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In this paper, we demonstrate realization of printable radio frequency identification (RFID) antenna

by low temperature processing of graphene ink. The required ultra-low resistance is achieved by

rolling compression of binder-free graphene laminate. With compression, the conductivity of gra-

phene laminate is increased by more than 50 times compared to that of as-deposited one. Graphene

laminate with conductivity of 4.3� 104 S/m and sheet resistance of 3.8 X/sq (with thickness of

6 lm) is presented. Moreover, the formation of graphene laminate from graphene ink reported here

is simple and can be carried out in low temperature (100 �C), significantly reducing the fabrication

costs. A dipole antenna based on the highly conductive graphene laminate is further patterned and

printed on a normal paper to investigate its RF properties. The performance of the graphene lami-

nate antenna is experimentally measured. The measurement results reveal that graphene laminate

antenna can provide practically acceptable return loss, gain, bandwidth, and radiation patterns,

making it ideal for low cost printed RF applications, such as RFID tags and wearable wireless sen-

sor networks. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919935]

Printed electronics is an emerging technology which

grows rapidly due to its wide applications in flexible dis-

play,1,2 biomedical/chemical sensor,3–5 radio frequency iden-

tification (RFID),6,7 wearable electronics,8 energy harvesting

and storage, etc.9,10 As electrical conductor is the core com-

ponent in printed electronics, the main research has been

focused on providing high conductive inks.

Currently, conductive inks can be classified into several

categories, such as metal nanoparticles,11 conductive poly-

mers,12 and carbon nanomaterials,13,14 to name a few. Metal

nanoparticles pose high conductivity. Among them, silver

nanoparticles are popular, but expensive. Copper or alumi-

num nanoparticles are prone to become oxidized.11,15 The

more challenging issue is the compatibility with other heat-

sensitive electronic components as annealing treatment in

high temperature is required when making patterns.14 As to

conductive polymer, it is economical but not conductive

enough for many applications.12 Conductive polymer is also

limited by chemical and thermal instability.16 Carbon nano-

materials, especially graphene, are quite competitive in pro-

viding high conductive ink along with advantages in cost,

chemical stability, and mechanical flexibility.17,18

To integrate with printing devices, graphene inks are

reported to be prepared generally in two ways. One is to dis-

perse graphene directly in solvents like N-Methyl-2-pyrroli-

done or Dimethylformamide (NMP/DMF) with no

binder,18,19 and the other is to use binders like ethyl cellulose

(EC).17,20 To date, graphene ink containing binder (EC) was

reported to offer conductivity of 2.5� 104 S/m through

reduced graphene oxide (RGO).17 However, binders are

insulators and they reduce the conductivity of the inks. To

increase the conductivity, thermal annealing at 250 �C for

30 min is needed to decompose binder (EC) and reduce gra-

phene oxide after patterning procedure.17 However, thermal

annealing makes it unsuitable to be applied on heat-sensitive

substrates like paper, plastics, etc.14 In contrary, binder-free

ink reduces the requirement of annealing. For example, a

typical 70 �C treatment was implemented in preparing

binder-free graphene patterns with conductivity of 3� 103 S/

m.19 While binder-free graphene ink has advantages in low

temperature processing, its conductivity is low and requires

further improvement.

Herein, we present a simple but effective technique to

enhance the conductivity of binder-free graphene ink for

industrial scale screen printing. The conductivity of graphene

laminate is improved by more than 50 times with rolling

compression, reaching 4.3� 104 S/m, almost double of

2.5� 104 S/m of previously reported RGO with binder17 and

ten times higher than that of binder-free.19 To investigate the

RF properties of the material, a printed graphene laminate

dipole antenna on a paper substrate has been fabricated. The

measurement results have demonstrated its effective radia-

tion in all aspects of impedance matching, gain, and radia-

tion pattern. These results reveal its valuable prospective in

RFID and other printed RF applications.

In this paper, we first introduce the rolling compression

method to improve the conductivity of graphene laminates,

and then present printed RF antenna and its performance.

Conductive inks generally contain at least one kind of

binders such as polymeric, epoxy, siloxane, and resin

because granular powders cannot form a continuous film

without linkages by binders. However, binders reduce the

conductivity of ink as they are insulators. To maintain the
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ink conductivity, the amount of conductive solids needs to

be increased when insulation binders are used. Here, we pro-

posed a strategy to prepare a graphene laminate of high con-

ductivity without any kind of binders.

The formation of the highly conductive graphene lami-

nate is illustrated in Fig. 1. In this work, binder-free gra-

phene ink (Grat-ink 102E, BGT Materials Limited) was

used. The ink in Fig. 1(a) contains graphene nanoflakes, dis-

persants, and solvents, but no binders were used in the recipe

of graphene ink. It is known that free-standing graphene

films were robust and flexible, and such excellent film-

forming ability of graphene is unique from other conductive

materials.21 After drying, the adhesion of graphene coating

comes from the good film-forming ability of graphene nano-

flakes, resulting from its 2D structure. However, the contact

resistance between graphene nanoflakes is high in the as-

deposited graphene coating because the stacking of graphene

nanoflakes is highly porous, as illustrated in Fig. 1(b). So fur-

ther rolling compression is applied to enhance the conductiv-

ity and improve the adhesion of graphene laminate. After

compression, the graphene nanoflakes become highly dense

and graphene laminate forms, as shown in Fig. 1(c).

To study the effects of the rolling compression, four

kinds of samples with various compression ratios were

prepared and measured. The compression ratio is the thick-

ness ratio of compressed samples over as-deposited samples.

The sheet resistance of these graphene laminates was meas-

ured by the 4-point probe (RM3000, Jandel). The thicknesses

of as-deposited and compressed graphene laminate patterns

were obtained by digital thickness gauge (PC-485, Teclock).

A total of 10 measurements at different spots were carried

out to obtain the average value of each sample. With meas-

ured thickness and sheet resistance, the normalized sheet re-

sistance to 1 mil (equal to 25.4 lm), resistivity, and bulk

conductivity are calculated and summarized in Table I.

As it can be seen from Table I, the normalized sheet re-

sistance of as-deposited graphene laminate was 48.0 X/sq/mil

(sample 1), which can be significantly reduced by 53 times

to 0.9 X/sq/mil (sample 4) after 19% compression. The effect

of rolling compression on laminate morphology was further

studied by the SEM observation, as displayed in Fig. 2. The

surface of as-deposited graphene laminate exhibits a porous

and irregular architecture (see Fig. 2(a)), which results in a

high contact resistance and unsmooth pathways for electron

transport. After rolling compression (19% compression

FIG. 1. Schematic illustration of

binder-free graphene laminate forma-

tion. No binder was used in graphene

ink due to the strong Van der Waals’

force of graphene nanoflakes. The ad-

hesion and conductivity of graphene

laminate were further improved by

rolling compression.

TABLE I. Resistivity and conductivity of as-deposited and various com-

pressed graphene laminate.

Samples 1a 2 3 4

Compression ratio (%) 70 27 19

Thickness t (lm) 31.6 22.1 8.4 6.0

Rsb (X/sq) 38.0 28.5 8.2 3.8

Normalized Rsc (X/sq/mil) 48.0 25.0 2.7 0.9

Resistivity q (X m) 1.2� 10�3 6.3� 10�4 6.9� 10�5 2.3� 10�5

Conductivity r (S m�1) 8.3� 102 1.6� 103 1.4� 104 4.3� 104

aSample 1 is as-deposited, namely, no compression.
bSheet resistance of samples.
cNormalize sheet resistance 1 mil.

FIG. 2. SEM images of (a) as-deposited

and (b) compressed graphene laminates.

FIG. 3. (a) Geometric dimension of the dipole antenna, (b) photo of the

printed graphene laminate dipole antenna, and (c) graphene laminate

antenna connected with a SMA for measurement.

203105-2 Huang et al. Appl. Phys. Lett. 106, 203105 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  114.70.7.203

On: Wed, 26 Aug 2015 07:53:18



ratio), dense and continuous graphene laminate is obtained

(see Fig. 2(b)). Therefore, the compressed graphene laminate

exhibits much lower sheet resistances in comparison to as-

deposited sample.

From the above analysis, it should be noticed that not

only the conductivity increases significantly with compres-

sion but also the sheet resistance of graphene laminate

reduces to 3.8 X/sq from 38 X/sq. In antenna applications,

especially in RF band, sheet resistance matters more. In the

previous work, a graphene printed antenna with sheet resist-

ance of 65 X/sq was proved to be well matched, while no

effective radiation was demonstrated.9

To investigate RF radiation properties of the binder-free

graphene laminate, a half-wavelength dipole antenna was

designed. A normal paper was used as a substrate for possi-

ble flexible applications. Similar with the process shown in

Fig. 1, antenna patterns were first printed by 150 mesh

stainless-steel screen and then dried at 100 �C for 10 min. A

compression roller (SERP02, Shining Energy) was further

used to obtain compressed samples. With 4-point probe test

(RM3000, Jandel), the sheet resistance of the graphene lami-

nate antenna pattern was measured to be 3 X/sq. The final

thickness after compression was 7:7lm, measured with digi-

tal thickness gauge (PC-485, Teclock).

In the fabrication, no high temperature thermal anneal-

ing or vacuum condition is required. This not only makes

printing compatible with paper/plastics but also lowers the

costs of manufacturing significantly. Moreover, the screen

printing is ideal for high-throughput and low-cost mass com-

mercial production.

The dipole antenna made of binder-free graphene lami-

nate was printed on paper, as shown in Fig. 3. The length of

one arm is l ¼ 68:82 mm, and the width and gap distance are

w ¼ 3:53 mm and g ¼ 3:53 mm, respectively. The substrate

paper has dielectric constant of 2.3 and is of 50 lm thickness.

Due to the flexibility of graphene laminate, the antenna is

flexible when printed on paper or plastic, which is quite im-

portant for flexible electronics like wearable and RFID appli-

cations. To facilitate the test, a thin foam layer (RS 554-844)

with thickness of 0.8 mm and dielectric constant of 2.6 is laid

under the paper for support. A SMA (SubMiniature version

A) connector is connected with graphene laminate antenna

with conductive epoxy (Circuit works CW2400), as shown in

Fig. 3(c).

The reflection coefficient (S11) of the graphene laminate

antenna was measured with Vector Network Analyzer (VNA

Agilent E5071B) and is shown in Fig. 4. As it can be seen,

the minimum reflection occurs at 960 MHz with �11.6 dB,

FIG. 4. Measured reflection of graphene laminate dipole antenna.

FIG. 5. Measured realized gain of graphene laminate dipole antenna.

FIG. 6. Radiation pattern measurement

in anechoic chamber. (a) Elevation

plane measurement; and (b) Azimuth

plane measurement.

FIG. 7. Measured gain radiation patterns. (a) Elevation plane and (b)

Azimuth plane.
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indicating that the antenna is well matched. The �10 dB

bandwidth is from 0.89 GHz to 1.02 GHz, which means that

above 90% power is transmitted to the antenna in this band.

However, good impedance matching, i.e., low reflection

coefficient (S11), only indicates that power is effectively

transmitted from the source to the antenna. It does not tell if

the transmitted power is effectively radiated to the free

space. The transmitted power from the source can be partly

dissipated due to the ohmic loss of the antenna.22,23 The

higher the sheet resistance is, the less the RF power will be

radiated. As one of the most important criteria of antenna

performance evaluation, the realized gain is necessary to

show the effectiveness of radiation. In this work, the realized

gain of the graphene laminate antenna was tested with three

antenna method.24 As displayed in Fig. 5, the realized gain

peaks to �0.6 dBi at 962 MHz, and between 930 MHz and

990 MHz, the gain is above �1 dBi. Although it is well

known that the realized gain of an ideal half-wavelength

dipole antenna is 2.14 dBi in theory, the gain achieved here

is good enough for many wearable and RFID applications.

Take RFID chip Ucode 7 (NXP Semiconductors) as an

example, provided the impedance matching between chips

and antenna is satisfied, the maximum reading range can

exceed 10 m with antenna of �1 dBi gain.

To further verify the radiation, the radiation pattern at

962 MHz was measured in our anechoic chamber as shown

in Fig. 6. Vivaldi antenna is used as radiator and DUT

(Device Under Test, graphene laminate antenna) is placed on

a rotary table as receiver. These two antennas are connected

with VNA (Agilent E5071B, USA), and radiation pattern is

recorded with antenna measurement system (Antenna

Measurement Studio 5.5, Diamond Engineering). The data

were recorded for every 10� rotation. Combining with the

gain value at 962 MHz, the radiation pattern is displayed in

Fig. 7.

As it can be seen in Fig. 7, the radiation pattern shows a

typical dipole pattern. In Fig. 7(a), a bit smaller radiation on

the left side radiation is due to the influence of pasted foam

layer. At 0�, the gain is maximum (�0.6 dBi). When it

rotates to around 90� and 270�, the gain becomes the lowest.

Azimuth plane radiation is a typical circle, which is expected

for a dipole antenna. The radiation pattern again proves that

the printed graphene laminate dipole antenna can radiate

effectively.

In conclusion, rolling compression method was demon-

strated to be effective in significantly improving the conduc-

tivity of binder-free graphene laminate. A printed graphene

laminate dipole antenna has been experimentally verified to

radiate RF power effectively, which demonstrates the feasi-

bility of graphene laminate for printed RF applications.
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