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1 INTRODUCTION 

ABSTRACT 
During the formation of large-scale structure in the Universe, matter accretes on to 
high-density peaks. Accreting collisionless dark matter (DM) forms caustics around 
them, while accreting collisional baryonic matter (BM) forms accretion shocks. The 
properties of the accreting matter depend upon the power spectrum of the initial 
perturbations on a given scale as well as the background expansion in a given 
cosmological model. In this paper, we have calculated the accretion of DM particles 
in one-dimensional spherical geometry under various cosmological models 
including the Einstein-de Sitter universe, the open universe with 00 < 1, and the flat 
universe with nA = 1 - 00. A density parameter in the range 0.1 ~ 00 ~ 1 has been 
considered. The initial perturbation characterized by a point mass at the origin has 
been considered. Since the accretion shock of BM is expected to form close to the 
first caustic of DM, the properties ofthe accreting BM are common with those of the 
DM. Hence, the accretion calculations with DM particles have been used to find 
the position and velocity of the accretion shock and the cluster mass inside it. 
The average temperature of BM has been estimated by adopting simplifying 
assumptions. The velocity of the accreting BM around clusters of a given 
temperature is lower in a universe with lower 00, but only by up to '" 24 per cent in 
the models with 0.1 ~ 00 ~ 1. Thus, it would be difficult to use that quantity to 
discriminate among the cosmological models. However, the accretion velocity 
around clusters of a given mass or a given radius depends more sensitively on the 
cosmological models. It is lower in a universe with lower 00 by up to '" 41 and", 65 
per cent, respectively. So, it can provide a better signature of the background 
expansion for different cosmological models. Although the existence of the caustics 
and the accretion shocks may not be confirmed by direct X-ray observations, the 
infalling warm gas of 104-1OS K upstream of the shocks may be observed as the 
absorption systems of quasar emission lines. According to this study, the suggestion 
made by Kang, Ryu & Jones that the large-scale accretion shocks around cl~sters of 
galaxies can serve as possible acceleration sites of ultrahigh-energy cosmic rays 
above 1018 e V remains plausible in all viable cosmological models. 

Key words: cosmic rays - galaxies: clusters: general- dark matter. 

Recent satellite X-ray observations have made clusters of 
galaxies increasingly important to cosmology as a probe into 
the large-scale structure of the Universe. Being massive and 

rare, their abundance in the local and distant Universe car
ries vital information on the initial density fluctuations and 
the matter content of the Universe (Lubin et al. 1996; Eke, 
Cole & Frenk 1996). Also being relatively young dynamic
ally, the details of their structures can provide us with some 
signatures left over from the formation epoch as well as 
information on the background cosmology (Crone, Evrard 
& Richstone 1994; Navarro, Frenk & White 1995; Tsai & 
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Buote 1996). A general consensus seems to be that the 
standard cold dark matter (CDM) model (i.e., n=1 and 
h=O.5) normalized to the CORE DMR measurement of 
the anisotropies in the cosmic background radiation (i.e., 
0'8> 1) has serious difficulties in explaining the observed 
properties of X-ray clusters, such as the cluster abundance 
(Kang et al. 1994), the baryon fraction in clusters (Lubin et 
al. 1996), and the contribution of cluster emission to the 
X-ray background (Kang et al. 1994; Kitayama & Suto 
1996). On the other hand, an open or a flat CDM model 
with a cosmological constant with a smaller value of 0'8 

seems more consistent with many observations, and so has 
become popular recently (Cen & Ostriker 1994; Ostriker & 
Steinhardt 1995). 

Although the application of the Press-Schechter for
malism (Press & Schechter 1974) to the hierarchical cluster
ing model of cluster formation has been successful in getting 
good agreement with the results of N-body simulations 
(Lacey & Cole 1994), this semi-analytic approach cannot 
include the effects of non-equilibrium hydrodynamics that 
could be important during some phases in cluster evolution 
(Kang et al. 1994). Some studies suggest that the amplitude 
of the density power spectrum, 0'8' can be constrained by the 
local cluster abundance (Eke, Cole & Frenk 1996; Viana & 
Liddle 1996) and the range of the allowed value of no can be 
narrowed down by examining the evolution of cluster abun
dance at low redshifts (i.e., z < 1) (Bahcall & Cen 1992; 
White, Efstathiou & Frenk 1993). Despite this, the observa
tional and theoretical/numerical errors involved in such 
procedures seem to be too big to make any consistent pre
dictions on those key cosmological parameters (Castander 
et al. 1995; Luppino & Gioia 1995; Tsai & Buote 1996). It is 
also unlikely that all crucial physics can be included in any 
variants of the treatments. 

The properties of X-ray clusters, other than the abun
dance and the baryon fraction mentioned above, which have 
been investigated for various cosmological models, include 
the cluster-cluster correlation function (Bahcall & Cen 
1992), the density and velocity profiles (Crone, Evrard & 
Richstone 1994), and the degree of substructures in the 
intracluster medium (ICM) (Tsai & Buote 1996). The latter 
two, associated with the internal structure of clusters, are 
closely related with recent mergers and accretion on to the 
cluster mass-scale ( ~ 8 h- I Mpc), so dependences on n, n 
(the power-law index of the initial power spectrum), and 0'8 

could be degenerate. In addition to that, statistical treat
ments of observed data of those quantities have a harder 
time discriminating clearly among different cosmological 
models compared with the statistics of the cluster abun
dance. Even though there are tantalizing possibilities that 
the various properties of X-ray clusters can indeed be used 
to unveil the fundamental nature of the Universe, further 
improvements by a factor of at least a few in both theoreti
cal and observational fronts seem to be required in order to 
make some solid predictions. 

In this paper, we have examined one more physical 
property associated with X-ray clusters, the accretion flow 
infalling toward the clusters. Matter accretes on to the high
density peaks continuously throughout the history of the 
Universe. Its rate on the scale of the cluster mass will be 
determined by the initial density fluctuations and the back
ground cosmology. Fluctuations continue to grow in the 
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n = 1 universe, while they stop growing at a redshift 
z ~ no- 1 -l in a universe with low no (Peebles 1993). On the 
other hand, the accretion on larger scales gets stronger for a 
smaller n for a scale-free power spectrum. Crone, Evrard & 
Richstone (1994) examined the radial velocity profile ofthe 
accretion flow through N-body simulations of different 
cosmological models with scale-free power spectra. They 
found that the density profile is flatter and the accretion 
regime is stronger for higher no and smaller n. 

If the initial density perturbation is scale-free, the accre
tion of both baryonic matter and dark matter in the no = 1 
universe can be described semi-analytically with a self-simi
lar solution (Fillmore & Goldreich 1984; Bertschinger 
1985). However, in a universe with no t= 1, the self-similar 
solution is not possible, since, in addition to the time-scale 
marking the transition of the initial perturbation to the non
linear regime, another time-scale such as the cosmic time t 112 

when 11- nl = 1/2 enters the problem. 
Here, we use a one-dimensional spherical N-body code, 

which can follow the evolution of collisionless dark matter 
particles, to find the properties of accretion flows on to 
objects of cluster mass-scales in different cosmological 
models: the Einstein-de Sitter universe with no = 1, the low
density, open universe with no < 1, and the low-density, flat 
universe with no < 1 and nA = 1 - no (from non-zero cosmo
logical constant, A). While most previous studies on accre
tion focused on the density profile inside the collapsed 
objects developed from infall, our primary interests lie in 
the properties of spherical accretion flows outside the 
objects. In the accretion of both dark matter (DM) and 
baryonic matter (BM), the collisionless DM forms caustics 
around the overdensity, while the collisional BM forms 
accretion shocks stopping the infalling material. In this 
situation, ·as pointed out by Bertschinger (1985), the posi
tion of the accretion shock of the gas with y = 5/3 is very 
close to the position of the first caustic of the DM particles. 
In addition, since in the region outside the shock the accre
tion solution for BM is almost identical to that for DM, the 
infall velocity of BM upstream of the accretion shock can be 
described by that of the DM. Hence, hydrodynamic calcula
tions to follow BM are not necessary if we are interested 
only in the position of the accretion shocks and the proper
ties of the accretion flows. 

Of course, one-dimensional treatments cannot include 
important physics such as virialization in the central region. 
Three-dimensional simulations (Kang et al. 1994; Navarro, 
Frenk & White 1995; Evrard, Metzler & Navarro 1996) 
showed that the gas is shock-heated to the virial tempera
ture and then settles into hydrostatic eqUilibrium (HSE) 
and that the shock separates the hydrostatic central region 
from the infalling flow. However, according to Navarro, 
Frenk & White (1995), where N-body smoothed particle 
hydrodynamics (SPH) simulations were used to examine the 
properties of X-ray clusters in the n= 1 CDM universe, the 
one-dimensional, self-similar solution of Bertschinger 
(1985) matches well the density and temperature profiles of 
their simulated clusters except for the inner central region. 
Thus, the properties of accretion flow can be efficiently 
studied by one-dimensional calculations. 

The plan of the paper is as follows. In Section 2 we 
present the results focusing on the velocity of the accretion 
flows. In Section 4 we discuss the implications of the results 
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on cosmology and on cosmic-ray acceleration by the accre
tion shocks. Details such as the evolution equations and the 
numerical scheme are given in the appendices. 

2 SIMULATIONS 

We follow the evolution of collisionless DM particles accre
ting on to an initial density enhancement in an otherwise 
homogeneous universe through calculations with a spheri
cal N-body code. The equations describing the particle 
motion and gravity in comoving coordinates and the 
expansion of the background universe can be found, for 
example, in Peebles (1993) and are summarized in Appen
dix A. The details of our numerical code are described in 
Appendix B. 

The calculations start at the time corresponding to the 
initial expansion parameter aj = 1O-5ao with 104 particles. 
Initially the particles are at rest and distributed uniformly, 
except for an excess mass at the origin to initiate the col
lapse. So the initial perturbation can be characterized by the 
point-mass perturbation 

bM(r) = (M(r»)-I, 
M(r) Mo 

(1) 

where M(r) is the mass inside a radius rand Mo is a refer
ence mass. Note that the point-mass perturbation can 
be approximated by the constant power spectrum (Le., 
P(k) ~constant with n=O) (Hoffman & Shaham 1985). 
Although a scale-free power spectrum with n = - 1 would 
represent better the CDM power spectrum on the cluster 
scale (see for example, Bardeen et al. 1986 for the CDM 
power spectrum), the constant power spectrum would be a 
better approximation on scales a bit larger than that. Also 
according to Navarro, Frenk & White (1995), the self-simi
lar solution of Bertschinger (1985) with the above initial 
perturbation represents well the structures of simulated 
clusters in an Q = 1 universe with the CDM power spectrum 
except for the inner central region. The amount of the 
excess mass, Mo, has been chosen so that at the present 
epoch about 1/3 of the particles are placed inside the first 
caustic. It requires an excess mass corresponding to 1-2 
particles. 

Note that the present value of the Hubble parameter, or 
h :=Hof100 km S-1 Mpc-" enters the problem only through 
the normalization parameters such as to oc Ilh, Lo oc Ilh, and 
1> och2 (see the appendices). So, we can include the depend
ence on h implicitly by expressing the results in terms of t oh, 
Loh, and 1>h-2 (or equivalently Moh). 

If we had followed the evolution of BM with y = 5/3 as 
well, its accretion shock would have occurred very close to 
the first caustic of DM and its accretion velocity outside the 
shock would have been very similar to that of DM outside 
the first caustic. Since the accretion shock approximately 
separates the inner virialized region from the outer infalling 
flow, here we will consider a cluster to be the region inside 
the first caustic. So, below, we define the radius of the first 
caustic, Reb as the cluster radius, the mass inside Rei, Meb as 
the total cluster mass, and the particle velocity just outside 
Rei, Vace' as the cluster accretion velocity. 

Our numerical set-up has been designed in a way parallel 
to that of Bertschinger (1985), so our numerical solution for 

the Q = 1 case should be identical to his self-similar solution. 
Thus, the accuracy of our code has been tested against his 
solution. Fig. 1 shows the present phase-space distribution 
of particles in the Einstein-de Sitter universe, which can be 
directly compared with fig. 6 of Bertschinger (1985). The 
variables used in the plot are related to those in the appen
dices as follows 

(2) 

dA to 8 
-=(u +aor) --- A, 
d~ r ta 9 

(3) 

where rta is the present turnaround radius. Our smooth
ing length in the gravitational force corresponds to 
Asm = 0.0936 (see Appendix B). The plot shows that the 
numerical solution for A ~ Asm agrees well with the exact 
analytic solution. The position of the first caustic agrees well 
with that of the analytic solution and the accretion velocity 
outside it agrees almost exactly. On the other hand, for 
A ;$ Asm the agreement in the two solutions is not so good. 
The numerical solution has given a lower velocity than the 
analytic one and the positions of caustics have not been 
calculated correctly, as expected. However, the quantities 
we are interested in, Rei, Mel, and Vace, are less affected by 
the smoothing. Comparison of Fig. 1 with fig. 6 of 
Bertschinger (1985) shows that these quantities have been 
calculated accurately within an error typically less than 5 per 
cent or so. 

Fig. 2 shows the evolution of the mass, radius, and accre
tion velocity of a cluster with the present mass of 
MeI(z=0)=1015 h-1 Mo as a function of redshift in the 
Einstein-de Sitter universe, in the open universe with 
00=0.2, and in the flat universe with 00=0.2. The dotted 
lines represent the power-law evolution of the analytic solu
tion in the Einstein-de Sitter universe (Bertschinger 1985); 

-1.5 -1 -0.5 o 
loglOA 

Figure 1. Present phase-space distribution of DM particles from 
the numerical calculation in the Einstein-de Sitter universe. It has 
been drawn for direct comparison with fig. 6 of Bertschinger 
(1985). The relations of the variables used in the plot to those in 
the appendices are A.=r/r .. and dA./d~=(u+ao1')(to/rta)-(8/9)A.. 
Here, rta is the present turnaround radius. 
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Figure 2. Evolution of the radius, mass, and accretion velocity of a 
cluster with the present mass Mel (z = 0) = lOIS h -I Mo as a function 
ofredshift in the Einstein-de Sitter universe (open squares), in the 
open universe with 00=0.2 (filled circles), and in the flat universe 
with 00=0.2 (open circles). The dotted lines represent the power
law evolution in the exact self-similar solution in the Einstein-de 
Sitter universe (Bertschinger 1985). 

Me, oc(1+z)-I, Rcioc(1+z)-4/3, and vaccoc(1+z)I/6. The 
numerical solution in the Einstein-de Sitter universe fol
lows the self-similar evolution very closely. Again, good 
agreement of the numerical solution with the analytic solu
tion indicates that our code has been able to calculate the 
quantities used in this paper reliably. But those in other 
model universes do not show the power-law evolution in 
(1 + z), indicating the absence of the self-similarity. 

3 RESULTS 

Among the quantities we can extract from the X-ray obser
vations of clusters, the ICM temperature Tx (usually aver
aged over a core region) is the one that can be estimated 
most reliably in hydrodynamic numerical simulations and 
that is less prone to numerical effects such as the problem of 
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under-resolved structure. That is because Tx is a conserved 
quantity per unit mass (i.e. the specific thermal energy) . 
Although clusters have formed only recently (z < 1) and the 
dynamical time of cluster evolution is about the Hubble 
time, the structure of more-or-Iess relaxed clusters both in 
observations and simulations is well represented by the viri
alized region in HSE with nearly constant temperature 
(Forman & Jones 1982; Evrard et al. 1996). Exceptions are 
the clusters that have recently undergone mergers. Under 
the assumption of an isothermal sphere in HSE, the average 
temperature is proportional to M( <r)/r, or to the galactic 
kinetic energy per unit mass, u~. So we use the ratio of the 
total cluster mass to radius, Mci/ReI' as a quantity to repre
sent the observed, average temperature (emission weigh
ted). As shown by three-dimensional simulations (Navarro, 
Frenk & White 1995; Evrard et al. 1996), simulated clusters 
of different masses have similar structures when they are 
scaled with a radius of a fixed density contrast 
«(j = PI Perit ~ 200). So the temperature follows the scaling 
law, TocM( <re)/reocr~, where re is the characteristic radius 
at a fixed density contrast. Of course, the constant of pro
portionality for this scaling relation varies for different 
cosmologies. 

Here, we use the quantities, Mel' Rei' or Mel/Rei, to denote 
clusters. Note that Rei corresponds to the characteristic 
radius of (j '" 80. Under the set-up considered in this paper, 
only one of them is independent in a given cosmological 
model universe, because of the similarity in cluster struc
ture. According to Bertschinger (1985), the self-similar 
solution at the present epoch in the Einstein-de Sitter 
universe gives 

(4) 

( 
M )1/3 

Rs=2.12 h- I Mpc lOIS h-~ Mo ' (5) 

(6) 

(7) 

Here Rs is the shock radius, and Tel is the temperature at 
r=O.3R" which we may take as an average ICM tempera
ture ofthe self-similar flow. Navarro, Frenk & White (1995) 
showed that the temperature profiles of simulated clusters 
normalized with the temperature at r zoo of (j = 200 can be 
represented within a factor of two by that of the self-similar 
solution of Bertschinger (1985) in r/rzoo ~ 0.3. In the core 
region within r/rzoo < 0.3, the temperature is approximately 
isothermal. Thus, Tel should be a reasonable approximation 
to the average temperature of the cluster core region. 

In Fig. 3 we have plotted the present Me/Rei for clusters 
with the present mass MeI(z=0)=1015 h- I Mo (upper 
panel) and for clusters with the present radius 
Re,(z=O) =2.5 h- I Mpc (lower panel) in the open models 
and flat models with 'lo :::;; 1 against the values of 'lo. Those 
with 'lo = 1 correspond to the values in the Einstein-de 
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Figure 3. Present MjRcI for clusters with the present mass 
McI(z=O) = 10'5 h-1 Mo (upper panel) and for cluster with the 
present radius RcI(z=O) =2.5 h-1 Mpc (lower panel) in the open 
universes (filled circles) and the flat universes (open circles) with 
different 00. That with 00 = 1 represents the values in the Einstein
de Sitter universe. 

Sitter universe. Here we have chosen Rei = 2.5 h -1 Mpc as a 
fiducial value of the first caustic, since the typical radius of 
cluster core regions is often defined as rcore =O.5 h-1 Mpc 
and the Abell radius is RA = 1.5 h-1 Mpc. According to the 
self-similar solution of Bertschinger (1985) given above, in 
the Einstein-de Sitter universe, 

Mel = 4.51 X 1014 Mo ( Mel' )2/3 
Rei Mpc 1015 h- I Mo 

(8) 

for clusters with the given mass, while 

~=5.73 X 1014 ~ eI 
M M ( R )2 
Rei Mpc 2.5 h- I Mpc 

(9) 

for clusters with the given radius. Comparison between 
these values and our numerical results for 00 = 1 case 
shows about '" 10 per cent error. Since Me/Rei scales as 
Mel/Rei ex (Melh)2/3 for clusters with different masses and 
Me/Rei ex (Relh)2 for clusters with different radii, the results 
can be scaled accordingly. 

The figure shows that the clusters, if they have the same 
mass or the same radius, are less tightly bound, and so have 
lower Me/Rei in the universe with lower 00. Also, the clusters 
are less tightly bound in the fiat universe with non-zero A 
than in the open universe, if 00 is the same. This is as a result 
of the fact that the background expands faster in the fiat 
universe with non-zero A than in the open universe. In the 
open universe with 00 = 0.1, Me/Rei is '" 32 per cent and 
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Figure 4. MjRcI as a function of redshift in the Einstein-de Sitter 
universe (open squares), in the open universe with 00=0.2 (filled 
circles), and in the flat universe with 00=0.2 (open circles). The 
upper panel is for clusters with a mass at given z, McI(z) = 10'5 h-1 

Mo. The lower panel is for clusters with a radius at given z, 
RcI(z) =2.5 h-1 Mpc. The dotted lines represent the power-law 
evolution in the exact self-similar solution in the Einstein-de Sitter 
universe (Bertschinger 1985). 

'" 68 per cent lower than that in the Einstein-de Sitter 
universe for clusters with given mass and radius, respec
tively. In the fiat universe with 00=0.1, Me/Rei is ",40 per 
cent and '" 79 per cent lower. This means that clusters are 
less massive and less bound so the ICM temperature is 
lower in low-density universes than in high-density univer
ses, if they are selected by a constant radius criterion. 

Fig. 4 shows the value of Me/Rei as a function of redshift in 
the Einstein-de Sitter universe, in the open universe with 
00 = 0.2, and in the fiat universe with 00 = 0.2. The upper 
panel is for clusters the mass of which is MeI(z) = lOIS h- I 

Mo at a given z. Similarly, the lower panel is for clusters the 
radius of which is Rel(z) =2.5 h- I Mpc at a given z. Thus, 
each point in the plots represent different clusters that 
should become heavier than 1015 h -I Mo or bigger in radius 
than 2.5 h -I Mpc at the present epoch. In other words, the 
redshift dependences in these plots do not represent the 
evolution of a particular cluster in a 'Lagrangian' sense. 
They tell us that clusters selected by either a constant mass 
or a constant radius criterion would be more tightly bound 
and so hotter in the past (at higher redshifts) than at the 
present epoch in all cosmologies. The dotted lines represent 
the power-law redshift dependences [Me/Rei ex (1 + z) for 
clusters with a constant mass, and Me/Rei ex (1 + Z)3 for clus
ters with a constant radius] of the self-similar solution in the 
Einstein-de Sitter universe. The numerical solution in the 
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Einstein-de Sitter universe follows the self-similar solutions 
very well. Once again we can see that clusters are less tightly 
bound in lower density universes. The increases of Me/ReI 
with increasing redshift in both lower density universes are 
slightly less than that in the Einstein-de Sitter universe. 

In Fig. 5 we plotted the accretion velocity, Voce, for clusters 
with the present mass MeI(z=O) = 1015 h-' Mo (the first 
panel), for clusters with the present radius ReI (z = 0) = 2.5 
h-' Mpc (the second panel), and for clusters with the 
present Me/Rel(z=O) =4 x 1014 Mo Mpc- ' (the third panel) 
in the open and flat universes with different Oos. Note that 
MjReI=4 x lO'4Mo Mpc- ' corresponds to Tel =5.71 keVin 
the Einstein-de Sitter universe (see equation 6) (corre
sponding Tel should be slightly lower in the low-density uni
verses). Clusters with different masses, radii, and Me/Rels 
have the accretion velocity which scales as voceoc(Melh)'!3, 
Voce ocRelh, and Voce oc (Me/ReI)1I2. Lower accretion velocity in 
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Figure 5. Present accretion velocity, Voce, for clusters with the 
present mass Mc,(z=O) = lO'S h- I Mo (the first panel), for clusters 
with the present radius RcI(z =0) =2.5 h- I Mpc (the second panel), 
and for clusters with the present Mc/RcI =4 x 10'4 Mo Mpc-' (third 
panel) in the open universes (filled circles) and the flat universes 
(open circles) with different 00. That with 00 = 1 represents the 
values in the Einstein-de Sitter universe. 
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the universes with lower 00 is consistent with the fact that 
the clusters are less tightly bound. The accretion velocity is 
slightly lower in the flat universe than in the open universe, 
if 00 is the same. The plot shows that the accretion velocity 
of clusters with a given mass or a given radius is lower by up 
to '" 41 and '" 65 per cent respectively in the flat universe 
with 00=0.1 than in the Einstein-de Sitter universe. 

For clusters with the same Me/Rei' however, the differ
ence between different cosmological models is rather small. 
In the open universe with 00 = 0.1 the accretion velocity is 
'" 15 per cent lower than that in the Einstein-de Sitter 
universe, while in the flat universe with 00 = 0.1 it is lower by 
'" 24 per cent. This means we can expect that the clusters 
with the same observed temperature can have accretion 
velocities lower by only up to '" 25 per cent in low-density 
universes depending on 00. 

Fig. 6 shows the accretion velocity for clusters with a mass 
of MeI(z) = 1015 h-' Mo at given z (first panel), for clusters 
with a radius of Rc1(z) =2.5 h-' Mpc at given z (second 
panel), and for clusters with MeI/ReI(z) = 4 X 1014 Mo Mpc at 
a given z (third panel) in the Einstein-de Sitter universe, in 
the open universe with 00 = 0.2, and in the flat universe with 
00 = 0.2. As in Fig. 4, they do not represent the evolutionary 
path of a cluster, but they show the dependence of Vace on the 
redshift in a sample of clusters selected by a constant mass, 
or a constant radius, or a constant temperature criterion. 
The dotted lines represent the power-law dependence on 
the redshift of the self-similar solution in the Einstein-de 
Sitter universe, Vaee OC (1 + Z)If2 for clusters with a constant 
mass, Vace oc (1 + Z)3f2 for clusters with a constant radius, 
voceocconstant for clusters with a constant Me/Rei' 

The first two panels show that the accretion velocity of 
clusters with a constant mass or a constant radius was signi
ficantly larger in the past than now. On the other hand, the 
third panel shows that the accretion velocity of clusters with 
a constant Mel/Rei remains constant with redshift in the Ein
stein-de Sitter universe because of the scale-free nature. 
However, it was larger at high redshifts in the model uni
verses with 0 0 < 1. For instance, in the open universe with 
00 = 0.2 the accretion velocity was larger by '" 8 per cent at 
high redshifts, while in the flat universe with 00 = 0.2 it was 
larger by '" 18 per cent. At high redshifts (z > 5) the differ
ence in Vace among different cosmological models con
sidered here reduces to only a few per cent. 

4 SUMMARY AND DISCUSSION 

In this paper, we have studied the properties of spherically 
accreting flows onto an initially overdense perturbation in 
different cosmological model universes including the Ein
stein-de Sitter universe with 00 = 1, the low-density open 
universe with 00 < 1, and the low-density, flat universe with 
00 < 1 and OA = 1 - 00. According to the semi-analytic 
treatment of the self-similar solution for the Einstein-de 
Sitter universe by Bertschinger (1985), the accretion shock 
of BM with y = 5/3 forms very close to the first caustic of dM, 
and the flow upstream to the accretion shock and the first 
caustic is identical regardless of whether it is collisional or 
collisionless. Thus, we have assumed that the position of the 
accretion shock can be approximated by that of the first 
caustic and the accretion velocity of BM outside the accre
tion shock by that of DM outside the first caustic. Since self-
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Figure 6. Accretion velocity, Vace' as a function of redshift in the 
Einstein-de Sitter universe (open squares), in the open universe 
with 00=0.2 (filled circles), and in the flat universe with 00=0.2 
(open circles). The first panel is for clusters with a mass at givenz, 
MeI(z) = 1015 h- I Mo. The second panel is for clusters with a radius 
at givenz, ReI(z) =2.5 h- I Mpc. The third panel is for clusters with 
Mel/Rei at givenz, Me.lReI(z) =4 x 1014 Mo Mpc- I• The dotted lines 
represent the power-law evolution in the exact self-similar solution 
in the Einstein-de Sitter universe (Bertschinger 1985). 

similar solutions do not exist for no -# 1 universes, we have 
used a one-dimensional, spherical, N-body code to study the 
properties of accreting matter. 

The accretion velocity on to a cluster with a given initial 
perturbation has decreased as the universe expands in all 
cosmological models. In the Einstein-de Sitter universe it 
has followed Vaee OC (1 + z )1/6 (Bertschinger 1985), while in 
low density universes it decreases faster with time, 
especially at low redshifts (see Fig. 2). This is related to the 
smaller deceleration of the expanding background. 

The properties of accretion flows around the clusters of 
the same characteristic (mass, radius or temperature) will 
depend on the cosmological parameters, no and A, since the 
accretion rate is affected by the expansion rate of the back-

ground universe. The accretion velocity is smaller in a lower 
density universe and even smaller in a non-zero A universe. 
For clusters of a given mass at given redshift, the present 
accretion velocity in the low-density universe with no ~ 0.1 
is smaller by up to - 41 per cent than that in the Einstein
de Sitter universe. For clusters of a given radius at given 
redshift, the present accretion velocity in the low-density 
universe with no ~ 0.1 is smaller by up to - 65 per cent than 
that in the Einstein-de Sitter universe. Hence, if the accre
tion velocity of infalling matter around clusters can be mea
sured along with their mass and radius, then it could be used 
to discriminate the different cosmological models. 

However, for clusters of a given temperature or given 
Me/Rei' the present value of the accretion velocity as well as 
its evolution depend on the cosmological model rather 
weakly. According to the self-similar solution of 
Bertschinger (1985), in the Einstein-de Sitter universe, for 
clusters of a given temperature, the accretion velocity at 
present is given as vacc =1.31 x 103 km s-I (Te/6.06keV)l!Z, 
and it has been constant through the evolution of the 
universe. In the universes with smaller no, the present accre
tion velocity is smaller by up to - 24 per cent in the models 
considered here with 0.1 ~ no ~ 1. However, this difference 
decreases to a few per cent at high redshifts (see Figs 5 and 
6). Thus, it would be difficult to use the accretion velocity of 
clusters with a given temperature to discriminate among the 
cosmological models. 

However, this has an important implication for the model 
of the origin of ultrahigh-energy cosmic rays that the 
acceleration of protons in accretion shock around clusters 
can contribute significantly to the observed particle flux 
above 3 x 1018 eV (Kang, Ryu & Jones 1996; Kang, Rachen 
& Biermann 1996). We have shown in this paper that the 
matter accretion and the accretion shock around clusters 
are universal for all cosmological models, although the 
accretion regime is less strong in lower density universes. 
The shock velocity Vs = (4/3)vacc for the rich clusters of 
Tel = 10 keY, for example, is estimated to be 2200 km S-I in 
the Einstein-de Sitter universe, which is enough for the 
model to work. The results in this paper imply that the 
model might be extended to all cosmologically viable uni
verses of low density, since the reduction in the shock velo
city is no more than - 24 per cent. 

The region of clusters observed by either optical or X-ray 
observations (r :::51-1.5 h -I Mpc) is inside the first caustic or 
the accretion shock (Rel-1-3 h- I Mpcfor Tel -l-lO keY). 
Although the existence of hot gas heated by the accretion 
shocks has been shown clearly in most cosmological simula
tions including hydrodynamics for any variants of cosmo
logical models (Kang et al. 1994; Cen & Ostriker 1994; 
Navarro, Frenk & White 1995), any direct observations of 
gas near the shock would not be possible at present because 
of low surface brightness. However, it has been suggested 
that the unbound hot gas of lOS _lO6 K around clusters and 
groups heated by the large-scale accretion shocks is a major 
component of the IGM which emits mostly at the soft X-ray 
region below 1 keY (Ostriker & Cen 1996). This prediction 
might be tested by looking for the spatial correlation 
between the soft X-ray cosmic background radiation and 
the observed large-scale structure. 

On the other hand, the infalling clouds of unshocked, 
warm gas may be identified through the absorption lines of 
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quasars which are located inside clusters of galaxies. This 
warm low density gas of 104_105 K is photoionized by the 
diffuse radiation from the hot post-shock gas and the diffuse 
cosmic background radiation. In some studies (for example, 
Weymann et al. 1979; Foltz et al. 1986), the C IV absorption 
systems of quasar emission lines with Iz.bs - zQsol < 3000 km 
s -I are interpreted as clouds associated with rich clusters 
where the quasars reside. The characteristics of these sys
tems of C IV absorbers are different from those of the typi
cal intervening C IV absorbers. It was noted that the velocity 
difference is somewhat too large compared with the typical 
velocity dispersion of galaxies (400-1200 km S-I) in rich 
clusters (Foltz et al. 1986). The accretion velocity, however, 
is a bit larger than the galaxy velocity dispersions, since it 
is given by v.cc =1.31 x l(f km S-I (Tc/6.06keV)I12 in the 
Einstein-de Sitter universe. Thus it is possible that these 
absorption systems are in fact the infalling clumps of gas 
upstream of the accretion shock. 

In follow-up papers we will study the properties and 
statistics of three-dimensional accretion flows in simulated 
universes by analysing the data from three-dimensional 
hydrodynamic simulations of various cosmological models 
(for example, Kang et al.1994; Cen & Ostriker 1994). These 
simulations have been performed by a high-resolution, grid
based, Eulerian code (Ryu et al. 1993) which resolves the 
shock discontinuity in 2-3 cells and is designed specifically 
to handle the flows with supersonic bulk motions. Thus, the 
low-density regions around caustics and shocks are well 
represented in these simulations, even though the high
density core region of clusters might be under-resolved 
(Kang et al. 1994). The present one-dimensional study will 
provide some useful guidance for such studies. 
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APPENDIX A: BASIC EQUATIONS 

In comoving coordinates, the equations to describe the evo
lution of the collisionless DM particles are written as 

dr 1 
-=-u, 
dt a 

(A1) 

and 

du Ii 1 
-= --u--V</>, 
dt a a 

(A2) 

where r is the comoving position, u is the proper peculiar 
velocity, </> is the proper peculiar gravitational potential, and 
a is the cosmic expansion parameter. The potential is given 
by the Poisson equation 

(A3) 

where p(r) is the comoving matter density, p is the average 
comoving matter density, and ao is the present value of the 
expansion parameter. 

The expansion parameter and its time derivative (or the 
expansion rate) are calculated as a function of time by the 
following equations (see Peebles 1993). 

for Einstein-de Sitter 

a no 
----'-- (cosh 11- 1) 

ao 2(1- no) 
and 

for open 

for flat 

(A4) 

(AS) 

(A6) 
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and 

(A7) 

Here, Ho is the present value of the Hubble parameter and 
no, nR , and nA are constants. The density parameter is given 
as 

(A8) 

which is the present average mass density in terms of the 
critical density. The parameter associated with the radius of 
curvature R is given as 

(A9) 

which is positive for an open universe and zero for others. 
The parameter associated with the cosmological parameter 
A is given as 

(AlO) 

which is positive for a flat universe and zero for others. The 
three parameters give the relative contributions to the 
present expansion rate by satisfying 

(A11) 

We have solved numerically the equations governing the 
evolution for the DM particles [equations (Al)-(A3)], 
simultaneously with the equations describing the back
ground universe [equations (A4)-(A7)]. In the next appen
dix, we describe the scheme used. 

APPENDIX B: NUMERICAL SCHEME 

In the one-dimensional spherical code to calculate the time 
integration of the equations of motion [equations (Al)
(A2)] , we have adopted the second-order accurate Lax
Wendroff scheme instead of the more popular leapfrog 
scheme, since the code was originally designed to be a part 
of a one-dimensional code which follows the evolution of 
the baryonic matter as well as that of the DM in a way 

parallel to the three-dimensional cosmological hydro
dynamic code (Ryu et al. 1993). So the update of the posi
tion and velocity of the particle i from n time step to n + 1 is 
carried out by the following two steps: 

and 

u? + 1/2 
..n+1 ..n A n I 'i ='i + ut -1/2' an + 

(Bl) 

(B2) 

(B3) 

(B4) 

where g denotes the gravitational force. With the variables 
normalized with the present age of the universe, to, the 
comoving size of the box, L o, and p, g~ is calculated with 

(B5) 

where bM(r~) is the mass excess inside r~. Similarly, g~+I/2 is 
calculated with the quantities at n + 1/2. Here e is the 
smoothing parameter which prevents the time-step becom
ing too short, or prevents the particles being accelerated 
anomalously for a given time-step around the origin. 

A particle, which is placed close to and approaches the 
origin, can pass the origin in the half time-step (n + 1/2). 
Then, the absolute value of its position is used to calculate 
the gravitational force at the half time-step. If a particle 
passes the origin after the full time-step (n + 1), its position 
and velocity are reset to their negative values. 

The time-step, At, is determined so that Aa/a is constant 
in each time-step. In all the calculations discussed in this 
paper, we have used 104 particles and Aa/a = 10-3• With 
these, e = 5 x 10-2 in unit of Lo assures that the gravitational 
time-scale in the core region with r < e is comfortably small 
compared to the time-step along the whole calculation. 
However, the force smoothing makes the density smoothed 
in the core region with r:5e (see Section 2). 
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