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Machine learning assembly landscapes from
particle tracking data†

Andrew W. Long,a Jie Zhang,a Steve Granickb and Andrew L. Ferguson*a

Bottom-up self-assembly offers a powerful route for the fabrication of novel structural and functional

materials. Rational engineering of self-assembling systems requires understanding of the accessible

aggregation states and the structural assembly pathways. In this work, we apply nonlinear machine

learning to experimental particle tracking data to infer low-dimensional assembly landscapes mapping

the morphology, stability, and assembly pathways of accessible aggregates as a function of experimental

conditions. To the best of our knowledge, this represents the first time that collective order parameters

and assembly landscapes have been inferred directly from experimental data. We apply this technique to

the nonequilibrium self-assembly of metallodielectric Janus colloids in an oscillating electric field, and

quantify the impact of field strength, oscillation frequency, and salt concentration on the dominant

assembly pathways and terminal aggregates. This combined computational and experimental framework

furnishes new understanding of self-assembling systems, and quantitatively informs rational engineering

of experimental conditions to drive assembly along desired aggregation pathways.

1 Introduction

Self-assembly – the spontaneous organization of building
blocks into structured aggregates – is an important fabrication
route for both biological1,2 and engineered materials,3,4 including
viral capsids,5,6 photonic crystals,7,8 and sensing nanostructures.9

Assembly proceeds in the high dimensional space of the location
and orientation of all constituent building blocks.10 Low-
dimensional assembly landscapes or ‘‘roadmaps’’ providing a
comprehensible, high-level description of the assembly process
are of great value in revealing underlying mechanisms and
developing understanding of assembly by mapping out the acces-
sible aggregates and assembly pathways.1,11–17 Furthermore, by
quantifying how these roadmaps are influenced by experimentally
controllable parameters and conditions, these descriptions can
inform pathway engineering principles to steer assembly towards
desired structural and/or functional aggregates.14,17–19

The inherently many-body nature of self-assembly means
that such processes are generically expected to admit low-
dimensional descriptions in a small number of collective order

parameters corresponding to the dominant emergent assembly
dynamics.17–19 Computer simulations of self-assembly furnish
the coordinates and orientations of all building blocks as a
function of time, and dimensionality reduction techniques can
discover these collective coordinates lying latent within the
high dimensional trajectory.17,20 A variety of approaches have
been applied to infer collective order parameters for single-
molecule dynamics, including principal components analysis
(PCA),21–23 sketch maps,24,25 locally linear embedding (LLE),26

Laplacian eigenmaps,27 Isomap,28–31 and diffusion maps.32–37

Recently, two of us (A.W.L. and A.L.F.) developed a means to
apply diffusion maps to infer collective order parameters from
molecular simulations of many-body systems, and used this tech-
nique to compute the assembly landscape for self-assembling
patchy colloids.17 In this work, we apply this approach to infer
self-assembly landscapes from experimental particle tracking
data, and quantify how these landscapes change as a function
of experimental conditions. To the best of our knowledge, this
represents the first time that collective order parameters and
assembly landscapes have been inferred directly from experi-
mental data.

The particular system we consider is the nonequilibrium
self-assembly of Janus colloids, micron sized spheres whose
hemispheres possess different surface chemistries.38–40 These
highly tunable building blocks can be induced to self-assemble
into diverse aggregate structures on experimentally measurable
time scales, presenting an ideal system to study the effect of
particle anisotropy and experimental conditions on the assembly
of clusters, chains, helices, sheets, discs, and tubes.39,41–45
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In particular, we are interested in the nonequilibrium self-
assembly of metallodielectric Janus particles under an applied
AC electric field.46,47 The oscillating field induces a differential
dipole moment between metallic and dielectric hemispheres
leading to anisotropic interactions between colloids and
induced motions through reverse induced-charge electrophoresis
(rICEP) at high field frequencies. This process of rICEP motion
is incompletely understood,48 hindering the development of
physics-based models and design principles. An attractive feature
of our data-driven machine learning approach to discover collec-
tive order parameters and assembly roadmaps is that it requires
no knowledge of the underlying physics of the system. Accord-
ingly, we can infer empirical assembly roadmaps directly from
experimental data without a complete understanding of the
underlying physics, and the pathways and collective dynamics
discovered by our analysis can inform improved understanding
of the system.

The structure of this paper is as follows. In Section 2,
we describe the experimental details of the Janus particle
synthesis and self-assembly, and the computational details of
the machine learning algorithm. In Section 3, we describe the
application of our approach to nonequilibrium self-assembly of
two metallodielectric Janus particle systems: (i) the templated
assembly of Janus pinwheels and other branched structures
directed by passive linker particles, and (ii) the spontaneous
self-assembly of long Janus particle chains and loops. In each
case we demonstrate that our approach reveals the underlying
self-assembly pathways, and furnishes quantitative design rules
linking the attainable terminal aggregates to the AC frequency,
electric field strength, and salt concentration. In Section 4 we
present our conclusions and outlook for future work.

2 Materials & methods
2.1 Janus particle tracking experiments

Janus particles are synthesized by depositing 20 nm of titanium
and then 20 nm of SiO2 vertically on a submonolayer of 3 mm
silica particles (Tokuyama) using an electron-beam evaporator.
After being washed with isopropyl alcohol and deionized water,
Janus particles are sonicated down from the substrate to
deionized water. For the templated assembly experiments with
binary mixtures of Janus and ‘‘linker’’ particles, Janus particles
and untreated silica particles are mixed in a 10 : 1 ratio. NaCl
stock solution is added to the particle suspension to prepare
0.01 mM and 0.1 mM NaCl solutions, respectively. The particle
suspensions are sandwiched between two ITO coated coverslips
(SPI Supplies) separated by a 120 mm-thick spacer (GraceBio
SecureSeal) with a 9 mm hole in the center to confine the fluid.
An AC electric field is applied to the sample cell using a
function generator (Agilent 33522A). The sample cell is imaged
with a 40� air objective on an inverted microscope (Axiovert 200).
Microscopic images and videos are taken with a CMOS camera
(Edmund Optics 5012M GigE). A schematic of our experimental
setup is given in Fig. 1a. Representative movies of the templated

and homogenous self-assembly experiments are presented in
Movies S1 and S2 (ESI†).

Particle positions are determined using a circular Hough
transform,49 providing the 2D coordinates of all particle centers
in a given image or video frame. We use these positions to
identify the distinct particle clusters in a frame. First, we define
particles as being ‘‘bonded’’ to one another if their center of
mass separation is less than rcutoff = 1.15D, where D = 3 mm is
the particle diameter, to form a complete binary interaction
graph at a particular instance in time, K, where K( p,q) = 1 if
particles p and q are bonded and K( p,q) = 0 if not bonded.
Using Tarjan’s algorithm,50 we identify distinct subgraphs, G,
defining connected clusters of particles within the complete
graph. We aggregate all of these clusters from the video frames
across all of our experimental trajectories to form a library of
clusters {Gi}. We have verified that our results are robust to
choices of bonding cutoffs in the range [1.10D, 1.25D].

2.2 Janus particle self-assembly

Under the influence of the perpendicular AC electric field, the
Janus particles align their interface parallel to the field and an
induced dipole moment develops in each hemisphere as illu-
strated in Fig. 1b. The net interaction between two Janus particles,
A and B, at a separation, r, and relative orientation of the particle
directors normal to the Janus interface, y, is the sum of the four
distinct dipole–dipole interactions between each of the two
dipoles, i, in particle A and the two dipoles, j, in particle B,

UABðr; yÞ ¼
X

i; j

uij rijðr; yÞ
� �

;

uij rij
� �

¼
Re aiaj
� �

E2 1� 3 cos 3b
� �

4perij3
;

(1)

where i = {metalA,dielectricA}, j = {metalB,dielectricB}, rij(r,y) is the
orientation and separation dependent dipole–dipole separation,

Fig. 1 Janus particle self-assembly under an applied AC electric field. (a)
Schematic of the Janus particle tracking experimental setup comprising
both Janus particles and passive linker particles. (b) Under an applied
electric field, the Janus interface aligns parallel with the field direction and
a dipole moment is induced in the metallic (left) and dielectric (right)
hemispheres of the Janus particle. The magnitude of the dipole moment is
greater in the metallic hemisphere due to an increased polarizability of
the thin metallic layer, and aligns with the direction of the applied field. The
dipole moment of the dielectric hemisphere aligns antiparallel with the
applied field.
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ak is the complex polarizability of the Janus hemisphere
composed of material k, E is the electric field strength, b is
the angle of the interface (b = p/2 for a Janus particle), and e is
the permittivity of the solution. The differing polarizability of the
metallic and dielectric hemispheres gives rise to an orientation-
dependent attractive or repulsive interaction between particles.
To calculate the induced dipole of a dielectric particle coated with
metal on one hemisphere, we assume the induced dipole moment
of each hemisphere is half of a spherical particle of the same
diameter and material. For a spherical colloidal particle, the
complex polarizability is computed as a = 4peKR3, where K is the
complex dipole coefficient, R = 1.5 mm is the particle radius, and
e/e0 = 80, where e0 is the vacuum permittivity. K is sensitive to the
electric field frequency, particle surface charge and ionic strength
in the solution. We compute the complex dipole coefficient of a
metallic sphere using the analytical solution in ref. 51, consider-
ing the effect of the protective SiO2 coating in reducing the electric
field outside the metal coating. For a negatively charged silica
sphere, we employ the approximate analytical solution in ref. 52.

Above a particular transition frequency of the applied elec-
tric field, this difference in polarization across the Janus inter-
face also leads to particle motion by reverse induced charge
electrophoresis (rICEP) perpendicular to the field in the direc-
tion of the metallic hemisphere.48 The underlying physics of
this phenomena is not well understood, limiting our capacity
to predict the effect of frequency, field strength, and salt
concentration on the particle velocities. Instead, we empirically
quantify the ballistic velocities from a quadratic fit of particle
mean squared displacements at short times using the particle
tracking algorithm developed by Crocker and Grier.53

2.3 Machine learning of assembly roadmaps

The particle tracking data recorded during the self-assembly
experiments described in Section 2.1 contains all of the infor-
mation on the self-assembly mechanisms and terminal aggre-
gates attainable under different experimental conditions, but it
is exceedingly challenging to resolve these mechanisms and
terminal states by visual inspection alone.42 Visualization can
be supported by tracking cluster size distributions,18,19 or
tracking the evolution of the evolving clusters using canonical
shape descriptors,54 but such intuitive, coarse-grained descriptors
are typically not coincident with the emergent collective order
parameters that govern assembly.

The difficulty in parsing the particle tracking data is largely
a question of dimensionality. The orientation and location of
a single Janus particle in the plane oriented parallel to the
external electric field is given by three numbers specifying its
2D location and its rotational orientation. The assembly trajectory
for a collection of N Janus particles residing in the plane, resides
in a 3N-dimensional phase space. For even a modest number of
particles, it is extremely challenging to identify within this high-
dimensional space the underlying assembly pathways and
accessible aggregates that lie buried within this data. Despite
existing in this high-dimensional phase space, self-assembly is
an inherently multi-body process that depends on cooperative
interparticle interactions. This coupling of building block

degrees of freedom generally results in a separation of time
scales, such that the long time evolution of the system is
governed by a relatively small number of collective modes.34,55

Extracting these slow collective modes permits construction of
a low-dimensional subspace capturing the important dynamical
features of self-assembly, and the existence of such low-dimensional
subspaces – frequently of dimensionality as low as 2–3 – has been
borne out in molecular simulations of polymer dynamics, protein
folding, and colloidal self-assembly.17,29,35,56,57

Nonlinear learning offers a means to systematically extract
this low-dimensional subspace – the so-called intrinsic mani-
fold35 – from the high-dimensional data, and in doing so reveal
the important collective modes, assembly pathways, and accessible
aggregates. In contrast to linear techniques (e.g., principal
components analysis21), nonlinear approaches are more power-
ful and flexible in determining the potentially nonlinear com-
binations of the particle degrees of freedom comprising the
collective modes.20,29,56 We recently reported a new approach
rendering diffusion maps applicable to many-body systems,
and demonstrated its capacity to infer assembly mechanisms
of patchy colloids from molecular dynamics simulation trajec-
tories.17 In this work, we apply this technique to particle
tracking trajectories to infer assembly pathways and the acces-
sible terminal aggregates directly from experimental data. Full
details of our methodology are given in ref. 17, but we briefly
sketch the approach below. We note that our methodology
requires neither that the number nor identity of particles remain
constant in each frame of the trajectory, and the interaction
potentials between particles need not be known. Rather the
approach is a data-driven one that infers a low-dimensional
description of the assembly process from empirical observations
of the diversity of structural aggregates within the system.

2.3.1 Cluster distance metric. We start by compiling a
library of all clusters observed in our particle tracking trajec-
tories using the procedure described in Section 2.1. Each
distinct cluster observed in the particle tracking movies is
represented by its underlying bonding network, yielding a
binary adjacency matrix G where G( p,q) = 1 denotes the
presence, and G( p,q) = 0 the absence of a bond between
particles p and q. We then compute distances between all pairs
of graphs in our library, (Gi,Gj), using graph matching to
identify the pseudo-optimal permutation, H, of particle labels
between these two clusters such that the adjacency matrices are
maximally similar. Mathematically this corresponds to finding
the H that minimizes the Frobenius norm between Gi

0 = HGiH
T

and Gj, for clusters with different numbers of particles, the
smaller graph is augmented by a number of rows and columns
of zero to bring it up to the same size as the larger when
computing alignment. This optimization is strongly poly-
nomial, requiring an approximate solution algorithm for even
moderately sized networks.58,59 We adopt a greedy search
procedure based on an adaptation of the IsoRank algorithm60

that preserves local bond connectivity that we detail in ref. 17.
Given the optimal particle label permutation between two

graphs, we define their dissimilarity based on the separation
between analogous pairs of bonded particles. For each cluster
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we construct the matrix v, where v( p,q) is the real space distance
between particles p and q if v( p,q) o rcutoff, and is zero
otherwise. We define the structural dissimilarity of clusters
i and j as,

dij ¼
X

p

X

q4 p

wi
0 ðp; qÞ � wjðp; qÞ

���
���; (2)

where vj contains the distances between the bonded particles in
cluster j, and vi

0 the distances between the corresponding
particles in cluster i under the permutation defined by H.
Ghost particles are added as necessary to bring the clusters to
equal size, which corresponds to the addition of a number of
imaginary non-bonded particles to the smaller cluster.17 In the
case of the templated assembly of Janus pinwheels directed by
passive linker particles, v corresponds to distances between
particle centers. In the homogeneous self-assembly of Janus
particles into chains and loops it corresponds to the distance
between metallic face centers – the midpoint between the particle
center and metallic surface normal to the Janus interface – which
provides information on relative particle orientations that is
critical in distinguishing different loop and chain architectures.

The distance metric dij provides a good measure of the
structural dissimilarity of clusters that encapsulates both the
breaking and forming of bonds between different cluster sizes
and architectures, and deviations in bond lengths within a
single architecture.17 We observe that the definition of struc-
tural distances based on graph matching of the underlying
networks surmounts the difficulties associated with the absence
of a spatially invariant real space basis in which to compare
clusters of different numbers of indistinguishable particles
translating and rotating through space.

2.3.2 Diffusion map dimensionality reduction. Having
computed structural distances between all pairs of clusters,
we apply diffusion maps20,32–34,61 to infer the collective order
parameters driving self-assembly in which to construct a low-
dimensional assembly landscape or ‘‘roadmap’’ of assembly. In
a geometrical sense, the diffusion map seeks to identify a low-
dimensional subspace – the intrinsic manifold – within the
3N-dimensional space of particle coordinates to which the
important assembly dynamics are effectively restrained.17 In a
temporal sense, it seeks a small number of slowly collective
modes defining a slow subspace to which the remaining
degrees of freedom are effectively slaved.17 The diffusion map
was first developed by Coifman and coworkers,32–34,61 and we
have detailed its application to molecular and colloidal systems
in ref. 17, 20 and 35. In brief, we model transitions between
different cluster configurations in the configurational phase
space as a Markov process with hopping probabilities based on
pairwise structural proximity. We then identify the important
collective order parameters as the slowest relaxation modes of
the Markov chain. We first form the matrix A by convoluting the
pairwise distances with a Gaussian kernel, Aij = exp(�dij

2/2e),
where e is a soft-thresholding bandwidth that limits transitions
to between structurally similar cluster configurations residing
in the same neighborhood of the high dimensional space. The
Gaussian kernel is the infinitesimal generator of a diffusion

process, and by forming this convolution we model a discrete
diffusion process over the clusters residing in the high-
dimensional space.32 An appropriate value of e is specified
using the automated procedure detailed in ref. 62.

We then form the diagonal matrix D as, Dii ¼
P
k

Aik, such

that the matrix product M = D�1A is a right-stochastic Markov
matrix describing a random walk over the clusters in config-
urational space. M can be diagonalized into a set of right
eigenvectors, {~Ci}, and associated eigenvalues {li}, where, by
the Markov property, ~C1 =

-

1 and l1 = 1. These eigenvectors are
the discrete analog of the eigenfunctions of the Fokker–Planck
equation describing the collective harmonic modes describing
the time evolution of the probability density over the data.32,33

Large eigenvalues correspond to slow relaxation modes of the
Markov process and small eigenvalues correspond to fast modes.
A gap in the eigenvalue spectrum is indicative of a separation of
time scales, wherein the slow collective modes govern the long
time evolution of the system to which the remaining modes
effectively couple as noise.34,35,55 Systematic techniques exist to
infer the existence and location of a spectral gap.35,63

For an eigenvalue spectrum possessing a gap after l(k+1),
we can locate each experimentally observed cluster on the
k-dimensional intrinsic manifold spanned by {~Ci}

k+1
i=2 (recalling

that ~C1 =
-

1 is the trivial all-ones vector associated with the
steady-state distribution) by forming the k-dimensional diffu-
sion map embedding of the ith cluster into the ith component
of the top k non-trivial eigenvectors,

clusteri - (~C2(i ),~C3(i ),. . .,~Ck+1(i )) (3)

A limitation of diffusion maps is that the methodology does not
furnish an explicit mapping between the high dimensional
coordinate space and the slow collective modes spanning the
low dimensional embedding, making it a challenge to assign
physical interpretability to these modes. Methods exist to sieve
pools of candidate physical variables to find good combina-
tions approximating the leading eigenvectors,64,65 but the
resultant functions can themselves be so complicated as to
obscure a transparent physical interpretation. Indeed, the
existence of a simple physical characterization is not guaran-
teed for complex many-body problems involving the interaction
of many degrees of freedom.17,20 In this work we assist in the
physical interpretation of the modes by coloring the diffusion
map embeddings with simple physical ‘‘bridge’’ variables that
show good correlation with the eigenvectors spanning the
embedding, including cluster size and average cluster network
path length.

Under the mild assumptions that (i) the dynamics of the
system may be modeled as a diffusion process, and (ii) that our
measure of pairwise similarity between clusters is an appropriate
measure of the short-time diffusive motions, then Euclidean
distances in diffusion map space correspond to diffusion dis-
tances in the original high-dimensional space measuring the
time required for one cluster to dynamically evolve into
another.17,20,32,35,61 That we observe the emergence of a small
number of slow collective modes above a spectral gap in the
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eigenvalue spectrum suggests that the system dynamics can be
effectively modeled in the Mori–Zwanzig formalism as a set of
coupled stochastic differential equations in the slow modes to
which the fast modes couple as noise,55,66 providing post hoc
support that the system may be modeled as a diffusion process.
Secondly, we have shown in ref. 17 that our structural distance
metric provides a good measure of structural remodeling on
short time scales, and is therefore expected to capture short
time diffusive motions. The dynamic interpretability conveyed
to Euclidean distances in the diffusion map is a powerful
property that allows us to interpret structural transitions over
the slowest dynamical modes given by the diffusion map,
resolving both local and global deviations in the underlying
configurational space.

2.3.3 Effective free energy landscapes. By collecting histo-
grams over the embeddings we construct effective free energy
landscapes describing the relative probabilities of the various
cluster architectures in the experimental trajectories. We con-
struct these landscapes using the standard relationship from
(equilibrium) statistical mechanics, bF̂(~x ) = �ln P̂(~x ) + C, where
b = 1/kBT is the inverse temperature, kB is Boltzmann’s con-
stant, T is the absolute temperature, ~x is a k-dimensional vector
specifying a point on the intrinsic manifold spanned by the
vectors (~C2,~C3,. . .,~Ck+1), P̂(~x ) is a histogram approximation to
the probability density of single particles on the manifold at ~x,
weighting each point in the manifold by the number of
particles belonging to the corresponding cluster, F̂(~x ) is an
effective per particle free energy at ~x, and C is an arbitrary
constant that we specify such that the free energy of an isolated
monomer defines the zero of free energy. Since the experi-
mental self-assembly trajectories were conducted in the
presence of an external driving force (the oscillating AC electric
field), they are inherently out of equilibrium, and therefore F̂
cannot be interpreted as a true thermodynamic free energy, but
rather an effective free energy that is best interpreted as a
convenient representation of the likelihood to find a particle in
a particular cluster architecture. By computing these effective
free energy landscapes upper different conditions – salt concen-
tration, electric field strength, AC frequency – we use these
effective free energy landscapes, along with the dynamic inter-
pretability of the diffusion map embeddings, to link experimental
control parameters to changes in the relative propensities of
different cluster architectures and mechanistic pathways over
the assembly landscape.

3 Results & discussion
3.1 Templated Janus ‘‘pinwheel’’ assembly

Mixtures of metallodielectric Janus particles with passive
dielectric particles in a 10 : 1 ratio were subjected to AC fre-
quencies of 70 kHz–11 MHz and applied AC field strengths of
250–833 V cm�1 at a salt concentration of [NaCl] = 0.1 mM
(cf. Section 2.1). A total of 28 experiments were conducted over
this range at the particular field strengths and frequencies
listed in Table S1 (ESI†). At each set of conditions, the system

was allowed to attain steady state with respect to the applied
AC field by waiting for the particle velocity distribution to
stabilize, typically occurring approximately 8 seconds after
initial application of the field. The transient portion of each
particle tracking trajectory was rejected from our analysis such
that the aggregates and assembly pathways extracted by our
analysis correspond to those produced by the dynamical assembly
and disassembly of clusters at steady state.

Within the ensemble of particle trajectories from all 28
experiments, we identified a total of 3 403 918 clusters (includ-
ing free monomers) belonging to 21 708 distinct cluster archi-
tectures. Since the size of the matrices used to perform the
diffusion mapping scale quadratically with cluster number, we
make the analysis computationally tractable by retaining a
random subset of cluster from each unique cluster architecture
to generate a reduced ensemble of 60 926 clusters. We apply
diffusion maps using a kernel bandwidth of e = exp(10) deter-
mined using the approach in ref. 62. We note that particle
identity – Janus or linker – is not easily identifiable in these
experiments, and as such our diffusion map analysis operates
purely on the geometric cluster architectures rather than the
type of particles constituting these clusters. We employ the
L-method63 to identify a gap in the eigenvalue spectrum after l3

(Fig. S1, ESI†), implying an effective dimensionality of two and
motivating the construction of two-dimensional diffusion map
embeddings in the top two non-trivial eigenvectors {~C2,~C3}. To
preserve the experimentally observed cluster distribution,
we project into the diffusion map embedding the remaining
(3 403 918 � 60 926) = 3 342 992 clusters using the Nyström
extension.67–69 By analyzing all systems simultaneously, we
construct a single composite diffusion map defining a common
basis within which to compare the distribution of clusters at
different experimental conditions by restricting the ensemble to
the clusters extracted from particular experimental trajectories.

We present the two-dimensional composite diffusion map
in Fig. 2. Each point corresponds to a particular cluster
observed in one of the experimental particle tracking trajec-
tories. To assist in visual discrimination of different cluster
architectures, we color each point according to the average path
length between pairs of particles in the cluster bonding network
as a coarse-grained measure of cluster size and connectivity. We
also visualize representative clusters to illustrate the cluster
architectures populating different regions of the intrinsic mani-
fold constituting the assembly landscape. The landscape reveals
four distinct quadrants defining different aggregation states.
The lower left quadrant is populated primarily by free monomers
residing at (C2 E �0.135, C3 E �0.185) and possessing an
average path length of zero. Tracing a pathway up to the upper
left quadrant corresponds to the formation of relatively small,
dense cluster architectures residing in the vicinity of (C2 E�0.135,
C3 E �0.165) and possessing a small average path length (high
network connectivity). The assembly pathway linking the mono-
mers to the lower right quadrant corresponds to the formation
of spinning ‘‘pinwheels’’ in the vicinity of (C2 E �0.120, C3 E
�0.180) and possessing long average path lengths (low network
connectivity) reflecting the presence of three chains bound to a
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central linker particle. Finally, the assembly pathway leading to
the upper right quadrant corresponds to the assembly of
‘‘archipelago’’ type structures in the region of (C2 E �0.125,
C3 E �0.160), corresponding to clusters with locally dense
packings connected by spanning chains.

By restricting the clusters projected into the composite
diffusion map embedding to those observed under particular
ranges of experimental conditions, we can determine the
impact of experimentally controllable variables on the self-
assembly behavior. Due to the wide range of AC frequencies
investigated in this work, we bin the frequency distribution into
two classes: low (70–300 kHz) and high (0.6–5 MHz). We reject
the very high frequency regime (7–11 MHz) from this analysis
due to poor characterization of the field strength arising from
the capacitive behavior of the experimental setup. Similarly, we
bin electric field strengths into two classes, low (250–500 V cm�1)
and high (583–833 V cm�1). By binning our data, we accumulate
more data within each class and improve the statistical robust-
ness of our analysis, but elect to restrict our investigation to
the high electric field strength regime due to relatively poor
sampling under low electric field conditions (constituting just
9% of all observed particles combined over both frequency
regimes). In Fig. 3a and b, we present the intrinsic manifold
corresponding to each of the two frequency bins at high electric
field strengths of 583–833 V cm�1. In Fig. 3c and d, we present
the analogous effective free energy landscapes, F̂(C2,C3), illus-
trating the relative probability of observing a single particle in
a particular cluster configuration. Since each frequency bin
contains data from multiple experimental trajectories, we aver-
age the probability distributions, P̂(C2,C3), extracted from each
individual run, then compute the effective free energy as
described in Section 2.3.3. Bootstrap estimates reveal the
uncertainty in any bin of the effective free energy landscape

to be less than 0.3kBT, with the largest errors occurring in
regions of high effective free energy (Fig. S2, ESI†). At low
frequencies (Fig. 3c), the dominant low effective free energy
pathway connects free monomers to local effective free energy
minima in the lower right quadrant at (C2 E �0.120, C3 E
�0.180) containing pinwheels of characteristic size N B 16. The
dense cluster architectures in the upper left quadrant and
archipelago structures in the upper right quadrant are relatively
disfavored, residing at higher effective free energies. We quantify
the relative prevalence of the various cluster architectures by
reporting on the figure the mass fraction of clusters projected
into each quadrant of the landscape. At high frequencies
(Fig. 3d), the size of the intrinsic manifold shrinks, reflecting
the disappearance of the larger aggregates of size N \ 12
residing around the periphery of the landscape under these
conditions. The topography of the effective free energy surface
becomes flatter, attenuating the depth of the local minima
within the pinwheel architectures. Similarly by considering the
mass fraction of particles existing in the different assembly
regimes as we shift from low to high AC frequencies, we see an
increase in fraction of particle mass for small clusters (91 to
95%), a substantial reduction in mass fraction of pinwheels
(7 to 3%), and small increases in the mass fraction of archipelago
(0.7 to 0.8%) and dense cluster architectures (0.8 to 1.1%).

The nonequilibrium self-assembly is governed by a balance
of hydrodynamics, dipole–dipole interactions, and rICEP
motion. The decrease in volume of the intrinsic manifold at
high frequencies discovered by the diffusion map is consistent
with the frequency dependence of the Janus hemisphere polar-
izabilities and particle velocity under induced rICEP motion.
We illustrate in Fig. 4a the frequency dependence of the real
portion of the product of the hemisphere polarizabilities
(cf. eqn (1)), and thus the relative magnitude of the different
dipolar interactions between particles at [NaCl] = 0.1 mM. In
the low frequency regime, f r 300 kHz, the metal–metal and
metal–dielectric dipolar interactions are attractive, giving rise
to more variety in energetically favorable configurations and
enabling a larger volume of the intrinsic manifold to be
explored. Upon increasing the frequency, metal–metal inter-
actions become repulsive, limiting the possible structures that
can be formed, favoring primarily head-to-tail configurations,
and shrinking the manifold. In Fig. 4b, we present the fre-
quency dependence of the ballistic velocity of a Janus particle
moving under rICEP. These data show the particle velocity to
increase steeply between the low and high frequency regimes.
The velocity peaks at 5500 kHz, then decreases steadily to
44 MHz, beyond which there is a precipitous drop-off due to
capacitive breakdown in our experimental system. We suggest
that the combination of an increase in metal–metal repulsions
and elevated particle velocity at high frequency serves to inhibit
the formation of large clusters, as metal–silica attachments are
disfavored and chain-like structures such as pinwheels shear
off weakly bonded particles (cf. Movie S1, ESI†).

In sum, by applying our machine learning algorithm to
experimental particle tracking data, we have extracted a two-
dimensional assembly landscape revealing the presence of

Fig. 2 Composite diffusion map embedding for the self-assembly of a
mixture of active Janus particles with passive linker particles in the top two
collective modes [C2,C3] furnished by the diffusion map. Each point
represents one of the 3 403 918 clusters observed in the 28 experiments
conducted over a range of AC frequencies and electric field strengths
(cf. Table S1, ESI†). To aid in visualization, points are colored by the average
path length between pairs of particles in the cluster bonding network, and
representative aggregates superposed onto the manifold.
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three distinct families of aggregates. We have also determined
how the landscape changes as a function of the frequency of the
applied AC electric field and quantified the relative prevalence
of the different cluster architectures and assembly pathways
in good agreement with the physical understanding of the
frequency response of the interparticle attractions and velocity.
The assembly landscape provides quantitative insight into the
relative prevalence of different cluster architectures, and pro-
vides a roadmap to tune experimental conditions to favor the
assembly of desired aggregates. Specifically, low AC frequencies
(70–300 kHz) preferentially favor the assembly of three-armed
pinwheels of B16 particles, whereas high frequencies (600 kHz–
5 MHz) inhibit the formation of large clusters of N \ 12 particles.

3.2 Tunable Janus chain formation

We studied the self-assembly of homogeneous ensembles
of metallodielectric Janus particles over AC frequencies of
70 kHz–11 MHz, electric field strengths of 167–833 V cm�1,
and NaCl concentrations of 0.01 mM and 0.1 mM. A total of
537 experiments were conducted over this full parameter space,
with specific conditions considered listed in Tables S2 and S3
(ESI†) for [NaCl] = 0.01 mM and [NaCl] = 0.1 mM, respectively.
The transient portion of each particle tracking trajectory was

rejected such that the assembly dynamics of each system was
studied at steady state. Analysis of all 537 experiments revealed
a total of 739 246 clusters (including free monomers) belonging
to 338 distinct architectures. A small number of clusters
comprising more than 25 particles were very rarely observed,
constituting just under 0.04% of the observed structures and
appearing as extreme outliers in our diffusion map embeddings.
It is known that the presence of rare observations disconnected
from the bulk of the data can compromise the resolution of the
diffusion map embedding,56 in this case causing us to lose
discriminatory power to resolve architectures and pathways at
small cluster sizes of N t 20. Accordingly we followed our
previously described ‘‘deislanding’’ approach to eliminate
these rarely observed cluster aggregates from our analysis.56

We applied diffusion maps to a subsampled ensemble of 34 151
clusters over the unique cluster architectures, employing a
kernel bandwidth of e = exp(5.5).62 A gap in the eigenvalue
spectrum after l3 (Fig. S3, ESI†), led us to construct two-
dimensional diffusion map embeddings in {~C2,~C3}.63 The
remaining (739 246 � 34 151) = 705 095 were projected into
the embedding using the Nyström extension.

We present in Fig. 5 the two-dimensional composite
diffusion map embedding with points colored by cluster size.

Fig. 3 Restriction of the composite diffusion map intrinsic manifold for the self-assembly of a mixture of active Janus particles with passive linker
particles in Fig. 2 to the cluster ensembles extracted at (a) low (70–300 kHz) and (b) high (600 kHz–5 MHz) AC frequencies, f, at electric field strengths,
E, of 583–833 V cm�1. Points are colored by the average path length between pairs of particles in the cluster bonding network, and representative
clusters superposed onto the manifolds. Effective free energy landscapes in the (c) low, and (d) high frequency regimes. The four percentages listed on
panels (c) and (d) denote the mass fraction of particles residing within that quadrant.
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Our analysis reveals a quasi one-dimensional assembly land-
scape. Advancing left to right along the principal axis of
the manifold corresponds to the aggregation of progressively
longer one-dimensional chains of Janus particles. Excursions
perpendicular to the manifold correspond to the synthesis of
Janus rings formed by a chain wrapping back on itself to ‘‘bite’’
its own tail, ejecting the excess particles that are pinched off in
the formation of the ring. (We provide an illustration of this
interesting process over the manifold in Fig. S4 (ESI†), showing
the fragmentation of a 12-mer chain in this manner to form a
6-mer ring and a 6-mer chain.) Progressing further still from
the manifold leads to a sparsely populated outer corona com-
prising of branched clusters typically formed by the collision of
linear chains (cf. Movie S2, ESI†).

To quantify the impact of electric field strength, AC fre-
quency, and salt concentration upon the self-assembly process,
we again binned the experimental data into different regimes: (i)
low (50–300 kHz), intermediate (400–800 kHz), high (900 kHz–
3 MHz) AC frequency, f, (ii) low (167–333 V cm�1), intermediate

(417–583 V cm�1), and high (667–833 V cm�1) electric field
strength, E, and (iii) low (0.01 mM) and high (0.1 mM) NaCl
concentration, [NaCl]. We again neglect trends in the very high
frequency regime due to capacitive effects in our experimental
setup precluding accurate control of the field strength. We
present in Fig. 6 the effective free energy landscapes in the nine
different E–f regimes at low salt concentration. At high salt
concentrations, we observe dramatically suppressed assembly
behavior due to increased electrostatic screening from counter-
ions in the solution, only observing significant aggregation in
the high frequency regime where the induced dipoles are largest
(cf. Fig. 4a). Accordingly, we relegate the [NaCl] = 0.1 mM data to
Fig. S5 (ESI†), and all subsequent discussions pertain to [NaCl] =
0.01 mM unless otherwise noted.

From Fig. 6, we can readily infer how varying the frequency
and field strength affects assembly. At low frequencies, self-
assembly is limited to predominantly monomers and transient
small aggregate formations. Higher frequencies stabilize the
formation of Janus chains of varying sizes, with low field
strengths producing chains of B8 particles while intermediate
and high field strengths generate chains of size B10–15 particles.
At high frequency, a larger range of structures are stabilized in the
intermediate and high field regimes, corresponding to chains
of B20–25 particles, as well as ring and branched structures of
various sizes.

By partitioning the quasi-one dimensional assembly process
into the different regions indicated in Fig. 7, we quantify the
mass fraction of different chain (regions I, III, IV) and non-
chain (regions II, IV, VI) aggregates to guide the design of
experimental conditions to favor the assembly of desired aggre-
gates. For example, if we are only concerned with maximizing
the yield of intermediate length chains (region III), we should
assemble the particles at high f – intermediate E to maximize

Fig. 4 Dependence of particle polarization and rICEP velocity upon AC
frequency, f, at [NaCl] = 0.1 mM. (a) Dimensionless frequency dependent
real portion of the product of polarizabilities of metal–metal (red), metal–
silica (green), and silica–silica (blue) interactions with R = 1.5 mm and e/e0 =
80, where e0 is the vacuum permittivity (cf. eqn (1)). (b) Ballistic velocity
profile for Janus particles under dilute particle concentrations in a 0.1 mM
NaCl solution as a function of AC frequency, f, at different electric field
strengths, E. Consistent with the binning of the field strengths in the main
text, circles correspond to low (167–333 V cm�1), squares to intermediate
(417–583 V cm�1), and triangles to high (667–833 V cm�1) field strengths.
The vertical lines delineate the low (70–300 kHz) and high (400 kHz–
5 MHz) frequency regimes.

Fig. 5 Composite diffusion map embedding for the self-assembly of
active Janus particles in the top two collective modes [C2,C3] furnished
by the diffusion map. Each point represents one of the 739 246 clusters
observed in the 537 experiments conducted over a range of AC frequen-
cies, electric field strengths, and NaCl concentrations (cf. Tables S2 and S3,
ESI†). To aid in visualization, points are colored by the number of particles
in the cluster, and representative aggregates superposed onto the
manifold.
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the mass of the system residing in this region at 36.6%, with
6.0% residing in the non-chain regions II/IV/VI. If instead we
wished to form intermediate length chains, but also limit
formation of non-chain structures, we could shift to intermediate
f – intermediate E (17.5% in region III, 1.9% in II/IV/VI), high
f – low E (9.1%, 0.5%), or intermediate f – low E (3.7%, 0.3%)
depending on our tolerance for non-chain aggregates.

By studying the changes to the assembly landscape as a
function of the experimental conditions, we can relate these
changes to the underlying particle behaviors. We first consider
the dependence of assembly behavior upon AC frequency. From
Fig. 6, we observe that larger clusters form at higher frequencies.
This behavior can be understood from the dependencies upon
AC frequency of the polarizability and velocity of Janus particles
at [NaCl] = 0.01 mM presented in Fig. 8. The real portions of the
product of the hemisphere polarizabilities are a weakly increas-
ing function of frequency below 300 kHz, remaining effectively
constant over the intermediate and high frequency range

(cf. eqn (1)). Only the metal–dielectric interactions are favorable,
consistent with the observation of primarily chain-like aggre-
gates. The particle velocity, however, is highest in the low
frequency regime, dropping sharply within the intermediate
and high frequency regimes Fig. 8b. Particles in the low
frequency regime therefore experience weaker interparticle
attractions and higher kinetic energies, restricting self-assembly
to predominantly monomers and dimers. We observe the assembly
of heavier aggregates at intermediate and high frequencies due to
an increase in attractive potential between particles and a decrease
in particle velocity.

We now consider the dependence of assembly behavior
upon electric field strength. From Fig. 6 and 7, the assembly
landscape shows that increasing field strength beyond the low
field strength regime leads to the formation of larger clusters at
intermediate and high AC frequencies. At low frequencies, only
small aggregate sizes are observed independent of field strength.
By eqn (1), the interparticle attraction increases as the square of

Fig. 6 Effective free energy landscapes for the self-assembly of active Janus particles at low (0.01 mM) NaCl concentration at different applied AC
electric field strengths, E, and frequencies, f. Columns partition the electric field strength into low (167–333 V cm�1), intermediate (417–583 V cm�1),
and high (667–833 V cm�1) regimes. Rows split the AC frequency of the applied field into low (50–300 kHz), intermediate (400–800 kHz), and high
(900 kHz–3 MHz) regimes.
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the electric field strength, E2. Similarly from Fig. 8c, particle
velocities also scale approximately as E2. We observe a critical
field strength for the assembly of aggregates of size N \ 8
residing between the low and intermediate field strength
regimes. We suggest that this may be due to weak interparticle
interactions and low particle velocities resulting in a reduced
likelihood for the particles to come into contact range and bind.
At intermediate and high frequencies, shifting from inter-
mediate to high field strengths yields a small increase in the
stability of larger aggregate structures. Although assembly beha-
vior is heavily suppressed under the high salt conditions, we

Fig. 7 Mass fraction of different chain architectures as a function of
electric field strength and AC frequency for the self-assembly of active
Janus particles. (a) Partitioning of diffusion map space into 6 distinct
regimes corresponding to small (I and II), medium (III and IV), and large
(V and VI) clusters, inside (I, III and V) and outside (II, IV and VI) of the linear
chain envelope. (b) Fraction of system mass located inside these 6 distinct
regions of self-assembly as a function of experimental conditions. Columns
partition the electric field strength, E, into low (167–333 V cm�1), inter-
mediate (417–583 V cm�1), and high (667–833 V cm�1) regimes. Rows split
the AC frequency of the applied field into low (50–300 kHz), intermediate
(400–800 kHz), and high (900 kHz–3 MHz) regimes.

Fig. 8 Dependence of particle polarization and rICEP particle velocity
upon AC frequency and electric field strength at [NaCl] = 0.01 mM. (a)
Dimensionless real portion of product of hemispheric polarizabilities as a
function of AC frequency, f, with R = 1.5 mm and e/e0 = 80, where e0 is the
vacuum permittivity (cf. eqn (1)). (b) Dependence of Janus particle ballistic
velocities as a function of AC frequency, f, at different electric field
strengths, E. Consistent with the binning of the field strengths in the main
text, circles correspond to low (167–333 V cm�1), squares to intermediate
(417–583 V cm�1), and triangles to high (667–833 V cm�1) field strengths.
The vertical lines selected to separate the low (70–300 kHz), intermediate
(400–800 kHz), and high (900 kHz–3 MHz) frequency regimes. (c)
Dependence of Janus particle ballistic velocities as a function of squared
electric field strengths, E2, at different AC frequencies, f. Consistent with
the binning of the field strengths in the main text, circles correspond to
low (70–300 kHz), squares to intermediate (400–800 kHz), and circles
to high (900 kHz–3 MHz) frequency regimes. The vertical lines selected to
separate the low (167–333 V cm�1), intermediate (417–583 V cm�1), and
high (667–833 V cm�1) field strengths.
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observe a similar trend at [NaCl] = 0.1 mM in the high frequency
regime (Fig. S5, ESI†). The observation of markedly larger
aggregates at high field strengths demonstrates that despite
similar E2 scaling of velocity and attraction, the balance of these
two effects results in an elevated aggregation propensity at larger
values of E. We are quick to note that more detailed analysis and
understanding of rICEP and electrohydrodynamic motion, may
be necessary to fully account for the observed trends.48,70,71

Nevertheless, a complete understanding of the physics under-
pinning the system behavior is not required by our data-driven
approach, which can inform understanding of assembly by empiri-
cally quantifying assembly behaviors from particle tracking data.

In sum, we have used our machine learning framework
to construct two-dimensional embeddings capturing the self-
assembly of metallodielectric Janus particles, and mapped the
regions of configuration space accessible under various salt
concentrations, AC frequencies, and electric field strengths.
The manifolds generated provide new insights for our under-
standing of self-assembly in this system, and provide a roadmap
showing how to control assembly behavior by manipulating
experimental conditions. Low AC frequencies suppress assembly
at all field strengths and salt concentrations, resulting in essen-
tially only free monomers. To produce chain aggregates, we can
move into the intermediate frequency regime, where for low salt
conditions we can generate chains spanning from B8 particles
under a low applied field to B10–15 particles in the intermediate
and high field strength regimes. Finally, moving into the high
frequency regime, where form diverse architectures including
rings and ramified structures, as well as chains in excess of
B20 particles.

4 Conclusions

We have presented an approach to infer low-dimensional road-
maps of self-assembly by analyzing experimental particle track-
ing trajectories using diffusion maps. The variables spanning
the low-dimensional embeddings discovered by the diffusion
map correspond to the slow collective modes governing the
long-time dynamics of assembly, and reveal the range of
accessible aggregates and assembly pathways without requiring
prior knowledge of the underlying physics governing particle
aggregation or motion. The effective free energy landscapes
constructed over these embeddings reveal the relative prevalence
and stability of different cluster architectures. By recovering
these landscapes under different experimental conditions, we
can quantify the impact of experimentally controllable para-
meters on the topography of the free energy surface. The find-
ings from this data-driven approach may be compared and
rationalized with existing theoretical and experimental under-
standing of the system, or used to help infer the properties of
novel or poorly characterized systems. Furthermore, these land-
scapes furnish quantitative understanding of the system
response to externally imposed conditions, and can guide the
tuning of these conditions to favor desired cluster architectures.

We have demonstrated our methodology in applications to
the nonequilibrium assembly of Janus particles subjected to an
oscillating electric field that drives interparticle attractions and
self-propelled particle motion. In an application to the tem-
plated assembly of active Janus particles and passive linker
particles, our approach revealed the existence of an effectively
two-dimensional embedding comprising three different assem-
bly routes leading to dense disordered clusters, three-armed
pinwheels, and extended archipelago topologies. We then
demonstrated that the relative stability of these various archi-
tectures could be tuned by manipulating the AC frequency of
the applied field, and showed that this behavior was in good
accord with the physical understanding of the particle response
to the AC field. In a second application to homogeneous
ensembles of active Janus particles, our method discovered a
quasi one-dimensional projection mapping the range of acces-
sible cluster architectures. The principal axis of the manifold
traced the assembly of progressively longer linear chains of
Janus particles, with departures perpendicular to the manifold
corresponding to the formation of rings and branched chains
of particles. We quantified the relative stability of the various
aggregates as a function of electric field strength, AC frequency,
and salt concentration, showing how these three control para-
meters can be simultaneously manipulated to favor the assembly
of clusters of desired size and architecture. By relating these
empirical findings to our understanding of the underlying
particle physics, we found good agreement for our model of
assembly behavior as a function of these experimental controls.

By integrating experimental particle tracking technology
with sophisticated machine learning tools, this work presents
a new approach to infer assembly pathways and attainable
aggregates directly from experimental data, providing insight
into the interplay of different experimentally controllable para-
meters on assembly behavior, and informing the rational
design of conditions favoring the assembly of desired struc-
tures. In future work, we intend to apply our approach to
distinguishable multicomponent systems, where we can utilize
particle identity information to improve the mapping proce-
dure and identify novel assembly behavior as a function of the
different component concentrations. We also intend to ‘‘close
the feedback loop’’ to establish an iterative design process
wherein the insights and design rules discovered by machine
learning are used to inform rational redesign of particle proper-
ties to favor assembly of desired aggregates. We anticipate that
with continued development this approach will improve our
understanding and control of self-assembly processes, and help
forge a powerful new pathway to rationally engineer novel self-
assembling materials with desired structure and function.
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