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ON THE DETERMINATION OF A FUNCTION FROM ITS CONICAL
RADON TRANSFORM WITH A FIXED CENTRAL AXIS∗
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Abstract. Over the past decade, a Radon-type transform called a conical Radon transform,
which assigns to a given function its integral over various sets of cones, has arisen in the context of
Compton cameras used in single photon emission computed tomography. Here, we study the conical
Radon transform for which the central axis of the cones of integration is fixed. We present many of its
properties, such as two inversion formulas, a stability estimate, and uniqueness and reconstruction
for a local data problem. An existing inversion formula is generalized and a stability estimate is
presented for general dimensions. The other properties are completely new results.
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1. Introduction. Single photon emission computed tomography (SPECT), a
useful medical diagnostic tool, inspects internal organs and produces pictures of in-
ternal processes using the distribution of an isotope. SPECT typically provides the
information as a cross-sectional slice, but it is easy to reformat or manipulate this
information into other types of images. To obtain the image in SPECT, a gamma-
emitting radioisotope is injected into the patient, usually via the bloodstream. This
radioisotope passes through the body and is detected by the scan. For use in SPECT,
a Compton camera was introduced [22, 24]. This Compton camera has very high
sensitivity and flexibility of geometrical design, so it has attracted a lot of interest in
many areas, including nuclear power plant monitoring and astronomy.

A typical Compton camera consists of two planar detectors: a scatter detector
and an absorption detector, positioned one behind the other. A photon emitted in
the direction of the camera undergoes Compton scattering in the scatter detector
positioned ahead and is absorbed in the absorption detector (see Figure 1). In each
detector, the position of the hit and energy of the photon are measured. A difference
vector between two device positions determines the central axis of a cone. The scat-
tering angle ψ from the central axis can be computed from the measured energies and
electron mass as follows:

cosψ = 1− mc2∆E

(E −∆E)E
,

where m is the mass of the electron, c is the speed of light, E is the initial gamma ray
energy, and ∆E is the energy transferred to the electron in the scattering process [1,
16]. Therefore, we get the surface integral of the distribution of the radiation source
over cones with a central axis, a vertex u at the position of the scatter detector, and
a scattering angle ψ. We called this the conical Radon transform. Here we study
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1834 SUNGHWAN MOON

scattering detectors

absorption detectors

(u, 0)

the central axis

ψ source

Fig. 1. Schematic representation of a Compton camera.

the conical Radon transform with the central axis fixed perpendicular to the detector
plane.

Many inversion formulas for various types of conical Radon transforms have been
derived [5, 11, 12, 15, 16, 21]. In particular, the conical Radon transform with a fixed
central axis was studied in [6, 13, 14, 19, 20, 26]. Cree and Bones derived the inversion
formula for the conical Radon transform in [6], and Nguyen, Truong, and Grangeat
obtained another inversion formula in [20]. Haltmeier first defined an n-dimensional
conical Radon transform and found the inversion formula in [13]. In [14] Jung and
Moon discussed a relation between two existing formulas: one derived from Cree and
Bones and the other from Nguyen, Truong, and Grangeat. In the same paper, they
also obtained stability estimates for a more general form of the 3-dimensional conical
Radon transform. A 2-dimensional conical Radon transform becomes a V -line Radon
transform, which integrates a function along coupled rays with a common vertex. This
V -line Radon transform has been studied in the context of single scattering optical
tomography [7, 8, 9]. Many works [1, 2, 3, 17, 25] derived inversion formulas for
various versions of the V -line Radon transform.

In this article we generalize the conical Radon transform with a fixed central
axis to n-dimensions and study its two inversion formulas, a stability estimate, and
uniqueness and reconstruction for a local data problem; an existing inversion formula
derived in [6, 13] is generalized and an existing stability estimate derived in [14] is
generalized for general dimensions.

The definition of the conical Radon transform is formulated precisely in section 2.
Section 3 is devoted to elementary properties of the conical Radon transform including
an analogue of the Fourier slice theorem. Two inversion formulas are presented in
section 4. We describe the range of the conical Radon transform in one special case
in section 5. In section 6, we show that taking a certain linear operator on the
conical Radon transform is an isometry and discuss a stability estimate. In section 7,
uniqueness and reconstruction for a partial data problem are studied.

2. Definition. Let f be a function on R3 with compact support in the upper
half space R2 × [0,∞). We define the conical Radon transform by

Cf(u, s) :=

∫ 2π

0

∫ ∞

0

f(u + zsθ, z)zdzdθ
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Fig. 2. (a) a cone of integration (b) a V -line and a line of integration.

Remark 1. The above definition (1) includes the n = 2 case. When n = 2, Cf
becomes an integral of f along the line perpendicular to

(1,−|v|)/
√

1 + v2

with signed distance

u/
√

1 + v2 (see Figure 2 (b)).

In this case the measure for the line becomes

√
1 + v2dy.

Hence we have a relation between Cf and Rf :

(2) Cf(u, v) = (1 + v2)−
1
2Rf

(
(1,−|v|)√

1 + v2
,

u√
1 + v2

)
,

where Rf is the regular Radon transform defined by

Rf(ω, t) =

∫

R

f(tω + sω⊥)ds, for (ω, t) ∈ S1 × R.

Notice that

Rf

(
(1,−|v|)√

1 + v2
,

u√
1 + v2

)
= Rf

(
(1, |v|)√
1 + v2

,
u√

1 + v2

)
.

q
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(b)

Fig. 2. (a) A cone of integration; (b) a V -line and a line of integration.

for (u, s) = (u1, u2, s) ∈ R2× [0,∞) (see Figure 2(a)). Here θ = (cos θ, sin θ) ∈ S1 and
s means the opening extent of the cone of integration when z = 1, i.e., the tangent of
the scattering angle ψ (s = tanψ). (In fact, Cf is not exactly the surface integral of
f over a family of cones. It misses a weight factor sinψ/ cos2 ψ. However, from the
surface integrals over cones, we can obtain it.) To more easily formulate and prove
the results for Cf , we introduce a related transform. Let the function f on R4 satisfy
f(x,y) = f(x, |y|) for (x,y) = (x1, x2, y1, y2) ∈ R2 × R2, and let the conical Radon
transform of f be defined by

Cf(u,v) =

∫

R2

f(u + |v|y,y)dy.

Then we have Cf(u,v) = Cf(u, |v|). In fact, making a change of the variables gives

Cf(u,v) =

∫

R2

f(u + |v|y, y1, y2)dy =

∫ 2π

0

∫ ∞

0

f(u + |v|rθ, r)rdrdθ

= Cf(u, |v|).

Let us consider a natural n-dimensional analogue of the conical Radon transform
for the function f on Rn with compact support in the upper half space Rn−1× [0,∞).
As in the 3-dimensional case, the conical Radon transform is defined by

Cf(u, s) :=





∫

Sn−2

∫ ∞

0

f(u + zsθ, z)zn−2dzdS(θ) if n ≥ 3,

∫ ∞

0

f(u + zs, z) + f(u− zs, z)dz if n = 2,

for (u, s) = (u1, u2, . . . , un−1, s) ∈ Rn−1× [0,∞). Here dS(θ) is the standard measure
on the unit sphere Sn−2. When n = 2, Cf is the V -line Radon transform (without a
weight factor

√
1 + s2 or cos−1 ψ) whose integral domain is the set of V -shape lines
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1836 SUNGHWAN MOON

(see Figure 2(b)). Similar to the definition of Cf for the 3-dimensional case, we define
Cf for a function f on R2(n−1) with f(x,y) = f(x, |y|) for (x,y) ∈ Rn−1 × Rn−1 by

(1) Cf(u,v) =

∫

Rn−1

f(u + |v|y,y)dy for (u,v) ∈ Rn−1 × Rn−1.

Again, we have Cf(u,v) = Cf(u, |v|). Our goals are to reconstruct f (or f) from Cf
(or Cf) and to study properties of this conical Radon transform.1

Remark 1. The above definition (1) includes the n = 2 case. When n = 2, Cf
becomes an integral of f along the line perpendicular to

(1,−|v|)/
√

1 + v2

with signed distance

u/
√

1 + v2 (see Figure 2(b)).

In this case the measure for the line becomes
√

1 + v2dy.

Hence we have a relation between Cf and Rf ,

(2) Cf(u, v) = (1 + v2)−
1
2Rf

(
(1,−|v|)√

1 + v2
,

u√
1 + v2

)
,

where Rf is the regular Radon transform defined by

Rf(ω, t) =

∫

R
f(tω + sω⊥)ds for (ω, t) ∈ S1 × R.

Notice that

Rf

(
(1,−|v|)√

1 + v2
,

u√
1 + v2

)
= Rf

(
(1, |v|)√
1 + v2

,
u√

1 + v2

)
.

q

3. Elementary properties. Let S(Rn) be the Schwartz class of infinitely dif-
ferentiable functions f with sup{|xα∂βf(x)| : x ∈ Rn} < ∞ for any multi-indices α
and β. We introduce

Sr(Rn−1 × Rn−1) = {f ∈ S(R2(n−1)) : f(x,y) = f(x, Uy)

for any (x,y) ∈ Rn−1 × Rn−1 and for all orthonormal transformations U}.

Theorem 1. For f ∈ Sr(Rn−1 × Rn−1), we have

F1(Cf)(ξ,v) = Ff(ξ, |v|ξ) = Ff(ξ,v|ξ|),

where F1(Cf) and Ff are the n − 1-dimensional and 2(n − 1)-dimensional Fourier
transforms of Cf and f with respect to u ∈ Rn−1 and (x,y) ∈ Rn−1 × Rn−1, respec-
tively.

1In fact, the expansion of a function defined on Rn to a function on Rn−1 ×Rn−1 has also been
used by Andersson in [4] to easily derive many properties for the spherical mean Radon transform.
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A CONICAL RADON TRANSFORM WITH FIXED CENTRAL AXIS 1837

Proof. Taking the n− 1-dimensional Fourier transform of Cf(u,v) with respect
to u yields

F1(Cf)(ξ,v) =

∫

Rn−1

F1f(ξ,y)ei|v|y·ξdy = Ff(ξ,−|v|ξ),

where F1f is the n − 1-dimensional Fourier transform of f with respect to x. Since
the Fourier transform of a radial function is also radial, we have the assertion.

Note that if f is a radial function on Rn−1 × Rn−1 in the second variable y and
f(x,y) = f(x, |y|), then we have

(3) F2f(x, ξ) = (2π)
n−1
2 |ξ| 3−n

2 Hn−3
2

f(x, |ξ|),

where F2f is the n− 1-dimensional Fourier transform of f with respect to y and

Hn−2
2

f(x, ρ) =

∫ ∞

0

f(x, s)s
n
2 Jn−2

2
(sρ)ds,

where Jk is the Bessel function of the first kind of order k (see [23, section 7.7]).

Corollary 1. Let f(x,y) ∈ Sr(Rn−1 × Rn−1), and let f be a function on Rn−1 ×
[0,∞) with f(x, |y|) = f(x,y). Then we have

(4) F1(Cf)(ξ, s) = (2π)
n−1
2 |ξ| 3−n

2 s
3−n
2 Hn−3

2
F1f(ξ, s|ξ|).

Remark 2. Equation (4) was first derived in [6] for n = 3 and in [13] for general
n. q

Proposition 1. The conical Radon transforms C and C are self-adjoint, in the
sense that for f, g ∈ Sr(Rn−1×Rn−1) with f(x,y) = f(x, |y|) and g(u,v) = g(u, |v|),

(5)

∫

Rn−1

∫

Rn−1

Cf(u,v)g(u,v)dudv =

∫

Rn−1

∫

Rn−1

f(x,y)Cg(x,y)dxdy

and

(6)

∫

Rn−1

∫ ∞

0

Cf(u, s)g(u, s)sn−2dsdu =

∫

Rn−1

∫ ∞

0

f(x, z)Cg(x, z)zn−2dzdx.

Proof. We start out from
∫

Rn−1

∫

Rn−1

Cf(u,v)g(u,v)dudv =

∫

Rn−1

∫

Rn−1

∫

Rn−1

f(u + |v|y,y)dy g(u,v)dudv

=

∫

Rn−1

∫

Rn−1

f(x,y)

∫

Rn−1

g(x− y|v|,v)dvdydx

=

∫

Rn−1

∫

Rn−1

f(x,−y)

∫

Rn−1

g(x + y|v|,v)dvdydx,

where in the second and last lines, we changed the variables u+|v|y→ x and y→ −y,
respectively. Since f is a radial function in y, we have

∫

Rn−1

∫

Rn−1

Cf(u,v)g(u,v)dudv =

∫

Rn−1

∫

Rn−1

f(x,y)

∫

Rn−1

g(x + y|v|,v)dvdydx,

which is our assertion.
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Proposition 2. For f, g ∈ Sr(Rn−1 × Rn−1), we have

C(f ∗ g) = Cf ∗ Cg.

This proposition follows from Theorem 1 and F(f ∗ g) = (Ff)(Fg).
By the definition of Cf , we notice that Cf is the integral of f over an n − 1-

dimensional plane. It is a natural idea that Cf can be converted to the 2(n − 1)-
dimensional regular Radon transform by an n − 2-dimensional integration. (Indeed,
we showed that the 2-dimensional conical Radon transform is converted to the 2-
dimensional regular Radon transform in Remark 1.) Let the regular Radon transform
be defined by

Rf(ω, t) =

∫

ω⊥
f(tω + τ )dτ for (ω, t) ∈ S2n−3 × R.

Then this can be represented by

(7) Rf(ω, t) =
√

1 + |ω′/ω1|2
∫

R2n−3

f

(
−ω

′ · τ
ω1

+
t

ω1
, τ

)
dτ

for ω1 6= 0. Here ω = (ω1, ω2, . . . , ω2n−2) = (ω1,ω
′) ∈ S2n−3 and τ ∈ R2n−3.

Now we convert the 2(n − 1)-dimensional conical Radon transform Cf to the
2(n − 1)-dimensional regular Radon transform. For (a, b) ∈ Rn−2 × R, we integrate
Cf(a · u′ + b,u′,v) with respect to u′ = (u2, u3, . . . , un−1) ∈ Rn−2:

∫

Rn−2

Cf(a · u′ + b,u′,v)du′ =

∫

Rn−2

∫

Rn−1

f(a · u′ + b+ |v|y1,u′ + |v|y′,y)dydu′

=

∫

Rn−1

∫

Rn−2

f(a · u′ + b+ |v|y1,u′ + |v|y′,y)du′dy

=

∫

Rn−1

∫

Rn−2

f(a · u′ + |v|y1 − a|v|y′ + b,u′ + |v|y′,y)du′dy,

(8)

where we changed the variables u′ + |v|y′ → u′. Equation (8) is equivalent to
∫

Rn−2

Cf(a · u′ + b,u′,v)du′

= ((1 + |a|2)(1 + |v|2))−1/2Rf

(
(−1,a, |v|,−a|v|)√
(1 + |a|2)(1 + |v|2)

,
b√

(1 + |a|2)(1 + |v|2)

)(9)

(see (7)). Since f(x,y) is radial in y, we have for any α = (α1, α2, . . . , αn−1) ∈ Rn−1

f(a · u′ +α · y + b,u′,y) = f(a · u′ +α · y + b,u′, Uy),

where U = (U{i,j}) is any n− 1× n− 1 orthogonal matrix. Then we have
∫

Rn−1

∫

Rn−2

f(a · u′ +α · y + b,u′,y)du′dy

=

∫

Rn−1

∫

Rn−2

f(a · u′ +α · y + b,u′, Uy)du′dy

=

∫

Rn−1

∫

Rn−2

f(a · u′ + Uα · y + b,u′,y)du′dy,

(10)
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A CONICAL RADON TRANSFORM WITH FIXED CENTRAL AXIS 1839

where we changed the variables Uy → y. Combining the three equations (8), (9),
and (10), we have the following proposition.

Proposition 3. Let f ∈ Sr(Rn−1×Rn−1) and (α,a, b) ∈ Rn−1×Rn−2×R. Then
we have for |α| = |v|2(1 + |a|2) and u′ = (u2, u3, . . . , un−1) ∈ Rn−2

∫

Rn−2

Cf(a · u′ + b,u′,v)du′

= ((1 + |a|2)(1 + |v|2))−1/2Rf

(
(−1,a,α)√

(1 + |a|2)(1 + |v|2)
,

b√
(1 + |a|2)(1 + |v|2)

)
.

(11)

Remark 3. Taking an inversion formula for the regular Radon transform on (11),
f can be recovered from Cf . q

4. Inversion formulas. Although we already show how to recover f from Cf in
Remark 3, we present two explicit inversion formulas for the conical Radon transform
in this section.

For k < n we define the linear operator Ik by

F(Ikf)(ξ) = |ξ|−kFf(ξ).

The linear operator Ik is called the Riesz potential. For f ∈ S(Rn), we have F(Ikf) ∈
L1(Rn), and hence Ikf makes sense and I−kIkf = f . When Ik1 is applied to functions
on Rn−1 × Rn−1, it acts on the first n − 1-dimensional variable u or x. Also, for
f ∈ Sr(Rn−1 × Rn−1), we have F1(Cf)(ξ,v) = Ff(ξ, ξ|v|) by Theorem 1, so for a
fixed v, F1(Cf)(ξ,v) ∈ S(Rn−1), and therefore Ik1 (Cf) makes sense.

Theorem 2. Let f ∈ Sr(Rn−1 × Rn−1) with f(x,y) = f(x, |y|). For k < n − 1,
we have

(12) f = (2π)1−nI−k1 CIk+1−n
1 F, F = Cf,

and

f = (2π)1−nI−k1 CIk+1−n
1 F, F = Cf .

Proof. We start out from the Fourier inversion formula

Ik1 f(x,y) = (2π)2(1−n)
∫

Rn−1

∫

Rn−1

|ξ|−kFf(ξ,η)eix·ξeiy·ηdηdξ

= (2π)2(1−n)
∫

Rn−1

∫

Rn−1

|ξ|n−1−kFf(ξ,v|ξ|)eix·ξeiy·v|ξ|dvdξ,

where in the last line we changed the variables η → v|ξ|. Since Ff(ξ,η) and Ik1 f(x,y)
are radial on η and y, respectively, we obtain

Ik1 f(x,y) = (2π)2(1−n)
∫

Rn−1

∫

Rn−1

|ξ|n−1−kFf(ξ, ξ|v|)eix·ξeiv·ξ|y|dvdξ,

which is equivalent to

Ik1 f(x,y) = (2π)2(1−n)
∫

Rn−1

∫

Rn−1

|ξ|n−1−kF1(Cf)(ξ,v)ei(x+|y|v)·ξdvdξ.
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1840 SUNGHWAN MOON

Here we used Theorem 1. Since the inner integral can be represented by the Riesz
potential, we have

Ik1 f(x,y) = (2π)2(1−n)
∫

Rn−1

(Ik+1−n
1 Cf)(x + |y|v,v)dv

= (2π)2(1−n)C(Ik+1−n
1 Cf)(x,y),

and the inversion formula for C follows by applying I−k1 .

Remark 4. Putting k = 0 in (12) yields

(13) f = (2π)1−nCI1−n1 F, F = Cf.

When n is odd, (13) is actually equivalent to

f(x,y) = (2π)1−n(−1)
n−1
2

∫

Rn−1

4
n−1
2

u F (x + |y|v,v)dv,

where 4u is the Laplacian operator with respect to u. Thus the problem of recon-
structing a function from its integrals over cones is local in odd dimensions, in the
sense that computing the function at a point (x,y) needs the integrals over cones
passing through neighborhood of that point (x,y). On the other hand, when n is
even, the inversion (13) is nonlocal because the fractional Laplacian is nonlocal. Also,
the reconstruction problem for Cf is local in odd dimensions and nonlocal in even
dimensions, as Haltmeier also mentioned in [13]. q

Combining Proposition 1 and Theorem 2, we have an analogue of the Plancherel
formula.

Proposition 4. Let f, g ∈ Sr(Rn−1×Rn−1) satisfy f(x,y) = f(x, |y|) and g(x,y) =
g(x, |y|). For any k < n− 1, we have

∫

Rn−1

∫

Rn−1

f(x,y)g(x,y)dxdy=(2π)1−n
∫

Rn−1

∫

Rn−1

I−k1 Cf(u,v)Ik+1−n
1 Cg(u,v)dudv

and
∫ ∞

0

∫

Rn−1

f(x, z)g(x, z)zn−2dxdz

= (2π)1−n
∫ ∞

0

∫

Rn−1

I−k1 Cf(u, s)Ik+1−n
1 Cg(u, s)sn−2duds.

Proof. By Proposition 1 and Theorem 2, we have
∫

Rn−1

∫

Rn−1

f(x,y)g(x,y)dxdy

= (2π)1−n
∫

Rn−1

∫

Rn−1

f(x,y)CI1−n1 Cg(x,y)dxdy

= (2π)1−n
∫

Rn−1

∫

Rn−1

Cf(x,y)I1−n1 Cg(x,y)dxdy

= (2π)2−2n
∫

Rn−1

∫

Rn−1

|ξ|kF1(Cf)(ξ,y)|ξ|−kF1(I1−n1 Cg)(ξ,y)dξdy.

Here in the last line, we used the Plancherel formula.
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A CONICAL RADON TRANSFORM WITH FIXED CENTRAL AXIS 1841

A completely different inversion formula for the conical Radon transform is de-
rived by expanding F1f and Ff in spherical harmonics,

F1f(%ϕ,y) =

∞∑

l=0

N(n−1,l)∑

k=0

(F1f)kl(%,y)Ylk(ϕ)

and

Ff(%ϕ,η) =

∞∑

l=0

N(n−1,l)∑

k=0

(Ff)kl(%,η)Ylk(ϕ),

where Ylk(ω) for ω ∈ Sn−2 are spherical harmonics and

N(n− 1, l) =
(2l + n− 3)(n+ l − 4)

l!(n− 3)!
, N(n− 1, 0) = 1.

Notice that ∫

Rn−1

(F1f)kl(%,y)e−iy·ηdy = (Ff)kl(%,η).

From Theorem 1, we have the following relation between (Ff)kl and (F1F )kl, where
F = Cf :

(14) (Ff)kl(%,v%) = (F1F )kl(%,v).

Taking the inverse Fourier transform with respect to v, we have the following
theorem.

Theorem 3. Let f ∈ Sr(Rn−1 × Rn−1). If F = Cf , then we have

(15) (F1f)kl(%,y) =
%n−1

(2π)n−1
(FF )kl(%,y%).

Proof. Taking the inverse Fourier transform of (Ff)kl(%,v%) with respect to y
gives

(F1f)kl(%,y) =
%n−1

(2π)n−1

∫

Rn−1

(Ff)kl(%,v%)eiv%·ydv

=
%n−1

(2π)n−1

∫

Rn−1

(F1F )kl(%,v)eiv%·ydv

=
%n−1

(2π)n−1
(FF )kl(%,y%),

where we used (14) in the second equality.

Together with (3), (15) yields that that

(16) (F1f)kl(%, s) =
%

n+1
2 s

3−n
2

(2π)
n−1
2

Hn−3
2

(F1F)kl(%, s%), F = Cf .

Remark 5. Equation (16) was already derived in [14, 20] for n = 3. q
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5. The range. In this section, we shall determine the range of the conical Radon
transform in one special case.

Theorem 4. The conical Radon transform C is a injection of Sr(Rn−1 × Rn−1)
into Sr,c(Rn−1 × Rn−1), where

Sr,c(Rn−1 × Rn−1)

=

{
F ∈ Sr(Rn−1 × Rn−1) :

∫

Rn−1

F (u,v)du is a constant for any v ∈ Rn−1
}
.

Proof. Putting ξ = 0 in Theorem 1, we have that Ff(0, 0) =
∫
Rn−1 Cf(u,v)du

is a constant. Hence it is enough to show Cf ∈ Sr(Rn−1 × Rn−1). To demonstrate
this, we show that F1(Cf)(ξ,v) ∈ Sr(Rn−1 ×Rn−1). Also, F1(Cf)(ξ,v) is infinitely
differentiable since F1(Cf)(ξ,v) = Ff(ξ, |v|ξ) = Ff(ξ,v|ξ|), and we have for any
multi-indices α1, α2, β1, and β2,

sup{|ξα1vα2∂β1

ξ ∂
β2
v F1(Cf)(ξ,v)| : (ξ,v) ∈ Rn−1 × Rn−1}

= sup{|ξα1vα2 |ξ||β2||v||β1|∂β1

ξ ∂
β2
v Ff(ξ,v|ξ|)|(ξ,v) ∈ Rn−1 × Rn−1} <∞.

Hence, Cf belongs to Sr,c(Rn−1 × Rn−1).

When n is odd, I1−n1 is equal to (−1)
n−1
2 4

n−1
2

u and in this case, we can say more.

Theorem 5. When n is odd, the conical Radon transform C is a bijection of
Sr,0(Rn−1 × Rn−1), where

Sr,0(Rn−1×Rn−1) =

{
f ∈ Sr(Rn−1 × Rn−1) :

∫

Rn−1

f(x,y)dx = 0 for any y ∈ Rn−1
}
.

Proof. By Theorem 1, we have

F1(Cf)(ξ,v) = Ff(ξ,v|ξ|) =

∫

Rn−1

F1f(ξ,y)e−iy·v|ξ|dy,

so F1(Cf)(0,v) is equal to zero. Therefore, the range of Sr,0(Rn−1 × Rn−1) under
the conical Radon transform C is a subset of Sr,0(Rn−1 × Rn−1).

To show C is onto, let F ∈ Sr,0(Rn−1 ×Rn−1). In view of Theorem 2, it appears
natural to define

f = (2π)1−n(−1)
n−1
2 C4

n−1
2

u F.

We know that 4
n−1
2

u F ∈ Sr(Rn−1 ×Rn−1). By Theorem 4, f belongs to Sr,c(Rn−1 ×
Rn−1). In particular, F1f(ξ,y) is equal to

(2π)1−n|ξ|n−1FF (ξ,y|ξ|),

so for any y ∈ Rn−1,

F1f(0,y) =

∫

Rn−1

f(x,y)dx = 0.D
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6. An isometry property and Sobolev space estimates. In this section,

we show that I
−n−1

2
1 C extends to an isometry and that the problem of reconstructing

from the conical Radon transform is well-posed in the following sense: if f satisfying
Cf = F is uniquely determined for any F belonging to a certain space, the function
f depends continuously on F .

Let L2(R2(n−1)) be the regular L2 space. For any γ ≥ R, let the spaces L2
r(Rn−1×

Rn−1) and HγL2
r(Rn−1 × Rn−1) be defined by

L2
r(Rn−1 × Rn−1) = {f ∈ L2(R2(n−1)) : f(x,y) = f(x, Uy)

for any (x,y) ∈ Rn−1 × Rn−1 and for all orthonormal transformations U}
and

HγL2
r(Rn−1 × Rn−1) = {f ∈ L2

r(Rn−1 × Rn−1) : ||f ||γ <∞},

where

||f ||2γ =

∫

Rn−1

∫

Rn−1

|Ff(ξ,η)|2(1 + |ξ|2)γdξdη.

Notice thatHγL2
r(Rn−1×Rn−1) is a Hilbert space with the norm ||·||γ andH0L2

r(Rn−1
× Rn−1) = L2

r(Rn−1 × Rn−1).

Theorem 6. The mapping f → I
−n−1

2
1 Cf extends to an isometry of HγL2

r(Rn−1×
Rn−1) onto itself.

Proof. We start with ||f ||2γ :

||f ||2γ =

∫

Rn−1

∫

Rn−1

|Ff(ξ,v)|2(1 + |ξ|2)γdξdv

=

∫

Rn−1

∫

Rn−1

|F1(Cf)(ξ,v/|ξ|)|2(1 + |ξ|2)γdξdv

=

∫

Rn−1

∫

Rn−1

|F1(Cf)(ξ,v)|2(1 + |ξ|2)γ |ξ|n−1dξdv

= (2π)1−n||I−
n−1
2

1 Cf ||2γ .

(17)

Here in the second and third lines, we used Theorem 1 and changed variables v/|ξ| →
v, respectively. It remains to prove that the mapping is surjective. It is enough to
show that if g ∈ HγL2

r(Rn−1 × Rn−1) satisfies
∫

Rn−1

∫

Rn−1

F1g(ξ,v)F1(I
−n−1

2
1 Cf)(ξ,v)(1 + |ξ|2)γdξdv = 0

for all f ∈ Sr(Rn−1 × Rn−1), then g = 0. Theorem 1 gives us

0 =

∫

Rn−1

∫

Rn−1

F1g(ξ,v)|ξ|n−1
2 F1(Cf)(ξ,v)(1 + |ξ|2)γdξdv

=

∫

Rn−1

∫

Rn−1

F1g(ξ,v)|ξ|n−1
2 Ff(ξ,v|ξ|)(1 + |ξ|2)γdξdv

=

∫

Rn−1

∫

Rn−1

F1g(ξ,v/|ξ|)|ξ| 1−n
2 Ff(ξ,v)(1 + |ξ|2)γdξdv.

Since Ff ∈ Sr(Rn−1 × Rn−1), F1g is equal to zero almost everywhere, and so is g.
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Notice that if f ∈ L2
r(Rn−1 × Rn−1) with f(x,y) = f(x, |y|), then

||f ||20 =

∫

Rn−1

∫

Rn−1

|f(x,y)|2dxdy = |Sn−2|
∫ ∞

0

∫

Rn−1

|f(x, z)|2zn−2dxdz.

Let us define HγL2
n−2(Rn−1 × [0,∞)) by

HγL2
n−2(Rn−1 × [0,∞)) = {f : f(x, |y|) = f(x,y), f ∈ L2

r(Rn−1 × Rn−1),

and ||f ||γ,n−2 <∞},
where

||f ||2γ,n−2 =

∫

Rn−1

∫ ∞

0

|F1f(ξ, z)|2(|ξ|2 + 1)γzn−2dzdξ.

Then HγL2
n−2(Rn−1 × [0,∞)) is a Hilbert space with the norm || · ||γ,n−2.

Corollary 2. The mapping f → I
−n−1

2
1 Cf extends to an isometry of HγL2

n−2(Rn−1
× [0,∞)) onto itself.

The next corollary shows the Sobolev estimates.

Corollary 3. For each γ ∈ R, we have that for f ∈ Sr(Rn−1×Rn−1) with f(x,y) =
f(x, |y|),

||f ||γ ≤ (2π)
1−n
2 ||Cf ||γ+n−1

2
and ||f ||γ,n−2 ≤ (2π)

1−n
2 ||Cf ||γ+n−1

2 ,n−2.

This corollary follows from (17).

Remark 6. When n = 3, ||f ||γ,1 ≤ (2π)−1||Cf ||γ+1,1 was already discussed in
[14]. q

7. The partial data problem. From the inversion formula in Theorem 2,
f ∈ Sr(Rn−1 × Rn−1) is uniquely determined by Cf . However, in many practical
situations, we know only partial data, i.e., the values of Cf only on a subset of its
domain. The question arises: Does this partial data still determine f uniquely?

Theorem 7. Let f ∈ Sr(Rn−1×Rn−1). The conical Radon transform Cf(u,v) is
equal to zero for |u| >

√
1 + |v|2 if and only if f(x,y) is equal to zero for |x|2+ |y|2 >

1.
Also, for f(x, |y|) = f(x,y), Cf(u, s) is equal to zero for |u| >

√
1 + s2 if and

only if f(x, z) is equal to zero for |x|2 + z2 > 1 (see Figure 3).

Proof. It is clear that if f(x,y) is equal to zero for any |x|2 + |y|2 > 1, then
Cf(u,v) is equal to zero for any v ∈ Rn−1 and |u| >

√
1 + |v|2. From Proposition 3,

we know that for |α| = |a|2(1 + |v|2) and (α,a, b) ∈ Rn−1 × Rn−2 × R,
∫

Rn−2

Cf(a · u′ + b,u′,v)du′

= ((1 + |a|2)(1 + |v|2))−1/2Rf

(
(−1,a,α)√

(1 + |a|2)(1 + |v|2)
,

b√
(1 + |a|2)(1 + |v|2)

)
.

By assumption, we have that

Rf

(
(−1,a,α)√

(1 + |a|2)(1 + |v|2)
,

b√
(1 + |a|2)(1 + |v|2)

)

=
√

(1 + |a|2)(1 + |v|2)

∫

Rn−2

Cf(a · u′ + b,u′,v)du′
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(u, 0)0

(0, 1)

x

z

Fig. 3. The upper half unit circle and V -shape lines.

is equal to zero for any b/
√

1 + |a|2 >
√

1 + |v|2, i.e.,

b√
(1 + |a|2)(1 + |v|2)

> 1

because the hyperplane {(u1,u′) ∈ R × Rn−2 : u1 = a · u′ + b} on Rn−1 has the
normal vector (−1,a) and the distance b/

√
1 + |a|2 from the origin. The support

theorem [18, Theorem 3.2 in Chapter II] for the regular Radon transform completes
our proof.

In the next theorem, we exploit the analyticity of the Fourier transform of a
smooth function with compact support.

Theorem 8. Let f ∈ Sr(Rn−1 × Rn−1) have a compact support and f(x, |y|) =
f(x,y). Assume that S ⊂ (0,∞) is any uncountable set. If Cf(u,v) = 0 for any
u ∈ Rn−1 and v ∈ {v ∈ Rn−1 : |v| ∈ S}, then f = 0. Also, if Cf(u, s) = 0 for any
u ∈ Rn−1 and s ∈ S, then f = 0.

Proof. From Theorem 1, we have Ff(ξ, |v|ξ) = F1(Cf)(ξ,v). Thus we have
Ff(ξ, |v|ξ) = 0 for any ξ ∈ Rn−1 and v ∈ {v ∈ Rn−1 : |v| ∈ S}. Since f is compactly
supported, Ff(ξ,η) is an analytic function in ξ and η whose power series expansion
can be written as

Ff(ξ,η) =
∑

α,β

aα,βξ
αηβ ,

where α and β are multi-indices and aα,β are constants. Then we obtain for any
ξ ∈ Rn−1 and v ∈ {v ∈ Rn−1 : |v| ∈ S}

0 = Ff(ξ, |v|ξ) =
∑

α,β

aα,βξ
α+β |v||β|.

For any k = 0, 1, 2, . . . , let the polynomial Pk of degree k be defined by

Pk(t) :=
∑

|α|+|β|=k
aα,βt

|β|.

Then we have for any ξ ∈ R

0 = Ff(ξ(1, 1, . . . , 1), |v|ξ(1, 1, . . . , 1)) =

∞∑

k=0

Pk(|v|)ξk,
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and Pk(|v|) is zero for any v ∈ {v ∈ Rn−1 : |v| ∈ S}. Since for an uncountable set S
Pk(|v|) is equal to zero for any k, aα,β is zero for any α, β and thus Ff(ξ,η) = 0 for
any |(ξ,η)| < δ and for some δ > 0. Since Ff is analytic, Ff is equal to zero.

We study the reconstruction problem for the limited data. The data Cf(u,v)
is known only for v ∈ Rn−1 with 0 ≤ a < |v| < b ≤ ∞. In order to compute
a limited reconstruction, we have to deal with the limited conical Radon transform
C(a,b)f(u,v) = χa<|v|<b(v)Cf(u,v), where χA is the characteristic function of a set
A. We define the projection operators by

P(a,b)f(x,y) = F−1(χa|ξ|<|η|<b|ξ|(η)Ff(ξ,η))(x,y)

and

P(a,b)f(x, z) = (2π)
n−1
2 |z| 2−n

2 Hn−2
2
F−11 (χa|ξ|<ρ<b|ξ|(ρ)|ρ| 2−n

2 Hn−2
2
F1f(ξ, ρ))(x, z).

Theorem 9. Let f ∈ Sr(Rn−1 × Rn−1). Then we have for k < n− 1

P(a,b)I
k
1 f = (2π)1−nCIk+1−n

1 C(a,b)f

and

P(a,b)I
k
1 f = (2π)1−nCIk+1−n

1 C(a,b)f .

Proof. By Theorem 1, we have F1(Cf)(ξ,v) = Ff(ξ,v|ξ|), so

F(P(a,b)I
k
1 f)(ξ,v|ξ|) = |ξ|−kχa<|v|<b(v)Ff(ξ,v|ξ|) = |ξ|−kχa<|v|<b(v)F1(Cf)(ξ,v)

= |ξ|−kF1(C(a,b)f)(ξ,v).(18)

Similar to the proof of Theorem 2, we have

P(a,b)I
k
1 f(x,y) = (2π)2(1−n)

∫

Rn−1

∫

Rn−1

F(P(a,b)I
k
1 f)(ξ,η)ei(ξ,η)·(x,y)dηdξ

= (2π)2(1−n)
∫

Rn−1

∫

Rn−1

F(P(a,b)I
k
1 f)(ξ,v|ξ|)ei(ξ,v|ξ|)·(x,y)|ξ|n−1dvdξ

= (2π)2(1−n)
∫

Rn−1

∫

Rn−1

F1(C(a,b)f)(ξ,v)ei(ξ,|v|ξ)·(x,y)|ξ|n−1−kdvdξ,

where in the second line we changed the variables η → v|ξ|, and in the third line we
used (18) and the fact that F1(C(a,b)f)(ξ,v) is radial in v. Therefore, we have

P(a,b)I
k
1 f(x,y) = (2π)(1−n)

∫

Rn−1

Ik−n+1
1 (C(a,b)f)(x + |v|y,v)dv.

8. Conclusion. Several types of conical Radon transforms have been studied
since the Compton camera was introduced. Here we study the n-dimensional conical
Radon transform with a fixed central axis. Two inversion formulas, range conditions,
Sobolev space estimates, and uniqueness and reconstruction for a limited data problem
are presented.
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