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Compression of Hamiltonian matrix: Application
to spin-1/2 Heisenberg square lattice
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We introduce a simple algorithm providing a compressed representation (∈
RNorbits×Norbits × NNorbits ) of an irreducible Hamiltonian matrix (number of magnons
M constrained, dimension:

Nspins!

M!(Nspins−M)!
>Norbits) of the spin-1/2 Heisenberg anti-

ferromagnet on the L × L non-periodic lattice, not looking for a good basis.
As L increases, the ratio of the matrix dimension to Norbits converges to 8
(order of the symmetry group of square) for the exact ground state computa-
tion. The sparsity of the Hamiltonian is retained in the compressed represen-
tation. Thus, the computational time and memory consumptions are reduced in
proportion to the ratio. © 2016 Author(s). All article content, except where oth-
erwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4963834]

I. INTRODUCTION

In mathematics, a matrix is irreducible if it is not similar via a permutation to a block upper
triangular matrix.1 Graph-theoretically, replacing non-zero entries in the matrix by one, and viewing
the matrix as the adjacency matrix of a directed graph, the matrix is irreducible if and only if such
directed graph is strongly connected.2 If a symmetric structure is inherent in such an irreducible
matrix, there is a block-diagonalized similar matrix having the same eigenvalues.3 Once we construct
the bases of various irreducible subspaces, low-rank matrices can be obtained, which allow us to
compute all the eigenpairs.

Frequently, it takes a great deal of effort and time to search for a good basis block-
diagonalizing such an irreducible matrix and calculate new matrix elements. In quantum chem-
istry, generating matrix elements of a Hamiltonian by itself is often the most time consuming
part.4 In addition, such low-rank matrices are not as sparse as original irreducible matrix in
general; they could be even denser. For instance, the ground state energy of the 8-site Heisen-
berg spin-1/2 cube (matrix dimension: 28 = 256) can be obtained from an irreducible matrix
of rank 70 (number of magnons constrained to be 4) or such a low-rank block (dimension:
6) after a change of basis. In contrast to the original Hamiltonian and the irreducible matrix
(sparse matrices), however, the low-rank block is now the following dense matrix (numerically
represented):5

aElectronic mail: sschoi@postech.ac.kr
bCurrent address: Graphics R&D Group, Samsung Electronics, Suwon 16677, Korea
cCurrent address: Department of Management Engineering, Korea Advanced Institute of Science and Technology (KAIST),
Seoul 02455, Korea

2158-3226/2016/6(9)/095024/7 6, 095024-1 © Author(s) 2016

 

 

 

 

 

 

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  114.70.7.203 On: Fri, 21 Oct

2016 10:21:25

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarWorks@UNIST

https://core.ac.uk/display/79714197?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1063/1.4963834
http://dx.doi.org/10.1063/1.4963834
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4963834
mailto:sschoi@postech.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4963834&domain=pdf&date_stamp=2016-09-26


095024-2 Choi, Kim, and Kim AIP Advances 6, 095024 (2016)



0 0.8666 0.8666 0 0 0
0.8666 −1.5 0.5000 0.5000 0.6455 0.2886
0.8666 0.5000 −1.5 0.5000 0.6455 0.2886

0 0.5000 0.5000 −1.5 0.6455 1.1547
0 0.6455 0.6455 0.6455 −4.5 0
0 0.2886 0.2886 1.1547 0 0



. (1)

In order not to lose the sparsity, we may as well think of how to get a simple low-dimensional
representation (not requiring a good basis) without newly generating nonzero entries. In this paper,
we study on such a representation (using a non-Hermitian matrix like



1 0 0 2 0 0
0 0 3 0 0 0
0 1 0 2 0 0

0.5 0 2 −1 1 0.5
0 0 0 4 −1 0
0 0 0 6 0 −3



(2)

that is sparse and consists of much simpler numbers than (1)) which can easily be obtained and used
to calculate exact eigenvectors and eigenvalues more efficiently. Using (2) and orbit sizes (a vector
of dimension 6), energies including the ground state energy of the 8-site Heisenberg spin-1/2 cube
can exactly be calculated. We present the details about this approach herein.

To be specific, we show how to obtain a compressed representation of an irreducible Hamiltonian
of the spin-1/2 Heisenberg antiferromagnet on the L × L lattice.6 The Heisenberg XXX (Jx = Jy = Jz

= J) model (without an external magnetic field term, Nspins: number of all spin-sites) is defined as

HHeisenberg = J
∑
〈ij〉

Si · Sj = J
∑
〈ij〉

∑
α∈{x,y,z }

Nspins⊗
k=1

{
(1 − δik − δjk)I + (δik + δjk)Sα

}
(3)

(
I =

[
1 0
0 1

]
, Sx =

1
2

[
0 1
1 0

]
, Sy =

1
2

[
0 −i
i 0

]
, Sz =

1
2

[
1 0
0 −1

]
(set ~= 1)

)
where δij is the Kronecker delta (δij = 1 for i = j, otherwise δij = 0), and

∑
〈ij〉

is the sum over nearest-

neighbor sites i and j. In the case when Jx = Jy (XXZ model), the relation S± = Sx ± iSy is used to
re-express (3) as follows:

HHeisenberg = J
∑
〈ij〉

∑
α∈{sik ,sjk ,z}

Nspins⊗
k=1

{
(1 − δik − δjk)I + (δik + δjk)Sα

}
(4)

(
slm denoting + if l =m
slm denoting − if l ,m

, S+ =
1
√

2

[
0 1
0 0

]
, S− =

1
√

2

[
0 0
1 0

])
.

Note that when the number of all spins is even, the dimension of the irreducible block of the
Hamiltonian (number of magnons constrained) is

Nspins!(
Nspins/2

)
!
(
Nspins/2

)
!
=

2NspinsΓ
(
Nspins/2 + 1/2

)
√
πΓ

(
Nspins/2 + 1

) (5)

for the ground state computation. This exponential increase of the matrix dimension in proportion to
the number of spin sites (“curse of dimensionality”3) practically limits Nspins . 40 in exact diagonal-
ization studies.7,8 For the 36-site periodic lattices, the dimension of the minimal Hilbert space for the
exact ground state computation is greater than 107 (10 million).9,10 The Hilbert space’s dimension for
the 36-site non-periodic lattice (for the ground state computation) is approximately 109 with full sym-
metry group being considered. Meanwhile, tensor network (TN) variational methods11 (data-sparse
approximation3) have been studied to manage such lattices.12,13 The 36-site periodic kagomé lattice’s
approximate ground state energy was computed using a TN method,13 which is 0.5% above the exact
result by the Lanczos method.10 While matrix product state (MPS) has been proven a very powerful
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tool for one-dimensional strongly correlated quantum lattice systems,14 TN methods generally have
computational difficulties which arise from the amount and structure of the entanglement in quantum
many-body states.11

Notwithstanding these difficulties, the use of the compressed representation can effectively be
used to calculate exact solutions to such large-scale spin lattice problems in that the compression is
a simple process which does not calculate new matrix elements with no change of basis. After the
compressed representation is obtained, a modified form of an eigensolver can be utilized. Without loss
of data-sparsity, the ideas introduced in the following section permit us to effectively save hardware
memory and computational time in real computation.

II. METHOD

Before introducing the algorithm providing the compressed representation of an irreducible
Hamiltonian, we first define the representatives of the spin states. In addition, we brifely mention the
relation between the representatives and the Hilbert space.

Let a L × L non-periodic lattice be on the x-y plane symmetrically about both the x-axis and
the y-axis with the center of the lattice being at the origin (0, 0). Consider the spin-1/2 Heisen-
berg XXZ antiferromagnet on this square lattice (Hamiltonian: H), the Hilbert space of which is
H =

{
|0〉 , |1〉 , . . . , |2L2

− 1〉
}

(∃ total 2L2
spin arrangements). Note that the symmetry group of this

lattice is Dih4 (dihedral group of order 8), and so the group action

φ : Dih4 ×H →H , (6)

which transforms the coordinates of the spin sites on the square lattice, can be defined. For convinience,
let us write

φ(g, |k〉)= φg |k〉 (7)

where g ∈Dih4 and 0 ≤ k ≤ 2L2
−1. Also, let us define an index map iself :H →Z∗ (Z∗: set of nonnega-

tive integers) such that iself(|k〉)= k for 0 ≤ k ≤ 2L2
−1. Then, we can define an index map irep. :Z∗→Z∗

such that for 0 ≤ k ≤ 2L2
− 1,

irep.(k)=Min *.
,

⋃
g∈Dih4

{
iself(φg |k〉

}+/
-

, (8)

which defines the representatives of the spin states.
Meanwhile, we denote the total spin in the z-direction by

Sz
tot. =

L2

2
−M (9)

where M is the number of magnons (spin flips). Then, we can express

H =

L2⊕
M=0

HM (10)

where the Hamiltonian associated with HM is HM (irreducible matrix), the dimension of which is
written as

dim(HM )=
L2!

M!(L2 −M)!
. (11)

Using the definition of iself and irep.,HM can be expressed as

HM =
⋃

k∈irep.s(HM )

⋃
g∈Dih4

{
φg |k〉

}
(12)

where
irep.s(HM )=

⋃
ψ∈HM

{
irep. (iself(ψ))

}
. (13)
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TABLE I. An algorithm for obtaining the compressed representation (HM,comp.,Osize) for the spin-1/2 Heisenberg
antiferromagnet on the L × L non-periodic lattice (Hamiltonian: HM).

1. Allocate a bit array Rchecker of size 2Nspins (dimension of H, Nspins =L2) such that Rchecker[j]= 0 for 1 ≤ j ≤ 2Nspins .
2. For 1 ≤ j ≤ 2Nspins , set Rchecker[irep.(j)]= 1 if the number of the spin flips of |j〉 is M.
3. Take k=0. Then, for 1 ≤ j ≤ 2Nspins , if Rchecker[j]= 1, k++ and Rmap(j)= k

(++: increment operator). After this loop, take Norbits = k

4. For 1 ≤ j ≤Norbits, we take Osize[j]=
������

⋃
g∈Dih4

{
iself(φg |R−1

map(j))〉
}������

.

5. For 1 ≤ i ≤Norbits, obtain a set of indices Sneighbor(i)=
⋃

1≤j≤2
Nspins

HM [R−1
map(i)][j],0

{j }.

6. Let all the entries of HM,comp. ∈R
Norbits×Norbits be zero.

After that, for 1 ≤ i ≤Norbits and for j ∈ Sneighbor(i),
HM,comp.[i][Rmap(irep.(j))] += HM [R−1

map(i)][j] (+=: addition assignment operator).
(Note: The sparsity of HM should be taken into account for computational efficiency.)

7. Finally, we have the compressed representation (HM ,comp.,Osize) of HM

(Hamiltonian of the Heisenberg spin-1/2 antiferromagnet on the L × L non-periodic lattice
with the number of magnons being M).

Based on the above, the algorithm in Table I provides a vector Osize and a matrix HM ,comp. of
dimension |irep.s(HM )| with which exact eigenvalues of HM are computed (“comp.” meaning com-
pressed). Here, the vector Osize contains every orbit’s size (defined by the group action φ). Also, a
submatrix of HM and weighting numbers can construct HM ,comp.. We define the pair (HM ,comp.,Osize)
as the compressed representation of HM . Once we obtain (HM ,comp.,Osize), it is possible to obtain
exact eigenvalues of HM by computing a compressed vector of dimension dim(HM,comp.)=Norbits

(orbit: vertex-orbit in graph theory). Note that even if the coupling constants Jx and Jz are changed,
we can still make use of the previously obtained compressed representation since it is only necessary
to multiply the diagonal and off-diagonal parts (nonzero elements) of HM by some constants, respec-
tively. For computational conveniences, it is possible to modify the algorithm and some mathematical
representations. Instead of using HM ,comp., for instance, it is possible to separately handle a submatrix
of HM and weighting numbers. They can be expressed bitwise since the weights cannot exceed the
order of the symmetry group, so that an efficient data storage is possible.

Once the compressed representation (HM ,comp.,Osize) is obtained, we can calculate eigenvalues
with it. For example, in order to obtain the ground state energy, we can utilize the variant of the power
iteration as follows. First, take a random vector u1 ∈R

Norbits and a large enough value λ ′ ∈R+ (to get
the lowest energy and to avoid a convergence problem). For 1 ≤ i ≤Norbits, do HM ,comp.[i][i]−=λ ′

(−=: subtraction assignment operator). For v ∈RNorbits , uk ∈R
Norbits , and k ∈N, we define

‖uk ‖comp. =

√√√Norbits∑
l=1

Osize[l] · (uk)l · (uk)l, (14)

ũk =
1

‖uk ‖comp.
uk and uk+1 =HM,comp.ũk . (15)

Then, as k increases, λ + λ ′ converges to the lowest energy of HM where

λ =

Norbits∑
l=1

Osize[l] · (ũk)l ·
(
HM,comp.ũk

)
l
. (16)

III. RESULTS

Here, we demonstrate the computational performance of the method in Section II applied to the
spin-1/2 Heisenberg antiferromagnet on the L × L non-periodic lattice (expressed by the irreducible
matrices HM in Section II (dim(HM ) = nM )). For 2 ≤ L ≤ 6, we present the calculated lowest energies
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TABLE II. Computed energies (exact) in unit of J. The 1st excited energy is obtained using the reorthonormalization after
the lowest energy computation.

L lowest energy 1st excited energy

2 −2.00000000 −1.00000000
3 −4.74932726 −3.75865635
4 −9.18920706 −7.79090797
5 −14.69614643 −14.13765455
6 −21.72678604 −20.88907857

(exact) in Table II using the method in Section II (data-sparsity considered in computation). In the
following Tables, the advantages coming from the use of this representation are demonstrated. When
the power iteration is used, anO(nM ) calculation is required to obtain an eigenvalue due to the matrix’s
sparsity. Meanwhile, if we use the variant of the power iteration with the compressed representation
here, only an O(knM ) calculation is required where k decreases toward 1/8 as L increases. It reflects
the fact that the sparsity of the original matrix is well retained in this representation.

A. Dimension reduction

The use of the compressed representation of the irreducible matrix HM (Refer to Section II.)
makes it possible to save both computational resources and computational time in real computation.
Although any change of basis is not applied here, the additional dimension reduction is easily achieved
as shown in Table III. Notice that dim(HM )

dim(HM,comp.)
converges to 8 (order of the symmetry group of square)

as L increases.

B. Data size reduction

The dimension reduction in Table III directly results in the reduction of the size of the data
constructed from the irreducible Hamiltonian HM . Here, data-sparsity was considered when the data
of HM and (HM ,comp.,Osize) were generated, the sizes of which (in bytes) are shown in Table IV. It is
remarkable that the ratio in Table IV also converges to 8 as L increases, implying that (HM ,comp.,Osize)
well retains the data-sparsity of HM .

C. Computational time reduction

The data size reduction naturally gives rise to the computational time reduction. In comparison
to obtaining HM and using the power iteration, the method in Section II diminishes the computational

TABLE III. Dimension reduction.

L dim(H) dim(HM ) dim(HM ,comp.)
dim(H)

dim(HM )
dim(HM )

dim(HM,comp.)

2 16 6 2 2.667 3.000
3 512 126 23 4.064 5.478
4 65536 12870 1674 5.092 7.688
5 33554432 5200300 652048 6.452 7.975
6 68719476736 9075135300 1134460910 7.572 8.000

TABLE IV. Data size in bytes.

L HM (HM ,comp.,Osize) Ratio

2 1.340 × 102 3.400 × 101 3.941
3 5.334 × 103 7.540 × 102 7.074
4 9.395 × 105 1.190 × 105 7.893
5 5.928 × 108 7.413 × 107 7.997
6 1.491 × 1012 1.864 × 1011 8.000

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Download to IP:  114.70.7.203 On: Fri, 21 Oct

2016 10:21:25



095024-6 Choi, Kim, and Kim AIP Advances 6, 095024 (2016)

TABLE V. Computational time in seconds (GS: the ground state) using a single core of Intel(R) Xeon(R) CPU E5-2620 v2
@ 2.10GHz. (*: approximate estimation based on parallel computation)

L GS from HM GS from (HM ,comp.,Osize) Ratio

2 3.414 × 10−6 1.353 × 10−6 2.523
3 9.493 × 10−5 2.111 × 10−5 4.497
4 2.027 × 10−2 3.231 × 10−3 6.274
5 1.011 × 102 1.361 × 101 7.428
6 No data *1 × 105 None

time for obtaining eigenvalues as described in Table V. As L increases, the ratio in Table V tends to
vary in accordance with the ratio variances in Tables III and IV. Here, a C++ program and a single
core of Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz were used for benchmarking. Compared
to the computation time (without I/O) of the ground state using (HM ,comp.,Osize) (with the sparsity
of HM being considered), it takes a similar length of time to obtain (HM ,comp.,Osize) even when
std::map and data I/O process (trade-off between speed and memory) are used. In the same condition
(including optimization flags), the Lanczos routine15,16 in SPINPACK17 spent about 50 seconds
calculating the ground state energy for L = 5 from a low-rank block matrix (full symmetry group
considered). Practically, the method in Section II could be a good alternative when performing this
kind of calculation. The development of a variant of the Lanczos method using (HM ,comp.,Osize) may
possibly improve the speed of computation even more.

IV. DISCUSSION AND CONCLUDING REMARKS

In this paper, it has been shown that we can make use of a compressed representation of an irre-
ducible Hamiltonian matrix. We have dealt with the spin-1/2 Heisenberg antiferromagnet on a square
lattice (non-periodic) as a practical application. It directly indicates that such a low-dimensional
representation can be utilized in other Heisenberg models as well as the t-J model and the Hubbard
model in solid state physics. The use of the compressed representation allows us to save both com-
putational resources and computational time since not only is it sparse as original matrix, we do not
need to compute a new basis and new matrix elements to obtain low-rank matrices. At this point, we
may cast the following question: “How can we mathematically generalize this approach in various
aspects?” Algebraic graph theory is possibly a good tool for the remaining mathematical works.

From a graph theoretical point of view, an irreducible matrix W ∈Rn×n (the entry in row i,
column j: wij) is irreducible if and only if its associated graph G = (V , AW ) is strongly connected2

where V (G)= {v1, . . . , vn} is the set of all vertices of G, and AW (G)= {{{vi, vj}, wij} : 1 ≤ i ≤ n, 1
≤ j ≤ n, wij , 0} is the set of all weighted arcs of G. Meanwhile, we denote by Aut (G) the set of
every automorphism φ :G→G defined by ϕφ : V (G)→V (G) with {{vi, vj}, wij} ∈ AW (G) if and only
if {{ϕφ(vi), ϕφ(vj)}, wij} ∈ AW (G) for all i, j ∈ {1, . . . , n}.18 Here, Aut (G) always forms a permutation
group by the following facts: 1) the composition of two automorphisms of G is an automorphism
of G, and 2) the inverse of an automorphism of G is also an automorphism.19 If G is asymmetric,
Aut (G) is the identity group.20 Otherwise, there exist one or more nontrivial vertex orbits of G since
|Aut (G) | > 1. From this viewpoint, it is possible to say that the compressed representation of an
irreducible matrix can be defined unless its associated graph is asymmetric. Based on graph measures
and metrics, we are able to define compression polices (providing exact/approximate solutions)
for general purposes and make use of an automated policy selector aided by a machine learning
technique. In this regard, we suggest that the ideas presented here should be investigated from the
graph theoretical point of view for further researches.

As is applied in the power iteration, similarly, it is worth relating the compressed representation
of an irreducible matrix to the other eigensolvers carrying out, e.g. subspace iteration, computing
all eigenpairs, etc. Additionally, defining new operations based on the compressed representation
of an irreducible matrix would possibly lead to the improvements and the developments of various
computational methods. At the same time, further rigorous mathematical works are also necessary
regarding this idea. Applied to existing methods, their computational costs can also be lowered if there
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is an utilizable symmetric structure. We anticipate that this simple point of view on the “reducibility” of
irreducible matrices could shed light on a pathway to substantially resolving computational difficulties
in various fields using matrix computations and discovering other useful methodologies.
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