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Abstract

Single photon emission computed tomography (SPECT) is one of the major imaging

modalities in medical imaging, including quantitative imaging for the evaluation of

efficacy and toxicity in radionuclide therapy. Choosing optimal SPECT image recon-

struction strategy for radionuclides with wide energy spectrum affects resulting im-

age quality due to energy-dependent attenuation information in forward projection

models and energy-dependent scatter information. A post-reconstruction filtering is

also important to suppress noise propagated during reconstruction process.

Yttrium-90 (Y-90) is a commonly used radionuclide in targeted radionuclide ther-

apy. Recently, bremsstrahlung in Y-90 has been successfully imaged for good quan-

tification of radioactivity to predict therapy response more accurately. However,

wide continuous energy spectrum of bremsstrahlung photons is challenging in Y-90

SPECT image reconstruction. Previously, forward projection models with narrow

single-energy window were used for image reconstruction from a single acquisition

energy window. We propose a new Y-90 SPECT joint image reconstruction method

from multiple acquisitions windows, referred to as joint spectral reconstruction (JSR)

using multi-energy window forward models. Our proposed method yielded signifi-

cantly higher recovery coefficient and lower standard deviation than other methods

that use a single acquisition window and single energy window for projection model

with narrow and wide energy spectra.

We also investigated parameter selection methods for non-local mean (NLM) filter

with SPECT. Self-weight estimation is an important factor to influence denoising

performance of NLM. Recently introduced local James-Stein type center pixel weight

method (LJS) outperformed other existing self-weight estimation methods in deter-

mining the contribution of the self-weight to NLM. However, the LJS method may

result in excessively large self-weight estimates since no upper bound for self-weights

was assumed. It also used relatively large local area for estimating self-weights, which

may lead to strong bias. We propose novel local minimax self-weight estimation



methods with direct bounds (LMM-DB) and re-parametrization (LMM-RP) using

Baranchik’s minimax estimator. Our proposed methods yielded better bias-variance

trade-off, higher peak signal-to-noise (PSNR) ratio, and less visual artifacts than

the classical NLM method and the original LJS method. Our proposed methods

also provide a heuristic way of choosing global smoothing parameters of NLM to

yield PSNR values that are close to the optimal values without knowing the true

image.
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CHAPTER I

Introduction

1.1 Fundamental Background

1.1.1 Basic Principle of SPECT

Single photon emission computed tomography (SPECT) employs the principal of computed

tomography in imaging the radionuclides (also called tracer, or radiotracer) that emit single

gamma (γ) rays. Gamma rays are produced when an nuclei in excited state (X∗) decays to a

more stable state (Y ∗) by rearrange its protons and neutrons without altering its mass number

A and atomic number Z (refer to I.1). Gamma rays are emitted from various radioactive sources

and often follow other nuclear decay processes such as beta decay or alpha decay. Gamma rays

are electromagnetic waves having very high-frequency and short wavelength so that they are

able to pass through body and can be used for medical imaging. SPECT can also image some

other kinds of radiation such as bremsstrahlung which is generated from Y-90 radionuclide. In

the following parts of this introduction, we only refer to γ radiation, but the same principle can

also be applied to other kinds of radiation used in SPECT.

A
ZX
∗ → A

ZY + 0
0γ (I.1)

The emitted γ rays are imaged by a special camera (also called detector), commonly consists

of NaI(T1) scintillator or CZT semiconductor. The detector generates light photons when radi-

1
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Figure 1.1: Iterative image reconstruction.

ated rays interact with its surface. Light is converted to electric signals by photomultiplier tubes

attached to the detector. Then positions and energy of the photons can be digitalized and pro-

cessed to form images. At a specific angle, the detector camera can record only two-dimensional

(2D) projections of the three-dimensional (3D) radiation distribution. This is sufficient for some

applications such as bone imaging. However, in many cases the lack of depth information hinder

adequate localization of the interested radiation area. SPECT uses rotating cameras to obtain

multiple projections (called sinogram) from different angles around the subject and utilizes

mathematical algorithms to reconstruct 3D images of the distribution. While a single rotat-

ing camera can capture the whole 3D area, using dual-camera or triple-camera detector helps

improving image quality as well as reducing acquisition time.

Reconstructing image from its projections can be effectively done using iterative method

(iterative reconstruction). The basic principal is illustrated in Fig. 1.1. Starting from an image’s

initial estimate, which usually has all zero or all one pixel intensities, projection profiles are

calculated using a forward projection model. This projection data is then compared with the

real measured projection data so that the algorithm can decide how to update a closer estimate

of the image. The algorithm iterates several times until an acceptably small error between

the calculated projections and measured projections is reached. A part of γ rays emitted from

radionuclide source may not reach the detector straightly, but be attenuated or scattered when

the γ photons collide with matters in the medium prior to detection. The γ photons also have

some interaction with collimators on the detector which affect image quality. All these factors

should be considered in image reconstrucion process.

Since iterative reconstruction requires to run several iterations and incoporate complex mod-

elling of the mentioned aspects of imaging devices, it is computationally expensive. However

with the development of computer processors and programming algorithms, iterative recon-
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struction is increasingly used in computed tomography. A popular algorithm used to accelerate

the reconstruction is called ordered subsets in which only a small number (or subset) of projec-

tion angles spaced regularly is used in each iteration. For example, 60 views {xi} , i = 0, . . . , 59

captured at every 6o while camera rotates 3600 around the subject can be splitted into 6 sub-

sets {xk+6i} , i = 0, . . . , 9 for k = 0, . . . , 5. This algorithm assumes that for each iteration of

reconstruction, using only a subset of projections can give as good image estimate as using all

projections.

1.1.2 Multi-spectral SPECT

An excited state of a nuclei may decay into multiple less excited states and these less excited

states can either remain their energy or decay more until reaching the ground state (Fig. 1.2).

Each decay from one state to another emit a γ ray of an energy proportional to energy difference

between the two states. Some states have higher probability of decay events than the others.

Besides, some photons undergo scatter and attenuation within the subject and loose some energy

before arriving at the detector. Consequently, detected γ rays spread over an energy spectrum

that has range and peaks depending on the characteristic of particular radionuclide.

Excited	 state	1

Excited	 state	2

Excited	 state	3

Ground	state

!" !# !$

!% !&

!'

Figure 1.2: Illustration of gamma decay through multiple energy states.

Only photons that have straight emission trajectory are interested for imaging because they

represent correctly positions of radiation particles. These photons are called primary photons.

Photons that are deviated from their initial trajectory under some interactions with medium,

mostly related to scatter, are undesired and should be excluded during reconstruction. Available

techniques are able to use mathematical models or simulation codes to estimate these undesired

photons and subtract them from total measurement to obtain the primary. Fig. 1.3 presents

energy spectra of some radionuclides used in internal radiotherapy.

It is important to select appropriate acquisition windows and scatter windows. Exact location

and width of the window should be optimized using simulation and phantom experiments. When

3



Figure 1.3: Energy spectra of some radionuclides used in internal radiotherapy, generated using
SIMIND Monte Carlo simulation. This figure is published in [1], reprinted with permission of
authors and the Society of Nuclear Medicine and Molecular Imaging, Inc.

the energy spectrum has clear photopeak of primary data as for I-131, the main acquisition

window is often chosen around the peak and adjacent windows below and above the main window

are used for scatter correction [1]. When there is no prominent photopeak of primary data as

for Y-90, reasonable energy window is used with avoiding too high or too low energy range

where the number of undesired scatter and penetration increases dramatically [3]. Sometimes,

the fraction of primary count over total count is very small so that to get enough data for

reconstruction, wider or multiple energy windows need to be used. Multiple acquisition windows

can help improving quantitative accuracy and reducing noise.
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1.1.3 Post-reconstruction Filtering

Calculated reference image Reconstructed image at 10 iterations

Reconstructed image at 20 iterations Reconstructed image at 40 iterations

Figure 1.4: Reference and reconstructed image at different iteration number of a Y-90 SPECT.

SPECT image is typically corrupted by Poisson noise which is related to Poisson statistics of

photons hitting detectors as well as noise propagating within the reconstruction process. Noise

levels vary across the image and really depend on the reconstruction method. For example,

filtered back-projection shows a global noise pattern which means different pixels have close

noise levels while expectation-maximization algorithm shows the noise levels proportional to

image intensities [4]. Besides, noise increases rapidly at high iteration of reconstruction which

is sometimes necessary to recover accurate activity distributions. This is illustrated in Fig. 1.4.

There is trade-off between obtaining more image detail and remaining an acceptable noise level.

Sometimes it is desired to recover as much detail over a cancer region as possible without

caring about more noise introduced over other regions. Sometimes an overall high quality image

is needed. These kinds of decision reflect into choosing filtering parameters to optimize some

metrics for image quality used to evaluate the filtering results such as recovery coefficient, peak

signal-to-noise ratio, bias and variance.

Post-reconstruction filtering is used to suppress noise and edge artifacts at high iteration. A
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good filter need to keep image details without blurring too much. Filter design can benefit from

taking into account the mentioned noise properties. However, nonlinearity of reconstruction

algorithm makes it hard to model noise exactly, and full understanding of noise properties

in SPECT remains as a big research problem. General approach may approximate noise in

reconstructed SPECT image with Gaussian distribution and assume either global or local noise

variance.

Non-local means (NLM) filter has shown powerful denoising performance with well detail

preserving for both natural images [5] and SPECT images [6]. Classical NLM filter uses the

similarity between two local patches of a noisy image to determine weights in non-local adaptive

smoothing [5]. NLM weights are obtained first by calculating the Euclidean distance between

two local patches, denoted by d, and then by evaluating exp(−d2/h2) where h is a smoothing

parameter. Therefore, higher weights can be assigned to pixels with similar patches so that

edges and details may be well-preserved in non-local weighted averaging.

There are four different factors to determine output image quality of NLM in terms of

weights. 1) The first factor is the similarity measure d. Other similarity measures have also

been proposed such as hypothesis testing [7], principal component analysis (or subspace based

method) [8, 9], blockwise aggregation [10], rotation-invariant measures [11–13], shape-adaptive

patches [14], and patch based similarity with adaptive neighborhoods [15]. In multimodal med-

ical imaging, inaccurate weights for noisy molecular images were enhanced by using additional

high quality anatomical images [6, 16]. 2) The second factor is the strategy to determine a

smoothing parameter h. Optimization strategies have been developed based on Stein’s unbiased

risk estimation (SURE) for NLM with Gaussian noise [17,18], NLM with Poisson noise [19], and

blockwise NLM with Gaussian noise [20]. 3) The third factor is the function to use for weights

such as exp(−x2). Other functions have been proposed for weight calculation such as compact

support functions [21,22] and statistical distance functions [23,24]. 4) The last factor is how to

determine self-weight for the same pixel of input and output images.

The weights of NLM for two different pixels are essentially determined by the distance

between two noisy local patches around these pixels and this distance is usually increased due

to noise. However, weights for the same pixel or self-weights are not affected by noise in patches

and the distance will be always 0 in the presence of noise. For an extremely noisy image, self-

weights will be relatively too large compared to other weights, so that the filter output will be

almost the same as the input noisy image. Therefore, using appropriate self-weight values can

affect denoised image quality substantially. Investigating the strategies of determining optimal

self-weights in NLM is an open problem for current researches.
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1.2 Contribution of This Thesis

This work exploits methods to incorporate SPECT data of multiple energy windows in image

reconstruction, with focus on Y-90 SPECT, commonly used in targeted radionuclide therapy.

Previously, forward projection models with narrow single-energy window were used for image

reconstruction from a single acquisition energy window. We propose a new Y-90 SPECT joint

image reconstruction method from multiple acquisitions windows, referred to as joint spectral

reconstruction (JSR) using multi-energy window forward models to improve the image quality

further.

Furthermore, we propose novel self-weight estimation methods for NLM that account for

bounded self-weights using Baranchik’s minimax estimator [25], called local minimax self-weight

estimation with direct bound (LMM-DB) and with reparametrization (LMM-RP). We first

evaluate our proposed methods with a wide range of natural images as well as a real patient

MRI image in various noise levels and confirm that our methods can be applied in a wide range

of filtering applications. Then we apply the proposed methods to filter a SPECT image and

yield good performance in terms of bias-variance trade-off, peak signal-to-noise (PSNR) ratio,

and visual quality assessment. Our proposed methods also provide a heuristic way of choosing

global smoothing parameters of NLM to yield PSNR values that are close to the optimal values

without knowing the true image.

1.3 Organization of This Thesis

This thesis is organized as follows. Chapter II reviews some previous works on using mul-

tiple energy windows in Y-90 SPECT reconstruction, and proposes a joint spectral image re-

construction method. Chapter III reviews some previous works on strategies to estimate NLM

self-weights, and proposes two local minimax self-weight estimation methods. Finally, chapter

IV concludes this thesis with a summary and future works.
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CHAPTER II

Joint Spectral Image Reconstruction for Y-90

SPECT

2.1 Related Works

Image reconstruction for Y-90 SPECT is challenging due to wide continuous energy spectrum

of the bremsstrahlung photons (0-2.3 MeV). This wide spectrum was typically ignored in the

past and a narrow energy window, such as 105-195 keV [26], was chosen for reconstruction.

Because bremsstrahlung photon generation in tissue is an inefficient process (<2% of beta

interactions in tissue-like material results in photons >50 keV [27]), it is desirable to include as

many of the photons as possible.

Recently, there have been some research work dealing with continuous energy ranges in

Y-90 image reconstruction [3, 28]. Rong et al. proposed to use a forward projection model

to incorporate 4 energy windows with energy-dependent collimator detector response (CDR),

attenuation, and scatter (ESSE) [3]. Elschot et al. proposed to use a fast Monte Carlo (MC)

simulator as a forward projection in the reconstruction with 8 energy windows [28]. These

methods improved the image quality of Y-90 SPECT significantly. Elschot et al. also compared

their new Y-90 SPECT with Y-90 time-of-flight-PET and showed comparable results. In the

previous two works, even though multi-energy was modeled inside the forward projector, only

8



a single-energy window acquisition window was selected based on trade-offs between several

factors.

Exploiting the recent commercial availability of multi-window and list mode acquisition

SPECT systems, in this work we propose a new Y-90 SPECT image reconstruction method

that uses the multi-energy window measurements to improve the image quality further.

2.2 Methods

Two sets of 6 energy windows data were generated (narrow window: 105-135, 135-165, 165-

195, 195-225, 225-255, 255-285 keV and wide window: 100-200, 200-300, 300-400, 400-500, 500-

600, 600-700 keV) that are indexed e = 1, . . . , 6, for each set. The measurement for one energy

window is modeled as

ye ∼ Poisson (Aefe + se) . (II.1)

where e is an index for energy window, ye is a measurement for energy window e; Ae is a forward

projector for energy window e with energy-dependent CDR and attenuation at the center of

energy window e; fe is an activity distribution in single-energy window e; se denotes a mean

scatter for energy window e.

We denote the reconstruction of f1 from y1 the single spectral reconstruction (SSR), where

the measurement and scatter are selected from the first energy window, and the projector is

modeled with a single-energy window.

We propose a joint spectral reconstruction (JSR) method in which a single activity image

is reconstructed from all energy window windows data with the following measurement model:
y1

...

y6

 ∼ Poisson



α1A1

...

α6A6

f +


s1

...

s6


 . (II.2)

where we model that fe = αef with αe obtained by measuring the ratio of the primary counts

of window e to the primary counts of window 1. This joint model is similar to the model for

motion-compensated image reconstruction using multiple motion frames in [29].

Energy and depth-dependent CDR was obtained from point source MC simulation with high

energy collimator, then fitted using B-spline template for the last 3 wide windows and Gaussian

model for the rest [30]. Energy-dependent attenuation was obtained by rescaling CT image for

energy level of the center of each energy window e. Scatter was assumed to be known in these

studies, but one can obtain the scatter contribution using MC scatter estimation methods [31].
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MC simulation using SIMIND [32] coupled with XCAT phantom [33] was used to generate

clinically realistic data corresponding to patient studies of Y-90 microsphere (glass) radioem-

bolization in liver malignancies. Two lesions of size 80 mL (Tumor 1) and 41 mL (Tumor 2) were

simulated in the liver with activity concentration ratio of liver:tumor:lung, 20:100:1. Before the

addition of Poison noise the projection data were scaled to the count level typical for a 30 min

Y-90 SPECT scan performed at our clinic after a radioembolization procedure with around 3

GBq of Y-90.

The statistical image reconstruction of a Y-90 distribution can be obtained by performing

the following constrained optimization problem:

f̂ = arg max
f≥0

L (y|f) (II.3)

where L is a Poisson log-likelihood function, defined as equation II.4 and II.5 for SSR and JSR,

respectively.

L (y|f) =
∑
i

yi log ȳi (f)− ȳi (f) (II.4)

L (y|f) =
∑
e

∑
i

[ye]i log [ȳe (f)]i − [ȳe (f)]i (II.5)

where ȳi is the mean of yi - the ith element of the measurement y. This optimization problem

was solved using the ordered-subsets expectation-maximization (OSEM) algorithm [34] with up

to 100 iterations, 6 subsets.

Reconstructed images were evaluated based on recovery coefficient (RC), standard deviation

(SD), and bias within a region of interest (ROI) on a tumor or healthy liver (liver part not

containing any tumor) calculated as in (II.6-II.8). For tumor, ROI is its whole area, and for

healthy liver, ROI is a sphere area on the liver, away from tumors to avoid spill-out effect.

RC =
measured count in ROI

true count in ROI
(II.6)

SD =
1

f̄ROI

√
1

N − 1

∑
i∈ROI

(
f̂ [i]− f̄ROI

)2
(II.7)

Bias =
1

N

∑
i∈ROI

∣∣∣f̂noiseless [i]− ftrue [i]
∣∣∣ (II.8)

The true image, ftrue, was created using the masks and known activity concentration ratio

of liver, tumor, and lung, and scaled to have the same activity level as f1. N is the number of
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pixels in ROI. f̄ROI is the average of f̂ calculated in ROI. f̂noiseless is the image reconstructed

from noiseless data. f [i] is the ith element of f .

2.3 Results

Fig. 2.1 shows the normalized CDR profiles for the measurement and corresponding fit-

ting method. For low energy windows (narrow windows: e = 1, . . . , 6, and wide windows:

e = 1, . . . , 3), Gaussian fitting is sufficient to match the measured CDR values. However, for

high energy windows (wide windows: e = 4, . . . , 6), B-spline template fitting is needed to yield

the accurate fit for the obvious penetration tails on the CDR.

2.3.1 Results for Narrow Windows

Fig. 2.2 compares RC, SD, and Bias obtained by JSR and SSR. Significantly higher RC

values and lower SD using JSR were observed compared to using SSR for both ROIs. These

improvement tend to be much larger as the iteration number increases. At the 100th iteration,

JSR yielded up to 11.19% increase in RC and up to 46.9% decrease in SD compared to SSR.

That proves the advantage of using multiple acquisition windows in improving RC and SD. In

terms of bias, however, JSR was not as good as SSR, which can be explained that using smaller

amount of data in SSR can generally achieves the lower bias. Fig. 2.3 LEFT shows that the

visual image quality of the reconstructed image using JSR is better than that using SSR.

Table 2.1: Percentage at which each measure at the 100th iteration increases while changing
from SSR to JSR (NARROW windows).

narrow RC SD Bias
Tumor11(801mL) 2.91 :32.6 14.14
Tumor21(411mL) 11.19 :46.9 11.19
Liver 2.06 :38.27 29.99

wide RC SD Bias
Tumor11(801mL) 18.19 :14.36 25.74
Tumor21(411mL) 19.23 :9.53 21.28
Liver 14.52 :19.01 74.19

2.3.2 Results for Wide Windows

For wide window case (Fig. 2.2), the same trends as in narrow window case were obtained

for both RC, SD, and Bias. The improvement was relatively higher in RC, but lower in SD. At

the 100th iteration, JSR yielded up to 19.23% increase in RC and up to 19.01% decrease in SD

compared to SSR.
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Table 2.2: Percentage at which each measure at the 100th iteration increases while changing
from SSR to JSR (WIDE windows).

narrow RC SD Bias
Tumor11(801mL) 2.91 :32.6 14.14
Tumor21(411mL) 11.19 :46.9 11.19
Liver 2.06 :38.27 29.99

wide RC SD Bias
Tumor11(801mL) 18.19 :14.36 25.74
Tumor21(411mL) 19.23 :9.53 21.28
Liver 14.52 :19.01 74.19

2.4 Discussion

JSR with multiple energy window models and acquisition windows considerably improved

the Y-90 SPECT image reconstruction quality over SSR. The improvement in noise demon-

strated here is particularly significant because bremsstrahlung photon production in tissue is

inefficient and SPECT count levels can be low, especially in systemic therapies with Y-90.
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(a) Example of MC simulated CDR
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(b) Fitting CDR (Narrow window)

200 220 240 260 280 300 320

Pixel location (x-direction)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

N
o

rm
a
li
z
e
d

 c
o

u
n

ts

CDR at 15cm (e = 2)

Measurement

Gaussian

200 220 240 260 280 300 320
Pixel location (x-direction)

10
-7

10
-6

10
-5

10
-4

10
-3

N
o

rm
a
li
z
e
d

 c
o

u
n

ts

CDR at 15cm (e = 5)

Measurement
Gaussian
GauBspl

(c) Fitting CDR (Wide window)

Figure 2.1: MC simulated and fitted CDR using Gaussian/B-spline (all in log scale).

13



20 40 60 80 100

iter

0.6

0.7

0.8

R
C

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

20 40 60 80 100

iter

0.5

0.6

0.7

0.8

0.9

1

R
C

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

20 40 60 80 100

iter

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S
D

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

20 40 60 80 100

iter

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
D

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

20 40 60 80 100

iter

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
ia

s

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

20 40 60 80 100

iter

0

0.5

1

1.5

2

2.5

3

3.5

4

B
ia

s

Tumor1 (JSR)
Tumor1 (SSR)
Tumor2 (JSR)
Tumor2 (SSR)
Liver (JSR)
Liver (SSR)

Figure 2.2: RC, SD, and Bias for narrow window case (LEFT) and wide window case (RIGHT).
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Figure 2.3: True and reconstructed images at 35 iteration for narrow and wide window cases.
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CHAPTER III

Post-reconstruction Non-local Means Filtering

3.1 Related Works

For the classical NLM filter by Buades et al., self-weights were set to be 1 or the maximum

weight in a neighborhood [5]. These strategies guarantee at least one or two largest weights are

the same, respectively. Doré et al. also used the maximum weight in a neighborhood as self-

weight, but only if that maximum weight is large [35]. Brox et al. proposed a method to have at

least n number of the same largest weights [36], and Zimmer et al. considered self-weight as a

free parameter to estimate [37]. Salmon et al. developed a SURE-based method for self-weights

to account for noise [38].

Recently, Wu et al. proposed a method to determine self-weights using James-Stein (JS)

type estimator [2]. The idea of this work is to use JS estimator to determine a reparametrized

self-weight in a local neighborhood (called local JS estimator or LJS). The LJS method yielded

the best peak signal-to-noise ratio (PSNR) results over other existing methods [5,38]. However,

it has a couple of limitations. First of all, the LJS can yield self-weights much larger than 1

theoretically since no upper bound for self-weights was assumed. This may lead to severe rare

patch artifacts. Secondly, the original LJS method has been tested with a relatively large local

neighborhood for determining a self-weight assuming that self-weights are the same in the local

neighborhood. However, too large local neighborhood size may introduce strong bias in the

resulting denoised images.
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In this paper, we investigate the original LJS method in terms of the local neighborhood size

for self-weight estimation, and excessive self-weight estimation when no upper bound is applied

on the self-weight. We then propose novel self-weight estimation methods for NLM that account

for bounded self-weights using Baranchik’s minimax estimator [25], called local minimax self-

weight estimation with direct bound (LMM-DB) and with reparametrization (LMM-RP). Our

proposed methods were evaluated with a wide range of natural images, a real patient MRI image,

and a SPECT image in various noise levels in terms of PSNR as well as other performance criteria

such as bias-variance trade-off curve and visual quality assessment. Our proposed methods were

compared with classical NLM filter using self-weight 1 [5] and the original LJS method [2], which

is already shown to be the best among all other previous self-weight determination methods.

3.2 Review on Local James-Stein Self-Weight Estimation for

Non Local Means Filter

We will briefly review the classical NLM filter proposed by Buades et al. [5] and the original

LJS method proposed by Wu et al. [2].

3.2.1 Reviewing Classical Non-Local Means Filter

Let’s assume that an image x is contaminated by noise n with the following model:

y = x + n (III.1)

where n is zero-mean white Gaussian noise with standard deviation σ. A NLM filtered value at

the pixel i is a weighted average of all pixels in a search region Ωi:

x̂i =

∑
j∈Ωi

wi,jyj∑
j∈Ωi

wi,j
(III.2)

where yi is the ith element of y, wi,j is a weight between the ith andjth pixels, and Ωi is the

set of all pixels in a small area around the ith pixel or the entire image. The similarity weight

of the classical NLM is defined as:

wi,j = exp

(
−‖Piy −Pjy‖2

2 |P|h2

)
(III.3)
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where Pi is an operator to extract a square-shaped patch centered at the ith pixel, ‖·‖ is an

l2 norm, |P| is the number of pixels within a patch, and h is a global smoothing parameter.

Equation (III.3) implies that self-weights wi,i are always equal to 1. Previous works on self-

weights have shown that good strategies for determining self-weights affect the image quality

of NLM filtering [2, 5, 35,38].

3.2.2 Reviewing Local James-Stein Self-Weight Estimation

The LJS method was proposed to determine wi,i as follows [2]. Firstly, (III.2) was decom-

posed into two terms:

x̂i =
Wi

Wi + wi,i
ẑi +

wi,i

Wi + wi,i
yi (III.4)

where

Wi =
∑

j∈Ωi\{i}
wi,j

and

ẑi =
∑

j∈Ωi\{i}
wi,jyj/Wi. (III.5)

The terms ẑi do not contain wi,i. Then, the LJS method reparametrized (III.4) using

pi =
wi,i

Wi + wi,i
(III.6)

so that (III.4) becomes

x̂i = (1− pi) ẑi + piyi. (III.7)

The problem of estimating self-weights wi,i became the problem of estimating pi. Lastly, the JS

estimator [39,40] for pi was proposed:

pLJS
i = 1− (|B| − 2)σ2

‖Biy −Biẑ‖2
(III.8)

where Bi is an operator to extract a square-shaped neighborhood centered at the ith pixel, |B|
is the number of pixels within that neighborhood, and σ is known noise level.

Equation (III.8) implies that pLJS
i ∈ (−∞, 1]. Since weights are non-negative, it was proposed

to use the zero-lower bound for pLJS
i as follows [2]:

x̂
LJS+

i =
(

1− pLJS+

i

)
ẑi + p

LJS+

i yi (III.9)
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where

p
LJS+

i :=[pLJS
i ]+ =

[
1− (|B| − 2)σ2

‖Biy −Biẑ‖2

]
+

(III.10)

and [s]+ := max(s, 0). Wu et al. also mentioned that a user-defined upper bound for pi can be

used, but did not investigate upper bound further [2].

3.3 Limitations of Local James-Stein Self-Weight Estimation

for Non Local Means Filter

We will investigate two limitations of the original LJS method [2] in terms of the size of

local neighborhoods for self-weight estimation and possible excessive self-weight estimation.

3.3.1 Size of Local Neighborhood for Self-Weight Estimation

Even though it was not mentioned in [2], there were two implicit steps to obtain the LJS

self-weight estimator (III.10). The first step is to choose a local set of pixels around the ith

pixel, called this set ΩB
i , corresponding to the operator Bi and assume that

x̂j = (1− pi) ẑj + piyj , j ∈ ΩB
i . (III.11)
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Figure 3.1: Bias-variance curves (cameraman example) for the classical NLM and the LJS
method (LJS+) for different sizes of local neighborhood (B). The curves are plotted with varying
the smoothing parameter h (log2h ∈ [1.8, 3.2]).
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Based on the works of Stein [39] and James and Stein [40], if |B| ≥ 3, then for a small neigh-

borhood ΩB
i extracted by Bi,

x̂j =
(

1− pLJS+

i

)
ẑj + p

LJS+

i yj , j ∈ ΩB
i . (III.12)

is a dominating estimator for xj “locally” in ΩB
i . The LJS method used the zero lower bound for

estimating pi to obtain a realistic self-weight value that is not negative. It was also a good choice

in terms of estimator performance since this positive part of JS estimator is dominating over

the original JS estimator according to the works of Baranchik [25,41] and Efron and Morris [42].

The second implicit step is to assign the resulting pLJS
i to pi in (III.7) only for the single

pixel i so that

x̂LJS
i =

(
1− pLJS

i

)
ẑi + pLJS

i yi. (III.13)

Wu et al. evaluated the LJS method with |B| = 15× 15 [2], which looks relatively large.

According to this two implicit step interpretation, we can conjecture that using smaller size

of |B| may be more desirable for less biased estimate of pi since the assumption of having the

same pi in ΩB
i is less likely to be true for larger size of ΩB

i . Fig. 3.1 confirms our conjecture.

The bias-variance curves of the LJS method yielded better bias-variance trade-offs than the

classical NLM method for both large local neighborhood with the half window size B = 7

(|B| = 15× 15) and small local neighborhood with B = 2 (|B| = 5× 5). However, using larger

local neighborhood size for estimating pi yielded stronger bias than using smaller size for the

same level of variance.

3.3.2 Excessively Large Self-Weight Estimation

In the original LJS method for determining self-weights by estimating pi’s [2], it is theoret-

ically possible that self-weights have excessively high values. For example, (III.6) suggests that

if pi = 1 and Wi > 0, then wi,i� 1. Slight artifacts in the background area potentially due to

possible excessive self weight estimates were observed in [2] where relatively larger neighborhood

size |B| = 15 × 15 was used. We observed much more severe visual image quality degradation

on the background area if the size of |B| in (III.8) is small as shown in the top left figure of

Fig. 3.2.

We investigated this issue with an example of cameraman image. This example was denoised

using the original LJS method [2], but with a smaller neighborhood size |B| = 5× 5. For areas

with more details such as edges and textures, large pi values were estimated to yield high self-

weights as shown in the top right figure of Fig. 3.2. However, since Wi’s are also very small on

20



B=2, PSNR=33.12 p
i
LJS+ map, intensity range: [0 0.987]

0

0.2

0.4

0.6

0.8

1

W
i
 map, intensity range: [0 156]

0

20

40

60

80

100

w
i,i

 map, intensity range: [0 22.6]

0

5

10

15

Figure 3.2: Denoised image of cameraman example using the original LJS method [2] with no
upper bound for self-weights (top left), estimated pi values (top right), calculated Wi’s (bottom
left), and resulting self-weights (wi,i) showing excessive self-weights (bottom right). B = 2 and
σ = 10.

these areas as shown in the bottom left figure of Fig. 3.2, the resulting self-weight map yielded

values close to 1 on areas with details.

In contrast, for areas with almost no details such as flat intensity background, relatively

smaller pi values were estimated. Some of them were much larger than 0 and the rest of them

were closer to 0 as shown in the top right figure of Fig. 3.2. However, since Wi values for flat

areas were relatively large as shown in the bottom left figure of Fig. 3.2, some estimated pi

values of the original LJS method (LJS+) were estimated to yield excessively large self-weights

that were much larger than 1 as shown in the bottom right figure of Fig. 3.2. Therefore, these

excessively large self-weights caused severe rare patch artifacts for filtered image so that visual

quality degradation was observed as shown in the top left figure of Fig. 3.2.
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3.4 Local Minimax Estimation Methods for Upper Bounded

Self-Weights in Non Local Means Filter

In this section, we propose two local self-weight estimation methods that account for upper

bounded self-weights using Baranchik’s minimax estimator [25].

3.4.1 Bounded Self-Weights

It is usually assumed that self-weight wi,i ∈ [0, 1]. However, there are many possible upper

bounds for self-weight such as 1 [5] or some positive value that is possibly less than 1 based on

SURE [38]. In this paper, two different upper bound values wmax
i,i for self-weights were evaluated

such that 0 ≤ wi,i ≤ wmax
i,i . One maximum self-weight value is

wmax−one
i,i = 1 (III.14)

which was a usual choice for self-weight in the classical NLM method [5]. The other maximum

value is

wmax−stein
i,i = exp

(
−σ2/h2

)
(III.15)

which was motivated by the SURE based NLM self-weights [38]. We assume that σ is known

and h is pre-determined so that this upper bound for self-weights can also be determined in

advance. Equation (III.15) takes noise level into account. As σ is smaller, the maximum self-

weight (III.15) is closer to one or (III.14). However, the difference between (III.15) and (III.14)

will be larger at higher noise level.

Since pi is estimated instead of wi,i, it is necessary to derive the range of pi corresponding

to 0 ≤ wi,i ≤ wmax
i,i . From (III.6), the derivative of pi with respect to wi,i is non-negative as

follows:
d

dwi,i
pi =

Wi

(Wi + wi,i)2
≥ 0

since Wi ≥ 0. Therefore, pi is an increasing function of wi,i and for 0 ≤ wi,i ≤ wmax
i,i , the

range of pi will be

0 ≤ pi ≤
wmax
i,i

Wi + wmax
i,i

=: pmax
i ≤ 1.

Note that if Wi = 0, then pmax
i = 1. The estimator p

LJS+

i in (III.10) automatically guarantees

that 0 ≤ pi ≤ 1 if |B| ≥ 2. However, since Wi > 0 holds practically for almost any real images

with noise, it is necessary to constrain pi to be less than or equal to the upper bound pmax
i ,

which is usually less than one.
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3.4.2 Local Minimax Self-Weight Estimation with Direct Bound

Enforcing the upper limit pmax
i on the estimated pi (III.10) using min(p

LJS+

i , pmax
i ) breaks

the optimality of the JS estimator if pmax
i < 1. In this paper, we propose to use Baranchik’s

minimax estimator [25] instead to incorporate bounded self-weights into the estimator (see

Baranchik [25], Efron and Morris [42], and Strawderman [43] for more details on this minimax

estimator).

Theorem 1 (Baranchik) For y ∼ Nr

(
x,σ2I

)
, r ≥ 3, and loss L(x, x̂) = ‖x− x̂‖, an estima-

tor of the form x̂ = qy where

q =

[
1− c (‖y‖) σ

2(r − 2)

‖y‖2

]
(III.16)

is minimax provided

(i) 0 ≤ c (‖y‖) ≤ 2 and

(ii) the function c is nondecreasing.

Here y shrinks toward 0 which is the initial estimation of x.

The original JS estimator and its positive part are special cases of the Baranchik’s minimax

estimator. For the original JS estimator (III.8),

c (‖s‖) = 1 (III.17)

where s = Biy −Biẑ so that it satisfies both conditions (i, ii) of the Baranchik’s theorem. In

the positive-part estimator (III.9), it can be shown that

c (‖s‖) =


‖s‖2

σ2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, otherwise

(III.18)

where Y1 := σ
√
r − 2. The original and positive part JS estimators are illustrated in Fig. 3.3

(a).

We propose a new local minimax self-weight estimation method using direct bound with a

specific upper-bound value as follows:

pLMM−DB
i := min(p

LJS+

i , pmax
i ).
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Figure 3.3: Graphical illustrations of the original and positive part JS estimators without upper
bounds and the proposed minimax self-weight estimators with upper bounds in terms of c (‖s‖)
vs. ‖s‖.

The theory behind this operation is the Baranchik’s minimax estimator theorem. According to

it, this operation can be interpreted as follows:

c (‖s‖) =



‖s‖2

σ2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

1, Y1 < ‖s‖ ≤ Y2

‖s‖2 (1− pmax)

σ2(r − 2)
, Y2 < ‖s‖

(III.19)

where

Y2 := σ

√
r − 2

1− pmax
.

We call this local minimax self-weight estimator using direct bound (LMM-DB) and this esti-

mator is illustrated in Fig. 3.3 (b) where

Y4 := σ

√
2 (r − 2)

1− pmax

Note that LMM-DB is not minimax anymore for ‖s‖ > Y4. Fortunately, ‖s‖ = ‖Biy −Biẑ‖
can be limited by adjusting a smoothing parameter h (setting it smaller) so that all ‖s‖ ≤ Y4

and c (‖Biy −Biẑ‖) ≤ 2. Then, LMM-DB becomes “practically” a minimax estimator. Let us

denote by hmax the maximum h that satisfies ‖s‖ ≤ Y4.

In this case, one question can be raised: Will the optimal h fall into this range of h that

satisfies ‖s‖ ≤ Y4? Interestingly, our simulations with many natural images showed that the

24



optimal smoothing parameter h∗ based on the true images is very close to hmax. This is because

LMM-DB yielded pmax → 1 (so that Y2 → ∞) or almost all ‖Biy −Biẑ‖ were less than or

equal to Y4. Therefore, pLMM−DB
i is “practically” minimax based on the Baranchik’s theorem

for many natural images. Moreover, LMM-DB may provide a way of choosing the optimal

smoothing parameter value h without knowing the underlying true image. We will investigate

this issue empirically in Section V.

3.4.3 Local Minimax Self-Weight Estimation with Reparametrization

LMM-DB set p to be the same pmax for a wide range of ‖Biy −Biẑ‖ values. We propose

another new method called local minimax self-weight estimation with reparametrization (LMM-

RP) that assigns different p values for different ‖Biy −Biẑ‖.
We reparametrized pi in (III.7) in the following way:

x̂i = ẑi + (pi/p
max
i )pmax

i (yi − ẑi)

= ẑi + pT
i (yT

i − ẑT
i ) (III.20)

= (1− pmax
i )ẑi + ẑT

i + pT
i (yT

i − ẑT
i ) (III.21)

where ẑT
i = pmax

i ẑi, y
T
i = pmax

i yi, and

pT
i =

1

pmax
i

wi,i

Wi + wi,i
. (III.22)

Note that for 0 ≤ wi,i ≤ wmax
i,i , pT

i is an increasing function of wi,i and the range of pT
i will

be 0 ≤ pT
i ≤ 1. We propose to use the positive part JS estimator to estimate reparametrized pT

i

as follows:

p
T,LJS+

i =

[
1− (|B| − 2) (pmax

i )2σ2

‖BiyT −BiẑT‖2

]
+

=

[
1− (|B| − 2)σ2

‖Biy −Biẑ‖2

]
+

= p
LJS+

i . (III.23)

This method is equivalent to using a multiplicative factor pmax
i for the original JS shrinkage

(III.9) as follows:

x̂LMM−RP
i = (1− pLMM−RP

i )ẑi + pLMM−RP
i yi (III.24)

where

pLMM−RP
i = pmax

i

[
1− (|B| − 2)σ2

‖Biy −Biẑ‖2

]
+

. (III.25)
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This proposed estimator, LMM-RP, is not dominating for estimating xi, but rather dominat-

ing for estimating pmax
i xi as shown in (III.21). Thus, the positive part JS estimator does not

guarantee that LMM-RP is dominating.

Table 3.1: PSNR (dB) summary (mean ± standard deviation) for various natural images.

σ Classical NLM LJS+ LMM-DB one LMM-RP one LMM-DB stein LMM-RP stein LJS+ LMM-DB one LMM-RP one LMM-DB stein LMM-RP stein

cameraman 10 32.42 ± 0.034 33.12 ± 0.031 33.32 ± 0.030 33.29 ± 0.029 33.17 ± 0.029 33.04 ± 0.030 32.98 ± 0.035 33.10 ± 0.036 33.05 ± 0.037 32.98 ± 0.038 32.85 ± 0.040
20 28.48 ± 0.052 29.12 ± 0.052 29.46 ± 0.056 29.29 ± 0.056 29.27 ± 0.060 28.97 ± 0.052 29.32 ± 0.062 29.34 ± 0.059 29.04 ± 0.054 29.11 ± 0.058 28.80 ± 0.049
40 25.35 ± 0.059 25.39 ± 0.083 25.89 ± 0.075 26.11 ± 0.082 26.08 ± 0.087 25.74 ± 0.079 25.98 ± 0.073 25.98 ± 0.073 25.94 ± 0.080 25.96 ± 0.083 25.63 ± 0.076
60 23.19 ± 0.065 22.88 ± 0.062 23.39 ± 0.055 23.74 ± 0.065 23.67 ± 0.069 23.54 ± 0.061 23.68 ± 0.068 23.69 ± 0.068 23.62 ± 0.071 23.63 ± 0.070 23.54 ± 0.059

lena 10 33.90 ± 0.018 34.52 ± 0.017 34.74 ± 0.017 34.81 ± 0.018 34.77 ± 0.017 34.69 ± 0.017 34.82 ± 0.020 34.83 ± 0.020 34.80 ± 0.019 34.76 ± 0.018 34.63 ± 0.018
20 30.78 ± 0.031 30.90 ± 0.023 31.25 ± 0.033 31.50 ± 0.032 31.51 ± 0.032 31.31 ± 0.029 31.51 ± 0.031 31.51 ± 0.031 31.45 ± 0.028 31.48 ± 0.031 31.27 ± 0.029
40 27.64 ± 0.032 26.94 ± 0.028 27.74 ± 0.033 28.08 ± 0.029 28.08 ± 0.029 28.06 ± 0.028 28.10 ± 0.028 28.10 ± 0.028 28.07 ± 0.028 28.08 ± 0.029 28.06 ± 0.028
60 25.60 ± 0.052 24.38 ± 0.040 25.66 ± 0.051 26.02 ± 0.052 26.01 ± 0.053 26.02 ± 0.054 26.01 ± 0.051 26.01 ± 0.051 26.02 ± 0.054 26.02 ± 0.053 26.02 ± 0.054

montage 10 34.68 ± 0.045 35.19 ± 0.043 35.60 ± 0.042 35.67 ± 0.039 35.65 ± 0.042 35.55 ± 0.045 35.12 ± 0.049 35.39 ± 0.046 35.38 ± 0.042 35.46 ± 0.045 35.34 ± 0.047
20 30.35 ± 0.088 30.74 ± 0.062 31.29 ± 0.067 31.38 ± 0.070 31.40 ± 0.078 31.06 ± 0.068 31.00 ± 0.076 31.13 ± 0.073 31.07 ± 0.068 31.18 ± 0.068 30.81 ± 0.063
40 26.24 ± 0.063 26.30 ± 0.072 26.98 ± 0.070 27.29 ± 0.063 27.30 ± 0.064 27.20 ± 0.061 27.01 ± 0.052 27.03 ± 0.052 27.04 ± 0.055 27.08 ± 0.053 27.00 ± 0.053
60 23.76 ± 0.104 23.48 ± 0.116 24.16 ± 0.113 24.61 ± 0.115 24.60 ± 0.106 24.38 ± 0.115 24.33 ± 0.092 24.33 ± 0.092 24.36 ± 0.090 24.37 ± 0.088 24.16 ± 0.095

house 10 34.57 ± 0.038 35.02 ± 0.039 35.36 ± 0.041 35.38 ± 0.039 35.34 ± 0.043 35.29 ± 0.046 35.31 ± 0.042 35.32 ± 0.043 35.25 ± 0.044 35.21 ± 0.047 35.12 ± 0.045
20 31.43 ± 0.063 31.54 ± 0.048 32.13 ± 0.050 32.39 ± 0.048 32.39 ± 0.050 32.19 ± 0.067 32.30 ± 0.052 32.31 ± 0.054 32.26 ± 0.058 32.30 ± 0.056 32.10 ± 0.068
40 27.62 ± 0.044 27.18 ± 0.038 27.84 ± 0.049 28.37 ± 0.037 28.37 ± 0.039 28.33 ± 0.045 28.35 ± 0.041 28.35 ± 0.041 28.34 ± 0.045 28.35 ± 0.042 28.33 ± 0.045
60 25.01 ± 0.092 24.24 ± 0.087 25.17 ± 0.098 25.65 ± 0.095 25.65 ± 0.087 25.65 ± 0.088 25.65 ± 0.088 25.65 ± 0.088 25.65 ± 0.087 25.66 ± 0.087 25.65 ± 0.088

pepper 10 32.62 ± 0.056 33.37 ± 0.042 33.53 ± 0.048 33.56 ± 0.049 33.49 ± 0.051 33.39 ± 0.050 33.28 ± 0.043 33.37 ± 0.040 33.35 ± 0.042 33.33 ± 0.042 33.17 ± 0.042
20 28.94 ± 0.031 29.54 ± 0.029 29.78 ± 0.040 29.88 ± 0.038 29.86 ± 0.028 29.51 ± 0.027 29.77 ± 0.027 29.79 ± 0.027 29.70 ± 0.026 29.73 ± 0.024 29.34 ± 0.033
40 25.31 ± 0.050 25.50 ± 0.057 25.67 ± 0.041 26.12 ± 0.049 26.11 ± 0.054 25.97 ± 0.055 26.08 ± 0.054 26.08 ± 0.054 26.04 ± 0.056 26.05 ± 0.054 25.95 ± 0.055
60 22.99 ± 0.048 22.95 ± 0.091 23.18 ± 0.061 23.80 ± 0.067 23.80 ± 0.071 23.78 ± 0.075 23.81 ± 0.070 23.81 ± 0.070 23.79 ± 0.074 23.80 ± 0.073 23.78 ± 0.075

barbara 10 32.93 ± 0.026 33.50 ± 0.018 33.66 ± 0.020 33.70 ± 0.021 33.66 ± 0.022 33.53 ± 0.020 33.72 ± 0.017 33.74 ± 0.017 33.69 ± 0.017 33.66 ± 0.017 33.44 ± 0.017
20 29.36 ± 0.032 29.83 ± 0.029 29.96 ± 0.032 30.23 ± 0.030 30.27 ± 0.028 30.04 ± 0.029 30.27 ± 0.029 30.27 ± 0.028 30.19 ± 0.026 30.24 ± 0.027 30.00 ± 0.030
40 25.68 ± 0.047 25.78 ± 0.048 25.79 ± 0.047 26.46 ± 0.043 26.51 ± 0.040 26.51 ± 0.039 26.52 ± 0.040 26.52 ± 0.040 26.51 ± 0.039 26.51 ± 0.040 26.51 ± 0.039
60 23.50 ± 0.032 23.17 ± 0.039 23.57 ± 0.034 24.13 ± 0.037 24.15 ± 0.035 24.16 ± 0.035 24.15 ± 0.036 24.15 ± 0.036 24.16 ± 0.035 24.16 ± 0.035 24.16 ± 0.035

boat 10 31.78 ± 0.015 32.73 ± 0.019 32.81 ± 0.018 32.82 ± 0.017 32.72 ± 0.015 32.61 ± 0.016 32.73 ± 0.018 32.75 ± 0.018 32.72 ± 0.017 32.65 ± 0.017 32.49 ± 0.017
20 28.40 ± 0.017 29.14 ± 0.017 29.23 ± 0.019 29.37 ± 0.015 29.34 ± 0.015 29.05 ± 0.015 29.30 ± 0.018 29.30 ± 0.018 29.25 ± 0.017 29.27 ± 0.017 28.95 ± 0.018
40 21.95 ± 0.053 25.45 ± 0.021 25.45 ± 0.021 26.01 ± 0.016 25.99 ± 0.016 25.92 ± 0.014 25.98 ± 0.012 25.98 ± 0.012 25.95 ± 0.013 25.96 ± 0.012 25.92 ± 0.014
60 23.64 ± 0.025 23.11 ± 0.028 23.72 ± 0.026 24.01 ± 0.026 24.01 ± 0.025 23.99 ± 0.025 24.01 ± 0.025 24.01 ± 0.025 24.00 ± 0.025 24.00 ± 0.025 23.99 ± 0.025

hill 10 31.87 ± 0.029 32.63 ± 0.020 32.67 ± 0.019 32.71 ± 0.018 32.61 ± 0.018 32.47 ± 0.014 32.67 ± 0.016 32.67 ± 0.016 32.64 ± 0.016 32.55 ± 0.015 32.34 ± 0.013
20 28.82 ± 0.022 29.23 ± 0.031 29.23 ± 0.031 29.48 ± 0.024 29.48 ± 0.023 29.29 ± 0.023 29.45 ± 0.021 29.45 ± 0.021 29.41 ± 0.023 29.42 ± 0.022 29.25 ± 0.024
40 25.91 ± 0.022 25.70 ± 0.026 25.98 ± 0.024 26.36 ± 0.024 26.38 ± 0.022 26.37 ± 0.022 26.38 ± 0.022 26.38 ± 0.022 26.37 ± 0.022 26.38 ± 0.022 26.37 ± 0.022
60 24.25 ± 0.017 23.45 ± 0.013 24.32 ± 0.018 24.60 ± 0.024 24.59 ± 0.024 24.60 ± 0.024 24.59 ± 0.022 24.59 ± 0.022 24.60 ± 0.024 24.60 ± 0.024 24.60 ± 0.024

couple 10 31.80 ± 0.014 32.76 ± 0.009 32.81 ± 0.009 32.85 ± 0.010 32.80 ± 0.011 32.71 ± 0.011 32.76 ± 0.013 32.77 ± 0.013 32.75 ± 0.012 32.72 ± 0.011 32.59 ± 0.012
20 28.14 ± 0.023 28.93 ± 0.023 28.93 ± 0.023 29.16 ± 0.028 29.16 ± 0.029 28.86 ± 0.030 29.11 ± 0.028 29.11 ± 0.028 29.07 ± 0.029 29.08 ± 0.029 28.76 ± 0.030
40 24.93 ± 0.035 25.03 ± 0.026 25.05 ± 0.026 25.49 ± 0.026 25.50 ± 0.030 25.44 ± 0.032 25.48 ± 0.031 25.48 ± 0.031 25.47 ± 0.030 25.47 ± 0.030 25.43 ± 0.032
60 23.25 ± 0.037 22.76 ± 0.043 23.29 ± 0.036 23.59 ± 0.045 23.60 ± 0.044 23.59 ± 0.044 23.60 ± 0.044 23.60 ± 0.044 23.59 ± 0.044 23.60 ± 0.044 23.59 ± 0.044

fingerprint 10 30.27 ± 0.017 30.87 ± 0.015 30.87 ± 0.016 30.84 ± 0.016 30.80 ± 0.017 30.57 ± 0.016 30.88 ± 0.018 30.88 ± 0.019 30.83 ± 0.019 30.81 ± 0.020 30.50 ± 0.018
20 26.64 ± 0.010 27.06 ± 0.014 27.06 ± 0.014 27.04 ± 0.014 27.12 ± 0.012 26.72 ± 0.013 27.10 ± 0.012 27.10 ± 0.012 26.93 ± 0.013 27.05 ± 0.013 26.70 ± 0.012
40 23.20 ± 0.018 23.68 ± 0.024 23.68 ± 0.024 23.96 ± 0.023 24.06 ± 0.022 24.05 ± 0.023 24.05 ± 0.022 24.05 ± 0.022 24.05 ± 0.022 24.05 ± 0.022 24.05 ± 0.023
60 20.93 ± 0.034 21.44 ± 0.029 21.44 ± 0.029 21.85 ± 0.041 21.97 ± 0.037 21.98 ± 0.037 21.98 ± 0.037 21.98 ± 0.037 21.98 ± 0.037 21.98 ± 0.037 21.98 ± 0.037

MRI 10 40.06 ± 0.043 39.19 ± 0.040 40.81 ± 0.033 40.89 ± 0.032 40.83 ± 0.034 40.71 ± 0.029 40.79 ± 0.040 40.85 ± 0.038 40.83 ± 0.037 40.81 ± 0.038 40.61 ± 0.032
20 36.14 ± 0.067 34.47 ± 0.047 36.57 ± 0.062 36.70 ± 0.063 36.74 ± 0.065 36.60 ± 0.068 36.74 ± 0.063 36.77 ± 0.064 36.64 ± 0.068 36.72 ± 0.066 36.59 ± 0.067
40 32.22 ± 0.067 29.33 ± 0.055 32.31 ± 0.071 32.53 ± 0.069 32.53 ± 0.069 32.52 ± 0.069 32.49 ± 0.064 32.54 ± 0.070 32.52 ± 0.069 32.54 ± 0.069 32.52 ± 0.069
60 29.57 ± 0.056 26.13 ± 0.058 29.68 ± 0.057 29.88 ± 0.056 29.88 ± 0.056 29.88 ± 0.056 29.76 ± 0.060 29.86 ± 0.059 29.88 ± 0.056 29.88 ± 0.056 29.88 ± 0.056

SPECT 3 54.33 51.49 55.44 55.55 55.48 55.45 53.79 55.04 55.02 55.08 54.99

B = 2 B = 7

Baranchik’s minimax estimation theorem can be used to analyze LMM-RP estimator and

LMM-RP can be expressed as follows:

c (‖s‖) =


‖s‖2

σ2(r − 2)
, 0 ≤ ‖s‖ ≤ Y1

‖s‖2 (1− pmax)

σ2(r − 2)
+ pmax, Y1 < ‖s‖

(III.26)

where c (‖s‖) = 2 if ‖s‖ is

Y3 := σ

√
(2− pmax) (r − 2)

1− pmax
.

LMM-RP is also illustrated in Fig. 3.3 (b). LMM-RP is minimax if ‖s‖ ≤ Y3 and the global

smoothing parameter h can be reduced to satisfy this condition. Like the case of LMM-DB, it

turned out that the optimal smoothing parameter h∗ and the upper bound h to satisfy ‖s‖ ≤ Y3
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are very close to each other in the case of LMM-RP, too, for many natural images. Therefore,

LMM-RP is “practically” minimax.

3.5 Simulation Results

3.5.1 Simulation Setup

Ten natural images1 (cameraman, lena, montage, house, pepper, barbara, boat, hill, couple,

fingerprint) were used in our study as noise-free images (256 × 256 or 512 × 512 pixels, 8

bits). A real patient MRI (512× 512 pixels, 8 bits), acquired and processed under institutional

review board (IRB) approved protocols, was also used. Each input image was added with white

Gaussian noise of various standard deviations σ ∈ {10, 20, 40, 60}. Then, we evaluated the

proposed method with a SPECT generated from XCAT phantom, in which known true image

with intensity range [0-126] is added with i.i.d. Gaussian noise of σ = 3.

All algorithms were implemented using MATLAB R2015b (The Mathworks, Inc., Natick,

MA, USA). Patch size and search window size of NLM filter were chosen to be 7×7 and 31×31,

respectively, which were the same as [2]. Both conventional LJS and proposed algorithms were

tested for B = 1, · · · , 9 where |B| = (2B + 1)2 > 3.

A global smoothing parameter h was chosen empirically to yield the best PSNR:

PSNR (x̂) = 10log10

2552

‖x̂− x‖2/N
(III.27)

where N is the size of image. In addition to PSNR, mean bias vs. mean variance trade-off curves

were used as performance measure for different smoothing parameter values h where

bias2 =
1

N

N∑
i=1

(x̄i − xi)2 (III.28)

var =
1

N

N∑
i=1

1

k − 1

k∑
j=1

(x̂ij − x̄i)2 (III.29)

where N is the size of image, k is the number of realizations (20 in our simulation), x̂ij is the

jth estimation at ith pixel, and x̄i is the mean of x̂ij or

x̄i =
1

k

k∑
j=1

x̂ij .

1Available online at: http://www.cs.tut.fi/~foi/GCF-BM3D/BM3D_images.zip as the date of 16 Nov. 2015.
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Visual quality assessment was also performed.

3.5.2 Performance Studies with PSNR

For a fixed neighborhood size B to estimate pi’s, the optimal NLM smoothing param-

eter h∗ was determined to maximize PSNR. In our proposed methods, two maximum self-

weights in (III.14) and (III.15) were used. LMM-DB and LMM-RP with (III.14) are denoted

by LMM−DBone and LMM− RPone. LMM-DB and LMM-RP with (III.15) are denoted by

LMM−DBstein and LMM− RPstein. Table 3.1 summarizes quantitative PSNR results for 12

images with different noise levels. For large B = 7 our proposed LMM-DB and LMM-RP

methods based on Baranchik’s minimax estimator yielded much better PSNR results than the

classical NLM method [5] and comparable PSNR to the original LJS method based on James-

Stein estimator [2]. For small B = 2, our proposed LMM-DB and LMM-RP methods yielded

better PSNR than LJS.

3.5.3 Performance Studies with Bias-Variance Trade-Off

Bias-variance trade-off was investigated with many natural images. As shown in Fig. 3.1, a

neighborhood size B for estimating pi using LJS method [2] was a significant factor to determine

bias. This tendency was also observed for other different natural images as illustrated in Fig. 3.4.

Increasing B for LJS method moves bias-variance trade-off curves to the bottom right direction

so that bias was increased and variance was decreased. However, the role of the smoothing

parameter h changed for LJS method. Unlike classical NLM method (see the bias-variance

curve of NLM in Fig. 3.1), increasing a smoothing parameter h beyond a certain point for LJS

method did not decrease variance anymore for all natural images that we tested. This is because

increasing h will also increase pi values so that the resulting LJS estimator becomes closer to

the noisy input image yi due to no bound for self-weights.

Our proposed methods (LMM-DB, LMM-RP) yielded trade-off curves that have decreased

variance for increased smoothing parameter h, and yielded bias-variance curves that are lower

than or equal to LJS method for fixed B and σ. This tendency was observed with various

natural images and SPECT image as illustrated in Fig. 3.4. It was important to choose an

appropriate neighborhood size B for LJS method to obtain a certain level of bias, but our

proposed methods can achieve that bias level by adjusting the smoothing parameter h, which

is the same as classical NLM. It seems that using LMM-RP has slightly more advantages than

using LMM-DB in terms of PSNR as shown in Table 3.1 and bias-variance trade-off curves as

shown in Fig. 3.4 for high noise level.
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Figure 3.4: Bias-variance curves for natural images using LJS+ [2] and our proposed
LMM−DBone, LMM− RPone methods with a noise level σ = 10.

3.5.4 Performance Studies with Visual Quality Assessment

The most important improvements of our proposed LMM-DB and LMM-RP methods over

LJS method were achieved in terms of visual quality. Fig. 3.5 (a) shows the true cameraman

image (left) and noisy image (right) with noise level of σ = 10. Fig. 3.5 (b) presents filtered

images using LJS method [2]) with B = 2 and B = 7. Severe artifacts were observed on the

background areas when using B = 2 and these artifacts were reduced when using B = 7.

However, there are still some artifacts near the edges of objects. Our proposed LMM-DB and

LMM-RP yielded more reduced artifacts than LJS method for both B = 2, 7. This tendency was

also observed in SPECT image and many natural images as shown in Fig. 3.6, 3.7, especially

on high intensity flat areas. PSNR improvement of LJS method was achieved with severe (when

B = 2) or mild (when B = 7) artifacts, but our proposed methods achieved both high PSNR

and much more reduced visual artifacts. Reduced visual artifacts can be important in some

applications such as diagnostic medical imaging.
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3.5.5 Maximum Self-Weights: One vs. Stein’s

Two maximum self-weights were proposed to use: one in (III.14) that was proposed in [5]

and Stein’s in (III.15) that was proposed in [38]. Fig. 3.8 shows that LMM−DBone yielded

better bias-variance curve and PSNR than LMM−DBstein when the noise level was low. For

high noise level σ = 40, LMM−DBstein yielded better PSNR and bias-variance curve than

LMM−DBone. However, these differences were not significant and image-dependent, which are

is also illustrated in terms of PSNR in Table 3.1. In terms of visual quality, no significant

difference was observed for both methods.

3.5.6 “Practical” Minimax Estimator

Table 3.2: Percentage (%) of c(‖s‖) that exceed 2 using LMM−DB and LMM− RP methods,
σ = 10, B = 2.

 
USED in TIP 
 
 

  ! = 10 ! = 20 ! = 40 ! = 60 

cameraman 
LMM-DB	one 0.32 0.04 0.03 0.05 
LMM-DBstein 0.85 0.66 0.21 0.18 

fingerprint 
LMM-DB	one 0.00 0.00 0.00 0.00 
LMM-DBstein 0.30 0.13 0.09 0.02 

MRI 
LMM-DB	one 0.10 0.05 0.10 0.13 
LMM-DBstein 0.18 0.16 0.16 0.16 

 
 
 

  ! = 10 ! = 20 ! = 40 ! = 60 

cameraman 
LMM-RP	one 0.25 0.04 0.01 0.00 
LMM-RPstein 1.07 0.90 0.20 0.22 

fingerprint 
LMM-RP	one 0.01 0.00 0.00 0.00 
LMM-RPstein 0.27 0.19 0.13 0.03 

MRI 
LMM-RP	one 0.09 0.05 0.07 0.09 
LMM-RPstein 0.23 0.20 0.16 0.13 

 
 
 
 
 
 
 

 
USED in TIP 
 
 

  ! = 10 ! = 20 ! = 40 ! = 60 

cameraman 
LMM-DB	one 0.32 0.04 0.03 0.05 
LMM-DBstein 0.85 0.66 0.21 0.18 

fingerprint 
LMM-DB	one 0.00 0.00 0.00 0.00 
LMM-DBstein 0.30 0.13 0.09 0.02 

MRI 
LMM-DB	one 0.10 0.05 0.10 0.13 
LMM-DBstein 0.18 0.16 0.16 0.16 

 
 
 

  ! = 10 ! = 20 ! = 40 ! = 60 

cameraman 
LMM-RP	one 0.25 0.04 0.01 0.00 
LMM-RPstein 1.07 0.90 0.20 0.22 

fingerprint 
LMM-RP	one 0.01 0.00 0.00 0.00 
LMM-RPstein 0.27 0.19 0.13 0.03 

MRI 
LMM-RP	one 0.09 0.05 0.07 0.09 
LMM-RPstein 0.23 0.20 0.16 0.13 

 
 
 
 
 
 
 

The proposed LMM-DB and LMM-RP methods are minimax as far as ‖s‖ ≤ Y4 and ‖s‖ ≤
Y3, respectively, as shown in Fig. 3.3. However, these conditions impose upper bounds for

smoothing parameters h so that the optimal h∗ that yields the best PSNR may not be achievable.

We empirically investigate this issue with many natural images.

Table 3.2 shows the ratio (percentage unit) of the number of pixels that c(‖s‖) > 2 to the

total number of pixels for cameraman, fingerprint, and MRI images when the optimal h∗ for

the highest PSNR was chosen based on the true images for proposed LMM-DB and LMM-

RP methods. For most of the pixels, LMM-DB and LMM-RP were minimax. The relationship

between the percentage of pixels with c(‖s‖) > 2 and the root mean squared error (RMSE) is

illustrated in Fig. 3.9 for cameraman and SPECT images. Surprisingly, the optimal smoothing

parameters h for the lowest RMSE point (or the highest PSNR) of LMM-DB and LMM-RP
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methods are very close to the smoothing parameters h such that the percentage of c(‖s‖) > 2

is 0.1%. This phenomenon was not just for these two images. As shown in Table 3.3, the pixel

percentage of c(‖s‖) > 2 that does not require to know the true image can determined smoothing

parameters that yielded comparable PSNR values to the best PSNR’s yielded by using optimal

smoothing parameters calculated based on knowledge of the true image. This was observed for

all other images used in our simulations, with different noise levels, and when B = 2 is used.

However, the criteria of using the pixel percentage of c(‖s‖) > 2 did not work for B = 7 well

in our simulations. This criteria can be potentially used for choosing a smoothing parameter

without knowing the true image with our proposed methods as a heuristic approach. More

analytical investigation on this criteria can be an interesting extension of this work.

3.6 Discussion

The classical NLM method was a significant work in image denoising [5] and it requires to

determine two important parameters for good denoising performance: a smoothing parameter

and a self-weight value. The LJS method proposed by Wu et al. [2] developed a state-of-the-

art method for self-weight determination using JS estimation [40] and yielded superior results

in terms of PSNR compared to other existing methods. However, since the LJS method did

not impose the upper bound for self-weight estimation, the bias can not be controlled by a

smoothing parameter anymore and visual quality degradation was experienced. Our proposed

methods based on the Baranchik’s minimax theorem [25] yielded comparable PSNR results to

the state-of-the-art LJS method. By imposing the upper bounds for self-weights, bias-variance

trade-off can be controlled by a smoothing parameter again and substantial visual artifact

reduction was achieved.

The minimax property of our proposed methods depends on the choice of smoothing pa-

rameters. When using sufficiently small smoothing parameters, LMM-DB and LMM-RP are

minimax “practically” according to the Baranchik’s theorem [25]. However, when using large

smoothing parameters, there may be some pixels that are not minimax for self-weight estima-

tion. More empirical investigation showed that the optimal smoothing parameter h to yield the

best PSNR only results in very small portion of pixels that do not have minimax self-weight

estimators. In fact, this can be used as a heuristic way to choose a good smoothing parameter

since testing minimax properties of our propose methods does not require the true image when

B = 2. Therefore, our proposed methods do not only provide an optimal way to determine

self-weights, but also provide a heuristic way to determine a good smoothing parameter.
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True image Noisy Image

(a) True and noisy images (σ = 10)
B=2, PSNR=33.12 B=7, PSNR=33.00

(b) LJS+ [2]
B=2, PSNR=33.35 B=7, PSNR=33.14

(c) Proposed LMM−DBone

B=2, PSNR=33.33 B=7, PSNR=33.10

(d) Proposed LMM− RPone

Figure 3.5: Cameraman: True, noisy (σ = 10), and filtered images using LJS+ [2] , proposed
LMM−DBone, and LMM− RPone.
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True Image Noisy Image

(a) True and noisy images (σ = 3)
LJS+, B=2 (PSNR=52.32) LJS+, B=7 (PSNR=53.96)

(b) LJS+ [2]
LMM-DB, B=2 (PSNR=55.73) LMM-DB, B=7 (PSNR=55.23)

(c) Proposed LMM−DBone

LMM-RP, B=2 (PSNR=55.85) LMM-RP, B=7 (PSNR=55.27)

(d) Proposed LMM− RPone

Figure 3.6: SPECT: True, noisy (σ = 3), and filtered images using LJS+ [2] , proposed
LMM−DBone, and LMM− RPone.

33



LJS+ (PSNR=32.77) LMM-RPone (PSNR=32.86)

(a) couple

LJS+ (PSNR=35.18) LMM-RP
one

 (PSNR=35.63)

(b) montage

LJS+ (PSNR=34.52) LMM-RPone (PSNR=34.81)

(c) lena

LJS+ (PSNR=33.39) LMM-RP
one

 (PSNR=33.59)

(d) pepper

LJS+ (PSNR=34.99) LMM-RP
one

 (PSNR=35.37)

(e) house

LJS+ (PSNR=39.15) LMM-RPone (PSNR=40.90)

(f) MRI

Figure 3.7: Filtered results for various natural images using LJS+ [2] and proposed LJS− RPone

with noise level σ = 10 and neighborhood size B = 2.
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Figure 3.9: Comparison plots of RMSE vs. smoothing parameter h and the percentage of
c(‖s‖) > 2 vs. the same smoothing parameter when using LMM-DB and LMM-RP with B = 2.
σ = 10 for cameraman and σ = 3 for SPECT.
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Table 3.3: PSNR values (dB) of proposed methods with B = 2 when choosing a smoothing
parameter to yield the highest PSNR using the true image (TRUE) and when choosing a
smoothing parameter to yield the percentage of c(‖s‖) > 2 to be 0.1% (ESTIMATED) for
different noise levels.

σ TRUE ESTIMATED TRUE ESTIMATED
cameraman 10 33.35 33.32 33.22 33.30

20 29.47 29.47 29.30 29.45
40 25.91 25.90 26.16 26.01
60 23.43 23.43 23.78 23.60

lena 10 34.72 34.74 34.73 34.78
20 31.22 31.20 31.47 31.37
40 27.74 27.74 28.07 27.88
60 25.60 25.63 25.95 25.82

montage 10 35.55 35.56 35.51 35.34
20 31.24 31.20 31.33 31.32
40 26.99 26.98 27.26 27.13
60 24.07 23.97 24.54 24.16

house 10 35.32 35.35 35.30 35.37
20 32.00 31.97 32.30 32.20
40 27.82 27.79 28.35 28.06
60 25.23 25.23 25.75 25.37

pepper 10 33.56 33.54 33.48 33.59
20 29.81 29.80 29.91 29.95
40 25.71 25.67 26.16 25.89
60 23.15 23.02 23.81 23.24

barbara 10 33.67 33.68 33.62 33.73
20 29.94 29.82 30.23 30.03
40 25.79 25.69 26.47 25.92
60 23.56 23.48 24.14 23.67

boat 10 32.80 32.80 32.73 32.79
20 29.22 29.18 29.36 29.22
40 25.44 25.60 25.99 25.75
60 23.76 23.76 24.05 23.91

hill 10 32.66 32.64 32.60 32.61
20 29.24 29.17 29.49 29.30
40 26.01 25.99 26.38 26.05
60 24.35 24.35 24.63 24.45

couple 10 32.82 32.80 32.79 32.81
20 28.89 28.70 29.12 28.85
40 25.08 25.05 25.52 25.10
60 23.26 23.19 23.56 23.28

fingerprint 10 30.86 30.84 30.66 30.80
20 27.07 26.86 27.05 26.96
40 23.69 23.24 23.96 23.38
60 21.47 20.77 21.92 21.02

MRI 10 40.83 40.83 40.77 40.90
20 36.59 36.60 36.71 36.74
40 32.36 32.36 32.58 32.56
60 29.64 29.63 29.83 29.80

SPECT 3 55.44 55.04 55.55 50.58

LMM-DB one LMM-RP one
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CHAPTER IV

Conclusion

We proposed a joint spectral image reconstruction method to incorporate multiple energy

windows in projector model and measurement data. Further evaluations of the proposed method

will be performed with different energy ranges and widths for the acquisition windows. Com-

parison of the proposed method with [3,28] will be performed in the near future. The proposed

method was experimented only with Y-90, but could be applied to SPECT imaging of other

radionuclide.

We also studied post-reconstruction NLM filter and proposed two methods (LMM-DB,

LMM-RP) to determine self-weights of NLM filters that are “practically“ minimax. These

methods yielded comparable PSNR, better bias-variance trade-offs, and reduced visual qual-

ity artifacts compared to the state-of-the-art LJS method over a wide range of natural images

as well as SPECT images. Our methods also provide a potentially useful heuristic way of de-

termining a global smoothing parameter without knowing the true image. Future works include

studying noise properties and noise estimation techniques for SPECT, and investigate the pro-

posed methods with the case of spatial variant noise.
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[35] Vincent Doré and Mohamed Cheriet, “Robust NL-means filter with optimal pixel-wise

smoothing parameter for statistical image denoising,” IEEE Transactions on Signal Pro-

cessing, vol. 57, no. 5, pp. 1703–1716, 2009. 16, 18

[36] Thomas Brox and Daniel Cremers, “Iterated nonlocal means for texture restoration,” in

Scale Space and Variational Methods in Computer Vision, pp. 13–24. Springer, 2007. 16

[37] Sebastian Zimmer, Stephan Didas, and Joachim Weickert, “A rotationally invariant block

matching strategy improving image denoising with non-local means,” in Proceedings In-

ternational Workshop on Local and Non-Local Approximation in Image Processing, 2008,

pp. 135–142. 16

[38] Joseph Salmon, “On two parameters for denoising with non-local means,” IEEE Signal

Processing Letters, vol. 17, no. 3, pp. 269–272, 2010. 16, 18, 22, 30

42



REFERENCES

[39] Charles Stein, “Inadmissibility of the usual estimator for the mean of a multivariate normal

distribution,” in Proceedings of the Third Berkeley symposium on mathematical statistics

and probability, 1956, vol. 1, pp. 197–206. 18, 20

[40] William James and Charles Stein, “Estimation with quadratic loss,” in Proceedings of

the fourth Berkeley symposium on mathematical statistics and probability, 1961, vol. 1, pp.

361–379. 18, 20, 31

[41] Alvin John Baranchik, “Multiple Regression and Estimation of the Mean of a Multivariate

Normal Distribution,” Tech. Rep. 51, Department of Statistics, Stanford University, May

1964. 20

[42] Bradley Efron and Carl Morris, “Families of minimax estimators of the mean of a multi-

variate normal distribution,” The Annals of Statistics, pp. 11–21, 1976. 20, 23

[43] William E Strawderman, “Proper Bayes minimax estimators of the multivariate normal

mean vector for the case of common unknown variances,” The Annals of Statistics, pp.

1189–1194, 1973. 23

43


	I. Introduction
	1.1 Fundamental Background
	1.1.1 Basic Principle of SPECT
	1.1.2 Multi-spectral SPECT
	1.1.3 Post-reconstruction Filtering

	1.2 Contribution of This Thesis
	1.3 Organization of This Thesis

	II. Joint Spectral Image Reconstruction for Y-90 SPECT
	2.1 Related Works
	2.2 Methods
	2.3 Results
	2.3.1 Results for Narrow Windows
	2.3.2 Results for Wide Windows

	2.4 Discussion

	III. Post-reconstruction Non-local Means Filtering
	3.1 Related Works
	3.2 Review on Local James-Stein Self-Weight Estimation for Non Local Means Filter
	3.2.1 Reviewing Classical Non-Local Means Filter
	3.2.2 Reviewing Local James-Stein Self-Weight Estimation

	3.3 Limitations of Local James-Stein Self-Weight Estimation for Non Local Means Filter
	3.3.1 Size of Local Neighborhood for Self-Weight Estimation
	3.3.2 Excessively Large Self-Weight Estimation

	3.4 Local Minimax Estimation Methods for Upper Bounded Self-Weights in Non Local Means Filter
	3.4.1 Bounded Self-Weights
	3.4.2 Local Minimax Self-Weight Estimation with Direct Bound
	3.4.3 Local Minimax Self-Weight Estimation with Reparametrization

	3.5 Simulation Results
	3.5.1 Simulation Setup
	3.5.2 Performance Studies with PSNR
	3.5.3 Performance Studies with Bias-Variance Trade-Off
	3.5.4 Performance Studies with Visual Quality Assessment
	3.5.5 Maximum Self-Weights: One vs. Stein's
	3.5.6 "Practical" Minimax Estimator

	3.6 Discussion

	IV. Conclusion
	References


<startpage>10
I. Introduction 1
 1.1 Fundamental Background 1
  1.1.1 Basic Principle of SPECT 1
  1.1.2 Multi-spectral SPECT 3
  1.1.3 Post-reconstruction Filtering 5
 1.2 Contribution of This Thesis 7
 1.3 Organization of This Thesis 7
II. Joint Spectral Image Reconstruction for Y-90 SPECT 8
 2.1 Related Works 8
 2.2 Methods 9
 2.3 Results 11
  2.3.1 Results for Narrow Windows 11
  2.3.2 Results for Wide Windows 11
 2.4 Discussion 12
III. Post-reconstruction Non-local Means Filtering 16
 3.1 Related Works 16
 3.2 Review on Local James-Stein Self-Weight Estimation for Non Local Means Filter 17
  3.2.1 Reviewing Classical Non-Local Means Filter 17
  3.2.2 Reviewing Local James-Stein Self-Weight Estimation 18
 3.3 Limitations of Local James-Stein Self-Weight Estimation for Non Local Means Filter 19
  3.3.1 Size of Local Neighborhood for Self-Weight Estimation 19
  3.3.2 Excessively Large Self-Weight Estimation 20
 3.4 Local Minimax Estimation Methods for Upper Bounded Self-Weights in Non Local Means Filter 22
  3.4.1 Bounded Self-Weights 22
  3.4.2 Local Minimax Self-Weight Estimation with Direct Bound 23
  3.4.3 Local Minimax Self-Weight Estimation with Reparametrization 25
 3.5 Simulation Results 27
  3.5.1 Simulation Setup 27
  3.5.2 Performance Studies with PSNR 28
  3.5.3 Performance Studies with Bias-Variance Trade-Off 28
  3.5.4 Performance Studies with Visual Quality Assessment 29
  3.5.5 Maximum Self-Weights: One vs. Stein's 30
  3.5.6 "Practical" Minimax Estimator 30
 3.6 Discussion 31
IV. Conclusion 38
References 39
</body>

