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Somatic cells could be directly converted into induced neural stem cells (iNSCs) by ectopic expression of defined
transcription factors. However, the underlying mechanism of direct lineage transition into iNSCs is largely
unknown. In this study, we examined the effect of genetic background on the direct conversion process into
an iNSC state. The iNSCs from two different mouse strains exhibited the distinct efficiency of lineage conversion
as well as clonal expansion. Furthermore, the expression levels of endogenous NSC markers, silencing of
transgenes, and in vitro differentiation potential were also different between iNSC lines from different strains.
Therefore, our data suggest that the genetic background of starting cells influences the conversion efficiency as
well as reprogramming status of directly converted iNSCs.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recent studies in the stem cell field have demonstrated that cell fate
transition could be achieved by introducing lineage-specific transcrip-
tion factors with appropriate extrinsic signals. The ectopic expression
of Oct4, Sox2, Klf4, and c-Myc with distinct culture conditions could
induce either an embryonic stem cell- (Takahashi and Yamanaka,
2006) or epiblast stem cell-like state (Han et al., 2011) on somatic
cells. Moreover, the different combinations of cell type specific tran-
scription factors could directly convert the somatic cells not only into
distinct somatic cell types such as dopaminergic neurons, endothelial
cells, cardiomyocytes, embryonic sertoli-like cells, motor neurons, and
hepatocytes (Buganim et al., 2012; Caiazzo et al., 2011; Huang et al.,
2011; Ieda et al., 2010; Margariti et al., 2012; Sekiya and Suzuki, 2011;
, induced pluripotent stem cells;
embryonic fibroblasts; qPCR,
ural stem cells.
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Son et al., 2011) but also the self-renewing somatic stem cells or pro-
genitor cells including definitive endoderm-like cells, neural crest
cells, neuroepithelial progenitors, cardiac progenitors, and hepatic
stem cells (Li et al., 2014; Kim et al., 2014a; Lu et al., 2013; Efe et al.,
2011; Yu et al., 2013).

Although previous studies have developed a variety of technologies
to directly convert somatic cells into distinct cell types, the conversion
efficiency into the target cell types is very low. Therefore, to facilitate
the cell fate transition into distinct cellular identities and also to under-
stand the underlying mechanisms of lineage transition, many previous
studies screened factors boosting or inhibiting cell fate transition, such
as epigenetic modifiers, chromatic remodeling complexes, microenvi-
ronments, additional transcription factors, non-transcription factors,
and genetic backgrounds. First, the early chemical screening studies
revealed the inhibitory factors including histone methyltransferases,
DNA methyltransferases, and histone deacetylases whose inhibition by
small molecules could improve the reprogramming efficiency into
iPSCs (Shi et al., 2008; Mikkelsen et al., 2008; Huangfu et al., 2008).
Second, the boosting effects of chromatin remodeling complexes, DNA
hydroxylase and its associated factor, and even basic transcription
machinery have been also well documented throughout previous
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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reprogramming studies (dos Santos et al., 2014; Singhal et al., 2010; Gao
et al., 2013; Doege et al., 2012; Pijnappel et al., 2013). Third, the effects
of microenvironment such as hypoxia condition, soluble factors
including Vitamin C, and the metabolic switch from the somatic state
into the pluripotent state were also carefully investigated during the
iPSC generation (Yoshida et al., 2009; Esteban et al., 2010; Mathieu
et al., 2014). Fourth, the additional transcription factors and also non-
transcription factors even including microRNAs in combination with
Oct4, Sox2, Klf4, and c-Myc also displayed a positive effect on the induc-
tion of pluripotency (Buganim et al., 2014; Han et al., 2010; Hanna et al.,
2008; Maekawa et al., 2011; Redmer et al., 2011; Subramanyam et al.,
2011). Finally, the genetic background could also influence the induc-
tion and maintenance of pluripotency (Schnabel et al., 2012; Hanna
et al., 2009). However, the effects of the above-mentioned additional
genetic and epigenetic factors on the direct conversion into distinct
somatic cell fates are largely unknown.

We have previously shown that the ectopic expression of Brn4/
Pou3f4, Sox2, Klf4 and c-Myc (BSKM) could enable the direct conversion
of mouse embryonic fibroblasts (MEFs) into a neural stem cell (NSC)-
like state, namely induced NSCs (iNSCs) (Han et al., 2012; Kim et al.,
2014b). The directly converted iNSCs closely resemble control NSCs
from brain-tissue in terms of the gene expression pattern, epigenetic
status, self-renewal capacity and their in vitro and in vivo differentiation
potential (Han et al., 2012; Kimet al., 2014b). Furthermore, iNSCs exhib-
ited the therapeutic potential after transplantation into disease model
without forming tumor up to 6 months (Hong et al., 2014; Hemmer
et al., 2014), suggesting the potential clinical application of iNSCs in
neuronal diseases. However, our previous studies demonstrated the
iNSC generation only using MEFs from the C3H mouse strain back-
ground (Han et al., 2012; Kim et al., 2014b).

In the current study, we compared two different genetic back-
grounds on the induction andmaintenance ofmultipotency by generat-
ing clonal iNSC lines from two distinct mouse strains (C57BL/6 vs. C3H).
Clonal iNSC lines from distinct genetic backgrounds exhibited the
distinct levels of conversion efficiency, endogenous NSCmarkers, trans-
gene expression, and in vitro differentiation although iNSC lines from
both strains shared typical features of NSCs such as morphology, gene
expression pattern, and epigenetic status, indicating that the genetic
backgrounds influence the cell fate transition into an iNSC state. In addi-
tion, the comparative analysis of clonal iNSC lines could serve as a
platform for screening the most suitable and functional iNSC line for
clinical translation of direct conversion technology.

2. Materials and methods

2.1. Cell culture

Mouse embryonic fibroblasts (MEFs) were isolated from C57BL/6
and C3H mouse strains on E13.5 after carefully removing the head,
spinal cord, and all the internal organs. MEFs were maintained in
DMEM (Biowest) containing 10% fetal bovine serum (FBS) (Biowest),
1× MEM/NEAA (Gibco), and 1× penicillin/streptomycin/glutamine
(Invitrogen). Both NSCs and iNSCs were maintained in neural stem
cell medium (NSM): DMEM/F-12 (Gibco) containing, 1× B27 supple-
ments (Gibco), 1× penicillin/streptomycin/glutamine (Invitrogen),
0.05% BSA fraction V (Invitrogen), 10 ng/ml of basic fibroblast growth
factor (bFGF) (Peprotech), and 10 ng/ml of epidermal growth factor
(EGF) (Peprotech).

2.2. Retrovirus production

The retroviral particles were produced by transfection of pMXs
vectors into Platinum E cells (Plat-E cells, Cell Biolabs). Briefly, 9 μg of
pMXs vectors was transfected into the Plat-E cells using 27 μl of FuGENE
6 transfection reagent (Promega). After 48 h, the supernatants
containing viral particles were carefully collected and filtered through
a 0.22-μm syringe filter (Minisart).

2.3. Generation of iNSCs

For generating iNSCs, 5 × 104 MEFs were plated onto gelatin-coated
35mmcell culture dish. Next day,MEFswere transducedwith retroviral
particles encoding BSKM and cultured as previously described (Han
et al., 2012; Kim et al., 2014b). Briefly, the transducedMEFs weremain-
tained in NSM, which was replaced with fresh medium every other day
until the initial clusters were observed. Once the initial clusters become
mature, whole cells were split in a 1:1 ratio for the iNSC expansion.

2.4. Establishment of clonal iNSC lines

For establishment of clonal iNSC lines, FACS-mediated single cell
sorting was performed at 6 weeks after viral transduction. The
iNSCs were carefully dissociated with Trypsin/EDTA (Gibco), and
collected with DMEM (Biowest) containing 10% FBS, and then
washed with PBS (Biowest). The cells were incubated with FITC-
conjugated SSEA1 antibody (Santa Cruz Biotechnology, 1:10) for
15 min at room temperature. The SSEA1-positive single cells were
sorted using BD FACSAria™ (BD Biosciences) and plated onto
laminin/poly-D-lysine–coated 96-well plates. To measure the cell
survival, the expanded colonies were counted 10 days after sorting.
Three clonal iNSC lines from each strain were expanded and main-
tained for comparative analysis.

2.5. RT-PCR and qPCR

Total RNA was isolated from samples by using the Hybrid-R™ RNA
isolation kit (GeneAll) according to the manufacturer's protocol. 1 μg
of isolated RNA was converted to complementary DNA (cDNA)
using the High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems). RT-PCR was performed using the GoTag green master
mix (Promega). qPCR was performed using SYBR green PCR Master
Mix (Applied Biosystems) on the ABI 7500 real-time PCR system
(Applied Biosystems). ΔCt values were calculated by subtracting
Gapdh Ct value from that of each target genes. Relative expression levels
were calculated by using 2−ΔΔCt methods. The primer sets used are
listed in Supplementary Table S1.

2.6. Bisulfite sequencing

To investigate the DNAmethylation status in clonal iNSC lines, bisul-
fite sequencing was performed using EpiTect Bisulfite Kit (QIAGEN). All
unmethylated cytosine residues in genomic DNA were converted into
uracil residues upon sodium bisulfite treatment. SuperTaq polymerase
(Ambion) was used for PCR amplifications. For nested PCR, 3 μl of the
product from the first round of PCR was used as a template for second
round PCR. The amplified products were extracted after electrophoresis
on 1% agarose gels and subcloned into the pCR2.1®-TOPO® TA vector
(Invitrogen) according to the manufacturer's protocol. The QIAprep
SpinMiniprep Kit (QIAGEN)was used to purify the subcloned plasmids.
Individual clones were sequenced (Macrogen, Korea) and analyzed
using QUMA software (http://quma.cdb.riken.jp). The primer sets
used are listed in Supplementary Table S2.

2.7. Immunocytochemistry

The cells were fixed with 4% paraformaldehyde (Chemcruz) for
30 min at room temperature, and then washed 3 times with PBS
(Biowest). After washing, the fixed cells were then permeabilized and
blocked with PBS containing 0.03% Triton X-100 (Sigma Aldrich) and
5% FBS (Biowest) for 1 h at room temperature. The following primary
antibodies were used: mouse anti-NESTIN (Millipore, 1:200), goat
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anti-SOX2 (Santa Cruz Biotechnology, 1:200), rabbit anti-OLIG2
(Millipore, 1:200), mouse anti-SSEA1 (Santa Cruz Biotechnology,
1:100), mouse anti-TUJ1 (Covance, 1:500), rabbit anti-GFAP (Dako,
1:500), and rat anti-MBP (Abcam, 1:100). Cells were incubated with
primary antibodies for 16 h at 4 °C, washed three times with PBS,
and incubated with secondary antibodies for 2 h at room temperature.
The following secondary antibodies were used: Alexa Fluor 488
rabbit anti-goat IgG (Invitrogen, 1:1000), Alexa Fluor 568 rabbit anti-
mouse IgG (Invitrogen, 1:1000), Alexa Fluor 568 goat anti-rabbit
IgG (Invitrogen, 1:1000), Alexa Fluor 488 donkey anti-rabbit IgG
(Invitrogen, 1:1000), and Alexa Fluor 568 goat anti-rat IgG (Invitrogen,
1:1000). Nuclei were counter-stainedwith Hoechst 33342 (Invitrogen).

2.8. In vitro differentiation of iNSCs

For neuron differentiation, iNSCs were dissociated into single
cells and 5 × 104 cells were plated onto laminin/poly-D-lysine–coated
4-well plates. After 24 h, the medium was replaced with neural
differentiation medium: DMEM/F-12 (Gibco) containing 1× B27 sup-
plements (Gibco), 1× penicillin/streptomycin/glutamine (Invitrogen),
and 10 ng/ml bFGF. 4 days after differentiation, the neural maturation
medium containing 200 mM ascorbic acid (Sigma) without growth
factors was supplied for 8–10 more days. For astrocyte differentiation,
iNSCs were cultured in DMEM/F-12 (Gibco) supplemented with 10%
FBS and 1× penicillin/streptomycin/glutamine on gelatin-coated dishes
for 5 days. For oligodendrocyte differentiation, 5 × 104 cells of iNSCs
were plated onto laminin/poly-D-lysine-coated 4-well plates. After
24 h, the medium was replaced with oligodendrocyte differentiation
medium: DMEM/F-12 (Gibco) containing 1× B27 supplements, 1×
penicillin/streptomycin/glutamine, 10 ng/ml bFGF, and 10 ng/ml PDGF
(Sigma). 4 days after differentiation, the oligodendrocyte maturation
medium containing 30 ng/ml T3 (Sigma) and 200 mM ascorbic acid
without growth factors was supplied for another 4 days. The medium
was replaced with fresh medium daily.

3. Results

3.1. Genetic background influences iNSC generation

In order to examine the effect of genetic background on iNSC
generation, we derived mouse embryonic fibroblasts (MEFs) from
C3H and C57BL/6 mouse strains (see Fig. 1A). Both MEFs displayed
typical fibroblast morphology with similar gene expression patterns
and proliferation rates (Fig. 1B, C). We next transduced retroviruses
encoding Brn4, Sox2, Klf4, and c-Myc (BSKM) into these MEFs. The
quantitative polymerase chain reaction (qPCR) analysis indicated
that the expression levels of all transgenes were similar between
MEFs derived from the two strains (Fig. 1D). We then cultured the
transduced MEFs under NSC-promoting conditions. As the initial
iNSCs can be defined by SSEA1 expression (Kim et al., 2014b), we
compared the conversion efficiency into an iNSC state by estimating
the proportion of SSEA1-positive cells from the entire transduced
MEFs at 6 weeks post-infection. Compared to C57BL/6 MEFs that
showed less than 3% of SSEA1-positive cells, more than 8% of
SSEA1-positive cells were observed on the C3H MEFs. These data
indicate that the genetic background influences the conversion effi-
ciency into an iNSC state (Fig. 1E).

3.2. Genetic background influences the survival rate of clonal iNSCs

Wepreviously described that bulk culture of early-passage iNSCs is a
heterogeneous population comprised of non-reprogrammed somatic
cells, partially reprogrammed cells, and fully reprogrammed iNSCs
(Kim et al., 2014b). Thus, to evaluate and compare the reprogramming
status of iNSCs derived from two distinct mouse strains, we next gener-
ated clonal iNSC lines from both strains by sorting SSEA1-positive single
cells into 96-well plates. For the fair comparison, we sorted SSEA1-
positive cells from two independently transduced MEFs per each strain
and established three clonal iNSC lines from each strain. They all exhib-
ited morphology similar to that of control NSCs (cNSCs) derived from
brain-tissues (Fig. 1G). Notably, the survival rate of SSEA1-positive
single cells was significantly different between the two strains
(C57BL/6: 6.9% ± 1.6% vs. C3H: 12.2% ± 2.2%) (Fig. 1F). Thus, these
data suggest that the genetic background also influences the survival
rate of single cell-sorted early stage iNSCs.

3.3. iNSCs from distinct genetic backgrounds exhibit different repro-
gramming status.

All the clonal iNSC lines from both strains expressed typical NSC
markers such as SOX2, NESTIN, OLIG2, and SSEA1 as evidenced by
immunostaining (Fig. 2A and Fig. S1). Furthermore, bisulfite sequencing
analysis revealed that all the clonal iNSC lines showed the promoter
DNA methylation patterns similar to those of cNSCs, but clearly dis-
tinct from those of starting MEFs. Specifically, the regulatory region
of Nestin became demethylated in the iNSC lines, and its methylation
levels were similar in iNSCs and cNSCs (Fig. 2B, C and Fig. S2). The
promoter of Col1a1, a fibroblast marker, was dramatically de novo
methylated in the iNSC lines to a level similar to that of cNSCs. DNA
methylation patterns at these two loci were correlated with their
gene expression status (Fig. 3A). These data suggest that all the
iNSC clones generated from both mouse stains were reprogrammed
into a NSC-like state at both the transcriptional and epigenetic levels.

To further characterize the iNSC clones, we next investigated the
expression levels of NSC and fibroblast markers using qPCR analysis
(Fig. 3A). All clones generated from both strains exhibited activation
of the endogenous NSC markers such as Pax6, Nestin, Olig2, Mash1,
Blbp, Brn2, Sox3 and Msi1 with complete inactivation of the fibroblast
markers, Thy1, Col1a1, and Pdgfrb. Interestingly, Sox2, a representative
NSC marker, was highly activated in all C3H iNSC clones, whereas it
was barely detectable in all C57BL/6 iNSC clones despite of the strong
expression of Sox2 at a protein level (Fig. 2A and Fig. S3). To understand
this discrepancy, we investigated the integration of all transgenes and
their expression patterns in all clones. Genomic PCR analysis indicated
that all transgenes were integrated into the genome of all clones
(Fig. 3B). qPCR analysis showed a complete silencing of BSKM in the
C3H iNSC clones. However, transgenic Sox2 but not the other transgenes
was still highly expressed in all C57BL/6 iNSC clones (Fig. 3C). The resid-
ual expression of exogenous Sox2may explain the discrepancy between
the levels of Sox2 transcript and protein. Thus, iNSC clones derived from
C57BL/6MEFswere partially transgene-dependent. Taken together, our
data show that C57BL/6 MEFs are less susceptible to the conversion
process toward an iNSC state and also that the endogenous NSC tran-
scriptional program is less well established in the C57BL/6 iNSC clones
than in C3H iNSC clones.

3.4. Distinct in vitro differentiation potential of iNSCs derived from two
genetic backgrounds

As the reprogramming status of the iNSC clones derived from the
two mouse strains differed in terms of their gene expression patterns
of both endogenous and exogenous NSC markers, we next investigated
if iNSCs from the two strains have distinct levels of their differentiation
ability. To this end, we induced in vitro differentiation of all iNSC clones
from both C57BL/6 and C3H strains into neurons, astrocytes, and oligo-
dendrocytes. As in our previous studies, iNSC clones derived from C3H
MEFs could differentiate into all three neuronal lineages including
neurons, astrocyte, and oligodendrocytes, as evidenced by the immuno-
staining with antibodies against TUJ1, GFAP, and MBP, respectively
(Fig. 4A, B, C). Notably, the differentiation potential of C3H iNSC clones
into both neurons and astrocytes was nearly comparable to that of
cNSCs, although they rarely differentiated into oligodendrocytes



Fig. 1. Generation of iNSCs from different genetic backgrounds. (A) Schematic illustration showing the procedure for the direct conversion of C57BL/6 and C3H MEFs into iNSCs.
(B) Morphology and marker expression of MEFs. Scale bar, 200 μm. Error bars indicate standard deviation (n = 3). (C) The proliferation of MEFs. MEFs were passaged every other day
in 12-well plates (1 × 105 cells per well). (D) Expression levels of transgenes in MEFs were analyzed by qPCR on day 5 after infection. Expression levels are normalized to those of
untransduced MEFs. Error bars indicate standard deviation (n = 3). (E) The efficiency of iNSC generation was determined by FACS analysis using antibody against SSEA1 at 6 weeks
after viral transduction. MEFs were used as a negative control. (F) The survival rate of iNSCs derived from C57BL/6 and C3H strains after single cell sorting into poly-D-Lysine coated
96-well plates. Data are presented as mean ± standard deviation. (G) Morphology of the established clonal iNSC lines derived from C57BL/6 and C3H strains at passage 10. Scale bars,
200 μm.
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compared to cNSCs (Fig. 4C), in agreement with our previous studies
(Han et al., 2012; Kim et al., 2014b; Hong et al., 2014)wherewe also ob-
served this biased differentiation pattern of C3H iNSCs. In contrast to
C3H iNSCs, all iNSC clones derived from C57BL/6 MEFs exhibited a
significantly impaired differentiation potential into both neurons and
astrocytes (Fig. 4A, B). Furthermore, C57BL/6 iNSCs also showed limited
differentiation into oligodendrocytes, similar to C3H iNSC clones
(Fig. 4C). Although the oligodendrocytes from C3H iNSC clones



Fig. 2. Comparative analysis of clonal iNSC lines derived from the two mouse strains. (A) Immunofluorescence microscopy images of clonal iNSC lines using antibodies against SOX2,
NESTIN, OLIG2, and SSEA1. MEFs and control NSCs were used as negative and positive control, respectively. Scale bars, 200 μm. (B, C) DNA methylation status of the second intron of
Nestin and promoter region of Col1a1 in clonal iNSC lines from C57BL/6 and C3H strains was assessed by bisulfite sequencing PCR. MEFs and control NSCs were served as negative and
positive control, respectively. Open and filled circles represent unmethylated and methylated CpGs, respectively.
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displayed the relatively mature and defined structures, we rarely de-
tected the matured oligodendrocytes from C57BL/6 iNSCs under the
identical differentiation condition. All together, our data indicate that
the genetic background influences the functionality of directly convert-
ed iNSCs.
4. Discussion

To understand the mechanism underlying the induction of
pluripotency, a number of inhibiting and boosting factors have been
identified throughout screeningmultiple epigenetic and genetic factors



Fig. 3.Geneexpression status of clonal iNSC lines derived from twomouse strains. (A) Expression of NSC andfibroblastmarkers in clonal iNSC lines analyzed byqPCR. The expression levels
are normalized to those of MEFs. Error bars indicate the standard deviation (n = 3). (B) Genomic integration of transduced reprogramming factors was examined by genomic PCR.
(C) Expression levels of exogenous reprogramming factors in clonal iNSC lines at passage 20 were examined by qPCR. BSKM-transduced MEFs at day 5 post-infection were used as a
positive control. Error bars indicate the standard deviation (n = 3).
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potentially influencing iPSC generation. However, the factors that
positively or negatively affect the induction of multipotency or
unipotency via the direct conversion process, remain elusive. In this
study, we tried to elucidate the effect of the genetic background on
the induction and maintenance of iNSCs.

Although we were able to generate stably expandable iNSC lines
from both mouse strains tested (C57BL/6 and C3H), these iNSC
lines exhibited substantial differences in both the induction and
maintenance phases of multipotency. First, the conversion efficiency
as assessed by the number of SSEA1-positive population was
significantly different between the two mouse strains. Furthermore,
iNSCs from the C57BL/6 strain showed relatively poor induction of
an iNSC state, as evidenced by impaired activation of endogenous
Sox2 and incomplete silencing of transgenic Sox2. Thus, these data
suggest that the genetic background influences the induction of
multipotency in a neuronal lineage. Second, the survival rates of
sorted SSEA1-positive single cells was also significantly different
between iNSC clones from the two strains, indicating that the main-
tenance of iNSC identity after successful conversion into the SSEA1-
positive iNSC state is also influenced by the genetic backgrounds.
Moreover, all clonal iNSC lines derived from C57BL/6 strain
displayed the limited in vitro differentiation potential into neurons,



Fig. 4. In vitro differentiation potential of clonal iNSC lines derived from two mouse strains. (A–C) Differentiation potential of clonal iNSC lines into neurons (A) astrocytes (B) and
oligodendrocytes (C) as shown by immunostaining with antibodies against TUJ1, GFAP, and MBP, respectively. The efficiency of differentiation was examined by quantifying the
numbers of TUJ1-, GFAP-, and MBP-positive cells against nuclear staining. Control NSCs were used as a positive control for determining the differentiation efficiency. Scale bars, 100 μm.
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astrocytes, and oligodendrocytes, indicating that the functionality of
the iNSCs was also impaired in C57BL/6 iNSCs.

We observed the abnormally increased proliferation of C57BL/6
iNSC clones compared to C3H iNSCs and cNSCs (data not shown). In
the previous study (Graham et al., 2003), it was demonstrated that
the ectopic expression of Sox2 could induce increased proliferation
and also block the proper differentiation of NSCs into their daughter
cell types. Thus, the increased proliferation rate and impaired differenti-
ation ability of C57BL/6 iNSCs can be explained by the residual
expression of exogenous Sox2 in C57BL/6 iNSCs (Fig. 2A, Fig. 3C and
Fig. S3). It would be interesting to further decipher the mechanism
governing the strain-dependent regulation of both the endogenous
NSC program and transgenes, which might be tightly linked to the
functionality of iNSCs. Finally, it would be also interesting to examine
whether the effect of the genetic background on the induction and
maintenance of other cell types (e.g. induced hepatocytes and induced
neurons) directly converted from somatic cells by defined transcription
factors.

Recent studies have described that the distinct combinations of
transcription factors can induce direct conversion of various human
cells into an iNSC-like state (Lu et al., 2013; Ring et al., 2012; Wang
et al., 2013; Yu et al., 2015; Zhu et al., 2014). Although the data provided
in these studies support the cellular identity of human iNSCs, their
molecular and functional features were not precisely characterized at
the clonal level. Therefore, comparing the induction and maintenance
of the NSC fate on human somatic cells at the clonal level might allow
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us to elucidate the underlying mechanism of direct conversion into
NSCs.

5. Conclusion

In this study, we established iNSCs from two different mouse strains
(C3H and C57BL/6). These two iNSCs exhibited distinct reprogramming
status in terms of NSC markers expression, silencing of transgenes, and
in vitro differentiation potential. Our data suggest that the genetic back-
grounds influence the induction and maintenance of directly converted
iNSCs. This is the first report describing the effects of genetic back-
grounds on the cell fate transition into an iNSC state.

Conflict of interest

The authors declare that they have no conflicts of interest with the
contents of this article.

Author contributions

S.M.K., K.T.L., and T.H.K. performed most of the experiments. S.C.L.,
J.H.I., S.H. measured the expression level of SOX2 protein. J.H., S.I.H. per-
formed the DNAmethylation analysis and proliferation assay. H.C., D.K.,
H.T.L., and K.K. performed functional assay of iNSCs. K.K., H.C., and H.R.S.
edited the manuscript. D.W.H. conceived the project and wrote the
manuscript.

Acknowledgments

This research was supported by the Basic Science Research Program
through the National Research Foundation of Korea (NRF), funded by
the Ministry of Education, Science and Technology (2011-0013885)
and also by Korea Health Technology R&D Project, Ministry of Health
& Welfare Grant A120392.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scr.2016.02.025.

References

Buganim, Y., Itskovich, E., Hu, Y.C., Cheng, A.W., Ganz, K., Sarkar, S., Fu, D., Welstead, G.G.,
Page, D.C., Jaenisch, R., 2012. Direct reprogramming of fibroblasts into embryonic
Sertoli-like cells by defined factors. Cell Stem Cell 11, 373–386.

Buganim, Y., Markoulaki, S., van Wietmarschen, N., Hoke, H., Wu, T., Ganz, K., Akhtar-
Zaidi, B., He, Y., Abraham, B.J., Porubsky, D., Kulenkampff, E., Faddah, D.A., Shi, L.,
Gao, Q., Sarkar, S., Cohen, M., Goldmann, J., Nery, J.R., Schultz, M.D., Ecker, J.R., Xiao,
A., Young, R.A., Lansdorp, P.M., Jaenisch, R., 2014. The developmental potential of
iPSCs is greatly influenced by reprogramming factor selection. Cell Stem Cell 15,
295–309.

Caiazzo, M., Dell'Anno, M.T., Dvoretskova, E., Lazarevic, D., Taverna, S., Leo, D., Sotnikova,
T.D., Menegon, A., Roncaglia, P., Colciago, G., Russo, G., Carninci, P., Pezzoli, G.,
Gainetdinov, R.R., Gustincich, S., Dityatev, A., Broccoli, V., 2011. Direct generation of
functional dopaminergic neurons from mouse and human fibroblasts. Nature 476,
224–227.

Doege, C.A., Inoue, K., Yamashita, T., Rhee, D.B., Travis, S., Fujita, R., Guarnieri, P., Bhagat, G.,
Vanti, W.B., Shih, A., Levine, R.L., Nik, S., Chen, E.I., Abeliovich, A., 2012. Early-stage
epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Na-
ture 488, 652–655.

dos Santos, R.L., Tosti, L., Radzisheuskaya, A., Caballero, I.M., Kaji, K., Hendrich, B., Silva, J.C.,
2014. MBD3/NuRD facilitates induction of pluripotency in a context-dependent
manner. Cell Stem Cell 15, 102–110.

Efe, J.A., Hilcove, S., Kim, J., Zhou, H., Ouyang, K., Wang, G., Chen, J., Ding, S., 2011. Conver-
sion ofmouse fibroblasts into cardiomyocytes using a direct reprogramming strategy.
Nat. Cell Biol. 13, 215–222.

Esteban, M.A., Wang, T., Qin, B., Yang, J., Qin, D., Cai, J., Li, W.,Weng, Z., Chen, J., Ni, S., Chen,
K., Li, Y., Liu, X., Xu, J., Zhang, S., Li, F., He, W., Labuda, K., Song, Y., Peterbauer, A.,
Wolbank, S., Redl, H., Zhong, M., Cai, D., Zeng, L., Pei, D., 2010. Vitamin C enhances
the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell
6, 71–79.

Gao, Y., Chen, J., Li, K., Wu, T., Huang, B., Liu, W., Kou, X., Zhang, Y., Huang, H., Jiang, Y., Yao,
C., Liu, X., Lu, Z., Xu, Z., Kang, L., Chen, J., Wang, H., Cai, T., Gao, S., 2013. Replacement of
Oct4 by Tet1 during iPSC induction reveals an important role of DNAmethylation and
hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–469.

Graham, V., Khudyakov, J., Ellis, P., Pevny, L., 2003. SOX2 functions to maintain neural
progenitor identity. Neuron 39, 749–765.

Han, J., Yuan, P., Yang, H., Zhang, J., Soh, B.S., Li, P., Lim, S.L., Cao, S., Tay, J., Orlov, Y.L.,
Lufkin, T., Ng, H.H., Tam, W.L., Lim, B., 2010. Tbx3 improves the germ-line competen-
cy of induced pluripotent stem cells. Nature 463, 1096–1100.

Han, D.W., Greber, B., Wu, G., Tapia, N., Arauzo-Bravo, M.J., Ko, K., Bernemann, C., Stehling,
M., Scholer, H.R., 2011. Direct reprogramming of fibroblasts into epiblast stem cells.
Nat. Cell Biol. 13, 66–71.

Han, D.W., Tapia, N., Hermann, A., Hemmer, K., Hoing, S., Arauzo-Bravo, M.J., Zaehres, H.,
Wu, G., Frank, S., Moritz, S., Greber, B., Yang, J.H., Lee, H.T., Schwamborn, J.C., Storch,
A., Scholer, H.R., 2012. Direct reprogramming of fibroblasts into neural stem cells
by defined factors. Cell Stem Cell 10, 465–472.

Hanna, J., Markoulaki, S., Schorderet, P., Carey, B.W., Beard, C., Wernig, M., Creyghton,
M.P., Steine, E.J., Cassady, J.P., Foreman, R., Lengner, C.J., Dausman, J.A., Jaenisch, R.,
2008. Direct reprogramming of terminally differentiated mature B lymphocytes to
pluripotency. Cell 133, 250–264.

Hanna, J., Markoulaki, S., Mitalipova, M., Cheng, A.W., Cassady, J.P., Staerk, J., Carey, B.W.,
Lengner, C.J., Foreman, R., Love, J., Gao, Q., Kim, J., Jaenisch, R., 2009. Metastable
pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524.

Hemmer, K., Zhang, M., van Wullen, T., Sakalem, M., Tapia, N., Baumuratov, A.,
Kaltschmidt, C., Kaltschmidt, B., Scholer, H.R., Zhang, W., Schwamborn, J.C., 2014. In-
duced neural stem cells achieve long-term survival and functional integration in the
adult mouse brain. Stem Cell Rep. 3, 423–431.

Hong, J.Y., Lee, S.H., Lee, S.C., Kim, J.W., Kim, K.P., Kim, S.M., Tapia, N., Lim, K.T., Kim, J., Ahn,
H.S., Ko, K., Shin, C.Y., Lee, H.T., Scholer, H.R., Hyun, J.K., Han, D.W., 2014. Therapeutic
potential of induced neural stem cells for spinal cord injury. J. Biol. Chem. 289,
32512–32525.

Huang, P., He, Z., Ji, S., Sun, H., Xiang, D., Liu, C., Hu, Y., Wang, X., Hui, L., 2011. Induction of
functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature
475, 386–389.

Huangfu, D., Maehr, R., Guo, W., Eijkelenboom, A., Snitow, M., Chen, A.E., Melton, D.A.,
2008. Induction of pluripotent stem cells by defined factors is greatly improved by
small-molecule compounds. Nat. Biotechnol. 26, 795–797.

Ieda, M., Fu, J.D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B.G., Srivastava,
D., 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by de-
fined factors. Cell 142, 375–386.

Kim, Y.J., Lim, H., Li, Z., Oh, Y., Kovlyagina, I., Choi, I.Y., Dong, X., Lee, G., 2014a.
Generation of multipotent induced neural crest by direct reprogramming of
human postnatal fibroblasts with a single transcription factor. Cell Stem Cell
15, 497–506.

Kim, S.M., Flasskamp, H., Hermann, A., Arauzo-Bravo, M.J., Lee, S.C., Lee, S.H., Seo, E.H., Lee,
S.H., Storch, A., Lee, H.T., Scholer, H.R., Tapia, N., Han, D.W., 2014b. Direct conversion
of mouse fibroblasts into induced neural stem cells. Nat. Protoc. 9, 871–881.

Li, K., Zhu, S., Russ, H.A., Xu, S., Xu, T., Zhang, Y., Ma, T., Hebrok, M., Ding, S., 2014. Small
molecules facilitate the reprogramming of mouse fibroblasts into pancreatic lineages.
Cell Stem Cell 14, 228–236.

Lu, J., Liu, H., Huang, C.T., Chen, H., Du, Z., Liu, Y., Sherafat, M.A., Zhang, S.C., 2013.
Generation of integration-free and region-specific neural progenitors from primate
fibroblasts. Cell Rep. 3, 1580–1591.

Maekawa, M., Yamaguchi, K., Nakamura, T., Shibukawa, R., Kodanaka, I., Ichisaka, T.,
Kawamura, Y., Mochizuki, H., Goshima, N., Yamanaka, S., 2011. Direct reprogramming
of somatic cells is promoted by maternal transcription factor Glis1. Nature 474,
225–229.

Margariti, A., Winkler, B., Karamariti, E., Zampetaki, A., Tsai, T.N., Baban, D.,
Ragoussis, J., Huang, Y., Han, J.D., Zeng, L., Hu, Y., Xu, Q., 2012. Direct
reprogramming of fibroblasts into endothelial cells capable of angiogenesis and
reendothelialization in tissue-engineered vessels. Proc. Natl. Acad. Sci. U. S. A.
109, 13793–13798.

Mathieu, J., Zhou, W., Xing, Y., Sperber, H., Ferreccio, A., Agoston, Z., Kuppusamy, K.T.,
Moon, R.T., Ruohola-Baker, H., 2014. Hypoxia-inducible factors have distinct and
stage-specific roles during reprogramming of human cells to pluripotency. Cell
Stem Cell 14, 592–605.

Mikkelsen, T.S., Hanna, J., Zhang, X., Ku, M., Wernig, M., Schorderet, P., Bernstein, B.E.,
Jaenisch, R., Lander, E.S., Meissner, A., 2008. Dissecting direct reprogramming through
integrative genomic analysis. Nature 454, 49–55.

Pijnappel, W.W., Esch, D., Baltissen, M.P., Wu, G., Mischerikow, N., Bergsma, A.J., van der
Wal, E., Han, D.W., Bruch, H., Moritz, S., Lijnzaad, P., Altelaar, A.F., Sameith, K.,
Zaehres, H., Heck, A.J., Holstege, F.C., Scholer, H.R., Timmers, H.T., 2013. A central
role for TFIID in the pluripotent transcription circuitry. Nature 495, 516–519.

Redmer, T., Diecke, S., Grigoryan, T., Quiroga-Negreira, A., Birchmeier, W., Besser, D., 2011.
E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4
during somatic cell reprogramming. EMBO Rep. 12, 720–726.

Ring, K.L., Tong, L.M., Balestra, M.E., Javier, R., Andrews-Zwilling, Y., Li, G., Walker, D.,
Zhang, W.R., Kreitzer, A.C., Huang, Y., 2012. Direct reprogramming of mouse and
human fibroblasts into multipotent neural stem cells with a single factor. Cell Stem
Cell 11, 100–109.

Schnabel, L.V., Abratte, C.M., Schimenti, J.C., Southard, T.L., Fortier, L.A., 2012. Genetic
background affects induced pluripotent stem cell generation. Stem Cell Res. Ther. 3,
30.

Sekiya, S., Suzuki, A., 2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells
by defined factors. Nature 475, 390–393.

Shi, Y., Do, J.T., Desponts, C., Hahm, H.S., Scholer, H.R., Ding, S., 2008. A combined chemical
and genetic approach for the generation of induced pluripotent stem cells. Cell Stem
Cell 2, 525–528.

http://dx.doi.org/10.1016/j.scr.2016.02.025
http://dx.doi.org/10.1016/j.scr.2016.02.025
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0005
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0005
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0010
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0010
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0010
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0015
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0015
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0015
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0020
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0020
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0020
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0025
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0025
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0030
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0030
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0030
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0035
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0035
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0035
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0040
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0040
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0040
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0045
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0045
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0050
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0050
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0055
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0055
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0060
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0060
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0065
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0065
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0070
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0070
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0075
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0075
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0075
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0080
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0080
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0080
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0085
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0085
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0085
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0090
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0090
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0095
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0095
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0100
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0100
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0100
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0105
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0105
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0110
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0110
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0110
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0115
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0115
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0120
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0120
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0120
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0125
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0125
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0125
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0125
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0130
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0130
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0130
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0135
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0135
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0140
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0140
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0145
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0145
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0150
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0150
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0150
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0155
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0155
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0155
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0160
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0160
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0165
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0165
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0165


468 S.M. Kim et al. / Stem Cell Research 16 (2016) 460–468
Singhal, N., Graumann, J., Wu, G., Arauzo-Bravo, M.J., Han, D.W., Greber, B., Gentile, L.,
Mann, M., Scholer, H.R., 2010. Chromatin-remodeling components of the BAF
complex facilitate reprogramming. Cell 141, 943–955.

Son, E.Y., Ichida, J.K., Wainger, B.J., Toma, J.S., Rafuse, V.F., Woolf, C.J., Eggan, K., 2011.
Conversion of mouse and human fibroblasts into functional spinal motor neurons.
Cell Stem Cell 9, 205–218.

Subramanyam, D., Lamouille, S., Judson, R.L., Liu, J.Y., Bucay, N., Derynck, R., Blelloch, R.,
2011. Multiple targets of miR-302 and miR-372 promote reprogramming of human
fibroblasts to induced pluripotent stem cells. Nat. Biotechnol. 29, 443–448.

Takahashi, K., Yamanaka, S., 2006. Induction of pluripotent stem cells frommouse embry-
onic and adult fibroblast cultures by defined factors. Cell 126, 663–676.

Wang, L., Wang, L., Huang, W., Su, H., Xue, Y., Su, Z., Liao, B., Wang, H., Bao, X., Qin, D., He,
J., Wu,W., So, K.F., Pan, G., Pei, D., 2013. Generation of integration-free neural progen-
itor cells from cells in human urine. Nat. Methods 10, 84–89.

Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T., Yamanaka, S., 2009. Hypoxia enhances the
generation of induced pluripotent stem cells. Cell Stem Cell 5, 237–241.
Yu, B., He, Z.Y., You, P., Han, Q.W., Xiang, D., Chen, F., Wang, M.J., Liu, C.C., Lin, X.W.,
Borjigin, U., Zi, X.Y., Li, J.X., Zhu, H.Y., Li, W.L., Han, C.S., Wangensteen, K.J., Shi, Y.,
Hui, L.J., Wang, X., Hu, Y.P., 2013. Reprogramming fibroblasts into bipotential hepatic
stem cells by defined factors. Cell Stem Cell 13, 328–340.

Yu, K.R., Shin, J.H., Kim, J.J., Koog, M.G., Lee, J.Y., Choi, S.W., Kim, H.S., Seo, Y., Lee, S., Shin,
T.H., Jee, M.K., Kim, D.W., Jung, S.J., Shin, S., Han, D.W., Kang, K.S., 2015. Rapid and ef-
ficient direct conversion of human adult somatic cells into neural stem cells by
HMGA2/let-7b. Cell Rep.

Zhu, S., Ambasudhan, R., Sun, W., Kim, H.J., Talantova, M., Wang, X., Zhang, M., Zhang, Y.,
Laurent, T., Parker, J., Kim, H.S., Zaremba, J.D., Saleem, S., Sanz-Blasco, S., Masliah, E.,
McKercher, S.R., Cho, Y.S., Lipton, S.A., Kim, J., Ding, S., 2014. Small molecules enable
OCT4-mediated direct reprogramming into expandable human neural stem cells.
Cell Res. 24, 126–129.

http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0170
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0170
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0175
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0175
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0180
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0180
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0185
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0185
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0190
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0190
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0195
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0195
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0200
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0200
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0205
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0205
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0205
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0210
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0210
http://refhub.elsevier.com/S1873-5061(16)00067-2/rf0210

	Induced neural stem cells from distinct genetic backgrounds exhibit different reprogramming status
	1. Introduction
	2. Materials and methods
	2.1. Cell culture
	2.2. Retrovirus production
	2.3. Generation of iNSCs
	2.4. Establishment of clonal iNSC lines
	2.5. RT-PCR and qPCR
	2.6. Bisulfite sequencing
	2.7. Immunocytochemistry
	2.8. In vitro differentiation of iNSCs

	3. Results
	3.1. Genetic background influences iNSC generation
	3.2. Genetic background influences the survival rate of clonal iNSCs
	3.3. iNSCs from distinct genetic backgrounds exhibit different reprogramming status.
	3.4. Distinct in vitro differentiation potential of iNSCs derived from two genetic backgrounds

	4. Discussion
	5. Conclusion
	Conflict of interest
	Author contributions
	Acknowledgments
	Appendix A. Supplementary data
	References


