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ABSTRACT

We simulate shock-free and shocked viscous accretion flows onto a black hole in a two-dimensional cylindrical
geometry, where initial conditions were chosen from analytical solutions. The simulation code used the Lagrangian
total variation diminishing plus remap routine, which enabled us to attain high accuracy in capturing shocks and to
handle the angular momentum distribution correctly. The inviscid shock-free accretion disk solution produced a
thick disk structure, while the viscous shock-free solution attained a Bondi-like structure, but in either case, no jet
activity nor any quasi-periodic oscillation (QPO)-like activity developed. The steady-state shocked solution in the
inviscid as well as in the viscous regime matched theoretical predictions well. However, increasing viscosity
renders the accretion shock unstable. Large-amplitude shock oscillation is accompanied by intermittent, transient
inner multiple shocks. This oscillation of the inner part of the disk is interpreted as the source of QPO in hard
X-rays observed in micro-quasars. Strong shock oscillation induces strong episodic jet emission. The jets also
show the existence of shocks, which are produced as one shell hits the preceding one. The periodicities of the jets
and shock oscillation are similar; the jets for the higher viscosity parameter appear to be stronger and faster.
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1. INTRODUCTION

Investigation of the behavior of matter and radiation around
black holes gained popularity when the accretion activity onto
black holes became the only viable model to explain the power
and spectra radiated by various active galactic nuclei (AGNs)
and micro-quasars. Spectra around black hole candidates
(BHCs) in both AGNs and micro-quasars show a thermal
multi-colored component and non-thermal components. Some
of these BHCs show only non-thermal spectra which can be
fitted with the combination of one or two spectral indices, while
others require a combination of thermal and non-thermal
components. Moreover, most of these objects tend to be
associated with relativistic jets, and observations indicate that
these jets originate from within a few tens of Schwarzschild
radii (Junor et al. 1999). Quasi-steady, mildly relativistic jets
have been observed in the hard spectral state of the BHCs
(Gallo et al. 2003); however, the jet power increases in
transient outbursting objects, as they move from hard spectral
states to intermediate states (Fender et al. 2004). Interestingly,
the light curves of the stellar mass BHCs often show quasi-
periodic oscillations (QPOs) of the hard photons (Miyamoto
et al. 1992; Morgan et al. 1997; Remillard et al. 2002a, 2002b;
Remillard & McClintock 2006; Nandi et al. 2012). Moreover, it
has been shown that the evolution of spectral states, QPOs, and
jet states can be expressed by a hysteresis-type hardness–
intensity diagram (HID), or Q diagram, and many of the micro-
quasars seem to follow this general pattern (Fender et al. 2004).
It is to be noted that any model invoked to describe the
accretion–ejection mechanism around BHCs should incorpo-
rate all of these issues.

Since the inner boundary condition for black hole accretion
has to be supersonic, the first model of accretion onto a black
hole was that of spherical radial inflow or relativistic Bondi
accretion (Michel 1972). However, it was almost immediately
pointed out that spherical accretion is too fast, and therefore

that matter does not have enough time to produce the high
luminosities that are observed outside the BHCs
(Shapiro 1973a, 1973b). The focus then shifted to rotation-
dominated disk models which are optically thick but
geometrically thin and with negligible radial infall velocity.
This disk model is called the Shakura–Sunyaev disk (SSD) or
the Keplerian disk model (Novikov & Thorne 1973; Shakura &
Sunyaev 1973). In spite of its simplicity, the Keplerian disk
model explained the “big blue bump,” or the modified
blackbody part of the spectra from AGNs. However, there
are some theoretical deficiencies in purely Keplerian disks,
because the inner boundary of such a disk is too arbitrary,
while the pressure gradient term is poorly understood. In
addition, observationally the Keplerian disk cannot explain the
presence of the hard power-law tail. It was understood that a
hot component closer to the horizon could, in principle, scatter
up the softer photons through an inverse-Compton process
which would explain the observed hard power-law tail
(Sunyaev & Titarchuk 1980). Since matter with non-negligible
advection is also hotter, various models emerged, which have a
significant advection term along with rotation.
Liang & Thompson (1980) showed that an inviscid, rotating

accretion flow, which is a simpler form of advective flow, will
have more than one sonic point. Such accretion flows with
multiple sonic points may undergo shock transitions in both the
inviscid and the viscous regime (Fukue 1987;
Chakrabarti 1989, 1996).
Aside from the fixed-γ equation of state of the flow, shocks

have been obtained for flows with a variable-γ equation of state
as well (Fukue 1987; Chattopadhyay & Chakrabarti 2011;
Kumar et al. 2013; Kumar & Chattopadhyay 2014). In the
Paczyński–Wiita pseudo potential domain (Paczyński &
Wiita 1980), accretion shocks were reported for various types
of viscosity prescriptions, such as the Chakrabarti–Molteni type
(Chakrabarti 1996), Shakura–Sunyaev type (Becker et al. 2008;
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Kumar & Chattopadhyay 2013) and even for the causal
viscosity type (Gu & Lu 2002). Accretion shocks were reported
for general-relativistic viscous disks as well (Chattopadhyay &
Kumar 2016).

However, the most popular model in the advective regime
is the advection-dominated accretion flow (ADAF), which is
characterized by a single sonic point close to the horizon, and
is subsonic further out (Narayan et al. 1997). The ADAF,
which was originally thought to be entirely subsonic and self-
similar, was found to be self-similar only at large distances
from the horizon (Chen et al. 1997). More interestingly, the
ADAF has been proved to be a subset of a general advective
solution (Lu et al. 1999; Becker et al. 2008; Kumar &
Chattopadhyay 2013, 2014).

Since the entropy of the post-shock flow is higher, the
accretion flow would undergo a shock transition whenever such
a possibility arose, because nature favors a higher entropy
solution. Shocks in accretion disks around black holes are
advantageous. The post-shock disk (PSD) is hotter, slower, and
denser than the pre-shock flow, although the density is not high
enough to make the PSD optically thick. Hence, the PSD acts
as a hot Comptonizing cloud that would produce the inverse-
Comptonized hard power-law tail. The Comptonizing cloud
obtained in this manner is not an arbitrary addition on the top of
a disk solution, but arises naturally by solving the equations of
motion in the advective regime, as will be shown in this paper.
In a model solution, Chakrabarti & Titarchuk (1995) solved the
radiative transfer equation for a two-component accretion flow,
involving matter with high viscosity and Keplerian angular
momentum distribution as well as sub-Keplerian matter. Matter
with local Keplerian angular momentum occupies the equator-
ial plane and the sub-Keplerian flow sandwiches the Keplerian
disk from the top and bottom. The sub-Keplerian flow, being
hot and supersonic, experiences a shock transition, and as a
result supplies hot electrons. The Keplerian disk supplies soft
photons. The post-shock flow, being hot and puffed up,
intercepts soft photons from the Keplerian disk, and inverse-
Comptonizes them to produce the hard power-law tail as
observed in the low-hard spectral state of the micro-quasars
(Chakrabarti & Titarchuk 1995; Mandal & Chakrabarti 2010;
Giri & Chakrabarti 2013). If the Keplerian accretion rate is
increased beyond a critical limit, it cools down the PSD,
creating what is known as the high-soft spectral state. Recent
simulations show that this scenario is a distinct possibility (Giri
& Chakrabarti 2013).

Interestingly, the PSD may or may not be stationary; it may
be subject to a large number of instabilities. Since the PSD is
hotter and denser, the cooling timescales may or may not be
comparable with the dynamical timescale; where the two are
comparable, the shock may oscillate (Molteni et al. 1996b;
Okuda et al. 2007). And since the PSD produces the high
energy power-law tail of the radiation spectrum, the oscillating
shock should induce the same oscillation in hard photons—a
very natural explanation of QPO in micro-quasars. Not only is
the persistent oscillation or instability of the PSD related to the
resonance between cooling and infall timescales, but viscosity
might induce shock oscillations as well (Lanzafame et al. 1998;
Lee et al. 2011; Das et al. 2014). There have been many
stability studies of shocks (Nakayama 1992, 1994; Nobuta &
Hanawa 1994; Gu & Foglizzo 2003; Gu & Lu 2006), but it has
been shown that even under non-axisymmetric perturbations,

the shock tends to persist, albeit as a deformed shock (Molteni
et al. 1999).
Apart from explaining the origin of hard power-law

radiations and that of the QPO, the extra thermal gradient
force in the PSD powers bipolar outflows. These outflows may
be considered as precursor of jets (Molteni
et al. 1994, 1996a, 1996b; Chattopadhyay & Das 2007; Okuda
et al. 2007; Kumar & Chattopadhyay 2013). The HID for
micro-quasars shows that as the micro-quasar enters the
outbursting stage, both QPO and jet power increase while the
spectral state evolves from low-hard to intermediate-hard/soft
state (Fender et al. 2004; Radhika & Nandi 2014). Interest-
ingly, since the post-shock region of the disk generates the
outflow and shocks form close to the black hole, the
observational constraint that a jet base is formed close to the
horizon (Junor et al. 1999) is also satisfied. Recently, Kumar
et al. (2014) showed that if the radiative acceleration of the
shock-driven outflows are considered, then jet power increases
as the spectral state of the disk moves from low-hard to
intermediate-hard states, confirming the fact that has been
observed (Fender et al. 2004).
Numerical simulations of accretion disks around black holes

have been performed with codes based on smooth particle
hydrodynamics (SPH), which has higher artificial viscosity
(Molteni et al. 1994; Das et al. 2014), whereas others have been
carried out with Eulerian codes (Molteni et al. 1996a; Nagakura
& Yamada 2009; Okuda et al. 2007). Eulerian codes are based
on upwind schemes and conserve energy and momentum
naturally. So they efficiently capture and solve discontinuities
like shock waves. However, in Eulerian schemes, azimuthal
momentum is conserved but the angular momentum
component is not. The SPH code, on the other hand, conserves
angular momentum accurately in the absence of viscosity. Lee
et al. (2011) developed a total variation diminishing (TVD)
plus remap method, which combines the Lagrangian and TVD
methods efficiently. With this Lagrangian TVD (LTVD) code,
shocked accretion and ADAF-type solutions were accurately
reproduced, and the code strictly conserves angular momentum
in the inviscid scenario. Using the one-dimensional LTVD
code, Lee et al. (2011) accurately reproduced theoretical
accretion solutions, with strict conservation of angular
momentum in inviscid flow. The introduction of viscosity
creates a situation where the angular momentum redistributes
and its dissipation becomes accentuated. As a result, beyond a
critical value of viscosity the PSD starts to oscillate. Moreover,
the possibility of forming multiple shocks, or the shock cascade
conjectured by Fukumura & Tsuruta (2004), was also obtained
by Lee et al. (2011), and shocks were observed to oscillate with
separate, distinct frequencies.
In one-dimensional simulations, the dynamics in the vertical

direction is suppressed. Therefore, the accretion–ejection
phenomena cannot be investigated, because the ejection occurs
in the vertical direction away from the equatorial plane. In this
paper, we follow the methods of Lee et al. (2011) and perform
multi-dimensional simulations of viscous accretion flow.
Although shocks form for an inviscid accretion flow, is it
possible to find steady shocks for a high viscosity parameter?
Do multiple shocks form for multi-dimensional simulations, or
is the phenomenon an artifact of one dimension? Moreover,
earlier multi-dimensional simulations showed that the shock
leaves the computational domain for higher viscosity
(Lanzafame et al. 1998). The consensus reached was that, for

2

The Astrophysical Journal, 831:33 (22pp), 2016 November 1 Lee et al.



higher viscosity in the flow, shock withers away. In a one-
dimensional simulation of Lee et al. (2011), the shock went out
of the simulation box for high viscosity. However, in the one-
dimensional analysis the dynamics along other directions is
suppressed, therefore exaggerated dynamics along the relevant
direction may force the shock to leave the computational
domain. In this paper, we study the fate of the shock in multi-
dimensional simulations for higher viscosity. In order to
accommodate large-amplitude shock oscillations, we have
chosen a larger computational box. Moreover, do the bipolar
outflows from the PSD leave the computational domain with
significant velocities in order to qualify these outflows as jet
precursors? We address these issues in this paper. In Section 2,
we present the governing equations. In Section 3, we describe
the code and the tests performed to check the veracity of the
code in multi-dimensions. In Section 4, we discuss the
theoretical results and compare with simulations. In Section 5,
we discuss the temporal behavior of a viscous accretion disk. In
the last section, we present concluding remarks.

2. BASIC EQUATIONS

The mass, momentum, and energy conservation equations in
two-dimensional cylindrical coordinates (r, θ, z) are given by
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where, ρ, vr, vθ, vz, l, Φ and Ē are the gas density, radial
velocity, azimuthal velocity, vertical velocity, specific angular
momentum, gravitational potential, and total energy
density, respectively. Here, ¯ ( )r r= + + +qE v v v e2r z

2 2 2 / .
Axis-symmetry is assumed. The angular velocity is defined
as Ω = vθ/r = l/r2 and the pseudo-Newtonian gravity
(Paczyński & Wiita 1980), assumed to mimic the Schwarzs-
child geometry, is given by:

( )F = -
-

= +
GM

R r
R r z; where, 6BH

g

2 2

where MBH is the black hole mass and the Schwarzschild radius
is =r GM c2g BH

2. The gas pressure in the equation of state for
an ideal gas is assumed,

( ) ( )g r= -P e1 , 7

where γ is the ratio of specific heats. Shakura & Sunyaev’s
viscosity prescription (α) is assumed, i.e., the dynamical
viscosity coefficient is described by
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W
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2

K

where, the viscosity parameter α�1 is a constant. The square
of the adiabatic sound speed is given by
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is the Keplerian angular velocity. We have ignored cooling in
this paper. We have assumed that only the r−θ component of
the viscous stress tensor is significant.
In the following, MBH, c and rg are used as the units of mass,

velocity, and length, respectively. Therefore, the unit of time is
tg=rg/c. All of the equations, then, become dimensionless
using the above unit system.

3. CODE

One of the most demanding tasks in carrying out numerical
simulations of transonic flow is to capture shocks sharply. The
upwind finite-difference schemes on an Eulerian grid have been
known to achieve the shock capture strictly. However, since the
angular momentum of Equations (1)–(5) is not treated as a
conserved quantity in such Eulerian codes, we use the so-called
LTVD scheme. The newly designed code can preserve the
angular momentum perfectly because the Lagrangian concept
is used, and it can also guarantee the sharp reproduction of
discontinuities because the TVD scheme (Harten 1983; Ryu
et al. 1993) is also applied (see Lee et al. 2011 for details). The
calculation in the angular momentum transfer is updated
through an implicit method, ensuring it is free from related
numerical instabilities. However, the viscous heating without
cooling is updated with a second-order explicit method, since it
is subject to fewer numerical instabilities.

3.1. Hydrodynamic Part in a Multi-dimensional Geometry

We start with the hydrodynamic part in the Lagrangian step
and remap, which consists of a plane-parallel and cylindrical
geometry. The conservative form of Equations (1)–(5), in mass
coordinates and in the Lagrangian grid, can be written as:
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where τ and E are the specific volume and the specific total
energy, respectively, related to the quantities used in
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Equations (1)–(5) as
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= = +E e
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. 15
2

The mass coordinate related to the spatial coordinate is

( ) ( )˜r= adm r r dr, 16

and its position can be followed with

( ) ( ) ( )=
dr z

dt
v m t, 17

where ã represents the parameters in a different geometrical
geometry; i.e., ã = 0 refers to the Cartesian coordinate system,
while ã = 1 refers to the cylindrical geometry. Since
Equations (11), (12), and (14) show a hyperbolic system of
conservation equations, upwind schemes are applied to build
codes that advance the Lagrangian step using Harten’s TVD
scheme (Harten 1983). Since the conserved Equations (1)–(5)
are decomposed into a one-dimensional functioning code
through a Strang-type directional splitting (Strang 1968) as in
Ryu et al. (1995b), ã = 1 and v=vr and ã = 0 and v=vz are
used for calculations along the r and z directions, respectively;
vθ is handled separately. Detailed explanations of the
Lagrangian TVD and remap are given in Lee et al. (2011).
Equation (13) does not need to be updated in the Lagrangian
step since it is preserved in the absence of viscosity.
Equations (1)–(5), calculated by the Lagrangian and remap
steps, are updated in the Eulerian grid except for the centrifugal

force, gravity, and viscosity terms on the right-hand side. The
centrifugal force in the r direction only, and gravity terms in the
r and z directions, are calculated separately after the Lagrangian
and remap steps such that
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∣ ( )= + D -

F+
⎛
⎝⎜

⎞
⎠⎟v v t

l

r

d

dr z
. 18i i

i

i
i

hydro lag remap
remap

3

Then the viscosity terms are calculated, as discussed in the
following subsection.

3.2. Viscosity Part

Viscosity plays an important role in transferring angular
momentum outward and it allows matter to accrete inward
around a black hole. The angular momentum transfer in
Equation (3) is described by the viscosity parameter given in
Shakura & Sunyaev (1973).
Since the terms for the angular momentum transfer of radial

and vertical directions in Equation (3) are linear in l, it is
possible to calculate them implicitly. Substituting
( +l lnew remap)/2 for l, Equation (3) without the advection
term becomes
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forming a tridiagonal matrix. Here ¢ai , ¢bi , and ¢ci are given with
ρ, μ, and r as well as Δr and Δt, while ai, bi, and ci are given

Figure 1. Density contours and velocity fields of a shocked accretion flow in the r–z plane. The big paraboloidal accretion shock touches the equatorial plane at
~r r24 g. The flow parameters are = -v c0.068212rad , =c c0.061463s , γ=4/3, and =l r c1.65 g .
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with ρ, μ, and z as well as Δz and Δt. The tridiagonal matrix is
solved properly for lnew with appropriate boundary conditions
(Press et al. 1992). Another role of viscosity is to act as friction,
resulting in viscous heating. Here, the viscous heating energy is
fully saved as an entropy, since we ignore cooling. Our
experience in dealing with numerical experiments tells us that
the explicit treatment for the calculation of the viscous heating
term does not cause any numerical problems. Thus angular
momentum transfer is solved implicitly, while frictional
heating energy is solved explicitly.

4. FORMATION OF SHOCKS IN A
TWO-DIMENSIONAL GEOMETRY

4.1. Regeneration of a Two-dimensional Simulation Solution:
A Test for the Code

We present a test result to demonstrate that the code can
capture shocks sharply and resolve the structure clearly in a
transonic flow. In the test, our result, in fact, corresponds to an
earlier simulation result of Molteni et al. (1996a). The inviscid
flow with the same initial conditions as in Molteni et al.
(1996a) enters from the outer boundary, e.g.,

( ) [ ( ) ( ) ]º + = -v v v cinj inj inj 0.068212r zrad
2 2 , sound speed

( ) =c cinj 0.061463s , adiabatic index γ=4/3, and specific

angular momentum =l r c1.65 g . The calculation in the
cylindrical geometry was performed with 128×256 cells in
a 50×100 rg box size. Figure 1 clearly shows the presence of
one shock structure along the equatorial plane, as seen in the
result calculated using the SPH technique. Here the shock is
resolved sharply as seen in the result calculated using the
Eulerian TVD technique. Since the present code uses the
Lagrangian scheme, in the absence of viscosity it can conserve
angular momentum strictly. Hence, we can minimize the errors
of the calculation of the specific angular momentum, present in
a purely Eulerian scheme.

4.2. Theoretical Steady-state Solutions

So far, obtaining a proper time-dependent accretion solution
around black holes is possible only through numerical
simulations. However, early notions of the accretion–ejection
paradigm emerged through theoretical efforts for semi-
analytical solutions of the governing Equations (1)–(5) in the
steady state (the so-called 1.5-dimensional analysis). These
equations for the disk can be integrated to obtain the following
constants of motion (Kumar & Chattopadhyay 2013), where
the mass accretion equation is

˙ ( )p r=M rH v4 , 20r

Figure 2. Test of the shock-free solution of case M1: rinj=200 rg, ( ) = - ´ -v cinj 6.955509 10r
3 , ( ) = ´ -c cinj 5.9200845 10s

2 and linj=1.48 r cg . The solid lines
represent the analytical solution, while the open circles represent the numerical solution. The adiabatic sound speed cs, radial velocity vr, specific angular momentum l,
and density ρ along the equatorial plane are shown from top to bottom.
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and the specific energy, or the generalized Bernoulli parameter
for viscous flow, is

( )
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= +
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- + + Fv
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1 2
. 21r
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2
2 2
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Here l0 is the specific angular momentum on the horizon—an
integration constant, and ( ) ( )g= -H c r r2 1s

1 2 is the
local half-height of the accretion disk, assumed to be in
hydrostatic equilibrium along the vertical direction. The
gradient of the angular velocity obtained by integrating the
azimuthal component of the Navier–Stokes equation as per the
assumptions is given by
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. 22r K
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It is very clear that in the absence of viscosity (α=0), l=l0,
and therefore, Equation (21) takes the usual form of the
Bernoulli parameter ( ) ( )  g= = + - +v c l r0.5 1 2r sg

2 2
0
2 2

+ F. Now for a given value of g, l0, and α, the entire steady-
state solution in the 1.5-dimensional analysis is obtained. In the
rest of the paper we have assumed γ=1.4, a value which will
approximately describe electron–proton flow close to the
horizon (Chattopadhyay & Ryu 2009; Chattopadhyay &
Chakrabarti 2011; Kumar et al. 2013; Kumar & Chattopadhyay
2014). In this paper, we have used inviscid analytical solutions
as initial conditions for viscous flow.

4.3. Comparison of Numerical Simulation with Theoretical
Inviscid Solutions

Next we compare solutions obtained from our simulation
code with analytical results of Kumar & Chattopadhyay (2013).
We compare the shock-free and the shocked accretion solution.
The accreting flow is supplied from the outer boundary which
will be mostly absorbed at the inner edge of an accretion disk.
The behavior of inviscid accreting matter around a black hole
depends on the initial parameters of inflow, for instance its
specific energy  and specific angular momentum l0 (Kumar &
Chattopadhyay 2013). As mentioned before, the theoretical
steady-state solutions are obtained for a 1.5-dimensional
analysis, i.e., a disk assumed to be in vertical hydrostatic
equilibrium, while the simulation is done properly in two
spatial dimensions. For γ=1.4 and 1.5 dimensions, a steady-
state shock solution exists for < <r c l r c1.5 1.8g 0 g (for details,
see Figure2 of Kumar & Chattopadhyay 2013). We choose
two analytical solutions from Kumar & Chattopadhyay (2013):
model one, or M1, is a theoretical “shock-free” accretion
solution with parameters, =l r c1.480 g , and specific energy
 = c0.0063 2. The inflow variables at the injection radius

=r r200inj g are: =l r c1.48inj g , ( ) = - ´ -v cinj 6.955509 10r
3 ,

( )v injz =0, and ( ) = ´ -c cinj 5.920845 10s
2 . The computa-

tional box size is ´r r200 200g g with a resolution of
400×400 cells.
Figure 2 compares simulation (open circles) with analytical

(solid line) solutions, which represent sound speed, radial
velocity, specific angular momentum, and density distribution
along the equatorial plane from top to bottom. The simulation

Figure 3. Density contour map and velocity field of the shock-free case M1.

6

The Astrophysical Journal, 831:33 (22pp), 2016 November 1 Lee et al.



rigorously regenerates the analytical no-shock solution, once
the steady state is reached. The agreement between the
simulation and the analytical solution is remarkable. Close to
the horizon, the flow falls very fast onto the black hole, so the
vertical equilibrium assumption is not strictly maintained in
those regions, causing a slight mismatch of vr and cs with the
theoretical solution.

Figure 3 shows the density contour (color gradient)
and velocity field (arrows) from the simulation of case M1 in
the r–z plane. Interestingly, the density contours mimic the
thick disc configuration (Paczyński & Wiita 1980), although
the advection term is significant in this simulation. We then
simulate with injection parameters taken from Kumar &
Chattopadhyay (2013), which predicts a theoretical shock in
the inviscid limit, and we call this case M2. The parameters of
M2 correspond to  = ´ - c1.25 10 5 2 and =l r c1.7inj g , with
injection parameters ( ) = - ´ -v cinj 4.249299 10rad

2 , ( )=c injs

´ - c1.190908 10 2 at =r r400inj g. The height of the disc at rinj
is =H r113.75inj g.

Figure 4 shows the sound speed, radial velocity, specific
angular momentum, and density distribution along the
equatorial plane, which are plotted in panels from top to
bottom, respectively. The solid lines show the analytical
solution while the open circles show numerical results for the
M2 case. The computational box size is ´ r400 200 g with
800×400 cells. The shock location from numerical calcula-
tions along the equatorial plane is about r19.25 g, while the

shock position suggested by the analytical solution is r20.18 g.
The agreement of the theoretical solution (solid) with the
numerical one (hollow circles) is fairly remarkable, for the
simple reason that the numerical result is not restricted to no
out-flow and vertical hydrostatic equilibrium, while the
theoretical result is. Since hydrostatic equilibrium is, however,
not well maintained close to the horizon, the shock location in
the equatorial plane is slightly closer to the horizon than the
theoretically predicted value indicates.
Figure 5 shows the snapshots of density contour and velocity

field of case M2 at six time steps, showing how the solution
progresses into the steady state. The first snapshot is for the
time ( =t t103

g) when the accreting matter is still far away from
the horizon. In the second and the third panels ( = ´t t3 103

g

and = ´t t4 103
g), the injected matter has still not reached the

horizon. The fourth ( = ´t t8 104
g) and fifth ( = ´t t9 103

g)
panels show the formation of unsteady shocks with weak time-
dependent post-shock outflows. The shock becomes steady at
> ´t t1.2 104

g as the solution reaches the steady state. Here,
the density contours and velocity vectors are plotted for time
= ´t t2 104

g. The inflow matter hits the effective potential
barrier and is piled up behind it, where the accretion shock is
formed. Earlier theoretical work already showed that there are
two shock locations (Fukue 1987; Chakrabarti 1989) where the
inner shock was found to be unstable while the outer one is
stable (Nakayama 1992; Molteni et al. 1994). In our study, we
also observe that the shock actually forms closer to the horizon,

Figure 4. Case M2: the injection parameters here are the injection radius =r r400inj g, ( ) = - ´ -v cinj 4.249299 10r
2 , ( ) = ´ -c cinj 1.190908 10s

2 , =l r c1.7inj g and
the height at rinj is =H r113.75inj g. The sound speed, velocity, specific angular momentum, and density are shown from top to bottom. The solid lines and open
circles represent the analytical solutions and the numerical results, respectively. The analytical shock location is at 20.18 r cg , while the numerical one is at 19.25 r cg .
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but settles around the stable outer shock location once the
steady state is reached. In the rest of the paper, we use the
steady-state solution of M1 and M2 as the initial condition for
the viscous flow.

5. SIMULATION OF VISCOUS FLOW

5.1. Steady-state Shock-free Disk

We turn on viscosity on the steady state of M1, or Figure 2.
Viscosity transports angular momentum and, close to the
horizon, the angular momentum greatly decreases and the disk
morphology which represented that of the thick disk in the
inviscid limit more resembles a Bondi flow. The flow direction
is essentially spherical radial, as seen from the velocity vectors
of Figure 6; once the steady state is reached, the density
contours are almost spherical, corroborating a radial-type or

Bondi-type flow. The viscosity in this case is α=0.05, but we
have also checked for α=0.1 and it remains a Bondi-type
flow. No jet-like structure is seen, and no instability is seen
which can be treated as a source of QPOs.

5.2. Steady-state Shocked Viscous Disk

In the next step, we include the viscosity terms in the
aforementioned steady-state solution of M2. With small α, the
viscous solution remains stable, albeit for a different value of
shock location, or rsh. With the same injection parameters as
those of the inviscid shocked flow, i.e., M2:

( ) = - ´ -v cinj 4.249299 10rad
2 , =l r c1.7inj g and

( ) = ´ -c cinj 1.190908 10s
2 at =r r400inj g, we turn on the

viscosity of α=0.002 at ~ ´t t2.6 104
g. A theoretical

solution with these injection parameters at =r r400inj g,

Figure 5. Density contours and velocity fields of a shocked inviscid disk. Six time steps (in units of dynamical time =t r cg g ) are plotted to show how the steady state
is reached. The initial conditions are the same as in Figure 4.
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corresponds to a specific energy of  = ´ - c1.25 10g
5 2

and =l r c1.699660 g .
Figure 7 shows the corresponding global theoretical solution

(solid lines) and the equatorial values of the simulation result
(open circles). Top three panels show the distributions of cs in
(a), ∣ ∣vr in (b) and l in (c), respectively, while Figure 7(d) shows
the evolution of the equatorial shock location rsh obtained from
the simulation as a function of time. In the simulations, the
steady shock location is at =r r22.25sh g, while the theoretical
shock is obtained at r22.45 g. The position of rsh moves out as
viscosity is turned on. For low α, the angular momentum
transport between rinj and rsh is negligible, so in the pre-shock
disk l is roughly constant. It must be remembered, however,
that if the computational box were increased to r105

g, then the
variation of angular momentum would have been discernible,
as exhibited by the theoretical solution. Since the PSD is much
hotter, the angular momentum transport is more efficient for the
same value of α. This causes the local angular momentum in
the PSD to be greater than linj. The extra centrifugal force
therefore pushes the shock front outward. Figures 7(a)–(c)
show the robustness of both the simulation and the analytical
solution.

The PSD may eject outflows and experience turbulence,
therefore some disagreement is inevitable between the
analytical and simulation results. Moreover, since the vertical
assumption does not hold well near the horizon, close to the
horizon both cs and vr deviate from the analytical value. The
angular momentum distribution of the simulation deviates from
the analytical indication in the PSD region. However, the
maximum fractional departure of the angular momentum
distribution of the simulation from the analytically obtained

value is Δlsim/lanaly0.016. Such a small degree of the
deviation is within acceptable limits, considering that rsh is
reproduced quite accurately. We have plotted the analytical
solution up to =r r105

g, in order to show that rinj is not the
actual outer boundary. Since the simulation for an eigenvalue
solution like that of the accretion disk in a huge box of r105

g
length scale is inconceivable or very expensive, we simulate
the inner region of the disk. It is advisable that one should be
careful in analyzing or addressing the outer boundary condition
when the simulation box is only within the inner few hundred
Schwarzschild radii.
Figure 8 displays snapshots of density contours and velocity

vectors of the flow with the same initial and boundary
conditions as in Figure 7, at various time steps (marked above
the panels). These snapshots show that indeed the solution
reaches the steady state at  ´t t4 104

g. For both the viscous
and inviscid cases, the agreement between the theoretical/
semi-analytical solutions and the simulated solutions on the
equatorial plane is fairly satisfactory given the fact that the
analytical solutions are obtained under vertical equilibrium and
no outflow assumptions, while the simulations are just time-
dependent solutions of the fluid equations in two dimensions,
where such assumptions are not implemented. As far as we
know, the comparison of a theoretical solution and a simulated
solution for a steady-state shock in the presence of viscosity
was not undertaken to any great extent in earlier studies.

5.3. Shock Oscillation in a Disk

Shock oscillations have been observed in the presence of
cooling (Molteni et al. 1996b; Okuda et al. 2007), for inviscid

Figure 6. Density contours and velocity fields of a shock-free viscous disk for α=0.05. The initial conditions are the same as in Figure 2, or M1.
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and adiabatic flows and for Newtonian point mass gravity (Ryu
et al. 1995a) or for stronger gravity (Ryu et al. 1997), also in
the presence of viscosity (Lanzafame et al. 1998, 2008; Lee
et al. 2011; Das et al. 2014). It has been generally accepted that
accretion shocks may exist for low viscosity and cannot be
sustained for α>few×10−3 (Lanzafame et al. 1998, 2008).
However, shocks may exist theoretically for α0.3 (Kumar
& Chattopadhyay 2013, 2014), which is fairly high. The flow
parameters we have chosen for our simulation are in the
domain where steady shocks do not exist for high α. We would
therefore like to find out whether oscillatory shocks exist for
these injection parameters, or the shock completely fades away.
With a one-dimensional LTVD code, we showed that persistent
oscillatory shocks exist for α∼few×10−2 (Lee et al. 2011).
Now we would like to investigate this scenario in multi-
dimensions, since LTVD as a scheme is superior to both the
TVD and Lagrangian codes.

As has been mentioned, the initial condition for the viscous
flow is the steady state as in M2, and the boundary condition of
M2 is also employed. In our study, we found that the steady-
state shock tends to oscillate for α>0.003. Our results also
show that a hotter PSD ensures higher average l than that of the
immediate pre-shock disk. This causes an outward centrifugal
thrust which pushes rsh out. If this thrust is greater than the sum
of ram pressure and the gas pressure of the pre-shock disk, then
rsh will move out instead of settling down. However, the
expanding rsh also causes a total pressure drop within the PSD.

This would restrict the outward motion trying to contract rsh.
Due to the competition between outward expansion and
contraction, the rsh is in oscillation mode. In Figure 9, we plot
rsh versus t for (a) α=0.003, (b) 0.005, (c) 0.007 and (d) 0.01,
respectively. The shock starts to oscillate as in Figure 9(a), and
then undergoes close to a regular oscillation for higher α (b). In
the case of higher α, (c) and (d), the shock oscillation is no
longer in regular mode and the amplitude of the oscillation
increases.
Figure 10 shows snapshots of density contours and velocity

field of an accretion solution for α=0.01. The time of each
snapshot is mentioned in the figure. For α=0.01 the jets are
observed to be episodic. The strength of the jet is clearly related
to the dynamics of the PSD, but now multiple shocks appear. In
order to show these, we plot −vr/c (Figures 11(a)–(d)), cs/c
(Figures 11(e)–(h)) and ( )l r cg (Figures 11(i)–(l)), measured on
the equatorial plane, at = ´t t2.474 105

g (Figures 11(a), (e),
(i)), = ´t t2.480 105

g (Figures 11(b), (f), (j)),
= ´t t2.496 105

g (Figures 11(c), (g), (k)) and
= ´t t2.508 105

g (Figures 11(d), (h), (l)). Three shocks
appear at = ´t t2.480 105

g (b, f, j): but the outer shock
moves inward at = ´t t2.480 105

g, while the inner shocks
tend to collide, and ultimately one shock survives at
= ´t t2.508 105

g. The shock locations are marked by down-
ward arrows for two epochs = ´t t2.474 105

g and
= ´t t2.480 105

g. This pattern occurs repeatedly. The jet off

Figure 7. Comparison of the theoretical, vertical equilibrium model (solid lines), and the two-dimensional simulation results on the equatorial plane (open circles) of
the viscous flow. The computation box is ´r r200 400g g in the r–z plane. The analytical solution is plotted up to r105

g. The injected parameters are
( ) = - ´ -v cinj 4.249299 10r

2 , =l r c1.7inj g , and ( ) = ´ -c cinj 1.190908 10s
2 at =r r400inj g. The flow variables are cs in (a), ∣ ∣vr in (b), and l in (c). The locus of

shock rsh with time (d), shows that rsh reaches the steady state after  ´t t4 104
g. The viscosity parameter is α=0.002. The vertical dashed line denotes rinj.
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state ( = ´t t2.508 105
g) is clearly seen in Figure 10(f), where

the bipolar outflow perishes. All the snapshots of Figures 10
and 11 are from one episode of an oscillating shock starting
from a high jet state to its declining state, and are shown in
Figures 12(a)–(d) by two dashed vertical lines. Note that the
episodic jet ejections do not constitute relativistic ballistic
ejections, but rather these ejections result in a continuous
stream of jet blobs which constitutes a quasi-steady jet. In order
to quantify the mass outflow rate, we define

˙ ( ) ( )ò r=m v dA outer edge 23out out

and

˙ ( ) ( )ò r=m v dA Hupto , 24inj inj inj

where dA is the elemental surface area. The matter which is
flowing with vz>0 and vr>0 at the outer edge of the
computational box is considered as a jet. The relative outflow
rate is

˙ ˙ ( )˙ =R m m . 25m out inj

To see a simplified case of emissivity of these systems, we
estimate the bremsstrahlung emission from the flow. The
bremsstrahlung emissivity is r rµ µe T csBrem

2 1 2 2 (energy/
volume/time). Therefore, the bremsstrahlung loss through each
volume element, apart from constants and geometrical factors,
is d µ e r drBr Brem

2 . If the radiation is locally isotropic, i.e.,
equal fluxes in the three directions then, a third of d Br escapes
through the top surface (along z). One may be tempted to

Figure 8. Density contours and velocity fields of a shocked viscous disk for the six time snapshots mentioned on each panel. The initial conditions are the same as in
Figure 7.
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compare this with the factor of a half associated with energy
loss from an SSD! The latter is an optically thick, geometrically
thin disk with negligibly small advection. The viscous energy
dissipated is converted into radiation which will be thermalized
because the disk is optically thick, and since it is geometrically
thin, the entire amount of radiation generated has to escape
through the top and bottom surfaces, which brings in the
factor of 1/2. In contrast, an advective disk like the one
simulated here, is neither optically thick nor geometrically thin,
i.e., H/r  1. Therefore, radiation will advect along the r and θ

directions as well as escaping along z. Therefore, in the absence
of a proper radiative transfer treatment, we assume only a third
of the radiation generated escapes along z from the top half the
disk. Due to the up–down symmetry assumed, the same is
supposed to occur below the equatorial plane.

Then, the intensity (I0) at each grid point is obtained by
dividing δòBr/3 by the top surface area of each volume. Special
relativity implies that the radiative intensity in the observer
frame will be [ ( )]= G -I I v1 z0

4, where I0 is the intensity in
the comoving frame, and Γ is the bulk Lorentz factor. This
transformation is obtained by starting from the first principle
that the phase space density of photons is Lorentz invariant and
which has been shown by many authors (Hsieh & Spiegel 1976;
Mihalas & Mihalas 1984; Kato et al. 1998). Moreover,
depending on from where the radiation is emitted, a factor of
 is to be taken into account to obtain the amount of the
radiation eaten up by the black hole (Shapiro &

Teukolsky 1983; Vyas et al. 2015), where

[ ( ) ( )] ( )

( )


p

p
=

- -
= +

- R R
R r z

sin 3 3 1 1 2
; .

26

1
2 2

All these corrections are included in estimating the brems-
strahlung loss òBr at each time step. As the disc becomes
unstable, the radiation emitted by the flow should exhibit the
same fluctuation. While calculating Br, we express eBrem in
units of eBrem at rinj to make the estimate bremsstrahlung loss
dimensionless.
Figure 12(a) shows rsh with time for α=0.01, and

Figure 12(b) shows ˙Rm with time. In Figure 12(c), we plot
the estimated bremsstrahlung loss òBr integrated up to Hinj,
while in Figure 12(d) we plot the shock speed in the black hole
rest frame with time. Figures 10 and 11 correspond to various
time snapshots within the marked region of Figures 12(a)–(d).
The mass outflow rate is episodic; as the shock generally
expands from a minimum, the PSD loses its upward thrust,
reducing ˙Rm. As rsh moves inward, it squeezes more matter out
and ˙Rm increases. We also notice the occurrence of intermittent
inner shocks in Figure 12(a). These secondary shocks are not
predicted analytically, but only witnessed numerically. It is
instructive to note that the radiative loss follows a time series
pattern which has an oscillatory period similar to that of the
oscillating shock. The shock speed versus time plot shows that
the shock speed is generally an order of magnitude smaller than
the local sound speed and the dynamical speed in the post-

Figure 9. Shock location rsh vs. t. Each panel represents different viscosity, where (a) α=0.003, (b) α=0.005, (c) α=0.007, and (d) α=0.01. The boundary
conditions are same as for M2 and the initial condition is the steady state of M2.
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shock flow. Recall that viscosity causes the angular momentum
to pile up in the PSD, giving rise to extra centrifugal forces
across it, and viscous dissipation also increases the thermal
energy. Both effects would push the shock front outward, but
as the shock tends to expand, the pressure in the PSD dips,
limiting its expansion. Meanwhile, gravity will always attract.
Therefore the delicate force balance between all these
interactions sets the PSD in oscillation. Since the PSD is an
extended dynamical fluid body, the oscillation is, in general,
not a simple harmonic one. The shock front while oscillating
extends to within 20–50rg in addition to harboring intermittent
inner shocks. One can easily find some smaller period and
amplitude oscillations on the top of the larger variety.
Oscillations of such large fluid bodies of such a complicated
type broaden the power density spectrum, thus reducing the
quality (Q) factor of the oscillation.

In Figures 13(a), (c) and (e), we plot rsh, ˙Rm and òBr, for
α=0.02, and in Figures 13(b), (d) and (f), we plot rsh, ˙Rm, and
òBr, respectively, for α=0.03. As the rsh oscillation amplitude
increases, the secondary shocks get stronger and the amplitude
of ˙Rm also increases. Interestingly, there is not just one
secondary inner shock but also multiple shocks, and the
dynamics of these shocks are messy; when an outer shock
contracts, the inner one may expand and collide with the
incoming outer shock. ˙Rm also increases from a few percent of
the accretion rate to few tens of percent. Since there are many
shocks and the outflowing jet interacts with the surface of the
accreting material, the dynamics of the shocks are also not
regular. The bremsstrahlung emission also follows a similar
pattern to that of the shock oscillation.
Figures 14(a), (b) and (c) compare the power spectral density

of the radiation emitted by the accreting fluid which harbors

Figure 10. Snapshots of density contours and velocity fields in the r–z plane for α=0.01. The initial condition is the steady state of M2 and the boundary conditions
are same as for M2.
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oscillating shocks. The presence of multiple shocks, their
dynamics, as well as the interaction of the outflowing jet and
the accreting matter, makes the shock oscillate irregularly, and
hence the power spectral density shows multiple peaks. The
outer shock position on average goes from a maximum to a
minimum in about ´ t9 103

g for α=0.01, with many small
oscillations on the top of it. The period of these small
oscillations is about t1500 g. This gives two frequencies of
0.8 Hz and 6.6 Hz if the central black hole is assumed to be of

M10 . Figure 14(a) shows the power density spectrum of the
radiation with two peaks. For the case α=0.02, the shock
oscillates between r10 g and r75 g, and ˙Rm varies from a
negligible value to about 10% (Figures 13(a) and (c)). When

increasing the viscosity to α=0.03, rsh oscillates from r10 g to
about r100 g and the mass outflow rate varies between off-state
to more than 20% (Figures 13(b) and (d)). The longer period of
shock oscillation for α=0.02 is around ´ t3 104

g, and that for
α=0.03 is > ´ t3 104

g. Assuming =M M10B , this results
in frequencies of 0.3–0.4 Hz (Figures 14(b) and (c)),
respectively. But the power density spectrum of the longer
period for α=0.02 and 0.03 is almost washed out and
resembles a broad hump around 0.3–0.4 Hz. For the three cases
shown above, the oscillation of rsh is reflected more clearly
from the estimated radiative loss corresponding to the
harmonics. For α=0.02 and 0.03, the power density spectra
of the estimated radiative loss peak at ∼4 Hz and ∼3 Hz,

Figure 11. Snapshots of-v cr (a, b, c, d), cs/c (e, f, g, h) and ( )l r cg (i, j, k, l), measured on the equatorial plane, at = ´t t2.474 105
g (a, e, i), = ´t t2.480 105

g (b,
f, j), = ´t t2.496 105

g (c, g, k) and = ´t t2.508 105
g (d, h, l). The downward arrows show the locations of shocks. The slides indicate the same time snaps as in

Figure 10.

14

The Astrophysical Journal, 831:33 (22pp), 2016 November 1 Lee et al.



respectively. Recall that the PDS is presented in arbitrary units.
Smaller periods within a larger period give rise to higher
frequencies. It may be noted that, for a low α, (i.e., <0.01) the
median location of the oscillating shock is closer to the horizon,
and the period of oscillation is < t104

g. So assuming
=M M10B , the period obtained is 0.1 s and the frequency

of oscillation is 10 Hz. To summarize, increasing α causes a
larger-amplitude but lower-frequency shock oscillation for
α<few×10−2, which induces a similar oscillation in the
emitted radiation.

5.3.1. High-viscosity Parameter

In the literature there have been some multi-dimensional
viscous accretion simulations around black holes which harbor
accretion shocks (Lanzafame et al. 1998, 2008; Das
et al. 2014). As far as we know, all of them were carried out
more or less for low-viscosity parameters. With the exception
of Lee et al. (2011), most of the simulations were either too hot,
or carried out in too small a box size. In order to avoid
expensive computation time, simulations were done for an
inner few tens of rg and the boundary conditions were devised
in such a way that the shock also forms very close to the
horizon. As a result, when the viscosity parameter was
increased to αfew×10−3, the shock location escaped the
computation box, which led to the conclusion that higher α
does not support shocks. However, our work showed that as α
is increased, the amplitude of the shock oscillation increases
until around α∼0.1 when rsh goes out of the computational
domain, while for α∼0.2, the oscillation amplitude of the

shock decreases and is within the domain. To illustrate, we plot
−vr (Figures 15(a)–(d)), cs (Figures 15(e)–(h)) and l
(Figures 15(i)–(k)) measured along the equatorial plane, for
α=0.3 for the accretion model M2. The time slots are
t=1.272×105 (a, e, i), t=1.276×105 (b, f, j),
t=1.294×105 (c, g, k) and t=1.3×105 (d, h, l). There
are clearly two shocks, where the inner moves very close to the
horizon at t=1.294×105. Higher α ensures more dissipation
and therefore higher cs, or, higher temperature (see
Figures 15(e)–(h)), which in turn reduces weak multiple inner
shocks, and produces two predominant shocks, one inner and
the other outer. The inner shock is still intermittent but
stronger. More importantly, higher α ensures significant
angular momentum reduction even in the pre-shock disk
(Figures 15(i)–(k)). Since the accretion shock is primarily
centrifugal pressure mediated, lower l near the horizon actually
brings the shock back into the computational domain.
However, a hotter PSD with higher α creates a very strong
gradient in l within it. This ensures a large-amplitude but a
relatively shorter-period (~ t2800 g) oscillation. As the shock
travels to distances > r50 g, the sound speed in the immediate
post-shock region is a few times lower than the flow close to
the horizon (Figures 15(e)–(h)). This causes more efficient
angular-momentum transport in the region closer to the horizon
than in the immediate post-shock region, which causes a region
of sharp negative gradient of l, i.e., <dl dr 0 (see
Figure 15(i)). This region of extra centrifugal pressure within
the PSD drives the inner shock. The disk model with higher
values of cs and α creates an inner shock, but nonetheless

Figure 12. Variation of (a) rsh, (b) ˙Rm, (c) Br bremsstrahlung emission, and (d) shock speed with time. The viscosity is α=0.01, and the snapshots in Figures 10 and
11 are from various times in the rising jet phase depicted within the dotted vertical lines.
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makes the PSD much cleaner than the one for a low α. Jets are
also much stronger, and therefore jets coming out of the PSD
are more collimated than those for lower α. A hotter PSD also
causes the shock front to expand faster and to trigger a higher-
frequency oscillation. Figures 16(a)–(d) show the density
contours and velocity vectors in the entire computational
domain for the same time slots. These accretion flows form
multiple shocks, and at certain times the inner shock may form
at the location near the central object as shown in Figure 16(c).
It is also clear that the jet is well collimated and fast.
Comparison of Figures 10(a)–(f) with Figures 16(a)–(d) shows
that the jet in Figures 16(a)–(d) flows much closer to the axis.
The angular momentum is vastly reduced due to higher α in
Figures 16(a)–(d) making the jet flow closer to the axis. We
also plot cs (Figure 17(a)), vz (Figure 17(b)) and ρ
(Figure 17(c)) with respect to z along the first cell in r (≡ a
distance of r0.5 g from the axis of symmetry); the snapshot of
the jet is at = ´t t1.198 105

g. The velocity profile shows that
close to the axis, matter is blown out as a jet (i.e., vz>0) from

around a height of r30 g. The sound speed (cs) decreases with
height, while velocity increases, making the jet supersonic and
eventually it undergoes a series of shocks. The jet speed is
fairly high (~ c0.2 ) especially when the distance is ~ r200 g
which is not a distance at which one expects a jet to reach its
terminal speed. Interestingly, the jet velocity profile
(Figure 17(b)) also does not reach an asymptotic value and
continues to increase at =z r200 g.
In the following, we compare various properties of flows

starting with the same injection parameters, and with two
different but high values of α. Figures 18(a) and (b) show rsh
with time, while in Figures 18(c) and (d) we show the
compression ratio - +v v , and in Figures 18(e) and (f), ˙Rm with
respect to time. In Figures 18(g) and (h), we plot the power
density spectrum (in arbitrary units) of the radiation emitted by
the flow. Figures 18(a), (c), (e), (g), are plotted for viscosity
α=0.2 and Figures 18(b), (d), (f), (h), are plotted for α=0.3.
Figures 18(a) and (b) show the median of the oscillating shock
that has formed closer to the central object as α is increased

Figure 13. Variation of rsh (a, b), ˙Rm (c, d) and òBr (e, f) with respect to time for α=0.02 (a, c, e) and α=0.03 (b, d, f). The initial condition is the steady state of M2,
and boundary conditions are same as those for M2.
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from 0.2 0.3. The compression ratio of the oscillating
shock may far exceed the steady-state values. However, in the
case of α=0.3, the compression ratio is obviously higher
because the median of the shock is located closer to the black
hole. The corresponding mass outflow rate for α=0.3 is
slightly higher than that for α=0.2. If the shock is located
closer to the inner zone, then the frequency of oscillation
should also be higher. For α=0.3 the frequency of oscillation
is around 4 Hz, while for α=0.2 it is ∼3.5 Hz. Although both
peaks are broad, the peak for α=0.2 is comparatively broader.
The quality factor of the peaks in the power density spectra are
∼2 for α=0.2 and ∼3 for α=0.3. It is interesting to note that
for a viscosity of αfew×10−2, the shock expands with
increasing α, while for α∼few×0.1, the trend is the
opposite. We will discuss this in the next section.

6. SUMMARY AND DISCUSSION

In this paper, we simulated the evolution of an advective,
viscous accretion disk. But instead of randomly chosen values
of injected flow variables, we adopted values from the
analytical solutions of Kumar & Chattopadhyay (2013). The
excellent agreement of the simulation results with the analytical
results when they achieved the steady state shows that the
analytical results are indeed steady, and that the numerical code
is also very robust. We extended the algorithm of our one-
dimensional code (Lee et al. 2011) to multi-dimensions. We
regenerated and compared shocked and shock-free steady-state
viscous solutions with those from Kumar & Chattopad-
hyay (2013). We considered a shock-free inviscid solution
and a shocked inviscid solution corresponding to two different
boundary conditions (referred to as cases M1 and M2), and
varied α to obtain steady-state as well as time-dependent

solutions. Note that even without any given artificial shock
conditions, the shock conditions are inbuilt as in any upwind
code, as these codes are based on conservation laws of flow
variables which ensure sharp reproduction of shocks. Since in
each cell all the fluxes are conserved, automatically shocks
arise if the preferred conditions prevail in the flow. Such a
shock admits entropy and a temperature jump across the shock
front. In an ideal fluid this gives rise to the Rankine–Hugoniot
jump conditions across the shock front. Such a shock results in
higher entropy, and a higher density post-shock flow, whereas
the velocity is smaller. Such hotter, slower, denser regions are
susceptible to various dissipative processes and are radiatively
more efficient than the pre-shock flow.
We found that the low angular momentum, shock-free

accretion becomes similar to a Bondi flow in the presence of
viscosity. No jet-like flow developed when viscosity was
turned on for the shock-free accreting flow with the initial
conditions of case M1. However, turning on the viscosity for
the shocked accretion flow with the initial conditions of case
M2, the shock persists in the steady state for lower values of α,
but starts to oscillate at higher α. Looking closer, one finds that
a hotter PSD transports angular momentum more efficiently
than the colder pre-shock disk (see Equations (3) and (8)). As a
result, the angular momentum distribution becomes steeper in
the PSD than in the pre-shock disk, causing an extra centrifugal
force on the shock front to push it out, but the sum of ram
pressure and gas pressure of the outer disc would oppose the
expansion. The net effect is that, for small α, the accretion
shock settles down to a steady value. But above a certain
critical viscosity parameter (acr), the shock starts to oscillate,
and the mass outflow in the form of bipolar jets increases in
strength. In the particular case of M2, acr=0.003. As
α>acr, the shock initially undergoes small perturbations but
on increasing α the shock undergoes small-amplitude regular
oscillations. With even larger α, the oscillation amplitude
increases, and the oscillation itself becomes irregular. There are
multiple factors in play: the PSD will expand less toward the
incoming pre-shock supersonic flow than in the vertical
direction. In fact, the extra thrust of the oscillating PSD ejects
matter in episodes along the vertical direction. The mass that is
being ejected might interact with the infalling matter at the
interface, which gives rise to a different kind of perturbation.
Moreover, as rsh moves out to large distance, the angular
momentum transport within the PSD becomes complicated.
The flow near the horizon is much hotter than that near the
expanding shock front. This causes the angular momentum
distribution in the PSD to change, from a slow monotonic rise
of l peaking at some value when rsh is small, to, two or more
sharp peaks when rsh is large. This causes multiple shocks to
form (see Lee et al. 2011 for details of multiple shocks). All of
these cause irregular oscillation of shocks and, because of the
irregularity, power density spectra of the shocks show broader
peaks than when the oscillation is more regular (Das
et al. 2014).
According to Das et al. (2014), the mass outflow for small-

amplitude regular oscillations is episodic and the period of the
episodic mass loss matches that of the shock oscillation. Their
results also showed the existence of one or a few sharp peaks in
the power spectrum of the shock, as well as of the estimated
radiation from the flow. We checked the case of =0.005
(Figure 9(b)) which also exhibits regular oscillation, and shows
a sharp fundamental peak (10 Hz) with higher harmonics

Figure 14. Comparison of the power spectral density (arbitrary units) transform
of the shock oscillation for α=0.01 (a), α=0.02 (b), and α=0.03 (c). The
spectral density is obtained considering a stellar mass BH of =M M10BH .
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somewhat similar to those of Das et al. (2014). Although the
fundamental frequency of oscillation was lower for the
boundary condition of Das et al. (2014), note that they
performed a simulation for a comparatively hotter, lower
angular momentum flow. In the present case, the flow is colder
but of higher angular momentum. Therefore, apart from the
location of the shock, the flow properties across it also affect
the QPO frequency.

For irregular large-amplitude shock oscillations, we com-
pared the time evolution of mass loss with the shock
oscillation, and showed that as the shock front starts to
contract, it squeezes more matter in the vertical direction, but as
it expands from the rsh minimal position, the PSD loses the
upward thrust and the mass outflow collapses, generating the

episodic mass outflow. We note that there is a significant
interval of literally no outflow which corresponds to a jet “off”
state. We also confirm that during the steady state, the mass
outflow rate from the PSD is either absent or weak. Only when
the shock activity becomes intensified, and thereby the PSD
oscillates appreciably, does the mass outflow rate increase. As
the viscosity is increased, the shock oscillation amplitude
increases, which triggers a large amount of mass ejection in the
form of jets. The fundamental oscillation period also increases,
and the PSD has a messy structure with many intermittent
secondary shocks. This pattern tends to continue for a disk with
α<0.1. For α=0.1, the oscillation amplitude increases to an
extent that it actually exceeds the computational domain. But
interestingly, for α�0.2, the shock oscillation becomes

Figure 15. Snapshots of-vr (a, b, c, d), cs (e, f, g, h) and l (i, j, k, l) measured in geometrical units, and evaluated on the equatorial plane. The various time snapshots
are at t=1.272×105 (a, e, i), t=1.276×105 (b, f, j), = ´t 1.294 105 (c, g, k), and t=1.3×105 (d, h, l). The viscosity parameter α=0.3 and initial condition
is the steady state of M2 and the boundary conditions are also identical to those for M2.

18

The Astrophysical Journal, 831:33 (22pp), 2016 November 1 Lee et al.



confined within the computational box and the frequency of
oscillation increases. Therefore, our simulation results show
that for a lower range of viscosity, i.e., α∼few×10−2, the
median of the oscillating shock increases with α, while in the
range of 0.1<αfew×0.1, the median of the shock
location decreases with increasing α! The question is: why is
this so?

Recently, Kumar & Chattopadhyay (2013, 2014) showed for
a variety of equations of state of the accretion disk fluid that rsh
decreases with increasing α if the flow starts from the same
outer boundary conditions. The explanation for such behavior
is that a higher α causes a higher angular momentum transport,
reducing the pre-shock angular momentum of the disc, causing
rsh to shift closer to the horizon. Kumar & Chattopadhyay
(2013), in particular, also showed that the cause of the shock
expansion with increasing α in various simulations (including
our previous paper, Lee et al. 2011) is the short boundary
considered for most simulations. By “short” we do not mean a
particular fixed value, but one that actually varies depending on
the flow parameters. For some flow parameters, the angular
momentum achieves its local Keplerian value at a distance of a
few ´ r100 g, while for others, l=lK is achieved at a distance
of ~ r105

g. Therefore a computational box of a few´ r100 g is
adequate for the former case, but will be considered “short” for
the latter case (see, e.g., Figures 5(d), (e) of Kumar &
Chattopadhyay 2013).

Viscosity is more effective for a hotter and slower flow as
seen in Equation (22). Hence, viscosity is more effective in the
PSD than the colder pre-shock disk. If the outer boundary is
short, then α cannot significantly affect the flow properties in

the pre-shock disk, but efficiently transports angular momen-
tum in the PSD. This causes the angular momentum to pile up
in the PSD, while in the pre-shock disk l has a low gradient
and, as a result, the shock front expands in order to negotiate
the increased centrifugal force. As we increase α, more angular
momentum will be piled up in the PSD, but the flow properties
in the pre-shock disk will largely remain unaffected, and the
shock would expand further. This is roughly what is expected
for lower α as shown in our simulations. Moreover, as the
shock becomes oscillatory, for similar reasons, both the median
shock location and the oscillation amplitude increase with
increasing α. This also causes the emitted radiation to oscillate
with decreasing frequency when α is increased. Why is this
trend reversed for higher α (e.g., Figure 18)?
The computational box of r400 g, though larger than most

simulation set-ups, is still much smaller compared to the actual
size of the theoretical accretion disk (see Figures 7(a)–(c) for
comparison). To understand the situation, let us first focus on
Figure 7, where we compared the steady-state numerical
solution with the analytical one for the same values of

( ) ( )v c linj , inj ,r s inj at rinj. It is clear that rinj is not the actual
outer boundary ( r105

g). For low α, the angular momentum at
the outer boundary will be ∣ =l lr r10 inj5

g . As we increase α, for
the same injected values at the same rinj, l at =r r105

g will be
larger and for some value of a a= k, l will attain its Keplerian
( [ ( )]= -l r r2 1K

3 2 ) value at r105
g. Then for any a a> k,

the l distribution will attain its Keplerian value at a distance
shorter than r105

g. Note that for advective–transonic disks, the
boundary at which the disk attains l=lK has to be the
maximum value of its outer boundary. For αfew×0.01,

Figure 16. Contours of density and velocity vectors of an accretion disk and its jet. The various time snaps are at t=1.272×105, 1.276×105, ´1.294 105, and
1.3×105. The viscosity parameter is α=0.3, and is the complete solution of Figure 15.
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i.e., small α, l does not attain lK within r105
g. But for

α∼few×0.1 the outer boundary effectively comes closer,
simply because we have kept the injection parameters constant.
By the same token, l will be substantially reduced as we go
inward from rinj up to rsh (for details, see Figure5 of Kumar &
Chattopadhyay 2013), causing the shock position to relocate
closer to the central object. So although =r r400inj g is still
properly not the outer boundary, for α∼few×0.1, the same
rinj is closer to the outer boundary, therefore “mimicking” the
fact that with the increase of α, the shock moves closer to the
central object. Meanwhile, for αfew×0.01, rinj is nowhere
close to the real outer boundary. This is the reason why we see
rsh increasing with α for the range of a α<few×10−2, but rsh
decreasing with increasing α for αfew×0.1. The bottom
line is that in simulation boxes with a short boundary, we are
actually comparing accretion flows with different outer
boundary conditions, where incidentally for a small range of
higher α, rinj somewhat mimics the outer boundary.

The mass outflow rate for higher α appears to be sporadic,
with inconspicuous jet “off” states. Since the viscosity is very
strong for α=0.3, a higher viscous dissipation and more
significant angular momentum transport induce a higher-
frequency shock oscillation. The jet becomes much stronger
at α=0.3, to the extent that the average jet speed near the axis
is ~ c0.2 at a height of r200 g above the equatorial plane. One
may wonder whether we should call these outflows jets, given
the fact that they are not truly relativistic. We note two points in
the jet characteristics. First, jets are collimated ejections.

Figures 10 and 16 clearly show that the outflow is fairly
collimated (the bulk of it is spread within r100 g at a height of

r200 g). Next, these outflows leave the computational domain at
~v c0.2 , which is mildly relativistic and clearly transonic

(Figures 17(a) and (b)). So according to these conditions, they
qualify as jets. From Figure 17(b), the jet is obviously not
reaching its asymptotic value at the height of r200 ;g therefore a
somewhat higher speed can be expected at >z r200 g.
However, this is not an indication that this jet will go on to
reach a relativistic terminal speed. One must also bear in mind
that not all jets, especially those around micro-quasars, are
always truly relativistic (S433; Margon 1984, and the 2009
burst of H1743-22; Miller-Jones et al. 2012). Our simulation
set-up does not address the transition from intermediate states
to the high-soft state (or transitions across the jet line) and the
associated ejection of relativistic blobs. We simulate the origin
of semi-relativistic jets associated with the low-hard state and
the intermediate states. And indeed such jets increase in
strength as the BHCs move from low-hard to intermediate-hard
spectral states (Fender et al. 2004).
In various papers, many authors have shown that in out-

bursting sources low QPO frequencies emerge in the hard states
and increases as the object transits from low-hard states to the
intermediate states. Such a QPO is not detected during the
ejection of relativistic jets (Casella et al. 2004; McClintock &
Remillard 2006; Nandi et al. 2012). In the model, the shock
being situated at large distances is equivalent to a low-hard
state, and as the median of the oscillating shock moves toward

Figure 17. Jet profile plotted along the z coordinate during the “jet on state” at = ´t t1.198 105
g for the same case as Figure 15; the sound speed (a), vz (b), and

density ρ (c). The flow variables plotted are taken from the first cell adjacent to the axis.
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the central object, the total disk luminosity increases. Any
perturbation of the shock, while as a whole moving toward the
central object, would increase the frequency of the oscillation.
Simultaneously, the mildly relativistic jet becomes stronger (Q
diagram of Fender et al. 2004), as also seen in our simulation.
Although we could not track its entire evolution because of the
limitation of the simulation box size, at least for higher α, the
increase of the QPO frequency and strengthening of the mildly
relativistic jets somewhat justify the theoretical conjecture
(Kumar & Chattopadhyay 2013, 2014; Chattopadhyay &
Kumar 2016). However, the whole set of state transitions can

emerge if and only if one simulates an accretion flow from the
actual outer boundary (where l=lK, or, =r r10inj

5
g) and

higher α, which is very challenging to achieve and currently
beyond the scope of this paper.
There have been other interesting investigations in the

advective flow regime, for instance, general relativistic
hydrodynamic simulations (Nagakura & Yamada 2009) and
investigations of transmagnetosonic flow in general relativity
(Takahashi et al. 2002, 2006; Fukumura et al. 2007). While
Nagakura & Yamada (2009) only simulated inviscid flow and
reported a shock oscillation of a few Hz, the main realization

Figure 18. Variation of rsh (a, b), compression ratio - +v v (c, d), ˙Rm (e, f) with time. The power density spectrum in arbitrary units (g, h) for the two viscosity cases are
plotted vs. frequency. The left panels (a, c, e, g) represent flow with α=0.2 and the right panels (b, d, f, h) represent flow with α=0.3. The boundary conditions are
same as for M2.
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was that it is possible to obtain steady and oscillatory shocks in
general relativistic simulations. Transmagnetosonic flow also
revealed the formation of general relativistic MHD shocks. The
presence of both slow and fast MHD shocks opens up hitherto
uncharted possibilities. Fast shocks may generate transverse
magnetic fields, which can help in powering jets. An interesting
investigation may be taken up to identify various spectral states
with MHD-type shocks.

We conclude that a shocked accretion disk through the
oscillation of the PSD naturally explains the QPO phenomenon
in BHCs, while an episodic jet seems to become stronger as
viscosity increases. For weak viscosity the jet is also weaker,
while an oscillating shock due to its “bellows action” is
squeezing out episodic jets at fairly high speed. In Lee et al.
(2011), the median shock location was large and therefore the
frequency of oscillation obtained was around 0.1 Hz, whereas
in Das et al. (2014), the median shock location was at a
few×10 rg. In addition, the frequency was around a few Hz.
In this paper, we investigated a large range of viscosity
parameters but starting with the same initial condition, and we
were able to generate frequency ranges from less than one to a
few Hz. Moreover, Lee et al.’s (2011), analysis, being one-
dimensional, failed to simulate shock oscillation beyond
α>0.1, but following their conjecture, we show that the
formation of jet/outflows in multi-dimensional simulations
saturates the shock oscillation for higher α and retains it within
the computational domain, where it is shown that a transient
shock survives even with high viscosity parameters, and the
mass outflow rate also becomes stronger for such a flow.
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