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Abstract

Gaussian Processes (GPs) provide a general and analytically tractable way of capturing

complex time-varying, nonparametric functions. The time varying parameters of GPs can

be explained as a composition of base kernels such as linear, smoothness or periodicity

in that covariance kernels are closed under addition and multiplication. The Automatic

Bayesian Covariance Discovery (ABCD) system constructs natural-language description of

time-series data by treating unknown time-series data nonparametrically using GPs. Un-

fortunately, learning a composite covariance kernel with a single time-series dataset often

results in less informative kernels instead of finding qualitative distinct descriptions. We

address this issue by proposing a relational kernel learning which can model relationship

between sets of data and find shared structure among the time series datasets. We show

the shared structure can help learning more accurate models for sets of regression problems

with some synthetic data, US top market capitalization stock data and US house sales index

data.
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Chapter I

Introduction

Gaussian Processes (GPs) provide a general and analytically tractable way of capturing complex time-

varying, nonparametric functions. The time varying parameters of GPs can be explained as a composi-

tion of base kernels such as linear, smoothness or periodicity in that covariance kernels are closed under

addition and multiplication. The Automatic Bayesian Covariance Discovery (ABCD) system constructs

natural-language description of time-series data by treating unknown time-series data nonparametrically

using GPs.

It is important to find data dependencies and the structure in time-series data. GPs represent data

in a non-parametric way with a mean function and a covariance kernel function. The covariance kernel

function determines correlation patterns between the data points. Therefore, learning a proper kernel

is essential to model data points with GPs. Unfortunately, finding an appropriate kernel often requires

manual encoding by human experts or reduces to a simple problem estimating parameters of a fixed,

predefined kernel structure. Solving the estimation problem would act as optimization, improving per-

formance of the kernel. But still the expressiveness of the kernel and resulting GP model is restricted to

the fixed kernel structure.

The covariance kernels of GPs are known to be closed under addition and multiplication [2]. Thus,

a sequence of complex real-valued variables could be explained by a compositional kernel with base

kernels and kernel operations. Recently, kernel operation grammars and a framework for an automatic

discovery of a compositional kernel have been proposed [3]. This framework is flexible and interpretable

in that the framework automatically discovers a complex composition of interpretable base kernels. Once

a compositional kernel is found, individual base component can be explained in a human readable form.

This capability of decomposition into multiple components and interpretability shed light on finding

shared structure given multiple sets of data.

Finding a shared structure in multiple sequences may reveal the common covariance structures of the

sequences beyond the patterns in a single sequence. As a typical example in economics, the multivariate

view is central where each variable is normally viewed in the context of relationships to other variables,

like exchange rate affecting Gross Domestic Product (GDP).

We propose a Relational Automatic Bayesian Covariance Discovery (RABCD) (explained in Chap-

ter 3) to find a shared covariance kernel for multiple sets of data sequences. Our algorithm discovers a

shared kernel which can explain the causes of changes in multiple data sets. Since GPs with the learned

kernel are non-parametric, we can represent any data which is known to have the same relationship with

the training data.

This paper is organized as follows. Chapter 2 introduces Gaussian Processes (GPs) and the Auto-

matic Bayesian Covariance Discovery (ABCD) system. Chapter 3 presents our main contribution and

algorithm, Relational Automatic Bayesian Covariance Discovery (RABCD). Chapter 4 discusses related

1
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Figure 1.1: This figure shows components learned from ABCD (top) and RABCD (bottom). (a) and

(b) represent adjusted closes of GE and learned components by ABCD, respectively. (c) and (d) repre-

sent adjusted closes of 3 selected stocks (from top, yellow:XOM, purple:GE, green:MSFT) and learned

(common) components by RABCD. The red vertical lines indicate the September 11 attacks which oc-

curred in 2001. RABCD finds and explains the sudden drop after 911 by selectively applying a constant

kernel around that period. However, ABCD tries to fit that drop using a (less informative) rapidly varying

squared exponential (SE) kernel function. We provide all components learned by ABCD and RABCD

in the appendix.

work. Chapter 5 shows experimental results with one synthetic and two real-world data sets followed by

conclusions in Chapter 6.

2



Chapter II

Automatic Bayesian Covariance Discovery

Here, we briefly explain GP models, and then introduce the ABCD system [3], which is an extension of

the Compositional Kernel Learning (CKL) [2].

2.1 Gaussian Process

GPs are distributions over functions such that any finite set of function evaluations, ( f (x1), f (x2), . . . , f (xN))

form a multivariate Gaussian distribution [4]. As a multivariate Gaussian distribution is specified by

its mean vector µ and covariance matrix Σ, a GP is specified by its mean function, µ(x) = E[ f (x)]
and covariance kernel function, k(x,x′) = Cov( f (x), f (x′)). Evaluations of each function for the GPs

on a finite set of points are equivalent to the mean vector and the covariance matrix for the multi-

variate Gaussian distribution, like µi = µ(xi) and Σi j = k(xi,x j). These mappings enable GPs utilize

the multivariate Gaussian distribution form in infinite input space. Log-likelihood of target values

y = [ f (x1), f (x2), . . . , f (xN)]
T given inputs X = [ f (x1), f (x2), . . . , f (xN)]

T is like the following:

log p(y|X) =−1
2
(y−m)Σ−1(y−m)− 1

2
log |Σ|− N

2
log2π (2.1)

where mi = µ(xi), Σi j = k(xi,x j) and N is number of data points.

Throughout this paper, we will use the following notations for GPs. If a function or evaluations of

the function f are drawn from a GP specified by its mean function µ(x) and covariance kernel function

k(x,x′):

f ∼ GP
(
µ(x),k(x,x′)

)
(2.2)

We may occasionally omit the arguments of the mean and covariance kernel functions, which are x

and x′, for simplicity, for example just saying k as a kernel function. For zero-mean GPs, we put 0

in the place of mean function, which means µ(x) = 0 ∀x. The covariance kernel functions often have

its hyperparameters which are free parameters. For example, the squared exponential kernel function

k(x,x′) = σ2 exp(|x− x′|2/`) has two hyperparameters, σ and `. Throughout this paper, we will use

notation k(x,x′;θ) that denotes a kernel function that has a vector θ as hyperparameter vector, which is

composed of possible hyperparameters of the kernel function.

2.2 Compositional Kernel Learning

CKL constructs and finds richer kernels which are composed of several base kernels and operations.

In theory, any positive definite kernels are closed under addition and multiplication [2] and can be

base kernels. Here, each base kernel expresses each distinctive feature such as linearity or periodicity.

3



Figure 2.1: This figure shows sampled functions that are drawn from a GP prior with zero mean function

and squared exponential (SE) covariance kernel funciton. As they share the same covariance kernel func-

tion, the shapes of sampled functions show similar smoothness in change (since the squared exponential

kernel function encodes smooth function).

The kernel operations include not only addition and multiplication but also so-called, change-point and

change-window operation to deal with some abrupt structural changes along input space.

2.2.1 Base Kernels

Five base kernels are used for making compositional kernels. Each kernel encodes different characteris-

tics of functions, which can be combined to make more expressive kernel functions.

Base Kernel Kernel function Encoding Function Parameters

White Noise (WN) σ2δx,x′ Uncorrelated noise σ

Constant (C) σ2 Constant functions σ

Linear (LIN) σ2(x− `)(x′− `) Linear functions σ , `

Squared Exponential (SE) σ2 exp
(
− (x−x′)2

2`2

)
Smooth functions σ , `

Periodic (PER) σ2 exp(cos 2π(x−x′)
p /`2)−I0(1/`2)

exp(1/`2)−I0(1/`2)
Periodic functions σ , `, p

where δx,x′ is Kronecker delta function and I0(x) is modified Bessel function of the first kind of order

zero.

4



2.2.2 Operations

Addition

The first operation is addition which sums multiple kernel functions and makes a new kernel function.

k′(x,x′) = k1(x,x′)+ k2(x,x′).

This operation works as a superposition of multiple independent covariance functions. In general, if

f1 ∼ GP(µ1,k1), f2 ∼ GP(µ2,k2) then f := f1 + f2 ∼ GP(µ1 +µ2,k1 + k2).

Following is the proof:

cov( f (xi), f (x j)) = E[ f (xi) f (x j)]−E[ f (xi)]E[ f (x j)]

= E[( f1(xi)+ f2(xi))( f1(x j)+ f2(x j))]

−E[( f1(xi)+ f2(xi))]E[( f1(x j)+ f2(x j))]

= cov( f1(xi), f1(x j))+ cov( f1(xi), f2(x j))

+ cov( f2(xi), f1(x j))+ cov( f2(xi), f2(x j))

= cov( f1(xi), f1(x j))+ cov( f2(xi), f2(x j))

(2.3)

Multiplication

ABCD assumes zero mean for GPs, since marginalizing over an unknown mean function can be equiv-

alently expressed as a zero-mean GPs with a new kernel [3]. Under this assumption, the following

multiplication operation is also applicable.

k′(x,x′) = k1(x,x′)× k2(x,x′).

In general, if f1 ∼ GP(0,k1), f2 ∼ GP(0,k2) then f := f1× f2 ∼ GP(0,k1× k2).

Following is the proof:

cov( f (xi), f (x j)) = E[ f (xi) f (x j)]−E[ f (xi)]E[ f (x j)]

= E[ f1(xi) f1(x j) f2(xi) f2(x j)]

−E[ f1(xi) f2(xi)]E[ f1(x j) f2(x j)]

= ( f1(xi) f1(x j)−0)( f2(xi) f2(x j)−0)

= cov( f1(xi), f1(x j))× cov( f2(xi), f2(x j))

(2.4)

Change Point

The third operation is the change-point (CP) operation. Given two kernel functions, k1 and k2, the new

kernel function is represented as follows:

k′(x,x′) = σ(x)k1(x,x′)σ(x′)

+(1−σ(x))k2(x,x′)(1−σ(x′))

5



where σ(x) is a sigmoidal function, that the function output lies between 0 and 1, and ` is the change-

point in input space. The change-point operation divides function domain (i.e., time) into two sides and

applies different kernel function on each side. To generalize, if f1 ∼ GP(µ1,k1), f2 ∼ GP(µ2,k2) then

f := σ(x) f1 +(1−σ(x)) f2 ∼ GP(σ(x)µ1 +(1−σ(x))µ2,σ(x)k1σ(x′)+(1−σ(x))k2(1−σ(x′))).

Change Window

Finally, the change-window (CW) operation applies the CP operation twice with two different change

points `1 and `2. Given two sigmoidal functions σ1(x;`1) and σ2(x;`2) where `1 < `2, the new function

will be f := σ1(x) f1(1− σ2(x)) + (1− σ1(x)) f2σ2(x), which applies the function f1 to the window

(`1, `2). A composite kernel expression after the change-window operation will be as follows:

k′(x,x′) = σ1(x)(1−σ2(x))k1(x,x′)σ1(x′)(1−σ2(x′))

+(1−σ1(x))σ2(x)k2(x,x′)(1−σ1(x′))σ2(x′).

2.2.3 Search grammar

ABCD searches a composite kernel based on the search grammar. The search grammar specifies how to

develop the current kernel expression by applying the operations with the base kernels. The following

rules are examples for typical search grammar:

S → S+B

S → S×B

B →B′

S → CP(S,S)

S → CW(S,S)

S → CW(S,C)

S → CW(C,S)

S → S× (B+C)

S → B

S → C

S+S ′→S

S×S ′→S

where S represents any kernel subexpression, B and B′ are base kernels. C is a constant base kernel. For

example, suppose that there is a kernel expression E = K1 +K2 +K3 where Ki is a kernel expression,

which cannot be separated into summands. Then, kernel subexpression S can be a summation of a non-

empty subset among the summands, Ki. If we apply multiplication grammar on subset (K1 +K3) with

base kernel B1, the expanded kernel expression would be E ′ =K2 +(K1 +K3)×B1

2.2.4 Algorithm

Given data and a maximum search depth, the algorithm gives a compositional kernel k(x,x′;θ). Starting

from the WN kernel, the algorithm expands the kernel expression based on the search grammar, opti-

mizes hyperparameters for the expanded kernels, evaluates those kernels given the data and selects the

best one among them. This procedure repeats. The next iterative procedure starts with the best com-

posite kernel selected in the previous iteration. The conjugate gradient method is used when optimizing

6



Figure 2.2: Depiction of kernel search process of the ABCD algorithm. The algorithm (1) extends an

initial kernel function to multiple possible candidate kernel functions, (2) optimizes hyperparameters of

kernel functions to maximize likelihood (3) and finally selects the best kernel function that maximizes

BIC.

hyperparameters. Bayesian Information Criterion (BIC) [5] is used for the model evaluation. The BIC

of modelM with |M| number of free parameters and data D with |D| number of data points is:

BIC(M) =−2log p(D|M)+ |M| log |D| (2.5)

The iteration continues until the specified maximum search depth is reached. During the iteration, the

algorithm keeps the best model for the output.

Here is an example of how this algorithm works. Suppose that we start from the WN kernel.

Then, we apply operators with some base kernels as described in the expansion grammar, such as

WN→ WN + SE, WN→ WN + LIN and so on. With those expanded kernels, the algorithm opti-

mizes hyperparameters of each expanded kernel. Now we have all the optimized kernels. Finally we

compare the optimized ones and select the best kernel in terms of the BIC measure. This procedure re-

peats until we meet a certain depth of search. As an example, suppose that the best kernel selected in the

previous step was WN+SE. Then we apply kernel expansion again like WN+SE→WN+SE×LIN

and so on. Then we optimize the hyperparameters, select the best kernel, and then proceed to the next

step.

7



Chapter III

Relational Automatic Bayesian Covariance Discovery

RABCD takes the ABCD system into a concept of relational modeling. Given multiple sets of time-

series data, RABCD finds a composite kernel for GPs, which can describe the shared structure of the

given datasets.

3.1 Relational Learning

When we say the term relational in machine learning, it means that we want to make use of informa-

tion between random variables. For example if we know that a random variable x and another random

variable y are positively correlated, here the relational information is that there is a positive correlation

between the two random variables. And observation of x gives additional information in expecting a

value of y, which is the making use of that information. Generally GPs include this kind of relational

information between random values in its covariance kernel functions, as the kernel function determines

the covariance of two random values given corresponding two input values. So learning a good covari-

ance kernel function is key part when we are dealing with the GPs.

There was a previous approach that adopt relational modeling to GP, called Relational Gaussian

Processes (RGPs) [1]. RGPs explicitly brings up a new variable between two random variables that

determines relationship between the two, which decides whether those two random variables are posi-

tively/negatively correlated. This relational variable works with base kernel from original GPs to give

final covariance between two random variable. Our approach is different compared to the RGPs case

since our system put more focus on modeling not the relationship between random variables but the

relationship of data-wide pattern between different datasets.

3.2 Basic idea

RABCD aims to find a modelM that explains M multiple data sets,D= {d1,d2, . . . ,dM}well. To do so,

we find a model that maximizes the likelihood, p(D|M) = p(d1,d2, . . . ,dM|M). Here, M represents

GP models. We assume the conditional independence of the likelihoods of each time-series data di.

Hence, the log likelihood of the whole data is the sum of the log likelihoods of individual time-series:

log p(d1, . . . ,dM|M) = log∏i p(di|M)

= ∑i log p(di|M)
(3.1)

We assume that there is a single, shared factor that determines the covariance pattern for multiple

data sets within the same domain, e.g., stock values of companies in a certain industrial sector. This acts

as tying different factors that determine the covariance pattern of each data set as one single factor. By

finding the factor, we ultimately wish to figure out the shared compositional covariance kernel. Here, the

8
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Figure 3.1: Graphical representation of (a) RGPs [1] and (b) RABCD. Here f denotes latent function.

The subscripts of fi and f j denote sampled latent values for each point, as in fi = f (xi). yi and y j are

observed values for each point. N is the number of data points for each data set. M is the number of

different data sets.

term relational model comes from that single factor that ties all the data sets. Finding the shared factor

in GPs is reduced to finding a shared covariance kernel function.

This approach enables consideration of each data separately and utilization of existing optimization

technique and model evaluation form used for a single dataset. In terms of the optimization technique,

ABCD uses conjugate gradient descent algorithm to optimize hyperparameters of covairance kernel

function. This requires calculating gradient of log-likelihood. As the log-likelihood of all datasets

can be decomposed into summation of log-likelihoods of individual dataset, gradient of the total log-

likelihood also can be expressed and calculated by just calculating the gradients individually and adding

up all of them.

∂

∂θ
log p(d1, . . . ,dM|M) =

∂

∂θ
∑i log p(di|M)

= ∑i
∂

∂θ
log p(di|M)

(3.2)

The independence between the datasets lessens computational complexity of calculating inverse

of covariance matrix during the inference process of GPs. The independence means zero covariance

between the different datasets and makes covariance matrix to be a block diagonal form, making fator-

ization of log-likelihood possible. Assuming that there are M datasets with N number of points for each

dataset, computational complexity of calculating inverse of full covariance matrix would be O(MN3).

However if they are independent, we only need to calculate inverse matrices of M number of N by N

covariance matrices, which results computational complexity of M×O(N3) making faster inference.

3.3 Model

Defining a GP requires its mean function µ(x) and covariance function k(x,x′). The mean function is

set to be a constant function which gives 0. The covariance function is divided into two parts, functional

9



Figure 3.2: Simple depiction of how the RABCD model works. The model gets a set of sequences of

observations as input and gives a GP model that represents the multiple sequences by a shared covariance

kernel function. And the model decomposes sequences into additive components that show distinct

characteristics.

GP f fi yib

v
i ∈ 1 . . .N

j ∈ 1 . . .M

µ(x)

0

k(x,x′)

k θ

G

Figure 3.3: Graphical representation of RABCD model with more steps in generating GP prior. k defines

the kernel function’s structure but not the values of its hyperparameters. θ completes the function by

deciding the function’s hyperparameter values. σ j is multiplied by k(x,x′) for each GP prior. This works

as normalization of scale variance of each dataset.
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part k and its parameters θ . Here we say the functional part k is the function structure but the values

of its hyperparameters are not specified yet. k is from a context-free language set yielded from context-

free grammar G, which defines the search method while expanding the search tree in the kernel search

algorithm. Here G contains base kernels like WN and operators like + and ×. After functional part k

is decided, θ that is the hyperparameter vector of the kernel function should be decided. In addition to

that, we have parameter vector σ where its length is twice of the number of datasets. Each b j (additive

scaling factor) and v j (multiplicative scaling factor) in σ = [b1,v1, . . . ,bM,vM] is added and multiplied

to the kernel function k(x,x′;θ) before defining a GP prior for each data, like k′ = b2 + v2× k(x,x′;θ).

This parameters normalize of scale variance to deal with the data sets with different scale of bias and

variance in target value y. Summarizing all the process gives the following model.

k← G (3.3)

GP ← k,θ ,σ (3.4)

f ←GP (3.5)

y,X← f (3.6)

Here f is the latent function from GP prior. y and X are N×1 and N×D matrices where N is the number

of data points for each data set and D is the input dimension. For yi which is the ith element of column

vector y, and xi which is the ith row vector of matrix X, yi = f (xi) holds.

Figure 3.3 shows the whole structure of the model. The GP prior is specified for each data set, from

1 to M. A mean function and kernel function are needed to specify a GP prior. The mean function is

zero mean function. The covariance kernel function is specified with the kernel structure and hyperpa-

rameters. Scaling factor σ for each data set is multiplied by the kernel function and specifies a GP prior.

The GP prior for each data set gives latent function f . From that latent function, we get latent values fi

for each data point. Finally yi is generated and observed which is generated from the latent value fi with

some noise. So for each data set, here j from 1 to M, we have the following distribution:

Ki, j = b2 + v2× k(xi,x j;θ) (3.7)

y∼N (0,K) (3.8)

Here N (0,K) denotes a multivariate normal distribution with 0 mean vector and covaraince matrix K.

3.4 Algorithm

The algorithm for the RABCD model is described in algorithm 1. This algorithm finds a single co-

variance kernel that is shared by multiple data sets. The way of finding the covariance kernel follows

the basic ABCD algorithm. However the main difference is that when we evaluate each model candi-

date, we calculate the negative log marginal likelihood of the whole data as a summation of negative

log marginal likelihood of each data set. This is possible because our model shares a covariance kernel

function through multiple data sets. This sharing kernel function restricts covariance patterns of multiple

11



data sets to be the same. However this does not specify any correlation of variables across the different

data sets. In other words, if we construct a single covariance matrix for all the data, we get a covariance

matrix that has a block diagonal form. Then we can factorize the likelihood p(D|M), where M is a

model and D is a set of data, into a product of individual likelihoods ∏d∈D p(d|M) as those individual

likelihoods are independent. As we are dealing with the log likelihood, this can be represented as a

summation, ∑d∈D log p(d|M). After finding the best kernel expression with optimized hyperparame-

ters, scaling parameter σ is added to the model and optimized again with the hyperparameters of the

kernel function. During this optimization process, model tries to normalize the target values between

the dataset. Hyperparameters are fine-tuned to work with the learned scaling factor.

Algorithm 1 Learning RABCD

Require: initial kernel k which contains initial parameters θ and σ , data D = {d1, . . . ,dM}, expansion

grammar G, maximum depth of search s

1: procedure LEARNRABCD

2: for i ∈ 0 . . .s do
3: K← EXPAND(k,G)

4: K← OPTIMIZE(K,D)
5: k← argmink∈K BIC(k,D)
6: end for
7: return k

8: end procedure
9: function OPTIMIZE(K,D)

10: for k ∈ K do
11: θ ← argminθ NLML(k,D)
12: end for
13: return K

14: end function
15: function BIC(k,D)

16: return 2×NLML(k,D)+LENGTH(θ)× ln(|D|)
17: end function
18: function NLML(k,D)

19: return ∑d∈D NLMLINDIVIDUAL(k,d)

20: end function

12



Chapter IV

Related Work

4.1 Learning Composite Gaussian Process Kernels

A composite GP kernel can greatly improves the performance of nonparametric regression models.

Manually constructed composite models have shown to fit accurate GP models [4, 6, 7]. Tree-shaped

composite kernels have also been used with Support Vector Machine (SVM) [8, 9].

A weighted sum of base kernels is limited but also effective when building a composite kernel with

composite kernels are given. Multiple Kernel Learning (MKL) [10, 11, 12] find optimal weights in

polynomial time when the component kernels and parameter are pre-specified.

Recently, an algorithm for learning a composite kernel (CKL) [2], and a system for an automatic

explanation of the learned composite kernel (ABCD) [3] have been proposed. Our relational learn-

ing (ABCD) is based on the ABCD system. However, our RABCD expands the ABCD for multiple

time-series data and improves the interpretability of the individual time-series data by finding a shared

relational structure.

4.2 Relational Learning for Continuous Data

Relational GPs can represent the relationships among multiple time-series data sets [1, 13, 14]. These

models are based on pre-specified base kernels instead of composite kernel representations. A straight-

forward extension of relational GP with a composite kernel does not work unless the time-series data sets

share the same hyperparameter. Our model is more flexible to handle relational data sets by introducing

GPs with both shared and non-shared hyperparameters.

There is a large body of work attempting to represent the probabilistic knowledge formalisms in

Statistical Relational Learning (SRL) [15]. SRL models for continuous variables [16, 17, 18] and lifted

inference algorithms have been proposed [19]. Unfortunately, learning composite relational models

from complex continuous data is still hard, and thus models are defined manually.
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Chapter V

Experimental Results

In this section, we will first show that our model can find the true hyperparameter from the data that

is generated from the model with our assumption, a shared kernel with shared hyperparameters. Then

we will show how our model actually works with real world stock data and house price index data, in

comparison with the original ABCD model.

5.1 Learning Hyperparameters on Synthetic Data

First we have a covariance kernel function k that is already learned from the original ABCD algorithm.

In composite kernel form, it’s represented as SE×PER×LIN+LIN+SE+WN. We generate 20 data

sets from a GP prior with kernel k. Each data set has a different number of data points. After sampling

the data, we try to optimize the hyperparameters of k for 1,2, . . . ,20 data sets chosen out of 20 sampled

data sets, with the original hyperparameters as a starting point. We do this optimization 10 times for

each number of data sets, from 1 to 20, with different combination of choice.

We calculate the root mean squared error (norm distance) between the true hyperparameter and the

optimized hyperparameter vector. Figure 5.1 shows the result. The values along the horizontal axis

means the number of data sets which are used in the optimization. Each boxplot shows the distribution

of the error with 10 different results for each number of data sets used. It shows that as we increase the

number of data sets in parameter optimization, the error between the optimized and the true hyperpa-

rameter decreases.

5.2 Stock Market Data

We ran our RABCD algorithm on US stock mark data. We select the 9 most valuable stocks, GE, MSFT,

XOM, PFE, C, WMT, INTC, BP and AIG based on the market capitalization rank in 2001 [20]. The

adjusted closes of stocks from 2001-05-29 to 2001-12-25 were collected from Yahoo finance [21]. Each

stock’s historical adjusted close in that period consists of 129 points. Thus, the whole number of points

is 129×9 = 1161 points. The period that we collected data from includes September 11 attack. In terms

of the general shape of the data the time series signals show similar long-term change through the whole

period. After the 9/11 attacks, all the stock values show a steep drop but gradually recovers as time goes

on.

Table 5.1 compares the fitness of the ABCD and RABCD models. The results with line heading

RABCD are from our model. The others are from the original ABCD. The results with line heading

Total is calculated by considering the whole GP priors that are learned for each data set as a single

model. So NLL, N, P values of individual models are added up and the total BIC of the ABCD model as
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Figure 5.1: The convergence of error between the optimized hyperparameter and original true parameter

that was used when generating data. The horizontal axis denotes the number of data sets used in hyper-

parameter optimization. The vertical axis shows the value of root mean squared error between optimized

and true hyperparameters. Each boxplot shows the distribution of errors for each step.

Model-Stock NLL N P BIC

ABCD

GE 116.36 129 7 266.75

MSFT 111.17 129 6 251.51

XOM 82.24 129 9 208.23

PFE 62.91 129 12 184.14

C 424.23 129 10 897.07

WMT 149.96 129 5 324.23

Total 946.89 774 49 2219.71

RABCD-Total 1001.04 774 21 2141.76

Table 5.1: The experimental comparisons of GP models with individual ABCD and RABCD in the stock

data set (top 6 US stocks in 2001). For each column, NLL means the negative log likelihood, N is the

number of data points, P is the number of hyperparameters and BIC is the Bayesian information criterion.

ABCD is slightly better in a simple aggregation of NLL only. However, our RABCD outperforms ABCD

in the BIC due to a significantly lower 21 parameters (P) compared to 49 parameters in ABCD.
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Figure 5.2: Plotting shape of total 9 number of US stock data. Upper plot is original data and lower plot

is normalized data.
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RABCD ABCD

SET N P BIC P BIC

Top 3 stocks 387 13 686.05 22 750.65

Top 6 stocks 774 21 2141.76 49 2219.71

Top 9 stocks 1161 38 4167.40 73 3985.03

Table 5.2: The BIC of ABCD and RABCD in the stock data set. ‘Top 3’, ‘Top 6’ and ‘Top 9’ stocks were

selected by their market capitalization ranks in 2011. As shown in Table 5.1, RABCD requires fewer

parameters than ABCD. RABCD models trained with 3 stocks and 6 stocks show better performance

than individually optimized ABCD models. When 9 stocks are considered, the individual ABCD models

show better performance than the single (shared) RABCD model.

a single model was calculated using those values. In terms of negative log likelihood, applying ABCD

individually gives better results. However if we compare the BIC, our model achieves better results as

our model has a reduced number of free parameters by sharing them through the data sets.

Table 5.2 compares the fitness of the models with different numbers of data sets used in training. As

the number of data sets increases, the number of parameters needed also increases. However RABCD

shows less need of parameters through the whole setup since our model shares parameters though the

data. RABCD also performs well in terms of the BIC for TOP3 and TOP6. However as the number

of data sets increases, the performance of the original ABCD model surpasses our model, at TOP9.

This is because our model fits the general structure but not individual specific ones. As the number of

data sets increases, the learned structure cannot fully explain the individual specific patterns. And this

accumulated errors in fitness, which is the NLL, offsets the advantages of the BIC which is from the

reduced number of parameters.

5.3 Housing Market Data

We applied our model to housing market data as a second experiment on real world data. US house

price index data were retrieved from S&P Dow Jones Indices [22]. We selected 6 cities: New York,

Los Angeles, Chicago, Pheonix, San Diego and San Francisco. These cities were selected based on the

US city population rank [23]. Those cities were the top 6 cities in terms of their population, among the

cities that had house price index data. The indices are seasonally adjusted. The period is from the start

of year 2004 to the end of year 2013 with monthly granularity, with total 120 points for each data set

and 720 for all the data sets. In terms of the shape of the data, there are smooth peaks around 2007 and

drops until 2009. There is only small change until 2012 and after that they monotonically increases. The

experimental results are quite similar to the one with stock values.

Table 5.3 shows the fitness of models between our model and the ABCD model. Similar to the

stock market data case, the first line is our model and the others are from the ABCD. Our model shows

better results, reduced number of free parameters and smaller BIC compared to Total case. However the
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Figure 5.3: Picture that shows expressive power of RABCD by finding the sudden decrease in the most

of stocks after 9/11.

Model-City NLL N P BIC

ABCD

New York 120.13 120 10 288.13

Los Angeles 162.94 120 9 368.96

Chicago 134.73 120 13 331.69

Pheonix 101.76 120 11 256.17

San Diego 155.64 120 12 368.73

San Francisco 174.45 120 6 377.63

Total 849.64 720 61 2100.62

RABCD-Total 910.63 720 23 1972.58

Table 5.3: A comparison of BIC between the GP model from individual ABCD and the GP model from

RABCD, with house data. For each column, NLL means negative log likelihood, N is the number of

data points, P is the number of hyperparameters and BIC is the Bayesian information criterion. For each

row, RABCD is the result from our model. From New York to San Francisco, those results are from

individual ABCD. Total is summation of those individual results.
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Figure 5.4: Plotting shape of total 6 number of US house price index data. Upper plot is original data

and lower plot is normalized data.
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RABCD ABCD

SET N P BIC P BIC

Top 2 cities 240 12 663.54 20 634.00
Top 4 cities 480 14 1260.05 38 1424.18

Top 6 cities 720 23 1972.58 61 2100.62

Table 5.4: The BIC of ABCD and RABCD in the housing market data set. ‘Top 2’, ‘Top 4’ and ‘Top

6’ US cities were selected in terms of their city population rank. The BICs of the RABCD models are

similar or better than the BICs of individually trained ABCD models.

original model still shows better fitness if we only consider NLL. From this experiment we can again

confirm that the major contribution of the smaller BIC comes from the reduce number of parameters.

Table 5.4 compares results between our model and the ABCD for different number of data sets. Our

model shows reduced number of parameters over all different sets of data since our model shares kernel

parameters for multiple data sets. The original model shows better results in terms of BIC for the top

2 indices case. However other than that, our model shows better results in terms of both number of

parameters and BIC.
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Chapter VI

Conclusion

We proposed a nonparametric Bayesian framework that finds shared structure throughout the multiple

sets of data. The resulting Relational Automatic Bayesian Covariance Discovery (RABCD) method

provide a way of finding a shared kernel function that can describe multiple data with better BIC. We

applied this model to a synthetic data and several real world data, including US stock data and US house

price index data, to validate our approach. While this paper assumes conditional independence between

the data sets, this Relational Automatic Bayesian Covariance Discovery framework can be generalized

in the form of Infinite Tucker Decomposition [24], which is generalization of tensor decomposition with

infinite size of core tensor. We hope this is the right direction for the next research topic.
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