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Abstract: Twelve methylenedioxy-containing compounds including piperine and 10 piperine-like
synthetic compounds were assessed to determine their antifungal and antiaflatoxigenic activities
against Aspergillus flavus ATCC 22546 in terms of their structure–activity relationships. Piperonal and
1,3-benzodioxole had inhibitory effects against A. flavus mycelial growth and aflatoxin B1 production
up to a concentration of 1000 µg/mL. Ten piperine-like synthetic compounds were synthesized
that differed in terms of the carbon length in the hydrocarbon backbone and the presence of the
methylenedioxy moiety. In particular, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had potent
antifungal and antiaflatoxigenic effects against A. flavus up to a concentration of 1 µg/mL. This synthetic
compound was remarkable because the positive control thiabendazole had no inhibitory effect at
this concentration. Reverse transcription-PCR analysis showed that five genes involved in aflatoxin
biosynthesis pathways were down-regulated in A. flavus, i.e., aflD, aflK, aflQ, aflR, and aflS; therefore,
the synthetic compound inhibited aflatoxin production by down-regulating these genes.

Keywords: aflatoxin; Aspergillus flavus; methylenedioxy compounds; piperine; reverse
transcription-PCR

1. Introduction

Fungal infections are widespread in cereal crops, and severe contamination by fungal toxins,
including aflatoxins, causes trade issues between countries [1–4]. The regulations for aflatoxin in
cereals vary between countries, and the new maximum aflatoxin levels in the EU for corn and rice
are <2 µg/kg aflatoxin B1 and a total aflatoxin content of 4 µg/kg, except for unprocessed maize and
rice, which are 5 and 10 µg/kg, respectively [5]. Other foodstuffs, including almonds, pistachios,
and apricot kernels, are limited to 8 µg/kg of aflatoxin B1 and a total aflatoxin content of 10 µg/kg [5].
Therefore, methods for reducing aflatoxin contamination have been developed in many countries,
especially those that conduct regular monitoring of aflatoxin contamination in cereals [6–8].
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Detoxification and decomposition of aflatoxins with organic acids reduces the residual aflatoxin
contents of foodstuffs, where this method includes heating the crop [8,9]. Detoxification methods using
enzymes, such as laccase and manganese peroxidase, have also been suggested for reducing aflatoxin
contamination [10,11]. Physical and chemical methods, such as ozone and gamma-irradiation, can also
remove aflatoxins from contaminated foodstuffs in an efficient manner [12,13]. The microbiological
detoxification of aflatoxins has been studied comprehensively using Rhodococcus strains and
yeasts [14,15]. Growth inhibition of aflatoxin-producing fungi, such as Aspergillus flavus and
A. parasiticus, by microbes has been demonstrated successfully as a method for reducing aflatoxin
contamination [16,17]. However, for some products, the detoxification processes may enhance their
toxicities compared with those of the parent structures. Therefore, toxicity tests need to be determined
after various treatments with structural elucidation of products [18].

Chemical control using currently available fungicides is one of the most efficient ways of
preventing mycotoxigenic fungal growth and reducing mycotoxin contamination [19]. However,
resistance to fungicides is well-documented throughout the world, and it threatens food security and
human health [20,21].

The rise of fungal resistance necessitates the development of new methods for controlling
mycotoxigenic fungi, and naturally occurring compounds, including essential oils, have been
highlighted as alternative fungicides for reducing aflatoxin production [22–24]. Some isolated natural
compounds have also been used to treat A. flavus growth and reduce aflatoxin production [25].
Piperlongumine, piperine, pipernonaline, and piperoctadecalidine exhibit fungicidal activities
against A. flavus WRRC 3-90-42, and piperonal has a specific inhibitory effect against aflatoxin B1

biosynthesis [25,26]. Methylenedioxy moiety-containing compounds are abundant in Piper fruits
(black pepper) and they are known to be inhibitors of cytochrome P450s [27,28]. Newly synthesized
compounds derived from naturally occurring chemicals have also been suggested as compounds that
could be used to control Aspergillus spp [29].

In this study, two methylenedioxy-containing compounds identified from Piper nigrum, piperonal
and piperine, were investigated to determine their antiaflatoxigenic effects on aflatoxin production by
A. flavus. Piperine was then used as a lead compound to synthesize various compounds containing the
methylenedioxy moiety, and 10 piperine-like synthetic compounds were evaluated in terms of their
structure–inhibitory activity relationships.

2. Results and Discussion

Thiabendazole is generally used in agriculture to control fungal infections in crop plants. In this
study, we used thiabendazole as a positive control for comparison with the test compounds. We found
that 1,3-benzodioxole exhibited antifungal activity at 1000 µg/mL, and kept some fungicidal activity
at 100 µg/mL against A. flavus (Table 1). Similarly, methylenedioxy-containing compounds exhibited
antifungal activities at 1000 µg/mL, but they lost most of their fungicidal effects at 100 µg/mL,
except for methylenedioxy phenylacetic acid (Table 1). Thiabendazole achieved ca. 95% mycelial
growth inhibition at 5 µg/mL. Piperine had very weak antifungal activities against A. flavus at
1000 µg/mL, and piperonal and sesamol obtained moderate antifungal effects against A. flavus at
1000 µg/mL. As shown in Table 1, we also determined the rate of aflatoxin production inhibition.
Thiabendazole strongly inhibited the production of aflatoxins B1, B2, and G2 at 5 µg/mL, but aflatoxin
G1 production was not inhibited at the same concentration. This indicates that thiabendazole inhibits
the mycelial growth of A. flavus and the production of aflatoxins B1, B2, and G2 at 5 µg/mL, but not
G1. 1,3-Benzodioxole had different inhibitory patterns where it controlled the production of four
different aflatoxins at 100 µg/mL (Table 1). Piperine had a concentration-dependent inhibitory effect
on aflatoxin production where it strongly inhibited aflatoxins B1, B2, and G1 at 3000 µg/mL, whereas
it inhibited aflatoxin G2 at 1000 µg/mL. This difference may be attributable to the various inhibitory
effects of piperine on aflatoxin production in A. flavus. By contrast, sesamol enhanced aflatoxin B2

production. According to these results, sesamol could inhibit mycelial growth, but the living mycelium
produced more aflatoxins compared with the control group.
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Table 1. Mycelial growth and aflatoxin (AF) production of Aspergillus flavus after treatment with various methylenedioxy-containing compounds.

Compound Concentration
(µg/mL)

Mycelial Growth Compared
with the Control (%)

Aflatoxin Production Compared with the Control (%)

AFB1 AFB2 AFG1 AFG2

Thiabendazole
(Positive control)

10 1.3 ± 2.3 - * - - -
5 6.90 ± 11.1 ND ** ND 35.2 ± 2.60 ND
1 105 ± 26.1 >150 >150 131 ± 65.7 ND

1,3-Benzodioxole
1000 17.0 ± 3.10 0.03 ± 0.05 0.2 ± 0.4 2.0 ± 1.7 0.8 ± 1.3
100 84.6 ± 5.90 25.2 ± 29.8 26.6 ± 17.9 0.4 ± 0.3 23.5 ± 13.9

Methylenedioxy
phenylacetic acid

100 46.0 ± 19.7 - - - -
10 78.8 ± 18.4 - - - -

Piperine 3000 133 ± 6.02 0.7 ± 0.1 1.6 ± 0.2 0.3 ± 0.6 55.2 ± 16.7
1000 119 ± 6.70 39.1 ± 3.10 107 ± 27.1 21.6 ± 5.54 2.4 ± 0.053

Sesamol
1000 34.9 ± 15.1 140 ± 36.0 >150 38.4 ± 1.83 40.1 ± 34.7
100 114 ± 8.92 - - - -

Piperonal 1000 34.8 ± 1.17 10.5 ± 1.14 100 ± 46.2 21.3 ± 1.22 >150
100 * 93.9 ± 5.06 45.0 ± 47.1 10.5 ± 6.12 0.30 ± 0.31 23.9 ± 19.8

* Not tested; ** ND, Not Detectable.
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We found that methylenedioxy-containing compounds, including piperonal and piperine,
had moderate inhibitory effects on the growth of A. flavus mycelia and aflatoxin B1 production
(Table 1). The structure of the methylenedioxy-containing compounds used in this study contained
1,3-benzodioxole and its antiaflatoxigenic activity was the strongest of the methylenedioxy-containing
compounds that we tested. In sesamol, the hydrogen in the compound is replaced by a hydroxyl
moiety on the 1,3-benzodioxole, which decreased the antiaflatoxigenic activity compared with
1,3-benzodioxole (Table 1). Other replacement reactions also decreased the antiaflatoxigenic activities.

Methylenedioxy functional group-containing compounds, such as piperonal and piperine,
have been identified as compounds that could potentially control aflatoxin contamination in
foodstuffs [25,27,30]. Piperine is a major alkaloid found in Piper plants [31,32] which has an inhibitory
effect on aflatoxin B1 biosynthesis and the growth of A. flavus mycelia at a concentration of 0.7%
(w/v) [25]. Recently, Park et al. [25] showed that piperonal, one of the major compounds in P. nigrum
essential oil, inhibited aflatoxin B1 production and it diverted the aflatoxin B1 biosynthetic route to
aflatoxin G2 production. These findings improve our understanding of the relationship between
chemical inhibition and aflatoxin biosynthesis.

Among the 10 piperine-like synthetic compounds (Figure 1), we found that 1-(2-
methylpiperidin-1-yl)-3-phenylprop-2-en-1-one (1) and 3-(benzo-1,3-dioxol-5-yl)-1-(2-methylpiperidin-
1-yl)prop-2-en-1-one exhibited antifungal activities against A. flavus at the concentration of 1000 µg/mL
(Table 2), these antifungal activities decreased dramatically ten times less concentration than the
initial concentration. Interestingly, 1-(2-methylpiperidin-1-yl)-3- phenylprop-2-en-1-one had potent
antiaflatoxigenic activity up to 1 µg/mL (Table 2, Figure 1).

Piperine is a piperidine alkaloid that contains the methylenedioxy moiety in its structure.
When the methylenedioxy moiety and dienes were removed from the structure of piperine,
1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one was produced, which had moderate antifungal
activities against A. flavus, but it had a potent antiaflatoxigenic effect against aflatoxin B1 when the
concentration was as low as 1 µg/mL (Table 2).

RT-PCR analyses showed that 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one had
dose-dependent inhibitory effects on the expression of aflD, aflK, aflQ, aflR, and aflS (Figure 2). It is
likely that this compound directly blocks the aflatoxin biosynthesis pathway by inhibiting the aflatoxin
biosynthesis transcription factors aflR and aflS.

The inhibitory mode of action was determined using RT-PCR (Figure 2). Two transcription
factors, aflR and aflS, are known to control aflatoxin biosynthesis [33]. Our results showed that
1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one inhibited the expression of the aflR and aflS genes,
and three other genes were also downregulated (Figure 2). Therefore, this compound may be a
potential biopesticide that could control A. flavus and aflatoxin production. The toxicological properties
and other fungicidal effects of these compounds on mycotoxin-producing fungi need to be studied in
future research.
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Figure 1. Piperine-like synthetic compounds used in this study.
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Table 2. Mycelial growth and aflatoxin (AF) production of Aspergillus flavus after treatment with piperine-like synthetic compounds.

Compound Concentration
(µg/mL)

Mycelial Growth Compared
with the Control (%)

Aflatoxin Production Compared with the Control (%)

AFB1 AFB2 AFG1 AFG2

Thiabendazole (Positive control)
10 1.3 ± 2.3 - * - - -
5 6.90 ± 11.1 ND ** ND 35.2 ± 2.64 ND
1 105 ± 26.1 >150.0 >150.0 131 ± 65.7 ND

1-(2-Methylpiperidin-1-yl)-3-phenylprop-2-en-1-one

1000 10.3 ± 17.8 ND ND 35.51 ND
100 64.3 ± 10.1 ND ND 89.18 ND
10 - 47.0 ± 2.45 69.4 ± 5.83 47.1 ± 6.08 ND
1 - 38.0 ± 44.3 76.3 ± 55.9 122 ± 72.2 104 ± 58.0

3-(Benzo-1,3-dioxol-5-yl)-1-(2-methylpiperidin-1-
yl)prop-2-en-1-one

1000 27.5 ± 5.43 ND ND 64.7 55.9
100 84.9 ± 31.8 96.4 ± 75.3 76.2 ± 55.9 122 ± 82.2 104 ± 57.9
10 87.6 ± 18.6 >150 >150.00 >150.00 >150.00

* Not tested; ** ND, Not detectable.
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Figure 2. RT-PCR results obtained for six genes involved in aflatoxin biosynthesis (aflD, aflK, aflQ,
aflR, aflS, and yap), which were regulated by 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one (1).
1, Control; 2, 1000 µg/mL of 1; 3, 100 µg/mL of 1; 4, 10 µg/mL of 1.

3. Materials and Methods

3.1. Chemicals

Aflatoxins B1, B2, G1, and G2, and the chemicals 1,3-benzodioxole, eugenol, and methyleugenol
were obtained from Sigma-Aldrich (St. Louis, MO, USA). Piperonal and piperine were isolated from
Piper nigrum fruits, where they were analyzed and confirmed based on a series of spectrometric analyses
including gas chromatography-mass spectrometry, and 1H- and 13C-nuclear magnetic resonance
spectroscopy. Piperonal and piperine were also purchased from Sigma-Aldrich and compared
with the corresponding compounds isolated in our laboratory. Asarone, methylenedioxy aniline,
methylenedioxy phenylacetic acid, methylenedioxycinnamic acid, methylenedioxyphenyl propionic
acid, and piperonyl alcohol were also purchased from Sigma-Aldrich. Ten piperine-like synthetic
compounds were synthesized by Prof. Won-Sik Choi (Soonchunhyang University, Asan, Korea):
3-phenyl-1-(piperidin-1-yl)-2-en-1-one, 3-(benzo-1,3-dioxol-5-yl)-1-(piperidin-1-yl)prop-2-en-1-one,
1-(4-methylpiperidin-1-yl)-3-phenylprop- 2-en-1-one, 3-(benzo-1,3-dioxol-5-yl)-1-(4-methylpiperidin-1-
yl)prop-2-en-1-one, 1-(3-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one, 3-(benzo-1,3-dioxol-5-yl)-1-
(3-methylpiperidin-1-yl)prop-2-en-1-one, 1-(2-methylpiperidin-1-yl)-3-phenylprop-2-en-1-one (1),
3-(benzo-1,3-dioxol-5-yl)-1-(2-methylpiperidin-1-yl)prop-2-en-1-one, 1-(2,6-dimethylpiperidin-1-yl)-3-
phenylprop-2-en-1-one, and 3-(benzo-1,3-dioxol-5-yl)-1-(2,6-methylpiperidin-1-yl)prop-2-en-1-one.
All of the other chemicals used in this study were of the highest analytical grade and the concentrations
tested for each chemical against Aspergillus flavus ATCC 22546 were presented in Table S1.

3.2. Aflatoxin Analysis by High-Performance Liquid Chromatography (HPLC)

A. flavus spores equivalent to 106 were inoculated into 25 mL of potato dextrose broth (Difco,
Sparks, MD, USA) liquid culture medium, before adding one of the test compounds. After the addition
of fungal spores and the test compound, the culture was incubated with shaking for 5 days at 25 ◦C.
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At least three replicates were performed for each concentration. After incubation for 5 days, the
complete medium was used to determine the growth rates by measuring the mycelial and sclerotial
dry weights using filter papers, and analyses of aflatoxin B and G type mycotoxin were performed
using HPLC [25]. The arithmetic means were calculated based on three replicates. Dimethyl sulfoxide
(DMSO) and thiabendazole were used as negative and positive control, respectively, for all experiments.

3.3. Total RNA Isolation and Quantitative Reverse Transcription-PCR (RT-qPCR)

A. flavus mycelia in liquid cultures were harvested carefully by filtering through a cell strainer
(SPL Life Sciences Co. Ltd, Gyeonggi-do, Korea). The harvested mycelia were placed in a mortar and
ground to a fine powder with an appropriate amount of liquid nitrogen. Total RNA was extracted
from the A. flavus mycelia using QIAzol Lysis reagent (Qiagen Inc., Dusseldorf, Germany). The RNA
extracts were quantified by determining the absorbance at both 260 and 280 nm using a µDropTM

Plate system (Thermo Fisher Scientific Inc., Waltham, MA, USA) and the RNA was then evaluated
qualitatively by agarose gel electrophoresis (1%) with ethidium bromide.

Complementary DNA (cDNA) was prepared using a Maxima First Strand cDNA Synthesis Kit
(Thermo Fisher Scientific Inc., Waltham, MA, USA). The RNA extracts (2 µg) were used for compound
synthesis. A Rotor-Gene SYBR Green PCR Kit (Qiagen Inc.) was used with 100 ng of cDNA for
RT-qPCR analysis. Specific primers synthesized by Genotech (Daejeon, Korea) were used in this study
to understand the relationship between aflatoxin biosynthesis and the chemicals tested, i.e., primers
for yap, aflR, aflS, aflK, aflD, and aflQ 18S rRNA (Table 3). The amplification processes were performed
as follows: denaturation at 95 ◦C for 30 s, annealing at 60 ◦C for 20 s, and elongation at 72 ◦C for
30 s. Forty rounds amplification were conducted according to the thermal cycling procedure with a
postcycling step at 95 ◦C for 5 min. RT-qPCR was performed three times for each sample. Differences
in gene expression after the addition of the test chemicals were calculated using the ∆Ct method.
The data were normalized against the 18S rRNA levels and the gene expression levels were compared.

Table 3. Gene-specific primers used for RT-qPCR.

Gene Sequence

yap
Forward 5’ TGCAACCTCTCTACAAGCCG 3’

Reverse 5’ CCGAAGTCTCGAGAAAGAGCC 3’

aflR
Forward 5’ GCACCCTGTCTTCCCTAACA 3’

Reverse 5’ ACGACCATGCTCAGCAAGTA 3’

aflS
Forward 5’ GGAATGGGATGGAGATG 3’

Reverse 5’ GGAATATGGCTGTAGGAAG 3’

aflK
Forward 5’ GAACTGCTTCAGTTGCCGTG 3’

Reverse 5’ ACGAGGGTTCGTTTCTGGAC 3’

aflD
Forward 5’ TCCAGGCACACATGATGGTC 3’

Reverse 5’ TGTGGATAACGAAGTGCCCC 3’

aflQ
Forward 5’ TTAAGGCAGCGGAATACAAG 3’

Reverse 5’ GACGCCCAAAGCCGAACACAAA 3’

18S rRNA
Forward 5’ ATGGCCGTTCTTAGTTGGTG 3’

Reverse 5’ GTACAAAGGGCAGGGACGTA 3’

3.4. Statistical Analysis

Experiments were performed three times and the data were expressed as the mean ± standard
deviation. Statistically significant differences between experimental groups were determined by
two-way ANOVA analysis with Tukey’s post-hoc test. Significant differences between experimental
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groups were accepted at p < 0.05. The statistical analyses were performed using Prism 6 software
(GraphPad, San Diego, CA, USA).

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/8/8/240/s1,
Table S1: All chemicals and their concentrations tested in this study.
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