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Abstract 

 

Unstable oil prices and the effects of global warming have forced us to look for alternative 

energy storage and conversion systems. So battery industry especially lithium ion battery (LIB) 

have been developed so fast. A battery is usually made up of an anode on one side, a cathode on 

the other, and an electrolyte (and separator) in between. For a LIB, lithium ions move from the 

anode to the cathode through the electrolyte, creating a chemical reaction that allows electrons to 

be harvested along the way. And very recently portable electronic devices and electric vehicle 

(EV) have been developing at a rapid pace, and these progress demand much high energy and 

power density. So metal-air batteries have been shed light on due to their high energy density and 

extremely high power compared to those of other conventional batteries. A metal air battery is a 

battery that could use a metal — lithium, aluminum, iron, or zinc etc.— for the anode, air 

(technically oxygen) as the cathode and electrolyte. Many people have interests in the metal air 

batteries because oxygen is abundant in nature, free, and doesn’t require a heavy casing to keep 

it inside a battery cell. Among metal-air batteries, metals such as Li, Al, Fe, and Zn, Zinc-air and 

Li-O2 batteries in particular have potential for use as alternative energy storage devices. Although 

other metals like Al can show much high voltage and power, Zn has various advantages such as 

low cost, abundance, low equilibrium potential, environmental benignity. The theoretical specific 

energy density of Zn-air batteries is 1084 Wh · kg-1. And Li-air (or Lithium Oxygen) battery; 

Although li metal is explosively reactive with water, the lithium Oxygen (Li-O2) battery has 

attracted interest because of its extremely high theoretical energy density, 11,140 Wh · kg-1 

(excluding O2) and power density is 3505 Wh · kg-1, which is about eight times larger than that 

of conventional rechargeable lithium-ion batteries. The Zn-air and Li-O2 battery, however, have 

many problems in the case of Zn air battery; ohmic loss, carbon dioxide absorption and zinc 

dendrite formation and in the case of Li-O2 battery; a low current density, instability of 

nonaqueous electrolytes, and poor cycle ability etc. Moreover, carbon cathode can lead to the 

inevitable reactions between the discharge product Li2O2. In addition, several recent studies have 

reported about binders including PVDF which are necessary to make a carbon electrode also react 

with chemically generated LiO2. 

 So in this PhD thesis, I studied on the problems of Li-O2 battery. And the possibility of carbon- 

and binder free cathodes for the Li-O2 battery has been studied. 

Gold (Au) and Silver (Ag) nanoparticles coated Ni nanowire substrate were used as electrodes 

(Au/Ni, Ag/Ni electrode) for Li-O2 battery. The Au/Ni electrode demonstrates improved capacity 

of ~ 600 mAh g-1
Au. More importantly, it exhibited improved cyclability over 200 cycles at full 

discharge and charge condition between 2.3 V and 4.3 V. Meanwhile, since Ag is not 

electrochemically stable as much as Pt and Au at high voltages. It is needed to be found proper 
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electrolytes for Ag/Ni electrode. The stability and performance of different electrolyte solvents 

were investigated such as 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether 

(DEGDME), tetraethylene glycol dimethyl ether (TEGDME), dimethylformamide (DMA), 

dimethyl sulfoxide (DMSO) or N-methyl-2-pyrrolidone (NMP). It was found that the NMP based 

electrolyte exhibits superior electrochemical properties. The Ag/Ni electrode with NMP/1M 

LiTFSI delivers a capacity of 473 mAhg-1
Ag at 100 mAg-1

Ag under between 2.3 V and 3.8 V and 

shows stable cycling performance until 35th with 300 mAhg-1
Ag cut off condition at 100 mAg-1

Ag. 
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1. Introduction 

 

1.1  Energy Storage  
 
The demands of developing renewable and new energy storage materials to reduce fossil fuel 

consumption has been continuously increasing during several decades. In 1990’s, global warming 

was one of the most important issues. In 2000’s, reducing CO2 gas emission was also one of the 

chief concerns to protect the earth’s ozone layer and minimize global warming. And it is believed 

that both issues (global warming and CO2 gas emission) are closely related with fossil fuel 

combustion. So many people have struggled to invest renewable energies and new energy storage 

systems for replacing fossil fuels. Another critical factor of demands for the renewable and new 

energy devices is the instability of oil prices. The demand of crude oil for United States had grown 

an average of 1.76% per year from 1994 to 2006, with a high of 3.4% in from 2003 to 2004. World 

demand for oil is projected to increase 37% over 2006 by 2030.1 And the oil demand is possibly 

divided by four broad sectors: 1. transportation, 2. residential, 3. commercial, and 4. industrial. 

And a large part to increases in demand from the transportation sector in recent decades. Therefore, 

to overcome the global warming and oil crisis, considering the issues coming from this huge 

consumption of fossil fuels and further developments are required for a future power. In such a 

development, advanced energy storage technologies such as wind, solar and hydro power have 

been developed. However, such power generation technologies need a power storage technologies 

so that energy storage system play a key role in the realization of the future power source. It is 

believed that the most efficient energy storage and the most realistic solution is the batteries. 

Among these various energy storage systems, batteries have many advantages compared to other 

storage systems such as pumped hydroelectric and compressed air energy storage (CAES) 

described below. Basically batteries does not have any limitations of geographical consideration 

and the size of batteries can be flexibly designed on the different applications. So we can use a 

different battery to a right objective application. A battery or an electrochemical cell is basically 

made of electrodes (Anode and Cathode) and electrolyte (since galvanic cell doesn’t need a 

separator so it is not counted in here), which converts chemical energy into electrical energy. 

Many people believed that the first battery technology is attributed to the development in 1800 

by Alessandro Volta of the voltaic pile.2
 Since then, hundreds of different chemical reactions have 

been utilized and thousands of different types of batteries have been commercialized including 

the development of lithium ion batteries in 1990s.3 And now, Li-ion batteries have become a very 

important technologies. Basically the Li-ion batteries show great possibilities as power sources 

that can lead us to the new era. Since lithium-ion batteries are featured by high energy density, 

high power density and long service life compared with other commonly used batteries and thus 

have wide application to many electronics. A battery works by directly converting chemical 
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energy to electrical energy by employing different chemical reactions. The many different 

combinations of anode, cathode and electrolyte materials to produce different cell chemical 

reactions thereby produces numerous types of batteries from the lead-acid, Li-ion to Li-S and 

metal air batteries.4 the LIBs have been used the most common type of batteries to portable 

electronic devices due to its excellent cycle ability and its relatively high energy density.5 And as 

people need a more powerful and much larger capacity battery as the development of new 

materials for Li-ion batteries have mainly focused on increasing a specific capacity and decreasing 

an overpotential during charge process.6 

 

1.2  Lithium Ion Batteries 
 
Li-ion batteries (LIBs) have been most widely used to many industries such as mobile 

devices like a smart watch, cell phone, a lap top computer, and at the present LIBs are growing in 

popularity for electric vehicle (EV), military equipment and even aerospace applications shown 

in Figure 1-1. 

 

 

 

Figure 1-1. The past, present and future applications of Lithium-ion batteries according to 

power 
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 They are one of the most popular types of rechargeable batteries because of a high energy 

density, small memory effect.7 (Batteries gradually lose their maximum energy capacity if they 

are repeatedly recharged after being only partially discharged. The battery appears to "memory" 

the smaller capacity).8 This battery system uses Li transitional metal oxides (usually LiCoO2) as 

the cathodes, carbons as the anodes (usually graphite), and non-aqueous carbonated liquids as the 

electrolytes. The overall reactions are as following 

 

Positive electrode: 

Li1-xCoO2 + xLi+ + xe- ↔ LiCoO2 

Negative electrode: 

LixC6 ↔ xLi+ + xe- + C6 

Overall reaction: 

LiC6 + CoO2 ↔ C6 + LiCoO2 

 

The lithium ions flow through the electrolyte whereas the electrons generated from the 

reaction, Li = Li+ + e-, go through the external circuit to make the electricity and this chemical 

reactions are reversible. Thus, the electrode system must allow for the flow of both lithium ions 

and electrons. That is, each electrode material (of course including a high capacity) and electrolyte 

must have a good ionic conductivity and an electronic conductivity. Briefly introduce the each 

part of LIBs. 

 

Cathode. 

 

Conventionally, advanced cathode materials are lithium metal oxides, such as, LiMn2O4, 

LiNixMnyCo(1-x-y)O2 (Spinel structure), LiCoO2, LiNiO2, (Layered structure) and, LiFePO4 

(olivine structure). Among them, layered materials exhibit high permanence in the range of high 

voltage, however due to the high cost of cobalt and its toxicity to human body. Consequently, 

combinations of cobalt, manganese, and nickel are frequently favored. Olivine is nontoxic and 

shows thermal stability without a large capacity fading. However, its poor conductivity is a 

problem so that many coating methods have been applied to improve the low conductivity, but it 

leads cost increasing of the battery.9  

 

Anode. 

 

Anode materials are lithium metal, lithium-alloying materials, graphite, and silicon etc.10 
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Since the birth of lithium ion battery in the end of 1980s and early 1990s many kinds of anode 

materials have been studied. Lithium seems to be the most proper and stable anode, however it 

demonstrates drawbacks with cycleability and lithium dendrite formation that leads to short 

circuit problem.3 Alloy anodes exhibit high-energy capacity and safety characteristics. However, 

it shows low cycle life and high initial capacity loss. And in the case of silicon, although it has 

got a great interest for use as the anode material for lithium-ion batteries due to its high capacity, 

it still has many problems such as a large volume expansion during the lithiation process and the 

low diffusion rate of lithium in silicon so that fast capacity degradation occur especially at high 

current rate.11 Meanwhile carbon material is the most widely used anode material despite its 

relatively low theoretical capacity (~370 mAh g-1) compared to the other materials such as lithium 

metal (~3,860 mAh g-1) and silicon (~3,500 mAh g-1).12 Because carbon material is cheap and 

huge abundance in Earth. As a result, it has been focused on the modification of carbon anode 

materials including research on mild oxidation of graphite, formation of composites with metals 

and metal oxides, coating by polymers and other kinds of carbons, and carbon nanotubes.13  

 

Separators. 

 

The separators are also one of the critical components in batteries, and are placed between 

the positive electrode and the negative electrode to prevent physical contact of the both electrodes 

and it enable ion transport and simultaneously isolate electron flow. It must be stable towards the 

electrolyte and electrode materials chemically and electrochemically, and should have 

mechanically high tension to withstand the unexpected reactions such as volume expansion and 

metallic dendrite formation during the battery operation. Structurally, the separator should have 

sufficient porosity to absorb electrolyte for the high ionic conductivity.14 Therefore, selection of 

a proper separator is critical to the battery performance, including energy density, power density, 

cycle life and safety. For better battery performances, the separator is more favored to be thinner 

and more porous and for battery safety, the separator should be able to shut the battery down when 

the battery is overheated, such as the short circuit, so that thermal runaway can be avoided. The 

shutdown function can be obtained through a multilayer design of the separators, in which at least 

one layer melts to close the pores below the thermal runaway temperature and the other layer 

provides mechanical strength to prevent physical contact of the electrodes.15 The separators of 

LIBs can be broadly divided by three types: (1) polymer type, (2) inorganic type, and lastly (3) 

non-woven fabric type.16 Generally the properties of polymer separators are characterized by their 

thickness, porosity, and thermal stability (in other words thermal shutdown properties). The 

nonwoven fabric separators have been well known to its high porosity and a low cost, meanwhile 

the polymer composite separators have excellent wettability and thermal stability. Among 
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numerous battery separators, the ceramic based separators have especially been interested because 

of its improved thermal stability and thermal shutdown property so the safety of LIBs is quite 

being enhanced by using it.17 The former separators consists of either a polyethylene–

polypropylene multilayer structure or a blended polyethylene – polypropylene which increases 

safety by allowing meltdown of the polyethylene to close the pathways for ionic conduction at a 

temperature higher that at which thermal runway occurs. Whereas the latter comprises nano-size 

ceramic materials coated on both sides of a flexible and highly porous non-woven matrix which 

enhances the safety by retaining extremely stable dimensions even at high temperatures to prevent 

each electrode from contacting to each other. 

 

Electrolytes 

 

The electrolyte, which commonly refers to a solution comprising the solvents and salts, 

regarded as the third key component counted after cathode and anode. Although the role of 

electrolyte is often thought an insignificant thing but actually the choice of electrolyte is really 

critical. A safe and stable lithium ion battery requires a large range of voltage window.18 It is 

possible that the electrochemical stability window of electroactive materials is widened by the 

appropriate electrolytes. In addition, if there is “extremely” high power cathode material which 

working with a highly oxidizing potential (> 5 V vs. Li/Li+), it should be required a proper 

electrolyte which operate over their thermodynamic stability window. There are numerous liquid 

solvents available, each with different dielectric constants and viscosity so that we should select 

a specific solvent to consider the ionic conductivity of the electrolyte.19 

 

The Li-ion battery system have many advantages such as it can operate relatively high 

voltage at ~3.7 V with exhibiting high specific energy densities of ~150 Wh · kg-1 and ~400 Wh 

· l-1
,
20 exhibit a low self-discharge of below 8% per month, show a long cycle-life of greater than 

1000 cycles, and wide operation temperature ranges (-20 ~ 60 °C for charge / -40 ~ 65 °C for 

discharge). So based on these advantages, many kinds of lithium-ion batteries are employed in 

electric vehicle (EV). Further development of Li-ion batteries focusses on increasing the specific 

energy (gravimetric and volumetric energy density) and to fulfill the increased consumer demands 

especially for electric vehicles. The most widely used as the cathode electrode materials of the 

power battery could be Spinel-based lithium-ion; normally LiMn2O4 (LMO), Lithium Iron 

Phosphate (LFP), Nickel Cobalt Manganese (NCM), Nickel Cobalt Aluminum (NCA), and as the 

anode materials usually are carbon and now the Lithium Titanium Oxide (LTO) to improve the 

battery durability and performance of fast charging.6 Some of the current EV and the employed 

batteries are listed in Table 1-1. 
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Table 1-1. The current employed lithium-ion batteries to the some EV.6 

 

 However, the Li-ion battery for use in huge energy storage applications is limited by 

its high cost ( > $1,000/kWh) and as electric vehicles (EVs) are becoming more popular and more, 

LIBs show some limitations. For examples, 1. LIBs require protection circuit to maintain voltage 

and current within safe limits. 2. They also subjects to aging, even if not in use - storage in a cool 

place at 40% charge reduces the aging effect. 3. Transportation restrictions - shipment of larger 

quantities may be subject to regulatory control. 4. Expensive to manufacture - about 40 percent 

higher in cost than nickel-cadmium. 5. Not fully mature - metals and chemicals are changing on 

a continuing basis. In addition, LIBs for vehicles should have high capacity and large serial-

parallel numbers, which, coupled with such problems as high cost, safety, durability (low 

temperature tolerance, the protective system for cell degradation, thermal runaway from 

electrolyte decomposition), and uniformity of cells. Among many problems, the biggest limitation 

of LIBs for the vehicle, is the safety control of battery.21 So, lithium-polymer batteries (LPBs) had 

been thought as an alternative thing because of its relatively improved safety than that of Li-ion 

battery due to the gelled electrolytes - more resistant to overcharge; less chance for electrolyte 

leakage. However, LPBs also have some limitations such as expensive to manufacture, lower 

energy density and decreased cycle count compared to lithium-ion, and higher cost-to-energy ratio 

than LIBs. Therefore, there are foreseen limits of LIBs technology. That will limit everything 

from driving range to how much we can decrease the package size, and the latter an important 

consideration when designing batteries for passenger cars. That is why some motor companies 

are researching next generation battery chemistries, such as zinc-air and lithium-air. As the 

improved performances are needed such as high acceleration rate and long driving distance from 

a single charging, as researchers focused on the post LIBs. That is also why IBM have focused 

into battery research especially lithium air battery. Lithium-air and zinc-air batteries generate 
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power by exposing metal and an electrolyte to oxygen, oxidizing the metal and releasing energy. 

Theoretically, lithium-air batteries could provide “at least” about 10 times the energy density - the 

amount of energy stored per kilogram – The current lithium ion batteries can exhibit roughly 200 

kilowatts per kilogram. 
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2. The Lithium Oxygen Batteries 

 

2.1  ORR and OER. 
 

ORR. 

 
Oxygen (O2) is the one of the most important and abundant elements in the Earth. The oxygen 

reduction reaction (ORR) and oxygen evolution reaction (OER) are also the most important 

reactions in energy converting systems such as fuel cells, Zn-air cells and Li-O2 cells. ORR in 

aqueous solutions occurs mainly by two pathways. One is the direct 4-electron pathway from O2 

to H2O, and the other is 2-electron reduction pathway from O2 to hydrogen peroxide (H2O2). In 

non-aqueous aprotic solvents, the 1-electron reduction pathway from O2 to superoxide (O2
 -) can 

also occur.  

ORR occurs at the cathode. And normally, the ORR kinetics is very sluggish. Thus researches 

have been focused on how to make the ORR kinetics fast to reach a practical usable level in a fuel 

cell or metal-air batteries. And many catalysts for a cathode to speed up the ORR have been 

studied such as Pt and Pt–Ru alloys.22 At the current stage in technology, platinum (Pt)-based 

materials are the most practical catalysts.23 However, Pt or Pt-based alloy catalysts are too 

expensive for making commercially available air electrodes, extensive research over the past 

several decades has focused on developing alternative catalysts. These electrocatalysts include, 

carbon materials, and derivatives, transition metal compounds, non-noble metal catalysts and 

metal oxide catalysts such as MnO2, Co3O4, La2O3, LaNiO3, NiCo2O4, LaMnO3, LaNiO3 etc.24  

Table 2-1 lists several typical ORR processes with their corresponding thermodynamic 

electrode potentials at standard conditions. The mechanism of the electrochemical O2 reduction 

reaction is very complicated and involves many intermediates. And the reactions primarily 

depends on the natures of the catalyst materials, and electrolytes. 
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Electrolyte ORR reactions 

Thermodynamic electrode 

potential at standard 

conditions, V 

Non-aqueous aprotic 

solvents 

O2 + e- → O2 – 

O2 - + e- → O2 2- 

A 

B 

Alkaline aqueous 

solution 

O2 + H2O + 4e- → 4OH- 

O2 + H2O + 2e- → HO2 - + OH- 

HO2 - + H2O + 2e- → 3OH- 

0.401 

–0.065 

0.867 

Acidic aqueous 

solution 

O2 + 4H+ + 4e- → H2O 

O2 + 2H+ + 2e- → H2O2 

H2O2 + 2H+ + 2e- → 2H2O 

1.229 

0.70 

1.76 

  

Table 2-1. Thermodynamic electrode potentials of electrochemical O2 reductions.25 

A, B: The thermodynamic potentials for the 1-electron reduction reaction to form a superoxide, 

and its further reduction to O2 2-, are not listed in here. Because the values are strongly 

dependent on the solvents. 

 

It is desirable to have the O2 reduction reaction occurring at potentials as close as possible to 

the reversible electrode potential (thermodynamic electrode potential) with a satisfactory reaction 

rate. The current-overpotential is given in below Equation  

 

where Ic is the oxygen reduction reaction current density, io
O2 is the exchange current density, 

nαO is the number of electrons transferred in the rate determining step, αo is the transfer 

coefficient, ηc is the overpotential of ORR, F is the Faraday constant, R is the gas constant, and T 

is the temperature in Kelvin. To obtain high current at low overpotential, the exchange current 

density io
O2 should be large and/or  should be small.26   
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The exchange current density of an electrochemical reaction depends on the reaction and on 

the electrode surface where the electrochemical reaction occurs. For example, on a Pt electrode, 

the exchange current density of hydrogen oxidation is several orders larger than that of ORR. The 

O2 reduction reaction shows a higher exchange current density on a Pt electrode than on an Au 

electrode. Therefore, electrode materials or catalysts have a strong effect on ORR kinetics. 

Different materials can give different exchange current densities. Table 2-2 shows the ORR 

exchange current densities on various electrode materials.  

 

Electrode 

material 

/catalyst 

ORR exchange 

current density, 

A.cm–2 

Electron 

transfer 

coefficiency 

Electron transfer 

number. 

in rate 

determining step 

Measurement 

conditions 

Pt 2.8 x 10–7 0.48 - 

Pt/Nafion 

interface 

at 30 oC 

PtO/Pt 1.7 x10–10 0.46 - 

Pt/Nafion 

interface 

at 30 oC 

FePc 1.3 x 10–7 - - 

In 0.5 M 

H2SO4  

at 60 oC 

PtFe/C 2.15 0.55 1 

In 0.5 M 

H2SO4  

at 25 oC 

PtW2C/C 4.7 0.45 2 

In 0.5 M 

H2SO4  

at 25 oC 

RuxSey 2.22 0.52 1 

In 0.5 M 

H2SO4 

at 25 qC 

 

Table 2-2. ORR exchange current densities on various electrode materials at different 

conditions.27 
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Oxygen reduction reaction on other metals such as Au, Ir, Pd, Ag, Co, etc. has also been 

investigated.28 However, these metals show lower ORR catalytic activity than that of Pt. 

Additionally, they are not electrochemically stable as much as Pt (therefore they are more easily 

oxidized than Pt). Figure 2-1 shows the volcano plots which graphically show the Sabatier 

principle which states the interactions between the catalyst and the substrate. In the figure, for the 

x- axis, the heat of formation of the metal formate salt and for the y-axis, the temperature at which 

the reaction reaches a specific rate was used. At low values of ΔHf, the reactions are slow (higher 

temperature required) because the rate of adsorption is slow. At high values of ΔHf, desorption 

become the rate-limiting step. The maximum rate, observed for the platinum group metals in this 

case, requires intermediate values of ΔHf, with the rate being a combination of the rate of 

adsorption and the rate of desorption.29 

 

 

Figure 2-1. Trends in oxygen reduction activity graphically plotted as a function of the oxygen 

binding energy. (This figure is taken from wikipedia)  

 

OER 

 

The oxygen evolution reaction (OER) is also the most common and most important anodic 

process in electrolysis in various aqueous solutions. Although, the OER has been described as 

early as 1789, which detailed molecular insight into the relationship between catalyst surface 



１２ 

structure and OER reactivity has remained scarce. It has been reported that nickel and noble 

metals are regarded as the best anode materials in alkaline and acid solutions, respectively. The 

oxide layer is always formed at the surface in the potential region at which oxygen evolves, even 

if an inert metal electrode is used as the anode. Therefore, the oxide formed on the metal substrate 

always affects the reaction mechanism and electrocatalysis for the OER. It is generally believed 

in the use of an oxide anode, that the oxide is more stable than metal, since an oxide cannot be 

easily further oxidized.  

In industrial electrochemical processes such as the water electrolysis for hydrogen production 

and metal electrowinning processes, etc., a stable anode material with low overvoltage in the OER 

is usually desirable. The main requisites of OER catalysts are normally high surface area, high 

electrical conductivity, good electrocatalytic behavior, minimization of the gas bubble problem, 

low cost, and safety. Among them, the electrocatalytic performance (or reactivity) is the most 

essential and most critical for the electrode reaction, and directly influences the overpotential of 

the OER. Therefore, a lot of fundamental and technological research about this property of the 

oxides has been studied.30 The mechanism of the OER is quite complex than those of the hydrogen 

and chlorine evolution reactions, because many complex intermediate states exist in the oxygen 

evolution reaction steps. This means that there are many kinds of activation steps controlling the 

rate of the OER. A number of the OER mechanisms has been reported and discussed. And in all 

cases, the OER mechanisms have been usually deduced from the values of the observed Tafel 

slopes and of the reaction order under the assumption of Langmuir or Temkin conditions of 

adsorption.  

-The Tafel equation is an equation in electrochemical kinetics relating the rate of an 

electrochemical reaction to the overpotential shown in Figure 2-2. The Tafel equation was first 

deduced experimentally and was later shown to have a theoretical justification. The equation is 

named after Swiss chemist Julius Tafel. The exchange current is at equilibrium, the exchange 

current density is the rate of reaction at the reversible potential. At the reversible potential, the 

reaction is in equilibrium meaning that the forward and reverse reactions progress at the same 

rates. This rate is the exchange current density.- 

However, it is very difficult to deduce and justify the validity of the mechanism of the OER 

from the Tafel relation, especially regarding the potential distribution in the interface between the 

electrode and the electrolyte.30b Thus, the discussion of the electrocatalysis of the mechanism 

which is deduced Tafel may be meaningless. However, the Tafal slope is still importantly related 

to the mechanism, and the adsorbed intermediates.31 
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Figure 2-2. A general Tafel plot an anodic process. (This figure is taken from wikipedia) 

 

On a single electrode the Tafel equation can be stated as, 

 

 

 

Where, 

 is the overpotential, V (note that the graph uses η for this quantity) 

  is the Tafel slope, V 

  is the current density, A/m2 and 

  is the exchange current density, A/m2. 

 

The Tafel equation can be also written as: 

 

 

https://en.wikipedia.org/wiki/Exchange_current_density
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Where, 

 the + sign under the exponent refers to an anodic reaction, and a - sign to a 

cathodic reaction, 

 k is the rate constant for the electrode reaction, 

 R is the universal gas constant, 

 F is the Faraday constant. 

  

https://en.wikipedia.org/wiki/Universal_gas_constant
https://en.wikipedia.org/wiki/Faraday_constant


１５ 

2.2  Review of catalysts for ORR and OER. 

Like other battery technologies, Li–O2 batteries also suffer from a series of scientific and 

technological problems such as low utilization efficiency and dendrite formation of the anode, 

electrolytes and salt decomposition, and sluggish kinetics of the cathode resulting in limited cell 

performance. To improve the cell performance, for the anode, normally Li metal is directly used 

as an anode so that the researches have not been focused on the anode. For the electrolytes which 

also critically affect the cell performances, many electrolytes which are strong to the O2 radical, 

have large voltage window, low volatility, high oxygen solubility and robust during the cycling 

have been investigated.32 For the cathode, the main obstacles are the intrinsic slow reactions which 

are related with high overpotentials during the cycling. Thus in order to lower the overpotentials, 

numerous catalysts for ORR and OER have been investigated. Developing active, inexpensive 

catalysts is the always critical issue to many battery fields. It is necessary to find non-precious 

metal catalyst materials to replace currently widely used Pt-based catalysts. Several important 

kinds of precious metal catlysts with carbon supported or carbon free, transition metal oxide 

catalysts are briefly reviewed including nitrogen-doped catalysts in this thesis. 

Precious metals and alloys. 

In the Li-O2 system, the ORR at cathode plays a key role in controlling the performance 

of cell, and efficient ORR electrocatalysts are essential for practical applications of the Li-O2 

battery. Thus many electrocatalysts have been intensively investigated. And the precious metal 

electrocatalyts also have been applied to the Li-O2 battery. In Li-O2 system, the O-O bond must 

be broken during oxygen reduction and reformed during oxygen evolution. These bond-breaking 

and bond-linking reactions may affect a considerable increasing and decreasing overpotential 

related to the ORR and OER in nonaqueous systems. It is reported that the most powerful 

ORR/OER catalysts are noble metals such as Pt and Au,33 and bifunctional Pt/Au catalysts in 

mixed PC/ether electrolytes.34 It is well known that the most effective ORR catalysts are those 

based on platinum (Pt) but Pt has only moderate activity for the OER in fuel cell and Zn-air cell 

field. However, Shao-Horn group reported interesting result that Au/C is more effective ORR 

catalyst in comparison to a Pt/C, and Pt/C is more effective OER catalyst for Li–O2 cells.33c, 34 

Interestingly, the next year, Bryan D. McCloskey also reported that Pt/C showed almost same 

ORR performance and exhibit better OER performance compared with Au.35 I could infer based 

on above researches that of course the nature of the catalyst is a key factor controlling the 

performance of the oxygen electrode, especially the capacity, which is the primary reason for 

interest in the O2 electrode, however, more importantly the cell performance and electrochemical 

behavior of electroactive materials can be changed or can be affected by different electrolytes. 
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Ruthenium (Ru) and iridium (Ir) are well known as the best OER catalysts, but they are not as 

active as Pt for ORR. Although, alloys of these compounds have shown a better bifunctional-

catalytic performance, the development of bifunctional catalysts still represents a big challenge 

and the best catalytic materials are still precious metals. 

Transition metal oxides 

The transition-metal oxides have attracted extensive attention as alternative catalysts of 

precious metal catalysts in many fields such as fuel cell and metal air cell over the several 

decades,36 due to its relatively high catalytic activity and low cost compared to precious metals 

and environmental friendliness. Various transition metal oxide catalysts have been examined for 

ORR and OER, including Co3O4, MnO2, MnCo2O4, NiCo2O4, and nanowire a-MnO2.37 They are 

usually supported with carbon materials, such as carbon black, ketjen black, and graphene, to 

improve the electrocatalyst activities for ORR/OER and to increase capacity in aqueous solutions 

and organic electrolytes. Among them, Co3O4, Mn3O4, and MnCo2O4 catalysts supported on 

carbon or graphene were reported to be promising bifunctional catalysts. Wang group reported 

the multiporous MnCo2O4 as a bifunctional catalyst which exhibited a capacity of 1000 mAh g-1 

and stable cycles during 50th at 250mAg-1 condition in LiTFSI /TEGDME electrolyte.38 Table 2-

3 shows the discharge voltage and discharge capacities of many different catalysts including 

transition metal oxides, noble metal and bifunctional catalysts in 1 M LiPF6 in propylene 

carbonate as the electrolyte. It is clear that the discharge voltage is not so much affected by the 

catalysts whereas the discharge capacity and its retention on cycling changes dramatically 

depending on the catalyst used.39  
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Catalyst Discharge Voltage (V) 
Discharge capacity of 1st cycle 

(mAhg-1) 

Pt 2.55 470 

Fe2O3 2.6 750 

Fe2O3 – Carbon 

loaded 
2.6 2700 

NiO 2.6 2500 

Fe3O4 2.6 1600 

Co3O4 2.6 1200 

La0.8Sr0.2MnO3 2.6 2000 

Table 2-3. Discharge voltage and discharge capacities of 1st cycle with many different catalysts. 

 

Cheng et al. reported CoMn2O4 nanoparticles having good ORR and OER catalytic 

activities. Since CoMn2O4 spinel is a semiconductor and good catalytic activity requires fast 

electron transport.40 In addition, Although catalysts should affect discharge voltage which is 

believed to related with ORR and charge OER potentials, however, based on the above results 

shown in Table 2-3, it exhibits very similar discharge voltages around 2.6 V vs. Li with wide 

range of catalysts This could either be explained by assuming that the ORR in a Li-O2 cathode is 

not a catalytically sensitive reaction or by assuming that the ORR activity of added carbon itself 

is sufficiently high to mask the ORR activity of catalysts of interest most Li-O2 battery catalyst 

studies use cathodes with carbon.37a, 41 It is believed that the activity of ORR/OER catalysts has 

closely related with their morphology and surface area so that a porous nanostructured cathode 

can reduce the overpotential. Thus, it is key to develop a highly porous cathode for transition 

metal oxide catalyst for nonaqueous Li−O2 batteries. 

Carbon nano tubes and Graphene 

The ORR at cathode of Li-O2 plays a key role in controlling the performance of cell, and 

efficient ORR electrocatalysts are essential for practical applications of the Li-O2 battery. Thus 
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precious metal and metal oxide catalysts have been intensively investigated. However, their 

intrinsic problems can not be overcome. For example, metal oxide electrocatalysts especially α-

MnO2, it has low electron conductivity and insufficient activity and precious-metal-based 

catalysts, of course, exhibit improved ORR and OER activity but, the expensive prices of them 

prohibit and limit their widespread.42 Thus, carbon materials also have been studied as an ORR 

catalysts. It is reported that the different physical and chemical properties of carbon materials, 

such as morphology, crystal structure and defect of carbon, can significantly affect the ORR 

activity.43 (Basically carbon materials are also good ORR catalysts44) Jason group reported the 

exceptionally high capacity of 15000 mAh/g, using the hierarchically porous graphene.45 Haoshen 

Zhou reported a novel thin-film electrode which are prepared by pencil-drawing on a ceramic 

state electrolyte.46 , it was a new and interesting electrode preparing a solid-state air electrode on 

the surface of a ceramic-state electrolyte. Recently, many heteroatom (O, N, S) modification of 

carbonaceous materials have been reported that they have a significant increased catalytic activity 

for ORR in organic solvent.47 As a class of low-cost catalyst and support, nitrogen-doped carbons 

have been investigated extensively. However, they often require complicated synthesis procedures 

to obtain suitable microstructure in order to achieve high capacity. Although many researchers 

put efforts to develop a good catalysts using a carbon, carbon materials have good ORR activity 

and show large capacity but they are not effective for OER.48 In addition, it is reported that the 

carbon reacts with Li2O2 on the charge (oxidation) cycle to produce an interfacial layer of Li2CO3, 

which increases the charge overpotential.49 During the discharge there is just little or no 

decomposition of the carbon. However, especially to the hydrophilic carbon, some decomposition 

occurs (Li2CO3 involved with electrolyte decomposition to form HCO2Li and CH3CO2Li).50 On 

the charge potential above 4 V vs. Li/Li+ the lithium carboxylates undergo oxidative 

decomposition and simultaneously forms by decomposition of the electrolyte. So it is believed 

that the decomposition of carbon electrode cannot avoid due to the formation of Li2CO3 from 

electrolyte and electrode degradation during charging, and thus Li2CO3 accumulates on the carbon 

electrode, leading to rapid polarization, degradation and passivation of electrode and capacity 

fading on cycling.51 

Non carbon materials 

Almost all the Li-O2 batteries reported, the catalysts were usually supported or loaded 

with carbon materials mentioned above, and then the specific capacities were normalized by the 

only mass of carbon materials, rather than all components of the electrode including the binders 

and catalysts. If the capacity was calculated by the total weight of the air electrode, the real values 

of capacity must be much lower than that of the reported values. Moreover, it is also believed that 
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the catalysts also could generate capacity (even it is not so much though). Furthermore, in the 

carbon-supported cathode or carbon cathode have been investigated as inefficient catalysts due to 

the in stability of carbon. It is well known that carbon oxidizes above 4 V vs. Li/Li+.52 In addition, 

more importantly, carbon decomposes during oxidation of Li2O2 on charging due to attacked by 

intermediates of Li2O2 oxidation and it actively promotes electrolyte decomposition on charge. 

And much worse, the proportion of these side reactions from carbon increases on cycling. The 

Li2CO3, formed by the side reactions, deposits on the carbon cathode, leading to electrode 

passivation, electrolyte decomposition, resulting in severe polarization and eventually capacity 

fading and cell death.50, 53 So to reduce or eliminate the drawbacks from carbon, some researches 

about non carbon cathode for Li-O2 battery have been reported. The alternative carbon cathodes 

should have a good conductive, large surface area, and most importantly stable in the extremely 

oxidative environment. The first attempt was reported by P.G. Bruce group. This showed good 

cycling stability with a DMSO-based electrolyte. However, the reported specific capacity was 

only around 320 mAh g-1 and the fabrication process was difficult. Thus Bruce group reported 

TiC-based cathode which greatly reduced side reactions such as electrolyte decomposition and 

electrode degradation compared with carbon electrode. And they exhibits better cycles than that 

of carbon (TiC 98% capacity retention after 100 cycles, nanoporous god 95% capacity retention 

after 100 cycles)33b, 54 Wen group also reported the free-standing type Co3O4 on Ni current 

collector without carbon and binder. The Co3O4 electrode exhibited about 4000 mAh g-1.4c Zhou 

group also reported interesting result that Ruthenium nanoparticles on indium tin oxide (ITO) as 

a cathode electrode exhibited quite reduced the charge overpotential and improve the cycling 

performance within a potential window between 2.3 V and 4.05 V for 50 cycles.55 Recently Zhou 

group reported another carbon-free cathode (they call it an alternative cathode), which is Ru 

nanoparticles supported on Sb-doped tin oxide (STO) particles. It showed 750 mAhg-1 at 0.1 mA 

cm-2 for 50 cycles.56 Very recently Park group reported carbon-free MnCo2O4 oxide as the 

oxygen electrode and they show the discharge capacity of 10520 mAh·g−1 at the 

6.8 mAh·cm−2 condition.57 Carbon-free and carbon alternative electrode for Li-O2 batteries 

have been attempted to replace the carbon electrode and indeed, they exhibited good cycle 

ability and improved performances. However, although those carbon-free or alternative carbon 

cathode can effectively avoid carbon-involved side reactions, the stability of the electrolytes 

during the long term operation of Li-O2 batteries and the relatively lower capacities compare 

to those of carbon cathode or carbon based cathode still remain challenges. The electrolyte 

decomposition should be overcome and improving the capacity is main issues for the carbon-

free cathodes.56 
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2.3  The Zinc-Air battery. 

 
Leclanche developed the initial idea of metal–air battery with a MnO2/carbon cathode 

electrode. Metal–Air batteries or Metal-Air fuel cells used metal as an anode (negative) electrode 

such as Li, Mg, Al, Fe, and Zn and an oxygen in atmosphere as a cathode reactive material 

(positive). Thus the theoretical capacities and energy densities of metal air batteries are extremely 

higher than those of conventional batteries. Figure 2-3 and Figure 2-4 shows the volumetric and 

gravimetric energy densities of many batteries.  

 

 

 
 

Figure 2-3. Volumetric and gravimetric energy density of many kinds of batteries. 

 

 

 
 

Figure 2-4. Volumetric and gravimetric energy density of many kinds of batteries. 
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Among many metal-air batteries, Zinc–air cell is the one of the more mature 

metal–air battery technologies due to its High energy density, abundancy, relatively low 

material cost (Zn : $ 1.2 / kg, Mg : $ 3 / kg, and Li : $ 150 ~ 180 / kg) and its safety.58 The 

typical Zinc–air cell design is given in Figure 2-5. Typical Zinc–air cell is comprised of 

an alkaline electrolyte (usually KOH), Zn powders (any types of zinc will do) at the anode, 

a carbon based air cathode, which usually consists of a non-precious metal catalyst, and 

a hydrophilic separator. 

 

 
 

Figure 2-5. A schematic figure of reaction of Zn air battery. 

 

 
The reactions of Zn air battery are as below, 

 

Anode reaction 

 Zn + 4OH– → Zn(OH)4
2– + 2e–   (E0 = 1.25 V)  

 Zn(OH)4
2– → ZnO + H2O + 2OH–  

 

Cathode reaction  

O2 + 2H2O + 4e– → 4OH–    (E0 = 0.4 V)  

 

Overall reaction: 

2Zn + O2 → 2ZnO     (E0 = 1.65 V)  

 
 During discharge, oxygen from the air forms hydroxyl ions at the cathode. And the 

hydroxyl ions migrate into the zinc anode which is saturated with an alkaline electrolyte and form 

zincate (Zn(OH)4
2−. The (Zn(OH)4

2− decay to zinc oxide and water returns to the electrolyte. The 

water and hydroxyl from the anode are recycled at the cathode, so the water is not consumed. 
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Even though the theoretically potential of a Zn-air battery is 1.65 V and its real open circuit 

voltage is around 1.25 ~ 1.45 V, due to iR drop from the sluggish ORR reaction at cathode. Thus 

the iR drop can be minimized by using the electrodes with high electrical conductivity and the 

electrocatalysts and electrolyte with high ionic conductivity.59 So many electrocatalysts (non 

precious metal) have been extensively studied so far.60 Aqueous NaOH, KOH or LiOH is 

preferred as a good electrolyte and recently, KOH is usually used due to its better conductivity 

that the other electrolyte.61 The Zn-air cell requires refueling with new alkaline electrolyte and Zn 

supply as well as the removal of reaction products such as zinc oxide and potassium zincates. 

Due to its high specific energy, high power density, cheap cost and non-precious metals 

as catalysts, and most importantly its safety. The Zn-air cell is promising option for stationary and 

transportation. Zinc–air batteries are already in practice as a primary battery like hearing aids 

during several decades. And now hopefully, several companies are involved in development and 

commercialization of Zn- air battery for electric vehicles, indoor power generators, industrial 

facilities, and military purposes. However, few research groups and companies are working on 

the development of Zn–air systems so far throughout the world. Just a few companies have 

worked on a zinc–air battery system for electric vehicles, the primary and secondary batteries for 

military uses shown in Figure 2-6. 

 

 

 

Figure 2-6. Pictures of Zn air battery vehicle (LJB MANAGEMENT INC.) and military 

application (EMW Co.,Ltd.). 
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 The cathode 

 

Zinc–air batteries have closely affected by the surrounding environment such as humidity; Too 

low humidity can lead the gradual drying-out of the electrolyte, or too high humidity can lead 

flooding of the air electrode. Thus balanced hydrophobicity and hydrophilicity are needed to the 

air electrode. Thus normally PTFE is used as a hydrophobic binder. The fabrication procedure of 

air electrode is as below. 

 

 

 

 

1. Mix the carbon, catalyst and PTFE binder with isopropyl alcohol. 

 

 

 

 

2. Knead the paste and roll press to make a proper thickness. 
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3. Press the paste on the Ni current collector. 

 

In order to maximize the oxygen permeability, gas diffusion electrode (GDE) usually have to be 

as thin as possible. The thinner electrode exhibited improved rate and performance.62  The 

kinetics of the air electrode are also closely related with oxygen reduction reaction (ORR). ORR 

is quite sluggish reaction because of strong O=O bond (498 kJ mol-1), which is extremely hard to 

break. So usually electrocatalysts are required to assist the bond activation and cleavage. ORR 

electrocatalysis has been a main topic of researches in the fields of metal–air batteries and fuel 

cells.63 For Zn–air battery, ORR electrocatalysts have a critical role in battery performance 

including power density, energy efficiency and lifetime. Many efforts have been invested in 

finding proper electrocatalysts to reduce iR overpotential and enhance battery discharge 

performance.64 ORR catalysts can be categorized by precious metals, metal oxides and 

carbonaceous materials. In the initial stage of zinc–air research, precious metal catalysts were 

widely used and platinum shows the best catalytic performance in first zinc–air battery due to its 

high activity.65 Precious metal catalysts have high electrocatalytic activities. However, its cost is 

so expensive and its scarcity prohibit its widespread. Compared with precious metals, metal oxide 

catalysts are more desired to catalysts for air electrode. Perovskite and other metal oxide catalysts 

have been extensively investigated.  Among them, manganese oxide (MnOx) have been a 

particularly interesting candidate due to its oxidation states so that MnO2 is the most common 

ORR electrocatalyst in commercial zinc–air batteries.40, 66 Recently, carbon based electrocatalysts 

have been the subject of scrutiny. Basically pristine carbon materials have poor inherent ORR 

activity in alkaline media. So the researches have focused on increase the activity of carbon by 

chemical modification of the carbon surface or nitrogen-doped.67 Despite all this progress, the 

performance of Zn-air battery is far from satisfactory (making it a secondary battery). Degradation 

usually starts from the catalyst materials, leading to deteriorating activities.40, 68 For example, even 

though MnOx is often thought to be the most popular catalyst, it has a strong propensity to get 

oxidized to MnO4 at OER potentials. Carbon as the catalyst substrate material is also susceptible 
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to electrochemical corrosion. Therefore, continuous efforts are needed to find and design not only 

highly efficient bifunctional electrocatalysts, but also robust electrodes for electrically 

rechargeable zinc–air batteries.69 

 

 The anode 

 

Zinc has been the popular negative electrode material for many primary systems such as zinc–

carbon, zinc–MnO2, and zinc–air cell. Zn for the electrode materials are generally a gelled mixture 

of zinc granules or powders with alkaline electrolytes. The shape or morphology of the zinc 

granules has been found to be a critical factor to increase inter-particle contact and decrease 

internal electrical resistance in the negative electrode. In principle, high surface area zinc particles 

are preferred for better electrochemical performance. Figure 2-7 shows different types of Zn. 

 

 

 
Figure 2-7. SEM image of different types of Zn. (a) Zn granule, (b) Zn powder, and (c) dendritic 

Zn. 

 

It is reported that fine zinc morphologies had increased high-rate discharge performance.70 In 

addition to powders, other types of high surface area zinc materials such as sphere type, flakes 

type, fiber type, dendrites and regenerated type of zinc foams have been investigate.71 However, 

it is noted that as the electrode surface area of Zn increases, the corrosion rate of it also 

significantly increase. So the balanced combination of coarse and fine particles are favored as a 

tradeoff between a performance and self-discharge rate. 

 

 The electrolytes 

 

Mostly Zn-air battery operates in alkaline media, such as KOH and NaOH. And for a higher 

activity of the zinc and air electrode both, usually KOH is preferred to the NaOH because of its 

better ionic conductivity, lower viscosity and higher oxygen diffusion coefficients.72 Moreover, 
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its reaction products with atmospheric CO2 – K2CO3 or KHCO3 – have a higher solubility than 

their sodium counterparts, and can therefore alleviate the carbonate precipitation problem which 

is a serious challenge for zinc–air batteries. Most commonly, 6 M ~ 7 M KOH solution is 

employed for its maximum electric conductivity. And recently, the possibility of several aprotic 

electrolytes have been reported. Especially ionic liquids, for zinc–air batteries has been proposed 

and evaluated. These electrolytes are beneficial to the cycle ability of the zinc electrodes. By using 

them, dendrite formation of zinc can be somehow suppressed. They are also beneficial to suppress 

the self-corrosion of zinc anode, slow down the evaporation of the electrolyte and eliminate its 

carbonation. But the performances of Zn-air batteries using those aprotic electrolytes is not so 

good as much as that of the KOH electrolyte so far.73 

. 
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2.4  The Li-O2 battery. 
 

The Li-O2 battery (often called Li-air or lithium-air battery) is the battery consuming oxygen 

from the ambient atmosphere like other Zn-air batteries. In addition, The Li-O2 battery possesses 

a very high specific energy about 3700 mAh/g because lithium is the lightest metal, which is much 

larger than that of graphite or other commercially available anodes (of course including other 

metal air batteries). Thus it have been shed light on as a new energy generating system. Figure 2-

8 shows the theoretical and practical specific energy densities of many batteries including the Li-

O2 battery. 

 

 

 

Figure 2-8. The graph and table of theoretical and practical specific energy densities of many 

batteries.74 

 

The common point that the Li-O2 and Zn-air battery both react with reduced oxygen. Thus 

generally, people believed that Zn-air and Li-air are the almost same or at least similar to each 

other. However, it is technically different between Li-O2 and Zn-air battery. Figure 2-9 shows the 

different reaction way of Zn air and Li-O2 battery. 
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Figure 2-9. The reaction way of Zn air and Li-O2 battery. Zn air battery is one compartment cell 

meanwhile Li-O2 battery is two compartment cell. 

  

And Li-O2 battery need to exclude incoming moisture and nitrogen from the atmosphere to 

the battery, so sadly speaking, making a rechargeable real lithium-“air” battery is so difficult (I 

would not say it is impossible) with today’s knowledge and technologies. Therefore, the 

researches have been usually investigated by the Li-O2 system so far using a pure oxygen gas.75  

In the Li-O2 battery with a nonaqueous electrolyte (Li-O2 battery can be divided to four types 

by electrolyte type shown in Figure 2-10 but in this thesis, I focused on nonaqueous electrolyte 

system), reactions between reduced oxygen and lithium ions results in the formation of lithium 

peroxide (Li2O2) (or possibly lithium oxide (Li2O)) as the final discharge reaction product on or 

in the cathode pores or surfaces. Since the capacity of Li-O2 battery can be determined by total 

amount of Li that can be stored in Li2O2 or Li2O in the cathode, the capacity of Li-O2 battery is 

normalized by cathode weight and the porous materials are favored as the cathode. 
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Figure 2-10. The four types of Li-O2 batteries. (a) nonaqeous, (b) aqeous, (c) hybrid, and (d) solid 

state electrolyte type.74 

 

 

To achieve a truly rechargeable Li-O2 battery, reversible oxygen reduction reaction (ORR) 

and oxygen evolution reaction (OER) resulting in the formation and oxidation of Li2O2, 

respectively, are the key point. The nonaqueous Li-O2 battery was first reported by Abraham and 

Jiang in 1996.76 Since then, there have been vast efforts to improve the performance of the Li-O2 

battery to enlarge the capacity and to extend cycle life. The reaction of Li-O2 battery looks simple 

as below.77 

 

1. Li+ + O2 + e- → LiO2   (E0 = 3.0 V vs. Li/Li+) 

2. 2Li+ + O2 + 2e- → Li2O2  (E0 = 3.1 V vs. Li/Li+) 

3. 4Li+ + O2 + 4e- → 2Li2O  (E0 = 2.9 V vs. Li/Li+) 

 

The dissolved oxygen in the electrolyte reduces on the surface of a cathode via a one electron 

transfer process to a super oxide ion (O2 
-). This reduced oxygen ion reacts with Li+ ions to form 

lithium superoxide (LiO2) as the intermediate reaction product. LiO2 can further chemically or 

electrochemically be converted to lithium peroxide (Li2O2) as the final discharge product. At the 

charge reaction, lithium peroxide (Li2O2) oxidizes as Li+ ions and O2 as below. 



３０ 

 

Li2O2 → 2Li+ + O2 + 2e-  

 

However, a real cell not works simply as like the reactions. We need to consider the reactions 

between Li+ and reduced oxygen, the solubility of gaseous oxygen in the electrolyte, lithium 

dendrite formation, Li2CO3 formation and CO2 gas evolution during cycling leading to increase 

the capacity, decrease the overpotential and improve the cycle ability. These have been considered 

as major research topics for Li-O2 cell. Thus there have been extensively studies about catalysts 

and electrolytes to solve those problems.78 

 

 The cathode 

 

The cathode material for the Li-O2 battery is usually a porous carbon which can store discharge 

products more. So the cell capacity is mainly limited by the cathode properties such as surface 

area, conductivity, pore volume, and pore size distribution. Basically the oxygen solubility and 

the diffusion coefficient of nonaqueous electrolytes are relatively small factors. (compared to 

factors from cathode) So the kinetics of the reactions rate, the amount of formed Li2O2 are strongly 

determined by cathode. Most of the cathodes used for Li-O2 cells are made of carbon, binder, and 

possibly catalyst so far.79The most common technique making a cathode for Li-O2 battery is just 

mixing active materials (usually carbon) and catalysts with binder using a solvent to make a slurry, 

then cast the slurry onto a metal mesh or foam or carbon paper as a current collector. At the early 

stage of the Li-O2 battery (around ~ 2010), several studies have been mainly focused on carbon 

and catalysts to increase the discharge capacity or to optimize the properties of the carbon 

cathode.33c, 80 Most of these studies were aiming at improving the formulation of the cathode to 

provide more space to store higher amounts of Li2O2. However, after many studies have been 

reported, the surface area is not the only parameter affecting the cell performance. Many variable 

factors are connected to each other such as pore size distribution of carbon (PSD), pore volume, 

porosity, the electrode thickness, the loading density, cathode formulation, etc. affecting the 

discharge capacity and performance of the Li-O2 battery.48a, 81  

After then, catalysts often used as a component of the cathode have been extensively studied 

because it is believed that catalysts can improve the kinetics of ORR and OER reactions. They 

can alleviate the charge overpotential in the cell. The effect of different catalysts including many 

metal oxides such as MnO2, Co3O4, precious metals such as Au, Pt or composite, and nonprecious 

alloys on the performance of Li-O2 cells have been studied.78a, 82 After such many efforts to 

improve the performance to solve the problems from the cathode, the discharge capacity and 

kinetics of the reactions have been improved indeed by catalysts. However, the cycle ability is 
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hampered by the carbon material itself. It is reported that Li2O2 can react with carbon cathode, 63a, 

83 forming Li2CO3 and evolving CO2 gas. Recently, other designs like a binder-free cathode and 

carbon-free cathode have been reported.55, 57, 84 

 

The Anode 

 

The Li-O2 battery use a lithium metal directly. (sometimes, further treated metal used) So the 

formation and growth of dendrites on lithium metal has been the most common issue. In addition, 

basically lithium is one of the strongest reducing agent so that the contact between lithium and 

the aprotic electrolytes results in partial decomposition of the electrolyte on the lithium and 

formation of a surface layer so called the solid electrolyte interphase layer (SEI). The SEI layer 

can protect the electrolyte from further decomposition by the negative electrode. So to suppress 

the dendrite formation and electrolyte decomposition, additives and solid electrolytes have been 

studied.85 

 

The electrolyte 

 

Lithium superoxide (LiO2) and lithium peroxide (Li2O2) are very reactive. So the most of the 

known electrolytes are unstable in the Li-O2 battery. Especially carbonate based electrolytes can 

be easily decompose during the cell cycling because of super oxide radical (O2
-).10a, 86 Several 

different mechanisms have been proposed for the decomposition of carbonate based electrolytes. 

It has been believed that the super oxide radical (O2
-) reacts via nucleophilic substitution with the 

C of the carbonyl group carbonate based electrolyte.87 It has also been suggested that the super 

oxide radical attacks the ethereal carbon of the electrolytes. Several studies have recently reported 

that ether based electrolytes are relatively strong to the super oxide radical.32c, 88 However, further 

studies revealed that ether based electrolytes also cannot be avoided from degradation during the 

cell cycling.89 Beside the instability of electrolyte solvents, degradation of lithium salts is also one 

of the main issues. Several lithium salts such as LiPF6, LiTFSI, LiBF4, LiClO4 and LiCF3SO3 etc 

are decomposed during the cycling due to the reaction with Li2O2.90 Although already many 

different types of electrolytes and further improved electrolytes such as aprotic organic 

electrolytes, polymer electrolytes, ionic liquids, etc. have been investigated, the degradation of 

the electrolyte solvents and salts in the Li-O2 battery is still one of the major challenges which 

should be overcome and elucidated. 
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 I mentioned the problems of carbon cathode and the decomposition or degradation of 

electrolytes and salts in Li-O2 battery above. Therefore in this thesis, I tested carbon- and binder- 

free cathode for Li-O2 battery. 

  



３３ 

3 ExperimentⅠ 

 

3.1  The Cell Set-up.  
 

Li-O2 cells were assembled using a modified Swagelok type cell design with an opening 

allowing oxygen access to the cathode. The cells were kept in specially designed air-tight 

containers with inlet and outlet valves for keeping the pressure of the oxygen gas. The details of 

the applied current and voltage, which were different as different studies, are described in the 

appended papers. The applied current and the capacities of the cells were calculated based on the 

amount of cathode materials in the electrodes. All the cells were tested using Wona tech Battery 

cycler applying different current density. In this design, a stainless steel rod and a stainless steel 

hollow rod were used as the current collectors of the negative and positive electrodes, respectively. 

The cells were assembled in a dry room where the dew point is below 65oC using lithium foil as 

the negative electrode, glass fibers filter as a separator (Whatman), and a carbon- and binder- free 

cathode as the positive electrode. The details of the cathode preparations are presented in the each 

experiment section below. 

The assemble procedure of Swagelok type cells are as below.  

 

 

 
 

1. Put the stainless spacer on the spring 
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2. Put punched lithium metal on the spacer 

 

 
 

3. Put punched glass fiber separator on the lithium metal and inject electrolyte 

 

 
 

4. Put punched cathode electrode on the electrolyte wetted separator. 
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5. Close tightly the upper side of Swagelok cell. 

 

 
 

6. The picture of assembled Swagelok cells. 
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3.2 Optimization of Au nanoparticles-coated Ni nanowire 

substrate as a highly stable one bodied electrode for lithium-

oxygen Batteries 

 
 

Abstract 

 

Au nanoparticles-coated Ni nanowire substrate without binder and carbon is used as an 

electrode (denoted as Au/Ni electrode) for Li-oxygen (Li-O2) battery. Minimum amount of Au 

nanoparticles with sizes of < 30 nm on Ni nanowire substrate are coated by simple 

electrodeposition method to the extent that maximum capacity can be utilized. This optimized 

one bodied Au/Ni electrode shows a high capacity of 921 mAhg-1
Au, 591 mAhg-1

Au, and 359 

mAhg-1
Au was obtained at different current 300 mAg-1

Au, 500 mAg-1
Au, and 1000 mAg-1

Au 

respectively. More importantly, the Au/Ni electrode exhibits excellent cycle ability over 200 

cycles. 
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3.2.1 Introduction. 

 

After introducing the non-aqueous Li-air battery,76 it has been attracting many researchers 

because of its high theoretical energy density, 11,140 Whkg-1 (excluding O2) and power density 

is 3505 Whkg-1, which is about eight times larger than that of conventional rechargeable lithium-

ion batteries.74 The Li-O2 battery, however, has many problems which have to be elucidated and 

overcome, such as low current density, instability of nonaqueous electrolytes as like 

decomposition of electrolytes, even instability of salts, and poor cycle ability.35, 90a, 91 In order to 

solve these problems, it is urgent to find a proper electrolyte, but there is no ultimately stable 

electrolyte for non-aqueous Li-O2 batteries at present, just ether-based electrolytes were found to 

be relatively robust to oxygen radicals.92 To achieve a stable electrolyte and to disclose details 

about relations with each battery component, we need to fix a cathode part, thus helping a search 

a favorite electrolyte. Consequently, to improve performance and stability of cathode, various 

catalysts, such as α-MnO2, Co3O4, Mn3O4, Ru, and Pt/Au composite have been examined,34, 39, 77, 

93 leading to improved performance of cathode. However, since those catalysts normally were 

used on carbon substrates, it did not solve the problem arising from the carbons. Carbon cathode 

can lead to the inevitable reactions between the discharge product Li2O2 and carbon favored by 

the negative Gibbs free energy according to following reactions.83a  

(1) Li2O2 + C + 1/2O2 → Li2CO3 △G=-561.2kJ/mol  

2Li2O2 + C → Li2O + Li2CO3 △G =-552.3kJ/mol 

(2) Li2O2 → LiCO2R (electrolyte) under certain potential 

(3) C + O2 → CO2   under certain potential 

 

For these reasons, using any carbon cathode have not shown stable long cycle graph under the 

full discharge/charge condition (e.g. between 4.3V and 2.3V), such as carbon black, activated 

carbon, carbon nanotube (CNT), and graphene.94 Although it has been reported significantly 

improved the cyclability of carbon-based cathode out to 900 cycles by a redox mediator, the cell 

operation condition was also limited by capacity cut-off. 95 In addition, several recent studies have 

reported about binders which are necessary to make a carbon electrode. The reactivity between 

chemically generated LiO2 and PVDF binder in 1 M LiPF6/TEGDME has been reported.96 In 

addition to binder instability, several recent studies have shown that lithium salts and/or binder 

can be decomposed during cycling.50, 90a, 97 Therefore further controlled studies with carbon and 

binder-free electrodes will be critical to unambiguously probe the stability of electrolyte solvents 

and salts in the presence of Li2O2 and discharge intermediates.98 To achieve carbon- and binder-
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free cathode, it is critical to choose a source with a good catalytic surface and structure to facilitate 

a Li-O2 reaction. Once a good source is identified, it is also important to maximize the capacity. 

Some recent research have suggested that possibility of carbon free electrodes have been reported 

and shown good results, such as Ru/ITO carbon free electrode with cycling to 50 cycles, 

nanoporous gold electrode and TiC-based electrode with stable cycling to 100.83a, 99 For instance, 

nanoprous Au electrode showed the quite reversible capacity of 300 mAhg-1
Au between 4 and 2.3 

V in the DMSO (dimethyl sulfoxide) electrolyte. 

Among those, Au may not be a suitable material for the cathode due to its high mass and cost, 

however, its diverse synthetic methods can lead to many chances for further optimization for 

usage of the cathode materials. For instance, its morphology and quantity that contributes to the 

capacity and oxygen reduction and evolution (ORR/OER) reactions are easily controlled. In this 

study, we reported the optimized synthetic condition of Au nanoparticles-coated Ni nanowire 

substrate via a simple electrodeposition method for a highly efficient electrode for Li-O2 battery 
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3.2.2 Experimental Section 

 

Fabrication of Au/Ni electrode. In order to prepare Ni nanowire substrate, anodic aluminium 

oxide membrane (AAO, Whatman Anodisc 25) was used as a template. At first, Ni nanoparticles 

as seeds for Ni nanowire growth were densely deposited up to ~200 nm on the one side of AAO 

membrane templates with a pore size of ~ 20 nm (let’s assume this side is a front side of AAO) 

placed on the silicon wafer by E-beam evaporator as shown in Figure 3-19, note that AAO 

template has different pore sizes on its front and back shown in Figure 3-20, so if Ni nanoparticles 

were deposited of back side of AAO (opposite side of front), the Ni nanoparticles can’t fully cover 

the pores of AAO as shown in Figure 3-19 and the blue print of home made eledtrodeposition kit 

shown in Figure 3-21, 3-22, and 3-23 the real picture of Ni nanowire current collector is shown 

in Figure 3-24. Secondly, the deposited side by Ni nanoparticles of the template was attached on 

the current collector and covered by a 25 mm rubber O-ring, which are placed onto the open hole 

exposed to Ni plating solution in the home-made electroplating cell. The plating solution 

consisted of 0.3 M NiCl2∙6H2O (Samchun chemical), 0.2 M H3BO3 (Samchun chemical), and 0.15 

M NH4Cl (Daejung chemical) in distilled water. Electroplating was performed at ambient 

temperature under pulse condition that voltage of -1.1V 15sec and then -0.9V 5sec (vs Ag/AgCl) 

were applied by turns for 3hr. Finally, the AAO template was dissolved using a 2 M NaOH 

(Daejung chemical) solution with gentle agitation at room temperature for 24h and then rinse it 

several times with distilled water. This Ni nanowire substrate was placed on a current collector 

again and covered by a 23 mm rubber O-ring in a homemade Teflon electroplating cell and put 

the plating solution consisting of 0.005 M HAuCl4•3H2O (Sigma Aldrich) and 2 M NH4Cl 

(Daejung chemical) in solvent mixed 50 % of Methanol and 50 % of DI water. Electroplating was 

performed also under pulse condition that voltage of -X.0V(-1.0 V, -2.0 V, -3.0 V, and -4.0 V) 3 

sec and then rest 15 sec were applied by turns for 6 minutes and thus actual depositing time is 

60sec. After deposited, the disk was washed with distilled water several times and then dried. The 

loading quantity of Au was estimated via inductively coupled plasma (ICP) analysis and 

optimized. The amount of Au was 0.081 mg/cm2, 0.4 mg/cm2, 1.8 mg/cm2, and 4.5 mg/cm2 at 

applied voltage of -1.0 V, -2.0 V, -3.0 V, and -4.0 V, respectively. The disk of the Au/Ni electrode 

was directly used as a cathode. 

 

Preparation of Au leaf electrode. Nanoporous Au leaf (Au>99.5%, Hanil gold, Korea) was 

purchased and used without further treatment. Au leaf was attached on Ni foam current collector 

by roll-press without binder. The loading amount of Au leaf was 0.1 ± 0.01 mg. 
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Assemblage of the Li-O2 full-cell. For electrochemical test, Swagelok-type Li-O2 cell consisting 

of Au/Ni electrode punched by 1.23 cm2 (12.5pi), glass microfiber filter paper punched by 1.27 

cm2 (12.7pi) (Whatman grade GF/D), lithium foil punched by 1.23 cm2 (12.5pi) without 

additional pretreatment, and 1.3M LiTFSI in TEGDME (tetraethylene glycol dimethyl ether) 

electrolyte solution was used. All cell assemblage were carried out in a dry room where the dew 

point is below 65.0℃. 

 

Electrochemical characterization of the full-cell. For the electrochemical characterizations, the 

Au leaf electrode and Au/Ni electrode were cycled between 2.3 and 4.3 V at different current 

condition. (300 mAg-1
Au, 500 mAg-1

Au, and 1000 mAg-1
Au under 1 atm O2 blowing at 24oC, 

Wonatech Co. Ltd.) 

 

Characterization of Au leaf and Au/Ni electrodes. Field Emission Scanning Electron 

Microscopy (FESEM) (FEI nano 230), normal transmission electron microscopy (TEM) (JEOL 

Inc.) operating at 200 kV, energy-dispersive spectroscopy (EDS, JEM-2100, JEOL Inc.) elemental 

mapping, X-ray diffractometer (XRD) (D/Max2000, Rigaku). X-ray photoelectron spectroscopy 

(XPS) (Thermo Scientific Kα spectrometer, 1486.6 eV). 
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3.2.3 Results and Discussion 
 

It has been reported that Au nanoparticles could enhance the discharge voltages of Li–O2 

cells100 and Ni current collector is widely used in Li-O2 battery.80a, 93a, 101 Therefore it is more 

beneficial to use nanostructured Ni current collector in which Au nanoparticles can be directly 

grown up on it to maximize Au utilization (Figure 3-1).  

 

 

Figure 3-1. Schematic of the fabrication of Au nanoparticles deposited Ni nanowire substrate by 

electrodeposition method.  

 

To do so, Ni nanoparticles as seeds for Ni nanowire growth were densely deposited on the side 

of anodic aluminium oxide (AAO) membrane template on the side with a pores size of ~ 20 nm 

after loading on the silicon wafer by using E-beam evaporator. Secondly, the deposited side of 

the template was then attached to the current collector in the open hole of home-made 

electroplating cell. Finally, after filling the Ni plating solution into the holes and subsequent 

applying voltage to overgrow Ni nanowire substrate from the AAO templates, Ni nanowires with 

a diameter of ~ 200 nm could be obtained. For Au nanoparticles deposition, Ni nanowire substrate 

was immersed in the plating solution consisting of HAuCl4·3H2O and NH4Cl and was 

subsequently applied voltage (for details see the experimental section). By means of this unique 

method, we effectively coated minimum amount of Au nanoparticles on Ni nanowire substrate to 

the extent that maximum capacity can be utilized. Figure 3-2a and b shows SEM images of AAO 

template to prepare Ni nanowire substrate and Figure 3-2c and d show real picture of homemade 

Teflon kit and Ni nanowire substrate (for details in Experimental section). Figure 3-2e, f, g, and 
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h show SEM images of Au/Ni electrode on which different amounts of Au (0.081 mg/cm2, 0.4 

mg/cm2, 1.8 mg/cm2, and 4.5 mg/cm2) is deposited. When the Au amount was 4.5 mg/cm2, 

reformation of porous structure is can be seen due to overgrown Au nanoparticles on the Ni 

substrate (Fig. 3-2h). 
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Figure 3-2. Preparation of Au/Ni Electrode and morphology of Au/Ni electrode with different Au 

quantity. (a) SEM image of AAO template, (b) SEM image of deposited Ni nanoparticles on AAO 

template by E-beam evaporator, (c) picture of 3 electrode electrodeposition homemade Teflon kit, 

(d) picture of Ni nanowire substrate, (d, f, g and h) SEM images of Ni nanowire substrate with 

different amounts of Au nanoparticles (d) 0.081 mg/cm2, (e) 0.4 mg/cm2 (f) 1.8 mg/cm2, and (g) 

4.5 mg/cm2. 
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At first, we conducted cyclic voltammogram test of Ni nanowire substrate to figure out the 

catalytic reaction. The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) of 

Ni sunstrate was obsvred to be negligible (Figure 3-3). This result can also support the full cell 

result, indicating that Ni nanowire did not contribute to the capacity (Figure 3-3). Accordingly, 

Ni fuctioned merely as a current collector. Therefore no need to normalize the capacitance by 

both mass of Ni and Au. Before electrochemical full cell test using Au/Ni electrode, we confirmed 

a stability of Au/Ni electrode by cyclic voltammetry (CV) test. The ORR and OER currents were 

observed to be stabilized over 50 cycles in the examined potential window from 2.3 to 4.3 V. 

(Figure 3-4).  
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Figure 3-3. Voltage profiles of (a) Ni plate electrode and (b) Ni nanowire substrate electrode. The 

dis/charge current at 2.5 mAg-1
Ni. (c) Cyclic voltammogram of Ni nanowire substrate and Au/Ni 

electrode between 2.3 V~4.3 V at a scan rate of 5mVsec-1 
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Figure 3-4. Cyclic voltammogram on voltage window between 2.3 V~4.3 V during 1, 10, 25, 

and 50 cycles at 5 mVsec-1 

 

The full cell test of Au/Ni electrode with a different Au amount was conducted at current rate 

of 500 mAg-1
Au in 1.3M LiTFSI in TEGDME (tetraethylene glycol dimethyl ether) electrolyte 

under 1 atm O2 blowing at 24oC. Due to the high reactivity of DMSO solvent to Li metal, Li metal 

have to be pretreated before applying DMSO.99a In order to avoid such a pretreatment, TEGDME 

electrolyte was used in this study. Figure 3-5 displays the voltage profiles of Au/Ni electrode. 

The electrode with the lowest amount of Au (0.081 mg/cm2) shows the highest discharge capacity 

of 591 mAhg-1
Au.  

 

 

Figure 3-5. Electrochemical evaluation of Au/Ni electrode at discharge current of 500 mAg-1
Au. 

Capacity were normalized by Au quantity. (All the cells were pre-conducted cyclic 

voltammogram using Ag/AgCl reference electrode between 2.3 and 4.3V for 50 cycles). 
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In order to maximize the Au active sites participating in ORR and OER reactions, Au 

nanoparticles should be coated on the surface of Ni nanowire substrate as possible, which is the 

way to maximize capacity. As shown in Figure 2f, g, and h, when the Au nanoparticles were 

deposited more than the required amount, it causes the capacity decrease due to loss of active 

sites. The other sample, shown in Figure 2e, needed further analysis so that Figure 3-6 displays 

SEM and TEM image of Ni nanowire substrate on which Au amount of 0.081 mg/cm2 was 

deposited (3-6b and d) (Note that the different diameter of the Ni nanowires, shown in Figure 3-

6 c and d, could be originated from a different pore size distribution of AAO membrane. See 

Figure 3-7). Au nanoparticles were observed to be efficiently deposited on Ni nanowire substrate 

with an average Au nanoparticle size with < 30 nm. Energy dispersive X-ray spectroscopy (EDX) 

confirmed the formation of Au (Figure 3-6e and 6f and Figure 3-8). 
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Figure 3-6. The morphology of Au/Ni electrode and EDX image. SEM images of the as-

fabricated (a) Ni nanowire, (b) Au/Ni electrode, TEM images of (c) Ni nanowire, (d) Au/Ni 

electrode, and EDX images of (e) Ni, and (f) Au element, respectively. 
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Figure 3-7. SEM image of (a) front and (b) back sides of AAO membrane. The pore size of front 

and back sides are ~ 20 nm and ~200nm, respectively. Ni nanoparticle seeds are deposited on the 

front side and Ni nanowires grew through the back side of AAO membrane. 
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Figure 3-8. The EDX results of the Au/Ni electrode.  

 

Since the Au nanoparticles were relatively well deposited on Ni nanowires, we expect the 

improved utilization, compared with other nanostructured counterparts. Accordingly, Au leaf 

with a nanopores with > 30 nm (Figure 3-9) was compared with the optimized sample.  
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Figure 3-9. The morphology of nanoporous Au leaf. (a) SEM image of nanoporous Au leaf and 

(b) TEM image of nanoporous Au leaf.  
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Figure 3-10. Electrochemical evaluation of Au/Ni electrode and nanoporous Au leaf at different 

current. (a) voltage profiles of Au/Ni electrode at different currents of 300 mAg-1
Au, 500 mAg-1

Au 

and 1000 mAg-1
Au, (b) discharge capacity plot vs. cycle number of (a) with increasing current of 

300 mAg-1
Au to 1000 mAg-1

Au, (c) voltage profiles of nanoporous Au leaf at different currents of 

300 mAg-1
Au, 500 mAg-1

Au and 1000 mAg-1
Au, and (d) discharge capacity plot vs. cycle number 

of (a) with increasing current of 300 mAg-1
Au to 1000 mAg-1

Au 

 

A full cell test was conducted with a current of 300 mAg-1
Au, 500 mAg-1

Au and 1000 mAg-1
Au 

between 2.3 and 4.3 V under 1 atm O2 blowing at 24oC, as shown Figure 3-10. Discharge 

capacities of the Au/Ni electrode is far superior to those of Au leaf at different currents and for 

instance, discharge capacity of the Au/Ni was 921 mAhg-1
Au, while that of the Au leaf was 134 

mAhg-1
Au. This result is also competitive to other carbon-free cathodes (Table 3-1). 
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Table 3-1. Recent results of non-carbon based cathodes for Li-O2 battery (2014.07). 

 

 

 

  

Journal Title capacity 

Electrolyte 

and test 

condition 

Capacity 

retention 

Nano Lett., 

2013, 13, 4702 

Ru/ITO: A Carbon-Free 

Cathode for Nonaqueous 

Li–O2 Battery 

1.81mAh/cm2 
Triglyme 

0.15mA/cm2
 

98% after 50  

cycles 

Chem. 

Commun., 

2013, 

49, 5984 

Carbon-free cobalt oxide 

cathodes with tunable 

nanoarchitectures for  

rechargeable lithium–

oxygen batteries 

2280mAh/g 

TEGDME 

20mA/g 

(based on the    

Co3O4 

weight) 

No information 

500mAh/g 

TEGDME 

100mA/g 

(based on the   

Co3O4 

weight) 

100% after 

50cycles with a 

limited 

capacity of 

500mAh/g 

J. Power 

Sources, 2014, 

248, 1270 

Carbon and binder free 

rechargeable Li–O2 

battery cathode with 

Pt/Co3O4 flake arrays as 

catalyst 

930mAh/g 
TEGDME 

100mA/g 
No information 

500mAh/g 
TEGDME 

200mA/g 

75% after 30  

cycles 

Nat. Mater., 

2013, 12,1050 

A stable cathode for the 

aprotic Li–O2 battery 

350mAh/gTiC 
DMSO 

1mA/cm2 

98% after 100 

cycles 

530mAh/gTiC 
TEGDME 

0.5mA/cm2 

97% after 25  

cycles 

Science, 2012, 

337, 563 

A Reversible and 

Higher-Rate Li-O2 

Battery 

300mAh/gAu 

DMSO 

500mA/g 

(based on the 

Au weight) 

95% after 100 

cycles 
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This work 

Optimization of Au 

nanoparticles-coated Ni 

nanowire substrate as a 

highly stable one bodied 

electrode for lithium-

oxygen Batteries 

1563mAh/gAu 

TEGDME 

100mA/g 

(based on the 

Au weight) 

No cycling test 

591mAh/gAu 

TEGDME 

500mA/g 

(based on the 

Au weight) 

98% after 100 

cycles 

359mAh/gAu 

TEGDME 

1000mA/g 

(based on the 

Au weight) 

No cycling test 

371mAh/gAu 

DMA 

500mA/g 

(based on the 

Au weight) 

99% after 50  

cycles 
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Further, cycling performance of the Au/Ni electrode was carried out over 100 cycles, and the 

capacity of Au/Ni electrode was 591 mAhg-1
Au and 580 mAhg-1

Au after 1st and 100th cycle at 500 

mAg-1
Au. This corresponds to 98.1% capacity retention shown in Figure 3-11a and b. However, 

after around 100 cycle, gradual capacity fade occurs. 

 

 

 

Figure 3-11. Capacity and cycle result of Au/Ni electrode at 500 mAg-1
Au. (a) voltage profiles of 

Au/Ni electrode and (b) plot of discharge capacity vs. cycle number of (a). 

 

To investigate the stability of elements and surface morphological change of Au/Ni electrode, 

XPS (Figure 3-12), SEM (Figure 3-13) and XRD (Figure 3-14) were examined.  
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Figure 3-12. XPS spectra of pristine, after 110th charged and discharged electrode. (a) Au 4f and 

(b) Ni 2p  

 

XPS does not show change the spectra of Au and Ni element during the long cycles. SEM 

images show that Li2O2 was covered with the pores of Au/Ni electrode upon fully discharge but 

the clogged pores was almost recovered after charge. The morphology of Au/Ni electrode almost 

has not been changed compared to the pristine one shown in Figure 3-13. XRD patterns of the 

cycled Au/Ni electrode were also not changed compared to the pristine one. Crystalline Li2O2 

peaks are clearly visible after 1st discharge but its peak intensity significantly decreased after 110th 

cycle. It is reported that the accumulated Li2CO3 and lithium carboxylates on the cathode surface 

hinder the nucleation and crystallization of Li2O2 during the subsequent discharge, leading to the 

formation of amorphous Li2O2.102 It has been already reported that formation of Li2CO3 occurred 

through ether-based electrolytes decomposition during the cycles.53a Li2CO3 formed from 

TEGDME, however, generally are non-crystalline therefore not sensitive to XRD method.  
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Figure 3-13. SEM images of Au/Ni electrode (a) pristine, (b) after discharged 110th cycle and (c) 

after charged 110th cycle 
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Figure 3-14. XRD patterns of (a) pristine Au/Ni electrode, Li2O2 and the electrode after 1st 

discharge and charge, 110th discharge and 110th charge. (b) magnified peaks (a). 

 

To confirm the presence of Li2CO3, FT-IR, Raman and XPS were conducted (Figure 3-15 and 

3-16). However, unfortunately the spectra from FT-IR and Raman were too noisy to be assigned. 

Only XPS displayed that Li2O2 was formed and decomposed, and that Li2CO3 has been 

accumulated during cycles, which is related to electrolyte decomposition.  
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Figure 3-15. (a) Raman and (b) FT-IR spectra of Au/Ni electrode, Li2O2, and Li2CO3 Both spectra, 

however, are too noisy to be assigned 
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Figure 3-16. XPS spectra of (a) Li 1s, (b) C 1s, and (c) O 1s. Pristine Au/Ni electrode, after 1st 

and 100th charge and discharge electrode. O 1s spectra of pristine sample at 531.7 eV are related 

with nickel oxide layer which is formed on nickel under normal conditions in air. 
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Therefore we could infer that the gradual capacity fade is related with the electrolyte 

decomposition, but it was found Au/Ni electrode still wetted with the electrolyte, when the cell 

was disassembled. Thus electrolyte exhaustion was not the direct cause of the capacity fading. 

The Li anode, on the other hand, was covered with a dark black layer at its interface with the 

separator, whereas shiny metallic Li was still found on the current collector side. Once the dark 

surface was scratched, the area under the dark surface kept still shiny silver. A clue to the origin 

of the capacity fading can be further explained by examining SEM images of the Li metal (Figure 

3-17). To investigate the surface of Li metal, SEM was conducted after 50th and 110th cycle. After 

110th cycle, vividly developed black layer was observed, indicating that the capacity fading is not 

because of Au/Ni electrode but of Li anode. 

 

 

Figure 3-17. Morphology change of Li metal. (a) Fresh Li metal, (b) after 50th cycled Li, (c) after 

110th cycled Li, and (d) cross sectional image of (c). 
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To prove this, another identical cell was rebuilt by using the used Au/Ni electrode but with a 

new Li metal, separator and fresh electrolyte. In Figure 3-18a and b, the rebuilt cell exhibited 

almost same voltage profile as shown in the Figure 3-11a and b. Figure 3-18c shows the 

summation of cycle result. Interestingly, the capacity fading occurred again around 100 cycles 

and also the Li anode showed a similar appearance to that observed in the first 110th cycled 

electrode. Recently, it is reported that the reaction of Li anode with H2O was formed through 

electrolyte decomposition (TEGDME).103 The Li metal is found to have limited reversibility, 

whereas the thickness of LiOH layer increases steadily as the cycling progressed possibly 

resulting from the reaction of Li with H2O. We believe that the capacity fading is because of the 

passivation of Li anode that underwent an irreversible phase transformation during the cycling by 

influence of H2O. 

 

Figure 3-18. Capacity and cycle result of rebuilt cell. (a) voltage profiles of rebuilt cell, (b) cycle 

graph of (a), and (c) the summation cycle graph of the pristine and rebuilt cells. 
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Figure 3-19. SEM image and picture of Ni nanoparticles coated on the front side of AAO. 

 
 

Figure 3-20. SEM image and picture of Ni nanoparticles coated on the back side of AAO. 
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Figure 3-21. The blue print of a bottom part of homemade kit for electrodeposition. (Especially 

for AAO template) 

 

 

 
Figure 3-22. The blue print of a top part of homemade kit for electrodeposition. (Especially for 

AAO template) 
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Figure 3-23. The blue print of a cap part of homemade kit for electrodeposition. (Especially for 

AAO template) 

 

 

Figure 3-24. The real picture of Ni nanowire current collector made by homemade 

electrodeposition kit. 
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3.2.4 Conclusion 

 

We have designed a highly efficient Au/Ni electrode by simple electodeposition method 

for Li-O2 battery, resulting in improved cycle stability and enhanced capacity compared with 

nanoporous Au leaf. It was shown that Au nanoparticles which were effectively fabricated on Ni 

nanowire substrate with minimizing quantity simultaneously maximizing active sites can show 

much larger capacity than that of nanoporous Au leaf electrode. In addition, Li-O2 cell composed 

of the Au/Ni electrode can sustain excellent reversible cycling over 200 cycles (including rebuilt 

cell test). These results far exceeded the stability obtained at carbon cathodes. We confirm that 

the capacity fading was because Li metal passivation due to the electrolyte decomposition 

(TEGDME), not the Au/Ni electrode. This study indicates that it should further motivate the 

development of a decomposition-free electrolyte that could alleviate the Li anode. 
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4. Experiment Ⅱ 

 

4.1  A Possibility of Silver catalyst as a Carbon- and Binder-free 

Cathode material on Different Electrolytes for Lithium-

oxygen Batteries 

 

Abstract 

 

Silver (Ag), which has not so many been used to a catalyst for lithium-oxygen (Li-O2) 

battery because of its instability at high voltages, is utilized as an oxygen reduction reaction (ORR) 

catalyst. The positive limit of gold and platinum is approximately 4.5 V ~ 5.0 V vs. Li/Li+, 

meanwhile the limit of silver is around 3.6 V ~ 3.8 V vs. Li/Li+ in propylene carbonate (PC), 

dimethoxyethane (DME) and tetrahydrofuran (THF) solution.104 However, since the 

electrochemical behavior of an electroactive material is substantially affected by the electrolytes, 

we examine the electrochemical performance of Ag catalyst in a family of etheral solvents (1,2-

dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), tetraethylene glycol 

dimethyl ether (TEGDME), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and N-

methyl-2-pyrrolidone (NMP) with 1M lithium bis-trifluoromethylsulfonylimide (LiTFSI) to find 

proper electrolytes on Ag catalyst for Li-O2 batteries. To maximize active sites of Ag catalyst and 

to clarify its innate performance, Ag is used as an electrode (denoted as Ag/Ni electrode). Our 

investigation reveals that the NMP-based electrolyte exhibits superior electrochemical properties. 

The Ag/Ni electrode with NMP/1M LiTFSI delivers a capacity of 473 mAhg-1
Ag at 100 mAg-1

Ag 

under between 2.3 V and 3.8 V and shows stable cycling performance until 35th with 300 mAhg-

1
Ag cut off condition at 100 mAg-1

Ag. 
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4.1.1 Introduction. 

The aprotic lithium-oxygen (Li-O2) batteries have been attracting many researchers 

because of its possibility and high theoretical specific energy density of about 3,500 Wh kg-1, 

which significantly exceeds most other conventional electrochemical batteries.74, 76 The capacity 

of Li-O2 battery is based on a simple electrochemical reaction, which is formation of Li2O2 during 

discharge based on oxygen reduction reaction (ORR) and decomposition of the Li2O2 during 

charge based on oxygen evolution reaction (OER) according to this reaction: 2Li+ + 2e- + O2 ↔ 

Li2O2 (E0 = 2.96 V vs Li/Li+).34 Although the electrochemical reaction seems so easy, it is still 

difficult for Li-O2 batteries to be practical application because there are many problems which 

have to be elucidated and solved, such as high over-potential that associated with sluggish charge 

transfer kinetics,92a, 105 instability of electrolytes during dis/charge processes,91b, 106 and instability 

of carbon electrode during charge process.51a Among these problems, regarding the carbon 

cathode which is the most commonly used to oxygen electrode to store the discharge products 

(Li2O2),94 it is reported that Li2O2 can react with carbon cathode, 83 and that chemically generated 

LiO2 can react with PVDF binder which is also common binder to make a carbon electrode.96 

From these reasons, many carbon free cathodes have been reported to further controlled studies.33b, 

51a, 54-55, 84b, 107 And indeed they exhibit quite impressive results, such as stable cycles more than 

100 cycles, however, most of the results were attributed by expensive noble metals such as 

platinum and gold (Pt and Au).33b, 84b, 107a In the case of such noble metals, there are difficulties in 

practical application because of a scarcity and a price of the resources. So it is important and 

meaningful to find another possible candidate for the carbon- and binder- free cathodes, which is 

inexpensive compared to Pt and Au, has good ORR and/or OER activity, and good electrical 

conductivity as possible. From these conditions, we employed silver (Ag) as the candidate for the 

cathode in Li-O2 batteries by simple electrodeposition method same as our previous work.107a It 

is believed that Ag mostly satisfies above conditions; Not only is the cost of Ag about 60 ~ 70 

times lower than Pt and Au, but also Ag has good catalytic property for ORR and good electrical 

conductivity.108 Although Ag has such good benefits above, it is not perfect. The Aurbach group 

has reported the electrochemical stability window of Ag, Pt and Au by cyclic voltammetry test 

on different electrolytes such as propylene carbonate (PC), dimethoxyethane (DME) and 

tetrahydrofuran (THF) solutions with LiClO4, LiAsF6, LiSO3CF3, and Bu4NClO4 salt.104 Since Ag 

is not electrochemically stable as much as Pt and Au at high voltages, Ag has been usually used 

to alkaline media batteries, which have relatively lower voltage range than that of Li-O2 

battery.108c, 109 Very recently, Ag-MnO2, Ag-RGO composite catalysts in nonaqueous have been 

reported.110 However, those researches have neither been conducted by only Ag catalyst, nor been 
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concerned with solvent species in electrolytes, which can change the electrochemical behavior 

and stability of an electroactive material.82  

In this study, we synthesized Ag/Ni electrodes, that Ag nanoparticles are deposited on 

Ni nanowire current collector by simple electrodeposition method, to evaluate the innate 

performance of Ag catalyst and design suitable electrolyte systems in order to apply Ag catalyst 

to the aprotic Li-O2 battery system. We evaluated the electrochemical performance of Ag/Ni 

electrodes with six different electrolytes, which are 1,2-dimethoxyethane (DME), diethylene 

glycol dimethyl ether (DEGDME), tetraethylene glycol dimethyl ether (TEGDME), 

dimethylformamide (DMA), dimethyl sulfoxide (DMSO) or N-methyl-2-pyrrolidone (NMP), to 

figure out the impact of solvent species on electrochemical properties of Ag catalyst in Li-O2 

batteries 
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4.1.2 Experimental Section. 

 

Fabrication of Ag/Ni electrode. A Preparation of Ni nanowire substrate is described in detail in 

our previous work,107a This prepared Ni substrate was placed on a Ni foil current collector again 

and covered by a 23 mm rubber O-ring in a homemade Teflon electroplating cell and put the 

plating electrolyte consisting of 0.02 M AgCH3CO2 (Sigma Aldrich), 1.5 M KSCN (potassium 

thiocyanate) (Sigma Aldrich) and 2 M NH4Cl (Daejung chemical) in DI water. Electroplating was 

performed under pulse condition that voltage of -2.0V 2 sec and then rest 10 sec were applied by 

turns for 3 minutes and thus actual depositing time is 30 sec. After deposited, the disk was washed 

with DI water several times and then dried in vacuum oven. The loading quantity of Ag was 

estimated via inductively coupled plasma (ICP) analysis. The amount of Ag was 65 μg/cm2. 

 

Fabrication of electrolytes. All chemicals; 1,2-dimethoxyethane (DME), diethylene glycol 

dimethyl ether (DEGDME), tetraethylene glycol dimethyl ether (TEGDME), dimethylformamide 

(DMF), dimethyl sulfoxide (DMSO), and N-methyl-2-pyrrolidone (NMP) and lithium bis-

trifluoromethylsulfonylimide (LiTFSI) salt; were purchased from Sigma Aldrich and were used 

as received. The concentration of LiTFSI salt in all solvents was a 1.0 M. All electrolytes were 

prepared in an argon-filled glove box. 

 

Assemblage of the Li-O2 full-cell. For electrochemical full cell test, Swagelok-type Li-O2 cell 

consisting of Ag/Ni electrode punched by 1.23 cm2 (12.5pi), glass microfiber filter punched by 

1.27 cm2 (12.7pi) (Whatman grade GF/D), lithium foil punched by 1.23 cm2 (12.5pi) without 

additional pretreatment, and 200 μL of electrolyte. The assemblage of all cells was carried out in 

a dry room where a dew point is below 65.0℃. 

 

Electrochemical characterization of the full-cell. For the electrochemical characterizations, the 

Ag/Ni electrode was cycled by 2 different ways that one is full dis/charge condition from 2.3 V 

to 3.8 V and the other is capacity cut off condition with 300 mAhg-1
Ag (at 100 mAg-1

Ag current 

condition. under 1atm O2 blowing at 24oC, Wonatech Co. Ltd.) 

 

Characterization of Ag/Ni electrodes. Field Emission Scanning Electron Microscopy (FESEM) 

(FEI nano 230), normal transmission electron microscopy (TEM) (JEOL Inc.) operating at 200 

kV, energy-dispersive spectroscopy (EDS, JEM-2100, JEOL Inc.) elemental mapping, X-ray 

diffractometer (XRD) (D/Max2000, Rigaku). X-ray photoelectron spectroscopy (XPS) (Thermo 

Scientific Kα spectrometer, 1486.6eV). 
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4.1.3 Results and Discussion. 

 

Ag nanoparticles were directly grown up on Ni nanowire substrate to maximize Ag utilization 

by simple electrodeposition method details in our previous work.107a By means of this unique 

method, we effectively coated minimum amount of Ag nanoparticles on Ni nanowire substrate to 

the extent that maximum capacity can be utilized. Figure 4-1 displays SEM, TEM images of Ni 

nanowire substrate (4-1a and c) and Ag/Ni electrode on which Ag amount of 65 μg cm-2 was 

deposited (4-1b and d). Energy dispersive X-ray spectroscopy (EDX) confirmed the elements of 

Ag/Ni electrode (4-1e and f). 
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Figure 4-1. The morphology of Ni nanowire substrate and Ag/Ni electrode and EDX image. SEM 

images of the as-fabricated (a) Ni nanowire, (b) Ag/Ni electrode, TEM images of (c) Ni nanowire 

substrate, (d) Ag/Ni electrode, and EDX images of (e) Ni, and (f) Ag element, respectively. 
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The full cell tests of Ag/Ni electrode with six different electrolytes were conducted at current 

rate of 100 mAg-1
Ag in 1.0 M LiTFSI in each electrolyte with DME, DEGDME, TEGDME, DMF, 

DMSO or NMP solvent under 1 atm O2 blowing at 24°C. Criteria of designing the suitable 

electrolyte system were following. 1) avoiding carbonate solvents, which were known to produce 

undesirable Li2CO3 or LiRCO3 during discharging and CO2 during charging,32c, 91b 2) choosing 

the general solvents which have been reported many times to easily understand the properties of 

those,77, 106, 111 and 3) picking the solvents, which have the stability toward superoxide radicals 

and provide stable [Li+(solvent)-O2
-] complexes.77 Figure 4-2 shows voltage profiles of cells 

during the first 2 cycles in six different electrolytes and Table 4-1 shows the specific capacities 

of them. Discharge capacities and cycling performance of the Ag/Ni electrode were greatly 

affected by the electrolytes. The discharge capacities of 1st cycle in each electrolyte were 224 

mAh g-1
Ag (DME-based), 94 mAh g-1

Ag (DEGDME-based), 85 mAh g-1
Ag (TEGDME-based), 672 

mAh g-1
Ag (DMF-based), 693 mAh g-1

Ag (DMSO-based), and 473 mAh g-1
Ag (NMP-based), 

respectively. Interestingly, the 2nd discharge capacities of DMF- and DMSO-based electrolytes, 

which showed high capacities at 1st cycle, were dramatically decreased to 30 mAh g-1
Ag and 102 

mAh g-1
Ag, respectively. Note that only NMP-based electrolyte maintains the reversible capacity, 

as shown in Figure 4-2 and Table 4-1. 
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Figure 4-2. The first 2 cycles of voltage profiles using Ag/Ni electrode on different electrolytes 

at 100 mAg-1
Ag. (a) Voltage profiles of Ether based electrolytes and (b) high donor number 

electrolytes. 

 

 

Table 4-1. The specific capacity of each electrolyte. 

 

 To figure out the different cycling properties of electrolytes, we disassembled the cells after 
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examined by SEM (Figure 4-3) and XPS (Figure 4-4) measurements. The SEM images revealed 

that a severe passivation layer covered all the pores of Ag/Ni electrode only after 2 cycles between 

2.3 V and 3.8 V. However, in the case of NMP/1M LiTFSI electrolyte, just some clogged pores 

were observed. The morphology of Ag/Ni electrode in NMP/1M LiTFSI also almost has not been 

changed compared to the pristine one, as shown in Figure 4-3. 
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Figure 4-3. SEM image of each Ag/Ni electrode and picture of each separator. (a) pristine Ag/Ni 

electrode, Ag/Ni electrode and picture of separator after 2 cycles in (b) DME, (c) DEGDME, (d) 

TEGDME, (e) DMF, (f) DMSO, and (g) NMP respectively. 

 

b c

d e

f

100 µm

a

100 µm

100 µm100 µm

100 µm

100 µm

100 µm

g



７７ 

The effects of organic solvents on the surface chemistry of Ag/Ni electrodes were confirmed 

by a comparison of the Li 1s, C 1s, F 1s, and Ag 3d XPS spectra for the electrodes cycled in DME, 

DEGDME, TEGDME, DMF, DMSO and NMP with 1M LiTFSI. The DME-based electrolyte 

severely evaporated out of a cell during cycling because of its high volatility and 

electrochemically decomposed at the Ag/Ni electrode. Although less volatile ether solvent 

(DEGDME and TEGDME)-containing electrolytes exhibited no significant evaporation, they 

electrochemically decomposed at the Ag/Ni electrode and delivered very low discharge capacity 

of 94 mAh g-1
Ag and 85 mAh g-1

Ag at 1st cycle as shown in Table 1. Evidence of the electrolyte 

decomposition on the Ag/Ni electrodes is given in Figure 4-4.  
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Figure 4-4. XPS spectra of Ag/Ni electrodes after 2ndcycle. (a) Li, (b) C, (c) F, and (d) Ag. 

 

The C 1s XPS spectra (Figure 4b) obtained from the Ag/Ni electrodes cycled in DME, 

DEGDME or TEGDME with 1M LiTFSI show four types of carbon : carbon bonded to hydrogen 

(CHx; 284.8 eV), carbon singly bonded to oxygen (C-O-C; 286.8 eV), carbon double bonded to 

oxygen (C=O-C; 288.4 eV), carbon bonded to fluorine (C-F; 292.9 eV). These peaks may be 

originated from the decomposition of LiTFSI salt and ether solvents. The Li 1s, F 1s (Figure 4-

4a and c) and S 2p (Figure 4-5) XPS spectra further confirmed that the LiTFSI salt and ether 

solvents undergo the electrochemical decomposition at the Ag/Ni electrode. 
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Figure 4-5. XPS spectra of Ag/Ni electrodes after 2ndcycle. 

 

The peak at 55.8 eV in Figure 4-4a and 684.8 eV in Figure 4-4c can be ascribed to the LiF 

and 688.4 eV in Figure 4-4c can be assigned to the C-F bond originated from the LiTFSI 

decomposition upon discharge.112 The broad peak at 169 eV and 170.2 eV of S 2p in Figure 4-5 

greatly increased compared to pristine Ag/Ni electrode. The Aurbach group has proposed the 

reductive decomposition of LiTFSI as follows.113 

 

LiN(SO2CF3)2 + ne− + nLi+ → Li3N + Li2S2O4 + LiF + C2Fx Liy 

LiN(SO2CF3)2 + 2e− + 2Li+ → Li2NCF3SO2 + LiF + CF3SO2Li 

Li2S2O4 + 6e− + 6Li+ → 2Li2S + 4Li2O 

Li2S2O4 + 4e− + 4Li+ → Li2SO3 + Li2S + Li2O 

 

The XPS results are in accordance with the above reaction and suggest that the ether-based 

electrolytes with LiTFSI salt can readily decomposed at the Ag/Ni electrode and the surface of 

Ag/Ni electrode is mainly covered with the decomposition products of LiTFSI salt. Accordingly, 

the peak intensity corresponding to Ag decreased after 2 cycles (Figure 4-4d). Meanwhile, the 

DMF and DMSO/1M LiTFSI electrolytes showed the different results. The decomposition of 

DMF/1M LiTFSI can be explained by the N 1s XPS spectra of Figure 4-6.  
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Figure 4-6. XPS spectra of Ag/Ni electrodes after 2ndcycle. 

 

Since the XPS results presented no evidences related to the LiTFSI decomposition, it can be 

thought that the decomposition of DMF predominately occurs rather than that of the LiTFSI salt. 

The Bruce group reported about the reaction between the DMF solvent and reduced O2 species.106 

The O2
•− either can react with Li+ ions or attack the CO group resulting in formation of LiO2 and 

carbon radical so that they attack on the DMF molecule yielding HCO2Li, CO2, H2O and NO. 

Ag/Ni electrodes cycled in DMSO/1M LiTFSI clearly show the peak corresponding to lithium 

carbonate (Li2CO3) at 289.5 eV, which was not observed for other electrolytes (Figure 4-4b). 

Recently, the Younesi group demonstrated that Li2O2 reacts with DMSO solvent resulting in the 

formation of carbonates species such as Li2CO3. 114 They explained that the weak acidic methyl 

groups in DMSO can react with a strong base Li2O2, forming hydroperoxy radical.115 In addition, 

very recently M. Marinaro reported that Li2O might react with the DMSO.116 Once the O2 

molecules which are dissolved in the electrolyte reach the Li surface, Li2O can be easily formed 

and the Li2O might further react with the DMSO molecules through an acid–base reaction. Thus, 

we could deduce that the solvent decomposition mainly occur in DMSO electrolytes, not the 

LiTFSI salt. (The decomposition mechanism is shown in Figure 4-10) 

From their study, it is obvious that the decomposition of the DMSO solvent cannot be avoided 

at the Ag/Ni electrode. In addition, the clear peak of Li 1s XPS spectra of Figure 4-4a can be 

assigned to lithium carbonate (Li2CO3), rather than Li2O2 or LiOH.115, 117 The Li 1s and C 1s XPS 

spectra in Figure 4-4a, b and S 2p XPS spectra in Figure 4-6 manifest that the surface layer 

formed on the Ag/Ni electrode mainly consists of the sulfur and carbonate-containing compounds 

produced by the solvent decomposition. From the XPS studies for the cycled Ag/Ni electrodes, 

we could confirm that the severe capacity fading of the Ag/Ni electrode with DMF and 

DMSO/1M LiTFSI closely linked to a thick surface layer generated not by the salt decomposition 
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but by the decomposition of DMF and DMSO solvents. This thick surface layer blocks the Ag 

signal of the Ag/Ni electrode and thereby the Ag peak intensity in Figure 4-4d was extremely 

lower than that of pristine Ag/Ni electrode. However, the peaks ascribed to the significant 

decomposition of NMP solvent and LiTFSI salt was not observed, as displayed in the XPS spectra 

of Li 1s, C 1s, F 1s in Figure 4-4 and S 2p in Figure 4-5 and N 1s in Figure 4-6. Moreover, the 

Ag peak intensity in Figure 4- 4d was comparable with that of pristine Ag/Ni electrode unlike 

the results of the other electrolytes. We could deduce from the SEM images in Figure 4-3 and 

XPS data in Figure 4-4 that the NMP/1M LiTFSI has relatively superior stability compared to 

other electrolytes in Li-O2 cells with the Ag/Ni electrode. Superior electrochemical stability of 

the NMP-based electrolyte can be explained by the chemical structure and stability toward the Li 

metal anode of NMP solvent. As shown in Table 4-2,32b  

 

 

Table 4-2. The structure, donor number, dielectric constant values of each electrolyte 

 

Only NMP solvent has a cyclic structure. It was reported that the linear structured solvents 

have relatively low dissociation ability for Li salts, because they have more open and more 

flexible structure resulting in the mutual cancellation of molecular dipoles.82 Meanwhile, the 

cyclic structured solvents have attributed to the intramolecular strain of the structures so that the 

conformation of molecular dipoles can be aligned better. Therefore, it is likely that NMP, which 

has partially positive charged part, N+, can interact with the solvated TFSI- anions, and mitigates 

the anion decomposition at the Ag/Ni electrode. Additionally, the 1H-NMR spectra (Figure 4-7) 

revealed that the ether-based electrolytes (DME, DEGDME, and TEGDME) and NMP-based 

electrolyte have better stability toward the Li metal anode, compared to DMF- and DMSO-based 

electrolytes. However, as mentioned above, the decomposition of LiTFSI salt cannot be avoided 

in ether-based electrolytes in Li-O2 cells with the Ag/Ni electrode. From these results, it is 

believed that the NMP/1M LiTFSI electrolyte is suitable for the Ag/Ni electrode in Li-O2 battery. 
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Figure 4-7. 1H-NMR spectra of Li metal in six electrolytes. (a) DME, (b)DEGDME, (c) 

TEGDME, (d) DMF, (e) DMSO, and (f) NMP respectively. 

 

Consequently, to verify further performance of Ag/Ni electrode with NMP, we conducted more 

cycle tests shown in Figure 4-8. Figure 4-8a exhibits the result of discharged/charged from 3.8 

V to 2.3 V and Figure 4-8b displays the cycle performance with limited capacity of 300 mAhg-

1
Ag. The reason we choose the capacity of 300 mAhg-1

Ag is that the specific capacity of 300 mAhg-
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1
Ag is a near maximum capacity on which the discharge and charge plateau were nearly unchanged 

at 1st cycle in Figure 4-8a. Since a meaning of changing the plateau is that some reactions occur 

during charge and discharge processes, more improved cycling performance is expected when we 

conducted the cycling test under the limited capacity condition. As shown in Figure 4-8a, the 

capacity fade gradually occurs and in the case of capacity cut-off condition (Figure 4-8b) slight 

voltage degradation is observed after 35 cycles. 
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Figure 4-8. Capacity and cycle result of Ag/Ni electrode at 100 mAg-1
Ag. (a) Voltage profiles of 

Ag/Ni electrode from 2.3 V to 3.8 V, (b) capacity cut off voltage profiles of Ag/Ni electrode with 

300 mAhg-1
Ag, and (c) plot of discharge capacity vs. cycle number of (b). 
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As confirmed by the SEM analyses shown in Figure 4-9, the surfaces of each cell were covered 

with the decomposition products. This indicates that the Ag/Ni electrode with NMP/1M LiTFSI 

electrolyte has reasonably good cycling stability at the initial cycles, but eventually the 

decomposition of NMP solvent takes place upon prolonged cycling. It has reported that the O2
•− 

can attack the ring CH2 of NMP structure forming carbon radicals and these radicals result in 

formation of H2O, CO2 and NOx.118 Generated H2O, CO2 and NOx further react with Li2O2 to form 

Li2CO3 and LiNOx on the surface of the air electrodes.32a 
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Figure 4-9. SEM images of Ag/Ni electrode (a) pristine, (b) after 6th cycle with full dis/charge 

condition from 2.3 V to 3.8 V and (c) after 36th cycle with 300 mAhg-1
Ag capacity cut off condition. 
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Figure 4-10. The scheme of reactions for the decomposition of DMSO solvent. 
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4.1.4 Conclusion. 

We have designed the Ag nanoparticles effectively fabricated on Ni nanowire substrate 

(Ag/Ni electrode) by the electrodeposition method which is the one of the simplest metal 

deposition methods and simultaneously applicable method to a large scale production. By using 

it, we conducted full cell test with the six different electrolytes (DME, DEGDME, TEGDME, 

DMF, DMSO, and NMP) for Li-O2 battery. It was shown that the poor performances were mainly 

caused by the decomposition of salt anions in ether-based solvent (DME, DEGDME, and 

TEGDME), and by the decomposition of solvents in DMF and DMSO during the discharge and 

charge processes using the Ag/Ni electrode. Only NMP shows the best performance among above 

electrolytes, which is 35 stable cycles with 300 mAhg-1
Ag capacity cut off condition. We confirm 

that its cyclic structure and its stability toward Li metal anode are the reasons why NMP is more 

stable among the electrolytes. This study indicates that Ag with a proper electrolyte could be a 

potential candidate for carbon- and binder- free cathode for Li-O2 battery. Therefore, further 

studies are needed to search for new and more stable solvents and lithium salts to make long-term 

cycling of rechargeable Li−O2 batteries. 
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