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Abstract 

In this paper, we enhance low contrast images using the human visual system based Retinex theory 

and adaptive tone-mapping. We try to reduce halo artifact and color inconsistency, but also preserve 

naturalness of images. In the proposed algorithm, we process only the Y channel of the Yuv color space 

rather than RGB color space to maintain color-constancy. We first apply an adaptive bilateral filtering 

on the Y channel image to alleviate halo artifact during enhancement. Then we partition the intensity 

range of probability distribution of filtered Y channel image into low, middle, and high contrast regions 

according to a cost function. We improve the contrast of filtered Y channel image by using A-law based 

tone mapping by stretching the low contrast regions and compressing the high contrast regions 

adaptively. Experimental results show that the proposed algorithm enhances the visibility of input low 

contrast images efficiently. 
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Chapter I 

Introduction 

Image enhancement is a traditional research issue of image processing. The goal of image 

enhancement is to improve the quality of input low quality images, such as low-contrast images, hazy 

images and foggy images. Retinex theory, which was proposed by Land [1], has been used in many 

different ways for image enhancement. In Retinex theory, the observed image intensity is assumed to 

be a product of the image's reflectance and illumination. Jobson proposed single-scale Retinex (SSR) 

[2], where the illumination of an input image is estimated by the Gaussian-filtered color channel images. 

However, color-constancy preserving problem is not the only issue resulted from the enhancement of 

images; halo artifacts also occurs on the edges of objects as a result of Gaussian filtering. 

To reduce these artifacts in SSR algorithm, modified Retinex algorithms were proposed including 

multi-scale Retinex (MSR) [3] and multi-scale Retinex color restoration (MSRCR) [4] by Jobson. 

Kimmel [5] solved the color-constancy preserving problem by using the HSV color space. This method 

enhanced the V channel and preserved the H and S channels. Elad [6] applied a bilateral filter to preserve 

the image's edges rather than using a Gaussian filter to estimate the illumination of the image. Meylan 

[7] applied a principle component analysis to an input RGB color space, then estimated the luminance 

of the image by taking the first principle component and determined the chrominance domains using 

the second and third principle components, respectively. Then the luminance component alone was 

processed for enhancement. Shen and Hwang [8] also used the HSV color space to address the color 

inconsistency problem, and they developed a smoothing filter by optimizing a cost function to reduce 

halo artifact. Ahn [9] applied a guided filter to preserve the image's edges, then estimated the 

illumination of the image and used the Y channel of the Yuv color space to solve the color inconsistency 

problem. 

These Retinex-based algorithms were used to solve the conventional problems and to improve the 

quality of input images effectively; however, sometimes the improved results were unnatural. To 

address this, Shen et al. [8] and Shuhang et al. [12] divided the reflectance and estimated illumination 

of an image using each of the proposed filters for obtaining reasonable reflectance, the boundaries of 

which were 0 (Absolute Absorption) and 1 (Absolute Reflectance). Shen et al. [8] used gamma 

correction to obtain a natural image. Shuhang et al. [12] used a bi-log function as a method for 

cumulative distribution matching in order to enhance the image more naturally. 

In this thesis, the term low-contrast image is defined. As shown in the blue circle of Figure 1.1(c), 
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the probability distribution of an image intensity is concentrated within a certain region. These 

distributions decrease the visibility of the image, as shown in Figure 1.1(a). Thus, the purpose of 

enhancement in the present study was to increase the visibility of an image by stretching the probability 

distribution of a low-contrast image. In this work, the low-contrast image is enhanced using the 

proposed adaptive bilateral filter to solve the halo artifact problem on the object's edges. This process 

allows the estimated reflectance to have the range from 0 to 1. The estimated illumination is enhanced 

using the proposed adaptive A-law based tone mapping for improving the low-contrast regions naturally. 

By improving the image's probability distribution using adaptive bilateral filtering and A-Law based 

tone mapping, an enhanced image is obtained as shown in Figure 1.1(b), which exhibits also more 

uniform distribution of intensity values as shown in Figure 1.1(d). 

Our algorithm can be described as follows. First, we estimate the illumination of the Y channel 

 

(a) (b) 

  

(c) (d) 

Figure 1.1: Low contrast image enhancement. (a) An input low contrast image and (b) the enhanced 

image. Probability distributions of (c) input Y channel and (d) the enhanced Y channel.  
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instead of the RGB color space using an adaptive bilateral filter. This process also allows us to separate 

the reflectance from the low-contrast image. Second, we estimate the low, middle, and high contrast 

regions, which are defined according to a cost function, which is based on the density of estimated 

illumination. Third, we apply the adaptive A-law based tone mapping using the estimated contrast 

regions, respectively. Finally, we obtain the enhanced image by transforming the Y channel—which is 

a product of the enhanced illumination and separated reflectance—and the original u and v channels 

into the RGB color space. 

This thesis is organized as follows. Chapter 2 presents the related work. Chapter 3 describes the 

proposed algorithm for enhancing the low-contrast image. Chapter 4 shows the experimental results. 

Chapter 5 includes the conclusion. 
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Chapter II 

Previous Works  

2.1 Retinex based on RGB Color Space 

In Retinex theory [1], image intensity 𝐼 is represented by the product of image reflectance 𝑅 and 

illumination 𝐿 given by 

𝐼(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) ∙  𝐿(𝑥, 𝑦).                          (2.1) 

In the SSR algorithm [2], the Gaussian filter convolution, along with the input image, estimates the 

illumination of the image. The result of SSR in 𝑖 channel (𝑖 ∈ {𝑅, 𝐺,𝐵}) is 𝑅𝑆𝑖(𝑥, 𝑦). Reflectance in 

the log scale is obtained by 

𝑅𝑆𝑖(𝑥, 𝑦) = log 𝐼𝑖(𝑥, 𝑦) − log [𝐹(𝑥, 𝑦) ∗ 𝐼𝑖(𝑥, 𝑦)],                (2.2) 

where 𝐹(𝑥, 𝑦) is a normalized Gaussian function [2], represented by  

𝐹(𝑥, 𝑦)  = 𝐾 ∙ exp (−
x2+y2

𝑐2
), (2.3) 

where c is the Gaussian constant as scale, 𝐾 is a normalization parameter. These are used to satisfy 

 ∑ ∑ 𝐹(𝑥, 𝑦)𝑦𝑥 = 1. However, the SSR algorithm has a halo artifact problem on the edges of objects 

and a color-constancy problem caused by color shifting. 

 Figure 2.1 shows the SSR results and the problems created by the SSR algorithm. Figure 2.1 (a) 

and (b) show a low-contrast image and an SSR-result image, respectively. Figure 2.1 (c) and (d) show 

enlarged images of a blue rectangle from Figure 2.1 (a) and (b), respectively. As shown in Figure 2.1 

(d), the overall color of SSR result becomes reddish. This indicates that color constancy is not preserved 

as a result of the SSR algorithm. Figure 2.1 (e) shows an enlarged image of the red rectangle from 

Figure 2.1 (b). This image shows the halo artifact problem occurring on the edges of objects. 

To reduce halo artifact caused by the Gaussian constant c of the SSR algorithm, the MSR algorithm 

was proposed by Jobson [3]. A result of MSR, 𝑅𝑀𝑖(𝑥, 𝑦) is yielded by the weighted sum of 𝑅𝑆𝑖(𝑥, 𝑦) 

at multiple image scales. 
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where 𝑁 is the number of scales and 𝑤𝑛 is the following weighting parameter: 
1

𝑁
. Meanwhile, 𝑅𝑆𝑖 ,𝑛 

is an SSR result of i channel in the n-th scale. As shown in Figure 2.2(a), the MSR algorithm solved the 

halo artifact problem. However, the overall image color does not appear to be natural. Thus, MSR 

cannot solve the color constancy problem. For this reason, MSRCR was proposed by Jobson [4] to solve 

the color constancy problem of the MSR algorithm. The result of MSRCR 𝑅𝑀𝐶𝑖(𝑥, 𝑦) is yielded by 

the product of the color restoration function and the results of MSR. 

𝑅𝑀𝐶𝑖(𝑥, 𝑦) =  𝐶𝐼(𝑥, 𝑦)  ∙  𝑅𝑀𝑖(𝑥, 𝑦), (2.5) 

where 𝐶𝐼(𝑥, 𝑦) is the color restoration function.   

                                             𝐶𝑖(𝑥, 𝑦) =  𝛽 log[𝛼𝐼𝑖
′(𝑥, 𝑦)],   𝐼𝑖

′(𝑥, 𝑦) =
𝐼𝑖(𝑥,𝑦)

∑ 𝐼𝑖(𝑥,𝑦)
𝑆
𝑖=1

, (2.6) 

where 𝐼𝑖
′(𝑥, 𝑦) is the ratio of 𝑖 color channel to the whole channel and 𝛼,𝛽 is constant. 

  

(a) (b) 

 

  

(c) (d) (e) 

Figure 2.1: Retinex-based image enhancement. (a) An input low contrast image and (b) the enhanced 

image by using SSR. The enlarged images of the blue rectangles in (c) the input image and (d) the 

enhanced image. (e) The enlarged image of the red rectangle in the enhanced image. 

𝑅𝑀𝑖(𝑥, 𝑦) = ∑ 𝑤𝑛 ∙ 𝑅𝑆𝑖,𝑛(𝑥, 𝑦)
𝑁
𝑛=1 ,  

(2.4) 
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(a) (b) 

Figure 2.2: Comparison of image enhancement results: (a) MSR and (b) MSRCR. 

As shown in Figure 2.2(b), the MSRCR algorithm causes greater enhancement than MSR in terms 

of the color constancy problem; however, MSRCR cannot perfectly solve both the halo artifact and the 

color constancy problems. 
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2.2 Retinex based on Light Channel 

To solve the color constancy problem, Retinex algorithms using light-channel were proposed by [5], 

[8], and [9]. These algorithms used the V channel of the HSV color space or the Y channel of the Yuv 

color space, which represent the light information. Figure 2.3 shows the flow charts and the results of 

these algorithms. 

 

 

(a). 

 

(b) 

  

(c) (d) 

Figure 2.3: Light channel based Retinex algorithms. The flow charts of (a) [9] and (b) [8] and [9]. 

The enhanced images by using (c) [9] and (d) [8] and [9]. 
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Figure 2.3(a) shows the Retinex algorithm flow chart using the light information channel. The RGB 

color channel is converted into light and into a chrominance channel. These algorithms only use the 

light channel to preserve the color constancy of the image. They then improve the light channel using 

equation (2.2), but the bilateral filter or guided filter is applied to prevent the occurrence of halo artifacts. 

Finally, these algorithms convert the enhanced light and original chrominance channel into an RGB 

color channel. Figure 2.3(c) shows the results of Figure 2.3(a). In Figure 2.3(c), the light channel 

Retinex looks flat. This is because the light channel Retinex loses the ordering of the light channel, 

though it still preserves the color constancy and enhances the detail of the image. Thus, these algorithms 

generally use light channels as weight factors for solving the problem of flat-looking images, as shown 

in Figure 2.3(b). Figure 2.3(d) shows how these algorithms solve the problem of flat-looking images.   
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Chapter III 

Proposed Algorithm 

3.1 Overview  

The typical Retinex-based image enhancement algorithms used a luminance channel, which is a 

channel that has been converted from an RGB color space, such as the Y channel of a Yuv color space 

or the V channel of an HSV color space. The algorithm developed in the present study also uses the Y 

channel of a Yuv color space to preserve the color constancy of the image. To estimate the illumination 

of the image, we apply an adaptive bilateral filter to the Y channel to estimate the illumination of the 

image. Then, we estimate the low-contrast region of the estimated illumination using cost function and 

cost labeling to enhance the adaptiveness of the image. We obtain enhanced illumination by applying 

adaptive A-law based tone mapping based on the low-contrast region that has been estimated during 

the previous processing. Finally, we yield the enhanced Y channel, which produces multiple of 

enhanced illumination and reflectance. Then, we obtain an enhanced RGB image, which has been 

converted from the enhanced Y channel and the original u and v channel.  

  

 

Figure 3.1: Flowchart of the proposed algorithm. 

 

3.2 Adaptive Bilateral Filtering 

According to the Retinex theory [1], the observed intensity of the Y channel image is represented as 

the product of the related reflectance and illumination. 

 

𝐼𝑙𝑢𝑚(𝑥, 𝑦) = 𝑅𝑙𝑢𝑚(𝑥, 𝑦) ∙ 𝐿𝑙𝑢𝑚(𝑥, 𝑦) (3.1) 
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where 𝐼𝑙𝑢𝑚(𝑥, 𝑦), 𝑅𝑙𝑢𝑚(𝑥, 𝑦), and 𝐿𝑙𝑢𝑚(𝑥, 𝑦) reflect the intensity, reflectance, and illumination at 

the pixel position (𝑥, 𝑦) in the Y channel image. Note that because the reflectance is normalized into 

[0,1], 𝐼𝑙𝑢𝑚(𝑥, 𝑦) ≤ 𝐿𝑙𝑢𝑚(𝑥, 𝑦).  

The conventional Retinex-based algorithms estimate the illumination of an image by performing 

convolution on the input image using conventional smoothing filters, such as the Gaussian [2,3], 

bilateral [6], or guided filters [9]. The Gaussian filter computes the average pixel value of the 

neighboring pixel set, and thus it often causes halo artifacts. In contrast to this, the bilateral filter [10] 

and guided filter [11] can preserve the edges of an input image; thus, these filters can reduce the number 

of halo artifacts. Note that conventional bilateral filtering assigns a greater weight to neighboring pixels 

𝒒(𝑢, 𝑣) that are closer to any given pixel 𝒑(𝑥, 𝑦) and that have more similar pixel values to 𝒑(𝑥, 𝑦). 

However, in some pixels, the estimated illumination values can be smaller then the corresponding 

intensity values due to the smoothing nature of the used filters. This effect results in reflectance values 

larger than 1. 

Therefore, we propose the use of the adaptive bilateral filter in our algorithm in order to obtain a 

reasonable range of reflectance. More specifically, at a given pixel 𝒑(𝑥, 𝑦), we only consider the 

neighboring pixels 𝒒(𝑢, 𝑣) 's with larger intensity values than those of 𝒑(𝑥, 𝑦) and similar colors to 

𝒑. So, let 𝑃(𝑥, 𝑦) represent the set of neighboring pixels to 𝒑(𝑥, 𝑦). We obtain the required set 

𝑆(𝑥, 𝑦) of pixels by sorting only the pixels from 𝑃(𝑥, 𝑦), which have larger intensity values than that 

of 𝒑(𝑥, 𝑦), and which have similar colors to 𝒑.  

𝑆(𝑥, 𝑦) = {(𝑢, 𝑣)|(𝑢, 𝑣)  ∈ 𝑃(𝑥, 𝑦),   𝐼𝑙𝑢𝑚(𝑢, 𝑣)  > 𝐼𝑙𝑢𝑚(𝑥, 𝑦),    𝑑𝑐ℎ𝑟(𝑥, 𝑦, 𝑢, 𝑣) <  𝜏𝑐ℎ𝑟  }    (3.2) 

where the chrominance distance 𝑑𝑐ℎ𝑟(𝑥, 𝑦, 𝑢, 𝑣) between (𝑥, 𝑦) and (𝑢, 𝑣) is computed as 

      𝑑𝑐ℎ𝑟(𝑥, 𝑦, 𝑢, 𝑣) = √(𝐼𝑢(𝑥, 𝑦) − 𝐼𝑢(𝑢, 𝑣))
2
+ (𝐼𝑣(𝑥, 𝑦) − 𝐼𝑣(𝑢, 𝑣))

2
             (3.3) 

𝐼𝑢  and 𝐼𝑣  are u and v channel images in Yuv color space. and 𝜏𝑐ℎ𝑟  is given threshold which is 

empirically set as 𝜏𝑐ℎ𝑟  = 0.025. 

Figure 3.2 shows the difference between the neighboring sets of the bilateral filtering and the adaptive 

bilateral filtering (ABF). The red rectangle in Figure 3.2(a) represents the set of neighboring pixels 

to  𝒑(𝑥, 𝑦) in the bilateral filtering, and the black rectangle in Figure 3.2(b) represents the set of 

neighboring pixels to 𝒑(𝑥, 𝑦) in the ABF. The blue and black check signs in Figure 3.2(b) represent 

the images with the larger intensity and similar color, respectively. 
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 Then we estimate the illumination value at (𝑥, 𝑦) as 

 

  �̂�𝑙𝑢𝑚(𝑥, 𝑦) =  
∑ 𝐹𝑔𝑒𝑜(𝑢, 𝑣)(𝑢,𝑣)∈𝑆(𝑥,𝑦)  ∙  𝐹𝑖𝑛𝑡(𝑢, 𝑣)  ∙  𝐼𝑙𝑢𝑚(𝑢, 𝑣)

∑ 𝐹𝑔𝑒𝑜(𝑢, 𝑣)(𝑢,𝑣)∈𝑆(𝑥,𝑦)    ∙    𝐹𝑖𝑛𝑡(𝑢, 𝑣)
 

 

 

(3.4) 

where 𝐹𝑔𝑒𝑜(𝑢, 𝑣) and 𝐹𝑖𝑛𝑡(𝑢, 𝑣) denote the geometric similarity and intensity similarity in bilateral 

filtering 

  𝐹𝑔𝑒𝑜(𝑢, 𝑣) =  
1

2𝜋𝜎1
2 exp (−

(𝑥−𝑢)2+(𝑦−𝑣)2

2𝜎1
2 

),  

 

(3.5) 𝐹𝑖𝑛𝑡(𝑢, 𝑣) =  
1

2𝜋𝜎2
2 exp(−

(𝐼𝑙𝑢𝑚(𝑥,𝑦)−𝐼𝑙𝑢𝑚(𝑢,𝑣))

2𝜎2
2 

2

), 

where we set 𝜎1 = 3 and  𝜎2 = 5.  

Note that the original bilateral filtering is implemented by replacing 𝑆(𝑥, 𝑦) with 𝑃(𝑥, 𝑦) in the 

above equation (3.4). Because we only consider the neighboring pixels, which have larger luminance 

values than 𝒑(𝑥, 𝑦), we can guarantee that the resulting estimated illumination values lie within the 

available range of [0,1] according to equation (3.1). Moreover, we can further enhance the details and 

preserve the edge structure of the inputted image by smoothing the neighboring pixels that have similar 

colors to the current pixel. 

 

 

(a) (b) 

Figure 3.2: Neighboring pixels in ABF. (a) Neighboring set 𝑃(𝑥, 𝑦) of (𝑥, 𝑦) in bilateral filtering. 

(b) Neighboring set 𝑆(𝑥, 𝑦) of (𝑥, 𝑦) in ABF. 
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Then, from equation (3.1), we obtain reflectance as  

Rlum(𝑥, 𝑦) =  
𝐼𝑙𝑢𝑚(𝑥, 𝑦)

�̂�𝑙𝑢𝑚(𝑥, 𝑦)
 . 

 

(3.6) 

We enhance the low-contrast input image by improving the range of the estimated illumination image's 

�̂�𝑙𝑢𝑚’s intensity. 

Figure 3.3 shows the result of the ABF, as well as those of other edge-preserving filters. Using three 

filters to enhance low-contrast images is an effective method of enhancement. However, the results of 

the bilateral filtering and guided filtering have some halo artifacts, as shown in Figure 3.3(e) and (f). 

On the other hand, the result of the ABF not only solves the halo artifact problem, but also maintains 

the naturalness of the image. 

3.3 Contrast Region Partitioning 

We define the low-contrast region, middle-contrast region, and high-contrast region according to the 

degree of density in each given histogram region. More specifically, if the given histogram region is 

dense, normal, or diffused, then we define that region as low-contrast, middle-contrast, and high-

contrast, respectively. 

 

 

 

 

 

 

(a) 

   

(b) (c) (d) 

   

 (e) (f) (g) 

Figure 3.3: Results of ABF. (a) Original image. (b) Bilateral filtering result. (c) Guided filtering result. 

(d) ABF result. (e), (f), and (g) are the enlarged images of (b), (c), and (d), respectively. 
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  For low-contrast image enhancement, the low-contrast region is stretched, the high-contrast region 

is compressed, and the middle-contrast region is maintained. Thus, we must determine which regions 

are low-contrast, middle-contrast, and high-contrast in order to enhance the low-contrast image. 

3.3.1 Global Estimation 

We divide the histogram, which represents the probability density of the estimated illumination of 

the image �̂�𝑙𝑢𝑚 , into 16 regions in order to determine the contrast region. We then calculate the average 

value of the histogram in each region. We evaluate this value using cost-function 𝐶𝑖 and determine the 

label of contrast region 𝐷𝑙., as shown in Figure 3.4(a). 

  

𝐶𝑖 = 𝑠𝑖𝑔𝑛(𝑎𝑣𝑝𝑖 − 𝜏𝑐)  ∙ exp (|1000 ∙ (𝑎𝑣𝑝𝑖 − 𝜏𝑐)|) (3.7) 

where 𝑎𝑣𝑝𝑖 is the average value of the histogram in i-th region, 𝜏𝑐 = 0.006, 

The cost function and standard of labeling are set empirically. If two adjacent regions have the same 

label 𝐷𝑖 , the two regions merge together. From this process, the global low-contrast region is 

determined, as shown in Figure 3.4(b). L, M, and H of Figure 3.4 represent the low-contrast region, 

middle-contrast region, and high-contrast region, respectively. 

  

(a) (b) 

Figure 3.4: Global estimation for low contrast region. (a) Initial contrast region labeling. (b) Merged 

contrast region labeling.  

  

𝐷𝑖  =  {
L                                     if         𝐶𝑖  ≥ 0,

      M                                    if − 10 ≤ 𝐶𝑖  < 0
H                                          Otherwise.

, 
(3.8) 
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3.3.2 Local Estimation 

Both sides of a determined region cannot satisfy the condition of the included region. Therefore, the 

side region of merged regions is checked by using equations (3.7) and (3.8), then determines whether 

extension or compression has occurred. More specifically, when the low-contrast image's histogram and 

the merged estimated contrast region are labeled, as in Figure 3.5 (a), the left side of the low-contrast 

region is not evaluated precisely. To address this, we check the local contrast region (the red and black 

rectangles), which has been placed in the start or end region (indicated by the yellow line) of the low-

contrast region, whether this region is low-contrast or not. If the labeling of the checked region is not 

the same as the original labeling, the checked region changes its labeling, and the labeling of the start 

or end region also changes. From these process, we estimate the low-contrast region, as shown in Figure 

3.5(b). This process occurs again in the middle-contrast region. The local estimation for the low-contrast 

region is then obtained, as shown in Figure 3.6(a).  

 

 

(a) 

 

(b) 

Figure 3.5: Local estimation for low-contrast region. (a) Process of local estimation. (b) Result of 

local estimation labeling. 



15 

3.3.3 Exception Handling 

If the high-contrast regions are placed in low (0–30) or high (225–255) intensity, these regions will 

be absorbed into the adjacent regions. This not only causes less enhancement, but also reduces the 

quality of the visibility of the final output. Figure 3.6(b) shows the high-contrast region being absorbed 

into the adjacent middle-contrast region. 

Additionally, if a high-contrast region, which has small range of about 20, is placed in a middle 

intensity region or middle-contrast region, which has a small range of about 20, is placed between 

regions that share the same labeling, then this region will be absorbed into an adjacent region for the 

same reason.   

3.4 Adaptive A-law Based Tone-Mapping 

Conventional histogram equalization or cumulative density function (CDF) matching can be used 

to enhance low-contrast images. However, the result of these methods are often unnatural, as intensity 

values that begin as being similar may be changed to become greatly different from one another. 

Tone-mapping is a common technique used in image processing. This technique is used to map one 

set of an intensity domain to another set of the intensity domain as a given tone curve. If the tone curve 

is changed smoothly, the original similar intensity values may be maintained, and a similar intensity 

level may remain after tone-mapping. Thus, in the present study, we employ a tone-mapping curve to 

create a smooth change. 

  

(a) (b) 

Figure 3.6: Exception handling of contrast region labeling. (a) Local contrast region labeling. (b) 

Final estimated contrast region labeling. 
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 3.4.1 A-law Based Tone Mapping  

For low-contrast enhancement, we apply A-law based tone mapping. The A-law function is defined 

as 

 

fA−Law(𝑧) =  

{
 

    
𝐴 ∙ 𝑧

1 + log (𝐴)
                                          𝑖𝑓    0 ≤ 𝑧 ≤

1

𝐴
,

1 + log (𝐴 ∙ 𝑧)

1 + log (𝐴)
                                      𝑖𝑓     

1

𝐴
≤ 𝑧 ≤ 1,

 

 
 

(3.9) 

where A is the A value of A-law, and A is larger than 1. 

We analyze the straight line in Figure 3.7 (that is, the left part of the red line). In doing this, we are 

able to stretch the dense region, while the curved part of the line (the right part of the red line) can 

compress the diffused region. Thus, the use of A-law based tone mapping can improve the quality of 

low-contrast images. 

 

Figure 3.7:  A-law based tone mapping example. The applied A value is 5.97. 
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   (a)    (b)    (c) 

Figure 3.8: Diverse types of low-contrast image; (a) Low-intensity, low-contrast image; (b) High-

intensity, low-contrast image; (c) Middle-intensity, low-contrast image. The red arrow represents the 

direction in which the enhancement stretches. 

The enhancement of a low-contrast image stretches the dense region of the probability distribution. 

For example, if the low-contrast region is placed in a low- (Figure 3.8(a)) or high-intensity (Figure 

3.8(b)) region, then the low-contrast region stretches only in one direction (the direction of the red arrow 

in Figure 3.8(a) and (b)). In this case, only one A-law function is applied. Also, if a low-contrast region 

is placed in a middle-intensity region (Figure 3.8(c)), then the low-contrast region stretches on both 

sides from the centroid of the low-contrast region. 

Our algorithm does not change shape of the middle-contrast region. The other word, intensity 

interval in middle-contrast region are maintained after adaptive tone mapping. For this reason, we apply 

two types of A-law function. The first type is typical A-law based tone mapping (Figure 3.9(a)). In this 

type, the high- contrast region is placed next to a low-contrast region. The second type is modified A-

law based tone mapping (Figure 3.9(b)).In this type, the middle-contrast region is placed between the 

low and high contrast regions. In this case, the applied A-law based tone mapping is the same as the 

first type in the low and high contrast regions. However, the middle-contrast region's shape must be 

maintained. For this reason, the middle-contrast region's intensity must either stay the same or shift 

while still preserving the region's shape. The slope of the middle-contrast region is 1 in the modified A-

law based tone mapping. 
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(a) (b) 

Figure 3.9: Two type of applied A-Law function. (a) Typical A-Law tone mapping. (b) Modified A-

Law tone mapping. 

The reciprocal of the A value is determined using the degree of straightness in the entire A-law 

function range, except for the middle-contrast region. 

1

𝐴
=

𝑅(𝐿𝑖)

𝑅(𝐿𝑖)  +  𝑅(𝐻𝑖)
 

(3.10) 

where 𝑖  is 𝑖 -th A-law function, 𝐿𝑖  and 𝐻𝑖  are the low-contrast region and high-contrast region 

included in the 𝑖-th A-law function, and 𝑅(𝐷𝑖) is the range of 𝐷𝑖 . 

3.4.2 Weighted A-law Based Tone Mapping  

A value of the A-law function can determine the straight-line section, but it cannot control 

increasing quantity in intensity. This is because the A value determines not only the degree of the 

straight range, but also the increasing quantity of the A-law function. Additionally, if the A value is 

small, the other word ratio of the low-contrast region is quite high, then the increasing quantity in A-

law based tone mapping is also small. In the same vein, if the middle-contrast region exists in a low-

contrast image, this also causes a reduction of the slope in A-law based tone mapping.  

So we apply the weight concept as:  
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fWA−Law(𝑧) =  

{
 

    
𝑊 ∙ 𝐴 ∙ 𝑧

𝑊 + log (𝐴)
                                          𝑖𝑓    0 ≤ 𝑧 ≤

1

𝐴
,

𝑊 + log (𝐴 ∙ 𝑧)

𝑊 + log (𝐴)
                                       𝑖𝑓     

1

𝐴
≤ 𝑧 ≤ 1,

 

(3.11) 

where W is the weight value. It is determined as  

W =
∑ℎ(𝐿𝑖)

∑ℎ(𝐻𝑖)
log (𝐴𝑖) 

(3.12) 

where ℎ(𝐷𝑖) is the histogram of probability density of 𝐷𝑖. 

Using equations (3.11) and (3.12), we obtain the enhanced illumination of the low-contrast image 

�̃�𝑙𝑢𝑚  as: 

�̃�𝑙𝑢𝑚(𝑥, 𝑦) = 𝑓𝑊𝐴−𝐿𝑎𝑤(�̂�𝑙𝑢𝑚(𝑥, 𝑦)). (3.13) 

3. 5 Final Enhanced Image 

From equation (3.13), we obtain the enhanced illumination �̃�𝑙𝑢𝑚 . We already obtained the reflectance 

𝑅𝑙𝑢𝑚  using ABF in Section 3.2 and equation (3.6). Therefore, the enhanced Y channel 𝐼𝑒𝑛ℎ  is 

obtained by  �̃�𝑙𝑢𝑚  and 𝑅𝑙𝑢𝑚  using equation (3.1), as follows: 

𝐼𝑒𝑛ℎ(𝑥, 𝑦) =  𝑅𝑙𝑢𝑚(𝑥, 𝑦) ∙   �̃�𝑙𝑢𝑚(𝑥, 𝑦). (3.14) 

Finally, the image is obtained by converting the enhanced 𝐼𝑒𝑛ℎ and original u and v to the enhanced 

RGB color space. 
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Chapter IV 

Experimental Results 

Our experiment used many low-contrast images to evaluate changes in probability distributions and 

cumulative distributions. Our algorithm was also compared to others, including those by Shen et al. [8] 

and Shuhang et al. [12]. All parameters used in our algorithm were determined experimentally and were 

fixed, such as 𝜏𝑐ℎ𝑟  = 0.025 and 𝜏𝑐 = 0.006 . 𝜎1  and 𝜎2  had standard deviations of 3 and 5, 

respectively. Exception standards for estimating the low-contrast regions were also determined 

experimentally. The size of the adaptive bilateral filter window was 11× 11 for smoothing the neighbor 

pixels. 

We applied A-law based tone mapping without and with weight in seven input images. The results 

of this application are shown in Figures 4.1–4.7. The low-contrast region of Figures 4.1(a), 4.2(a), 4.3(a), 

and 4.4(a) were placed in the low-intensity. Meanwhile, the low-contrast region of Figure 4.5(a), and 

4.6(a) were placed in the middle-intensity and the low-contrast region of Figure 4.7(a) was placed in 

the high-intensity. Figures 4.1(c), 4.2(c), 4.3(c), and 4.4(c) show conventional A-law based tone 

mapping results. Figures 4.1(d), 4.2(d), 4.3(d), and 4.4(d) show weight A-law based tone mapping 

results. From these results, it can be concluded that weight A-law based tone mapping creates greater 

enhancement in images than conventional A-law based tone mapping in terms of visibility. Figures 

4.1(e) and (f), 4.2(e) and (f), 4.3(e) and (f), and 4.4(e) and (f) show that weight A-law based tone 

mapping is more enhancive than conventional A-law based tone mapping in terms of probability 

distribution and cumulative distribution. Figures 4.5(c), (d), (e), and (f); 4.6(c), (d), (e), and (f); and 

4.7(c), (d), (e), and (f) show that conventional A-Law tone-mapping is better than weight A-law based 

tone mapping  in terms of visibility, but that weight A-law based tone mapping is more enhancive than 

conventional A-law based tone mapping in terms of probability distribution and cumulative distribution. 

 From the experimental results, we can see the importance of the low-contrast region's location. If 

the low-contrast region is placed in a low-intensity region, the use of weighted A-law based tone 

mapping is most appropriate, especially in terms of visibility, probability distribution, and cumulative 

distribution. If the low-contrast region is placed in a middle or high intensity region, then the use of A-

law based tone mapping is more appropriate in terms of visibility, but the weighted A-law based tone 

mapping is better in terms of the other factors. 

The results of comparison with this application and other algorithms are shown in Figures 4.8–4.14. 

The method used by Shen et al. [8] is not ideal for enhancing all types of low-contrast image. As 
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shown in Figures 4.8(c), 4.9(c), 4.10(c), and 4.11(c), Shen et al.'s method [8] enhances low-intensity 

images; however, as shown in Figures 4.12(c), 4.13(c), and 4.14(c), this method is not appropriate for 

use with middle or high intensity, low-contrast image enhancement. Shen et al.'s algorithm [8] increases 

intensity to enhance low-contrast images, and this algorithm uses fixed tone-mapping despite the fact 

that the degree of darkness is different in every image. Thus, this method does not enhance all kinds of 

low-contrast images. 

The method proposed by Shuhang et al. [12] efficiently enhances all types of low-contrast images 

while still preserving naturalness. Shuhang et al.'s algorithm [12] uses cumulative distribution matching 

to solve contrast problems. However, similar illumination values in the same low-contrast region can 

be changed too much by cumulative distribution matching. This causes distortion in the enhanced image. 

As shown in Figures 4.10(d), 4.11(d), 4.12(d), 4.13(d), and 4.14(d), Shuhang et al.'s method [12] 

preserves the original tone of the image and enhances it as well, but Figures 4.8(d) and 4.9(d) show that 

a distortion problem has occurred. 
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(a) (b) 

 

  

(c) (d) 

 

(e) (f) 

Figure 4.1: Experimental results of the proposed algorithm on the House image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 4.2: Experimental results of the proposed algorithm on the Dog image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 4.3: Experimental results of the proposed algorithm on the Village image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(f) (g) 

Figure 4.4: Experimental results of the proposed algorithm on the Baby image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 4.5: Experimental results of the proposed algorithm on the Diver image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 4.6: Experimental results of the proposed algorithm on the Foggy image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 4.7: Experimental results of the proposed algorithm on the Airplane image. (a) An input low 

contrast image, (b) contrast region labeling, the enhanced images (c) without and (d) with the 

weighting scheme for A-law based tone mapping, and (e) the changed probability distributions and 

the (f) changed cumulative distributions without (up) and with (below) the weighting scheme. 
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(a) (b) 

  

(c) (d) 

Figure 4.8: Comparison of enhancement results on the House image. (a) An input low contrast image. 

The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 

 

  

(a) (b) (c) (d) 

Figure 4.9:  Comparison of enhancement results on the Dog image. (a) An input low contrast image. 

The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 
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(a) (b) 

  

(c) (d) 

Figure 4.10: Comparison of enhancement results on the Village image. (a) An input low contrast 

image. The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.11: Comparison of enhancement results on the Baby image. (a) An input low contrast image. 

The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 
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(a) (b) 

  

(c) (d) 

Figure 4.12: Comparison of enhancement results on the Diver image. (a) An input low contrast image. 

The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.13: Comparison of enhancement results on the Foggy image. (a) An input low contrast 

image. The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 
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(a) (b) 

  

(c) (d) 

Figure 4.14: Comparison of enhancement results on the Airplane image. (a) An input low contrast 

image. The enhanced images by using (b) the proposed algorithm, (c) Shen et al.’s algorithm, and (d) 

Shuhang et al.’s algorithm, respectively. 
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Chapter V 

Conclusion 

In this thesis, we proposed a low-contrast image enhancement algorithm using adaptive bilateral 

filtering and weighted A-Law tone-mapping. We solved halo artifact problem using adaptive bilateral 

filtering and preserved naturalness using adaptive A-law based tone mapping. Also, our algorithm 

solved a low-contrast image enhancement problem in terms of probability and cumulative distribution. 

The experimental results showed that the proposed algorithm enhances low contrast images efficiently. 
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