix of the environ-

ment concentration function which was approximated by an on-

line learning WNN. The method was tested using Lyapunov func-

tions to show accurate tracking of a well-defined, bounded contour

line in the absence of sensor noise. 

In [127] , Sun et al. used a radial basis function neural network

(NN) in a similar manner to above; however, the method was de-

signed for a non-holonomic mobile robot as oppose to a Newto-

nian particle. A radial basis function NN was used to approximate a

non-linear function containing the uncertain model terms and the

elements of the Hessian matrix of the environmental concentration

function. Then, the NN approximation was combined with robust

control to construct a robust adaptive NN controller for the mobile

robot to track the desired environment boundary. The method was

tested in simulations similar to [126] . 

f) Model based prediction and control. Li et al. developed a con-

trol strategy to track the front of an evolving dynamic plume in

a marine environment modelled by the advection-diffusion equa-

tion [128] . Instead of using only concentration gradient measure-

ments, the transport and dispersion model was incorporated into

the control design. An observer was designed to estimate the dy-

namic movement of the plume front, and a feedback control law

was constructed for a robot to track it. The method was extended

to a multi-robot scenario where the control laws were designed

to account for a robot team in a nearest neighbour communication

topology. For the single robot case, the aim was to patrol along the

plume front, and for the multi robot case, the aim was to achieve

an even distribution of the robots around the plume front. The

methods were tested in simulations without consideration of noise.

In [129] , Fahad et al. tested the method presented above in

a more realistic environmental model set-up. A probabilistic La-

grangian environmental model was used, which can capture both

the time-averaged, idealised structure and the instantaneous, real-

istic structure of a dynamic plume. The simulation demonstrated

how a single robot was capable of patrolling a plume front using

the control law designed in [128] where the plume front was noisy
nd fairly realistic. It was found that the sensor measurement of

he concentration and estimation of the gradient and divergence

f the concentration were of vital importance to the success of the

lume tracking. It was assumed that the sensors were area-level

easurement sensors (such as ultraviolet, infra-red, visible band,

adar or passive microwave sensors) rather than point detectors

such as chemical sensors). If the sampling radius was reduced to

 very small value, the plume concentration had very high vari-

nce so that the controller struggled to produce accurate tracking

esults. 

.1.3. Summary 

A range of methods have been proposed to track the boundary

f environmental fields. The methods vary in their measurements

f the field such as binary, concentration values (point measure-

ents), gradients or curvature and also in the types of tracking al-

orithms used to trace the boundary. The effect of 3-D boundaries,

ensor noise, and dynamics has been briefly explored with a large

rea available for potential improvements. Table 4 provides a sum-

ary of the boundary tracking methods that have been reviewed. 

.2. Source seeking 

This section explores source seeking algorithms with mobile

ensors. The methods aim to localise a source by moving towards

t without an attempt to estimate other parameters such as the

elease rate. Although there is less information output than STE

echniques, source seeking algorithms are still very relevant to the

TE problem using mobiles sensors. A number of techniques exist

anging from simple gradient climbing algorithms to more complex

echniques to account for sporadic measurements of concentration.

s this is not the primary topic of the current work, only a brief

verview of source seeking is presented in this paper. A more de-

ailed review has been done by Kowaldo and Russel [132] which

ocused on odour source localisation, though a lot of research has

een conducted in the field since this time. 

.2.1. Bio-inspired 

Chemotaxis are used throughout the literature for source seek-

ng [133,134] . The method was biologically inspired from the be-

aviour of a number of organisms (Moths, Lobsters, E-coli bacteria,

ung beetles, and Blue crabs). Most chemotaxic methods focused

n climbing a gradient of the concentration value. The gradient

as determined by taking measurements of the concentration at

patially separated positions. These methods relied on the assump-

ion that the concentration gradient would consistently be positive

n the direction of the source; this is often not a valid assumption

or atmospheric dispersion due to turbulence. 

Anemotaxis are another method that has been used in the lit-

rature [135,136] . This technique used knowledge of the motion of

uid to help find the source. Several researchers have combined

hemical concentration and fluid flow measurements to find an

dour source. Some techniques include: 

• The Zigzag/Dung Beetle method, which involved moving up-

wind within the odour plume in a zigzagging motion [130,135] 
• Plume-centred upwind search [130,136] 
• Silkworm moth inspired algorithm [133,137] 

Fluxotaxis is a source seeking technique that incorporates fluid

nd chemical concentration measurements and estimation of the

ass flux. Zarzhitsky et al. developed a Fluxotaxic algorithm for

 swarm, which found the source by climbing up the mass flux

radient [138–141] . Computational fluid dynamics had been used

o estimate the average bearing of the flow. The technique outper-

ormed several chemotaxis and anemotaxis methods during simu-

ations though there was no experimental comparison. 
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Table 4 

Boundary tracking summary. 

Ref Date Boundary type Vehicle Cooperation Measurement Tracking algorithm Boundary 

approximation estimation 

[101] 2014 Cloud UAV NA Binary Bang-Bang NA 

[102] 2012 Radiation UAV NA Binary Bang-Bang NA 

[103] 2007 Ellipse Robot NA Binary Bang-Bang Optimised Ellipse 

[104] 2009 Well defined edge Robot Speed control Binary Bang-Bang NA 

[105] 2004 Underwater plume UUV Speed control Binary Bang-Bang NA 

[6] 2005 Well defined edge Robot Potential Field Binary Bang-Bang NA 

[107] 2011 Radiation Nonholonomic NA Conc Sliding mode NA 

[109] 2014 Scalar field Nonholonomic Speed control Conc Sliding mode NA 

[110] 2014 Cloud Nonholonomic NA Conc Sliding mode NA 

[116,117] 2008 Cloud UAV Geometrical Binary Geometrical Splinegon 

[106] 2008 Oil spill UAV Speed control Curvature Geometrical Polygon 

[118] 2014 Oil spill UAV NA Conc MPC Kriging 

[119] 2012 Cloud UAV MPC Conc MPC Correlation 

[121] 2006 Environmental Agent Est centre Gradient Minimise cost function NA 

[124,125] 2012 Environmental Agent Repel Gradient GSO NA 

[126] 2011 Environmental Newtonian NA Gradient Dynamic control law WNN 

[127] 2011 Environmental Newtonian NA Gradient Dynamic control law NN 

[128] 2014 Cloud USV Geometric Gradient Estimator-controller Transport model 

[129] 2015 Cloud USV Geometric Gradient Estimator-controller Lagrangian model 

[111,112] 2011 Scalar field Newtonian Formation Curvature Curve tracking control Curvature by formation 

Conc: Concentration 
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.2.2. Bayesian 

Bayesian methods introduced probabilistic robotics to the

ource localisation problem [142,143] . In [143] , Pang and Farrell

odelled the plume using stochastic methods based on Bayesian

easoning. A hidden Markov model (HMM) was used to imple-

ent the stochastic approach for plume modelling and predicting

he most likely location of a source. The approach was tested in

imulations and with experimental data. The global wind field was

sed to integrate upwind and predict the path of the contaminant.

everal other approaches have located a source using the Bayesian

ramework. Li et al. [144] and Neumann et al. [145] have used a

article filter to localise an odour source in outdoor environments.

n [146] , Vergasolla et al. proposed a search strategy based on in-

ormation theoretic principles, referred to as Infotaxis. A measure-

ent strategy was adopted, which measured the rate of particle

ncounters rather than a concentration reading. In a lattice envi-

onment, the searcher would determine the move that maximised

he expected information gain in the form of entropy reduction or

ncrease in particle encounters. The expectations were based on

he information currently available, which was the posterior field.

he method capitalised on the fact that the closer to the source,

he higher the rate of information acquisition (particle encounters),

ence tracking the rate of information acquisition would guide the

earcher to the source similarly to the concentration gradients in

hemotaxis. The method could handle situations of sporadic and

ntermittent concentration information where the chemotaxis al-

orithms would struggle. The infotaxis search attempts to find a

alance between exploring to gain more information and exploit-

ng the information currently available. This method was shown to

uccessfully find the source where the data was intermittent and

poradic. Following [146] , several researchers have studied the effi-

acy of infotaxis and proposed modifications and extensions [147–

51] . 

.2.3. Summary 

Source seeking algorithms have featured many techniques that

ave been dependant on the quality of information available to

he robot. Gradient climbing methods such as chemotaxis perform

ell in concentration fields with well defined gradients; however,

n turbulent flows or with a noisy sensor, the gradient does not al-

ays lead directly to the source. Several biologically inspired algo-

ithms have been proposed using a combination of chemotaxis and
nemotaxis to capitalise on available wind information. Bayesian

ased source seeking algorithms yield a benefit from their proba-

ilistic aspect, thus enabling a robot to localise a source in stochas-

ic environments with uncertainty in the observations. An interest-

ng measurement strategy was adopted in [146] where the number

f particle encounters were used rather than a concentration read-

ng. 

.3. Source term estimation 

STE using mobile sensors is a relatively immature area of re-

earch. The increase in performance and decrease in cost of small

omputers and electronics has made it a more appealing and feasi-

le option than in the past. Mobile sensors could be used indepen-

ently, or in conjunction with static sensors. They can overcome

any of the limitations imposed by a static network. Firstly, it is

nfeasible to cover all regions of importance with static sensors,

articularly a dense enough grid of static sensors for STE to be

erformed before the contaminant has spread significantly. Sensors

re expensive, as will be their communication network, powering,

aintenance and protective holdings. Mobile sensors enable mea-

urements to be taken from more informative locations. This intro-

uces a new area of research to STE, with relation to sensor path

lanning strategies to provide an accurate estimate of the source

erm in the least amount of time. In the literature, sensor move-

ent strategies for STE include expert systems, where the sensors

ollow a set of pre-set guidance rules and information driven mo-

ion control, where the movement of the sensor is based on es-

imates of the expected information gained. The aforementioned

echniques are described in more detail in the remainder of this

ection. 

.3.1. Pre-planned rules 

In [152] , Kuroki et al. used an expert system of navigation

ules to guide a UAV to determine the strength and location of

 contaminant source. Concentration data was collected through-

ut the flight and used in the GA described in [82] to estimate

he source term. The method required a single concentration sen-

or on the ground in order to help guide the UAV. The rules then

uide the UAV to fly towards the sensor, downwind and then cross-

ind to gather concentration data. In simulations, an improved es-

imate was found than using the GA with an 8x8 grid of sensors,
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with less computation required. Tests were done for both Gaus-

sian plume and puff models. Particular difficulty was found with

the puff model where a high amount of UAVs and plume traverses

were required to estimate the source location. 

Hirst et al. [153] used the Bayesian framework to estimate the

location and strength of multiple methane sources with remotely

obtained concentration data gathered using an aircraft. The aircraft

was flown in a somewhat pre planned manner where it would

fly in consecutive crosswind directions, downwind of the source.

Concentration measurements were modelled as the sum of spa-

tially and temporally smooth atmospheric background concentra-

tion, augmented by concentrations due to local sources. The under-

lying dispersion model was a Gaussian plume atmospheric eddy

dispersion model. Initial estimates of background concentrations

and source emission rates were found using optimisation over a

discrete grid of potential source locations. Refined estimates (in-

cluding uncertainty) of the number, emission rates and locations

of sources were then found using a reversible jump MCMC al-

gorithm. Other parameters estimated include the source area, at-

mospheric background concentrations, and model parameters in-

cluding plume spread and Lagrangian turbulence time scale. The

method was tested on synthetic and real data. Two real scenarios

were considered, first featuring two landfills in a 1600 km 

2 area

and then a gas flare stack in a 225 km 

2 area. Experiments showed

good performance of the algorithms. An interesting feature was an

extra source estimated downwind of the actual source. This was

attributed to bias in wind directions. 

4.3.2. Informative path planning 

An information guided search strategy can be formulated as a

partially observed Markov decision process (POMDP) [154] . This

consists of an information state, a set of possible actions and a re-

ward function. With regards to STE, the information state is the

current estimate of the source parameters. The set of possible ac-

tions are the locations where the robot can move next, and the re-

ward function determines a measure of the amount of information

gained for each manoeuvre. The reward function can take several

forms, such as Kullback-Lieber divergence [155] (variation of en-

tropy), Rényi divergence [156] or a measure of the mutual infor-

mation. 

a) Information gain. In [157] , Ristic and Gunatilaka presented an

algorithm to detect and estimate the location and intensity of a

radiological point source. The estimation was carried out in the

Bayesian framework using a particle filter. The sensor motion and

radiation exposure time were controlled by the algorithm. The

search began with a predefined motion until a detection was made,

and then control vectors were selected based on reducing the ob-

servation time. The selection of control vectors was done using a

multiple step ahead maximisation of the Fisher information gain

(Hessian of the Kullback-Leibler divergence). In [158] , this was ex-

tended to the estimation of multiple point sources using the Rényi

divergence between the current and future posterior densities. This

enabled decision making using maximum information gain for the

entire search duration regardless of the estimate of the number of

sources. The method was tested on experimental data with one

and two source scenarios and compared with a uniform random

and deterministic search. The information driven search obtained

much more accurate estimates of the location and strength of the

source with similar but slightly faster search time. 

In [5] , Ristic et al. presented a method to determine the lo-

cation of a diffusive source in an unknown environment featur-

ing randomly placed obstacles. The method used a particle filter

to simultaneously estimate the source parameters, the map of the

search domain and the location of the searcher in the map. The

map was represented as a lattice where missing links represented
bstacles and the source was assumed to be located at a node. The

as and searcher travelled down links in the lattice and concen-

ration measurements were taken from the nodes. Concentration

easurements were taken from a Poisson distribution to mimic

he sporadic nature of measurements. The searcher travelled along

he grid and stopped at the nodes to take measurements of gas

oncentration and to determine the existence of neighbouring links

available paths). At each step, the searcher remained at its current

ode or move along one link. Movement was based on information

ain similar to that mentioned previously [158] . Numerical simula-

ions demonstrated the concept with a high rate of success. 

In [159] , a number of different search strategies based on infor-

ation theoretic rewards were compared for determining the loca-

ion of a diffusive source in turbulent flows. The reward functions

ompared include: Infotaxic reward, Infotaxic II reward and Bhat-

acharyya distance. The Infotaxic reward is based on the expected

nformation gain for a single step ahead. It is based on the assump-

ion that the source location coincides with one of the nodes of the

quare lattice introduced to restrict motion of the searcher. The

eward is defined as the decrement of the entropy. The Infotaxic

I reward is a slight modification to account for the case where

he source may not coincide with a node of the lattice. The Bhat-

acharyya distance is a particular type of Renyi divergence, which

easures the similarity between two densities. In this context, the

ensities are the posterior distributions at the current time and

hat expected in the next step. The control is selected based on

he maximum reward. The techniques were compared on synthetic

nd experimental data implemented using the SMC method. It was

ound that the ratio between the search and sensing areas was

 key factor to the performance. With a larger search area, sys-

ematic search such as parallel sweep outperformed information

heoretic searches. However, with a smaller search area, the cogni-

ive strategies were far more efficient. It was also found that for a

maller search area, the Infotaxic reward performed slightly worse

han the others and this was attributed to its more exploratory be-

aviour. 

) Mutual information. In [160] , Madankan et al. presented an

nformation driven sensor movement strategy that attempted to

aximise the mutual information between the model output

nd data measurements. A combination of generalised polynomial

haos and Bayesian inference were used for data assimilation sim-

lar to the previous work that used static sensors [49] . A sensor

ovement strategy was created to move a group of UAVs to max-

mise the mutual information between the sequence of observa-

ional data and the source parameters over the time. To reduce

omputational complexity a limited look-ahead policy was used

nd the optimal positions of the UAVs were chosen individually.

his means the only cooperation among them was to maintain a

istance from one another. This approach was compared with a

tatic network approach using synthetic data. The results show sig-

ificant improvements in accuracy and confidence in the estima-

ion. 

.3.3. Summary 

The main area of research in mobile sensors for STE has been

n developing intelligent motion strategies for maximum informa-

ion gained by the sensors. The STE algorithms themselves are sim-

lar to those reviewed earlier using static networks. Pre-planned

ules have shown to be capable of moving the sensor to determine

he source term provided there is enough information on the wind

nd there exists at least one static sensor within the contaminant

lume. Informative path planning strategies have featured max-

mising information in terms of entropy gain and mutual informa-

ion. In [5] , the need to sample from a position for a significant
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mount of time was highlighted whilst using a Lagrangian stochas-

ic dispersion model in order to gain a more accurate concentra-

ion estimation from noisy sensor readings. The effect of search

rea was studied and its impact on the performance of reactive

r informative search strategies. 

.4. Discussion 

Mobile sensors provide an ideal platform for data gathering

f atmospheric events. Approaches to perform boundary tracking,

ource seeking and STE have been summarised. The main limita-

ions of the algorithms presented arise due to assumptions that

imit their applicability in realistic scenarios such as: gradient esti-

ation, which is infeasible in turbulent flows where the gradient is

ot consistent; sensor measurement models where sampling times

re neglected or errors are assumed Gaussian or ignored; static as-

umptions with regards to the plume; and the availability and cer-

ainty of prior information such as source release rate and meteo-

ological data. 

. Conclusions and future work 

This paper has presented the problem and importance of esti-

ating atmospheric dispersion events, a review of STE algorithms

sing static or mobiles sensors, and a brief review on boundary

racking and source seeking. 

Static sensors have been the dominant method of STE in the lit-

rature, particularly for emergency response applications arguably

ue to their benefit of early detection. Despite this, they have a

umber of limitations when it comes to estimating the source

hich have been referred to throughout this paper. The algorithms

f STE are relevant for both static and mobiles sensors. Mobile

ensors reveals new research opportunities given by their mobil-

ty. STE algorithms are dominantly iterative based on probabilistic

r optimisation techniques. The iterative behaviour results in high

omputational demand, and for this reason, many researchers have

sed the simple Gaussian plume equation as the underlying dis-

ersion model. When applied to real data from experiments such

s the FFT07 dataset, the loss in accuracy of this model is unde-

iable. In fact, even complex dispersion models have shown sig-

ificant loss of accuracy on real data with a distinct problem in

stimation of the release rate. This limitation is one of many that

oast the use of mobile sensors which can provide a boundary or

ource location estimate without modelling errors. Besides, much

ore data is needed than what can be provided by a static net-

ork and mobile sensors can gather data from more desirable lo-

ations and be used to check source estimates by also searching for

here the contaminant is not present. Most research into STE has

ocused on improving existing methods to reduce computational

ost, a crucial factor in emergency response. It was found that re-

ucing the search space and a good initial estimate worked best

n reducing computation by decreasing the number of iterations

eeded and hence the number of dispersion model runs. 

Future research could take many directions to improve the cur-

ent state of the art. Prior information, in terms of narrowing down

ossible source locations, can significantly improve performance

f the approaches shown by the performance of [39] and [30] .

rior information may be used further with regards to release time

nd more refined narrowing of possible source locations with lev-

ls of uncertainty included to account for errors in meteorologi-

al variables. Improvements to sampling techniques such as adap-

ive sampling or using prior information to generate better infer-

nces could significantly reduce the number of iterations required.

ispersion modelling could be improved by applying a multiple

odel filter. Computational time has been reduced by applying a
wo step acceptance criteria in [53] to reduce the number of ex-

ensive dispersion model runs, and this could be reduced further

y: adding more steps; improved generation of inferences; or by

mulating the dispersion model [161,162] . The effect of poor or

arying (or perhaps anything other than ideal) meteorological data

as received limited attention in the literature, but their effect on

TE results will be of high importance and should be studied. Dy-

amic plumes have also received little attention, which will intro-

uce much more difficulty in estimation of the source term. Varia-

ions in temporal concentration readings could provide some use-

ul information. 

There is limited research in the area of STE using mobile sen-

ors. In simplified simulations, current approaches have obtained

ore accurate, less uncertain estimates than static sensors thanks

o their ability to sample from more informative locations [49] .

owever, this benefit has not been experimentally validated yet.

esearch has focused on optimal information collection strategies.

n future research, cooperative multiple vehicle approaches should

e explored and their performance benefit over a single vehicle or

 static network analysed. Besides, alternative derivations of the in-

ormation gain should be researched. It is expected that the max-

mum entropy will provide good results, following the theory that

he most information may be gained by sampling from positions

here the least is known. Other extensions and research follow

rom STE using static networks such as applying uncertainty in

eteorological data and improvements to estimation algorithms.

omputational complexity will play an especially important role to

educe idle time of the mobile sensor, so fast converging sequential

lgorithms could be explored for faster on-line estimation such as

ariational Bayesian inference, use of the adjoint source-receptor

elationship and null sensor readings. It will be valuable to inves-

igate the effect on performance between waiting for an algorithm

o converge to an optimal manoeuvre versus collecting more infor-

ation while the algorithm runs with available sub-optimal ma-

oeuvres. 

Boundary tracking algorithms have been shown to perform well

n simulations where there are many simplifying assumptions. Fu-

ure research should focus on tracking of boundaries in more com-

lex scenarios that may feature plume splitting, dynamic bound-

ries and noisy or intermittent sensing. Probabilistic boundary

racking is expected to be one approach that could extend the cur-

ent state of the art. Other areas of future research should extend

he cooperation among mobile sensors, estimating the boundary

rowth and capitalising prior information such as meteorological

ata for more effective tracking. 

Source seeking algorithms have been created for various appli-

ations. Performance comparisons have been made between reac-

ive and cognitive strategies. The best approach has been shown

o depend greatly on the scenario between the type of source, the

eteorological conditions and the size of the search domain. Al-

orithms have been developed that can handle complex scenarios;

owever, their efficiency can yet be improved. Possible areas of fu-

ure research in this domain include: (i) exploration of varying me-

eorological conditions; (ii) the application of probabilistic chemi-

al sensor models; and (iii) development of more efficient source

eeking systems either by extension to multiple cooperating vehi-

les or the development of hybrid approaches to take advantage of

he benefits provided by different strategies. For example, an ap-

roach to effectively balance exploration and exploitation to more

ffectively handle multiple scenarios. 

Unmanned mobile sensor platforms have seen a huge growth in

opularity and ability over the past few years. With the reduction

n cost and size of electronics and growth of research, they will

oon have applications in a vast amount of disciplines. They are the

referred tool for environmental monitoring tasks such as STE as

hey can sample from optimal positions in the atmosphere with-
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out putting humans in harm’s way. For emergency response, UAVs

provide a particular benefit as they can travel to and within the

search area quickly, unobstructed by objects on the ground. Some

issues encountered by mobile sensors for environmental monitor-

ing include the need to sample the atmosphere for a duration of

time and the effect movement will have on sensing accuracy and

the local meteorology. 
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