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Abstract 
The fundamental magnetic resonance angiography (MRA) has been used for obtaining vascular infor-

mation, such as vessel size and structure. For many decades, MRA techniques with contrast agent have 

been developed and implemented in research and the clinical area for in vivo applications. Especially, 

the longitudinal (T1) and transverse (T2 or T2
*) contrasts in MRA provide diverse and different infor-

mation of same subject’s vasculature. The assessments of vascular structure and function by using two 

types of contrast are important for monitoring vascular behavior. 

Generally, the two types of contrast agent are T1- and T2-contrast agents. In recent years, several efforts 

have been focusing on synthesizing hybrid nanoparticles to achieve T1- and T2-contrast, simultaneously. 

The MR images with both positively and negatively enhanced contrast over the same anatomical region 

offer complementary information. The benefits of dual contrast with a single agent for in vivo experi-

ments are obvious. 

In this study, instead of synthesized hybrid contrast agents or multiple contrast agents, simultaneous 

acquisitions of in vivo dual contrast with size-controlled superparamagnetic iron oxide nanoparticles 

(SPION) in MRA were obtained and evaluated. As this method is successful for preclinical investiga-

tions, dual contrast has a great potential to directly help to compensate vascular information by posi-

tively and negatively enhanced contrast. The results of obtained dual contrast in in vivo images were 

apparent, the smaller vessels in the head region of rodents were distinctively visible from negatively 

enhanced contrast MRA, while positively enhanced contrast MRA eliminated false contrasts in regions 

of airways and bone from negatively enhanced contrast MRA.

Based on advantages of dual contrast in in vivo MRA, we systematically compared the strengths and 

weaknesses of dual contrast-enhanced MRAs with SPION in cerebral micro-vessels of the rodent brain. 

The vasculatures in rodent brain with positively enhanced contrast were visualized well without any 

artifact, but smaller vessels than given spatial resolution were hardly detected. On the other hand, neg-

atively enhanced contrast based MRA provided good sensitivity for micro-vessels. However, negatively 

enhanced vessels and specific regions suffered from susceptibility-induced artifacts. Consequently, dual 

contrast enhanced MRAs were combined for compensation of those shortcomings and visualization of 

whole-brain micro-MRA. 

 The other subject of this thesis is a feasibility evaluation of newly developed contrast agent for in 

vivo applications at high magnetic field. From MR perspective, the behavior of higher magnetic field 

(> 7T) is attractive, as it is expected to drastically increase SNR, resolution and susceptibility contrast, 

which improves lesion detection and quantifications. Also the reduction of inherent T1 relaxation time 

of contrast agent at high magnetic field is important to increase positively enhanced contrast with lim-

ited MR acquisition parameters. 
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The developed contrast agent used in this study was observed to maintain its favorable positive relax-

ivity even at 7 T magnetic field without drastic reductions of r1 relaxivity. The developed contrast agent 

was characterized by this phantom and in vivo experiments. The results of 3D MRA proved the feasi-

bility of vascular imaging within 2 hours after intravenous injection of the contrast agent. And a signif-

icant reduction of T1 values was observed in the tumor region 7 hours after contrast agent injection in 

the tumor mouse model. 
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Chapter 1. Introduction 
 

1.1 Purpose 
 

The aim and content of this thesis can be summarized into two distinct subjects. One is to verify and 

develop the feasibility of dual contrast by using superparamagnetic iron oxide nanoparticles (SPION) 

in in vivo applications. Furthermore, the information of dual contrast in MRI is used for compensation 

of their inherent drawbacks. The other is to evaluate and characterize the developed contrast agent 

through both in vitro and in vivo experiments.  

The detailed objectives of the research are as followings: 

First section includes the below topics, 

(1) Dual MRI T1 and T2
* contrast with size-controlled iron oxide  

(2) UTE–ΔR2–ΔR2
* combined MR whole-brain angiogram using dual-contrast superparamagnetic iron 

oxide nanoparticles 

Second section includes the topic below, 

(1) Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-

field MRI 

 

1.2 Outline 
 

This thesis is organized as follows:  

Chapter 2 introduces the background of this thesis. In this section, the physiochemical characteristic 

and bio-distribution of SPION is introduced to understand how SPION can be utilized in MRI. Then, 

the basics of MRI were explained and introduced for understanding fundamental concept. And, the 

essential concepts of used pulse sequences in this study for 3D MR imaging were presented to compre-

hend results of this research in later chapters. Especially, emphasis is placed on describing the principles 

of the FLASH, TSE, and radial UTE techniques for 3D imaging. Finally, the MR angiography (MRA) 

in MRI is described to understand features of contrast enhanced vasculature images by various MRA 

methods. 

Chapter 3 is focused on describing the development and application of dual contrast MRA, employ-

ing concentration of SPION and pulse sequence techniques. The simulation and optimization of max-

imizing dual contrast effect for the in vivo applications are investigated. Furthermore, the application 

of dual contrast implements into the rodent’s brain and resultant MRAs of dual contrast enhanced brain 

was combined for raising their strengths. The quantification of vascular parameters was also performed 
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to verify advantage of dual contrast enhanced combined MRA.  

Chapter 4 is about evaluation and characterization of developed contrast agents. The experiment 

strategies of newly developed contrast agents were systematically established to verify the usefulness 

as T1 contrast agent. Developed contrast agent could be successfully applied as a positive T1 contrast 

agent at high field and utilized as a high-resolution vascular imaging agent within 2 hours after contrast 

agent injection. It also demonstrated that developed contrast agent was consistently flowed into the 

region of the tumor for a long time after injection. 

Chapter 5 will provide the summary and conclusions of thesis work.  

 

1.3 Abbreviations 
 

BOLD  Blood oxygen level-dependent 

BV  Blood volume 

BW  Body weight 

CE  Contrast enhanced 

CPMG  Carr–Purcell–Meiboom–Gill 

DLS   Dynamic light scattering 

DMEM  Dulbecco’s modified eagle medium 

ETL  Echo train length 

FA  Flip angle 

FBS  Fetal bovine serum 

FLASH  Fast low-angle shot 

FOV  Field of view 

FPM  Finite perturber method 

HWHM  Half-width at half-maximum 

IACUC  Institutional animal care and use committee 

IRSE  Inversion recovery spin echo 

MC  Monto carlo 

MEGE  Multi echo gradient echo 

MION  Monocrystalline iron oxide nanoparticles 

MIP  Maximum intensity projection 

MRA  MR angiography 

MRI  Magnetic resonance imaging 

MSME  Multi slice multi echo 

NA  Number of averages 



12 

 

NR  Number of repetitions 

PBS  Phosphate buffered saline 

PS  Penicillin–streptomycin 

RARE  Rapid acquisition with relaxation enhancement 

ROI  Region of interest 

SD rat  Sprague-Dawley rat 

SNR  Signal to noise ratio 

SPION  Superparamagnetic iron oxide nanoparticles 

TE  Echo time 

TEM  Transmission electron microscope 

TI  Inversion time 

TR  Repetition time 

TM  Temporalis muscle 

TIR  Turbo inversion recovery 

TSE  Turbo spin echo 

USPIO  Ultra-small superparamagnetic iron oxide 

UTE  Ultra-short echo time 
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Chapter 2. Background 
 

2.1 Superparamagnetic iron oxide nanoparticles 
 

Superparamagnetic iron oxide nanoparticles (SPION) can reduce proton relaxation as contrast agents 

and have been used for extensive research over the past decade. This topic provides the chemical and 

biological features of SPION as contrast agent for in vivo magnetic resonance image (MRI) application. 

The SPION among various MRI contrast agents has been recently used to obtain MR angiograms for 

imaging the vasculature by using their smaller size, prolonged blood circulation time and suitable MR 

relaxivities. Generally, SPION is characterized to have appropriate and consistent diameter of less than 

50 nm and maintain a high longitudinal and transverse relaxivity [1]. Due to their higher relaxivities 

and relatively long half-life, SPION can be utilized to well evaluate characterization of vasculatures 

without repetitive injections on follow-up MR imaging studies [2].  

The structure of SPION was made of mixtures of ferrous (Fe2
+) and ferric (Fe3

+) salts usually with the 

incorporation of ammonium compounds [3]. Superparamagnetic property was occurred by regions of 

unpaired spins. Single domain particles with unpaired spins are named magnetic domains as shown in 

Figure 2.1.1. A net of magnetic dipole in magnetic domain is greater than the total unpaired electrons. 

So, these particles have paramagnetic features. When magnetic field does not apply to magnetic do-

mains, these domains are rotated freely by thermal energy, and positioned randomly. In the existence of 

the main magnetic field, the magnetic dipoles in magnetic domain are oriented with direction of the 

main magnetic field. When the main magnetic field is terminated, the net of magnetic moments becomes 

zero and re-positioned randomly [4]. 

 

 
Figure 2.1.1 Magnetic domains in absence and presence of main magnetic field. (A) The image of 

magnetic domain in the absence of the main magnetic field, (B) The image of magnetic domain in the 

presence of the main magnetic field. 
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The longitudinal and transverse relaxation effect of SPION is related to protons. The longitudinal re-

laxation requires a dipole-dipole interaction. The interactions appear between the protons of water mol-

ecules and a paramagnetic contrast agent. The distance factor is important for dipole-dipole interaction. 

Explain briefly, if the distance of the paramagnetic ion species and the water molecule is close, the 

relaxation effect will be strong. In other words, the correlation time between the water proton and the 

paramagnetic ion is important. 

The process of transverse relaxation depends on stationary or slowly fluctuating fields. When individ-

ual magnetic dipole is fluctuated slowly in local magnetic field, the small changes of magnetic field 

will lead to a different resonance frequency. Although the net magnetization still has the same frequency, 

the phase information of individual magnetic dipole differs in the transverse plane. Especially, SPIONs 

provide large variation of magnetic field and the dipolar coupling between water protons and magnetic 

dipole cause de-phasing effect [5]. 

In blood, iron oxide nanoparticles with the appropriate composition can produce significant signal 

enhancement and numerous experiments have studied for the use of these nanoparticles in MR angi-

ography (MRA). Most of iron oxide nanoparticles are intravascular contrast agents. The proper size of 

iron oxide particles aids to continuous flow in vessels without purification and penetration. Intravascu-

lar contrast agents have a large molecular weight to prevent leakage from the vascular to the intravas-

cular space. Most of contrast agents after injection circulate in the blood vessels and simultaneously 

escape and disappear by the process of phagocytosis of macrophages in the reticuloendothelial system, 

which is included of the lymph nodes, spleen and liver. After SPION injection, the reaching steady-state 

time was less than 10 min and SPION is slowly phagocytosed by macrophages for several hours or days. 

As a result, SPION was considered as suitable blood pool contrast agents during the first-pass and 

steady state phase of imaging [6].  

In this study, in-house SPION was synthesized, which was also called monocrystalline iron oxide 

nanoparticles (MION). Generally, this SPION was widely used as T2-contrast agent for MR lympho-

graphy, detection of tumor, and infarctioned tissue detection in the pre-clinic field. The core size distri-

bution of the SPION is 5–10 nm. The in-house SPION do not leakage though undamaged vascular 

endothelial into the interstitial space and was less affected by the process of phagocytosis of macro-

phages due to their proper size. The concentration of in-house SPION in the blood vessels was main-

tained until 8 hours after the injection of in-house SPION by observed experimental result. We typically 

observe that in-house SPION clears off from brain vessels after ~3 days. 

Since the synthetization of the first SPION over decades ago, FDA approved SPION have been utilized 

as a contrast agent in clinical field. The representative FDA approved iron oxide was Ferumoxytol. This 

contrast agent is relatively safe to apply in clinical field and is not related with any risk unlike gadolin-

ium chelates. Although in-house SPION is not well known about the safety profile, the safety evidence 
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of Ferumoxytol is guaranteed that in-house SPION also has a low risk for application of in vivo imaging 

[7]. 

This in-house SPION has been used in research field over many years. Especially, the existence of 

SPION in brain produces interference of local magnetic field and growth the transverse relaxation rates. 

By using spin and gradient echo, regional blood volume distributions and change of pharmacological 

manipulation and functional activation in the brain of small animal can be extracted. Also, vessel density 

and size of micro-vasculature potentially expected by using SPION [8]. Dynamic susceptibility contrast 

(DSC) which was one of the most generally used techniques for MRI perfusion can be used by using a 

bolus of SPION contrast agent passing through a capillary bed [9]. 

 

2.2 T1 and T2/T2
* relaxation 

 

MRI system consists of three main parts; a main magnet field, three gradient field and transmit/receive 

coil. Based on three main parts, MR signals are generated for obtaining MR images. A main magnetic 

field is existed across the object along the direction of the bore of the magnet. When the strong magnetic 

field is applied, water protons attempt to align with or against the main magnetic field. The slightly 

more protons are aligned with main magnetic field, the object has net magnetization vector in the same 

direction as the main magnetic field [10-12]. 

As shown in Figure 2.2.1, the magnetic field vector B0 and z axis are parallel each other. The net 

magnetization of any material is also aligned with z axis by main magnetic field. When magnetic field 

caused by radiofrequency (RF) pulse is applied to magnetization vector by the transmit coil, the mag-

netization vector moves down toward the transverse plane. 

 

 
Figure 2.2.1 Magnetization vector before and after applied RF magnetic field. (A) The image of mag-

netization vector before applied RF magnetic field, (B) The image of magnetization vector after applied 

RF magnetic field. 
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Figure 2.2.2 T1 relaxation of magnetization vector after applied RF magnetic field.  

 

After the RF pulse, the net magnetization vector starts to return back to its equilibrium state. This 

process is known as relaxation and MR signals are generated during the relaxation process. There are 

two kind of relaxation processes and these processes relate to the longitudinal and transverse compo-

nents of the net magnetization vector. The first process of relaxation is called by T1 relaxation and also 

known as spin-lattice relaxation. The 'lattice' relates to the surrounding material. T1 relaxation depends 

on effective energy exchange between proton and its surroundings. Some water molecules are at the 

suitable speed for effective energy transfer. The pure water has a very wide distribution of natural speed. 

If those water molecules are large, the water molecules slow down and exchange the energy more effi-

ciently. The magnetization vector along the longitudinal axis recovers to its equilibrium value as shown 

in Figure 2.2.2 [13]. 

The second relaxation process is related to the decay of the magnetization vector on the transverse 

component as it rotates about the z axis. The rotation speed of molecular is important for T2 relaxation. 

T2 relaxation is related to spin-spin relaxation because effects of one 'spin' can transfer another. Adjacent 

protons act as small magnet moment and exist slight effects on their neighbors. For example, the iron 

oxide is ferromagnetic material and generates magnetic field. The existence of a neighboring proton 

will affect the local magnetic field. And tissue-air interfaces also add to inhomogeneity in the magnetic 

field. This will be a bias on the local magnetic field and change the resonance frequency of that proton, 

and thus leads to T2 dephasing. 

In transverse plane, the angle of each magnetic moment at any direction is defined as the phase angle. 

When magnetic moments have similar phase angles, the state is called by in phase. Over time, the 

magnetic moments of in phase state loss their coherence and move with different rotate velocity. This 

state is named as out of phase. The net magnetization is decreased by different phase angle of magnetic 

moments. Consequently, the magnetization vector on the transverse component is gradually reduced 

and the measured MR signal also gradually decays. 
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Figure 2.2.3 T2 relaxation of magnetization vector on the transverse plane after applied RF magnetic 

field. 

 

 The transverse relaxation is divided into T2 and T2
* relaxation. Firstly, T2 relaxation is affected by the 

presence of interactions between neighboring protons. These interactions of protons occur different 

phase angle of magnetic moments. The de-phasing of magnetic moments in T2 relaxation is irreversible 

and T2 relaxation time is slightly short than T1 relaxation time. As shown in Figure 2.2.3, each magnetic 

vector on transverse plane was spread out as time goes. If 180° pulse is applied to spin system after 90° 

pulse, the de-phasing effect by external factors can be compensated. 

The second source for the de-phasing relates to local in-homogeneities in the applied magnetic field 

as shown in Figure 2.2.4. These inhomogeneities may be susceptibility-induced field distortions pro-

duced by the materials. The magnetic moments at different spatial locations will rotate at different rates. 

This transverse relaxation is called as T2
* relaxation and de-phasing effect is greater than T2 relaxation. 

So the MR signal decays more rapidly and T2
* relaxation processes is written by: 

 
1
𝑇𝑇2∗

=
1
𝑇𝑇2

+
1
𝑇𝑇2𝑖𝑖

   (2.2.1) 

 

where 1/T2i is the change of relaxation time by inhomogeneities. Gradient echoes are produced by the 

controlled magnetic field gradients. The losing coherence or de-phasing of proton rapidly change by 

gradient magnetic field along the one direction. The amount of de-phasing can be compensated by one 

reversed gradient magnetic field along the opposite direction with a slope of equal amplitude. When the 

same amount of time as the first gradient is applied as the second gradient along the opposite direction, 

the de-phasing caused by the first gradient is annulled and the MR signal reappears. It reaches a maxi-

mum amplitude of MR signal at the point by the first gradient have returned back into phase. This result 

is called as re-phasing. If the second gradient is applied to the spin system continually, the MR signal 

disappears. The re-phasing of signal occurs by the switching of the gradient direction is known as a 

gradient echo [14]. 
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Figure 2.2.4 T2

* relaxation of magnetization vector on the transverse plane after applied RF magnetic 

field. 

 

Longitudinal and transverse relaxation both occur at the same time. The MR signal can be detected as 

the form of an echo by using pulse sequences and its MR parameters. As shown in Figure 2.2.5, the 

time peak of the MR signal after 90° excitation pulse was defined by echo time (TE). MR parameter of 

echo time (TE) and repetition time (TR) determine T2 and T2
* relaxation effects. The time between 

excitation pulse and subsequent excitation pulse refers to repetition time. It controls how much mag-

netization vector of longitudinal component recovers between each excitation pulse. 

 

 
Figure 2.2.5 The T1-weighted and T2-weighted images which were generated by echo. (A) The general 

pulse diagram with TE and TR, (B) T1-weighted image with a short TR and short TE, (C) T2-weighted 

image with a long TR and long TE. 
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As shown in Figure 2.2.5B and C, the MR parameters for T1-weighted echo are a short TR and short 

TE. The short TR allows that fluid with a long T1 will recover less than fat with a short T1. When the 

subsequent excitation pulse is applied, the initial value of the transverse magnetization was determined. 

The short TE suppresses the influence of the T2 relaxation. The images with short TE and short TR are 

said to be T1-weighted image. T1 weighted images are typically characterized by bright fat signal and a 

low signal from fluid. 

The MR parameters for T2-weighted echo are long TR and long TE. The long TR determines that the 

magnetization vector of longitudinal component to recover close to the its equilibrium values and the 

T1 effect was minimized. The long TE allows the decay of the transverse magnetization component. The 

different decay rates of a fat with a short T2 and a fluid with a long T2 represent to difference of signal 

intensity. Acquired images was called as T2-weighted image. The short T2 induces low signal intensity, 

while the long T2 induces high signal intensity. These images are characterized by bright fluid signal 

and a low fat signal. 

 

2.3 Bloch equation 
 

The magnetization vector can be calculated by a sum of each magnetization vectors as below equation 

[15]: 

 

𝑀𝑀(𝑡𝑡) = �𝜇𝜇𝑗𝑗(𝑡𝑡)
𝑁𝑁

𝑗𝑗

   (2.3.1) 

 

The below equation describe relaxation and precession of magnetic vector in three dimensional (3D) 

space. 

 

𝑀𝑀(𝑡𝑡) =  𝑀𝑀𝑥𝑥(𝑡𝑡)𝑒𝑒𝑥𝑥 +  𝑀𝑀𝑦𝑦(𝑡𝑡)𝑒𝑒𝑦𝑦 +  𝑀𝑀𝑧𝑧(𝑡𝑡)𝑒𝑒𝑧𝑧     (2.3.2) 

 

The equation also can be represented as form of differential equation. 

 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  𝜔𝜔(𝑡𝑡) ×  𝑀𝑀(𝑡𝑡) − [𝑅𝑅][𝑀𝑀(𝑡𝑡) −𝑀𝑀0]     (2.3.3) 

 

where 

𝜔𝜔(𝑡𝑡) = −𝛾𝛾(1 − 𝜎𝜎)𝐵𝐵(𝑡𝑡) 
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𝑀𝑀0 = 𝑀𝑀0𝑒𝑒𝑧𝑧, [𝑅𝑅] = �
1/𝑇𝑇2 0 0

0 1/𝑇𝑇2 0
0 0 1/𝑇𝑇1

� 

This equation is called as Bloch equations. The term of [𝑅𝑅][𝑀𝑀(𝑡𝑡) −𝑀𝑀𝑒𝑒𝑒𝑒] in the Bloch equation 

implies the increase of longitudinal magnetization and decay of transverse magnetization relaxation. 

The term of 𝜔𝜔(𝑡𝑡) ×  𝑀𝑀(𝑡𝑡) implies the variation of magnetization vector about the magnetic field di-

rection. In other words, the magnetization vector M(t) precesses about the arbitrary direction of the 

vector 𝜔𝜔(𝑡𝑡) with an arbitrary frequency of precession.  

In laboratory frame, magnetization vector appears to rotate with opposite direction. And the magneti-

zation vector appears stationary in the rotating frame. In the rotating frame, the magnetization vector is 

described easily because of stationary state and exact frequency of precession. So the magnetization 

vector in the rotating frame is described as the Bloch equation transforms. 

 

𝑑𝑑∗𝑀𝑀(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  𝜔𝜔𝑒𝑒𝑒𝑒𝑓𝑓(𝑡𝑡) ×  𝑀𝑀(𝑡𝑡) − [𝑅𝑅][𝑀𝑀(𝑡𝑡) −𝑀𝑀0] (2.3.4) 

 

where the magnetization vector in the rotating frame precesses about a direction with a lower preces-

sion frequency given by 

 

𝜔𝜔𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡) =  𝜔𝜔(𝑡𝑡) − 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟  (2.3.5) 

 

The 𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟 describes instantaneous vector in the rotating frame. The rate of change for the magnetiza-

tion vector components in the rotating frame can be calculated. When the static magnetic field applied 

alone, the precession of magnetization vector can be represented in the static and an oscillating magnetic 

field. In the existence of a static magnetic field, the precession frequency in the rotating frame will be 

 

Ω =  𝜔𝜔0(1 − 𝜎𝜎) −𝜔𝜔𝑟𝑟𝑟𝑟𝑟𝑟  (2.3.6) 

 

and the solution of Bloch equation in the rotating frame is described by: 

 

�
𝑀𝑀𝑥𝑥
∗(𝑡𝑡)

𝑀𝑀𝑦𝑦
∗(𝑡𝑡)

𝑀𝑀𝑧𝑧
∗(𝑡𝑡)

� =  �
[𝑀𝑀𝑥𝑥

∗(0)𝑐𝑐𝑐𝑐𝑐𝑐Ωt −𝑀𝑀𝑦𝑦
∗(0)𝑠𝑠𝑠𝑠𝑠𝑠Ωt]𝑒𝑒−𝑡𝑡/𝑇𝑇2

[𝑀𝑀𝑦𝑦
∗(0)𝑐𝑐𝑐𝑐𝑐𝑐Ωt −𝑀𝑀𝑥𝑥

∗(0)𝑠𝑠𝑠𝑠𝑠𝑠Ωt]𝑒𝑒−𝑡𝑡/𝑇𝑇2

𝑀𝑀𝑧𝑧
∗(0)𝑒𝑒−𝑡𝑡/𝑇𝑇1 +  𝑀𝑀𝑒𝑒𝑒𝑒(1−𝑒𝑒−𝑡𝑡/𝑇𝑇1)

�  (2.3.7) 

 

where 𝑀𝑀𝑥𝑥
∗, 𝑀𝑀𝑦𝑦

∗ , and 𝑀𝑀𝑧𝑧
∗ are the components of magnetization vector in the rotating frame. The com-

ponents of magnetization vector transform from Cartesian basis to spherical basis vectors. 
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𝑀𝑀(𝑡𝑡) =  𝑀𝑀+1
∗ (𝑡𝑡)𝑒𝑒+1 +  𝑀𝑀0

∗(𝑡𝑡)𝑒𝑒0 + 𝑀𝑀−1
∗ (𝑡𝑡)𝑒𝑒−1 (2.3.8) 

Where 

𝑒𝑒±1 =  ∓
1
√2

�𝑒𝑒𝑥𝑥∗ ∓ 𝑖𝑖𝑒𝑒𝑦𝑦∗�, 𝑒𝑒0 = 𝑒𝑒𝑧𝑧∗  

𝑀𝑀±1
∗ =  ∓

1
√2

�𝑀𝑀𝑥𝑥
∗ ∓ 𝑖𝑖𝑀𝑀𝑦𝑦

∗�,𝑀𝑀0
∗ = 𝑀𝑀𝑧𝑧

∗ 

 

The magnetization vector which is applied by rf pulse described in terms of the spherical basis com-

ponents.  

 

�
𝑀𝑀+1
∗

𝑀𝑀0
∗

𝑀𝑀−1
∗
� →  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
2
𝑀𝑀−1
∗ 𝑒𝑒𝑖𝑖2𝜙𝜙 −

𝑖𝑖
2
𝑀𝑀0
∗𝑒𝑒𝑖𝑖𝑖𝑖 +

1
2
𝑀𝑀+1
∗

1
√2

𝑀𝑀−1
∗ 𝑒𝑒𝑖𝑖2𝜙𝜙         −

𝑖𝑖
√2

𝑀𝑀+1
∗ 𝑒𝑒−𝑖𝑖𝑖𝑖

1
2
𝑀𝑀−1
∗ −

𝑖𝑖
√2

𝑀𝑀0
∗𝑒𝑒−𝑖𝑖𝑖𝑖 +

1
2
𝑀𝑀+1
∗ 𝑒𝑒−𝑖𝑖2𝜙𝜙

⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (2.3.9) 

 

A single 90° pulse with x axis generates the MR signal. This MR signal can be detected by form of the 

complex magnetization component 𝑀𝑀+1
∗  in the rotating frame. The progress of the magnetization vec-

tor by the 90° pulse is as follows: 

 

𝑀𝑀 =  𝑀𝑀0𝑒𝑒0  

 

↓ �
π
2
�
𝑥𝑥
 

 

𝑀𝑀+ =  −𝑀𝑀0𝑒𝑒𝑦𝑦 =
𝑖𝑖
√2

𝑀𝑀0𝑒𝑒−1 +
𝑖𝑖
√2

𝑀𝑀0𝑒𝑒+1     (2.3.10) 

 

↓ free evolution 

 

𝑀𝑀(𝑡𝑡) =  
𝑖𝑖
√2

𝑀𝑀0𝑒𝑒−𝑖𝑖Ω𝑡𝑡𝑒𝑒
− 𝑡𝑡
𝑇𝑇2𝑒𝑒−1 + 𝑀𝑀0(1 − 𝑒𝑒−𝑡𝑡/𝑇𝑇1)𝑒𝑒0 +

𝑖𝑖
√2

𝑀𝑀0𝑒𝑒−𝑖𝑖Ω𝑡𝑡𝑒𝑒−𝑡𝑡/𝑇𝑇2𝑒𝑒+1 

 

The description of magnetization vector is obtained from the excited spins with relaxation mechanism 

of a longitudinal and transverse component by the variation of the oscillating RF magnetic field. Based 

on solution of Bloch equation, the MR signal can be detected by properties of T1, T2, and T2
*.  
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2.4 Measurement of T1 and T2/T2
* relaxation time 

 

In the T1 relaxation mechanism, the magnetization vector is flipped down on transverse plane and then 

the time is observed magnetization vector recovery back to its equilibrium state. The inversion recovery 

(IR) experiment of measurement T1 relaxation time is the gold standard method as shown in Figure 

2.4.1. This IR experiment can be used to obtain the general behaviors of T1 relaxation time by using the 

IR pulse sequence [16]. After 180° pulse is applied to spin system, the longitudinal magnetization will 

recover back to its equilibrium value. The excitation of magnetization can measure the MR signal in-

tensities at the different inversion times (TI). To exact measure T1 relaxation time, TR is set 5 times of 

T1 relaxation time to recover fully longitudinal magnetization [13]. 

The magnetization vector in the IR experiment was switched from the -z axis to the +z axis. The 

magnetization vector recovers back to the +z axis during a T1 period. According to the Bloch equation, 

the validation of magnetization vector about a z axis will be 

 

𝑀𝑀𝑧𝑧(𝑡𝑡) =  𝑀𝑀0 �1 − 𝑒𝑒−
𝑇𝑇𝑇𝑇
𝑇𝑇1� + 𝑀𝑀𝑧𝑧(0)𝑒𝑒−

𝑇𝑇𝑇𝑇
𝑇𝑇1      

                            =  𝑀𝑀0 �1 − 𝑒𝑒−
𝑇𝑇𝑇𝑇
𝑇𝑇1� + 𝑀𝑀0(0)𝑒𝑒−

𝑇𝑇𝑇𝑇
𝑇𝑇1   (𝑀𝑀𝑧𝑧(0) = 𝑀𝑀0(0))   (2.3.11) 

=  𝑀𝑀0 �1 − 2𝑒𝑒−
𝑇𝑇𝑇𝑇
𝑇𝑇1�          

 

The signal intensities of longitudinal magnetization were given by a function of TI point. The longi-

tudinal magnetization was grown proportionally at different TI time. The signal intensity at the long TI 

is close to the equilibrium value of magnetization. 

 

 
Figure 2.4.1 The signal intensities with TI by using the IR pulse sequence. The experimental data 

curve of signal intensities was fitted by theoretical equation. 
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The CPMG method is widely used for T2 measurement. As shown in Figure 2.4.2, 90° pulse is applied 

to initial state of the spin system. The magnetization vector is flipped down on the transverse plane and 

the de-phasing of transverse magnetization begins. By using then 180° pulse, the magnetization is in-

verted into the transverse counter plane. The re-phasing of magnetization is progressing and producing 

a signal called an echo. The signal intensities at the different TE was fitted by theoretical equation. We 

can calculate relaxation time. Instead of 180° pulse, the de-phase and reverse gradient is used for T2
* 

measurement. 

 

 
Figure 2.4.2 The signal intensities with TE by using the CPMG pulse sequence. The experimental 

data curve of signal intensities was fitted by theoretical equation. 

 

2.5 Three-dimensional (3D) Magnetic Resonance Imaging 
 

To generate reliable MR images, the whole k-space was filled by signals with spatial frequencies. For 

Cartesian acquisition, the signals which is affected by gradient field were equally spaced in k-space. As 

shown in Figure 2.5.1, the MR signals with phase encoding gradient were filled in the k-space. The 

amplitude of the phase encoding gradient is increased in each line of k-space and next adjacent line in 

k-space is filled with each successive repetition. This is known as a linear phase encoding order [17]. 

To obtain a whole range of the k-space, the MR signals are acquired multiple times with different step 

by using phase encoding gradient. The acquisition time is given by phase encoding step and TR. In 3D 

MR imaging, the whole range of object is excited by pulse and two phase encoding gradients are applied 

with two directions. The echoes from pulse excitations in 3D k-space were needed more to make a 

complete volume compared with two dimensional (2D) in the Cartesian coordinate system. In other 

words, the acquisition signals in spatial encoding of 3D k-space were added along the phase encoding 

direction which was consisted of the second and third phase dimension unlike accumulation along the 
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only one phase encoding direction in 2D k-space. So the acquiring the 3D k-space takes a long acqui-

sition time due to a number of echo for 3D k-space.  

In spite of long acquisition time, there are several reasons for choosing 3D rather than 2D acquisition 

from the point of view of a MRA. The images with a 3D acquisition provides higher signal to noise 

ratio (SNR) because the signal from each volume element is integrated over the whole scan as opposed 

to images with 2D. The 3D acquisition also permits higher spatial resolution with isotropic or non-

isotropic voxels than 2D resolution. Especially, a relatively small vessel structure in the 3D imaging 

was depicted well regardless of vessels orientations and flow effects by comparing with 2D imaging 

[18]. 

 

 
 

Figure 2.5.1 A k-space with linear phase encoding and image by Fourier transformation. 

 

The MR images were acquired by converting measured k-space of the complex values signal by using 

the Fourier transform. And the analytical expression for converting MR signal into k-space is given as 

follow. 

 

𝑩𝑩(𝒓𝒓) = 𝑩𝑩𝟎𝟎 + 𝑮𝑮 ∙ 𝐫𝐫    (2.5.1) 

 

The static (B) and gradient magnetic field (G) in MRI system are mixed. Assumed that the relaxation 

is ignored, MR signal in the rotating frame is described as below equation. 

 

𝑆𝑆(𝑡𝑡) = �𝜌𝜌(𝒓𝒓)𝑒𝑒𝑖𝑖𝑖𝑖𝑮𝑮∙𝐫𝐫𝐫𝐫𝑑𝑑𝑑𝑑     (2.5.2) 

 

where dr is volume integration of the object. The space vector k is described by 

 

k = γ𝑮𝑮t/2π 

 

The MR signal can represent as basis of k, 
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𝑆𝑆(𝑘𝑘) = �𝜌𝜌(𝒓𝒓)𝑒𝑒𝑖𝑖2𝜋𝜋𝜋𝜋∙𝐫𝐫𝑑𝑑𝑑𝑑     (2.5.3) 

 

Based on k-space perspective, the volume integral of the signal is regarded as a Fourier transform of 

the magnetization density in real space. If S(k) is applied to inverse Fourier transform, images based on 

real space is obtained. 

 

𝜌𝜌(𝑟𝑟) = �𝑆𝑆(𝒌𝒌)𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋∙𝐫𝐫𝑑𝑑𝑑𝑑     (2.5.4) 

 

In 3D space, gradient magnetic fields are applied to object along three orthogonal directions. The 

images in 3D space can be described by inverse Fourier transform of S(k) with three orthogonal direc-

tions. 

 

𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �𝑆𝑆(𝑘𝑘𝑥𝑥 ,𝑘𝑘𝑦𝑦, 𝑘𝑘𝑧𝑧)𝑒𝑒−𝑖𝑖2𝜋𝜋(𝑘𝑘𝑥𝑥𝐱𝐱+𝑘𝑘𝑦𝑦𝐲𝐲+𝑘𝑘𝑧𝑧𝐳𝐳)𝑑𝑑𝑘𝑘𝑥𝑥𝑑𝑑𝑘𝑘𝑦𝑦𝑑𝑑𝑘𝑘𝑧𝑧     (2.5.5) 

 

2.6 Signal equation 
 

The MR signal was evaluated from the excited spins, which were evolved by precession and relaxation 

mechanism with a longitudinal and transverse component in the occurrence of the magnetic field vari-

ation. The evaluated MR signal may be weighted in many ways in order to extract useful information 

and was given by: 

 

𝑆𝑆 = 𝑆𝑆0
[1 − 𝑒𝑒−𝑇𝑇𝑇𝑇∙𝑅𝑅1]

[1 − cos (𝛼𝛼) ∙ 𝑒𝑒−𝑇𝑇𝑇𝑇∙𝑅𝑅1] ∙ sin (𝛼𝛼) ∙ 𝑒𝑒−𝑇𝑇𝑇𝑇∙(𝑅𝑅2∗  𝑜𝑜𝑜𝑜 𝑅𝑅2)    (2.6.1) 

 

where S is the steady-state signal intensity, S0 indicates the equilibrium magnetization, α is flip angle 

(FA), R1 is longitudinal relaxation rate and R2 and R2
* are transverse relaxation rate induced by spin and 

gradient echoes, respectively. 

 The steady state signal was affected by the MR imaging parameters such as FA, TE and TR with 

intrinsic longitudinal and transverse relaxation times. Equation 2.6.1 is valuable to analyze the obtained 

image properties and optimize the imaging parameters. The specific parameters give several weighted 

signal. Signal is always proportional to spin density. A small flip angle minimizes T1-weighting because 

of small recovery of the longitudinal magnetizations. Hence at small flip angles, proton density and T2 
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or T2
* effects predominate. When TR is small, exponential term becomes large and T1-weighting in-

creases.  

As shown in Figure 2.6.1, proton density-, T1- and T2-weighted images were extracted from S0, T1 and 

T2 maps of in vitro kidney sample by using simulation. To emphasis proton density of kidney, the MR 

parameters are set by long TR and short TE to minimize T1 and T2 relaxation effects. The map and image 

of proton density were similar. To obtain T1-weighted image, the MR imaging parameters are set by 

short TR and short TE to minimize T2 relaxation effects. The relation of high and low values of T1 map 

and T1-weighted image reversed. The T1-weighted image shows that region with short T1 appears bright 

and the region with long T1 appears dark. To obtain T2-weighted image, the MR imaging parameters are 

set by long TR and long TE to minimize T1 relaxation effects. The T2-weighted image shows that the 

region with short T2 appears dark and the region with long T2 appear appears bright. 

 

 
Figure 2.6.1 Simulation of proton density-, T1- and T2-weighted images. The maps of inherent (A) 

proton density, (B) longitudinal and (C) transverse relaxation time of in vitro kidney sample were used 

for obtaining the (D) proton density-, (E) T1- and (F) T2-weighted images.  
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2.7 Fast low-angle shot (FLASH) pulse sequence 
 

The first pulse sequence for MRA imaging was 3D fast low-angle shot (FLASH) and this pulse se-

quence was generally used for T2
* weighted image using gradient echo. The sequence diagram for 3D 

FLASH is shown in Figure 2.7.1 [19]. In this pulse sequence, the proton density, T1, and T2
* contrast 

can be adjusted by using TE and TR maintaining the steady-state of the signal. T1 contrast can be ob-

tained with short TE and long TR. Also T1 contrast can be enforced by removing the remaining echo 

contributions to the signal using spoiler gradients at the end of the sequence. With long echo times, T2
* 

contrast becomes dominant. 

 The 3D FLASH was widely used for imaging vascular system though time-of-flight (TOF) MRA 

method with no contrast agent. Although several MRA techniques have been developed and used in 

clinical field, it still remains one of the most important methods for noninvasive MRA. However, in this 

study, 3D FLASH was utilized for obtaining contrast enhanced (CE) -MRA in order to enhance signal 

of the whole vasculature of object including slow flow vessels such as vein and capillary. The contrasts 

of CE-MRAs were determined by a kind of contrast agent and MR imaging parameters, which was 

dominated by echo time. 

 

 
Figure 2.7.1 Pulse sequence diagram of 3D FLASH. The gradient echoes were used for obtaining op-

timal 3D k-space.  
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2.8 Turbo spin echo (TSE) 
 

The turbo spin echo (TSE) is multiple spin echoes which were generated by using the CPMG sequence 

[20]. Each echo was used separately phase-encoded. The phase encoding is incremented within one 

echo train to accelerate the acquisition. It is possible to obtain two or more echo with different effective 

TEs. The schematic sequence diagram for TSE is shown in Figure 2.8.1.  

Generally, the scan time of TSE can be shorted by the number of spin echo within TR. The number 

of spin echoes called RARE factor can accelerate the speed of scan time compared to the conventional 

spin echo imaging because of multiple phase-encoding lines are acquired during each TR interval. The 

RARE factor typically ranges from 4 to 32 for routine imaging, but may exceed 200 for rapid imag-

ing/echo planar techniques.  

Increasing the RARE factor reduces the scan time but typically increases the effective TE and the 

blurring caused by T2 relaxation. On the other hand, turbo factor should be carefully selected because 

T2 effect is inevitably contained at later echoes and associated imaging blurring artifacts may arise with 

echo train imaging without multiple spin echoes compensation 

 

 
 

Figure 2.8.1 Pulse sequence diagram of 3D TSE. This example generates 4 echoes after 90° pulse. Each 

echo is encoded to the different position of k-space line. 
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2.9 3D Ultra-short echo time (UTE) 
 

Ultra-short echo time 3D (UTE3D) is a 3D imaging sequence based on a ramp-sampled 3D radial 

acquisition combined with a RF excitation [21-24]. It allows visualization of objects having very short 

transverse relaxation times. The 3D implementation of the ultra-short TE technique (UTE3D) allows 

extremely short echo time because of the use of a non-selective RF excitation. 

After a hard RF excitation pulse with low flip angle is applied, the responded echoes immediately 

were collected from the center of k-space on a half-radial trajectory by turning on imaging gradients in 

all three orthogonal directions as shown in Figure 2.9.1 [25]. The minimum TE is limited only by the 

duration of the RF excitation pulse and the time is needed to switch between the RF excitation and the 

data acquisition.  

An array method of k-space for 3D UTE imaging with high resolution was 3D radial center-out acqui-

sitions. The 3D radial center-out trajectory provides the shortest possible echo times and also very in-

sensitive against motion and flow artifacts due to its inherent flow compensation. Sampling is per-

formed already on the rising gradient ramp and therefore starts always from the center of k-space and 

continues to the surface of a sphere. The number of scans and directions of the readout gradient for each 

scan is calculated to achieve an even distribution of the "end points" at the sphere with a density that is 

required by the field of view.  

 

 
 

Figure 2.9.1 Pulse sequence diagram of 3D UTE. 
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As shown in Figure 2.9.2, radial k-space is converted into Cartesian k-space. So, the maximum signal 

was concentrated at the center of k-space because first echo after the excitation pulse was placed the 

center immediately. Before transverse magnetization was fully decayed, the signal with very short T2
* 

was collected. So the UTE3D image from objects with very short T2
* component has high signal inten-

sity. One major drawback and corresponding advantage of this 3D radial acquisition method is the 

strong oversampling of inner k-space and down sampling in the outer k-space parts [26]. 

 

 
Figure 2.9.2 The radial k-space of 3D UTE and gridding method converting into Cartesian k-space. 

 

2.10 Magnetic resonance angiography (MRA) 
 

The fundamental MR angiography (MRA) has been used for obtaining vascular information such as 

vessel size and structure. For many decades, MRA techniques with contrast agent have been developed 

and implemented in research and clinical area for in vivo applications. Especially, the longitudinal (T1) 

and transverse (T2 or T2
*) contrasts in MRA provide diverse and different information of same subject’s 

vasculature. The assessments of vascular structure and function by using two types of contrast are im-

portant for monitoring vascular behavior [27, 28]. 

The TOF MRA as non-invasive MRI method has been used to visualize vasculature, this method pro-

vides only flow information within vessels such as arteries. This method is that back ground signal is 

suppressed by using slice-selective excitation pulses. In other words, the stationary tissue is saturated. 

The vessels with high flow velocity has strong signal intensity because incoming blood is free to the 

slice-selective excitation pulse. But the vessels with slow blood flow saturated by excitation pulse, those 

vessels have poor vessel visualization [29]. 

To visualize whole cerebral small vessels, CE-MRA was developed by using various MRI techniques. 

One of well-known CE-MRA methods is the use of T1 contrast agent. T1 contrast enhanced MRA with 
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contrast agent also tried to image vessels and has been successfully used to detect arteries and veins. 

The contrast agent used in CE-MRA is a compound containing gadolinium (Gd), which alters the T1 

property of the blood. The contrast agents are injected into a peripheral vein as a bolus. The vessel-to-

tissue contrast is enhanced by a reduction in blood T1 induced by injecting a contrast agent with 3D-

gradient echo sequence, but the requirements for a fast acquisition, reasonable spatial resolution, and a 

high signal-to-noise ratio. And visualization of micro-vessels is limited by the lower vessel diameter 

than spatial resolution [30]. 

 

 
Figure 2.10.1 The rat head images of TOF- and CE-MRA. 

 

Steady-state susceptibility contrast MRI is a contrast enhanced in vivo imaging technique that does 

directly visualize the vasculature and provides quantitative information about vascular morphology 

based on the behavior of the transverse magnetization [8, 31, 32]. The T2 contrast agent creates magnetic 

field interference due to magnetic susceptibility (Δχ) between the intra- and extra-vascular spaces. This 

difference in magnetic field affects water protons to precess at different Larmor frequencies and lead to 

loss of phase coherence. Consequently, the bulk transverse magnetization ultimately decays and trans-

verse relaxation time decreases because of loss of phase coherence. Resultant MR signal decay by re-

duced transverse relaxation time is characterized by the transverse relaxation rate constants R2 (for a 

spin echo experiment) and R2
* (for a gradient echo experiment), respectively. The steady-state suscep-

tibility contrast in these transverse relaxation rates (ΔR2 and ΔR2
*) rely on vascular morphology, the 

diffusion coefficient of water, and the characteristic frequency shift created by the intravascular contrast 

agent. 

Recently, MRA with blood oxygen level-dependent (BOLD) effect was developed and widely used to 

visualize venous vessels [33, 34]. Using the gradient echo pulse sequence, the BOLD effect caused by 

changes of paramagnetic deoxyhemoglobin (dHb) in vessels. The hypo-intense venous signals were 
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detected and modulated by changing oxygen concentrations in inhaled gas. BOLD signal contrast also 

can describe the micro-vessel to magnify vessel size due to the susceptibility effect. The BOLD signal 

contrast was differently revealed by using spin echo and gradient echo [35]. Recently, MRI angio-

graphic technique by using the BOLD effect investigate under specific level of carbogen (5% CO2 + 

O2) inhalation and is called by 3D gas ΔR2
*-mMRA. In this method, veins and venules are revealed 

well and have high vessel-to-tissue contrast. When applied to studying post-stroke revascularization, 

the method vividly reveals the microvascular remodeling changes at 3 days after reperfusion [36]. 
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Chapter 3. Dual contrast MRI with iron oxide nanoparticles 
 

3.1 Dual MRI T1 and T2
* contrast with size-controlled iron oxide 

 

3.1.1 Introduction 

  
A number of MRI techniques have been developed and improved to obtain diagnostic imaging of 

abnormal vasculature and its function in neurological and oncological diseases [37, 38]. Selectively 

enhanced contrast of vascular signal with suitable blood pool MRI contrast agents improves quantitative 

analysis efficiency of related vascular parameters. Conventionally, a T1-based positively enhanced con-

trast has been applied to extract conspicuous angiogram by enhancing signal intensity of intravascular 

region. T2- and T2
*-based negatively enhanced contrasts have been using to quantify vascular parameters 

and to realize hemodynamic effects [39-41]. Selecting the suitable contrast agents and the proper MRI 

strategies helps to evaluate relevant vascular parameters [42]. 

 There are two types of intravascular MRI contrast agents for enhancing dual contrast using T1 or T2
* 

shortening mechanism. Generally, paramagnetic solution including gadolinium or manganese ion was 

used for obtaining positively enhanced contrast by shortening T1 relaxation time [43-45]. On the other 

hand, SPION provides negatively enhanced contrast by dephasing effect in the susceptibility-induced 

inhomogeneous magnetic field [46, 47]. Actually, positively and negatively enhanced contrasts in MRI 

were affected to each other with strengths and drawbacks. The positively enhanced contrast offers spa-

tial accuracy of MR signal which was induced by contrast agent but loses high CNR. In contrast, the 

negatively enhanced contrast increases CNR with high sensitivity, but lacks the position information of 

contrast agent. 

 To use positively and negatively enhanced contrast for vessel quantification, the SPION has been used 

recently as T1 contrast agent because of the appropriate relaxivities and size of nanoparticle [28, 48-50]. 

As for point of intra-vascular contrast agent, characteristics of SPION are long circulation time in blood 

vessel and impermeability between intra- and extra-vasculature. The recent studies are shown that T1 

contrast agent was applied to obtain MRA with high resolution and to measure accurate evaluation of 

vessel parameters such as vessel branches, blood volume (BV) and average of vessel diameters [51, 52]. 

In this regard, it is possible that the errorless description of the SPION MRA with positively enhanced 

contrast provides increased MR image quality and accurate quantification. 

For obtaining diagnostic accuracy and sensitivity, the MRI techniques of describing vasculatures using 

negatively and positively enhanced contrast have been conducted [53-57]. Especially, the hybrid nano-

particles have been synthesized to improve the ability of acquiring dual contrast [58, 59]. However, the 
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synthesis methods technically limited to quantify vascular parameters because the use of multiple con-

trast agents is likely to arise undesirable effects such as bio-distribution and unexpected doses in in vivo 

experiments. [60-62].  

In this study, we verified the dual contrast effects of size-controlled exogenous SPION at specific MR 

imaging parameters. We also validated that both feasibility and benefits of the dual contrast T1- and T2
*- 

mode MR imaging through simulation results and comparison of longitudinal in vivo experiments. In-

stead of synthesizing the hybrid contrast agents, we used manipulation of pulse sequence and concen-

tration of SPION for acquiring dual contrast of vascular signal. Despite of well-known ability of nega-

tively enhanced contrast of SPION, this iron oxide nanoparticle can be effectively used for obtaining of 

positively and negatively enhanced contrasts simultaneously. 
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3.1.2 Materials and Methods 
 

To set the optimal parameters of the simulation and achieve dual T1- and T2
*-contrast enhanced images 

with SPION, the MR characteristics of SPION were measured in 1.43 T Bruker Minispec (Bruker, 

Billerica, MA, USA) and 3 T human scanner (Philips Achieva, Best, the Netherlands). Following these 

measurements, the simulated signal enhancements in a vessel before and after the circulation of SPION 

were estimated by using MR imaging parameters of pulse sequences and measured relativities of SPION. 

Then in vivo CE-MRAs with high resolution of Gd-DOTA, Gd-PGC, and SPION were acquired to 

directly compare vessel-to-tissue contrasts in different contrast agents [63-66]. The Gd-DOTA is used 

as extravasating T1-contrast agent and the Gd-PGC is used for conventional intra-vascular T1-contrast 

agent. All images from those contrast agents were segmented and those qualities of blood vessel images 

were quantitatively compared. The BV and vessel diameter of six rats were extracted from longitudinal 

follow-up studies. The Institutional Animal Care and Use Committee (IACUC) of the Korea Basic Sci-

ence Institute approved the animal experiments in this study. 

 

Synthetization of SPION 

The synthesis of dextran-coated iron oxides used in this work followed the method originally described 

by Molday and Ohgushi. The synthetization of SPION was described in detail as reported previously 

[44]. Simply explaining, a solution containing dextran, ferric chloride hexahydrate and ferrous chloride 

tetrahydrate were mixed to bond each one. And a 30% solution of ammonium hydroxide was included 

into a synthesized product to change the pH to 12. Then, the synthesized product was cleaned using 

hollow-fiber filtration cartridges until the free of dextran in colloid was eliminated. From product of 

iron oxide, monocrystalline iron oxide nanoparticles were remained by using ultrafiltration with hollow 

membrane cartridges. Synthesized dextran-coated iron oxides are characterized by their core size and 

hydrodynamic diameters for in vivo applications in this work. The hydrodynamic size distribution of 

synthesized SPION was obtained using a particle size analyzer (Microtrac, UPA-150, Largo, FL, USA) 

from a dynamic light scattering (DLS) measurement. For core size measurement of SPION, water-dis-

persible SPION were fell on a carbon-coated copper grid and dried. The transmission electron micro-

scope (TEM, Jeol Ltd, Tokyo, Japan) was used for core size measurement of SPION at 200 kV accel-

eration voltage. The concentrations of SPION and Gd-PGC were estimated by using inductively cou-

pled plasma optical emission spectrometry (Perkin Elmer, Shelton, CT, USA). 

 

SPION characteristics and in vitro measurements of MR relaxivities 

Using the MR instruments, the R1, pre, R1, post, R2, post, R2, pre, R2, post, R*
2, pre and R*

2, post values were 

obtained at specific concentrations of various contrast agents. And the r1, r2, and r2
* relaxivities were 
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derived by using measured relaxation rates and the following equations: 

 

𝑅𝑅1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅1,𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟1 × 𝐶𝐶         

𝑅𝑅2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑅𝑅2,𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑟𝑟2 × 𝐶𝐶    (3.1.1) 

𝑅𝑅2,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
∗ = 𝑅𝑅2,𝑝𝑝𝑝𝑝𝑝𝑝

∗ + 𝑟𝑟2∗ × 𝐶𝐶         

 

where R1, pre, R2, pre and R*
2, pre are the relaxation rates in the absence of various contrast agents and R1, 

post, R2, post and R*
2, post are the relaxation rates in the presence of various contrast agents. C is the concen-

tration of the contrast agents. 

For measurements of in vitro relaxivities, a Bruker Minispec MQ20 and a 3T MRI scanner were oper-

ated in this study. The pulse sequences of standard turbo inversion recovery (TIR) and CPMG were 

used by using time domain 1H-NMR measurements of a Bruker Minispec. The concentrations of 

SPION were adjusted by dilution with phosphate-buffered saline (PBS) and the relaxation rates of R1 

and R2 were measured at corresponding concentrations of SPION. Different concentrations of Gd-

DOTA, Gd-PGC, and SPION were prepared: Gd-DOTA 0.25–3 mM, Gd-PGC 0.16–5.06 mM and 

SPION 0.11–0.9 mM. Then the relaxivities r1 and r2 were fitted by using relaxation rates of R1 and R2 

at 1.43 T, respectively. The MR relaxivities of Gd- DOTA, Gd-PGC, and SPION were also characterized 

by using in vitro phantom imaging at 3 T. The r1 relaxivity was determined by using TIR pulse sequence 

and multi echo spin echo (MESE) sequence was used for r2 relaxivity. The MR imaging parameters of 

the TIR pulse sequence were as follows: FA = 90°, TR = 3000 ms, TE = 10 ms, and inversion time (TI) 

= 50–2600 ms. The MR imaging parameters of the MESE sequence were as follows: FA = 90°, TR = 

3900 ms, and TE = 17–70 ms. And multi echo gradient echo (MEGE) sequence was used for r2
* relax-

ivity. The MR imaging parameters of the MEGE sequence were as follows: FA = 60°, TR = 3000 ms, 

and TE = 5–50 ms. The r1, r2, and r2
* relaxivities were estimated from calculated relaxation rates of 

various contrast agents using a linear model, respectively. 

 

In vivo measurements of MR relaxivities 

For the measurements of in vivo relaxation rates, R1 and R2
* were obtained by using Look–Locker and 

MEGE sequences [67]. The MR imaging parameters of the Look–Locker sequence for obtaining T1-

map were as follows: FA = 7°, TR = 18 ms, TI = 52–852 ms, FOV = 50 × 50 × 20 mm3, matrix = 256 

× 256 × 10, slice thickness = 2 mm, ETL = 10, and NA = 1. The MR imaging parameters of the MEGE 

sequence were as follows: FA = 60°, TR = 3000 ms, TE = 7–37 ms, FOV = 50 × 50 × 20 mm3, matrix 

= 256 × 256 × 20, slice thickness = 1 mm, ETL = 6, and NA = 2. To estimate in vivo r1 and r2
* values 

using Equation 3.1.1, the signal intensities were evaluated in the jugular vein near the rat’s head and 

then multiple relaxation rates were calculated from signal intensities. The slopes of several relaxation 
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rates were fitted at various SPION concentrations (0 mM, 0.35 mM, 0.7 mM, 1.04 mM, and 1.38 mM). 

 

Signal enhancement simulations 

Based on measured relaxivities of in vivo r1 and r2
*, the simulated signal enhancements by SPION in 

a vessel were estimated by adjusting the TR, TE, and FA of MR imaging parameters and SPION con-

centrations. The signal intensities by the presence or absence of the SPION injections were calculated 

by using the following equation: 

 

𝑆𝑆 = 𝑆𝑆0
�1−𝑒𝑒−𝑇𝑇𝑇𝑇∙𝑅𝑅1�

[1−cos (𝛼𝛼)∙𝑒𝑒−𝑇𝑇𝑇𝑇∙𝑅𝑅1] ∙ sin (𝛼𝛼) ∙ 𝑒𝑒−𝑇𝑇𝑇𝑇∙𝑅𝑅2∗      (3.1.2) 

 

where S0 indicates the equilibrium magnetization and S indicates the signal intensity. α is flip angle. 

Finally, signal enhancement is calculated from signal intensities presence and absence of SPION using 

the following equation: 

 

𝐸𝐸𝐸𝐸ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝

     (3.1.3) 

 

where Spre and Spost are signal intensities of the presence and absence of SPION. The calculated signal 

enhancement with adjustable MR imaging parameters at specific concentrations of SPION was repre-

sented using RGB color values to verify the positively and negatively enhanced contrast of vessel region 

in in vivo experiment. 

 

In vivo CE-MRA 

All MRAs of Sprague-Dawley (SD) rats (Orient Bio, Seongnam, South Korea) were acquired by using 

a volume coil on a 3 T MRI. The MRAs with Gd-DOTA were obtained from two rats. To directly 

compare MRAs with SPION and standard intra-vascular agent, the follow-up experiments with SPION 

(0 hours) and Gd-PGC (48 hours) were performed using six rats (185 g–195 g). All MR images before 

injection of various contrast agents were acquired firstly. The injection doses of Gd-DOTA and Gd-

PGC were 100 μmol/kg and 43 μmol/kg for each rat, respectively. The first injection dose of SPION (5 

mg/mL) which was circulated in SD rat’s body through the peripheral vein was 44.8 μmol/kg and then 

MR images were obtained by using FLASH and UTE pulse sequences [68, 69]. After the first injection 

and acquisitions of the FLASH and UTE MRA, the SPION at a dose of 179.1 μmol/kg was injected 

secondly and MR images were obtained by using FLASH and UTE pulse sequences immediately. The 

in vivo concentration of SPION was evaluated by using body weight (BW)-based blood volume (BV, 

BV = 0.06 × BW + 0.77) [70]. The SPION concentration in the rat’s blood vessels was to be ~0.71 mM 
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for the first injection and ~ 2.7 mM for the second injection of SPION. The MR imaging parameters of 

the FLASH sequence were as follows: FA = 25° and 40°, TR = 25 ms, TE = 3.6 ms, FOV = 120 × 120 

× 46 mm3, matrix = 480 × 480 × 46, and NA = 1. The MR imaging parameters of the UTE sequence 

were as follows: FA = 40°, TR = 25 ms, TE = 0.09 ms, FOV = 120 × 120 × 46 mm3, matrix = 480 × 

480 × 46, and NA = 1. 

 

Imaging processing and statistical analysis of positive MRA 

To extract vascular parameters, all MR images were applied by resize and registration algorithm. For 

converting an isotropic and high resolution, all MR images were resized by using cubic interpolation 

technique in ImageJ 1.46r [71]. And then affine and rigid image registration was performed to the 

resized images for the initial alignment. The final images were obtained by using a deformable trans-

formation with mutual information in the Insight Toolkit, Ver. 2.4 to reduce motion artifacts [72]. The 

resultant processed vasculature images were acquired by using an Otsu threshold algorithm for extract-

ing the initial segmented vessels [73]. Surface and volume rendering of processed vasculature images 

were obtained by using an in-house software based on VC++ and OpenGL.  

The head region of rat in the segmentation image remains and the rest parts were cropped. The absolute 

BVs of the FLASH and UTE MRAs were calculated from the segmented vessels of rat head. And di-

viding the acquired absolute and the total BV of the FLASH and UTE MRAs was defined as the relative 

BV of the FLASH and UTE MRAs. The diameters of the vessels were estimated by using a blob-fitting 

method in free-software of ImageJ 1.46r [74, 75]. For blob fitting method, initial 3D blobs were located 

at center line of the segmented vessels. Then, the 3D blob was swollen until it reached the exterior 

vessel surface. Based on the diameter of the increased 3D blob, the vessel diameters were determined.  

To validate the accuracy of segmentation and estimated diameters of vessel from the MRAs, the esti-

mated vessel diameters of segmented rat carotid artery and jugular vein from UTE MRA were measured 

for comparing with those diameters from visual assessments after surgery [76, 77]. For extraction of 

the discernible vessel diameters with various contrast agents, histogram analysis was performed for 

comparison of vessel diameter distributions from segmentation of FLASH and UTE MRAs with Gd-

PGC and SPION. To verify the normal distribution for statistical analysis, Shapiro-Wilk test was applied 

to vessel diameter distributions of MRAs groups with Gd-PGC and SPION. Then, T-test was used for 

verifying statistical differences of various vessel diameters from all combinational six (4C2) paired 

MRAs groups for each bin 500 μm of the vessel diameter histogram. Detailed descriptions of the study 

design and quantification process for extraction of vascular parameters are explained below and shown 

in Figure 3.1.1. 
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Figure 3.1.1 Study design and process flow chart 

 

Dual-contrast MRA 

For investigation of the complementary dual contrast benefits, the identical image slices of the head 

region along the coronal direction including multiple vessel branches, air-ways, and bones from FLASH 

and UTE MRAs with SPIONhigh were compared. The number of detected vessel branches in the rat’s 

head regions from FLASH and UTE MRAs was evaluated for verification of the direct advantage of 

single SPION injection. This comparison was performed without image registration because the 

FLASH and UTE MRAs were obtained sequentially. And erroneously regions of FLASH MRA with 

negatively enhanced contrast caused by susceptibility artifacts were compared and classified by same 

regions of UTE MRA with positively enhanced contrast. 
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3.1.3 Results 
 

SPION characterization 

 
 

 Figure 3.1.2 The characterizations of SPION: (A) the TEM image of SPION and (B) the distribution 

of SPION hydrodynamic diameters. The mean core and hydrodynamic sizes were approximately 7 and 

20 nm, respectively. 

 

The core size distribution of the SPION using the TEM was 5–10 nm as shown in Figure 3.1.2A. The 

average of hydrodynamic diameters of the SPION was 20 ± 7 nm by using DLS experiment as shown 

in Figure 3.1.2B. The nanoparticles were evenly spread with no doubt of clustering synthesized SPION 

as shown in TEM measurements. Table 3.1.1 summarizes the in vitro r1, r2, and r2
* values of Gd-PGC, 

Gd-DOTA, and SPION at 1.43 T and 3 T, respectively. The r2 values of SPION at 1.43 T and 3 T were 

pretty much of the same at similar echo times, whereas the r1 values of SPION decreased as magnetic 

field strength was increased. The in vitro r2/r1 ratios of SPION at 1.43 T and at 3 T were relatively larger 

than those of Gd-PGC and Gd-DOTA.  

 

 Field r1 (mM-1 s-1) r2 (mM-1 s-1) r2
*

 (mM-1 s-1)     r2/r1     

Gd-PGC 3T 7.21  9.14 (TE = 5.85ms) 11.25    1.3 

Gd-DOTA 3T 3.77  5.25 (TE = 5.85ms)     1.4 

SPION 1.43T 13.31 40.90 (TE = 5 ms)     3.1 

3T 6.84  39.68 (TE = 5.85ms) 49.50    5.8 

Table 3.1.1. The relaxivities of Gd-PGC, Gd-DOTA, and SPION in the in vitro measurements. 
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To measure the in vivo relaxivities of SPION, R1, pre, R1, post, R2, post, R*
2, pre, and R*

2, post were estimated 

for a region of the rat’s jugular vessel as indicated by white colored ROI in Figure 3.1.3A-1 and Figure 

3.1.3B-1. The fitted R2
* relaxation rate before and after SPION injection (0.35 mM) were shown in 

Figure 3.1.3A-2 and A-3. Figure 3.1.3B-2 and B-3 show the fitted R1 relaxation rate from before and 

after SPION injection (0.35 mM). As shown in Figure 3.1.3A-4, these fittings were performed at five 

different concentrations of SPION in a vessel and in vivo r2
* was obtained from the line slope between 

in vivo relaxation rates versus concentrations from Equation 3.1.1. The estimated in vivo r2
* of SPION 

in blood vessels was 123.51 mM−1s−1 and was significantly elevated by comparing the corresponding 

in vitro value. Similarly, the corresponding in vivo r1 was calculated to be 5.32 mM−1s−1 as shown in 

Figure 3.1.3B-4, which was close to the value of in vitro r1.  

 

 
Figure 3.1.3 The measurements of in vivo relaxivities. (A-1) and (B-1) show representative T2

*- and T1-

weighted MR images with axial direction. In panels (A-2, 3) and (B-2, 3), The fitting graphs of signal 

intensities before and after SPION injection were shown, respectively. The circle marks indicated the 

mean of signal intensity in jugular vein which was used as a ROI. In panels (A-4) and (B-4), estimated 

in vivo r2
* and r1 relaxivities are shown, respectively. For the relaxivities measurements, the different 

concentration of SPION was 0 mM, 0.35 mM, 0.7 mM, 1.04 mM, and 1.38 mM. 
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Signal enhancement simulations 

The Equation 3.1.2 and 3.1.3 were used for signal enhancement simulations. The signal enhancements 

before and after the SPION injections were calculated at multiple MR parameters. The values of in vivo 

r1 and r2
* from the signal of the jugular vessels were fed into the simulations. As shown in Figure 3.1.4, 

the three MR imaging parameters were adjusted to calculate signal enhancements as a function of 

SPION concentrations. Each signal enhancement was calculated as a function of TR at fixed TE 3.6 ms 

and FA 25°, TE at fixed TR 25 ms and FA 25°, and FA at fixed TE 3.6 ms and TR 25 ms, respectively. 

The nullified the signal enhancement was indicated by the solid black line. Four conditions with three 

imaging parameters of FLASH and UTE pulse sequences were investigated in the experiment and those 

are indicated by red and blue dots on the three plots. 

 The red and blue dots on each figure apparently represent that SPION can be used as a positively and 

negatively enhanced contrast agent. Generally, positive signal enhancement was large as the SPION 

concentration increased at a large FA, short TE, and short TR. As concentration of SPION with low FA, 

long TE, and long TR, the signal enhancement was decreased. From solid black lines on the three plots, 

the shift from positively to negatively enhanced contrast was obviously appeared. Especially, positive 

signal enhancement was generally provided within the extremely short TE range of UTE sequences. 

 

 
Figure 3.1.4 Simulations of calculated signal enhancement: signal enhancement using the steady-state 

signal equation is shown as a function of (A) TR at fixed FA and TE, (B) TE at fixed FA and TR, and 

(C) FA at fixed TE and TR. The red and blue dots on the plots are indicated as positively and negatively 

enhanced contrast experimentally. The solid black lines indicated nullified signal enhancement at the 

specific parameters. 

 

In vivo MRA with Gd-DOTA, FLASH and UTE 

In vivo MRAs in absence and presence of SPION and standard T1-contrast agents were obtained by 

using FLASH and UTE pulse sequences. In Figure 3.1.5, the representative maximum intensity pro-

jection (MIP) images from FLASH and UTE MRA are shown in rats which were circulated with various 

contrast agents. The rat 1 was injected with Gd-DOTA and the MIP images in first and second rows of 
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Figure 3.1.5A-1 and B-1 were obtained from FLASH and UTE MRA. The rat 2 was circulated by 

SPION (0 hours) and Gd-PGC (48 hours after the injection of SPION) for a follow-up study and the 

MIP images of first and second rows in Figure 3.1.5A-2, A-3, A-4 and B-2, B-3, B-4 also obtained 

from FLASH and UTE MRA after circulation of Gd-PGC, SPIONlow, and SPIONhigh, respectively. 

The doses of the injected various contrast agents were 100 μmol/kg for Gd-DOTA, 43 μmol/kg for Gd-

PGC, 44.8 μmol/kg for SPIONlow, and 179.1 μmol/kg for SPIONhigh. The injection doses of SPION were 

related to the nominal in vivo concentrations which were expected by using BW-based blood volume. 

 

 
 

Figure 3.1.5 In vivo CE-MRA with various contrast agents. Panels (A-1), (A-2), (A-3), and (A-4) show 

MIP images by using FLASH sequence after injection of Gd-DOTA, Gd-PGC, SPIONlow, and SPIONhigh, 

respectively. Panels (B-1), (B-2), (B-3), and (B-4) show MIP images by using UTE sequence after in-

jection of Gd-DOTA, Gd-PGC, SPIONlow, and SPIONhigh, respectively. Panels (A-5) and (B-5) show 

the signal enhancement versus time in the carotid artery of FLASH and UTE MRAs, respectively. 

 

The MIP images of FLASH and UTE MRA with Gd-DOTA show no signal enhancements in vessel 

regions because of short circulation time of Gd-DOTA as shown in Figure 3.1.5A-1 and B-1. So it is a 

limitation of the high resolution MRA with Gd-DOTA by using both FLASH and UTE pulse sequences. 

The MIP images of FLASH MRA with Gd-PGC and SPIONlow in the first column of Figures 3.1.5 

show positively enhanced vessels, respectively. The MIP image of FLASH MRA with SPIONhigh do not 

show signal enhancement because of negatively enhanced vessels in a rat. The most of MIP images of 
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UTE MRA in the second row visualize vessels with positively enhanced contrast except for UTE MRA 

with Gd-DOTA. As shown in Figure 3.1.4, The red (positively enhanced enhancement) and blue (neg-

atively enhanced enhancement) dots of simulation results were consistent with the experiment results 

of dose-dependent positively and negatively enhanced contrast behaviors of SPION at the provided MR 

imaging parameters. 

 In Figure 3.1.5A-2 and A-3, the MIP images of FLASH MRA with Gd-PGC in the head region of the 

Rat-2 show the more delineate vessel structure than that with SPIONlow. In Figure 3.1.5A-4, the MIP 

image of FLASH MRA with SPIONhigh shows no positively enhanced vessels in head and body regions. 

On the other hand, MIP images of UTE MRA with Gd-PGC, SPIONlow, and SPIONhigh show no notice-

able changes in visualization of depicting well-defined vasculatures, as seen in Figure 3.1.5B-2, B-3, 

and B-4. In addition, the aorta was not obviously noticeable in MIP images of FLASH MRA with Gd-

PGC and SPION but MIP images of UTE MRA with Gd-PGC and SPION show a well-defined vascu-

lature image of the aorta.  

In Figure 3.1.5A-5 and B-5, the signal enhancement changes of FLASH and UTE MRAs in the carotid 

artery were plotted, respectively. And plotted signal enhancements were averaged over six longitudinal 

studies. The signal enhancements by using the Gd-PGC and SPION were preserved for over 80 minutes 

as shown in Figure 3.1.5A-5. It seemed that SPION is suitable as blood pool contrast agents in the 

MRA with high resolution. The signal enhancement of FLASH MRA with Gd-DOTA was decreased by 

comparing to those with other contrast agents. This result is supported that Gd-DOTA is insufficient for 

use of blood pool contrast. The signal enhancement of FLASH MRA with Gd-PGC was greater than 

that with any other contrast agent. On the contrary, the signal enhancements of UTE-MRA with both 

SPIONlow and SPIONhigh were significantly greater than that with Gd-PGC.  

 

Blood vessel segmentation, blood volume, and vessel diameter of positively enhanced MRAs 

To validate the accuracy of the vascular parameters of segmented MRAs with SPION, the volume 

renderings of segmented vessels were performed as shown in Figure 3.1.6. Then BV measurements of 

segmented MRA were performed for each contrast agent. Table 3.1.2 summarizes the absolute and  

 

Contrast agent Gd-PGC (n = 6) SPIONlow (44.8 μmol/kg, n = 6) 
Units Absolute BV 

(cc) 
Relative BV  
(%) 

Absolute BV 
(cc) 

Relative BV 
(%) 

FLASH (25°) 1.49 ± 0.07  11.65 ± 0.07 1.04 ± 0.13 (*) 8.00 ± 0.78 (*) 
FLASH (40°) 1.44 ± 0.06  11.26 ± 0.06 0.94 ± 0.16 (*) 7.25 ± 0.94 (*) 
UTE (40°) 1.49 ± 0.06  11.62 ± 0.06 1.68 ± 0.09 (**) 13.03 ± 0.69 (**) 
UTE (40°) N/A  SPIONhigh (179.1 μmol/kg, n = 6) 

1.76 ± 0.22 (**) 13.59 ± 1.38 (**) 
Table 3.1.2 BV measurements of segmented vessels from six longitudinal follow-up studies. 
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relative BV with Gd-PGC and SPION. For FLASH MRA with SPIONhigh, the segmented vessel could 

not be obtained due to negatively enhanced blood vessel contrast. (*) and (**) indicate significantly 

difference of blood volume which was compared with corresponding Gd-PGC measurements, respec-

tively from T-test. The relative and absolute BVs from UTE MRA with SPIONlow and SPIONhigh were 

meaningfully larger than that with Gd-PGC because of the increased vessel signal enhancement by 

SPION. The vessel segmentation of MRA with SPION for six rats was apt to include more voxels near 

the boundary between vessel and tissue with as demonstrated in Figure 3.1.5B-5. The FLASH MRA 

with SPIONlow provides less BV when compared with that with Gd-PGC because of decreased vessel 

signals due to the strong T2
* effect by SPION at long TE. This result was reasonable by visually and 

quantitative observation of slightly dim vessels as shown in Figure 3.1.5A-5. 

 

 
Figure 3.1.6 Visualization of segmented blood vessel: panel (A) shows an MIP image of UTE-MRA 

with SPIONlow, which was the head region. And panel (B) shows the volume renderings of UTE-MRA 

with SPIONlow. Histogram of vessel diameter distributions is shown in panel (C) for four combinations: 

UTE MRA with Gd-PGC, FLASH MRA with Gd-PGC, UTE MRA with SPION, and FLASH MRA 

with SPION. (*) and (**) refer to p < 0.05 determined by T-test. 

 

In Figure 3.1.6, the blood vessel diameters of six rats in longitudinal studies were measured by using 

a blob-fitting method. Measured vessel diameters of carotid artery and jugular vein in the UTE MRA 

with SPION were 0.94 ± 0.21 mm and 2.09 ± 0.10 mm, respectively. Previously investigated vessel 

diameters from visually measurements of vessel after surgery were 1.17 ± 0.09 mm for carotid artery 

and 1.9 ± 0.2 mm for the jugular vein. It appears to be appropriate for the segmentation and quantifica-

tion methods of MRAs with SPION in this work. As shown in Figure 3.1.6C, the vessel diameter dis-

tributions of six rats were acquired from FLASH and UTE MRAs with Gd-PGC and SPIONlow. The 
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colored line of FLASH MRA with Gd-PGC (blue), UTE MRA with Gd-PGC (red), FLASH MRA with 

SPIONlow (green) and UTE MRA with SPIONlow (purple) represented the average voxel numbers of 

segmented vessel for each bin ranging between 0.5 mm and 2 mm, respectively. To confirm a normal 

distribution of each bin for all six combinations, Shapiro-Wilk test performed except for 2 mm-bin 

between UTE MRA with Gd-PGC and SPIONlow because of low count. There is no statistically signif-

icant (T-test, p ˂ 0.05) difference except FLASH MRA with SPIONlow. The vessel diameter counts in 

FLASH MRA with SPIONlow was marked with single asterisk in Figure 3.1.6C and statistically lower 

(p ˂ 0.05) than the other measurements. UTE MRA with SPIONlow also presented larger vessel counts 

(p ˂ 0.05) at 2.5 mm-bin and marked with double asterisk in Figure 3.1.6C. Although slightly larger 

voxel counts in small vessel (˂ 1 mm) was observed, UTE MRA with SPIONlow provides a consistent 

vessel size count compared to UTE MRA with standard intravascular T1 contrast agent. This results 

show enhanced vessel-to-tissue contrast and slightly improved BV measurements. 

 

Dual-contrast-enhanced images from SPION 

To verify direct benefit of dual contrast, the head region, bones, and air-ways of FLASH and UTE 

MRA with SPIONhigh were compared. As shown in Figure 3.1.7, the noticeable fine vessels in the head 

of the rat were detected in the FLASH MRA with negatively enhanced contrast, but UTE MRA with 

positively enhanced contrast was not visible fine vessels. Magnified head region of FLASH and UTE 

MRAs were shown in Figure 3.1.7A-2 and B-2 and the red lines for each MRA covered delicate vessels. 

The observable numbers of vessel branches were 3 and 3.5 with negatively enhanced contrast from 

FLASH MRA and were 1 and 2 with positively enhanced contrast from UTE MRA. This result showed 

the increased sensitivity of negatively enhanced contrast MRA in detecting well-defined vessels in the 

head region. However, the white arrows indicate erroneously darkening signal in the FLASH MRA, 

which can be distinguished by positively enhanced contrast from UTE MRA in the non-vessel region. 

As indicated by the white arrow in Figure 3.1.7A-1 and B-1, the negatively enhanced contrasts were 

also erroneously provided in the airways and bones. Positively contrast enhanced UTE-MRAs with 

SPION were shown in Figure 3.1.7A-3 and B-3. It can be considered as obvious vessel regions from 

UTE MRA with SPION. It can be applied to remove false-positively enhanced regions such as airways 

and bones from FLASH MRA alone.  
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Figure 3.1.7 Dual positively and negatively enhanced contrast MRAs with SPION: panels (A-1) and 

(B-1) show negatively enhanced vessel-to-tissue contrasts of FLASH MRA after SPIONhigh injection. 

Panels (A-3) and (B-3) show positively enhanced vessel-to-tissue contrasts of UTE MRA after SPIO-

Nhigh injection for corresponding rats. Panels (A-2) and (B-2) show well-defined vessels in the head 

region depicted by negatively and positively enhanced contrast. 
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3.1.4 Discussion and conclusions 
 

We demonstrated that dual-mode MRA using a size-controlled SPION was possible at a particular 

dose of SPIONhigh; 179.1 μmol/kg by using 3 T MRI. The negatively and positively enhanced contrasts 

were provided with FLASH (TE = 3.6 ms) and UTE (TE = 0.09 ms). We predicted these experimental 

observations from the calculation by using steady-state signal intensity equation and the estimated in 

vitro and in vivo MR relaxivities of SPION. As the SPION concentration raised in the jugular vessel, 

the measured in vivo MR relaxation rate also increased. And the in vivo r1 and r2
* relaxivities were 

estimated from those fitted slope for signal enhancement simulations. The in vivo r1 (5.32 mM−1s−1) of 

SPION was slightly lower than the in vitro r1 (6.84 mM−1s−1), probably due to the underestimated in 

vivo intra-vascular concentration of SPION. The in vivo r2
* (123.51 mM−1s−1) of SPION in the vessel 

was greater than the in vitro r2
* (49.50 mM−1s−1) at 3 T because of the difference between the in vivo 

and in vitro environments. The in vivo r2
* is intensely influenced by the magnetic susceptibility inter-

ference caused by the SPION and the background tissue. The reduced ratio of in vivo r1/r2
* of SPION 

will weaken the positively enhanced contrast at a fixed TE. Nonetheless, simulations and experiments 

at low and high doses of SPION by using both FLASH and UTE pulse sequences demonstrated that 

adjusting MR imaging parameters could be set to acquire positively enhanced contrast, particularly 

when an extremely short TE was applied. 

 CE-MRAs before and after the circulation of SPION and standard T1-contrast agents were obtained 

by using FLASH and UTE pulse sequences. The vessel-to-tissue contrast of CE-MRA with Gd-DOTA 

was no change due to the rapid washout of the contrast agent in vessels of rodent. As for the signal 

intensity of the carotid artery with Gd-PGC and SPION, it showed that the conventional intra-vascular 

T1 agent Gd-PGC gives the highest vessel-to-tissue contrast by using FLASH pulse sequence because 

of strong T2
* decay of SPION. In case of FLASH and UTE MRAs with SPIONlow and UTE MRA with 

SPIONhigh, the positively enhanced contrast was shown in vessels of rodent. Whereas FLASH MRA 

with SPIONhigh showed negatively enhanced contrast of vessels. The resultant vessel-to-tissue contrast 

of UTE MRAs with SPIONlow and SPIONhigh were significantly higher than conventional intra-vascular 

T1 agent Gd-PGC. Regarding the result that the r1 relaxivities of Gd-PGC and SPION were similar at 3 

T, the actual in vivo concentration of SPION is likely to be higher than that of Gd-PGC due to different 

in vivo clearance or distribution. It is also noteworthy that the enhanced contrast of the aorta region, 

including the aortic arch with both Gd-PGC and SPION was positively enhanced contrast in UTE-MRA 

but not in FLASH MRA. It is likely to elevate r2
* in the aorta due to high concentration of the Gd-PGC 

and SPION, resulting in signal reduction for both contrast agents when the FLASH pulse sequence was 

used. 

For quantitative analysis of the BV and vessel diameter, segmented vessels in FLASH and UTE MRAs 
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after injection of Gd-PGC and SPION were obtained. The agreement of estimated and previously re-

ported vessel diameters of both carotid artery and jugular vein confirms the precision of the MRA with 

size controlled SPION and the process of segmented vessels implemented in this work. However, it 

should be noted that segmentation results along the slice direction with the anisotropic acquisition (0.25 

× 0.25 × 1 mm3) have influenced by partial volume averaging effect. This image voxel which was 

applied by interpolation and thresholding process may limit measurements of precise quantification of 

BV and vessel diameter. Future optimizations of MRA acquisitions with SPION and segmentations are 

necessitated for more robust quantification of various vascular parameters. 

The blood volume of the UTE MRA with SPIONhigh (1.76 ± 0.22 cc) was slightly larger than that with 

Gd-PGC (1.49 ± 0.06 cc) because of the increased vessel-to-tissue contrast. As shown in Figure 3.1.5B-

5, many pixels in UTE MRA at the boundary between vessel and tissue are obviously visible and were 

consequently involved in segmented vessel. On the other hand, the BV of FLASH MRA with SPIONlow 

(0.94 ± 0.16 cc) was significantly lower than that with Gd-PGC. This result reflects the signal intensity 

reduction affected by the T2
* effect of FLASH MRA with SPION because of the r2

* relaxivity of SPION 

is higher than that of Gd-PGC. As shown in Figure 3.1.6C, the number of pixels for segmented vessels 

in the head region of FLASH MRA with SPION was consequently decreased because of reduced vessel-

to-tissue contrast by T2
*-effect. The BV measurements of FLASH MRA with SPIONlow were also re-

duced as shown in Table 3.1.2. The vessel diameter distribution of UTE MRA with SPION was similar 

compared with that estimated diameter of UTE MRA with Gd-PGC injection as shown in Figure 3.1.6C. 

And the BV measurements of UTE MRA with Gd-PGC and SPIONlow were also similar. Based on 

measurement of UTE MRA with Gd-PGC, the accuracy of positively enhanced MRA with SPION and 

improved sensitivity by SPION were demonstrated by showing the overall consistency in diameter dis-

tribution and the slight rise of the count in UTE-MRA with SPIONlow, respectively. 

The negatively enhanced contrast MRA by using FLASH sequence with the SPIONhigh provided de-

lineated vasculature in the head region as shown in Figure 3.1.7A-2 and B-2. Increased detected well-

defined vessels from negatively enhanced contrast MRA can be comprehended because the induced 

magnetic field variations by susceptibility artifact caused by SPION spread out to external-vascular 

regions by influencing the phase accumulation loss of nearby protons around the vessels. So, the im-

proved sensitivity for thin and small vessels was obtained from negatively enhanced contrast MRA by 

using FLASH pulse sequence, and the positively enhanced contrast MRA by using UTE pulse sequence 

decreased the deceptive contrast resulting from erroneously decreased signal intensity in T2
*-weighted 

images by using FLASH pulse sequence. The co-registration of two dual contrast MRAs with SPION 

provided complementary information and also presents the opportunity of co-registering positively en-

hanced contrast conventional MRA and MRI methods with negatively enhanced contrast for measuring 

vessel size and relative cerebral blood volume (rCBV). The vessel diameter and calculated rCBV using 
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MRA with SPION would also be much more precise than those acquired from MRA with Gd-DOTA. 

The leakage of Gd-DOTA could misevaluate vessel size and rCBV measurements. Also, the increased 

potential application of SPION as a positive signal-enhancing contrast agent may include T1-based 

MRA measurements of vascular parameters such as water exchange rate and absolute cerebral blood 

volume (aCBV).  

Our study is a preclinical imaging method because the SPION that we used has not yet clinically 

permitted. The recent development of FDA-approved Feraheme (AMAG Pharmaceuticals, Lexington, 

MA, USA) as a sort of iron oxide nanoparticles has been clinically enabled for the therapy of iron-

deficiency anemia and being employed in MRI [78-80]. Furthermore, SPION or FDA-approved iron 

oxide nanoparticle may enable the clinical applications by using the described method of dual contrast 

with a SPION.  

In summary, our simulations and in vitro and in vivo experiments demonstrated the dual contrast ac-

quisition with size controlled iron oxide by using presented FLASH and UTE pulse sequences. By 

taking advantage of both measurements of positively and negatively enhanced contrast for the many-

sided characterization of vasculature using a SPION, the potential usages of the suggested dual contrast 

may develop for observing of vascular response and progression in longitudinal studies of various on-

cological and neurodegenerative diseases or therapies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 

 

3.2 UTE–ΔR2–ΔR2
* combined MR whole-brain angiogram using dual-con-

trast superparamagnetic iron oxide nanoparticles 
 

3.2.1 Introduction 
 

In previous study, dual contrast MRAs with SPION show a potentiality of imaging cerebral micro-

vessels by both longitudinal (R1) and transverse (ΔR2
*) relaxation-based MRAs. Especially, spin (ΔR2) 

and gradient (ΔR2
*) echo-based MRAs are being developed for the visualizing of the cerebral micro-

vasculature in rodent by using the conjunction with exogenous blood pool contrast agents [40, 41, 81-

89]. On the experimental observation, the cerebral vasculatures such as intra-cortical penetrating arte-

rioles and venules were detected in ΔR2 and ΔR2
* MRAs, but those were not visible in conventional T1-

contrast weighted MRA [52, 90-93].  

The ΔR2 and ΔR2
* MRAs provide higher sensitivity of micro-vessels when those MRAs compared with 

general T1-contrast weighted MRA as a Gd-based contrast agent. This result shows that intra-vascular 

SPION affects intra- and extra-vascular signal decay to increase transverse relaxation rate by diffusible 

protons in the susceptibility-induced magnetic field (especially at higher field strengths, > 7 T). Partic-

ularly, the sensitivity of fine vessels in ΔR2
* MRA with restricted spatial resolution is higher than that 

in ΔR2 MRA due to strong loss of phase coherence. So, the ΔR2 MRA is generally preferred because the 

rodent brain vessels of ΔR2
* MRA were suffered by strong signal dephasing. This erroneously signal 

reduction was well-known as the vessel size overestimation and air-tissue interface artifact.  

T1-weighted MRA presents precise information of vasculature without signal contribution from extra-

vascular regions, and is unaffected from undesirable signal dephasings which was called by air–tissue 

interface artifacts [94, 95]. Specially, the T1-weighted MRA by using UTE pulse sequence minimizes 

the T2- and T2
*-relaxation decay by SPION and improves positively enhanced vessel-to-tissue contrast 

[36, 96].  

Consequently, systematical comparisons of UTE (R1), ΔR2, and ΔR2
* MRAs on the same target were 

required. The synergistic combinations of different MRAs was tried if it is possible [97-99]. Further-

more, this systematic evaluation and complementary merger of different MRAs will be considered for 

applications of brain disease model [69, 100, 101]. 

In this study, the finite perturber method (FPM) simulation of the extra-vascular signal variation was 

performed for investigating behavior of ΔR2 and ΔR2
* values for various cylinder-shaped vessel models 

with changing vessel diameters to quantitatively evaluate issues of both their sensitivity and vessel 

diameter overestimation in different MRAs. The advantages from the synergistic combinations of ΔR2 

and ΔR2
* values were also observed. Next, UTE, ΔR2, and ΔR2

* MRAs were serially obtained by using 
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UTE, FLASH, and TSE pulse sequences with SPION. We directly compared the strengths and weak-

nesses of UTE, ΔR2, and ΔR2
* MRAs in visualizing and quantifying cerebral vessels by the existence of 

intra-vascular SPION. A synergistic combination of three MRAs was followed and resulting UTE-ΔR2-

ΔR2
* combined MRA was produced. Finally, vascular parameters were extracted for comparison with 

each MRA. The advantages and disadvantages of each MRA were described and the synergistically 

merged UTE-ΔR2-ΔR2
* MRA was applied to validate the reduction of air–tissue interface artifact at the 

specific brain region and increased CNR for cerebral vessels in normal and tumor bearing rats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



53 

 

3.2.2 Materials and Methods 
 

Monte Carlo (MC) simulation 

To examine the benefits from the synergistic multiplication of ΔR2 and ΔR2
*, Monte-Carlo simulations 

were performed. Cylinder-shaped vessel models with various diameters were created in a 3D space. To 

maximize the magnetic susceptibility mismatch, the direction of the Cylinder-shaped vessel was located 

perpendicularly to the main axis of susceptibility-induced magnetic field. The magnetic field strength 

was fixed at 7 T. The susceptibility-induced magnetic field in the extra-vascular region was shifted by 

the susceptibility interference in the presence of intra-vascular SPION filling the vessel and was esti-

mated by using the FPM from a previously explained process [102-104].  

Figure 3.2.1A shows the diffusible protons for each region in the 3D matrix for calculation of the 

values of ΔR2 and ΔR2
*. The m was represented as a region encircling the vessel surface. For the ΔR2 

and ΔR2
* calculations, the SPION magnetic susceptibility (Δχ) was 3 × 107 in CGS units and this value 

was converted into the dose of 240 μmol Fe/kg [102]. Afterward, 500000 protons were located ran-

domly in the susceptibility-induced magnetic field shift space and the number of diffusible protons was 

enough for reproducible simulation results. All protons diffused with each increment of TE and stopped 

with the final increment of 5 ms and 15 ms for ΔR2 and ΔR2
* simulations, respectively. The diffusion 

length (√2𝐷𝐷∆𝑡𝑡) was defined as the standard deviation of movement of all protons. The time step of 

diffusion (Δt) was 0.2 ms and the diffusion coefficient (D) was 1 × 105 cm2/s. As shown in Figure 

3.2.1A, the susceptibility-induced magnetic field shift space was divided to estimate the values of ΔR2 

and ΔR2
* as a function of distance from surface of the cylinder-shaped vessel. The accumulated phase 

of diffusible protons within each region m during time t in the susceptibility-induced shift of magnetic 

field space was calculated by below equation:  

 

𝜑𝜑𝑚𝑚,𝑛𝑛(t) =  �𝛾𝛾∆𝐵𝐵(𝑃𝑃𝑚𝑚𝑚𝑚(𝑖𝑖∆𝑡𝑡))∆𝑡𝑡
𝑡𝑡/∆𝑡𝑡

𝑖𝑖=1

     (3.2.1) 

 

where Δt is the time step of diffusion, t is the final increment of TE, γ is the gyromagnetic ratio for a 

proton (2.675 × 108 rad/T/s), Pmn(t) is the location of the nth proton at time t within specific region m, 

ΔB(Pmn) is the susceptibility-induced shift of magnetic field at location Pmn within specific region m. 

The signal intensities were evaluated by using the average of all added phase of total diffusible N spins 

for each region m: 
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Figure 3.2.1 Simulation description and work flow for standardization of ΔR2, ΔR2

* and ΔR2 × ΔR2
*. (A) 

Diffusible spins in the susceptibility-induced shift of magnetic field space with a cylinder-shaped vessel. 

(B) Process chart for ΔR2, ΔR2
* and ΔR2 × ΔR2

* standardization. (C) The results of step-wise simulation 

following the process chart in (B). 
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S𝑚𝑚(t) =
1
𝑁𝑁
�𝑒𝑒𝑖𝑖𝜑𝜑𝑚𝑚𝑚𝑚(t)
𝑁𝑁

𝑛𝑛=1

     (3.2.2) 

 

For simulation by using spin echo signal, the accumulated phase of each diffusible proton was calcu-

lated by subtraction of proton phase before and after the π pulse [105]. The resultant ΔR2m and ΔR2m
* 

for each region m were calculated as follows:  

 

∆𝑅𝑅2𝑚𝑚,𝑅𝑅2𝑚𝑚∗ =  −
ln�𝑆𝑆𝑚𝑚(𝑇𝑇𝑇𝑇)�

𝑇𝑇𝑇𝑇
     (3.2.3) 

 

The values of ΔR2m and ΔR2m
* were defined as the center of each region m. The protons diffusing 

across the adjacent regions were excepted for computation of relaxation rates. Figure 3.2.1B and C 

illustrates the workflow for standardization of the calculated values of ΔR2, ΔR2
* and ΔR2 × ΔR2

*. The 

standardizing process was required to compare and synergistically combine different MRAs. First of 

all, the estimated values of ΔR2 and ΔR2
* for region m from FPM simulations were fitted by using a 

Gaussian with a function of distance from surface of the cylinder-shaped vessel as shown in Figure 

3.2.1B-1 and C-1. Second, the values of ΔR2 and ΔR2
* was added to white random noise, as shown in 

Figure 3.2.1B-2 and C-2. Particularly, the standard deviation of ΔR2
* in the noise region was set to be 

three times greater than that of ΔR2. In the standard deviation from ΔR2
* at TE 5 ms and ΔR2 at TE 15 

ms by using Equation 3.2.3, the experimental noise magnitudes of ΔR2 and ΔR2
* MRAs were similar 

with simulation results. Third, each amplitude was adjusted and moved to quantitatively compare and 

multiply ΔR2 and ΔR2
* as shown in Figure 3.2.1B-3 and C-3. Each amplitude was adjusted for matching 

the standard deviations of ΔR2 and ΔR2
* of the no signal region away from surface of the cylinder-

shaped vessel, so that consistent standard of the threshold can be used for both groups. The shifting of 

ΔR2 and ΔR2
* prevented miscalculation by small numbers close to zero in the noise region. Fourth, 

standardized ΔR2 and ΔR2
* values were multiplied each other, as shown in Figure 3.2.1B-4 and C-4. 

Finally, the re-standardization for multiplied ΔR2 and ΔR2
* values was performed to compare quantita-

tively of ΔR2, ΔR2
* and ΔR2 × ΔR2

*, as shown in Figure 3.2.1B-5 and C-5. 

 

Cell and animal preparation  

The IACUC of the Ulsan National Institute of Science and Technology approved this study. To per-

form in vivo MR experiments, eleven Sprague–Dawley (SD) rats were used. The six SD rats were in-

vestigated for vasculature of normal SD rat’s brain. The remaining of SD rats were injected with C6 

glioma (ATCC CCL-107) cells into their left hemisphere of the brain as follows. For injection of C6 

glioma cells into the brain, frozen cell stock were melted and preserved in Dulbecco’s modified Eagle 
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medium (DMEM, 450 ml) with penicillin–streptomycin (PS, 5 mL) and 10% fetal bovine serum (FBS, 

50 mL). The melted C6 glioma cells were placed in an incubator with 100% humidity and 5% CO2 at 

37 °C. After culture, the DMEM was eliminated and the suspension of C6 glioma cells with PBS was 

made for injection into rat brains. The rat was positioned in a Lab Standard stereotaxic instrument 

(Stoelting Co., Wood Dale, IL, USA) with micro-infusion pump. The scalp incision was performed 

along the middle line of the rat’s head. A burr hole with 0.5 mm diameter was made in the skull at 

anterior 1.5 mm, lateral 3 mm and depth 2mm from the bregma. The suspension of 1.5 × 106 C6 glioma 

cell with PBS was slowly inserted into the brain regions of the striatum and cortex by using a micro-

infusion pump and a Hamilton syringe (Hamilton, Reno, NV, USA). After the end of the injection, the 

needle for C6 glioma cell injection was slowly removed for 30 min and the scalp was sutured. 

 

MRI acquisition protocol 

All MR images were obtained with a 7 T animal MRI scanner (Bruker, Ettlingen, Germany) using a 

volume coil. The anesthesia for animals was maintained with a mixture of 70% nitrous oxide, 30% 

oxygen with 1.5% isoflurane. And the body temperature of animals was kept with 37 ± 1 °C by using 

linked an animal bed and a warm-water circuit. To determine ΔR2 and ΔR2
* MRAs, T2- and T2

*-weighted 

images were obtained before and after circulation of SPION. T1-weighted image for UTE MRA was 

acquired after injection with SPION. SPION was administrated at a dose 120 μmol Fe/kg for UTE MRA, 

240 μmol Fe/kg for ΔR2
* MRA and 360 μmol Fe/kg for ΔR2 MRA. In other words, SPION of 120 μmol 

Fe/kg was injected sequentially. The features of SPION for the MRAs have been widely investigated 

in a prior study. The relaxivities of r1 and r2 of SPION at 7 T were 2.36 mM-1s-1 and 32.94 mM-1s-1, 

respectively. The acquiring images after SPION injection was postponed for 1–2 min until the distribu-

tion of SPION in the vessels was stable. The MR imaging parameters for the UTE sequence were as 

follows: FA = 20°; TR = 12 ms; TE = 0.012 ms; FOV = 30 × 30 × 60mm3; matrix size = 384 × 384 × 

384. The MR imaging parameters for the FLASH sequence were as follows: FA = 20°; TR = 80 ms; 

TE = 5.27 ms; FOV = 30 × 30 × 33.12 mm3; matrix size = 384 × 384 × 212. The MR imaging parameters 

for the TSE sequence were as follows: TR = 2000 ms; effective TE = 15 ms; TSE factor = 4; FOV = 30 

× 30 × 33.12 mm3; matrix size = 384 × 384 × 212.  

 

MRA processing for vessel segmentation and quantification 

Image processing and associated analysis to segment and quantify vasculatures were performed using 

MATLAB (R2014b, The Math Works Inc., Natick, MA, USA). All MR images were applied by pre-

process to compare and combine ΔR2, ΔR2
*, and UTE MRAs. ΔR2 and ΔR2

* values were normalized 

based on the signal intensity of the UTE MRA for standardization of the signal intensity histogram. 

Described procedure of the generation steps for standardization was explained as shown in Figure 3.2.2. 
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First, the signal intensities of the all MR images were normalized by using the average value of signal 

intensity in the temporalis muscle (TM) [106]. The TM region presented no noticeable increasing signal 

variation by SPION, and this normalization by an average of TM signal compensated for any signal 

bias of MR images. All MR images were covered by whole brain ROI which was obtained by using the 

method of intensity-based ROI extraction from the TSE image before SPION injection. Second, voxel-

wise ΔR2 and ΔR2
* maps were estimated using the following equation: 

 

∆𝑅𝑅2∗  and ∆𝑅𝑅2 =
1
𝑇𝑇𝑇𝑇

ln�
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝
𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

�      (3.2.4) 

 

where TE is the echo time, and Spre and Spost are the signal intensities before and after SPION injection 

with spin echo for ΔR2 and gradient echo for ΔR2
*. Third, the values of ΔR2 and ΔR2

* were estimated to 

standardize the those by using the related values of UTE MRA as shown in below equation:  

 

S𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝛥𝛥𝛥𝛥2, 𝛥𝛥𝛥𝛥2∗)(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  �S𝛥𝛥𝛥𝛥2, 𝛥𝛥𝛥𝛥2∗(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) × 𝐴𝐴� + �𝜇𝜇𝑈𝑈𝑈𝑈𝑈𝑈 − 𝜇𝜇𝛥𝛥𝛥𝛥2, 𝛥𝛥𝛥𝛥2∗�     (3.2.5) 

 

 where S𝛥𝛥𝛥𝛥2∗,𝛥𝛥𝛥𝛥2(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) and S𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝛥𝛥𝛥𝛥2∗,𝛥𝛥𝛥𝛥2)(𝑥𝑥,𝑦𝑦, 𝑧𝑧) are the signal intensities of input and trans-

formed MRA, respectively [107, 108]. 𝜇𝜇𝑈𝑈𝑈𝑈𝑈𝑈  and 𝜇𝜇𝛥𝛥𝛥𝛥2, 𝛥𝛥𝛥𝛥2∗  are modes of UTE and input MRA. The 

mode means the value at the peak of each histogram. Standard deviations of signal intensities were 

calculated from values within a 30% range of each mode as criteria. The value of A was adjusted until 

the variance between the standard deviation of UTE and input signal intensity reduced below 0.001. 

This standardization between UTE, ΔR2, and ΔR2
* MRAs is necessary step to consistently compare each 

MRA. It can be feasible to apply same threshold value to all MRA and simultaneously segment vessels 

for all MRAs. Fourth, standardized ΔR2 and ΔR2
* MRAs were multiplied for the synergistic combination. 

To extract the brain surface, canny edge-detection method was applied to brain ROI [109]. The brain 

surface of multiplied ΔR2 and ΔR2
* MRAs were substituted with that of the UTE MRA. The processing 

equation for UTE-ΔR2-ΔR2
* combined MRA is described by: 

 

UTE𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 & 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 +  [∆𝑅𝑅2∗ × ∆𝑅𝑅2]𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎     (3.2.6) 
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Figure 3.2.2 Schematic diagram of the standardization of each of UTE-, ΔR2-, and ΔR2

*-MRA.  
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The re-standardization of UTE-ΔR2-ΔR2
* combined MRA was performed to quantitatively compare 

each MRAs. This combination procedure of different MRAs is motivated from the investigation that 

the UTE MRA represented precise vessel on the brain surface with positively enhanced contrast, 

whereas the ΔR2 and ΔR2
* MRAs in the inner brain provided well-visible micro-vessels with expanded 

sizes of micro-vessels. 

Lastly, the volume renderings of all MRAs were performed by using 3D Slicer (free software). The 

parts of bluish areas show tissue regions of the brain and the yellowish areas show vessels as shown in 

following MRA figures. The outside views of all MRAs were provided to visualize vessels on the sur-

face area. Each MRA with a slab range of 2 mm thickness is shown with inside views to show inner 

vessels of the brain, containing cortex region of a rat’s brain. 

For the quantitative evaluation of vascular parameters from the various MRAs, the CNRs, vessel 

node/branch count and total vessel length per branch of each MRA were obtained. For the segmentation 

of vessels, 95% of the UTE signal intensity of the maximum value in the intensity histogram was set as 

a threshold value for the surface region, and a threshold value of 90% of the UTE signal intensity was 

used for the inner region of all MRAs. The threshold value for the surface region was higher than that 

for the inner region because the relatively small vessels with lower contrast were existed in the inner 

region. The CNRs of the vessel to tissue contrast were estimated by using the following equation: 

 

CNR =  
𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆. 𝐼𝐼.−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑆𝑆. 𝐼𝐼.

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠.
     (3.2.7) 

 

Tissue SI and Vessel SI were defined as average of standardized values of the each MRA in the tissue 

and vessel regions of the brain, respectively. Tissue std refers to the standard deviation of standardized 

values of the each MRA in the tissue regions of the brain. For the quantitative evaluation of the tumor 

region in rat brains, the tumor region ROI was obtained from the combined MRA using a seeded region 

growing algorithm with a threshold value set as 90% of the UTE signal intensity. The ROI in the ipsi-

lateral tumor region was the same as that for the contralateral non-tumor brain region. As shown in 

Figure 3.2.3, the ROI of tumor region was mirrored on contralateral non-tumor regions. Then, CNRs 

by using the two ROIs were calculated and compared for analysis of the difference between non-tumor 

and tumor regions. 
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Figure 3.2.3 The ROI of the tumor region (green color) and the mirrored non-tumor region (red color) 

 

To acquire the vascular parameters, segmented vessels of the brain were skeletonized by using a thin-

ning algorithm [110]. The skeletonized vessels were transformed into a vessel network topology ex-

pressed by vessel nodes and branches [111]. The vessel branches are defined as lines of the skeletonized 

vessels, and contact point of two or more branches was indicated as a node. In the inner region, the 

cortex region with plentiful vessels was chosen by applying a cortex region ROI using the skeletons 

vessels. Total vessel length was evaluated by summing total skeletonized vessels. By dividing the total 

vessel length and the vessel branch count, total vessel length per branch was calculated.  
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3.2.3 Results 
 

MC simulation 

 

 
Figure 3.2.4 The behaviors of (A-1) ΔR2 × ΔR2

*, (A-2) ΔR2 + ΔR2
*, (A-3) average of ΔR2 and 2×ΔR2

* 

and (A-4) average of 2× ΔR2 and ΔR2
*.  

 

To verify the effectiveness of multiplication ΔR2 and ΔR2
* in the purpose of reducing the size overes-

timation issue of ΔR2
* MRAs, the investigation of the application possibility of some other operations 

to ΔR2 and ΔR2
* MRAs was performed. The results for summation and weighted average was shown in 

Figure 3.2.4. The behaviors of ΔR2 × ΔR2
*, ΔR2 + ΔR2

*, average of ΔR2 and 2×ΔR2
*, and average of 2× 

ΔR2 and ΔR2
* were plotted. The reason of the multiplication of ΔR2 and ΔR2

* can be understood by the 

results of HWHM (Half-width half-maximum) value for each case. To minimize vessel size overesti-

mation, the information of vessel size in ΔR2-MRA was very helpful. The HWHM of ΔR2 × ΔR2
* was 

closer to that of ΔR2 than that of any other operations with enhanced CNR over conventional ΔR2 and 

ΔR2
* without necessity of imposing any arbitrary weighting factors. 
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Figure 3.2.5 Simulation results with vessel diameters of 40, 60, 78 and 156 μm, respectively. (A-1), 

(B-1), (C-1), and (D-1) show the behaviors of ΔR2 and ΔR2
* with several vessel diameters. (A-2), (B-2), 

(C-2) and (D-2) show related standardized ΔR2, ΔR2
*, and ΔR2 × ΔR2

*. (A-3), (B-3), (C-3) and (D-3) 

show the HWHM of ΔR2, ΔR2
*, and ΔR2 × ΔR2

*. (A-4), (B-4), (C-4) and (D-4) show the CNRs of the 

first value of ΔR2, ΔR2
*, and ΔR2 × ΔR2

*. 
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Figure 3.2.5 shows the behaviors of ΔR2, ΔR2
*, and ΔR2 × ΔR2

* with different vessel diameters as the 

distance away from the surface of cylinder shaped vessel. The red, blue, and purple lines correspond to 

behaviors of ΔR2, ΔR2
*, and ΔR2 × ΔR2

*, respectively. In the behaviors of ΔR2, the width of decay be-

comes slightly broader but the highest amplitude decreases with increasing vessel diameters. In the 

behaviors of ΔR2
*, the highest amplitude is maintained at a similar level, whereas the width of decay 

drastically increases as vessel diameters increase as shown in Figure 3.2.5A-1, B-1, C-1, and D-1. 

Standardized ΔR2, ΔR2
*, and ΔR2 × ΔR2

* values are superimposed together in Figure 3.2.5A-2, B-2, 

C-2, and D-2 for various vessel diameters. The highest amplitudes of ΔR2 × ΔR2
* were drastically higher 

than that of individual ΔR2 and ΔR2
*, and the HWHM behaviors of ΔR2 × ΔR2

* followed that of ΔR2
*, 

representing both increase of sensitivity for micro-vessels and reduction of observable vessel diameter 

overestimation by using the combining process of ΔR2 × ΔR2
*.  

Quantitatively, the HWHM values of ΔR2, ΔR2
*, and ΔR2 × ΔR2

* are shown in Figure 3.2.5A-3, B-3, 

C-3, D-3 for various vessel diameters. The CNRs at the first voxel in the vessel surface were also 

estimated at various image resolutions as shown in Figure 3.2.5A-4, B-4, C-4, and D-4. The CNR value 

of the first voxel was calculated by average value of each decay curve within the related spatial resolu-

tion.  

 

UTE, ΔR2, ΔR2
* and combined MRAs 

A representative raw image of UTE after SPION circulation is shown in Figure 3.2.6A, and raw im-

ages of TSE and FLASH before and after SPION circulation are shown in Figure 3.2.6B-1, B-2 and 

Figure 3.2.6C-1, C-2. The surface vessels of the brain with dorsal and lateral view from same subject 

were illustrated in Figure 3.2.7. In Figure 3.2.7B-1, observed vessel of ΔR2
* MRA on the brain surface 

indicated by the white arrow was larger than of ΔR2 MRA. Although vessels of ΔR2
* MRA on the brain 

surface were seen better than those of ΔR2 MRA, some vessels of ΔR2
* MRA on the brain surface were 

messy and the description of vasculature was unclear due to strong air-tissue interface artifacts in and 

around the brain surface. The sizes of visible vessels of ΔR2
* MRA on the brain surface also were 

seemed to overestimate their sizes when compared with the size of vascular structure on the brain sur-

face from ΔR2 MRA and UTE MRA, as shown in Figure 3.2.7B-2 by indicated as the white arrows. 

Overall, vascular structures on the surface region from ΔR2 and ΔR2
* MRAs were hardly seen because 

of subtraction discrepancy of images before and after SPION injection. 

Contrastively, the brain vasculatures on the surface of UTE MRA (Figure 3.2.7A-3 and B-3) seemed 

to well-defined the arterial and venous on the brain surface than those of ΔR2 and ΔR2
* MRAs (Figure 

3.2.7A-1, B-1, A-2, and B-2). For this reason, the surface of UTE-ΔR2-ΔR2
* combined MRA was pri-

marily replaced with that of UTE MRA. Multiplication of ΔR2 and ΔR2
* MRAs on the brain surface did 

not improve the description, as shown in Figure 3.2.7A-4 and B-4. The vessels of the surface region in 
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Figure 3.2.6 Anterior-to-posterior view of a normal rat: (A) Post-injection T1-weighted image from 

UTE. (B-1) and (B-2) TSE pre and post-injection T2-weighted images. (C-1) and (C-2) FLASH pre and 

post-injection T2
*-weighted images. 
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Figure 3.2.7 MRA of a normal rat brain from three orthogonal views. (A-1), (A-2), (A-3), (A-4), and 

(A-5) show ΔR2, ΔR2
*, UTE, ΔR2 × ΔR2

* and UTE + ΔR2 × ΔR2
* combined MRAs along the dorsal and 

ventral direction, respectively. (B-1), (B-2), (B-3), (B-4), and (B-5) show ΔR2, ΔR2
*, UTE, ΔR2 × ΔR2

* 

and UTE + ΔR2 × ΔR2
* combined MRAs with lateral views, respectively. (C-1), (C-2), (C-3), (C-4), and 

(C-5) show ΔR2, ΔR2
*, UTE, ΔR2 × ΔR2

* and UTE + ΔR2 × ΔR2
* combined MRAs along the anterior 

posterior direction with 2 mm thick slab sections, respectively. The white arrow in (B-1) represents the 

ambiguous region from the surface region of ΔR2 MRA; the white arrows in (B-2) represent the over-

estimated vessel diameters on the surface region of ΔR2
* MRA. 
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ΔR2 × ΔR2
* MRA were hardly defined due to increased air-tissue interface artifacts in and around the 

surface of the rat’s brain.  

 In Figure 3.2.7C, deep brains of each MRA with thickness of identical slab are shown along the 

anterior-to-posterior direction. As shown in Figure 3.2.7C-1 and C-2, the number of detected vessels 

in the cortex of ΔR2
* MRA was remarkably greater than that in the cortex of ΔR2 MRA due to the 

relatively smaller diameters of the vessels than the spatial resolution of 3D MRA in the cortex region. 

The choroidal arterioles and cortical penetrating vessels from UTE MRA were hardly detected. How-

ever, the region of the arterial circle of willis in the deep brain from UTE MRA was showing well. The 

method of multiplying ΔR2 and ΔR2
* MRAs and adding UTE MRA was based on these observed results 

for complementation of the vessel sensitivity and the overestimated vessel diameters of ΔR2 and ΔR2
* 

MRA. As shown in Figure 3.2.7C-4, inner region of ΔR2 × ΔR2
* MRA was similar to that of UTE-ΔR2-

ΔR2
* combined MRA. The resulting UTE-ΔR2-ΔR2

* combined MRA is shown in Figure 3.2.7C-5, syn-

ergistic complementation of the individual MRAs.  

To precisely evaluate each MRA, the analysis by using line profile was applied to various brain 

regions. As shown in Figure 3.2.8A-2, the overestimation of vessel diameter in ΔR2
* MRA (blue) was 

obvious in comparison with that in ΔR2 MRA (red) for a comparatively large vessel diameter. The 

combined UTE-ΔR2-ΔR2
* MRA (yellow) shows enhanced vessel-to-tissue contrast and compensated 

vessel diameter, as reported by the simulation results. As shown in Figure 3.2.8A-3, the relatively 

smaller vessels in the cortex region were hardly observed in UTE (green) and ΔR2 MRA (red), but were 

noticeable in ΔR2
* MRA (blue) and combined UTE-ΔR2-ΔR2

* MRA (yellow). Also, it was related to the 

simulation results for smaller vessels. The improvement of vessel-to-tissue contrast and reduction effect 

of vessel diameter overestimation were visible in the cerebellum region as shown in Figure 3.2.8B-2. 

The cortical region illustrated in Figure 3.2.8C-2, the line profile (green) of UTE MRA demonstrated 

that the regions of the vessel and brain tissue were indistinguishable, but the line profiles of ΔR2 and 

ΔR2
* MRAs exhibited difference between values of the tissue and vessel of the brain. The line profile 

of UTE-ΔR2-ΔR2
* combined MRA showed that vessel-to-tissue contrast of observed whole vessels were 

higher than any of the MRAs. Nonetheless, the reduction effect of vessel diameter overestimation was 

ambiguous for the smaller vessels because that effect tends to reduce for smaller vessels according to 

the simulation results. In addition, the values of ΔR2 and ΔR2
* MRA from region of the arterial circle of 

willis were vague, but these vessel regions can be described visibly in UTE MRA.  
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Figure 3.2.8 Comparison of line profiles from UTE (green), ΔR2 (red), ΔR2

* (blue), and UTE-ΔR2-ΔR2
* 

combined (yellow) MRA in various brain regions. 
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Quantification of vessel parameters for individual and combined MRAs 

For comparison of vascular parameters of each MRAs, CNR, vessel node/branch count, and, total 

vessel length per branch for the whole brain regions were summarized in Figure 3.2.10A and Figure 

3.2.10B. The CNRs were estimated by using a vessel segmented mask as shown in Figure 3.2.9A-1 

and B-1 and other parameters were evaluated by using skeletonized vessel as shown in Figure 3.2.9A-

2 and B-2.  

 

 
Figure 3.2.9 Vessel segmentation of inner and surface regions. (A-1) Vessel segmentation of the inner 

region (cortex) of the brain with 90% thresholding. (A-2) Corresponding skeletonized vessel network 

topology of the inner region (cortex) of the brain. (B-1) Vessel segmentation of the surface region of 

the brain with 95% thresholding. (B-2) Corresponding skeletonized vessel network topology of the 

surface region of the brain. 
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Figure 3.2.10 Quantification of vascular parameters in whole brain. (A) The vessel parameters of the 

inner brain region for UTE-, ΔR2-, ΔR2
*-, and UTE-ΔR2-ΔR2

* combined MRAs. (B) The vessel param-

eters of the brain vessel on the surface region for UTE-, ΔR2-, and ΔR2
*-MRA. For statistical analysis, 

Paired t-tests were performed to compare between individual and combined MRAs. One asterisk (*) 

indicates a p-value less than 0.05 (p < 0.05). Two asterisks (**) indicate p-values smaller than 0.01 (p 

< 0.01). Three asterisks (***) indicate p-values smaller than 0.001 (p < 0.001). 

 

In the brain inner region, the CNR of the UTE-ΔR2-ΔR2
* combined MRA was greater than those of the 

individual MRAs and this result directly confirms from the analysis by using line profile as shown in 

Figure 3.2.8. The vessels of the inner region from UTE MRA provided the lowest CNR because those 

of the inner region were rarely noticed, as shown in Figure 3.2.10A-1. The node and branch count of 

vessel from ΔR2
* and UTE-ΔR2-ΔR2

* combined MRAs were greater than those from UTE and ΔR2 

MRAs, as shown in Figure 3.2.10A-2 and A-3. As shown in Figure 3.2.10A-4, only ΔR2 MRA showed 

a statistic difference in total vessel length per branch because comparative long vasculatures were de-

tected. Table 3.2.1 summarizes the vascular parameters of the inner region for the six rat’s brains. 

For the surface region of the brain, the CNRs of UTE and ΔR2 MRAs were greater than those of ΔR2
* 

MRA. This is likely to an effect of the sporadic vessels of ΔR2
* MRA caused by air-tissue interface 

artifacts. Correspondingly, node and branch count of ΔR2
* MRA were statistically greater than for the 

other MRAs. But this result probably was related to air-tissue interface artifacts. On the other hand, the 

total vessel length per branch inclined to decrease in the order of UTE, ΔR2, and ΔR2
* MRAs and rep-

resents that vessel of UTE MRA on the surface were relatively longer than other MRAs, as described 
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in Figure 3.2.10B-4. Table 3.2.2 summarizes the vascular parameters of the surface region for the six 

rat’s brains. 

 

  Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 Rat 6 

CNR 

UTE MRA 1.48 3.13 2.24 1.29 1.44 1.68 

ΔR2 MRA 5.18 6.32 7.23 4.37 2.71 4.20 

ΔR2
* MRA 5.57 6.58 6.16 4.60 3.99 5.93 

Combined 
MRA 

11.47 14.11 14.94 10.07 7.27 10.68 

Vessel 
node 
count 

UTE MRA 38 23 45 52 34 25 

ΔR2 MRA 35 30 48 41 43 38 

ΔR2
* MRA 336 172 271 185 288 263 

Combined 
MRA 

264 168 271 284 325 212 

Vessel 
branch 
count 

UTE MRA 60 48 62 74 42 47 

ΔR2 MRA 79 34 95 72 87 82 

ΔR2
* MRA 823 481 710 389 668 651 

Combined 
MRA 

601 370 590 567 678 470 

Total 
Vessel 
length 

per 
branch 
(Total 
vessel 

length) 

UTE MRA 5.30 
(318) 

6.88 
(330) 

5.10 
(316) 

6.39 
(473) 

5.74 
(241) 

5.64 
(265) 

ΔR2 MRA 8.56 
(676) 

7.44 
(253) 

7.13 
(677) 

8.29 
(597) 

7.56 
(658) 

8.16 
(669) 

ΔR2
* MRA 6.57 

(5409) 
7.01 

(3370) 
6.71 

(4764) 
5.65 

(2198) 
6.15 

(4109) 
7.28 

(4737) 

Combined 
MRA 

6.61 
(3971) 

7.11 
(2631) 

6.93 
(4090) 

5.72 
(3242) 

5.76 
(3902) 

6.71 
(3153) 

Table 3.2.1 Summary of vascular parameters for UTE-, ΔR2-, ΔR2
*-, and UTE-ΔR2- ΔR2

* combined 

MRAs of the inner brain region for all normal rats. 

 

  Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 Rat 6 

CNR 

UTE MRA 11.66 15.05 12.13 11.43 13.85 16.79 

ΔR2 MRA 16.69 16.22 20.76 10.71 4.77 20.31 

ΔR2
* MRA 7.87 7.76 8.12 6.01 5.98 8.98 

Vessel 
node 

UTE MRA 32 27 71 23 49 20 

ΔR2 MRA 142 19 105 90 144 47 
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count ΔR2
* MRA 195 22 120 149 145 64 

Vessel  
branch 
count 

UTE MRA 57 58 105 33 76 23 

ΔR2 MRA 225 28 173 143 249 78 

ΔR2
* MRA 330 38 207 268 238 92 

Total  
Vessel 
length  

per  
branch (To-

tal 
vessel 

length) 

UTE MRA 11.93 
(680) 

15.26 
(885) 

9.48 
(995) 

9.61 
(317) 

10.01 
(761) 

10.13 
(233) 

ΔR2 MRA 6.54 
(1471) 

11.75 
(329) 

8.46 
(1464) 

7.20 
(1029) 

6.37 
(1585) 

6.69 
(522) 

ΔR2
* MRA 5.38 

(1777) 
5.13 

(195) 
5.83 

(1207) 
4.64 

(1244) 
5.64 

(1343) 
5.80 

(534) 

Table 3.2.2 Summary of vascular parameters for UTE-, ΔR2-, ΔR2
*-, and UTE-ΔR2- ΔR2

* combined 

MRAs of the surface brain region for all normal rats. 

 

MRA of brain tumor 

 
Figure 3.2.11 MRA of a C6 tumor bearing rat in external and internal views: panels (A-1), (A-2), (A-

3), and (A-4) show dorsal views of UTE-, ΔR2-, ΔR2
*-, and UTE-ΔR2-ΔR2

* combined MRAs, respec-

tively. Panels (B-1), (B-2), (B-3), and (B-4) show posterior-to-anterior views of UTE-, ΔR2-, ΔR2
*-, and 

UTE-ΔR2-ΔR2
* combined MRAs, respectively, with 1.56 mm thick slab selections. White arrows indi-

cate tumor peripheral vasculature in the surface region from UTE MRA. 
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In the Figure 3.2.11A, the tumor peripheral vasculature of UTE MRA on the brain surface was de-

tected and delineated better than with ΔR2 and ΔR2
* MRAs, as indicated by white arrow. The vessel-to-

tissue contrast of the tumor region in the cortex region were dissimilar between each MRAs, as shown 

in Figure 3.2.11B. The region of tumor vasculature in the cortex of ΔR2 and ΔR2
* MRAs was broadly 

revealed as shown in Figure 3.2.11B-1 and B-2. But, it was hard to differentiate the tumor edge of ΔR2
* 

MRA alone due to the signal reduction of the T2
* image before SPION injection by the strong T2

* effect. 

The contrast of tumor region from ΔR2 MRA was greater than those from UTE and ΔR2
* MRAs. The 

contrast of tumor in the cortex region of UTE MRA was relatively low as shown in Figure 3.2.11B-3. 

Consequently, the UTE-ΔR2-ΔR2
* combined MRA provided both well-defined peripheral vessels of tu-

mor on the surface and improved contrast of tumor region in the cortex, as shown in Figure 3.2.11A-4 

and B-4, respectively. 

 

 
Figure 3.2.12 Comparison of CNRs between intra-cortical normal and tumor brain regions for (A-1) 

UTE-, (A-2) ΔR2-, (A-3) ΔR2
*- and (A-4) UTE-ΔR2- ΔR2

* combined MRAs of C6 tumor rats: the CNR 

and CNR difference from tumor region of UTE-ΔR2-ΔR2
* combined MRA were the highest. 

 

Based on the results of the above analysis, CNRs were extracted from both normal and tumor regions 

of rats to evaluate the distinguishability of tumor and non-tumor from each MRA. As seen in Figure 

3.2.12, the highest CNR value in tumor region was acquired from UTE-ΔR2-ΔR2
* combined MRA. Fur-

thermore, the CNR difference of the normal and tumor regions was highest from UTE-ΔR2-ΔR2
* com-

bined MRA for all four rats, as summarized in Table 3.2.3. 
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At 6 days after 
cell injection 

C6 Rat 1 C6 Rat 2 C6 Rat 3 C6 Rat 4 
CNRn CNRt CNRd CNRn CNRt CNRd CNRn CNRt CNRd CNRn CNRt CNRd 

UTE MRA 0.38 4.40 4.02 1.12 5.12 4.00 0.19 3.39 3.19 0.02 2.82 2.80 

ΔR2 MRA 1.21 8.40 7.19 0.64 7.90 7.26 1.05 7.87 6.82 1.03 7.41 6.38 

ΔR2* MRA 1.02 5.04 4.03 0.87 1.85 0.98 0.94 3.76 2.81 0.51 5.31 4.79 

Combined MRA 1.66 12.79 11.13 1.99 12.01 10.02 1.20 9.23 8.04 1.11 11.94 10.82 

Table 3.2.3 Summary of CNRs of normal tissue (CNRn), ipsilateral tumor (CNRt), difference between 

normal tissue and tumor (CNRd) for UTE-, ΔR2-, ΔR2
*-, and UTE-ΔR2- ΔR2

* combined MRAs for the 

inner region of tumor-bearing rats. 

 

For comparison of the longitudinal results of CNRs in normal and tumor region, all MRAs with same 

object were obtained at three time points (6, 9, and 12 days) after the injection of the c6 tumor cell into 

the rat’s brain as shown in Figure 3.2.13. Although CNRs was no change in normal region, the increas-

ing trend of CNR in the tumor region of rat was observed from ΔR2 and UTE-ΔR2-ΔR2
* combined MRAs 

as time progressed and the highest CNR difference also show in UTE-ΔR2-ΔR2
* combined MRA. On 

the other hand, the CNR of ΔR2
* MRA in tumor region was consistently decreased, because the signal 

of tumor region of T2
* before SPION injection was affected by growing complexity of tumor micro-

vessels. 

 

. 

Figure 3.2.13 Changes of CNRs in normal and tumor regions of brain for the longitudinal study. (A-1) 

The CNRs of UTE-, (A-2) ΔR2-, (A-3) ΔR2
*-, and (A-4) UTE-ΔR2-ΔR2

* combined MRAs in C6 tumor 

rat. The CNR of the tumor region and CNR difference from UTE-ΔR2-ΔR2
* combined MRA were the 

highest and gradually increased as time goes. 
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As shown in Figure 3.2.14A, B, and C, MR anatomical images of tumor bearing rat of post UTE-, 

pre/post TSE, and pre/post FLASH acquisitions were shown by sequential time points after C6 tumor 

cell injection. Corresponding maps from ΔR2, ΔR2
*, combined (UTE+ ΔR2

 × ΔR2
*), and ΔR2

*/ΔR2 were 

shown (D-H). The enhanced contrast of UTE, ΔR2, and ΔR2
* images in the tumor region (white arrow) 

started to show up at 6 days after the cell injection. 

 

 
Figure 3.2.14 Longitudinal (0~12 days) anterior-to-posterior view of a C6 tumor bearing rat brain: (A) 

T1-weighted UTE image after SPION injection. (B-1) and (B-2) T2-weighted TSE images before and 

after SPION injection, respectively. (C-1) and (C-2) T2
*-weighted FLASH images before and after 

SPION injection, respectively. (D) ΔR2 map, (E) ΔR2
* map, (F) UTE, (G) combined UTE + ΔR2× ΔR2

* 

map and (H) conventional vessel size ΔR2
*/ΔR2 map as time progresses (1.56 mm thick slab sections). 

White arrow indicates the tumor region. 

 

As time progresses, variations of vasculature in the left cortex region were increased. The contrast of 

tumor region was different according to each MRA. The signal reduction in tumor region of T2 image 

after SPION injection was higher compared with those of UTE and T2
* image after SPION injection. 

Although the relatively low enhanced contrast of UTE image in tumor region was appeared, peripheral 

tumor vessels were well-differentiated by enhancing with SPION due to only affected existence of con-

trast agent. And peripheral tumor vessel seems like relatively larger vessel than inner tumor vessel due 

to slightly high contrast in 12 days. The tumor region of ΔR2
* map was difficult to distinguish tumor 

region. And the tumor region of UTE MRA was shown alike transverse relaxation based MRAs at 12 
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days after C6 tumor cell injection. Additionally, values of ΔR2
*/ΔR2 result in the our MRAs show lower 

than values of normal tissue as shown in Figure 3.2.14H. This may be from small vessel sprouts in 

tumor angiogenesis or it may result from extravasating SPION. The combined MRA at 12 days shows 

large enhancement, while ΔR2
*/ΔR2 shows the lowest values.  
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3.2.4 Discussion and conclusions 
 

By using benefits of the dual contrast ability of SPION, the direct advantages of the UTE-ΔR2-ΔR2
* 

combined MRA were visualized and verified by quantification and comparison of vascular parameters 

from normal and tumor-bearing rat brains. The UTE MRA offered visualization of distinct vasculature 

on the brain surface regardless of air–tissue interface artifacts. The arterial region of the inner brain was 

also accurately represented with the high-dose feeding. The combination of deep brain regions from 

ΔR2 and ΔR2
* MRA increased the CNR of penetrating micro-vessels. As a result, the UTE-ΔR2-ΔR2

* 

combined MRA overall enhanced accuracy and sensitivity in the whole brain and obtained improved 

distinguishability of normal and tumor regions.  

The HWHM and CNR of ΔR2 and ΔR2
* were similar at the 40 μm vessel diameter. The CNR of ΔR2 is 

increasing as vessel diameter increases, while that of ΔR2
* is staggering. The HWHM of ΔR2

* values 

are rapidly increasing as vessel diameter increases. The CNR of both ΔR2 and ΔR2
* is decreasing as the 

resolution increases from the averaging effect of Gaussian like curve away from the cylinder-shape 

vessel surface. And the HWHM of ΔR2
* was larger as the vessel diameter increased. These results show 

the vessel diameter overestimations from ΔR2
* MRA. Regarding the limitation of feasible 3D spatial 

resolutions, it is important to study the aspects of the CNRs at various image resolutions. The CNR of 

ΔR2
* was greater than that of ΔR2 at various spatial resolutions, representing the high sensitivity of 

micro-vessel of ΔR2
* MRA. Especially, the vessels of ΔR2

* MRA are more detectable when the spatial 

resolution of the 3D MRA is slightly higher than vessel diameters. 

The 3D imaging protocol with high resolution and manipulation of the contrast agent by concentration 

are keys to this method. The use of SPION with a prolonged half-life in vessels will help to manipulate 

the dose of SPION between pulse sequences for 3D MRA with high resolution. The UTE MRA was 

feasible for a low dose of SPION to maximize T1 effect, while ΔR2 MRA was needed a high dose of 

SPION to maximize T2 effect. The dose of SPION of ΔR2
* MRA will be appropriate due to excessive 

T2
* effect with gradient-echo. The detected vessels in the cortex and higher signal than the threshold 

value from uneven tissue region by low TR were affected to give a similar count of vessel node and 

branch changes between UTE and ΔR2 MRAs. For the increasing of detecting vessel accuracy, more 

scan time was needed to expand TR. 

The limitations and feasible development of each MRA can be showed as follows. Although arteries 

and veins on the surface region from UTE MRA with T1 contrast were defined well. But cortical arteri-

oles and venules in deep brain were hardly detected because vessel size was lower than voxel resolution 

or low sensitivity by receive coil. This is main result of the insufficient volume coil for segmentation of 

micro-vessels. Resolution improvement of UTE3D with reduced acquisition time by using cryogenic 

and surface coils and sampling optimization may further increase sensitivity of smaller vessels in deep 
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brain [112, 113]. 

ΔR2 MRA is widely applied to the visualization of micro-vessels in deep brain for the reason that it is 

less sensitive to vascular geometric distortions and air-tissue interface artifacts. So ΔR2 MRA is free 

from vessel diameter overestimation [41]. However, the number of vessel branches for ΔR2 MRA was 

significantly less than that for ΔR2
* MRA. A additional cause for this observation may be blurring image 

artifacts from the TSE factor for acceleration 3D acquisitions by using spin echo [114-116]. Future 

acquisition optimization of ΔR2 MRA will necessitate the diminished blurring artifact by using reduction 

of TSE factor, which may enhance sensitivity under a reasonable total acquisition scan time. 

ΔR2
* MRA provided outstanding sensitivity for micro-vessels, but is often evaded due to serious over-

estimation of actual vessel diameter and air–tissue artifacts as presented by the line profile analysis and 

visualization of MRA. The overestimation problem of vessel diameter will depend on the decided 

threshold values in the process of vessel segmentation for all MRAs. The enhancement of CNR from 

the multiplication of ΔR2 and ΔR2
* MRAs should raise threshold values for vascular segmentation and 

ease vessel diameter overestimation of ΔR2
* MRAs for comparatively large vessels as proved by FPM 

simulation and experiment. Also, susceptibility weighted imaging and quantitative susceptibility map-

ping techniques can be applied to obtain phase information and can also be implemented to substitute 

ΔR2
* MRA. Processing of the UTE-ΔR2-ΔR2

* combined MRA is almost automatable, however, discon-

nection problems of interconnecting region between surface and inner vessels may be possible. Espe-

cially, small vessels from segmentation of each MRA may be a little dissimilar. The algorithms for 

suitable edge detection and patching may improve these discrepancies when merging various MRAs. 

FPM simulation was implemented for the influence evaluation of the extra-vascular signal affected by 

comparatively large (>40 μm) vessels with limited spatial resolution. Nonetheless, it is attractive for 

comparing the suggested combined multi-contrasts and conventional parameters for micro-vasculature, 

such as the CBV or vessel size index (ΔR2
*/ΔR2) for capillaries (<10 μm). The extra-vascular signal 

influence of the ΔR2
* MRA reduces as the vessel diameter decreases. And the ΔR2 × ΔR2

* may improve 

the sensitivity for small vessels, as seen in Figure 3.2.14, particularly for tumor angiogenesis. The sig-

nificantly increased CNR of the tumor region from UTE-ΔR2-ΔR2
* combined MRA and the improved 

combined mapping may indicate this advantage as shown in Figure 3.2.14. Higher sensitivity in ΔR2 

and lowered ΔR2
*/ΔR2 verified the presence of micro-vessels in tumor regions at 12 days as shown in 

Figure 3.2.14H. However, SPION may have extravasated into the C6 tumor interstitium as previously 

reported [117, 118]. The unclear vasculature and slightly expanded contrast may also SPION extrava-

sation effect in the tumor region. Additional work is required for wide-ranging confirmation between 

these situations. 

In summary, in vivo animal experiments in this study demonstrated the representative characteristics 

of longitudinal and transverse relaxation-based MRAs with SPION as blood pool contrast agent and 
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UTE-ΔR2-ΔR2
* combined MRA. By merging the advantages of both positively and negatively enhanced 

contrast MRAs for many-sided description of vasculature using SPION, the proposed UTE-ΔR2-ΔR2
* 

combined MRA showed increased vascular sensitivity in the inner area and well-defined vessels on the 

brain surface area. The proposed UTE-ΔR2-ΔR2
* combined micro-MRA of whole brain may link the 

gap between conventional micro-vascular quantification and MRA, and can be used for consist moni-

toring of brain vasculature and follow-up studies to increase treatment effects.  
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Chapter 4. Evaluation of developed contrast agent for in vivo ani-

mal model 

4.1 Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a 

T1 contrast agent for high-field MRI 

4.1.1 Introduction 

From a developing MRI contrast agent perspective, it is important to develop improved relaxivity of 

MRI contrast agents at higher magnetic fields. It is expected to drastically increase SNR and resolution 

in the high magnetic fields (> 7 T) [119]. However, it is generally observed that spin-lattice relaxation 

time (T1) increases and converges for different tissues as the magnetic field strength increases. So, the 

contrast of T1-weighted image at higher magnetic field (> 7 T) reduces when the same imaging param-

eters used at conventional 1.5 or 3 T [120, 121]. The observation of r1 relaxivity decrease of MRI con-

trast agents at higher magnetic field necessitates development of efficient in vivo compatible positive 

with good relaxivity characteristics because MRI contrast agent is critical for the sensitivity and speci-

ficity of MRI examination [122-125]. 

Protein cage nanoparticles have been developed as nanoscale delivery vehicles for therapeutic reagents. 

And these particles extensively studied as supramolecular templates for the conjugation of small mole-

cule contrast agents such as the chelated paramagnetic gadolinium ion. These macromolecule-based 

contrast agents are frequently used as a positive contrast agent for MRI and known as significantly 

higher r1 relaxivity due to increased correlation time and decreased local motion [43, 126-132]. How-

ever, effectively useable in vivo MR contrast agents are a rarity because it is hard to maintain high r1 

relaxivity (> 10 mM−1s−1) with appropriate r1/r2 ratio (0.5 ~ 1) at high magnetic field [133-136]. With 

the increased application of MRI in higher magnetic fields, there is a need to maintain high r1 relaxivity 

at high magnetic field. 

In this study, lumazine synthase was used as nanoscale template for conjugates. And it was isolated 

from by hyperthermophile Aquifex aeolicus (AaLS). The developed nanoscale template evaluated its 

potential as an in vivo MR contrast agent at the magnetic field strength of 7 T. For our application, 

Gd(III)-chelating agent complexes were attached at position 108 with cysteine (R108C). It is known to 

be exposed on the exterior surface of AaLS.  

The r1 and r2 relaxivities of Gd(III)-DOTA-AaLS-R108C were obtained at 1.43 T and 7 T with multi-

ple phantoms. Tumor bearing mouse were prepared and Gd(III)-DOTA-AaLS-R108C was injected into 
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the mouse for in vivo experiments at 7T magnetic field. The signal behaviors and T1 relaxation time 

were observed and compared with the Gd-DOTA (DOTAREM) and Gd(III)-DOTA-AaLS-R108C for 

both vascular and tumor regions. 
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4.1.2 Materials and Methods 

Cell and animal models. 

Six-week-old female BALB/c nude mice weighing 20–25 g (Harlan Laboratories) were used for the 

MRI experiments. Squamous cell carcinoma (SCC) -7 cells were cultured in RPMI1640 medium with 

10% (v/v) fetal bovine serum and 1% (w/v) penicillin-streptomycin in 37 °C under conditions of 5% 

CO2. To generate a tumor-bearing mouse model, 1 × 106 SCC-7 cells in phosphate-buffered saline (PBS) 

were injected subcutaneously into the right flank of nude mouse. When the tumor volume reached ap-

proximately 100 mm3, the mice were used for the MRI experiments. All animal studies were performed 

in compliance with the guidelines of the local ethics committee for animal care and use, and were ap-

proved by the IACUC of Ulsan National Institute of Science and Technology. 

Relaxivity Measurements 

For measurements in vitro relaxivities of the Gd(III)-DOTA-AaLS, a Bruker Minispec MQ20 1.43 T 

and 7 T animal MRI scanner were used. The pulse sequences of standard inversion recovery (IR) and 

CPMG were used at magnetic field strength 1.4 T. The concentrations of Gd(III)-DOTA-AaLS were 

adjusted by dilution with phosphate-buffered saline (PBS) and six different Gd concentrations of 

Gd(III)-DOTA-AaLS-R108C were 0.074, 0.037, 0.0185, 0.00925, 0.004625, and 0 mM. The IR 

sequence parameter for the T1 relaxation times of the Gd(III)-DOTA-AaLS was as follow: IR delay 

ranging = 0–20000 ms. The CPMG sequence parameters for T2 relaxation times of the Gd(III)-DOTA-

AaLS were as follow: echo spacing (TE) = 1 ms and recycling time (TR) = 1.5 s.  

Also, the MR relaxivities of Gd(III)-DOTA-AaLS-R108C was characterized by using in vitro phantom 

imaging at magnetic field strength 7 T. the T1 relaxation time was estimated using a TSE pulse sequence 

at variable repetition times. And the MESE pulse sequence was used for measurement of the T2 relaxa-

tion time. The MR imaging parameters of TSE pulse sequence for the T1 relaxation time were as follows: 

FA = 90°, TR = 20–5000 ms, TE = 7.6 ms. The MR imaging parameters of MESE sequence for T2 

relaxation time were as follows: FA = 90°, TR = 5000 ms, TE = 20–1000 ms. The longitudinal and 

transverse relaxivity were determined by measuring the T1 relaxation times and T2 relaxation times of 

six different Gd concentrations of Gd(III)-DOTA-AaLS-R108C (0.074, 0.037, 0.0185, 0.00925, 

0.004625, and 0 mM). Both relaxivities r1 and r2 were calculated from the slope of the relaxation rate 

R1 (1/T1) and R2 (1/T2) as a function of concentration (mM) of contrast agent, respectively.  

In vivo experiments scanner, animal, and contrast agent 

All in vivo experiments were performed under approved IACUC of the Ulsan National Institute of 

Science and Technology. All total 6 male nude mice (20~25g) with tumor were used in this study. Four 
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mice were injected intravenously with 350 μl of Gd(III)-DOTA-AaLS-R108C (concentration: 

17.143 mM) as a bolus into the tail vein. All tumor-bearing mice (the tumor volume, ~ 100 mm3) were 

scanned on 7 T MRI animal scanner using a transceiver RF volume coil with diameter 40 mm for mouse 

body under anesthesia with 1.0-1.5% isoflurane. Radio frequency power and receiver gain was kept for 

each in vivo scan. And, two mice were used with 350 μl of DOTAREM (concentration: 17.857 mM) as 

a reference group.  

To evaluate ability of vascular imaging and tumor targeting efficacy of Gd(III)-DOTA-AaLS-R108C, 

RAREVTR (RARE with variable repetition time TR) and 3D FLASH sequence were performed before 

and at six time points (1, 2, 3, 7, 12 and 30 hours) after the intravenous injection of the contrast agent 

at a dose of 0.3 mmol/kg. The T1-map and high resolution 3D MRA were obtained, respectively. The 

MR imaging parameters of RAREVTR were set as follows: FA = 90°, TR = 8 values in the range of 

280-5000 ms, TE = 6 ms, FOV = 30 × 30 mm2, slice thickness = 1 mm, matrix size = 128 × 128. The 

MR imaging parameters of 3D FLASH were set as follows: FA = 20°, TR = 13 ms, TE = 2.1 ms, FOV 

= 30 × 30 × 30 mm3, matrix size = 256 × 256 × 256. MRAs were reconstructed using MIP and T1-maps 

were generated by a mono-exponential fitting method by using Matlab (R2014b, The Math Works Inc., 

Natick, MA, USA). 
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4.1.3 Results 

Relaxivity measurements with phantoms 

Figure 4.1.1: T1-weighted in vitro phantom images. (A) PBS control, (B) AaLS-R108C only and (C) 

Gd(III)-DOTA-AaLS-R108C with increasing concentrations at 7 T. All images were obtained using a 

RAREVTR sequence at 4 TR values (100, 500, 1000, and 2000 ms).  

For evaluation the ability of Gd(III)-DOTA-AaLS-R108C as an appropriate T1 contrast agent of in 

vivo experiment at high magnetic field, T1-weighted images were acquired by the different concentra-

tion phantoms on a magnetic field strength 7 T with a volume coil. The 4 TR values of RAREVTR 

pulse sequence were 100, 500, 1000, and 2000 ms. The T1-weighted phantom images of PBS, AaLS-

R108C only and Gd(III)-DOTA-AaLS-R108C were shown in Figure 4.1.1. The PBS control and AaLS-

R108C only do not have significant signal difference as a function of TR because T1 values does not 

change between them. On the other hand, Gd(III)-DOTA-AaLS-R108C shows brighter image at short 

TRs compared to those of that PBS control and AaLS-R108C-only due to decreased T1 values.  

As the Gd concentration is increased, the decreased T1 values of Gd(III)-DOTA-AaLS-R108C con-

tribute to contrast enhancement and brighter images were obtained at short TRs. To compare with con-

ventional DOTAREM, the signals of RAREVTR at values of multiple TR were plotted together. The 

Gd concentrations were 0.004625, 0.00925, 0.0185, 0.037, and 0.074 mM. The saturation recovery 

signals of Gd(III)-DOTA-AaLS-R108C and DOTAREM were shown in Figure 4.1.2. Decreased T1 

values of Gd(III)-DOTA-AaLS-R108C were obvious at the same concentration and the r1 relaxivity of 

Gd(III)-DOTA-AaLS-R108C was larger than that of conventional DOTAREM.  
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Figure 4.1.2: The comparison of relaxation time for Gd(III)-DOTA-AaLS-R108C and conventional 

DOTAREM. The saturation recovery signal with RAREVTR at multiple TR values were plotted 

together at identical Gd concentrations of Gd(III)-DOTA-AaLS-R108C and DOTAREM. Increased R1 

values were apparent for Gd(III)-DOTA-AaLS-R108C. 

In Figure 4.1.3A-1 and C-1, the slope of T1 measurement became steeper on both magnetic field 

strength 1.43 T and 7 T as the concentrations of Gd(III) increased. This results showed that the net 

magnetization of Gd(III)-DOTA-AaLS-R108C recovers back rapidly. As concentrations of Gd(III) in-

creased, T2 relaxation times also decreased in Figure 4.1.3A-2 and C-2. Gd(III)-DOTA-AaLS-R108C 

showed higher r1 relaxivity. As shown in Figure 4.1.3A-3, The r1 and r2 relaxivites were 30.24 mM−1s−1 

and 41.42 mM−1s−1 under 1.43 T (37 °C), respectively. As shown in Figure. 4.1.3C-3, the relaxivity of 

Gd(III)-DOTA-AaLS-R108C decreased under room temperature at 7 T. At 7 T, the r1 and r2 relaxivites 

of Gd(III)-DOTA-AaLS-R108C were 16.49 mM−1s−1 and 31.86 mM−1s−1. However, the measured r1/r2 

values of Gd(III)-DOTA-AaLS-R108C were maintained acceptably by 0.73 and 0.52 at 1.43 T and 7 T, 

respectively. This results indicated that Gd(III)-DOTA-AaLS-R108C regards as the appropriate T1 con-

trast agent at high magnetic field. The T1 and T2 relaxation time measurements of untreated AaLS-

R108C at same conditions were shown in Figure 4.1.3B-1 and B-2 at 1.43 T. The r1 and r2 relaxivities 

of untreated AaLS-R108C were 0.37 mM−1s−1 and 1.29 mM−1s−1 at 1.43 T. Also, T1 and T2 relaxation 

time measurements were shown in Figure 4.1.3D-1 and D-2 at 7 T and r1 and r2 relaxivities of untreated 

AaLS-R108C were 1.02 mM−1s−1 and 3.14 mM−1s−1, respectively. The relaxivities of untreated AaLS-

R108C were measured as reference as shown in Figure 4.1.3B-3 and D-3.  



85 

Figure 4.1.3: Measurements of T1 and T2 relaxation times of Gd(III)-DOTA-AaLS-R108C at (A)1.4 T 

and (C) 7 T. Measurements of T1 and T2 relaxation times of AaLS-R108C at (B)1.4 T and (D) 7 T. 
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In vivo characterizations 

T1 maps of tumor-bearing mice were obtained for evaluation of newly developed Gd(III)-DOTA-

AaLS-R108C accumulation efficacy in the tumor region. To compare directly, the longitudinal experi-

ments and analysis with same conditions were performed by using with Gd(III)-DOTA-AaLS-R108C 

and conventional DOTAREM. To obtain regionally averaged T1 values, ROI analysis was performed. 

The T1 values of the tumor region of mice in presence of Gd(III)-DOTA-AaLS-R108C was consistently 

decreased after the time point of ~7 h. As shown in Figure 4.1.4A and 4.1.4B, T1 maps before and 30 

h after the injection of Gd(III)-DOTA-AaLS-R108C were showed. The T1 fitting result was shown in 

Figure 4.1.4C at both time points, respectively. In both T1 maps and corresponding raw T1 fitting results, 

The T1 values in the tumor region of mice were decreased at 30 h after the injection of Gd(III)-DOTA-

AaLS-R108C.  

Figure 4.1.4: Representative T1 map and fitting quality. (A) Representative T1 map before injection of 

Gd(III)-DOTA-AaLS-R108C, (B) Representative T1 map after 30 h Gd(III)-DOTA-AaLS-R108C in-

jection and (C) T1 fittings of ROI over the tumor prior to (blue square) and 30 h (red square) after 

injection of Gd(III)-DOTA-AaLS-R108C. 
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At sequential time points, MIP images of tumor bearing mice before and after the injection of Gd(III)-

DOTA-AaLS-R108C were shown in the first column of Figure 4.1.5A. Directly after the injection of 

contrast agents, signal intensity of blood vessels were brightened because of drastically decreased T1 

values. As time goes on, positively enhanced contrast of blood vessel reduced. The positively enhanced 

contrast in the tumor region was observed 7h after the injection of contrast agent. Decreased T1 values 

in tumor regions were verified through T1 maps as shown in the second column of Figure 4.1.5B. In 

the third column of Figure 4.1.5C, the median-shift of the T1 histogram for the whole 3D tumor volume 

was observed. shown. As shown in Figure 4.1.5D, E and F, same analysis was applied to results with 

conventional DOTAREM. Signal intensities of blood vessels were also increased immediately after the 

injection and the enhanced contrast was diminished as time progressed. The T1 values in the tumor 

region was obvious to 2 h after the injection of DOTAREM, and then the T1 values recover back to 

original values 7 h after DOTAREM injection.  

Figure 4.1.5: Representative (A) 3D MIP images, (B) T1-maps, and (C) histogram of T1 values at vari-

ous time points after injection of Gd(III)-DOTA-AaLS-R108C. Representative (D) 3D MIP images, (E) 

T1-maps, and (F) histogram of T1 values at various time points after injection of conventional Gd-DOTA. 
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Figure 4.1.6: Longitudinal maximum intensity projection (MIP) images before and after injections of 

Gd(III)-DOTA-AaLS-R108C (n=4) and DOTAREM (n=2) 

Longitudinal maximum intensity projection (MIP) images before and after the injections of Gd(III)-

DOTA-AaLS-R108C (n = 4) and DOTAREM (n = 2) were shown in Figure 4.1.6. Bright femoral 

arterial regions before the injection in the Gd(III)-DOTA-AaLS-R108C look bright due to time of flight 

(TOF) effect. It is well known that TOF contrast is independent on the position of the mouse with 

respect to magnetic field direction. So this effect is independent of the injected contrast agent as shown 

with full MRA for six mice. However, it is clear that Gd(III)-DOTA-AaLS-R108C enhanced MRA 

show improved vessel-to-tissue contrast compared to corresponding DOTAREM enhanced MRA right 

after the injection as shown in Figure 4.1.6 at 2 hours.  

 The results of ROI analysis were shown in Figure 4.1.7A and B. The signal enhancements in the 

arterial vessel region were measured after injections of Gd(III)-DOTA-AaLS-R108C and conventional 

DOTAREM. The variations of signal enhancement with both contrast agents in artery region were a 

similar trend. The maximized signal enhancements were observed from both contrast agents, immedi-

ately after injection of contrast agents. As time goes on, this signal enhancement decreased. The arterial 

signal enhancement from Gd(III)-DOTA-AaLS-R108C was slower than that from conventional DO-

TAREM. This result probably was caused by size and hydrophilic surface of Gd(III)-DOTA-AaLS-
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R108C and it has prolonged intravascular residence time. After 7 h injection with DOTAREM and 

Gd(III)-DOTA-AaLS-R108C, both of arterial signal enhancements were significantly decreased, re-

spectively.  

As shown in Figure 4.1.7C and D, temporal variations of T1 values with Gd(III)-DOTA-AaLS-R108C 

and DOTAREM in both tumor and muscle regions were plotted. For Gd(III)-DOTA-AaLS-R108C, the 

averaged T1 value in the muscle on the other side thigh showed no meaningful variation at any time 

point. However, in tumor region, the averaged T1 value slowly decreased up to 2 h after injection of 

Gd(III)-DOTA-AaLS-R108C and statistically decreased after 7 h post-injection (p < 0.05). For DO-

TAREM, the T1 value in the tumor region was increased to the minimum value at point directly after 

the injection, and then rapidly rebounded and returned to its original level at 7 h. T1 value in muscle 

region showed a similar trend to T1 in tumor, with relatively reduced changes. 

Figure 4.1.7: Temporal changes of signal enhancement and T1 values in arterial region. Temporal signal 

enhancement after injection of (A) Gd(III)-DOTA-AaLS-R108C and (B) Gd-DOTA. Temporal varia-

tion of median T1 values in tumor and muscle regions after the injection of (C) Gd(III)-DOTA-AaLS-

R108C and (D) Gd-DOTA, respectively. (* represents the statistical significance with p < 0.05). 
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4.1.4 Discussion and conclusions 

The developed Gd(III)-D OTA-AaLS-R108C has high T1 relaxivity in high magnetic field because its 

large cage architecture is the slow tumbling rate. As the magnetic field is increased, the r1/r2 ratio tends 

to decrease significantly. This conventional results often represent a problem when macromolecular 

contrast agents were used at high field. In this study, the r1/r2 ratio of Gd(III)-DOTA-AaLS-R108C was 

measured 0.52 at 7T and this result is optimal as a T1 contrast agent. It appears that the attachment of 

the Gd-chelating agent affects overall relaxivity, but the exact mechanism is unexplained at this point. 

Future simulation of relaxivity may shed more light on these experimental observations. 

The MIP images of in vivo experiment after the injection of Gd(III)-DOTA-AaLS-R108C show well-

defined vasculature, as shown in Figure 4.1.6. The MIP images with Gd-DOTA was not appear dimin-

ished vasculature because Gd-DOTA exhibited fast leakage in a rodent model for vasculature imaging, 

The MIP images with Gd(III)-DOTA-AaLS-R108C as intravascular contrast agent was shown proper 

robust MR angiography at 7 T. The temporal tendency of signal enhancement in the region of arterial 

vessel shows that vasculature signal enhancement is achieved within 2 h of intravenous injection of 

Gd(III)-DOTA-AaLS-R108C.  

As the longitudinal relaxation rate (R1) in tumor is generally known to be proportional to Gd(III) con-

centration, the absolute T1 (1/R1) map of tumor and muscle regions on the other hind leg enables the 

monitoring of temporal variations in Gd(III) accumulation of both regions, with minimized animal re-

positioning and slice mismatch errors occurring in longitudinal follow up studies. In other words, de-

creasing absolute T1 values in tissue should reflect increasing Gd(III) concentration of the correspond-

ing region. The T1 value of the tumor decreased after the injected Gd(III)-DOTA-AaLS-R108C gradu-

ally migrated to the tumor region. A statistically significant decline in T1 value was observed 7 h after 

Gd(III)-DOTA-AaLS-R108C injection, which coincides with a significant drop in signal enhancement 

in the arterial region. Compared to the short retention time (< 2 h) of DOTAREM, due to its relatively 

small size and low molecular weight, Gd(III)-DOTA-AaLS-R108C showed a prolonged retention time 

in tumor. A consistent T1 value in the other hind leg muscle away from the tumor supported the tumor-

specific migration of Gd(III)-DOTA-AaLS-R108C, presumably due to the enhanced permeability and 

retention effects of the tumor [137, 138]. These observations could be considered as the results of the 

abnormal characteristics of tumor tissue. In general, it is known that tumor tissues exhibit leaky vascu-

lature and ineffective lymphatic drainage due to rapid and defective angiogenesis [139]. Hence, the 

tumor vasculature easily permits adequate sized macromolecules in plasma to escape from the tumor 

vessels and accumulate in tumor tissue for a specific time. Meanwhile, although the long retention time 

of Gd(III)-DOTA-AaLS-R108C in tumor could be a strength in applications relating to anti-tumor ther-

apy or drug delivery, it may raise toxicity concerns due to the release of free Gd(III) from prolonged 
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retention, and further in vivo toxicity study should be followed. 

This study demonstrates that newly developed Gd(III)-DOTA-AaLS-R108C could be successfully ap-

plied as a positive T1 MR contrast agent at high field, and utilized as a high-resolution vascular imaging 

agent, active within 2 h of injection. Its prolonged retention time in tumors may be a key advantage for 

a potential theranostic nanoplatform, as well as for future scientific investigations of optimized MRI T1 

contrast agent at higher magnetic field. 
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Chapter 5. Concluding remarks 

In this thesis, I dealt with two subjects. The one is to find inherent properties and applications of dual 

contrast for MRI imaging. Dual contrast enhanced imaging in MRI is presented as a way of compen-

sating potential troubles when contrast enhanced image by using contrast agent was acquired from the 

same object. This dual contrast was applied to verify feasibility of the visualization and quantification 

of rodent micro-vasculatures in the in vivo study. The other is evaluating newly developed contrast agent 

through in vitro and in vivo experiments. The newly developed contrast agent used in this study was 

successfully demonstrated as a positive T1 MR contrast agent at high magnetic field, and utilized to 

accumulate in tumor region. 

In Chapter 2, the characteristic of SPION was introduced for explaining use in MRI application. Then, 

the essential concepts of two relaxation contrasts and methods of obtaining these contrasts for 3D MR 

images were presented to comprehend results of this research. And the basic of MRI imaging was ex-

plained by using the equation and figure. Especially, the principles of the FLASH, TSE, and radial UTE 

techniques for 3D imaging was described because these three pulse sequences were used in this research. 

Finally, the MR angiography (MRA) in MRI is described to understand features of contrast enhanced 

vasculature images by various MRA methods. 

In Chapter 3, single sized controlled contrast agent was used for obtaining dual contrast in MRI. This 

contrast agent was widely used in pre-clinical research and called by SPION or MION. The dual contrast 

was obtained by adjusting SPION concentration and MR imaging parameters for in vivo animal exper-

iment. Although the dual contrast enhanced images may provide depiction inconsistency in some ana-

tomical regions, but diverse information from this inconsistency was helped to improve acquired image 

quality and comprehend anatomy and physiology of the object.  

Based on observation of dual contrast enhanced images, the dual contrast was utilized to visualize 

rodent brain’s vasculature with high resolution in the second study. The positively and negatively en-

hanced contrast brain MRAs showed those strengths and weaknesses. To complement shortcomings of 

each MRA, combined MRA was generated and robust in vivo whole-brain MRA was visualized by 

minimizing various artifacts.  

In Chapter 4, I characterized and evaluated newly developed contrast agent with high r1 relaxivity at 

7 T magnetic field. The ability of the enhanced contrast of developed contrast agents at high magnetic 

field was confirmed by in vitro phantom and in vivo MRA experiments. From in vitro phantom experi-

ment, the feasibility of use as T1-contrast agent in MRI was proved by comparison with reference and 

developed contrast agent without Gd ion. For in vivo tumor bearing mouse experiments, the results of 

3D MRA and T1 map according to sequential time points demonstrated the usefulness of developed 

contrast agent for vascular imaging within 2 hours after intravenous injection and targeting tumor region 
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in the SCC-7 flank tumor model by observation of a significant reduction in T1 values in the 7 hours 

after intravenous injection. 
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