
Christensen et al. Journal of Inequalities and Applications  (2016) 2016:94 
DOI 10.1186/s13660-016-1021-4

R E S E A R C H Open Access

On the Gabor frame set for compactly
supported continuous functions
Ole Christensen1, Hong Oh Kim2 and Rae Young Kim3*

*Correspondence: rykim@ynu.ac.kr
3Department of Mathematics,
Yeungnam University, 280
Daehak-Ro, Gyeongsan, Gyeongbuk
38541, Republic of Korea
Full list of author information is
available at the end of the article

Abstract
We identify a class of continuous compactly supported functions for which the
known part of the Gabor frame set can be extended. At least for functions with
support on an interval of length two, the curve determining the set touches the
known obstructions. Easy verifiable sufficient conditions for a function to belong to
the class are derived, and it is shown that the B-splines BN , N ≥ 2, and certain
‘continuous and truncated’ versions of several classical functions (e.g., the Gaussian
and the two-sided exponential function) belong to the class. The sufficient conditions
for the frame property guarantees the existence of a dual window with a prescribed
size of the support.
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1 Introduction
Frames is a functional analytic tool to obtain representations of the elements in a Hilbert
space as a (typically infinite) superposition of building blocks. Frames indeed lead to de-
compositions that are similar to those obtained via orthonormal bases, but with much
greater flexibility, due to the fact that the definition is significantly less restrictive. For
example, in contrast to the case for a basis, the elements in a frame are not necessarily
(linearly) independent, that is, frames can be redundant.

One of the main manifestations of frame theory is within Gabor analysis, where the aim
is to obtain efficient representations of signals in a way that reflects the time-frequency
distribution. For any a, b > , consider the translation operator Ta and the modula-
tion operator Eb, both acting on the particular Hilbert space L(R), given by Taf (x) =
f (x – a) and Ebf (x) = eπ ibxf (x), respectively. Given g ∈ L(R), the collection of functions
{EmbTnag}m,n∈Z is called a (Gabor) frame if there exist constants A, B >  such that

A‖f ‖ ≤
∑

m,n∈Z

∣∣〈f , EmbTnag〉∣∣ ≤ B‖f ‖, ∀f ∈ L(R).

If at least the upper condition is satisfied, {EmbTnag}m,n∈Z is called a Bessel sequence. It is
known that for every frame {EmbTnag}m,n∈Z, there exists a dual frame {EmbTnah}m,n∈Z such
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that each f ∈ L(R) has the decomposition

f =
∑

m,n∈Z
〈f , EmbTnah〉EmbTnah. (.)

The problem of determining g ∈ L(R) and parameters a, b >  such that {EmbTnag}m,n∈Z is
a frame has attracted a lot of attention over the past  years. The frame set for a function
g ∈ L(R) is defined as the set

Fg :=
{

(a, b) ∈R

+ | {EmbTnag}m,n∈Z is a frame for L(R)

}
.

Clearly, the ‘size’ of the set Fg reflects the flexibility of the function g in regard of ob-
taining expansions of type (.). In particular, it is known that ab ≤  is necessary for
{EmbTnag}m,n∈Z to be a frame and that the number (ab)– is a measure of the redundance
of the frame; the smaller the number, the more redundant the frame. Thus, a reasonable
function g should lead to a frame {EmbTnag}m,n∈Z for values (ab)– that are reasonably close
to one. We remark that Fg is known to be open if g belongs to the Feichtinger algebra; see
[, ].

Until recently, the exact frame set was only known for very few functions: the Gaus-
sian g(x) = e–x [–], the hyperbolic secant [], and the functions h(x) = e–|x|, k(x) =
e–xχ[,∞[(x) [, ]. In [] a characterization was obtained for the class of totally positive
functions of finite type, and based on [], the frame set for functions χ[,c], c > , was
characterized in [].

For applications of Gabor frames, it is essential that the window g is a continuous func-
tion with compact support. Most of the related literature deals with special types of func-
tions like truncated trigonometric functions or various types of splines; see [–]. Vari-
ous classes of functions have also been considered, for example, functions yielding a par-
tition of unity [, ], functions with short support or a finite number of sign-changes
[–], or functions that are bounded away from zero on a specified part of the support
[]. The case of B-spline generated Gabor systems has attracted special attention; see, for
example, [, –]. Interesting results in the rational case are obtained in [].

To the best of our knowledge, the frame set has not been characterized for any func-
tion g ∈ Cc(R) \ {}. We will, among others, consider a class of functions for which we
can extend the known set of parameters (a, b) yielding a Gabor frame. The class of func-
tions contains the B-splines BN , N ≥ , and certain ‘continuous and compactly supported
variants’ of the mentioned functions g , h and other classical functions. Furthermore, the
results guarantee the existence of dual windows with a support size given in terms of the
translation parameter.

In the rest of this introduction, we will describe the relevant class of windows and their
frame properties. Proofs of the frame properties are in Section , and easy verifiable con-
ditions for a function to belong to the class are derived in Section .

Let us first collect some of the known results concerning frame properties for continuous
compactly supported functions; (i) is classical, and we refer to [] for a proof.

Proposition . Let N > , and assume that g : R → C is a continuous function with
supp g ⊆ [– N

 , N
 ]. Then the following holds:

(i) If {EmbTnag}m,n∈Z is a frame, then ab <  and a < N .
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(ii) [] Assume that  < a < N ,  < b ≤ 
N+a , and infx∈[– a

 , a
 ] |g(x)| > . Then

{EmbTnag}m,n∈Z is a frame, and there is a unique dual window h ∈ L(R) such that
supp h = [– a

 , a
 ].

(iii) [] Assume that N
 ≤ a < N and  < b < 

a . If g(x) > , x ∈ ]– N
 , N

 [, then
{EmbTnag}m,n∈Z is a frame.

We will now introduce the window class that will be used in the current paper; it is a
subset of the set of functions g considered in Proposition .(iii). The definition is inspired
by certain explicit estimates for B-splines given by Trebels and Steidl []; this point will be
clear in Proposition .. First, fix N >  and  < a < N . Consider the first-order difference
�af and the second-order difference �

af given by

�af (x) = f (x) – f (x – a), �
af (x) = f (x) – f (x – a) + f (x – a).

We define the window class as the set of functions

VN ,a :=
{

f ∈ C(R)
∣∣∣ supp f =

[
–

N


,
N


]
, f is real-valued and satisfies (A)-(A)

}
,

where
(A) f is symmetric around the origin;
(A) f is strictly increasing on [– N

 , ];
(A) If a < N

 , then �
af (x) ≥ , x ∈ [– N

 , – N
 + a

 ]; if a ≥ N
 , then

�
af (x) ≥ , x ∈ [– N

 , ] ∪ {– N
 + a

 }.
Note that by the symmetry condition (A) a function f ∈ VN ,a is completely determined
by its behavior for x ∈ [– N

 , ]. If a ≥ N
 , then the point – N

 + a
 considered in (A) is not

contained in [– N
 , ]; however, if desired, the symmetry condition allows us to formulate

the condition �
af (– N

 + a
 ) ≥  alternatively as

f
(

N


–
a


)
– f

(
–

N


–
a


)
≥  (.)

because the argument x – a of the last term in the second-order difference is less than
– N

 .
The definition of VN ,a is technical, but we will derive easy verifiable conditions for a

function g to belong to this set in Proposition . and also provide several natural examples
of such functions. Our main result extends the range of b >  yielding a frame, compared
with Proposition .(ii):

Theorem . For N > , let  < a < N and 
N+a < b ≤ 

N+a . Assume that g ∈ VN ,a. Then
the Gabor system {EmbTnag}m,n∈Z is a frame for L(R), and there is a unique dual window
h ∈ L(R) such that supp h ⊆ [– a

 , a
 ].

For an illustration of Proposition . and Theorem ., see Figure .
Membership of a function g in a set VN ,a for some a ∈ ], N[ only gives information

about the frame properties of {EmbTnag}m,n∈Z for this specific value of the translation pa-
rameter a. In order to get an impression of the frame properties of {EmbTnag}m,n∈Z in a
region in the (a, b)-plane, we need to consider a function g that belongs to VN ,a for an in-
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Figure 1 The Gabor frame set. The figure shows the following regions: B as in Proposition 1.1(iii), and D as in
Theorem 1.2. The region A corresponds to the case where the frame operator is a multiplication operator, and
{EmbTnag}m,n∈Z is a frame if infx∈[0,a]

∑
n∈Z |g(x – na)|2 > 0. The region C is a part of the region determined by

Proposition 1.1(ii), corresponding to the new findings in the paper [21].

terval of a-values, preferably for all a ∈ ], N[. Fortunately, several natural functions have
this property. The following list collects some of the results we will obtain in Section .
Considering any N ∈N \ {},

• The B-spline BN of order N belongs to
⋂

<a<N VN ,a;
• The function fN (x) := cosN–( πx

N )χ[– N
 , N

 ](x) belongs to
⋂

<a<N VN ,a;

• The function hN (x) := (e–|x| – e– N
 )χ[– N

 , N
 ](x) belongs to

⋂
<a<N VN ,a;

• The function gN (x) := (e–x – e– N
 )χ[– N

 , N
 ](x) belongs to

⋂
N
 ≤a<N VN ,a.

In particular, Proposition . and Theorem . imply that for N ∈N \ {}, the functions
BN , fN , and hN generate frames whenever  < a < N and  < b ≤ 

N+a , and gN generates a
frame whenever N

 ≤ a < N and  < b ≤ 
N+a .

Note that the limit curve b = 
N+a in Theorem . touches the known obstructions for

Gabor frames. In fact, for N = , we obtain that b →  as a → . Since it is known that
the B-spline B does not generate a frame for b =  [, ], we cannot go beyond this. We
also know that at least for some functions g ∈ ⋂

<a<N VN ,a, parts of the region determined
by the inequalities b < , a < , ab <  do not belong to the frame set. Considering, for
example, the B-spline B [] shows that the point (a, b) = ( 

 , 
 ) does not belong to the

frame set. For a = 
 , Theorem . guarantees the frame property for b < 

 , which is close
to the obstruction. These considerations indicate that the frame region in Theorem . in
a quite accurate way describes the maximally possible frame set below b =  that is valid
for all the functions in VN ,a, at least for N = .

2 Frame properties for functions g ∈ VN,a

The purpose of this section is to prove Theorem .. Since the functions g ∈ VN ,a are
bounded and have compact support, they generate Bessel sequences {EmbTnag}m,n∈Z for
all a, b > . By the duality conditions [, ] two bounded functions g , h with compact
support generate dual frames {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z for some fixed a, b > 
if and only if

∑

m∈Z
g(x – �/b + ma)h(x + ma) = bδ�,, a.e. x ∈

[
–

a


,
a


]
;
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in particular, a function g ∈ VN ,a and a bounded real-valued function h with support on
[– a

 , a
 ] generate dual Gabor frames {EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z for L(R) for

some b ≤ 
N+a if and only if, for � = ,±,

∑

m=–

g(x – �/b + ma)h(x + ma) = bδ�,, a.e. x ∈
[

–
a


,
a


]
. (.)

Given g ∈ VN ,a, we therefore consider the  ×  matrix-valued function G on [– a
 , a

 ] de-
fined by

G(x) :=
(

g(x – �
b + ma)

)

–≤�,m≤
=

⎛

⎜⎝
g(x + 

b – a) g(x + 
b ) g(x + 

b + a)
g(x – a) g(x) g(x + a)

g(x – 
b – a) g(x – 

b ) g(x – 
b + a)

⎞

⎟⎠ .

In terms of the G(x), condition (.) simply means that

G(x)

⎛

⎜⎝
h(x – a)

h(x)
h(x + a)

⎞

⎟⎠ =

⎛

⎜⎝

b


⎞

⎟⎠ , a.e. x ∈
[

–
a


,
a


]
. (.)

We will show that the matrix G(x) is invertible for all x ∈ [– a
 , a

 ]; this will ultimately
give us a bounded and compactly supported function h satisfying (.) and hereby prove
Theorem .. The invertibility of G(x) will be derived as a consequence of a series of lem-
mas, where we first consider x ∈ [– a

 , ]. Note that the proof of the first result does not use
property (A).

Lemma . For N > , let  < a < N and 
N+a < b ≤ 

N+a . Assume that g ∈ VN ,a and let
x ∈ [– a

 , ]. Then the following hold:
(a) g(x + 

b + a) ≤ g(x + 
b ) < g(x + 

b – a) = ;
(b) g(x – 

b – a) ≤ g(x – 
b ) < g(x – 

b + a) = ;
(c) g(x) > g(x – a) and g(x) ≥ g(x + a) with equality only for x = – a

 .

Proof For (a), let x ∈ [– a
 , ]. Using b ≤ 

N+a and a < N , we have

x +

b

– a ≥ 
b

–
a


≥ N + a


–
a


> –
N


.

It follows that

x +

b

– a ⊆
[


b

–
a


,

b

– a
]

⊆
]

–
N


,
N


[
. (.)

Using that b ≤ 
N+a < 

a , it follows that –x – 
b + a ≤ (a – 

b ) < ; thus,

–x –

b

+ a < x +

b

. (.)

Since g(x) >  for x ∈ ]– N
 , N

 [, we have by (.) that g(x + 
b – a) = . By (A) we know

that g is strictly decreasing on [, N
 ]. If x + 

b – a ≤ , then we have by (.), (.), and the



Christensen et al. Journal of Inequalities and Applications  (2016) 2016:94 Page 6 of 17

symmetry of g that

g
(

x +

b

– a
)

= g
(

–x –

b

+ a
)

> g
(

x +

b

)
≥ g

(
x +


b

+ a
)

;

if x+ 
b –a > , then we have g(x+ 

b –a) > g(x+ 
b ) ≥ g(x+ 

b +a). Hence, (a) holds. Similarly,
(b) and (c) hold. �

We now show that if g ∈ VN ,a and a ≥ N/, then condition (A) automatically holds on
a larger interval.

Lemma . For N > , let  < a < N . Assume that g ∈ VN ,a. Then �
ag(x) ≥  for all x ∈

[– N
 , – N

 + a
 ].

Proof It suffices to show that, for a ≥ N
 ,

�
ag(x) ≥ , ∀x ∈

[
, –

N


+
a


]
.

We first note that (A) and (A) imply that, for x ∈ [, – N
 + a

 ],

g(x) ≥ g
(

–
N


+
a


)
and g(x – a) ≤ g

(
–

N


–
a


)
. (.)

For a ≥ N
 , we have – N

 – a
 < – N

 ; due to the compact support of g , f (– N
 – a

 ) = ; thus
using (A) again, we have

�
ag

(
–

N


+
a


)
= g

(
–

N


+
a


)
– g

(
–

N


–
a


)

= g
(

N


–
a


)
– g

(
–

N


–
a


)
.

Together with (.), this shows that

 ≤ �
ag

(
–

N


+
a


)
≤ �

ag(x), ∀x ∈
[

, –
N


+
a


]
,

as desired. �

Let Gij(x) denote the ijth minor of G(x), the determinant of the submatrix obtained by
removing the ith row and the jth column from G(x).

Lemma . For N > , let  < a < N and 
N+a < b ≤ 

N+a . Assume that g ∈ VN ,a and let
x ∈ [– a

 , ]. Then the following hold:
(a) G(x) ≥ , and equality holds iff g(x + 

b ) = g(x + 
b + a) = ;

(b) G(x) ≥ , and equality holds iff g(x – 
b – a) = g(x – 

b ) = ;
(c) G(x) ≥ G(x) + G(x).
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Proof Since g ≥ , (a) and (b) follow from Lemma .(a), (b). For (c), we note that �ag(x) =
g(x) – g(x – a) = g(–x) – g(–x + a) = –�ag(–x + a) by the symmetry of g . Now a direct
calculation shows that

G(x) – G(x) – G(x)

= –�ag
(

x +

b

)
�ag

(
x –


b

+ a
)

+ �ag
(

x +

b

+ a
)

�ag
(

x –

b

)

= �ag
(

–x –

b

+ a
)

�ag
(

x –

b

+ a
)

– �ag
(

–x –

b

)
�ag

(
x –


b

)
.

Hence, it suffices to show that

�ag
(

x –

b

+ a
)

≥ �ag
(

x –

b

)
, x ∈

[
–

a


, 
]

and

�ag
(

–x –

b

+ a
)

≥ �ag
(

–x –

b

)
, x ∈

[
–

a


, 
]

or, equivalently, that �
ag(x – 

b + a) ≥  and �
ag(–x – 

b + a) ≥ , both for x ∈ [– a
 , ]. Since

[– 
b + a

 , – 
b + a] ∪ [– 

b + a, – 
b + a

 ] = [– 
b + a

 , – 
b + a

 ], this means precisely that

�
ag(x) ≥ , x ∈

[
–


b

+
a


, –

b

+
a


]
. (.)

We note that, for 
N+a < b ≤ 

N+a ,

–
N


≤ –

b

+
a


, –

b

+
a


≤ –
N


+
a


.

Together with Lemma ., this implies that (.) holds, as desired. �

After this preparation, we can now show that G(x) is indeed invertible for x ∈ [– a
 , a

 ]
under the assumptions in Theorem ..

Corollary . For N > , let  < a < N and 
N+a < b ≤ 

N+a . Assume that g ∈ VN ,a. Then
det G(x) =  for x ∈ [– a

 , a
 ].

Proof First, consider x ∈ [– a
 , ]. By Lemma .(c) we have

det G(x) = –g(x – a)G(x) + g(x)G(x) – g(x + a)G(x)

≥ –g(x – a)G(x) + g(x)
(
G(x) + G(x)

)
– g(x + a)G(x)

=
(
g(x) – g(x – a)

)
G(x) +

(
g(x) – g(x + a)

)
G(x)

=: AN (x).

Using Lemma .(c) and Lemma .(a), (b), we have

(
g(x) – g(x – a)

)
G(x) ≥  and

(
g(x) – g(x + a)

)
G(x) ≥ .



Christensen et al. Journal of Inequalities and Applications  (2016) 2016:94 Page 8 of 17

Thus, AN (x) ≥ , x ∈ [– a
 , ]. If AN (x) >  for all x ∈ [– a

 , ], then the proof is completed;
thus, the rest of the proof is focused on the case where AN (x) =  for some x ∈ [– a

 , ].
In this case, Lemma .(c) shows that either

G(x) = , G(x) =  (.)

or

G(x) = , x = –
a


. (.)

The case (.) actually cannot occur. Indeed, if G(– a
 ) = , then by Lemma .(a) we have

g(– a
 + 

b ) = ; by the symmetry of g this would imply that g( a
 – 

b ) = , which contradicts
Lemma .(b) with x = – a

 . Thus, we only have to deal with the case (.). If G(x) =
G(x) = , then by Lemma .(a), (b) we have

g
(

x +

b

)
= g

(
x +


b

+ a
)

= g
(

x –

b

– a
)

= g
(

x –

b

)
= .

Inserting this information into the entries of the matrix G(x) and applying Lemma .
yield that

det G(x) = g
(

x +

b

– a
)

g(x)g
(

x –

b

+ a
)

> ,

as desired. This completes the proof that G(x) >  for x ∈ [– a
 , ]. Since g is symmetric

around the origin, we have

det G(–x) = det
(

g(–x – �
b + ma)

)

–≤�,m≤
= det

(
g(x + �

b – ma)
)

–≤�,m≤

= – det
(

g(x – �
b – ma)

)

–≤�,m≤
= det

(
g(x – �

b + ma)
)

–≤�,m≤

= det G(x).

Thus, G(x) is also invertible for x ∈ ], a
 ]. �

We are now ready to prove Theorem ..

Proof of Theorem . By Corollary . and the continuity of g , infx∈[– a
 , a

 ] |det G(x)| > .
We define h on [– a

 , a
 ] by

⎛

⎜⎝
h(x – a)

h(x)
h(x + a)

⎞

⎟⎠ = G–(x)

⎛

⎜⎝

b


⎞

⎟⎠ , x ∈
[

–
a


,
a


]
,

which is a bounded function. On R \ [– a
 , a

 ], put h(x) = . It follows immediately by
definition of h that then g and h are dual windows. �

Remark . We note that this approach is tailored to the region of parameters (a, b) in
Theorem .. For example, it does not apply to the region considered in Proposition .(ii).
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In fact, if  < b ≤ 
N+a , then the first row of G(x) for x ∈ [ N

 – 
b + a, a

 ] is the zero vec-
tor, and the third row of G(x) for x ∈ [– a

 , 
b – a – N

 ] is the zero vector. Hence, we have
infx∈[– a

 , a
 ] det G(x) = .

The conditions for g ∈ VN ,a are technical. We will now give an example, showing that
the conclusion about the size of the support of the dual window in Theorem . may break
down if g /∈ VN ,a.

Example . Let us consider the parameters N = , a = . Consider a symmetric and
continuous function g on R with supp g = [– 

 , 
 ]; assume further that g is increasing on

[– N
 , ] = [– 

 , ] and that

g() = , g(–) = , g
(

–



)
= , g

(
–




)
= .

Then �
ag(– 

 ) = g(– 
 ) – g(– 

 ) + g(– 
 ) = – < . Hence, g does not satisfy (A) at x = – 

 ,
that is, g /∈ VN ,a.

We will show that, for b = 
N+a = 

 , there does not exist a bounded real-valued function
h ∈ L(R) with supp h ⊆ [– a

 , a
 ] such that the duality conditions (.) hold. In order to

obtain a contradiction, let us assume that such a dual window indeed exists. Let x = .
Then

x – a = –x – a = –, x –

b

+ a = –x –

b

+ a = –



,

x –

b

= –x –

b

= –



, x –

b

– a = –x –

b

– a = –



,

and, consequently,

G(x) =

⎛

⎜⎝
g(x + 

b – a) g(x + 
b ) g(x + 

b + a)
g(x – a) g(x) g(x + a)

g(x – 
b – a) g(x – 

b ) g(x – 
b + a)

⎞

⎟⎠ =

⎛

⎜⎝
  
  
  

⎞

⎟⎠ .

By the continuity of g there exist continuous functions εij(x),  ≤ i, j ≤ , such that

G(x) =

⎛

⎜⎝
 + ε(x)  + ε(x) ε(x)

 + ε(x)  + ε(x)  + ε(x)
ε(x)  + ε(x)  + ε(x)

⎞

⎟⎠

and

εij(x) →  as x → x.

Then (.) implies that

⎛

⎜⎝
 + ε(x)  + ε(x) ε(x)

 + ε(x)  + ε(x)  + ε(x)
ε(x)  + ε(x)  + ε(x)

⎞

⎟⎠

⎛

⎜⎝
h(x – a)

h(x)
h(x + a)

⎞

⎟⎠ =

⎛

⎜⎝

b


⎞

⎟⎠
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for a.e. x ∈ [– a
 , a

 ]. By elementary row operations this leads to

⎛

⎜⎝
 + ε(x)  + ε(x) ε(x)

η(x) η(x) η(x)
ε(x)  + ε(x)  + ε(x)

⎞

⎟⎠

⎛

⎜⎝
h(x – a)

h(x)
h(x + a)

⎞

⎟⎠ =

⎛

⎜⎝

b


⎞

⎟⎠ , a.e. x ∈
[

–
a


,
a


]
,

where ηi(x) := εi(x) – εi(x) – εi(x) for  ≤ i ≤ . Since h is a bounded function, ignoring
a possible set of measure zero, this implies that

b = η(x)h(x – a) + η(x)h(x) + η(x)h(x + a) → 

as x → x. This is a contradiction.

On the other hand, the condition g ∈ VN ,a is not necessary for {EmbTnag}m,n∈Z to be
a frame in the considered region. For example, let N = , a = 

 , b =  and take g(x) :=
(e–x – e– 

 )χ[– 
 , 

 ](x). Then elementary calculations show that (A) does not hold for
x ∈ [– 

 , – 
 ] ⊂ [– N

 , – N
 + a

 ]. But since det G(x) >  for x ∈ [– a
 , a

 ], we can prove that
{EmbTnag}m,n∈Z is a frame by following the steps in the proof of Theorem ..

3 The set VN,a

In this section, we give easily verifiable sufficient conditions for a function g to belong
to VN ,a. Recall that a continuous function f : R → C with supp f = [– N

 , N
 ] is piecewise

continuously differentiable if there exist finitely many x = – N
 < x < · · · < xn = N

 such
that

() f is continuously differentiable on ]–xi–, xi[ for every i ∈ {, . . . , n};
() the one-sided limits limx→x+

i–
f ′(x) and limx→x–

i
f ′(x) exist for every i ∈ {, . . . , n}.

Note that if g is a continuous and piecewise continuously differentiable function, then the
fundamental theorem of calculus yields that

�ag(x) =
∫ x

x–a
g ′(t) dt for all x ∈R, a > . (.)

In order to avoid a tedious presentation, we will forego to mention the points where a
piecewise continuously differentiable function is not differentiable, for example, in condi-
tions (c) and (d) in the following Proposition .. The result is inspired by explicit calcula-
tions for B-splines in Trebels and Steidl [], Lemma .

Proposition . Let N >  and assume that a continuous and piecewise continuously dif-
ferentiable function g : R →R with supp g = [– N

 , N
 ] satisfies the following conditions:

(a) g is symmetric around the origin;
(b) g is strictly increasing on [– N

 , ];
(c) g ′ is increasing on ]– N

 , – N
 ];

(d) g ′(–x – N
 ) ≤ g ′(x) for x ∈ [– N

 , [.
Then g ∈ ∩<a<N VN ,a.

Proof Note that conditions (a) and (b) are exactly the same as (A) and (A). Thus, we will
prove (A). In the entire argument, we will assume that g is differentiable; an elementary
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consideration then extends the result to the case of piecewise differentiable functions. Let
us first consider x ≤ – N

 . Then, by the mean value theorem,

�
ag(x) = a

(
g(x) – g(x – a)

a
–

g(x – a) – g(x – a)
a

)
= a

(
g ′(ξ ) – g ′(η)

)

for some η ∈ [x – a, x – a], ξ ∈ [x – a, x]. Since g ′ is increasing up to x = – N
 , this proves

that �
ag(x) ≥  whenever x ≤ – N

 .
We now consider x ∈ [– N

 , min(– N
 + a

 , )]. Then

x – a ≤ min

(
–

N


–
a


, –a
)

≤ –
N


and

�
ag(x) =

∫ – N


x–a

(
g ′(t) – g ′(t – a)

)
dt +

∫ x

– N


(
g ′(t) – g ′(t – a)

)
dt

≥
∫ – N



x–a

(
g ′(t) – g ′(t – a)

)
dt +

∫ x

– N


(
g ′

(
–t –

N


)
– g ′(t – a)

)
dt

= g
(

–
N


)
– g

(
–

N


– a
)

– g(x – a) + g(x – a)

– g
(

–x –
N


)
– g(x – a) + g

(
N


–
N


)
+ g

(
–

N


– a
)

= g
(

–
N


)
– g(x – a) –

[
g
(

–a –
N


)
– g(x – a)

]
(.)

+ g
(

–
N


)
– g(x – a) –

[
g
(

–x –
N


)
– g

(
–a –

N


)]
. (.)

We now consider the terms (.) and (.) separately. For (.), by the mean value theorem,

g
(

–
N


)
– g(x – a) –

[
g
(

–a –
N


)
– g(x – a)

]

=
(

–
N


– x + a
)(g(– N

 ) – g(x – a)
– N

 – x + a
–

g(–a – N
 ) – g(x – a)

– N
 – x + a

)

=
(

–
N


– x + a
)(

g ′(ξ ) – g ′(η)
)

for some η ∈ [x – a, –a – N
 ], ξ ∈ [x – a, – N

 ]. Since –a – N
 ≤ x – a, we have η ≤ ξ ≤ – N

 ;
thus, by assumption (c), g ′(η) ≤ g ′(ξ ). Recalling that x ≤ – N

 + a
 < – N

 + a, we have– N
 –

x + a > ; thus, we conclude that the term in (.) indeed is nonnegative.
For (.), we consider two cases. If x – a ≥ –x – N

 , then exactly the same argument as for
(.) works. If x – a < –x – N

 , then we perform the same argument after a rearrangement
of the terms. Indeed,

g
(

–
N


)
– g(x – a) –

[
g
(

–x –
N


)
– g

(
–a –

N


)]

= g
(

–
N


)
– g

(
–x –

N


)
–

[
g(x – a) – g

(
–a –

N


)]
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=
(

x +
N


)(g(– N
 ) – g(–x – N

 )
x + N


–

g(x – a) – g(–a – N
 )

x + N


)

=
(

x +
N


)(
g ′(ξ ) – g ′(η)

)

for some η ∈ [–a – N
 , x – a], ξ ∈ [–x – N

 , – N
 ]. As before, this implies that (.) is nonneg-

ative.
We now consider x = – N

 + a
 ; according to (.), we must prove that

g
(

N


–
a


)
– g

(
–

N


–
a


)
≥ . (.)

First, if a > N
 (i.e., – N

 + a
 > N

 ), then we have

g
(

N


–
a


)
– g

(
–

N


–
a


)

=
N – a



(g( N
 – a

 ) – g(– N
 – a

 )
N–a


–

g(– N
 – a

 ) – g( –N
 + a

 )
N–a



)

=
N – a


(
g ′(ξ ) – g ′(η)

)

for some ξ ∈ [– N
 – a

 , N
 – a

 ], η ∈ [– N
 + a

 , – N
 – a

 ]; thus, (.) holds by assumption (c).
Now assume that N

 < a ≤ N
 ; then – N

 + a
 ≤ N

 , and

–
N


≤ N


–
a


≤ , –
N


–
a


< –
N


+
a


< .

Thus,

g
(

N


–
a


)
– g

(
–

N


–
a


)

≥ g
(

–
N


)
– g

(
–

N


–
a


)
–

(
g
(

–
N


–
a


)
– g

(
–

N


–
a


))
;

this can again be expressed in terms of the difference g ′(ξ ) – g ′(η) with ξ ∈ [– N
 – a

 , – N
 ],

η ∈ [– N
 – a

 , – N
 – a

 ] and is hence positive.
Finally, we assume that N

 ≤ a ≤ N
 . Then – N

 + a
 ≤ N

 ; since – N
 – a

 < – a
 , assump-

tion (b) implies that

g
(

N


–
a


)
– g

(
–

N


–
a


)
≥ g

(
N


–
a


)
– g

(
–

a


)
≥

∫ N
 – a



– a


g ′(t) dt =: (∗).

Since – N
 ≤ – a

 < N
 – a

 ≤ , (d) implies that

(∗) ≥
∫ N

 – a


– a


g ′
(

–t –
N


)
dt =

∫ – N
 + a



– N
 + a



g ′(t) dt =: (∗∗).
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Since – N
 + a

 ≤ – N
 and g ′ is increasing on ]–∞, – N

 ], shifting the integration interval by
– N

 + a
 ≥  to the left yields that

(∗∗) ≥
∫ – N

 – a


– N


g ′(t) dt = g
(

–
N


–
a


)
;

thus, (.) holds, as desired. �

Proposition . immediately leads to the following simple criterion for a function to
belong to

⋂
<a<N VN ,a.

Corollary . Let N >  and assume that a continuous and piecewise continuously differ-
entiable function g : R→R with supp g = [– N

 , N
 ] satisfies the following conditions:

(a) g is symmetric around the origin;
(b) g ′ is positive and increasing on ]– N

 , [.
Then g ∈ ⋂

<a<N VN ,a.

We will now describe several functions belonging to VN ,a, either for all a from ], N[ or
from a subinterval hereof.

Example . Consider the B-splines BN , N ∈N, defined recursively by

B = χ[–/,/], BN+ = BN ∗ B.

In [], Lemma , it is proved that, for N ∈ N \ {},
(i) B′

N is increasing on ]– N
 , – N

 + 
 ];

(ii) B′
N (–x – N

 ) ≤ B′
N (x) for x ∈ [– N

 , [.
Thus, Proposition . implies that BN ∈ ⋂

<a<N VN ,a for N ∈N \ {}.

Example . Let N ∈N \ {} and define

fN (x) := cosN–
(

πx
N

)
χ[– N

 , N
 ](x).

Direct calculations show that, for x ∈ ]– N
 , – N

 ],

f ′′
N (x) =

(N – )π

N cosN–
(

πx
N

)(
(N – ) sin

(
πx
N

)
– cos

(
πx
N

))
≥ 

and, for x ∈ [– N
 , [,

f ′
N (x) – f ′

N

(
–x –

N


)
=

(N – )π
N

sin

(
πx
N

)(
sinN–

(
πx
N

)
– cosN–

(
πx
N

))
≥ .

By Proposition ., fN ∈ ⋂
<a<N VN ,a.

In the following examples we consider continuous and compactly supported ‘variants’
of the two-sided exponential function, the Gaussian, and other classical functions.
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Example . Let N >  and define

hN (x) :=
(
e–|x| – e– N


)
χ[– N

 , N
 ](x).

Then hN ∈ ⋂
<a<N VN ,a by Corollary ..

Example . Let N >  and define

kN (x) :=
(


 + |x| –


 + N



)
χ[– N

 , N
 ](x).

Then kN ∈ ⋂
<a<N VN ,a by Corollary ..

In the following examples simple sufficient conditions in Proposition . and Corol-
lary . are not satisfied. We will use the definition directly to show that the considered
functions belong to VN ,a for certain ranges of the parameter a.

Example . Let N >  and consider

pN (x) :=
(


 + x –


 + ( N

 )

)
χ[– N

 , N
 ](x).

We will show that
(a) pN ∈ ⋂

N
 ≤a<N VN ,a;

(b) pN ∈ ⋂
N
 ≤a< N


VN ,a if N ≥

√

 ≈ . · · · .

It is clear that (A) and (A) hold, so for the considered values of a, we now check (A). In
fact, we will prove more, namely that

�
apN (x) ≥ , x ∈

[
–

N


, –
N


+
a


]
. (.)

Considering any a ∈ [ N
 , N[, we have

–
N


< –
N


+
a


<
N


, a –
N


< –
N


+
a


< a +
N


, –
N


+
a


< a –
N


;

so the fact that pN >  on ]– N
 , N

 [, pN (· – a) >  on ]a – N
 , a + N

 [, and pN (· – a) >  on
]a – N

 , a + N
 [ immediately shows that

() pN (x) = , x ∈ ] – N
 , – N

 + a
 ];

() pN (x – a) = , x ∈ [– N
 , a – N

 ]; pN (x – a) = , x ∈ ]a – N
 , – N

 + a
 ];

() pN (x – a) = , x ∈ [– N
 , – N

 + a
 ].

Thus,

�
apN (x) =

{
pN (x), x ∈ [– N

 , – N
 + a],

pN (x) – pN (x – a), x ∈ ]– N
 + a, – N

 + a
 ].

Since pN (x) ≥ , x ∈ [– N
 , – N

 + a], it now suffices to prove that

pN (x) – pN (x – a) ≥ , x ∈
]

–
N


+ a, –
N


+
a


]
. (.)
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Let x ∈ ]– N
 + a, – N

 + a
 ]. We see that

pN (x) – pN (x – a) = pN (x) – pN (x – a) – pN (x – a)

=


 + x –


 + (x – a) –
(


 + (x – a) –


 + ( N

 )

)

=
(x – a) – x

( + x)( + (x – a))
–

( N
 ) – (x – a)

( + (x – a))( + ( N
 ))

. (.)

In order to prove (a), we now assume that N
 ≤ a < N . Since x ≤ ( N

 ) and (x–a) –x ≥
, we have

pN (x) – pN (x – a) ≥ (x – a) – x

( + ( N
 ))( + (x – a))

–
( N

 ) – (x – a)

( + (x – a))( + ( N
 ))

=
h(x)

( + ( N
 ))( + (x – a))

,

where

h(x) := (x – a) – x –
N


= (x – a) – a –

N


.

Note that the quadratic function h is symmetric around x = a. Since – N
 + a

 < a and
N
 ≤ a < N , we have

h(x) ≥ h
(

–
N


+
a


)
=




(N – a)(a – N) ≥ . (.)

Thus,

pN (x) – pN (x – a) ≥ .

Therefore, (.) holds, that is, the proof of (a) is completed.
In order to prove (b), assume now that N ≥

√

 and N

 ≤ a < N
 . Since (x – a) – x =

a( a
 – x) and ( N

 ) – (x – a) = ( N
 – x + a)( N

 + x – a), (.) implies that

pN (x) – pN (x – a) =


 + (x – a)

(a( a
 – x)

 + x –
( N

 – x + a)( N
 + x – a)

 + ( N
 )

)
.

Using – N
 + a < x ≤ – N

 + a
 , it follows that N

 – x + a < N and N
 + x – a ≤ N

 – a
 ≤ –x + a

 ;
thus,

pN (x) – pN (x – a) ≥ 
 + (x – a)

(a( a
 – x)

 + x –
N( a

 – x)
 + ( N

 )

)

=
a
 – x

 + (x – a)

(
q(x)

( + x)( + ( N
 ))

)
,
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where q(x) := a( + ( N
 )) – N( + x). Since N

 ≤ a < N
 and – N

 + a < x ≤ – N
 + a

 , we
have – N

 < x ≤ N
 ; so x < N

 . Thus,

q(x) ≥ 
N


(
 +

(
N


))
– N

(
 +

N



)
= N

(
–




+
N



)
≥ .

Thus, pN (x) – pN (x – a) ≥ . Therefore, (.) holds, as desired.

Example . Let N >  and consider

gN (x) :=
(
e–x

– e– N


)
χ[– N

 , N
 ](x).

We will show that gN ∈ ⋂
N
 ≤a<N VN ,a. As in Example . (see (.)), it suffices to check

that

gN (x) – gN (x – a) ≥ , x ∈
]

–
N


+ a, –
N


+
a


]
.

Let x ∈ ]– N
 + a, – N

 + a
 ], and a ∈ [ N

 , N[. We see that

gN (x) – gN (x – a) = gN (x) – gN (x – a) – gN (x – a)

= e–x – e–(x–a) –
(
e–(x–a) – e– N


)

= e–(x–a)(
e(x–a)–x

– 
)

– e– N


(
e

N
 –(x–a)

– 
)
.

Since –(x – a) ≥ – N

 and (x – a) – x ≥ , we have

gN (x) – gN (x – a) ≥ e– N


(
e(x–a)–x

– 
)

– e– N


(
e

N
 –(x–a)

– 
)

= e– N


(
e(x–a)–x

– e
N
 –(x–a))

= e–(x–a)(
eh(x) – 

)
,

where h(x) := (x – a) – x – ( N
 ). From (.) we have h(x) ≥ . Thus,

gN (x) – gN (x – a) ≥ ,

as desired.
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