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Abstract

Intelligent transportation systems and autonomous vehicles can improve how we drive, save

energy and avoid traffic accidents. However, we still need to make more effort on the process

of interdisciplinary research to turn these systems into reality. My work, aimed to contribute

to this process, consists of two parts. In the first part, I address a longitudinal motion plan-

ning problem in which a vehicle aims to arrive at a given position on a road segmented

based on various driving conditions at a given time and velocity. I show that it is possible

to fully describe the set of all reachable arrival configurations using a table of closed-form

equations, under a simplified model of vehicles with linear acceleration. Then I devise a

sampling-based algorithm to solve this motion planning problem, using the table to check

whether a feasible plan exist. The simulation results showed that the proposed sampling-

based algorithm with heuristics has a higher probability of success than the simple random

sampling approach. After that, I will discuss how to use the feasible set on real vehicles. In

this part, the task of planning on a segment is executed by using the bisection method, which

utilizes the dynamics model of a vehicle. This model, however, is not always available and

empirically expensive to obtain. Therefore, in the second part, I focus on the problem of

learning a vehicle dynamics model. I introduce an instance-based learning method to learn

a performance model automatically, and compare it with the artificial neural network and

matrix factorization methods. Furthermore, an exploration strategy called plan-based ex-

ploration, based on planning using the reference model is given to speed up the learning

process. Our experimental results demonstrated that the instance-based learning method

coupled with the plan-based exploration strategy has the fastest learning rate.
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CHAPTER I

Introduction

Over the last decade we have witnessed tremendous progress in autonomous vehicle research, as

demonstrated in the DARPA Urban Challenge in 2007 [10]. The technology of flying drones also be-

comes mature enough to be considered civilian use such as package delivery.1 These stories suggest that

more and more autonomous robots will take part in our daily life. When autonomous robots are com-

mon, new applications will emerge in conjunction with innovations that will transform current practices.

For example, a team of IkeaBots can coordinate to assemble a piece of furniture [26]. By exploiting the

precise control of autonomous vehicles, Dresner and Stone proposed a new intersection control protocol

called Autonomous Intersection Management (AIM), which coordinates vehicles to enter an intersection

in unison [15]. In these new applications, robots are required to move to positions with precision in time

and velocity. In general, for a team of robots to collaborate effectively, precision in time and velocity

often plays a pivotal role. In the first part of this work, I present motion planning algorithms for mov-

ing an autonomous vehicle along a segmented path with guarantees of their arrival time and velocity

at the destination. This longitudinal motion is fundamental in a number of multi-robot systems. Au et

al. [5] considered the problem of controlling an autonomous vehicle to arrive at a specific position on

a road at a given time and velocity. They showed that the decision problem (a.k.a. the validation prob-

lem) is tractable by giving a simple procedure to check whether an arrival time and an arrival velocity

are feasible. The efficiency of the validation procedure is crucial in AIM, since an early detection of

the infeasibility of a given arrival time and velocity can prevent vehicles from claiming space and time

1http://www.amazon.com/b?node=8037720011
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Figure 1.1: A car runs over a small hill in order to arrive at the destination on the other side of the hill.

in an intersection that they cannot utilize, and that in turn increases the efficiency of an autonomous

intersection [36]. However, these work assumed that the road condition is constant, and the interaction

between the vehicle and its environment will never change. Nonetheless, this homogeneity assumption

does not always hold. For example, a mountain car needs to go uphill and downhill from time to time,

and different road segments can have different road resistance and speed limits (Figure 1.1). Likewise,

the air resistance and gravity acting on a flying drone can vary as it flies up and down. Therefore, I want

to relax the homogeneity assumption and develop motion planning algorithms with guarantees on arrival

time and velocity in spite of non-uniform conditions in a path with multiple road segments. In order to

solve this problem, I first derive a complete set of equations describing the set of all possible arrival

configurations given an initial configuration. These equations enables me to come up with a sampling-

based algorithm to check the feasibility of a pair of arrival time and velocity on a multi-segmented path.

The experimental results showed that utilizing our proposed heuristics can improve the efficiency of the

sampling algorithm. I will also discuss how to apply this approach to real vehicles which do not have a

linear acceleration.

In generating a setpoint schedule on one road segment, I utilize the bisection method. This method

in turn adopts knowledge about acceleration and deceleration of a vehicle which can be represented as a

performance model. Moreover, vehicle performance models are especially important in designing traffic

system including geometric elements of road intersections, signal plans of traffic lights and the width of

road lanes. They are also crucial in crash simulation and estimating fuel consumption and emission [8].

This leads to a demand to devise an efficient and convenient approach to build such models. HoIver,

building a performance model is empiricly tough as a vehicle will run in a variety of road conditions

and we could not obtain the performance model for running on every possible road. Therefore, this

is necessary to employ some machine learning techniques to conduct vehicle performance profiling

automatically. In the next part of this work, I investigates exploration strategies to enhance the learning

process of the performance model of a vehicle. A learning approach is introduced to integrate with an
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exploration strategy. I conducted experiments to evaluate approaches and find out which approach has

a faster learning rate. In addition, I introduce a dynamic programming approach to utilize performance

models to do planning.

This work is organized as follows. After presenting the related works in Chapter II, I give the defi-

nition of a performance model and a longitudinal motion planning problem that utilizes a performance

model in planning in Chapter III. Chapter IV gives the details of the validation process including the

description of feasible set and a sample-based approach. Chapter V describes the exploration strategies

and a learning approach. Finally, I conclude this paper in Chapter VI.
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CHAPTER II

Related Works

Some complete motion planning algorithms have been proposed in the early days of the field. For

example, Lozano-Peŕez and Wesley [32] presented an algorithm for planning collision-free paths among

polyhedral obstacles. Donald [14] described the first known implementation of a complete algorithm for

the full six degree of freedom Movers’ problem. Nevertheless, these early algorithms are usually unsuit-

able for practical applications due to their poor computational complexity. More recent work focuses

on planning in limited domains or exploiting the problem structure. Švestka and Vleugels [46] gave

an exact motion planning algorithm for tractor-trailer robot in the absence of obstacles. Halperin [19]

concerns with the geometric algorithms for robust primitives for complete motion planning. Varadhan

and Manocha [44] proposed a complete motion planner on star-shaped roadmaps. Varadhan et al. [43]

described a complete algorithm for motion planning of translating polyhedral robots in 3D. Most of

these planners concern with checking whether a robot can arrive at a position with a correct final orien-

tation. However, since these algorithms aims to solve motion planning problems in general, they run in

exponential time in the worst cases.

Probabilistic roadmap methods (PRM) [21,24] and rapidly-exploring random trees [29,30] are both

widely used, sampling-based algorithms. While these algorithms are probabilistically complete under

very general conditions [29], they are actually incomplete algorithms because there is no guarantee that

they find a solution if one exists in a finite amount of time. However, some extensions can turn them

into complete algorithms. Hirsch and Halperin [20] proposed a hybrid motion planner that generates

complete solutions with PRM. Zhang et al. [48] proposed another hybrid approach for complete motion

4



planning based on PRM using approximate cell decomposition. Nonetheless, these modified algorithms

will suffer from inefficiency due to their completeness.

Longitudinal control of autonomous/semi-autonomous vehicles has been widely studied since the

1960’s, in particular in platooning in automated highway systems [18, 41, 45]. These studies mainly

focus on car following in a platoon [40], but our approach is more suitable for point following [9]. Most

work on motion planning for autonomous vehicles (e.g., [17]) has treated the arrival time and velocity

requirements as secondary. But finding optimal arrival times and velocities is an important issue in some

applications [5, 36]. Au and Stone had studied the longitudinal control problem on real vehicles [4],

but they made use of the homogeneity assumption as in [5]—the maximum and minimum accelerations

remain constant all the time.

Some previous works on motion planning focus exclusively one-dimensional trajectories. For ex-

ample, Bobrow et al. [7] dealt with the minimum-time manipulator control problem, which is about

controlling a robot manipulator to move along a specified path in a time-optimal manner, subject to the

actuator torque constraints. Kunz and Stilman [28] dealt with a similar problem using the same approach

with a path preprocessing step. In contrast, we investigate the validation problem, which could be much

harder than the optimization problem because proving that there is no feasible trajectory for an arbi-

trarily given arrival time and velocity requires to check not just the optimal trajectory but all possible

trajectories.

Some general-purpose motion planners are capable of satisfying both the arrival time and arrival

velocity requirements. For example, Johnson and Hauser [22] presented a polynomial-time, complete

planner that computes collision-free, time-optimal, longitudinal control sequences for meeting arrival

time and velocity requirements, via the computation of the reachable sets in the path-velocity-time

space. Johnson and Hauser [23] improved their previous work by allowing non-rectangular obstacles

in position-velocity-time space. Their problem is significantly different from ours as it mainly focuses

on computing a time-optimal trajectory that avoids collisions. Unlike our work, [22] relies on the homo-

geneity assumption.

Practically, there are many difficulties to obtain an analytical model of a vehicle acceleration due

to imperfect vehicle dynamics, noise and the complexity in modeling the environmental characteristics.

Therefore, data-driven methods have been serving as an alternative approach to acquire a model of the

accelerating behavior, and machine learning is the key to build these models.

Data-driven methods can be divided into two main categories: parametric and nonparametric ap-

proaches. These methods aim to provide either a parametric or a nonparametric model of the physical

system to fit the training data and base on that model to predict the outcome performance of the system

under other conditions. In parametric approaches, the model can fall into either kinematics model or

dynamics model categories. To begin with, kinematics models consider the mathematical relationship
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between acceleration, speed, and distance that the vehicle has traveled. The most basic of kinemat-

ics models are the constant acceleration model, linear decay model [16] and dual-regime model [6],

to name a few. These models basically attempt to empirically construct mathematical expressions that

describe how the vehicle accelerates. However, the determinant factor of the acceleration process—the

tractive force provided by the engine and the opposing resistance forces are ignored. For this reason,

these kinematics models cannot provide reasonable fitting to field data.

On the contrary, both of the tractive effort and resistance forces which act on the vehicle’s body and

control the vehicle’s motion are taken into account to develop vehicle dynamics models. Rakha et al. was

the first to bring forth a constant power model and a variable power model to determine the performance

of trucks [37]. Many efforts have been followed by [39] and [6] to calibrate the dynamics models.

Although these dynamics models provide a good fit to the field data, it is hard to decide which breaking

points are appropriate for different regimes, not to mention that these breaking points are subject to

variation as data sets change. Besides, these models need intensive calibration before using them. The

downsides of the parametric models are twofold: First, the majority of parametric models only predict

the maximum acceleration capabilities of a vehicle. Second, due to the limit of number of parameters,

it is hard to estimate highly nonlinear terms and measurement noise. For these reasons, nonparametric

estimation can be an appropriate alternative. Indeed, there are a few works on nonparametric estimation.

For example, in [47], Kim and Oh adopted an Artificial Neural Network model to predict the next state of

the vehicle given the current vehicle state, the current input steering angle of the wheels and the vehicle’s

velocity. The neural network model is associated with the hybrid learning scheme. In addition, Park et

al. introduced a speed prediction algorithm, namely Neural Network Traffic Modeling-Speed Prediction,

which is trained with the historical traffic data and capable of predicting the vehicle speed profile by

using current traffic information [35]. These works are different from ours as we aim to construct the

performance model of the vehicle and introduce exploration strategies to foster this process.

Previous research in modeling acceleration and deceleration of vehicles mainly focuses on deter-

mining the values of acceleration and deceleration of vehicles with an assumption that the stable time

and stable distance data can be obtained by measurement [1]. R.Akcelik et al. [2] provided a parametric

model for regression method to determine the acceleration time and distance of a vehicle based on Syd-

ney data. These approaches however, require a moderate data for training. In this study, we propose a

learning approach which can relax this assumption. Our proposed exploration strategies can work with

various learning schemes which have been existed in the literature. For example, Al-hasan et al. [3] aims

to find the minimum-cost route from the start cell to the destination cell. The route’s cost is defined as as

the weighted sum of three cost metrics: distance, hazard, and maneuvering. Their learning algorithm can

be used to integrate with our exploration strategies by defining the route’s cost as time and/or distance

and view each discretized velocity as a cell. Gaussian process regression utilized in [31] to estimate the
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wind map for Unmanned aerial vehicles is another example of learning algorithms that can work with

our proposed exploration strategies.

In this work, we represent a performance model associated with a pair of road slope angle and road

friction coefficient as two M×M matrices which represents stable time and stable distance. Therefore,

learning this model can be viewed as a matrix completion problem. This problem has been studied by

various works such as [11–13,25,27,33]. Yet, our work is not solely a matrix completion problem as we

introduce a scheme to reduce the training time needed for planning phase. Moreover, the performance

matrix is extremely sparse at the beginning of the training phase and this affects the efficiency of the ex-

isting techniques used for solving the matrix completion problem. In the experimental result section, we

will evaluate the performance of the matrix fractorization approach compared with that of our proposed

approach.
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CHAPTER III

Definitions

3.1 Longitudinal Motion Planning Problems

Let us first consider the vehicle in Fig. 1.1. The vehicle is approaching a hill with steep slopes on

both sides. At the beginning, the vehicle is located at the starting position at time t0 = 0 and has an

initial velocity v0. Our objective is to control the vehicle to reach the destination (the ”End” sign) at a

given arrival time tend and at a given arrival velocity vend, subject to the speed limits and the vehicle’s

acceleration constraints. We can divide the road of the entire journey into five road segments: Ri with

length Di, for 1 ≤ i≤ 5. The vehicle’s constraints differ on every road segment due to the varying road

conditions such as slope, air resistance and friction coefficients. Let vmax,i be the speed limit of the road

segment Ri such that the velocity of the vehicle cannot exceed vmax,i at any point in Ri. Let amax,i and

amin,i be the absolute values of the maximum acceleration and the maximum deceleration, respectively,

on Ri, such that the vehicle cannot accelerate more than amax,i or decelerate more than amin,i at any point

on Ri.

In general, there are N road segments. We define 1) the initial configuration as (t0,v0), 2) the arrival

configuration as (tend,vend), and 3) the road segment configuration of Ri as (Di,amax,i,amin,i,vmax,i), for

1≤ i≤ N. A longitudinal motion planning problem Pvalid is a 3-tuple 〈(t0,v0),(tend,vend),{(Di,amax,i,

amin,i,vmax,i)}i=1..N〉, where t0 = 0, 0 ≤ v0 ≤ vmax,1, 0 < tend, 0 ≤ vend ≤ vmax,N , 0 < Di, amax,i ≥ 0,

amin,i ≥ 0, and 0 < vmax,i, for 1≤ i≤ N. Our task is to generate a sequence of control signals such that

if the vehicle follows the sequence exactly, it will reach the destination while satisfying all requirements

8



and constraints. There are many different type of vehicle controllers, but for velocity-based controllers,

the sequence of control signals is a velocity function v(·), such that the controller will set the velocity

of the vehicle according to v(·) over time. We are only interested in non-negative velocity functions

because we forbid a vehicle to move backward. Let ti be the time the vehicle arrive at a road segment Ri

according to v(·) for 1≤ i < N, and let tN be the time the vehicle arrives at the destination. We say v(·)
is feasible if it satisfies the following constraints:

C1) v(t0) = v(0) = v0;

C2) tN = tend and v(tN) = vend;

C3) 0 ≤ v(t) ≤ vmax,i for ti−1 ≤ t < ti, 1 ≤ i < N (i.e., the velocity cannot exceed the speed limit of Ri

or be negative at any point in Ri);

C4)
∫ ti

ti−1
v(t)dt = Di, for 1≤ i < N (i.e., the distance traveled in Ri must be Di); and

C5) −amin,i ≤ v′(t−)≤ amax,i and −amin,i ≤ v′(t+)≤ amax,i, where v′(t−) is the left derivative of v(·) at

t, v′(t+) is the right derivative of v(·) at t, ti−1 < t < ti, and 1≤ i < N (i.e., the acceleration and the

deceleration must be within the limitations when moving on Ri).

The objective of a longitudinal motion planning problem Pvalid is to check whether a feasible velocity

function v(·) exists. Alternatively, Pvalid is called an instance of the validation problem, in which we want

to validate the given arrival configuration (tend,vend) by checking whether (tend,vend) is reachable by a

feasible velocity function. This problem will be addressed in Chapter IV. Furthermore, we define another

longitudinal motion planning problem called Pgen to generate a setpoint schedule given both initial

configuration and arrival configuration. For Pgen, we assume that the arrival configuration is feasible. In

Chapter V, we will first propose a learning scheme to learn the performance model of a vehicle and then

evaluate it by solving a Pgen problem on one road segment.

3.2 Feasible Sets of Arrival Configurations

Before presenting the algorithms for the validation problem for any number of road segments in

the next chapter, we first consider the case of one road segment: given an initial configuration (t0,v0)

and a road segment configuration (D,amax,amin,vmax), we want to find the set F of all feasible arrival

configurations. We simply call F a feasible set.

3.3 Performance Models

The goal of modeling vehicle performance is to enable long-term planning of vehicle’s movement

without knowing the details of vehicle dynamics and controls. This separation of high-level planning

9



(a) Stable Time

(b) Stable Distance

Figure 3.1: Stable time and stable distance for a particular vehicle under a particular environment. The
light color means longer time and distance, as indicated in the bars beside the graphs.

issues from the concerns of lower-level vehicle controls enables our planning procedures, called set-

point schedulers, to work with a wide variety of vehicle hardwares with different underlying control

mechanisms. Longitudinal control of autonomous vehicles are usually achieved by throttle and braking

systems coupled with sensors such as odometers and speedometers using PID-controllers. A setpoint is

the target velocity given to the PID-controllers so as to control to vehicle to reach the setpoint. However,

due to the complexity of the system, it is often hard to tune the PID gains to achieve a smooth transi-

tion after changing the setpoint. For example, if the autonomous vehicle at UT Austin decelerates from

9 m/s to 2 m/s, it will take 4.7 s to stabilize and the stable distance is 19.3 m—-a long stable time and

stable distance when compared with acceleration. This problem is due to overshooting, as illustrated in

Fig. 3.2, which is an intrinsic characteristics of vehicle dynamics.

Fortunately, for planning purpose it is not necessary to take every detail of the vehicular behavior

into account. Given the current velocity v and a setpoint v̂, the setpoint scheduler only needs to know

how long the PID controllers will take to stabilize the velocity of the vehicle at v̂ after setting the setpoint

10
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Figure 3.2: An example of the velocity response of a PID controller. Overshooting occurs when the
vehicle decelerates to a velocity that is close to zero.

to v̂, and how much the vehicle will move before its velocity is stabilized. Thus our approach relies on

the estimation of two functions T stable and Dstable, where T stable(v, v̂) is the time the vehicle takes to

stabilize at v̂ and Dstable(v, v̂) is the distance the vehicle travels after setting the setpoint to v̂ for a period

of T stable(v, v̂). We call T stable(v, v̂) and Dstable(v, v̂) the stable time and the stable distance, respectively.

The performance model of the vehicle is the pair (T stable,Dstable). Fig. 3.1 shows that the performance

model in a table format. In this table, each row represents stable time and stable distance for the vehicle

to settle from changing a discretized velocity (initial speed) to a target velocity (target speed). Because

vehicle speeds are discretized, our table-type performance model cannot fully captured the continous

velocity changing. Yet, the error can be reduced with a finner discretization.

The performance model is built via an empirical performance profiling of the PID controllers for

the brake and throttle actuators of a vehicle. Our previous work assumed this profiling is given [5]. This

work will discuss in detail how this profiling can be achieved by machine learning techniques.

11



CHAPTER IV

Validating the Feasibility of an Arrival

Configuration

4.1 Feasible Sets of Arrival Configurations

Some previous motion planning algorithms are based on the computation of feasible sets for au-

tonomous vehicles [22], robot arms [34], and humanoid robots [42]. However, feasible sets are often too

complicated to be computed exactly. Some works consider meeting both time and velocity objectives

simultaneously, such as [22], which computes a reachable set that denotes the range of reachable veloc-

ities and positions after the vehicle travels for a specific time in longitudinal motion. The reachable set,

however, cannot be used to solve our motion planning problem because we do not know how much time

a vehicle should spend in each road segment. As we shall see, the feasible sets in this paper, due to their

non-convexity and special cases, are far more complicated than the reachable sets in [22].

Previously, Au and Stone have provided a validation procedure for problems with exactly one road

segment [5]. However, their algorithm can only check whether the arrival configuration is a member

of the feasible set. It is not sufficient for our algorithms, which rely on operations such as checking

whether two feasible sets of adjacent road segments intersect. Thus, we want to find not just one but

all members in F . Nonetheless, Au and Stone provided a hint for us to construct a feasible set [5].

Fig. 4.1 showed four velocity functions: v̄UU(t;vint), v̄DU(t;vint), v̄UD(t;vint), and v̄DD(t;vint). We will

call them canonical velocity functions. v̄UD(t;vint) is also called an “up-down” velocity function, which

12
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Figure 4.1: The four canonical velocity functions.

instructs the vehicle to immediately accelerate to an intermediate velocity vint at t0 using the maximum

acceleration amax, and then maintain the velocity at vint until the last moment at which the vehicle can

decelerate using amin to reach the destination at the given tend and vend. Likewise, each of v̄UU(t;vint),

v̄DU(t;vint), and v̄DD(t;vint) has one parameter—the intermediate velocity vint—and will instruct the

vehicle to accelerate or decelerate to vint and maintain the speed as long as possible. These canonical

functions are significant due to Theorem 1.

Theorem 1 If a feasible velocity function v(·) exists for a validation problem with one road segment

only, there exists a canonical velocity function v̄(·;vint) for some intermediate velocity vint such that

v̄(·;vint) is also feasible.

An informal proof of Theorem 1 is given in [5]. The theorem implies that there is no need to check all

possible feasible velocity functions in the validation problem—it is sufficient to check whether one of the

four canonical velocity functions exists and is feasible. This result significantly reduces the complexity

of the validation problem, as discussed in [5].

It turns out that Theorem 1 can also help us to identify some interesting structures in the feasible

set. Let FUU be the feasible set of arrival configurations that are reachable by using v̄UU(t;vint) only.

Similarly, let FUD, FDU, and FDD be the feasible sets using v̄UD(t;vint), v̄DU(t;vint), and v̄DD(t;vint),

respectively. Theorem 1 infers that F is the union of the four feasible sets: F = (FUU∪FUD∪FDU∪FDD).
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Figure 4.2: The feasible set F = (FUU∪FUD∪FDU∪FDD).

Fig. 4.2 is a time-velocity diagram showing the feasible set F when v0 = 5m/s, tend = 40s, D= 120m,

amin = 1m/s2, amax = 0.6m/s2, and vmax = 15m/s. As can be seen, F can be divided into four regions:

FUU, FUD, FDU, and FDD. All four regions meet at a point P5, which is reachable by a constant velocity

function v(t) = 5 for 24s. P5 exists as long as v0 > 0; when v0 = 0, the vehicle cannot start to decelerate

as negative velocity is prohibited, and FDU and FDD do not exist. Line L6, L7, L8 and L9, which radiate

from P5, are sets of arrival configurations shared by the adjacent feasible sets. FUU, FUD, FDU, and FDD

are overlapped only on these lines. For example, FUU
⋂

FDU = L6. The interiors of FUU, FUD, FDU, and

FDD, together with L6, L7, L8, and L9, form a subdivision of F .

We are interested in the boundary of F , which encloses all sets of feasible configurations. The fact

that the boundary of F is a combination of some boundaries of FUU, FUD, FDU, and FDD can be used to

deduce the closed-form expressions of the set of equations describing the boundary of F . However, the

shape of F depends on the initial configuration and the road segment configuration, and in some cases F

is infinite. It is necessary to enumerate all possible cases in which the set of equations differ from each

other. Let consider the following four areas that are visualized in Fig. 4.3:

• AreaL is the distance the vehicle travels from v0 with a deceleration of amin until a complete stop;

• AreaR is the distance the vehicle travels from a complete stop with an acceleration of amax until it hits

the speed limit vmax;

• AreaU is the distance the vehicle travels from v0 with an acceleration of amax until it hits the speed

limit vmax; and

• AreaQ is the distance the vehicle travels from vmax with a deceleration of amin until a complete stop.

It turns out that these values play a critical role in identifying different cases as their combinations

serve as interval values that shape the set of all feasible points of each canonical velocity function.

For example, if the road distance D is less that AreaL, there is no feasible velocity function v̄DU(t;vint)

that can end up with the arrival velocity vend = 0. Similarly, AreaU is the minimum value of the road

segment such that there exists a velocity function v̄UD(t;vint) ending up with the arrival velocity vend =

vmax. Likewise, AreaL +AreaR is the lower bound condition for the existence of v̄UD(t;0) ending at
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Figure 4.3: Special values that dictates the boundary of F .

vend = vmax, and AreaU +AreaQ is the lower bound condition for the existence of v̄UD(t;vmax) ending at

vend = 0.

We need to identify all possible relationships between D, AreaL, AreaU , AreaL+AreaR and AreaU +

AreaQ. In general, the number of possible ways to compare the 5 values is 5! = 120. Fortunately, from

Fig. 4.3 we identify some additional relationships among those four values: 1) AreaL≤AreaL+AreaR; 2)

AreaU ≤ AreaU +AreaQ; 3) AreaL ≤ AreaQ ≤ AreaU +AreaQ; and 4) AreaU ≤ AreaR ≤ AreaL +AreaR.

Basically, these relationships imply that both AreaL and AreaU are less than or equal to AreaL +AreaR

and AreaU +AreaQ. This helps us to reduce the number of different cases to seven:

• Case 1: D≤ AreaL and D≤ AreaU ;

• Case 2: D≤ AreaL and D≥ AreaU ;

• Case 3: D≥ AreaL and D≤ AreaU ;

• Case 4: D≥max{AreaL, AreaU} and D≤min
{

AreaL +AreaR, AreaU +AreaQ
}

;

• Case 5: D≥ AreaL +AreaR and D≤ AreaU +AreaQ;

• Case 6: D≤ AreaL +AreaR and D≥ AreaU +AreaQ; and

• Case 7: D≥max
{

AreaL +AreaR, AreaU +AreaQ
}

.

We derived the equations for the upper bound Ωupper(t) and the lower bound Ωlower(t) of the feasible

set in these seven cases. These equations, shown in Fig. 4.4 and 4.5, are inferred from an analysis of the

aforementioned canonical velocity functions, but due to the lack of space we omit the analysis. Given an

initial configuration (t0,v0) and a road segment’s configuration (D,amax,amin,vmax), we can determine

which case it belongs to, and then find the equations of Ωupper(t) and Ωlower(t) in the tables in Fig. 4.4

and 4.5. To see how to use the tables, take a look at the example in Fig. 4.2. We have AreaL =
v2

0
2amin

=

12.5m; AreaR = v2
max

2amax
= 187.5m; AreaQ = v2

max
2amin

= 112.5m; and AreaU =
v2
max−v2

0
2vmax

= 166.7m. Hence this

is Case 3 since D≥ AreaL and D≤ AreaU . The equation of the upper bound is

Ω
upper(t) =


undefined if t < 13.3

g1(t) if 13.3≤ t ≤ 23.9

11.4 if 23.9≤ t
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where g1(t) = 5− t +
√

1.6t2−16t +384. This corresponds to L1 and L2 in Fig.4.2. We also have

Ω
lower(t) =


undefined if t < 13.3

g2(t) if 13.3≤ t ≤ 19.1

0 if 19.1≤ t

where g2(t) = 5+ 0.6t −
√

0.96t2 +16t−384. This corresponds to L3 and L4 ∪ L5 in Fig. 4.2. All

feasible configurations are enclosed between Ωupper(t) and Ωlower(t).
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Case 1: D≤ AreaL and D≤ AreaU
t t < td

2 td
2 ≤ t ≤ td

1 td
1 < t

Ωupper(t) hd
1(t)

t t < td
2 td

2 ≤ t ≤ td
1 td

1 < t
Ωlower(t) gu

1(t)

Case 2: D≤ AreaL and D≥ AreaU
t t < tu

2 tu
2 ≤ t ≤ td

3 td
3 ≤ t ≤ td

1 td
1 < t

Ωupper(t) vmax hd
1(t)

t t < tu
2 tu

2 ≤ t ≤ tu
1 tu

1 ≤ t ≤ td
1 td

1 < t
Ωlower(t) gu

2(t) gu
1(t)

Case 3: D≥ AreaL and D≤ AreaU
t t < td

2 td
2 ≤ t ≤ td

5 td
5 ≤ t

Ωupper(t) hd
1(t) hd

2(t)

t t < td
2 td

2 ≤ t ≤ tu
4 tu

4 ≤ t
Ωlower(t) gu

1(t) 0

Case 4: D≥max{AreaL, AreaU} and D≤min
{

AreaL +AreaR, AreaU +AreaQ
}

t t < tu
2 tu

2 ≤ t ≤ td
3 td

3 ≤ t ≤ td
5 td

5 ≤ t
Ωupper(t) vmax hd

1(t) hd
2(t)

t t < tu
2 tu

2 ≤ t ≤ tu
1 tu

1 ≤ t ≤ tu
4 tu

4 ≤ t
Ωlower(t) gu

2(t) gu
1(t) 0

Case 5: D≥ AreaL +AreaR and D≤ AreaU +AreaQ

t t < tu
2 tu

2 ≤ t
Ωupper(t) vmax

t t < tu
2 tu

2 ≤ t ≤ tu
1 tu

1 ≤ t ≤ tu
4 tu

4 ≤ t
Ωlower(t) gu

2(t) gu
1(t) 0

Case 6: D≤ AreaL +AreaR and D≥ AreaU +AreaQ

t t < tu
2 tu

2 ≤ t ≤ td
3 td

3 ≤ t ≤ td
5 td

5 ≤ t
Ωupper(t) vmax hd

1(t) hd
2(t)

t t < tu
2 tu

2 ≤ t ≤ tu
5 tu

5 ≤ t
Ωlower(t) gu

2(t) 0

Case 7: D≥max
{

AreaL +AreaR, AreaU +AreaQ
}

t t < tu
2 tu

2 ≤ t
Ωupper(t) vmax

t t < tu
2 tu

2 ≤ t ≤ tu
5 tu

5 ≤ t
Ωlower(t) gu

2(t) 0

Figure 4.4: The upper boundaries and the lower boundaries of the feasible sets in seven different cases.
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Figure 4.5: The equations in Fig. 4.4.
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4.2 Sampling-based Validation Procedure

In this section, we propose a sampling-based validation procedure for a multi-segment path. A naı̈ve

sampling algorithm is the one that chooses a point randomly from a feasible set to be used as the ini-

tial configurations for the next road segment, until it reaches the last segment. Then it checks whether

(tend,vend) is in the last feasible set. The naı̈ve sampling algorithm is fast, but does not work when there

is a large number of road segments. Hence we modify the naı̈ve sampling algorithm to take advantage

of our knowledge about the feasible set. The new M-sample algorithm randomly draws M points rather

than one point from the set of feasible sets. These M points will become the initial configuration for

the next road segment. Then another M points are chosen in the next road segment. At first glance, this

strategy is not different from running the naı̈ve sampling algorithm M times. But there is a key differ-

ence: the M-sample algorithm allows us to employ some heuristics to spread out the sample points in

feasible sets so as to maximum the coverage of the feasible sets. One heuristic we studied is to choose

M points that maximizes a distance function among the points to extend the coverage of the union of

feasible sets generated from these sample points. At each road segment, we will randomly choose ten

sets of M points from the set of feasible sets. Then we will select the set that has the maximum sum of

the Euclidean distances of all pairs of points in the set, to be the initial configurations for the next road

segments.

4.3 Experiments

We conducted a simulation experiment in Python to compare the M-sample algorithm with the naı̈ve

sampling algorithm as well as M-sample without the heuristics. First, we consider different numbers

of road segments N, from 1 to 31. Second, for each value of N, we generated 1000 random problems

that are valid. The problems are created by randomly choosing the values of the parameters from their

predefined ranges: v0 ∈ [0, 50], Di ∈ [10, 600], amax,i ∈ [0.5, 6], amin,i ∈ [0.5, 6], and vmax,i = 50. We

randomly generated some velocity schedules, and then the ending configuration after executing each

velocity schedule will be used as the arrival configuration (tend,vend). For each random problem, we ran

each of the algorithms repeatedly until it finds a solution or a time limit of 0.2 seconds is exceeded.

Then we measured the success rate of over 1000 random problems. This evaluation over 1000 random

problems is repeated 100 times to obtain the average and 95% confident intervals as appeared in Fig. 4.6.

The 95% confident intervals are shown as the small error bars in the figure lines.

From Fig. 4.6 we can see that the M-sample method with heuristics (the M-heuristic lines) generally

has a higher success rate than the M-sample method without heuristics (the M-random lines) if the

number of sample points is the same. Both M-sample methods have a much higher success rate than the

naı̈ve method (the 1-sample line).
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Figure 4.6: Success rates of the sampling algorithms.

4.4 The Use of Feasible Sets on Real Vehicles

We also studied how to utilize feasible sets in the control of a real vehicle. The computation of

a feasible set is based on a simplified vehicular model with linear acceleration and deceleration, but

the actual behavior of a real vehicle is more complicated than that, and hence the feasible set of a

real vehicle is different from the one in Table 4.4. Nonetheless, the actual behavior will only impose

additional constraints to the computation of the feasible set, and hence the feasible set of a real vehicle

is a subset of a feasible set in Table 4.4. Thus, we can use the feasible set to help finding a feasible arrival

configuration as well as eliminate arrival configurations that are impossible to reach.

Our experiments were launched on a road consisting two segments, one is flat and the other is a

slope. Our goal is to control a physical vehicle to arrive at the top of the slope at certain time and at

certain velocity. To do this, we first tried to find a suitable arrival time and velocity at the junction of the

two road segments. First, we used Table 4.4 to compute a feasible “superset” at the junction, based on

the measurement of maximum acceleration and deceleration. Then we randomly chose a configuration

in the superset and then used the bisection method in [4] to check whether there is a setpoint schedule

to control the vehicle to arrive at the junction at the chosen configuration. If not, then we chose another

configuration in the superset and tested again. Otherwise, we used the bisection method to check whether

it is possible to meet the arrival requirement at the top of the slope starting from the chosen configuration.

We repeat the process until we find a configuration at the junction that feasible setpoint schedules exist

on both road segments. Then we control the vehicle to run according to the two setpoint schedules, and

measured the errors in the arrival time and the arrival velocity. We repeated the procedure 32 times with

randomly chosen arrival configurations at the top of the slope. The errors in the arrival time and velocity

are −1.42±0.57s and −0.16±0.16m/s, respectively. These errors are probably due to the model error
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in performance profiling of the vehicle, as well as the sudden slowdown when the vehicle hit the slope

at the junction. In the future, we will investigate how to reduce these errors.
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CHAPTER V

Vehicle Dynamics Modeling

5.1 Learning Algorithms

In this chapter, I will represent learning schemes to facilitate the modeling of the vehicle dynamics.

To begin with, the first section introduces three learning algorithms. In the next section, I will introduce

a Plan-based exploration strategy which can be combined with a learning algorithm to make a complete

learning scheme. The performance of learning schemes will be evaluated by an experimental result

section.

5.1.1 Artificial Neural Networks

According to our problem formulation, a performance model has two functions: T stable and Dstable.

Our learning task is to estimate these functions by function approximators. One popular function ap-

proximator is artificial neural network (ANN). It has been shown that ANN with hidden layers can be

used to approximate any functions. One common and well-known algorithm for training ANN with hid-

den layers is the backpropagation algorithm. Fig. 5.1 shows the ANNs that we used as the performance

model. We use two ANNs, one for T stable and the other for Dstable, and they work independently. The

input nodes are v0 and v1, which are the starting velocity and the setpoint, respectively. Both ANNs

have a hidden layer with 5 nodes. Given the error in the output nodes, we will use the backpropagation

algorithm to adjust the weights on the edges in the ANNs.

The weights of the connections between neurons can be initialized by fitting the reference model.
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Figure 5.1: A performance model represented by two artificial neural networks

5.1.2 Matrix Factorization with Gradient Descent

As discussed in Chapter II, we represent a performance model as two M×M matrices whose each

row corresponds to an initial velocity and each column relates to a target velocity. I argues that there must

be some latent features underlying the interactions between initial and target velocities that determine

how long and how far it takes to settle at a new target velocity. Thus, we can adopt recommendation

algorithms in solving our learning task. In this work, we favor the matrix factorization algorithm with

gradient descent for its efficiency and relatively fast speed in discovering the hidden under the data [?].

Let R of size |U |×|D| be the matrix that contains all the time or distance to change from initial velocities

to target velocities and assume that there would be K latent features that need to be discovered. Our

task is to figure out two matrices P and Q such that R ≈ P×QT and P, Q are |U | ×K and |D| ×K

matrices respectively. By doing this, each row of P would indicate the strength of associations between

an initial velocity and the features; each row of Q would show the strength of associations between a

target velocity and the features. It can be seen that the predicted time or distance of changing from ui to

d j is the dot product of the two vectors corresponding to ui and d j.

r̂i j = pT
i ×q j =

K

∑
k=1

pikqk j (V.1)

Given the set T of observed elements in the matrix R, we can compute the local difference between an

estimated element and its real value as in Equation V.2.

e2
i j = (ri j− r̂i j)

2 = (ri j−
K

∑
k=1

pikqk j)
2 (V.2)

Our goal is to find matrices P and Q to minimize these local differences because once we find them,

we can fulfill matrix R using equation V.1. The gradient descent method achieves P and Q matrices by
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finding which direction we should modify the values of pik and qk j to minimize such local errors. This

step is done by partially differentiating e2
i j with respect to pik and qk j.

∂

∂ pik
e2

i j =−2(ri j− r̂i j)(qk j) =−2ei jqk j (V.3)

∂

∂qk j
e2

i j =−2(ri j− r̂i j)(pik) =−2ei j pik (V.4)

Based on the obtained gradient, we can formulate the update rules for both pik and qk j as follows.

p′ik = pik +
∂

∂ pik
e2

i j = pik +2αei jqk j (V.5)

q′k j = qk j +
∂

∂qk j
e2

i j = qk j +2αei j pik (V.6)

(V.7)

where α is a constant that determines the learning rate. In this work, we chose α equal to 0.001. These

updates are terminated when the overall error calculated using Equation V.8 less than a constant ε or the

improvement in reducing the overall error is small after a number of iterations.

E= ∑
(ui,d j,ri j∈T )

e2
i j = ∑

(ui,d j,ri j∈T )
(ri j−

K

∑
k=1

pikqk j)
2 (V.8)

To avoid overfitting, we add a parameter β to Equation V.2 and modify the squared error as in Equa-

tion V.9.

e2
i j = (ri j− r̂i j)

2 +
β

2

K

∑
k=1

(‖P‖2 +‖Q‖2) (V.9)

The update rules, therefore, are modified accordingly as in Equation V.12.

p′ik = pik +α(2ei jqk j−β pik) (V.10)

q′k j = qk j +α(2ei j pik−βqk j) (V.11)

(V.12)

For the experiments, we chose β equal to 0.5 empirically.

5.1.3 Instance-based Learning

In this work, we propose a learning approach that utilizes the performance model on another road

while learning the performance model. A reference model is typically the model of a similar vehi-
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cle (not need to exactly same) associated with an arbitary road slope and road friction coefficient. In

this study, we model T stable(vi,v j) and Dstable(vi,v j) as Gaussian distributions and utilize the reference

model to obtain the initial parameter values. While utilizing a reference model is optional, it fosters

the convergence of the learning process. Let call the reference model T stable
re f , T and D are initialized

as T stable(vi,v j) ∼ N(T stable
re f (vi,v j),0) and Dstable(vi,v j) ∼ N(Dstable

re f (vi,v j),0). The second stage is to

update the parameters of these gaussian distributions as learning process is executed. Suppose the vehi-

cle has velocity vi, if we drive it to a new setpoint v j, we can measure the necessary time ts for it to be

stable and the distance it travels ds during that time. By doing this, we have explored the performance

model and collected a sample of this model. How to schedule a plan to collect sample efficiently will be

covered in the next section. We will continue with how to use this sample to update the parameters of the

Gaussian distributions. To update every Gaussian distributions with a sample, we utilize multivariate lin-

ear regression approach to generate a ”virtual sample” for each Gaussian distribution. The multivariate

linear regression models for stable time and stable distance are represented in Fig. V.13. These models

are trained with all collected samples (which are practically measured).

f (vi,v j) =W (vi,v j)
T +bt (V.13)

where f (vi,v j) is the value of stable time or stable distance After generating ”virtual samples” based on

the newly-collected sample, we update parameters for every Gaussian distribution using Equation V.15.

For a pair of setpoints (vi,v j), the updated mean and standard deviation of the posterior probability at the

learning iteration l of f (vi,v j) are symbolized as µ f (vi,v j),t and σ f (vi,v j),t and calculated by the following

equations:

µ f (vi,v j),t =
µ f (vi,v j),0 +∑

N
l=1 kl f (vi,v j, l)

1+Nkl
(V.14)

σ f (vi,v j),t =

√
(µ f (vi,v j),t .−µ f (vi,v j),N)

2 +∑
N
l=1 kl( f (vi,v j, l)−µ f (vi,v j,N)

2

1+Nkl
(V.15)

Where µ f (vi,v j),0 is the initialized mean and equal to the corresponding value of the reference model; f

is either ft or fd function; f (vi,v j, l) is a sample (can be ”virtual” or real) of f (vi,v j) at the iteration l.

kl is learning rate which is set to be different with respect to the type of the sample.

5.2 Plan-based Exploration Strategy

As mentioned in the previous section, in this section, we investigate the plan to do sampling ef-

ficiently to foster the convergence of the learning process. According to the law of large numbers, a
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convergence of the estimated model is guaranteed as we collect more and more samples. However, the

order of samples collected largly affects the learning speed and the estimated performance model. In

general, since the performance model (T stable,Dstable) will be used repeatedly for many different mo-

tion planning episodes, each of them uses different parts of the model, we want the estimated model to

be as complete as possible, meaning that we should spread out the samples so that no part of the model

will be ignored forever. To facilitate the sampling process, the vehicle employs an exploration strategy,

which determines the sequence of samples so as to minimize the time it takes to learn the performance

model.

Here we consider exploration strategies that have the following three characteristics: First, the vehi-

cle will sample at the discrete velocity values only. Let V= {n×d}n={0..m} be the set of discrete velocity

values where d is the discretization step and d×m is the maximum velocity, which is either the speed

limit of the road or the top possible velocity of the vehicle. Second, after a vehicle deliberately changes

its setpoint to measure the stable time and the stable distance, it will immediately start another measure-

ment right away the vehicle is stabilized at the new setpoint. The result is that the ending velocity of a

sampling step is always the starting velocity of the next sampling step. This way the vehicle can avoid

the idle time between two samples. Third, the vehicle should avoid collecting the same sample again,

because doing the same measurement twice is redundant since we assume that the measurement is exact.

Based on these characteristics, an exploration strategy can be considered as a sequence of setpoints

〈v0,v1,v2, . . . ,vn〉, where v0 is the initial velocity of the vehicle, and vi is the next setpoint after the

vehicle stabilizes at vi−1, for i ≥ 1. The vehicle, starting with the initial velocity v0, will first set its

setpoint at v1 and then measure the stable time and stable distance when its velocity stabilizes at v1. After

the measurement, it immediately sets its setpoint at v2 for the second measurement. Then the process

continues until the last setpoint vn. To ensure completeness, this sequence of setpoints should be chosen

to exhibit the property that the set of all possible consecutive pairs of setpoints (i.e., {(vi,vi+1)}i=0..(n−1))

is exactly the set of all possible pairs of different velocities in V (i.e., {(v,v′) : v,v′ ∈V and v 6= v′}). Thus,

under this exploration strategy, the performance model will converge to the true one.

A faster rate of convergence to the true performance model is important because the vehicle may

not have enough time to acquire all the measurements before it uses the performance model for motion

planning. It will be quite helpful to the motion planner if the vehicle can get fairly accurate performance

model early on. We believe that the order of setpoints in an exploration strategy will greatly affect the

speed of learning. In particular, we hypothesize that if an exploration strategy collects samples that will

be used to generate a setpoint schedule in advance, the estimated performance model can result in less

error in solving the planning problem. Based on this hypothesis, we introduce an exploration strategy

called Plan-based sampling as following: 1) use a common planner to generate a plan (in our test bed

problem, we use the bisection method) to generate a plan that solves the planning problem based on the

26



Figure 5.2: The car and the platform used in the experiments

reference model; 2) sample all element in the performance array that captures the changing of setpoints

existing in the generated plan, in advance. For example, if the generated plan, respresented by a tuple, is

(t0,v0),(t1,v1),(t2,v2)...(tn,vn), we would sample elements (v0,v1),(v1,v2), ...(vn−1,vn) with the highest

priority. Nevertheless, the generated plan may be not accurate so we also sample elements surrounding

these first priority elements. The distance that we sample around these first priority elements depends

on the size of the discretized velocities. For our planning problem, a distance d that equal to 2% of total

number of discretized velocities provides the best result; 3) sample all other elements with minimum

repetition.

5.3 Setpoint Schedule Generation

The previous sections addresses the problem of obtaining the vehicle’s performance model. In this

section, we introduce two methods to solve the problem Pgen defined in 3.1.

5.3.1 Bisection Method

This method is first introduced by Au et al. in [4]. Let d the road’s length; (t0,v0) the initial con-

figuration; (tend ,vend) the arrival configuration. For every v̂int within the velocity range that we set

when obtaining the vehicle’s model, we can find a setpoint schedule S(vint) =< (t0,v0),(t1,vint),(t1 +
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τ,vint),(tend ,vend)> where

t1− t0 = T stable(v0,vint) (V.16)

tend− t1− τ = T stable(vint ,vend) (V.17)

(V.18)

τ can be computed as τ = tend−t0−T stable(v0,vint)−T stable(vint ,vend). If the car executes S, its traversal

distance can be computed as follows.

D(S(vint)) = Dstable(v0,vint)+Dstable(vint ,vend)+ vintτ (V.19)

The bisection method solve Pgen by searching for vint satisfying D(S(vint)) = d. The procedure starts

by letting v̂a = vmin, v̂b = vmax and suppose that D(S(v̂a)) ≤ d and D(S(v̂b)) ≥ d. Then, it computes

v̂c = (v̂a + v̂b)/2 and checks whether D(S(v̂c)) is greater than or equal to d. If it is true, set v̂b = v̂c;

otherwise, set v̂a = v̂c. These steps are repeated until the width of the interval [v̂a, v̂b] is smaller than a

small threshold, such that v̂a ≈ v̂b. Eventually, we choose vint = v̂a.

5.3.2 Dynamic Programming

This approach first computes the set of all feasible configurations for a road with any given starting

velocity v0. We denote this set by F(v0), and call F the feasible set table of ρ .

Computing the feasible set is not straightforward, because T stable and Dstable can be arbitrary func-

tions. We cope with this problem by introducing a dynamic programming algorithm for computing

the feasible set, based on a discretization of time, velocity, and distance. Let V = {v0,v1, . . . ,vmv},
T = {t0, t1, . . . , tmt}, and D = {d0,d1, . . . ,dmd} be a finite set of velocities, times, and lengths, respec-

tively, so that {v× t : ∀v ∈ V and ∀t ∈ T} ⊆ D.

Let F be a |V|× |D| table such that F(v0,d) is the feasible set if the starting velocity is v0 and the

length of ρ is d. F can be defined recursively as follows. When d = 0,

F(v0,0) = {(0,v0)}.

When d > 0,

F(v0,d) =

 ⋃
vint∈V\{v0}

F1(v0,d,vint)

∪F2(v0,d) (V.20)
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where

F1(v0,d,vint) =
ADDTIME(F(vint,d−Dstable(v0,vint)),

T stable(v0,vint)) if Dstable(v0,vint)≤ d,

/0 otherwise,

F2(v0,d) =

 ADDTIME(F(v0,d−δdv0),1) if δdv0 ≤ d,

/0 otherwise,

ADDTIME(F,δ t) = { (t +δ t,v) : ∀(t,v) ∈ F },

and δdv0 = v0×δ t, where δ t is the time interval in discretization.

Based on Equation V.20, we can devise a dynamic programming algorithm to compute F.

The algorithm first initializes the entries in the first column (d = 0) in F with (0,v0) before filling

out the rest of the table in ascending order of d. Each entry in the d column depends on some entries in

previous columns with smaller d according to Equation V.20. At the end, it returns F(v0) = F(v0,D) for

all v0 ∈ V. The running time of the algorithm is O(|T|× |V|3×|D|).

Algorithm 1 Computing the feasible set table of a road.

1: procedure FSETOFEDGE(D,T stable,Dstable)
2: Let F be a |V|× |D| table.
3: F(v0,0) := {(0,v0)} for all v0 ∈ V
4: for all d ∈ D\{0} in ascending order do
5: for all v0 ∈V do
6: Let δdv0 := v0 and F(v0,d) := /0.
7: if δdv0 ≤ d then
8: F(v,d) := ADDTIME(F(v0,d−δdv0),1)

9: for all vint ∈V \{v0} do
10: if Dstable(v0,vint)≤ d then
11: F(v,d) := F(v,d)∪ADDTIME(F(vint,d−Dstable(v0,vint)),T stable(v0,vint))

return F(·,D) // which is equal to F
12: procedure ADDTIME(F,δ t)
13: Let F ′ := /0
14: for all (t,v) ∈ F do
15: F ′ := F ′∪{(t +δ t,v)}

return F ′

The function ADDTIME in Algorithm 1 is O(|T|× |V|), because the maximum size of a feasible set

is |T|×|V|, though in practice the feasible sets are usually much smaller. Since ADDTIME can be called

by at most |V|2×|D| times,
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After computing the feasible set table F, we need to extract a plan π from F such that π corresponds

to a setpoint schedule for a given arrival time and velocity. To facilitate the plan extraction, we record

the solutions by adding pointers to F when we run the dynamic programming algorithm. However,

this approach will take a lot of memory space and slow down the algorithm. Fortunately, there is an

alternative method that does not require additional memory space.

Suppose we want to find trajectory of a feasible point (tend,vend) with a starting velocity v0 and road

distance d. Let define a desired setpoint schedule of this configuration as S(v0,vend, tend,d) and consider

an arbitrary point (T stable[v0][vint],vint). It is obvious that

S(v0,vend, tend,d) = S(v0,vint,T stable[v0][vint],D[v0][vint])+S(vint,vend,∆t ,∆d) (V.21)

as long as ∆t +T stable[v0][vint] = tend, ∆d +Dstable[v0][vint] = d with 0 ≤ ∆t ,∆d and there exists a tra-

jectory S(vint,vend,∆t ,∆d). This recursive relationship tells us how to find a desired trajectory based on

searching for intermediate points (T stable[v0][vint],vint).

Algorithm 2 Extract trajectory of a feasible point

1: procedure EXTRACTTRAJECTORY(v0,D, tend ,vend ,T stable,Dstable,F)
2: Let traj be an array storing intermediate points
3: Append (0,v0) to traj . First setpoint of trajectory
4: ADDPOINTS(traj, tend ,vend ,T stable,Dstable,F)
5: return traj
6: procedure ADDPOINTS(&traj, t,d,vend ,T stable,Dstable,F)
7: if t ≤ 0 then . The base case
8: return
9: for all vint ∈V do

10: Let δd = d−Dstable(v0,vint)
11: Let δt = t−T stable(v0,vint)
12: if 0≤ δd ,δt and (δt ,vend) ∈ F(vint,δd) then
13: Let tl equal time value of last element of traj
14: Let Pint = (T stable(v0,vint)+ tl,vint)
15: Append Pint to traj . next intermediate point which becomes the starting point of the

next iteration as following:
16: ADDPOINTS(traj, δt ,δd ,vend ,vint,T stable,Dstable,F) . recursive iteration with new target

distance, new running time and new starting velocity

5.4 Experiments

In this section, we conduct simulation experiments to evaluate the learning methods and the ex-

ploration strategy. The evaluation process involves two steps: First, we performed these learning and
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exploration strategies to estimate vehicle’s performance models and calculate the root mean squared er-

ror of these models with regard to the true performance model. Second, we used these estimated models

with a planner to generate set-point schedules and execute them to evaluate the errors in planning plan-

ning. The true models used in these experiments are based on a physical car. To generate a true model,

we carry out the following procedure: 1) set up a car and a road specified by a road slope angle and road

friction coefficient 2) drive the car with different initial setpoints and target setpoints to measure stable

times and stable distances to fullfil the model. In this study, we discretized velocity values from 0 to 1.6

(m/s) with 0.2 (m/s) interval 3) with each sampling, we drive the car 5 times to get the maximum stable

time and then measure the distance that the car travels within this time. We carried out this procedure

on two type of roads and use a least squared regression method to generalize true models in 360 differ-

ent settings of road slope angles and friction coefficients. Road slope angles are discretized from −38

degrees to 40 degrees with 2 degrees interval (relative to the horizontal axis) while road coefficients are

discretized from 0.1 to 0.9 with 0.1 interval. Figure 5.2 shows the car and the road setup that we used to

generate the data. For each parameter setting, our goal is to learn a performance model when the vehicle

runs on the slope.

To begin with the first evaluation phase, we implemented our ANNs using ByBrain [38], a machine

learning library for Python. The ANNs in this experiment are two feedforword neural networks that use

the sigmoid activation function, as shown in Fig. 5.1. Both ANNs consist of two input nodes, which

correspond to the starting velocity and the target velocity. We examined the effects of the number of

nodes at hidden layer and the number of hidden layers, by allowing the number of nodes at hidden layer

to vary between 2 and 10 and the number of hidden layers to vary between 1 and 10. After a thorough

evaluation, we settled with one hidden layer and five nodes. As discussed in Section 5.1, the ANNs are

pre-trained in the same environment as the one generated the reference model. The ANNs are updated

by using the backpropagation function in PyBrain.

The matrix factorization with gradient descent’s implementation is straightforward while the imple-

mentation of the instance-based learning is based on the update rule as described in Section 5.1. The

learning process starts with a performance model of the reference road, and updates the performance

model by updating the Gaussian distribution’s parameters.

In each experiment, we randomly chose a set of parameters of the reference road as well as the target

road we intend to learn. Then we used the reference model to initialize the parameters for both instance-

based learning approach and ANNs aroach. After that we started the training stage. We considered two

exploration strategies, one is the Plan-based exploration strategy in Section 5.2 and the other is a random

strategy that randomly chooses the next setpoint in the learning process. We applied both strategies to

learning algorithms. The vehicle used the exploration strategies to try out different setpoints, collect the
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stable times and stable distances, and update the performance models. The training stage is ended up

after a number of explorations or the squared error of performance models is smaller than some number.

We completed the first evaluation phase by computing the root mean squared errors during the learn-

ing process against true models as shown in Equation V.22.

RMSE =
1

U×D

√√√√ U

∑
i=1

D

∑
j=1

(ri j− r̂i j)2 (V.22)

where R and R̂ are |U |× |D| matrices; R is the true model and R̂ is an intermediate model obtained by

the learning process. This allows us to see how quickly the learning approaches can reduce the model

error. We plotted the RMSEs as the performance models evolved during the learning process over time.

The result is shown in Fig. 5.3 and 5.4. Notice that each data point in the figures is an average of the 300

RMSEs of the 300 trials, and the error bars represent the 95% confident intervals. As can be seen, the

instance-based approach outperformed both the ANN approach and the matrix factorization approach

in terms of the learning rates in both the stable time and the stable distance. The matrix factorization

approach shows the worst performance in this evaluation phase. Meanwhile, the Plan-based exploration

strategy is inferior to the random exploration strategy as its convergence speed is lower than that of the

random exploration with the same learning approach. This can explained as following: the Plan-based

scheme first samples unevenly and focuses on elements related to the plan so is possibly loose to capture

the whole model at the beginning. However, this exploration scheme has an advantage that is presented

in the second evaluation phase.

In the second evaluation phase, we used intermediate models generated during the training stage to

make plans and assessed these plans using the simulation platform. The purpose of this phase is to figure

out which learning and strategy approach is appropriate for our set-point scheduling problem. In order

to assess an intermediate performance model with a given an problem configuration, we implemented

bisection method to generate a set-point schedule and executed it in the simulation platform under a

corresponding set of parameters. Each experiment includes the following steps: a) randomly choose a

road with a set of parameters as the first evaluation phase and a reference performance model b) do

learning performance models for this road with different learning methods and strategies to generate

intermediate models c) randomly generate 30 different set-point schedule problems and use bisection

method to generate 30 corresponding plans for each intermediate model d) execute those plans and

observe the errors in arrival time, velocity and distance.

We did the above experiment 50 times and reported the result. Since we treated arrival velocity as the

first priority, the corresponding errors are small so we omitted here. In Fig. 5.5 which demonstrates the

error in arrival time, we also eradicated two lines presenting the performance of the random sampling

strategy with the ANN and matrix factorization approaches as its convergence speed is very slow. As
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can be seen, the Plan-based exploration strategy outperformed the random exploration strategy and our

proposed learning scheme is superior to the other learning approaches. In addition, the performance of

the matrix factorization approach is better than that of the ANN approach.
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CHAPTER VI

Conclusions

In this work, I first addressed the problem of controlling a robot to arrive at a position on a segmented

road at a given time and velocity. I showed that it is possible to completely describe the feasible sets of

arrival configurations by closed form equations for any parameters in the problem. The computation of

feasible sets can provide a means to solve other path planning problems. Moreover, I devised a sampling-

based algorithm to solve the validation problem. The experimental results demonstrated the effectiveness

of a heuristics for the sampling-based algorithm to cope with a large number of road segments. The first

part of my work is ended with a demonstration on how to use the feasible set in controlling a real vehicle

which may not satisfy the vehicle model assumptions. One of possible extensions to this part is to utilize

feasible set description to solve the optimization problem in arrival time and velocity.

In the second half of my work, I focused on learning a behavior-based performance model of a vehi-

cle with non-linear control. Instance-based learning approach is suitable for this task because the behav-

ior of a vehicle is quite similar on different roads. I presented a novel instance-based learning approach

to learn a performance model of a vehicle’s controller. The approach directly adapts the performance

model of the reference road for a different road, using an update rule. In essence, my instance-based

learning approach is quite similar to transfer learning, through the source domain and the target domain

are different in terms of the road settings only. I compared this approach to artificial neural networks

that are pre-trained on the same reference road and to the matrix factorization method. An exploration

strategy based on the principle of least effort was proposed to speed up the learning process. Accord-

ing to our experiments, both learning schemes can eventually learn the true performance model given
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enough samples. However, my proposed learning approach outperformed the others and my plan-based

exploration strategy significantly facilitates the learning process when doing planning using the obtained

models. In the future, I intend to remove the assumption that all measurements are exact and investigate

how to select the best performance model as the reference model.
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