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Abstract: Fibers and fibrous structures are used extensively in various fields due to their many
advantages. Microfibers, as well as nanofibers, are considered to be some of the most valuable forms
of advanced materials. Accordingly, various methods for fabricating microfibers have been developed.
Electrospinning is a useful fabrication method for continuous polymeric nano- and microfibers with
attractive merits. However, this technique has limitations in its ability to control the geometry of
fibrous structures. Herein, advanced electrospinning with direct-writing functionality was used to
fabricate microfiber patterns with ivy shoot-like geometries after experimentally investigating the
effects of the process conditions on the fiber formation. The surface properties of the fibers were also
modified by introducing nanoscale pores through the use of higher levels of humidity during the
fabrication process.
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1. Introduction

Various fibers and fibrous structures are attracting significant attention in many different fields,
such as cosmetics, clothing, electronics, environmental, chemical, and nano- and bioengineering [1].
Well-known nanofibers are a promising advanced material, but microfibers, a fiber form having a
different order of scale, are also used widely in various areas, such as tissue engineering [2–4], drug
delivery [5,6], filtration [7,8], and composite reinforcement [9], owing to their numerous advantages,
including high porosity, large pore size, large surface area-to-volume ratio, high flexibility, and
similarity in structural form with the human body’s extracellular matrices. In particular, microfibers
have yielded better quality results when compared to nanofibers; e.g., microfiber and multilayered
scaffolds have improved quality and perform better in terms of initial cell attachments and cell
infiltration processes compared with nanofibrous scaffolds in tissue engineering [3].

To date, various methods have been developed to fabricate microfibers. In general, spinning
methods such as wet-, dry-, and gel-spinning processes have been used successfully to fabricate
microfibers for various applications [10–14]. Various types of microfluidic chips have also been used as
nozzles for extrusion with versatile functionalization, such as Janus structures with multiple materials
and bubbling [2,4,15,16]. In particular, the electrohydrodynamic hot-jet plotting process has been
introduced to microfiber fabrication, providing better controllability and fiber diameters as small as
5 µm [17]. A slit die extrusion and heat stretching process for fabricating microfibers has also been
demonstrated [18].
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Electrospinning is one of the most attractive methods for fabricating continuous polymeric fibers
with diameters ranging from micro- to nanometer scales because this technique does not pose serious
limitations on the material selection and requires simple fabrication equipment with relatively easy
process operations [1]. Therefore, various fibers and fibrous structures with different sizes, geometries,
and materials have been fabricated using electrospinning and applied to a variety of fields. Especially,
Pham et al. reported that the diameter of electrospun microfibers could be accurately controlled
through the proper selection of process parameters, such as electric field, concentration, and flow
rate [3]. Fridrikh et al. identified the relationship between fiber diameter, surface tension, flow rate,
and electric current in the jet [19]. McKee et al. investigated the effects of concentration/viscosity on
electrospun fiber diameter [20]. However, the conventional electrospinning process has limitations in
terms of the geometric control of fibrous structures owing to the whipping motion that results from the
bending instability of the electrospinning jet [21]. In this regard, conventional electrospinning is only
suitable for fabricating randomly deposited nonwoven fibrous meshes, even though uniaxially aligned
fibrous mats can be fabricated using electrospinning with a drum collector [22]. Many approaches
have been tried to address this problem and obtain fibrous structures having regular shapes [23–28].

In the current study, microfibrous patterns with ivy shoot-like geometries were fabricated using
an improved electrospinning process, known as direct-write electrospinning (DWES), which was
developed in our previous study [29]. Since DWES improves the geometric regularity of electrospun
fibers in a controllable manner, it was used to fabricate electropsun microfiber patterns to overcome
their geometric control limitation. The effects of the experimental conditions, such as flow rate, scan
speed, and humidity, on the microfiber formation were investigated using Euclidean and fractal
analyses. As a result, we demonstrated that controllable microfiber patterns could be fabricated using
the proposed electrospinning process, yielding complex and random ivy shoot-like shapes in the
microfiber patterns. In addition, the surface properties could be modified by using higher levels of
humidity in the fabrication process.

2. Results and Discussion

2.1. Influence of the Solution Flow Rate on the Microfibers

Polymeric fibers were electrospun under various solution flow rate conditions because this
parameter was considered to be one of the dominant factors that influence the electrospun microfiber
diameter [30]. In the experiments, the fabricated pattern had a lattice shape with a grid size
of 500 µm, and the flow rates of the polycaprolactone (PCL) solution from the nozzle were 0.1,
0.3, 0.6 and 0.8 mL/h. Other experimental conditions were kept nearly constant, as indicated in
Table 1. The tip-to-collector distance (TCD) and voltage for electrospinning were 60.0 mm and
21–24 kV, respectively.

Table 1. Experimental conditions for fabricating a fibrous lattice pattern under various flow rate conditions.

Parameter (Units) Value

Polymer-solvent (concentration, wt %) PCL-chloroform (8.8 wt %)
Temperature (˝C) 21–22

Relative humidity (%) 55–58
Voltage (kV) 21–24

Tip-to-collector distance (mm) 60.0
Solution flow rate (mL/h) 0.1, 0.3, 0.6 and 0.8

Scan speed of collector (mm/s) 25.0

Figure 1 shows the fibrous lattice patterns fabricated under various flow rates, and their fiber
diameter distributions. The fibrous pattern fabricated with a flow rate of 0.1 mL/h is depicted in
Figure 1a,b. It contained many fibers with diameters ranging from 150 nm to 5 µm. However, although
plenty of microfibers are shown in Figure 1b, the nanometer-scale fibers still dominated the pattern.
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A well-defined lattice pattern was obtained under these conditions. The most common fiber diameter
was 425 nm, as depicted in Figure 1c.
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Figure 1. Scanning electron microscopy (SEM) images and fiber diameter distributions of the nano- and
microfibrous lattice patterns fabricated with various solution flow rates: (a–c) 0.1 mL/h; (d–f) 0.3 mL/h;
(g–i) 0.6 mL/h; and (j–l) 0.8 mL/h.

Figure 1d–f show the pattern and fiber diameter distribution obtained using a flow rate of
0.3 mL/h. The fibrous line pattern width of the lattice pattern increased because of the higher flow
rate, and most of the fibers had microscale diameters. The most common fiber diameter was 2 µm,
and the minimum diameter was 600 nm. The pattern still exhibited a regular lattice shape. Thus, the
higher flow rate provided larger-diameter fibers.

The fiber diameter continued to increase with the flow rate. A unique morphology of the fibrous
pattern was observed at a flow rate greater than 0.6 mL/h. Figure 1g,h show the lattice pattern
obtained at a flow rate of 0.6 mL/h. In Figure 1g, the pattern had a unique geometry that looked
like ivy shoots on a wall. The stems of the ivy shoot-like pattern (central lines) still maintained the
lattice shape. However, tendril-like microfibers stretched radially from the stem lines and caused the
pattern to resemble ivy shoots. The fibers had larger diameters and were fused together to create
the complex morphology shown in Figure 1h, likely because a significant amount of the solvent
remained in the electrospun fibers after they reached the collector plate. Therefore, the pattern had
better interconnectivity among fibers compared with Figure 1b,e. Also, the width of the line pattern
became narrower even though the solution flow rate was higher, and a few pores were exposed on
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the surface of the fibers due to incomplete evaporation of solvent. As shown in Figure 1i, the most
common fiber diameter was between 2.2 and 3.2 µm.

The fiber interconnectivity continued to improve when the solution flow rate was increased to
0.8 mL/h due to a higher degree of fiber fusion, as shown in Figure 1j,k. However, the ivy shoot-like
geometric features became weaker, as depicted in Figure 1k. As expected, the porosity of the fiber
surfaces increased significantly. From Figure 1l, the most common microfiber diameter was 3.35 µm.

From the results shown in Figure 1, the fabricated nano- and microfibrous patterns had
well-defined lattice shapes with various line patterns, depending on the solution flow rate used.
Especially, it could be seen that the clearest ivy shoot pattern could be obtained at a flow rate
of 0.6 mL/h, as shown in Figure 1g. However, at flow rates greater than 0.9 mL/h, it was difficult to
obtain the ivy shoot pattern from the electrospun fibers.

The relationship between the solution flow rate and the fiber diameter of the fabricated lattice
patterns shown in Figure 1 was obtained via statistical analysis. As illustrated in Figure 2, the average
fiber diameter of the fabricated patterns increased with the solution flow rate. Thus, the average
diameter of the electrospun fibers could be controlled by modifying the solution flow rate. However,
the higher flow rates resulted in larger standard deviations among fiber diameters.
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Figure 2. Relationship between solution flow rate and fiber diameter.

2.2. Influence of the Scan Speed of the Collector

In the experiments described in the previous section, we observed that the lattice patterns
consistently possessed ivy shoot-like geometries when the solution flow rate was between 0.6 and
0.8 mL/h. Next, we modified the scan speed of the collector to adjust the degree of complexity of the
ivy shoot-like geometries in the microfibrous patterns, because extending the length of time that the
collector remained at one point could increase the possibility for a tendril to form. Thus, parallel-line
patterns were fabricated using various collector scan speeds from 10 to 450 mm/s, as shown in Figure 3.
The other conditions were fixed as listed in Table 2. The scan path used to fabricate the parallel-line
pattern had a pitch of 500 µm at all scan speeds except for 450 mm/s, for which the pitch was 50 µm.

Table 2. Experimental conditions for fabricating parallel-line patterns at various scan speeds.

Parameter (Units) Value

Polymer-solvent (concentration, wt %) PCL-chloroform (8.8 wt %)
Temperature (˝C) 20–21

Relative humidity (%) 56–58
Voltage (kV) 21

Tip-to-collector distance (mm) 60.0
Solution flow rate (mL/h) 0.6

Scan speed of collector (mm/s) 10–450
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Figure 3. Influence of the scan speed of the collector on the shape morphology of the fractal geometric
microfibrous patterns: SEM images of the fabricated microfibrous patterns at scan speeds of (a) 10;
(b) 25; (c) 50; (d) 75; (e) 150; and (f) 450 mm/s. The scan path distance of fabricated microfibrous
patterns was (a–e) 500 µm and (f) 50 µm.

Figure 3a shows the parallel-line pattern fabricated at a scan speed of 10 mm/s. The central lines
corresponding to the stem in an ivy shoot followed the scan path well with a regular pitch. Moreover,
the pattern clearly showed complex tendril formation. The fabricated microfibrous patterns obtained
at scan speeds of 20, 50 and 75 mm/s are presented in Figure 3b–d, respectively. The formation of
tendrils in the microfibrous line patterns decreased gradually as the scan speed increased. At the same
time, the width of the line patterns narrowed. In Figure 3e, which shows the pattern fabricated at a
scan speed of 150 mm/s, it is difficult to identify any clear tendrils along the line patterns. Moreover,
we obtained a straight-line pattern without tendrils at a scan speed of 450 mm/s, as shown in Figure 3f,
with highly arranged entanglements. Thus, the degree of complexity obtained using the proposed
electrospinning process could be controlled via changes in the scan speed. The inferred explanation
for this result is that the longer durations spent by the collector at a given point due to the slower scan
speeds introduced a greater possibility for the microfibrous pattern to extend tendrils (fingers).

The effect of the scan speed on the tendril formation in the fabricated microfibrous patterns was
evaluated by the well-defined fractal dimension, which could describe complexity or area filling of
chaotic geometries in nature [31,32]. We calculated fractal dimensions of the patterns for various scan
speed conditions. Figure 4 shows fractal dimension of line patterns fabricated under the conditions
mentioned in Table 2 and Figure 3. The fractal dimension of the line pattern fabricated at a scan speed of
10 mm/s was about 1.612 with a standard deviation of about 0.024. The dimension decreased as the scan
speed increased, thus it became down to 1.205 ˘ 0.019 when the scan speed was 150 mm/s. Especially,
the fractal dimension of the pattern fabricated at a scan speed of 450 mm/s was 1.059 ˘ 0.011, which
was close to 1.0, corresponding to the typical one-dimensional geometry (i.e., simple line). In this regard,
it could be concluded from the figure that the fractal dimension of the microfibrous patterns at flow rate
of 0.6 mL/h ranged between 2.0 and 1.0 and the slower scan speed led the higher fractal dimension.

The characteristics of the ivy shoot-like geometries in the fabricated microfibrous patterns were
analyzed to more clearly identify the effect of scan speed, as shown in Figure 5. First, we established a
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simple measure of the degree of complexity of a fractal geometry in the microfibrous line patterns. The
shapes in Figure 5a, which presents a typical fractal geometry in a fabricated microfibrous pattern,
resemble ivy shoots on a wall, and thus the geometric characteristics were defined according to
the geometry of ivy shoots. The line patterns of microfibers with fractal geometries were therefore
identified as shoots in this study. The main line patterns corresponding to the scan path were identified
as stems, and the branches from the stems were identified as tendrils. Therefore, a shoot consisted of a
stem and many tendrils. Figure 5b illustrates the relationship between the stem width and the scan
speed. The width narrowed with increasing scan speed. The line width ranged between 20 and 30 µm
at scan speeds greater than 100 mm/s; in particular, the width could be reduced to 20 µm when the scan
speed was 450 mm/s. Also, the line widths tended to have larger standard deviations at lower scan
speeds because the instability of the deposition increased. The effects of the scan speed on the length
and number of tendrils showed trends similar to the stem width, as shown in Figure 5c,d. The tendrils
extended to about 90 µm on average; however, no tendrils were identified in the samples fabricated
with scan speeds greater than 200 mm/s. Consequently, the complexity of the fractal geometries in a
fabricated microfibrous mat, which could be characterized by the average width of the stems, and the
number and average length of the tendrils, could be controlled via the scan speed.
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Figure 4. Influence of the scan speed of the collector on the fractal dimension of the ivy shoot-like
microfibrous patterns.
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Figure 5. (a) Explanatory image showing how the fabricated fractal geometric microfibrous patterns
consist of stems, tendrils, and shoots. Relationships between the scan speed of the collector and the
(b) average stem width; (c) average tendril length; and (d) number of tendrils.
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2.3. Influence of the Relative Humidity

Porosity can be introduced to the surface of electrospun micro- or nanofibers by controlling the
humidity. This is because the humidity can influence the evaporation of solvent from electrospun
fibers. Nanopores introduced to microfibers can affect various surface properties. Thus, parallel-line
patterns with a line pitch of 500 µm were fabricated at two different levels of relative humidity, 51%
and 60%, which was selected from preliminary tests and the experiments mentioned at Tables 1 and 2.
The higher humidity led to more pores on the microfiber surface under the flow rate fixed at 0.6 mL/h.
However, clear pores could not be observed at humidity lower than 60 percent relative humidity
(RH%). When humidity was 60 RH%, clear pores covering the surface could be obtained. However,
the amount of electrospun fibers significantly decreased when the humidity was higher than 60 RH%.
The experimental conditions are listed in Table 3.

Table 3. Experimental conditions for fabricating microfibrous mats at different levels of relative humidity.

Parameter (Units) Value

Polymer-solvent (concentration, wt %) PCL-chloroform (8.8 wt %)
Temperature (˝C) 20–21

Voltage (kV) 21
Tip-to-collector distance (mm) 60.0

Solution flow rate (mL/h) 0.6
Scan speed of collector (mm/s) 20

Relative humidity (%) 51 and 60

All patterns exhibited fractal geometries, regardless of the relative humidity. However, the pattern
fabricated at the lower humidity that had no pores on its surface (Figure 6a–c), unlike the pattern
fabricated at higher humidity was covered by micro- and nanopores (Figure 6d–f). The diameter
distribution of the pores covering the surface of the pattern shown in Figure 6f is given in Figure 7.
Most of the pores had diameters ranging between 200 and 800 nm, and the most common pore diameter
was about 550 nm. The average pore diameter was 599.3 nm.
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Figure 7. Pore size distribution of the fractal geometric microfibrous pattern shown in Figure 6d–f
obtained at 60% relative humidity.

3. Experimental Section

The fabrication of microfiber patterns with regular geometries requires an improved
electrospinning apparatus that can focus the electrospinning jet and provide a scanning motion
for fiber deposition. Thus, we used a DWES experimental setup, which was developed in our
previous study [29]. Figure 8a shows a schematic diagram of the DWES setup, which was based
on a conventional electrospinning apparatus composed of a syringe pump, high-voltage supply,
micronozzle, and conductive collector plate. However, in this study, the conductive collector plate
in the conventional electrospinning setup was replaced with a sharp-pin grounded electrode and
a thin borosilicate plate collector with a thickness of about 150 µm. Also, an aluminum-coated
cylindrical electrode was introduced to enhance the performance of the electrospinning jet focusing.
The borosilicate plate was given a planar motion with the help of a motorized XY stage equipped with
linear servo motors, while the sharp-pin grounded electrode was fixed to ground. The tip-to-collector
distance (TCD) was controlled using a vertical motorized stage, while the distance between the
collector and the sharp pin was fixed at about 20 µm using a manual stage. Figure 8b shows the actual
electrospinning setup used in this study. The electrospinning apparatus was isolated using an acrylic
chamber, and thus the atmospheric conditions, such as temperature and relative humidity, could be
controlled at consistent levels. The polymer used to fabricate the microfibers was a polycaprolactone
with an average molecular weight ranging between 70,000 and 90,000 (PCL, 440744, Sigma-Aldrich,
Co., St. Louis, MO, USA), which was dissolved in 99.5% pure chloroform (C0584, Samchun Pure
Chemical Co., Ltd., Seoul, Korea) at a concentration of 8.8 wt % via stirring for 120 min.
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Figure 8. Electrospinning setup for fabricating microfiber patterns: (a) Schematic diagram of the
direct-write electrospinning (DWES) apparatus and (b) actual DWES apparatus.
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SEM images shown in Figures 1, 3, 5 and 6 were acquired using a field-emission scanning electron
microscope (S4700, Hitachi Co., Tokyo, Japan), after the fabricated samples were sputter-coated with
platinum (E-1030, Hitachi Co.). The fiber diameter analyses were performed using ImageJ program
(NIH). For the analysis, we used three different samples and an exemplary SEM image with a size of
120 µm ˆ 160 µm was selected for each sample. The number of measurements of fiber diameter for
each image ranged between 155 and 648, which depended on fiber size and pattern quality. The fractal
dimensions were analyzed using the Fractalyse program [33]. In the calculation of fractal dimension
of the pattern at each condition, three different line pattern samples were used. Especially, the SEM
image for each sample was converted to black (fibers) and white (background) image using image
processing for the Fractalyse program.

4. Conclusions

We demonstrated that microfibrous patterns with fractal geometries that looked like ivy shoots on
a wall could be successfully fabricated using an advanced electrospinning method with specific process
conditions. A direct-write electrospinning method consisting of an additional cylindrical side-wall
electrode, a dielectric thin collector plate with planar motion, and a sharp-pin grounded electrode,
as well as a conventional electrospinning apparatus, was employed in the fabrication to introduce
focusing and scanning functionalities to the electrospinning jet. As a result, fibrous patterns with
regular shapes were successfully fabricated. The solution flow rate, scan speed of the collector, and
relative humidity were considered as key parameters in the fabrication of the microfibrous patterns
with fractal geometries. The solution flow rate directly influenced the fiber diameter; microscale fibers
were obtained using flow rates greater than 0.3 mL/h. The fractal geometries were introduced to the
fibrous patterns by using collector scan speeds that were less than 100 mm/s with a flow rate that
was greater than 0.6 mL/h. The scan speed strongly influenced the dimensions and complexity of
the fractal geometries. Higher levels of humidity introduced nanoscale pores on the surface of the
microfibers, which could offer a variety of functionalities.

The ivy shoot-like pattern presented in this study can be used in various applications related
to tissue engineering, biochip application, and drug delivery. Its more-natural geometry can give
cells in culture a positive effect on guidance toward more realistic engineered tissues. It can be used
as a mold master for microfluidic biochip which can introduce more realistic vascular network or
surface properties. Also, it would be a good drug carrier because of its area filling property, which is a
well-known feature of fractal geometry.
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