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Abstract

Deep Convolutional Neural Networks (CNNs) are a powerful model for visual recog-

nition tasks, but due to their very high computational requirement, acceleration is

highly desired. FPGA accelerators for CNNs are typically built around one large

MAC (multiply-accumulate) array, which is repeatedly used to perform the com-

putation of all convolution layers, which can be quite diverse and complex. Thus a

key challenge is how to design a common architecture that can perform well for all

convolutional layers. In this paper we present a highly optimized and cost-effective

3D neuron array architecture that is a natural fit for convolutional layers, along

with a parameter selection framework to optimize its parameters for any given CNN

model. We show through theoretical as well as empirical analyses that structuring

compute elements in a 3D rather than a 2D topology can lead to higher performance

through an improved utilization of key FPGA resources. Our experimental results

targeting a Virtex-7 FPGA demonstrate that our proposed technique can gener-

ate CNN accelerators that can outperform the state-of-the-art solution, by 1.80x to

maximum 4.05x for 32-bit floating-point, and 16-bit fixed-point MAC implementa-

tion respectively for different CNN models. Additionally, our proposed technique can

generate designs that are far more scalable in terms of compute resources. We also

report on the energy consumption of our accelerator in comparison with a GPGPU

implementation.
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CHAPTER I

INTRODUCTION

Convolutional Neural Networks (CNNs) are one of the most common types of deep neural

networks specialized for image recognition, such as object recognition [12] and semantic seg-

mentation [13]. The superiority of CNNs for visual tasks is demonstrated by the dominance of

CNNs among the top entries of recent ImageNet competition [17].

CNNs raise the amount of computation by orders of magnitude as compared with earlier

multi-layer perception (MLP) models [9]. The increase in computation is caused mainly by the

fact that (i) CNNs deal with raw image data directly, as opposed to using feature vectors as

with MLPs, and (ii) CNNs typically have more layers than MLPs. The additional layers of

CNNs consist of convolutional, pooling, activation, and normalization layers, and are found in

the front side of a CNN, serving as a feature extractor. The output of the “feature extractor” is

typically connected to a MLP-based classifier, which is the back-end of a CNN. Among all layers,

convolutional layers account for the vast majority (about 90%) of computation [6]. Therefore

how to accelerate convolutional layers is a critical problem.

Though GPGPUs (General-Purpose Gragphics Processing Units) are used more extensively

for CNN acceleration today [5], FPGAs (Field-Programmable Gate Arrays) also have their

advantage such as lower energy consumption. We focus on FPGAs in this paper but also provide

energy estimation comparison against GPGPUs.

Previous work on FPGA acceleration of CNNs [1,2,8] shows progressively increasing through-

put. FPGA based designs can either be computation or memory bandwidth bound. The work
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in [14] only considers optimizing FPGA based CNN design reducing the memory bandwidth

requirement. However, for computation bound designs the proposed accelerator is not opti-

mized. The parallelism scheme of [18] and [1] is same and the data reuse factor is very low due

to not effective use of on-chip buffers. The approach in [8] was to accelerate CNN with both

software and hardware implementation. The implementation of the processor was ad-hoc and

not generalized design methodology for any given CNN topology and FPGA platform specific

constraints. The most recent one [20] takes a high-level synthesis approach, and by optimizing

for both computation rate and communication bandwidth, it can achieve 61.62 GFLOPS on a

Virtex-7 FPGA when applied to a real-life CNN [12] with five convolutional layers, using 5 DSP

units per multiply-add operation.

In this paper we present a highly optimized CNN accelerator architecture that can push the

performance envelope even further, in terms of both computation and communication.

One key challenge in raising performance is how to design a common architecture that can

perform well for all layers, overcoming the diversity and complexity of computations across

layers (see Table 2.1). Fully parallel hardware implementation is simply impossible due to the

sheer number of operations needed, making it crucial to choose the best parallelization scheme.

Our solution is a novel architecture called Input-recycling Convolutional Array of Neurons

(ICAN), which differs from previous solutions by parallelizing along three carefully chosen di-

mensions that mimics the convolution operation used in CNNs, leading to a 3D accelerator.

While such a 3D accelerator could improve performance by better utilizing key FPGA resources,

a potential drawback is its internal complexity. We address this problem with our Input Reuse

Network, which can minimize routing complexity and exploit data reuse opportunity inherent in

convolution operations. Another key factor contributing to the high efficiency of our solution is

its aggressive parameter optimization considering memory as well as compute resources, which

can significantly improve the computation-to-communication ratio of our accelerators.

We show through theoretical as well as empirical analyses that structuring compute elements

in a 3D rather than a 2D topology can significantly improve the utilization of key FPGA

resources such as DSP slices for various convolutional layer shapes. When applied to a real-life

CNN [12] our ICAN accelerator can achieve in average 1.80x to over 4 times higher performance

on a Virtex-7 FPGA compared with the state-of-the-art solution [20]. Moreover, when applied

to a set of large CNNs, we find that the designs optimized by our algorithm are consistently

better, with up to 35x improvement in one case, than those of the previous work. Finally, our

energy estimation suggests that our FPGA approach can be more energy-efficient by about 11x

to 13x than GPGPUs for convolutional layers.
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The rest of the paper is organized as follows. In Chapter II, we explain and show theoretical

analysis and architecture details. First, in Section 2.1, we consider the problem of maximiz-

ing the throughput of any accelerator that can be implemented on a modern FPGA, and in

Section 2.2 propose our parallelization scheme along with performance analysis that is flexible

yet highly efficient for convolutional layer computations. Section 2.3 presents the details of our

accelerator architecture. The later Section 2.4 shows the process to find optimal architecture de-

sign parameters. In the following Chapter III , we present our experimental results, and discuss

the related work in the next Chapter IV. Finally, we discuss about future work in Chapter V

and conclude the paper in Chapter VI.
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CHAPTER II

MAPPING CNNs on FPGA

2.1 Maximizing Computation Rate

2.1.1 DSP Utilization

Maximizing the computation rate on today’s FPGAs often boils down to maximizing the

utilization of DSP slices such as DSP48E1 in Xilinx Virtex-7 FPGA, as DSP slices are far more

efficient than any other implementation on an FPGA for multiply-accumulate (MAC) opera-

tions. For instance, the mentioned DSP slice can perform a 25x18-bit multiplication followed

by a 48-bit addition in just one cycle.

For any CNN accelerator implementing MAC operations using DSP slices only, DSP utiliza-

tion can be calculated as:

DSP utilization =
#MAC units×#DSPs per MAC unit

Total # of available DSPs
(II.1)

Here #MAC units is the number of MAC units in the CNN accelerator, which is a design

parameter, and #DSPs per MAC unit is determined mainly by the precision of the MAC

operation. Thus given an FPGA and the precision of a MAC operation, we can determine the

maximum number of MAC units that can be included in an accelerator.
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2.1.2 MAC Utilization

The other factor of the computation rate is MAC utilization, representing how many of the

synthesized MAC units are actually used on average for useful computation. The key observation

is that not every MAC unit in a design is utilized at all times, and that this utilization varies

depending on how a CNN is mapped to the accelerator. Also note that whereas DSP utilization

is a static value, which can be found in a synthesis report, MAC utilization varies from layer to

layer. We compute the MAC utilization of a CNN from the total number cycles that it takes

to complete the CNN, which is denoted by #exec. cycles in the following equation. For brevity

we assume that MAC units have the throughput of one.

MAC utilization =
Total # of MAC ops in CNN

#MAC units×#exec. cycles
(II.2)

Then the computation rate, which is proportional to the product of the two utilization factors,

can determine the system throughput, provided that input and output are always ready. If not,

any wait cycles for input/output need to be added to the total execution time.

While DSP utilization is considered in previous work as well, consideration of MAC uti-

lization is new. We find that MAC utilization of the previous work [20] sometimes quite low,

suggesting a scope for improvement. For further analysis of MAC utilization, we need to look

into the structure of CNN computation.

2.1.3 Convolutional Layer Computation

Computationally a convolutional layer is a mere transformation of a 3D array into another 3D

array using a series of 2D convolutions extended into the third dimension. Therefore computing

one output point requires a 3-deep nested loop, and since the output is arranged in a 3D array

we need a 6-deep nested loop to complete the computation of one convolutional layer as shown

in Figure 2.1. The body of the loop nest is just one MAC operation as in matrix multiplication,

for (m = 0; m < M ; m++)
for (r = 0; r < R; r++)
for (c = 0; c < C; c++)
for (z = 0; z < Z; z++)
for (y = 0; y < K; y++)
for (x = 0; x < K; x++)
B[m][r][c] +=W [m][z][y][x]×A[z][Sr + y][Sc+ x];

Figure 2.1: Computation of a convolutional layer.
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Parameters Description

Z # of input feature maps
Y , X Input height and width
M # of output feature maps
R, C Output height and width
K Kernel size in one dimension
S Stride in the input

Figure 2.2: Convoluational layer parameters

and all the loop levels are permutable if one handles the bias term or output initialization

separately. The notations of convolutional layer parameters are shown in Figure 2.2.

The core of a CNN accelerator is an array of MAC units, which needs to be executed

many cycles before completing one layer, which is why most CNN accelerators on an FPGA

does one layer at a time. But since the same MAC array has to be used for all layers without

FPGA reconfiguration, some of the MAC array will not be fully utilized, especially when the

MAC array does the computation for the edge part of the original loop nest. This is the internal

fragmentation issue in terms of MAC array utilization, and manifested as lower MAC utilization.

Thus a key question in mapping the loop nest is which loops to parallelize vs. which ones

to iterate. Parallelization means replicating the hardware resources, thus requiring more DSP

units, whereas iteration means the particular loop level is done sequentially, thus more execution

cycles. Obviously parallelization is limited by the maximum number of MAC units derived from

(II.1), but depending on exactly which loops are parallelized, MAC utilization will vary. Thus

the goal of our accelerator design is to maximize MAC utilization for various layer shapes while

not incurring high overhead in terms of implementation (e.g., routing) or on-chip buffer size

requirement.

2.2 Our Proposed Acceleration Technique

2.2.1 Our Parallelization Scheme

Figure 2.3a, which is a tiled and HW-unrolled version of a generic 6-deep convolutional layer

code, illustrates our proposed parallelization scheme, including the selection of HW-unrolled

loops (which loops to parallelize) and the order of loops (in which order to iterate). In the code,

A,B,W are input, output, and weights, respectively.

Though the code might seem like a simple application of known loop transformations such

as loop tiling, loop interchange, and loop unrolling, finding an optimal transformation can be

6



for (mm=0; mm<M; mm+=TM)

for (rr=0; rr <R; rr +=TR)

for (cc=0; cc<C; cc+=TC)

for (z=0 ; z <Z; z++) 

for (y=0; y<K; y++)

for (x=0; x<K; x++)

for (m=mm; m<min(mm+TM,M); m++)

for (r=rr; r<min(rr+TR,R); r++)

for (c=cc; c<min(cc+TC,C); c++)

B [m][r][c] +=  W[m][z][y][x] * 

A [z][S*r+y][S*c +x];

HW UNROLL

(a) Our parallelization scheme in C code

TM

TR

TC

M

C

R

Z

X

Y

(b) Our parallelization scheme

Figure 2.3: Our proposed parallelization scheme.

elusive due to the large number of combinations and the difficulty of quantitative evaluation

with symbolic variables.

The hardware-unrolled iterations in Figure 2.3a are implemented as parallel compute ele-

ments, which are collectively referred to as compute tile. A compute tile is illustrated in red

(shaded) in Figure 2.3b, where TM , TR, and TC are the dimensions of the compute tile. The

number of MAC units in our compute tile is TMTRTC .

Our proposed architecture has the following unique features. First, our compute tile, by

virtue of being 3D, has a higher degree of freedom to match the computation requirements

of various convolutional layers, and has usually high MAC utilization as discussed in the next

section. Second, the three dimensions of our compute tile match exactly the three dimensions of

the output array, which is a natural and straightforward design. In other words, each MAC unit

corresponds to one neuron given enough tile size, whereas in previous work, e.g., [20], one MAC

unit corresponds to entire neurons in the RC plane of the output, creating artificial time-sharing

of resources. Third, our compute tile boasts high reuse factors for input data (temporal reuse

for m-loop, spatial reuse for r- and c-loops) and weight parameters (shared by all neurons in

the RC plane). Finally, the on-chip buffer size requirement of our solution to realize maximal

data reuse is not high in comparison to that of [20].

2.2.2 Performance Analysis

The number of MAC units of our proposed scheme is TMTRTC . The number of computation

cycles, Tcomp, is:

Tcomp = Z ·
⌈
M

TM

⌉
·K2 ·

⌈
R

TR

⌉
·
⌈
C

TC

⌉
(II.3)
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Table 2.1: Convolutional layers of a CNN [12] & advantage of our scheme

Layer parameters #MAC R/Rth R/Rth

(Z, Y,X) (M,R,C) Ops (N=560) (N=2800)

L1 (3, 224, 224) (48, 55, 55) 105M 27.4 36.0
L2 (48, 27, 27) (128, 27, 27) 224M 1.00 1.35
L3 (256, 13, 13) (192, 13, 13) 150M 1/7.34 1/5.30
L4 (192, 13, 13) (192, 13, 13) 112M 1/6.23 1/4.54
L5 (192, 13, 13) (128, 13, 13) 75M 1/5.20 1/3.75

Now we can calculate MAC utilization,1 or rather how much it deviates from the ideal, which

stems from the ceiling operations in (II.3). We define deviation δ as (Tcomp−Tideal)/Tideal, where

Tideal is the ideal number of cycles, i.e., Tideal = Z · M
TM
·K2 · R

TR
· C
TC

. To facilitate calculation

we introduce new variables 0 ≤ fM , fR, fC < 1, which are defined as fM =
⌈

M
TM

⌉
− M

TM
, with

similar definitions for the others.

δ =

(
1 +

TMfM
M

)(
1 +

TRfR
R

)(
1 +

TCfC
C

)
− 1

=
TMfM
M

+
TRfR
R

+
TCfC
C

+ H.O.T.

<
TM
M

+
TR
R

+
TC
C

+ H.O.T.

In the same way we compute the deviation δ′ for [20], which has a 2D tile consisting of T ′M ×T ′Z
MACs:

δ′ <
T ′M
M

+
T ′Z
Z

+ H.O.T.

Assuming the same DSP utilization between the two designs, we have TMTRTC = T ′MT
′
Z =

N . Often we have R = C, which however doesn’t necessarily mean TR = TC . But for asymptotic

analysis let us assume that TM = TR = TC = 3
√
N and T ′M = T ′Z =

√
N . Then we can find

the condition for our scheme’s deviation to have a lower upper-bound than that of the previous

work, i.e., δ < δ′:

TM
M

+
TR
R

+
TC
C

<
T ′M
M

+
T ′Z
Z

(II.4)

3
√
N

(
1

M
+

2

R

)
<
√
N

(
1

M
+

1

Z

)
(II.5)

1Here we assume that input/output arrays are ready, so the total number of execution cycles is solely deter-
mined by the computation cycles, Tcomp.
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∴ R > 2

(
6
√
N − 1

M
+

6
√
N

Z

)−1
, Rth (II.6)

Rth < 2

(
6
√
N − 1

M
+

6
√
N − 1

Z

)−1
(II.7)

≤
√
M · Z

6
√
N − 1

(II.8)

The right side of (II.6), which is denoted by Rth, is bounded by (II.8) from the geometric-mean-

harmonic-mean inequality. The inequality (II.8) suggests that the greater the output height (R)

and width (C), or the higher the N , the more likely it is for our scheme to have higher MAC

utilization. On the other hand, the greater the M and Z, the less likely for ours to be better,

which agrees with our intuition, since M and Z are the dimensions taken by the previous work.

We compute the value of Rth in (II.6) for a real CNN, AlexNet [12]. We use two values of N

(i.e., 560 and 2800), relevant for our target FPGA. The two rightmost columns of Table 2.1 show

the ratio, R/Rth. The higher it is, the better our scheme will be compared with the previous

work. The table predicts that our scheme will be better in layers 1 and 2, which account for

nearly 50% of the computation in convolutional layers. In reality, the actual MAC utilization is

determined by the selection of the T parameters, and since our scheme has simply more possible

combinations to try, our scheme tends to be better than what these numbers may suggest.

2.3 Architecture Details

Weight 

Buffer 

Bus 

Input 

Buffer 

Output 

Buffer 

Computation 

Engine: ICAN 

M
em

o
ry

 

C
o

n
tr

o
ll

er
 

Figure 2.4: The top-level view of our accelerator architecture, which does one layer computation
at a time. All three buffers are double-buffered.
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(TC – 1 )×S + K

(T
R
–

1
 )

×
S

 +
 K

From

Input

Buffer

Input Reuse Network 3D Array of MAC Units

TM

TR

TC

SR00

SR10

SR20

SR01

SR11

SR21

SR02

SR12

SR22

Figure 2.5: Main components of ICAN: input reuse network and compute tile. Compute tile,
which is a 3D array of TMTRTC MAC units, takes additional input from the weight buffer, and
its output is stored in the output buffer.

2.3.1 Architecture Overview

Figure 2.4 illustrates our DNN accelerator architecture. It implements one convolutional

layer computation without including max-pooling or activation functions. The same datapath

is used for every convolutional layer of a DNN, and the specifics of each layer such as differ-

ent input/output/kernel sizes are taken care of by hardware controller. All data are stored in

the external DRAM, including input/output feature maps and weight parameters. For faster

processing, the computation engine, ICAN, uses 3 on-chip buffers, input, output, and weight,

which are all double-buffered to hide external memory access latency. In addition to what is

shown, there is a small processor for miscellaneous tasks such as host interface and memory

initialization.

2.3.2 ICAN: Input-recycling Convolutional Array of Neurons

Being a 3D-array, the internal architecture and routing of a computation engine could be

quite complicated. Additional challenge is how to exploit data reuse, in particular the spatial

reuse along the r- and c-loops of Figure 2.3a.

Figure 2.5 illustrates our proposed ICAN architecture, consisting of an input reuse network

and a compute tile. In addition, shape adapter is needed to interface with the input buffer. Our

compute tile is a 3D array of TMTRTC MAC units with no connection among the elements. The

10



input reuse network is a set of registers connected in a 2D-torus1 interconnect. One register is

connected to TM MAC units of the compute tile, which works in a SIMD fashion. The input

reuse network can be loaded very quickly from the input buffer, and provide input data for

the connected MAC units during the next K2 cycles. This can be done by making each value

traverse its (K,K) neighbors—for instance, by shifting the register values horizontally first (say,

to the west) for the first (K − 1) cycles, and then vertically for one cycle, and then reverse-

horizontally (to the east) for the (K − 1) cycles, and so on. Note that the entire 2D array is

shifted simultaneously as in a systolic array, which simplifies control.

To correctly implement the computation of HW-unrolled iterations in Figure 2.3a, we need

(K−1) extra registers along the eastern edge and the southern edge of the input reuse network,

which are called guard registers. Therefore the total number of registers are TRTC +K(TR +TC)

if stride is 1, or ((TR − 1)S + 1) ((TC − 1)S + 1) + K ((TR − 1)S + 1 + (TC − 1)S + 1) for the

stride of S. If the stride is greater than 1, each MAC unit is still connected to just one register2

and the data in the input reuse network are shifted in the exactly same way. The reuse factor

will decrease however, but it is due to our parallelization scheme, not our ICAN design.

A shape adapter is needed between input buffer and input reuse network to match between

the elements of the two 2D arrays. It is simply a 2D array of isolated registers with muxes for

handling zero-padding in boundary tiles. The control inputs for the muxes cannot be shared

in general, increasing the complexity and area overhead of the Read Controller3. On the other

hand, the shape adapter is needed only once in K2 cycles, making its latency easily hidden.

Without the input reuse network, a näıve implementation would require K2 connections for

each subarray of TM MAC units, requring K2 times more wiring than ours.

The MAC units accumulate all the product terms until the next time-multiplex point (i.e.,

at every iteration of the cc-loop), at which point all the results are written back to the output

buffer in a few cycles, followed by loading the next set of output values from the output buffer

(our implementation allows 1-cycle simultaneous load/store).

2.3.3 Data Tiles and On-chip Buffer Design

When a design is IO-bound, the amount of external data transfer can have a significant

impact on the achievable throughput. Though convolution layers are usually compute-bound

especially when we look at them in isolation, we must design one accelerator for all layers of a

1The wrap-around is needed either vertically or horizontally, but not both.
2In practice, multiplexers are needed if a DNN has layers with different strides because one accelerator must

support all convolutional layers of a DNN.
3We find that our Read Controller for designs of Section 3.2 uses about 9% of the LUT.
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Figure 2.6: Output data tile (red) measuring DMTM ×DRTR ×DCTC pixels, and input data
tile (green) having DZ pixels in the input feature map direction.

given network, which can cause some layers to become IO-bound. To minimize the amount of

external data transfer, using large on-chip buffers can help.

We introduce data tile that is the block of data kept on-chip. We define three data tiles:

input, output, and weight tiles. Data tile size is defined as some multiple of compute tile size. The

multiplicative factors are given by these four parameters, DM , DR, DC , and DZ (see Figure 2.6).

The output tile is simply (DM , DR, DC) times the output of one compute tile, and its size is

Bout = DMTM ·DRTR ·DCTC words. The input tile is defined as the portion of input data needed

to compute the output tile, and its size is Bin = DZY
′X ′ where Y ′ = ((DRTR − 1)S +K) and

X ′ = ((DCTC−1)S+K). The weight tile is defined similarly, and its size is Bw = DZDMTMK
2.

On-chip buffers are the physical realization of these data tiles, with double buffering to hide

the external memory access latency. The size of on-chip buffers can be greater than that of data

tiles, due to the constraint that the depth of a buffer must be a power of two. Also there is a

limit to the width of an SRAM block that can be synthesized on an FPGA, which is denoted

by MaxMemWidth. Thus it is advantageous to use the smallest width and the largest depth for

a given size.

The widths (in words) of on-chip buffers are set in terms of T -parameters as follows. This

is so that the compute array can read and write a certain number of words simultaneously.

Bwidth
out = TMTRTC (II.9)

Bwidth
w = TM (II.10)

Bwidth
in = TRTC (II.11)

If the width is larger than MaxMemWidth, we implement the width by synthesizing multiple

SRAMs, which are used together like a multi-bank memory. All the banks comprising one buffer

12



1 for (m2 = 0; m2 < M ; m2+=DMTM )
2 for (r2 = 0; r2 < R; r2+=DRTR)
3 for (c2 = 0; c2 < C; c2+=DCTC)
4 for (z2 = 0; z2 < Z; z2+=DZ)

5 for (m1 = m2; m1 < min(M,m2 +DMTM ); m1+=TM )
6 for (r1 = r2; r1 < min(R, r2 +DRTR); r1+=TR)
7 for (c1 = c2; c1 < min(C, c2 +DCTC); c1+=TC)
8 for (z1 = z2; z1 < min(Z, z2 +DZ); z1++)
9 for (y = 0; y < K; y++)

10 for (x = 0; x < K; x++)

11 for (m = m1; m < min(M,m1 + TM ); m++) // unroll
12 for (r = r1; r < min(R, r1 + TR); r++) // unroll
13 for (c = c1; c < min(C, c1 + TC); c++) // unroll
14 B[m][r][c] +=W [m][z1][y][x]×A[z1][Sr + y][Sc+ x];

Figure 2.7: Convolutional layer computation, after data tiling

has the same depth, so the choice of widths for the banks makes little difference in terms of

SRAM usage.

Now the depth of a buffer can be found from the buffer width and the size of the data tile.

There are two considerations. First, the depth must be a power of two. Second, sometimes a layer

dimension (e.g., M) may be less than the product of the corresponding T - and D-parameters

(e.g., DMTM ). In this case the needed buffer size follows the layer dimension, not the product

of T - and D-parameters. This may happen in some layers only, but when it does, it can affect

the required buffer size quite dramatically. So it is important to make the distinction.

Let us define effective data tile parameters as follows: dM = min (dM/TMe, DM ). Other

parameters, dR, dC , and dZ , are defined similarly. Then the depths of the buffers are given as:

Bdepth
out ≥ dM · dR · dC

Bdepth
w ≥ dM ·DZ ·K2

Bdepth
in ≥ DZ

⌈
S(dRTR − 1) +K

TRTC

⌉
(S(dCTC − 1) +K) .

The depth parameter is determined to be the smallest power of two, satisfying the above in-

equality for all layers. The buffer size is the product of its width and its depth (times two due

to double buffering). The sum of all buffer sizes must not be greater than the available on-chip

memory size.1

1Exact estimation of on-chip memory usage on FPGAs is extremely difficult due to the complex interplay
between memory latency, parallelism, bit-width, memory partitions, etc. Thus we set the available on-chip memory
size conservatively.
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We show the generic convolutional layer computation code including the data tiling in Fig-

ure 2.7. The trip count τ of each buffer, or how many times they have to be refilled, is given as

follows:

τout =

⌈
M

DMTM

⌉⌈
R

DRTR

⌉⌈
C

DCTC

⌉
τin = τout

⌈
Z

DZ

⌉
τw = τin.

These can be used to calculate the amount of external memory access, from which the data

transfer time, Tdt, can be determined based on the empirical affine relationship between memory

access latency and total data transfer size. The data transfer size, DataTransSize of each buffer

is the product of buffer size and trip. The total data transfer size, DataTransSizel of a layer l is

simply the summation of the data transfer size of all the buffers.

2.4 Finding Optimal Parameters

We have constraints on DSP, on-chip memory usage, and available bandwidth of the external

memory. The DSP usage constraint is that TMTRTC ≤ #MAC units, where #MAC units comes

from (II.1). On-chip memory (i.e., BRAM) usage constraint is that the combined size of the

three data tiles must be within half the available BRAM size (half because of double buffering).

The available bandwidth constraint is BW limit under operating frequency fCLK.

Finding the best parameter combination can be formulated as an optimization problem. The

decision variables are 3 compute tile parameters (TM , TR, TC) and 4 data tile parameters (DM ,

DR, DC , DZ). Frist, the objective is to minimize the total execution cycles (T ), which is the

sum of the execution cycles of each layer (l) i.e. T =
∑

l T
l. The number of execution cycles of

a layer is determined as follows:

T l = max(T l
comp, T

l
dt) (II.12)

where as, T l
dt = DataTransSizel · fCLK/BW limit (II.13)

Secondly, the objective is to minimize the required bandwidth of the design which is shown in

(II.14).

BW = max
l

DataTransSizel/T l (II.14)

And, thridly, the objective is to minimize the on-chip memory usage.
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Taking the maximum, though hardly new, is a noticeable departure from the prior state

of the art work [20], and can make a difference in the solution quality if the network/layer is

IO-bound. Previously if a combination has a higher Tdt than Tcomp, it was simply discarded; in

other words, there was a hidden constraint that says Tdt ≤ Tcomp, making it suboptimal. Our

new formulation is based on small hardware that stalls the compute array if the data transfer

has not completed, but this hardware would be needed anyway to ensure proper operation of

double buffering.

We solve the problem using an exhaustive search. The compute tile parameters are upper-

bounded by their respective layer parameters, e.g., TM ≤ M . Products of compute/data tile

parameters are similarly bounded, e.g., DMTM ≤ M (see Figure 2.7). Our implementation of

exhaustive search-based exploration for AlexNet [12] takes less than ten minutes on a modern

workstation using a single-thread execution for each of the designs in Section 3.2.
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CHAPTER III

Experiments

We now present our synthesis result of the ICAN architecture for 32-bit fixed-point pre-

cision, followed by performance results for different precisions and for different CNN graphs.

Finally we present energy comparison results with GPGPU. We end this chapter with further

comparison with LUT-DSP based MAC approach of a recent research vs our DSP based MAC

implementation.

3.1 Synthesis Result

We have implemented our CNN accelerator in Verilog and synthesized it for Virtex-7 XC7VX485T-

2 on a VC707 FPGA board. Vivado 2015.2 is used for simulation and synthesis. The output

buffer is implemented with simple dual-port BRAMs, which have very small overhead over

the single port version. For the external memory controller bus we use the AXI Multi-Ported

Memory Controller (MPMC) generated by MIG IP block of the tool.

Table 3.1 shows the synthesis result for the ICAN architecture implemented using 32-bit

fixed-point MAC units each containing 5 DSP slices. We use the optimal architecture parameters

Table 3.1: Synthesis result of ICAN with (TM ,TR,TC) = (11,7,7)

Resource type LUT FF DSP BRAM

Utilization 9.22% 7.28% 96.25% 46.89%
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Figure 3.1: Attainable performance for different MAC options.

supporting all the convolution layers of the Alexnet [12] under DSP resource constraint set at

2,700 slices. This design can achieve 147.82 GOPS performance throughput. The critical path

of the design are the MAC units, for which the operating frequency of 160MHz is achieved.

At this frequency our Vivado simulation with an MPMC module and a 64-bit DDR3 shows

the external memory bandwidth of 6.2GB/s. The LUT (look-up-table) consumption by ICAN

containing 539 MAC units is less than 10%, most of which is due to input reuse network. This

synthesis report does not include the shape adapter as most of the shape adapter is implemented

in the read controller. For the above design point, we have also synthesized on-chip buffers

separately, whose optimal size is found to be (DZ , DM , DR, DC) = (16, 3, 2, 2). The BRAM

usage (including double buffering) is less than 50%.

3.2 Compute Scalability: Exploring Different MAC Options

We evaluate a number of different MAC options to see the scalability of our architecture for

higher compute resources. By reducing the precision we can design a MAC using 1 to 5 DSP

slices, enabling up to 5x more MAC units. This is motivated by the fact that in practice 16-bit

fixed-point implementation gives enough precision in terms of recognition accuracy for many

convolutional neural networks including AlexNet. These five options are all fixed-point MACs

of either 32-bit or 16-bit, with different clock frequency and maximum memory bandwidth.

In addition we consider a 32-bit floating-point MAC option, running at mere 100MHz using 5

DSPs/MAC. For the floating-point case only, we limit the DSP utilization to 80% for easier
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Table 3.2: DSP utilization comparison for Figure 3.1

#DSPs/MAC 5-float 5-fixed 4 3 2 1

Previous [20] 80.00 91.43 91.43 96.00 99.43 82.89*
Proposed 80.00 100.00 96.00 96.00 98.00 98.00

*The previous work [20] uses adder trees to do summation along the Z direction. About half the
adders cannot be combined with multipliers in the one DSP-per-MAC case; we assume LUTs
are used to implement those adders.

comparison with the previous work [20].

Figure 3.1 shows the performance comparison result. For the floating-point case we find that

our MAC utilization is 1.22x (22% higher) compared with that of the previous work, resulting in

the performance of 80.78 GFLOPS vs. 66.3 GFLOPS.1 Furthermore the attainable performance

gap between ours and the previous work increases as the precision reduces, or as the number of

available MACs increases, up to 3.41x for 1 DSP-per-MAC case.

The graph also shows the computation roof, which is the maximum achievable performance

for unlimited memory bandwidth. For our designs, the performance lies close to the computation

roof.

In all the cases except for 1 DSP-per-MAC, both designs are computation-bound. In other

words, the difference due to our better on-chip memory management does not play a role except

for the 1 DSP-per-MAC case; the performance is determined simply by the product of MAC

utilization and DSP utilization (with weighting factors due to differences in the amount of

computation among layers). Table 3.2 compares the DSP utilization of the two schemes, which

also implies that the average MAC utilization (=Performance ratio / DSP utilization) is quite

higher for our scheme, actually much higher than the rough criterion of (II.8) suggests. In the

1 DSP-per-MAC case, the DSP utilization could go higher if not for the memory bandwidth

limit.

Another key factor for this performance difference is that the MAC utilization of the previous

work is substantially lower in layer 1 (our architecture has almost the same MAC utilization

across all layers). This is because for the first layer, (Z,M) = (3, 48), which means that in

their architecture the change in number of MAC units beyond (3 × 48) doesn’t help increase

the performance. This may be the peculiarity of the first layer, but most CNNs necessarily

have very small numbers of input/output feature maps and very large input/output sizes (i.e.,

horizontally/vertically) in layer 1. In fact, for later layers (e.g., layers 4 and 5) we do observe

that our architecture has lower performance than the previous work in the 5 DSP-per-MAC

case.

1The number 66.3 GFLOPS is based on our estimation, and higher than what is reported in the paper
(=61.62) but matches with the number from other sources.
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Table 3.3: CNN models (The 2nd column shows the number of convolutional layers)

CNN #Conv. Layers (#MAC Ops) Range of (Z,M,R,C)

AlexNet [12] 5 (0.67 B) (3, 48, 13, 13) – (256, 192, 55, 55)
SpeedSign [14] 3 (2.70 B) (1, 6, 173, 313) – (16, 80, 715, 1275)
StreetScene [7] 4 (6.55 B) (3, 12, 103, 71) – (48, 128, 492, 367)
VGG-A [19] 8 (7.49 B) (3, 64, 14, 14) – (512, 512, 224, 224)
VGG-E [19] 16 (19.50 B) (3, 64, 14, 14) – (512, 512, 224, 224)

Table 3.4: Performance comparison (in GOPS) for different CNN models

16-bit fixed-point 32-bit fixed-point 32-bit floating-point
CNN [20] Our Ratio [20] Our Ratio [20] Our Ratio

AlexNet 269.71 918.58 3.41 146.32 217.37 1.49 66.38 80.87 1.22
SpeedSign 25.60 896.16 35.01 22.32 226.48 10.15 12.03 85.48 7.11
StreetScene 127.94 1000.82 7.82 90.13 230.89 2.56 41.29 85.20 2.06
VGG-A 914.54 1020.87 1.12 229.51 239.06 1.04 86.11 89.04 1.03
VGG-E 987.43 1034.80 1.05 232.12 239.70 1.03 86.73 89.38 1.03

Geometric mean 240.08 973.32 4.05 109.421 230.55 2.11 47.67 85.94 1.80

Ideal performance 1120.00 252.00 89.60

3.3 Results for Different CNNs

We evaluate our architecture for different CNNs as listed in Table 3.3. These, including

AlexNet, are all real-life, large CNNs, with 5 to 16 convolution layers each. We use all the

convolution layers. In addition to the different numbers of layers, these CNNs have different

ranges of values in their Z, M, R, and C parameters, making an interesting comparison. To

make it more interesting we consider three precision levels including one floating-point case

(5 DSPs/MAC, 100MHz, 80% DSP utilization budget) and two fixed-point cases (1 and 4

DSPs/MAC with 200MHz and 180MHz, respectively; 100% DSP utilization for either).

Table 3.4 compares the designs generated by the previous work [20] vs. our proposed method.

The performance in GOPS is obtained from the total number of cycles for all the convolution

layers of a network, and thus representative of real performance. In all cases the table demon-

strate that our method can generate designs that are consistently better than the previous

work, and close to the ideal performance, which is computed without the ceiling operators in

the performance model. The performance ratio is often significant, up to 35x for SpeedSign.

Across different precision levels, the relative advantage of our method over the previous work

increases as the number of DSPs per MAC decreases, or equivalently as the number of MAC

units available increases. This is because being 3D, our designs can make much better uses of

MAC units than the previous work. As a result, with our method the MAC utilization always

remains high, at least 80% for every case, whereas that of the previous work can go as low as
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Figure 3.2: Performance ratio of ours over the previous work [20] for different CNN graphs.

5% (aggregated for all layers) in the case of SpeedSign at 16-bit precision.

The Z-M parallelization employed by the previous work proves to be a particularly unlucky

choice for SpeedSign. First, SpeedSign has rather low values of Z ≤ 16 and M ≤ 80. So even

the best—which in this case means the greatest—compute-tile parameters (TZ , TM ) = (16, 80)

can utilize only 45% of the available DSP slices in the 16-bit case. Second, the actual Z and

M values in the front layers are even smaller, with Z = 1 in the first layer. This results in

many DSPs being actually idle for many cycles, dropping the overall MAC utilization to 5%.

Combined, the previous method is able to achieve only 2.3% of the ideal performance, explaining

the 35x difference in throughput.

The small improvement by our method for VGG-A and VGG-E is because the previous

method is already close to optimal, which in turn is because Z and M parameters are consistently

higher across layers for those models except for the first layer (see Table 3.3).

As evident by now, the CNN topology affects the tile size selection. We further show that

our approach is far more efficient for smaller CNN graphs as well. We evaluate our proposed

general methodology for different small synthetic CNN topologies (scaled down from AlexNet)

and compare with the previous work for different type of fixed-point MAC units. We scale

down the AlexNet to 10 different CNN topologies. The number of output feature maps, the
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Table 3.5: Estimated energy consumption of GPGPU vs. FPGA

Type Runtime Power Energy

Titan X (dissipating 60% of TDP) 21.26ms 150W 3.19J
Titan X (dissipating 50% of TDP) 21.26ms 125W 2.66J

Virtex7 FPGA + DDR3 16.46ms 14.3W 0.235J

size of input image, and stride are changed. For each scale-down, we reduce the image size and

number of output feature maps by 10% while keeping the input image depth fixed to 3 (i.e.,

RGB image). In AlexNet, the stride for all layers is 1 except for the first layer, which we do

not change. We change the stride of the first layer sequentially as we scale down the net. The

sequence of stride is chosen as (4,4,3,3,3,2,2,1,1,1) for 10 different CNN topologies from the

largest (CNN1 ) to the smallest size (CNN10 ). We keep the same kernel matrix size, and the

input feature maps and row/column of input/output feature maps are determined according to

the rule of the convolution operation, stride, and max-pooling architecture of the original DNN.

For each of the 10 CNN topologies we show our performance gain in terms of attainable

performance ratio in Figure 3.2. This comparison shows that our proposed architecture template

which uses FPGA resources efficiently is even scalable across small CNN topologies unlike that

of [20]. This is because we can reach the minimum data transfer time in case of IO-bound

designs by utilizing all the available on-chip memory while in the previous work there is always

(M×TM ) memory access overhead for input buffer. As a consequence, the attainable throughput

of the previous approach is limited by the memory bandwidth, which in turn reduces the DSP

utilization—to less than 40% for the two smallest graphs—whereas the DSP utilization for our

architecture remains higher than 90% for all sizes.

3.4 Energy Comparison with GPGPU

We compare the energy efficiency of the proposed solution against that of the GPGPU.

Titan X is one of the most preferred GPUs today for machine learning, and optimized for

single-precision floating-point operations (double-precision is not supported). For FPGA we use

the VC707 platform with 32-bit floating-point design, which is identical to the floating-point

case in the previous section. For fair comparison we consider convolutional layers only, for both

cases.

For GPGPU we use Caffe [11], a flexible yet highly optimized deep learning framework.

We measure the runtime of 5 convolutional layers of AlexNet during 30 inference runs using

three different images. The first two runs for each image may sometimes record unusually high

runtime; those aberrations are excluded when taking average. From the average runtime we
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calculate energy, assuming the actual power dissipation is 50% 60% TDP (Thermal Design

Power). The TDP of Titan X is 250W.

We estimate FPGA power dissipation with Xilinx Power Estimator (XPE) [10] using syn-

thesis report (i.e., resource usage) and 60% toggle rate everywhere except for clock toggle rate

which is 100%. The average power due to FPGA itself is estimated to be 13.65W. We also

consider the external DRAM, a 1GB DDR3, whose power is estimated with DRAMPower [3]

using read/write traces generated by our bit-true accelerator simulator.

Table 3.5 shows the results. Surprisingly our FPGA design, which runs at mere 100MHz, wins

even the runtime comparison. And because the FPGA is 9x to 10x more power-efficient than

the GPGPU, our FPGA design is found to be 11.3 to 13.6 times more energy-efficient than the

GPGPU option. Part of this impressive difference is due to the fact that we consider convolution

layers only. Fully-connected layers may require more external memory access, reducing energy

efficiency of our solution. The other layers such as max-pooling and normalization may also

dilute the FPGA advantage. Also since inference takes very little time compared with training,

it may have received little optimization effort during Caffe development.

On the other hand, we allow only 80% of DSP slices in our experiment. With the reserved

20% we can either implement other layers or further improve the energy efficiency. Also our

FPGA approach allows for fixed-point designs, which can further drive up energy efficiency

dramatically. These findings demonstrate the superiority of our FPGA designs compared with

GPGPU, and reinforce the need for research into FPGA-based accelerators for deep neural

networks.

3.5 Comparison with LUT-based MAC Approach

Recently a new CNN accelerator [16] is proposed that uses LUTs in addition to DSP blocks to

implement MAC units. It also features end-to-end implementation of a CNN model, a modified

version of VGG-D [19], with 16 parameter layers including 13 convolution layers. Here we provide

a quantitative comparison based on their published results and our estimated performance.

Table 3.6: Performance comparison with [16] (LUT-based MAC units are used in [16] but not
in ours)

#Ops Theoretical GOPS Our GOPS
(×109) reported in [16] estimated

Convolution layers 30.69 249.31 266.53
Fully connected layers 0.073 2.47 2.15
Overall 30.76 201.51 206.30
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The FPGA platform is a Zynq board with Kintex running at 150 MHz and 4.2 GB/s memory

bandwidth. We use the same setting. For precision 16-bit fixed-point is used. For non-convolution

layers we assume that max-pooling, ReLU, and LRN (Local Response Normalization) layers can

be mapped using LUTs without using DSP blocks. Fully connected layers are assumed to run

on our accelerator utilizing only a fraction of the MAC units due to the memory bandwidth

limit.1

Table 3.6 compares performance, which is without considering LUT-based MAC for our ar-

chitecture. Allowing LUTs for implementing MACs can further increase our performance. There

are a few factors contributing to the surprisingly high performance of our architecture. First,

our architecture parameters such as T-parameters and D-parameters are optimized through

an exhaustive search, whereas such an optimal parameter selection would be hard in the case

of [16]. Another reason why ours can perform better may be that our architecture is optimized

for convolution layers only, whereas that of [16] is optimized for all layers.

1The bandwidth 4.2 GB/s translates into 22 words/cycle where one word equals 16 bits. We conservatively
assume that we need to read 2 words and write 1 word per every MAC operation, which allows us to do 7 MAC
operations per cycle.
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CHAPTER IV

Related Work

The bottleneck in maximizing performance of a convolutional layer of a FPGA based CNN

accelerator is due to two reasons, 1) The compute time is higher than the data transfer time

i.e. compute bound or 2) the data transfer time is higher than the compute time i.e. memory

bound. One or more convolutional layers of a CNN can be either compute or memory bound

making it important to optimize the accelerator hardware taking into account both bottlenecks

to maximize the total performance of all the convolutional layers of a CNN.

The approach in [8] is to accelerate CNN with both software and hardware implementation

focusing on optimization for compute bound case. However, the compute bound optimization

is inferior, as the 2D convolution unit is realized with 2D array structure that depends on the

kernel size which clearly limits the efficient use of computation resources given that the kernel

size in practical CNNs is very small in compared to the maximum number of available DSP

slices of modern FPGA chip. The implementation of the processor is ad-hoc and not generalized

design methodology for any given CNN topology and FPGA platform specific constraints. The

work doesn’t consider efficient on-chip memory utilization in case of memory bandwidth bound

design. Likewise, [18], [1], and [2] optimizes only for compute bound case that implements

complete CNN graph on FPGA with different parallelization schemes.

The work in [14] optimizes the accelerator architecture to reduce the data transfer time.

However, the proposed architecture design ignores optimizing architecture for compute bound

designs. Three different parallelism schemes and architectures are proposed out of which one
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architecture is selected and reconfigured for each convolutional layer. The reconfiguration time

after each convolutional layer affects the performance due to increased latency. They propose

to effectively reuse the data and utilize on-chip memory. However, they use soft-processor to

load and store data to/from external memory which obstructs efficient use of maximum avail-

able bandwidth of external memory. A more general architecture and effective on-chip memory

utilization scheme is proposed in the work of [15]. They provide methodology for loop trans-

formations such as loop tiling and interchange focusing on inter tile data reuse. Though the

methodology is generic for any application, it is not optimized specially for the convolutional

layer computation. It modifies the architecture of [14] for convolutional layer computation and

further improves the utilization of on-chip memory and hence the required bandwidth. How-

ever, the parallelizing scheme of the compute engine or in other words the loop unrolling method

is unchanged and so is also not optimized for the most frequent case that is compute bound

convolutional layers.

The work in [20] provides a more holistic design methodology tailored for convolutional lay-

ers and that outperforms the prior works. By carefully designing the compute tile to maximize

data reuse, and by considering both the external memory bandwidth and the amount of com-

pute resources on the FPGA platform, it can achieve performance exceeding that of any other

previous work. Another advantage of [20] is that it is an HLS (High Level Synthesis)-based

approach, which means that the RTL design can be obtained through an HLS tool. However

their proposed compute tile is 2D, which has limited MAC utilization as demonstrated in our

experiments. Furthermore they do not try to utilize on-chip memories maximally, and therefore

may not be able to achieve the lowest memory bandwidth requirement, which can be critical for

memory-bound designs.Our proposed three compute tile T-parameters, and four D-parameters

vs two T-parameters, and two D-parameters of [20] in average minimizes both the compute and

data transfer time for different arbitrary real life CNN graphs.

Hardware accelerators for CNN have been implemented in ASICs as well [4]. Though ASIC

implementations have advantages over FPGA such as higher compute density, higher energy

efficiency, and higher external memory bandwidth, the lack of reprogrammability is a big down-

side.
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CHAPTER V

Future Work

First, one of the limitation of this work is the CNN accelerator design time as the design

process with Hardware Description Language (HDL) takes long time and thus FPGA based

accelerator remains less user friendly than the counterpart GPGPU. The future objective will

be directed towards building an end-to-end, easy to use, and generic FPGA based accelerator

design framework that would emulate our proposed CNN hardware accelerator design technique.

The recent inception of High Level Synthesis tool reduces the hardware design time and hence,

it is one of the viable approach for the framework.

Secondly, the on-chip buffer size calculation technique needs to be improved and more ac-

curate to better constraint the maximum on-chip buffer size specially for the IO-bound CNN

accelerator design.

And lastly, the convolution in frequency domain can benefit the acceleration of convolutional

layer computation due to the decrement of the number of operations. The recent state-of-the art

CNN models are good candidate for the frequency domain convolution and that too for FPGA

based CNN accelerators.
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CHAPTER VI

Conclusion

In this paper we presented ICAN, our novel accelerator architecture tailored for convolu-

tional neural networks. ICAN is a 3D compute tile that is highly efficient yet flexible for a

range of convolutional layer shapes. Being a 3D compute tile, it is a more natural fit for the

convolutional layer computation, where the input and output are given in 3D arrays. To address

the challenge of complex internal wiring and complex input reuse patterns, we propose an Input

Reuse Network that is a simple 2D mesh-like array of registers. Our evaluation mapping the

convolutional layers of real-life CNNs demonstrate that our accelerator can achive in average

from approximately 1.80x to maximum 4.05x performance for 32-bit floating-point, and 16-

bit fixed-point MAC case respectively on a Virtex-7 FPGA compared with the previous work.

Additionally, our designs are far more scalable in terms of compute resources and CNN size.
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