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Abstract

Coarse-Grained Reconfigurable Architectures (CGRAs), often used as coprocessors

for DSP and multimedia kernels, can deliver highly energy-efficient execution for

compute-intensive kernels. Simultaneously, stream applications, which consist of

many actors and channels connecting them, can provide natural representations

for DSP applications, and therefore be a good match for CGRAs. We present our

results of mapping DSP applications written in StreamIt language to CGRAs, along

with our mapping flow. One important challenge in mapping is how to manage the

multitude of kernels in the application for the limited local memory of a CGRA, for

which we present a novel integer linear programming-based solution. Our evaluation

results demonstrate that our software and hardware optimizations can help gener-

ate highly efficient mapping of stream applications to CGRAs, enabling far more

energy-efficient executions (7x worse to 50x better) compared to using state-of-the-

art GP-GPUs. Further, we eliminate communication overhead and reduce computa-

tion overhead using combination of sychronous/asynchronous processors and DMA.

This optimization also improve performance by 17.1% on average comparing to

baseline system.
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CHAPTER I

INTRODUCTION

One of the ideas behind CGRAs (Coarse-Grained Reconfigurable Architectures) is to make

programming easier-much easier than FPGAs while retaining custom-hardware-like efficiency.

While there have been many advances in architectures and compilers for kernel mapping, scaling

the kernel speedup to application level performance has been less than forthcoming. There is

very scant evidence in the literature about application level performance scalability of CGRAs,

and most of the recent work focuses on kernel speedup only (see Section 6).

Of course there exist applications in which a few kernels account for nearly all of the ap-

plication runtime. For those applications it is relatively easy to get high application speedup.

For others, however, kernels are often scattered and contain difficult-to-map constructs (e.g.,

function call, complex control flow). In such a case, accelerators like CGRAs have limited effect,

and unless programs are rewritten significantly, getting high application speedup seems very

difficult. This may suggest that the programming model for CGRAs needs to be redefined, so

that it may be easier to use them for larger pieces of computation as well as to allow for a direct

evaluation of application speedup as compared to other accelerators such as GP-GPUs.

In this paper we evaluate stream graphs as a potential application representation. Stream

graphs, which consist of actors (or filters) and channels connecting them, have been frequently

used to capture DSP and multimedia applications, which are also main applications of CGRAs.

Stream graphs have also measurably higher kernel portions and kernel counts than other em-

bedded applications (see Section 3), which makes automatic mapping approaches like ours both
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plausible and desirable.

Efficient mapping of stream graphs to CGRAs brings new challenges and opportunities. For

efficiency reasons CGRAs require kernel data such as input/output arrays to be present on their

local memory, which is a scratchpad memory (SPM) with a limited size. But for a large number of

kernels as in stream graphs, the SPM capacity may not be sufficient. Optimal selection of kernels

is a complicated problem as buffers implementing channels are shared between kernels, which

means that the memory requirement of a set of kernels is not necessarily the same as the sum

of individual kernels’ requirements. Configuration management can also be improved by taking

advantage of static schedule of stream graphs. Our solution further includes two optimizations

(nested loop optimization, work count optimization) that can help maximize application level

performance of stream graphs.

As a final optimization, we improve performance using combinations of synchronous/asyn-

chronous processor operation and DMA while reducing the communication overhead and com-

putation overhead. In conventinal CGRA-system, host-processor and CGRA synchronously op-

erate and communicate between host and CGRA have synchronously done by DMA(Direct

Memory Access). We consider this system as a baseline in our last experiment and we design two

models comparing the base-line. The first combination is a system in which host-processor and

CGRA synchronously operates but DMA asynchronously transmits datas from host to CGRA.

The second model has asynchronous processor′s operation and asynchronous DMA. From now,

we call two models as S-A and A-A respectively (S-S system is baseline). The performance of

A-A case is 17.1% better than S-S case.

The rest of the paper is organized as follows. After describing the CGRA architecture in

Section 2, in Section 3 we empirically analyze the advantages and challenges of mapping stream

applications to CGRAs. Based on the result we present in Section 4 our architecture-compiler

solution for mapping stream graphs to CGRAs, which includes low-cost architectural enhance-

ments and integer linear programming-based optimal kernel selection. In Section 5 we present

our experimental results comparing CGRAs with GP-GPUs (and other results), which suggest

that for stream graphs, CGRAs can often be more energy-efficient (7x worse to 50x better)

than state-of-the-art GP-GPUs. We discuss related work in Section 6 and conclude the paper

in Senction 7.
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CHAPTER II

RELATED WORK

Stream graphs have been mapped to different architectures, including the Cell processor [20],

GP-GPUs [12, 21], FPGA [22, 23], and other reconfigurable architectures [24]. Those techniques

often focus on exploiting task-level parallelism (TLP) and balancing workloads among multiple

processors. We borrow the workload balancing technique from [20], [28]. But we differenciate

managing local memory for ILP constraints in Section 5 while making it easier than [20], [28]

using heuristic way. Otherwise, we focus on how to run a given set of actors efficiently on one

CGRA. As such, we expect our methodology to be applicable to multi-CGRA platforms, once

the workload balancing among CGRAs is done. To the best of authors’ knowledge, no prior

work has examined efficient mapping of stream graphs to CGRAs.

Application mapping for CGRAs [1–5, 9–11] has been the subject of active research recently.

However all of them target kernels only, and do not address application mapping issues, e.g.,

when there are large data and large number of kernels. In fact, most of the papers cited above

report kernel speedups only. Some of them are listed in Table 6.1, where the figure of merit is

frequently kernel IPC (Instructions Per Cycle).

One exception is [17], where the kernel portion (before acceleration) is estimated to be about

83% on average for their target application, resulting in the average application speedup of about

2 times compared with their 4-way VLIW main processor execution. While application speedup

is likely the key metric to prospective users of CGRAs, it is largely unknown in the literature,

partly due to its dependence on the architectural details (which determines control overhead)
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Table 2.1: Results of previous work on CGRA mapping
Ref. (CGRA size) Target Kernel IPC
(8x8) DSP kernels (idct, fft, etc.) 12 – 28.7
(4x4) 214 loops from H.264, AAC, MP3 9.6
(4x4, 4-way) Software Defined Radio 8.76 – 11.05
(4x4 or 8x8) DSP kernels 11 – 29
(4x4) Kernels from media and embedded 10 – 15
(4x4) Kernels from DSP and multimedia N.A.

and due to the difficulty of mapping embedded applications such as MiBench applications

efficiently without manual code rewrite.

In terms of hardware operation with stream program, both target architecture’s processors

and DMA operates asynchronously. And those multi-processors have same processing elements.

But our architecture is divided two different processors, Main processor and CGRA accelerator.

So work load balancing used in [20], [28]

Some of the optimizations included in our solution are based on previous work. Many code

and data management techniques for SPMs or cache-SPM hybrids [25] have been proposed.

While some of them are more complicated than our problem formulation, our primary pur-

pose is kernel selection in a stream graph, which allows for a cleaner formulation of the problem

despite its being a data SPM management, which is in general more difficult. Though flattening-

based nested loop mapping was proposed before [9], fullscale evaluation of it in conjunction with

multiple application-level optimizations is new. Prefetch has been studied extensively for micro-

processors [26]. Recently for reconfiguration archtectures a new prefetch scheme was proposed

based on piecewise linear prediction [27]. Ours is a much simpler one tailored for stream graphs.
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CHAPTER III

CGRA AND NÄIVE MAPPING

3.1 CGRA

CGRAs are composed of ALU-like processing elements (PEs) as opposed to LUTs (look-up

tables), which has advantages in terms of reconfiguration time as well as compute efficiency

for a certain class of applications. PEs are arranged typically in a 2D array, connected via

mesh-like interconnects, and operate in a lock-step manner; thus it is vitally important to avoid

stalls in any of the PEs. The instruction set of a PE may vary depending on the particular

CGRA instance, but usually arithmetic and logic operations can be performed by any PE while

expensive operations and memory operations may be performed by some PEs only. Connected

with memory-accessing PEs are a multi-banked scratchpad memory (SPM), which provides

guaranteed access time, and serves as a local memory for input/output data. It is the compiler’s

responsibility to ensure that the data accessed by memory PEs are present in the CGRA’s local

memory.

3.2 Naive Mapping

Most previous work on application mapping for CGRAs considers single-level loops only,

where a loop body is represented by a DFG (Data Flow Graph). If there is a conditional

statement in the loop body other than for loop control, it may be converted into data dependency
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using if-conversion, assuming predication support is provided by the architecture. Function calls

should be eliminated beforehand (e.g., by inlining). Then the problem of mapping a kernel to

a CGRA becomes the problem of placing the nodes of, and routing the edges of, the DFG, for

which a number of algorithms

typically based on software pipelining have been proposed [1–5]. On the application level,

kernels are first identified from a given program. Kernels are those that can be mapped to a

CGRA, or typically any innermost loops with a known trip count that contain no function calls

inside. After kernels are mapped to the CGRA using one of the algorithms mentioned above, the

rest of the program is annotated with code necessary for CGRA execution (such as DMA data

transfer and CGRA register initialization), and then compiled for the main processor (MP).

Control Overhead: The minimum overhead in invoking CGRA execution includes the

following: (1) the MP performing a series of write instructions to set key parameters of CGRA

execution, such as configuration address, initiation interval, and prolog/epilog size, and (2)

interrupt or polling latency for the MP to resume execution at the end of a CGRA execution.

Those overheads are referred to as control overhead.

Runtime Reconfiguration: The instruction of a PE is called configuration, which contains

information on PE operation and routing. When an executable is loaded, configuration is also

loaded in the main memory. To allow quick configuration switch at runtime a CGRA employs

a (distributed) configuration cache. Changing to another configuration that is already in the

cache causes no runtime overhead, but to bring a new configuration into the cache takes time.

If an application has many kernels (as in stream graphs), some configurations may have to be

evicted and reloaded later. But for applications with a few kernels, configuration loading may

not be a problem because it will happen only at the beginning of a program.
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CHAPTER IV

SCOPE AND PROBLEMS OF

APPLICATION ACCELERATION

Though accelerators boast impressive kernel speedup, it may not always translate into appli-

cation level speedup. In this section we examine why it may be hard to achieve good application

level speedup with accelerator approaches, and list some of the problems we need address to

achieve good application performance.

In the following we use two parameters: the kernel portion before acceleration, p, and the

kernel invocation count, K. To find out the amount of speedup achievable by CGRA acceleration,

we profile loops in StreamIt applications, which are first converted into C code by StreamIt-to-C

translator [6]. For comparison we also profile MiBench applications [7]. We use our inhouse tool

based on the SimpleScalar tools [8]. Our tool first constructs interprocedural control flow graph

from disassembly code and profile information (profile information is used to resolve indirect

branches and find execution frequencies of basic blocks), and then identifies all natural loops

in each procedure, checking their nesting depths and whether they contain procedure calls.

The size of a loop is measured in the number of instructions, and runtime is approximated to

dynamic instruction count. We use all the applications in the benchmark suites except for a

few that have problems with our infrastructure. In total we use 19 MiBench applications and 9

StreamIt applications.
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2. CGRA AND NAÏVE MAPPING

2.1 CGRA
CGRAs are composed of ALU-like processing elements (PEs) as

opposed to LUTs (look-up tables), which has advantages in terms
of reconfiguration time as well as compute efficiency for a certain
class of applications. PEs are arranged typically in a 2D array,
connected via mesh-like interconnects, and operate in a lock-step
manner; thus it is vitally important to avoid stalls in any of the
PEs. The instruction set of a PE may vary depending on the par-
ticular CGRA instance, but usually arithmetic and logic operations
can be performed by any PE while expensive operations and mem-
ory operations may be performed by some PEs only. Connected
with memory-accessing PEs are a multi-banked scratchpad mem-
ory (SPM), which provides guaranteed access time, and serves as
a local memory for input/output data. It is the compiler’s responsi-
bility to ensure that the data accessed by memory PEs are present
in the CGRA’s local memory.

2.2 Naïve Mapping
Most previous work on application mapping for CGRAs consid-

ers single-level loops only, where a loop body is represented by a
DFG (Data Flow Graph). If there is a conditional statement in the
loop body other than for loop control, it may be converted into data
dependency using if-conversion, assuming predication support is
provided by the architecture. Function calls should be eliminated
beforehand (e.g., by inlining). Then the problem of mapping a ker-
nel to a CGRA becomes the problem of placing the nodes of, and
routing the edges of, the DFG, for which a number of algorithms
typically based on software pipelining have been proposed [1–5].

On the application level, kernels are first identified from a given
program. Kernels are those that can be mapped to a CGRA, or typ-
ically any innermost loops with a known trip count that contain no
function calls inside. After kernels are mapped to the CGRA using
one of the algorithms mentioned above, the rest of the program is
annotated with code necessary for CGRA execution (such as DMA
data transfer and CGRA register initialization), and then compiled
for the main processor (MP).

Control Overhead: The minimum overhead in invoking CGRA
execution includes the following: (1) the MP performing a series of
write instructions to set key parameters of CGRA execution, such
as configuration address, initiation interval, and prolog/epilog size,
and (2) interrupt or polling latency for the MP to resume execution
at the end of a CGRA execution. Those overheads are referred to
as control overhead.

Runtime Reconfiguration: The instruction of a PE is called
configuration, which contains information on PE operation and rout-
ing. When an executable is loaded, configuration is also loaded in
the main memory. To allow quick configuration switch at runtime
a CGRA employs a (distributed) configuration cache. Changing
to another configuration that is already in the cache causes no run-
time overhead, but to bring a new configuration into the cache takes
time. If an application has many kernels (as in stream graphs),
some configurations may have to be evicted and reloaded later. But
for applications with a few kernels, configuration loading may not
be a problem because it will happen only at the beginning of a pro-
gram.

3. SCOPE AND PROBLEMS OF APPLICA-
TION ACCELERATION

(a) Kernel portions under different scenarios C1∼C3
(M for MiBench, S for StreamIt)
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(b) Kernel portion (%) accumulated as kernel size is increased

Figure 1: Stream graphs have not only higher kernel portion but
also higher kernel count, requiring new strategies.

Though accelerators boast impressive kernel speedup, it may
not always translate into application level speedup. In this section
we examine why it may be hard to achieve good application level
speedup with accelerator approaches, and list some of the problems
we need address to achieve good application performance.

In the following we use two parameters: the kernel portion be-
fore acceleration, p, and the kernel invocation count, K.

To find out the amount of speedup achievable by CGRA accel-
eration, we profile loops in StreamIt applications, which are first
converted into C code by StreamIt-to-C translator [6]. For com-
parison we also profile MiBench applications [7]. We use our in-
house tool based on the SimpleScalar tools [8]. Our tool first con-
structs interprocedural control flow graph from disassembly code
and profile information (profile information is used to resolve indi-
rect branches and find execution frequencies of basic blocks), and
then identifies all natural loops in each procedure, checking their
nesting depths and whether they contain procedure calls. The size
of a loop is measured in the number of instructions, and runtime is
approximated to dynamic instruction count. We use all the applica-
tions in the benchmark suites except for a few that have problems
with our infrastructure. In total we use 19 MiBench applications
and 9 StreamIt applications.

We consider three scenarios different in the definition of a kernel:
innermost loops only (C1), outer loops included (C2), and even
those containing function calls (C3). In C1 and C2, a loop must
not include a function call to qualify for a kernel. Scenario C1
may be considered conservative, whereas C3 is certainly the most
aggressive. For C3, the runtime spent in callees is not counted
toward kernel portion, but if the callee has loop(s), then those loops
may contribute to the kernel portion. We set a limit to the size of a
loop so that the outermost while-loop in StreamIt benchmarks may
not be included.

The results are summarized in Figure 1. The first graph shows
the range of kernel portions (p) under different scenarios, which
reveals that MiBench applications have much larger variation in
terms of kernel portion. We also see the different impact of poten-
tial “optimizations” introduced in C2 and C3. For MiBench appli-
cations, for instance, aggressive optimizations such as pipelining
even loops that contain function calls may be necessary to achieve

Figure 4.1: Stream graphs have not only higher kernel portion but also higher kernel count,
requiring new strategies.

We consider three scenarios different in the definition of a kernel: innermost loops only

(C1), outer loops included (C2), and even those containing function calls (C3). In C1 and C2,

a loop must not include a function call to qualify for a kernel. Scenario C1 may be considered

conservative, whereas C3 is certainly the most aggressive. For C3, the runtime spent in callees is

not counted toward kernel portion, but if the callee has loop(s), then those loops may contribute

to the kernel portion. We set a limit to the size of a loop so that the outermost while-loop in

StreamIt benchmarks may not be included.

The results are summarized in Figure 3.1. The first graph shows the range of kernel portions

(p) under different scenarios, which reveals that MiBench applications have much larger vari-

ation in terms of kernel portion. We also see the different impact of potential “optimizations”

introduced in C2 and C3. For MiBench applications, for instance, aggressive optimizations such

as pipelining even loops that contain function calls may be necessary to achieve high applica-

tion speedup. By contrast StreamIt applications already exhibit in C1 and C2 kernel portions

of 67% and 74% on average, respectively, which means in principle we can achieve up to 3x to

4x application level speedup given enough resources.

On the other hand, StreamIt applications are trickier to handle. Figure 3.1(b) shows for
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specific applications how kernel portion is distributed among loops as we increase loop size

along the x-axis. On the left graph, two very noticeable steps, at loop sizes 200 and 700, indicate

the existence of two dominant kernels, indicating a low K. By contrast, the kernel portion of

serpent full is made up of many small loops each contributing a small amount, indicating a

high K. Though not as striking as those two applications, other applications of the benchmark

suites exhibit a very similar trend.

There are a few lessons we learn from this study. In the case of general embedded applica-

tions represented by MiBench, the absolute portion of kernels may be too low to achieve good

application speedup, especially if we consider more realistic scenarios. Even if we consider an

aggressive one, some applications still have very low (< 50%) kernel portions, severely limiting

the scope for automatic compilation for CGRA-like accelerators. At the same time, the number

of significant kernels is generally low, meaning that we need to optimize only a few kernels,

which may be done by hand.

On the other hand, stream graphs generally have higher kernel portions, making automatic

compilation more attainable. Automatic mapping is desirable as well due to the large number of

kernels. The challenges, however, include i) how to efficiently manage large amount of configu-

ration and data (due to the many kernels), and ii) how to minimize kernel invocation overheads.

We present our solutions to this problem in the next section.
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CHAPTER V

MAPPING STREAM GRAPHS TO CGRA

Our mapping strategy touches all three aspects of computation: processing efficiency, data

management, and (host-to-accelerator) communication. First, to handle large data on a limited

local memory of a CGRA, we present a static kernel selection approach that can determine the

best set of kernels taking into account kernels’ memory usage and buffer sharing information.

Second, there is an opportunity unique in stream graphs that can help increase the kernel

granularity.

The idea is that since stream graphs run indefinitely, the global loop repetitions can be

distributed into each filter’s trip count. This makes each filter run ω times as long (in terms of

workload, not in absolute time) at the cost of increasing the application latency and memory

requirement by the same factor. The parameter ω is called work count in this paper. Third,

all filters in stream graphs are loops, but many have inner loops nested inside. If we map the

entire loop nest as opposed to mapping the innermost loops only, we can not only increase p

(kernel portion) but also decrease K (kernel invocation count). Several techniques are recently

proposed, but we use one [9] that is based on loop coalescing. Finally, we discuss a simple yet

effective prefetch scheme to hide configuration reload latency.
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5.1 Supporting Large Data

Here we consider the kernel selection problem without work count optimization (i.e., ω =

1). One simple solution would be to select the most important kernels, measured for instance

in runtime contribution, and map them to CGRA. This, however, may not be the optimal

solution because of complex data sharing between filters. Our ILP (Integer Linear Programming)

formulation uses, among other things, data flow information between filters captured in a data

flow graph, and can generate the optimal solution for any given SPM size.

5.1.1 Input and Variables

Data flow graph: G = (V,E,W,B), where V = {ni} is the set of nodes and E = (i, j) is

the set of directed edges representing flow dependency from ni to nj . Edges must be realized

as buffers, whose sizes are determined by W and B, with wij (or bij) representing the pop (or

peek) size of edge (i, j). Needless to say, wij ≤ bij for every (i, j) ∈ E. In this paper a node

represents one filter in a StreamIt program.

Execution time difference: pi is the advantage of mapping ni to CGRA instead of host

processor in terms of host processor cycles. One can find it out by mapping a node (which may

be a nested loop) both to CGRA and to host processor, and measuring the execution time

difference using simulation. In the case of CGRA mapping, we include in the execution time all

the control overhead cycles spent for CGRA invocations.

Schedule order of nodes: We require the schedule order of nodes in order to account for

the live range of buffers. Without loss of generality we assume that i is the order of ni in the

static schedule.

Constant arrays: Also important to consider is the size of constant arrays, which are often

global variables in StreamIt programs and shared by multiple actors. Such an array needs SPM

space only if there is at least a node using it that is mapped to CGRA. Therefore we require their

usage information in a matrix, whose entry aik is defined to be 1 if ni uses array k (otherwise

it is zero), along with their sizes {ck}.

5.1.2 Variables

Decision variables: xi is a binary variable, which is 1 only if node ni is mapped to acce-

lartor, and 0 otherwise.

Stage difference: yij is an integer variable, representing the stage difference between two

connected nodes ni and nj .
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DMA request: dij is binary variable, which is 1 only if the edge connecting ni and nj

requires DMA, i.e., xi 6= xj .

5.1.3 ILP Formulation (S-A case)

Constraints:

1. In a subset of a graph with control divergence, all simple paths sharing the start and end

points should have the same stage difference. That is,
∑

(i,j)∈P yij = const for every path P

connecting split to join.

2. Actors connected by a DMA should have the stage difference of at least 2. That is,

yij ≥ 2dij for every (i, j) ∈ E.

3. Given an edge (i, j), the buffer size requirement for SPM can be determined three con-

straints of implementing the buffer associated with an edge, depending on where the two con-

nected nodes are mapped as follows.

i) xi 6= xj : One is mapped to CGRA, and the other to host processor. In this case DMA

is necessary, and the amount of buffer for each actor depends on the stage difference of the

actors and the DMA operation, thus requiring us to determine the exact stage of the DMA

relative to the actors. However, since in our case one of the two actors must be mapped to

CPU, which has a sufficiently large local memory, we can always place the DMA stage right

next to the accelerator stage without any disadvantage. For instance, with an edge (i, j), if ni

is mapped to CPU and nj to accdelrator, and their stages are si = 2 and sj = 5, then DMA

stage could be either 3 or 4, but by choosing 4, accelerator needs only one (= sj − 4) buffer

unit, while CPU uses 2 (= 4 − si). Thus regardless of the stage difference of an edge (i, j), we

need only one copy of the buffer, which is wij (the pop size) if ni is mapped to accelerator,

or bij (the peek size) if it is mapped to CPU. Thus, the SPM size requirement in this case is

R1(i, j) = xi(1 − xj)wij + (1 − xi)xjbij , which needs to be reserved permanently. The DMA

size is wij .

ii) xi = xj = 1: Both nodes are mapped to CGRA. DMA is unnecessary, And if the two

actors belong to the same stage, we need just temporary buffer space for data flowing between

the two actors. However, if the two belong to different stages, we need additional buffer space

whose size is proportional to the stage difference, or R2(i, j) = xixjyijwij .

The temporary buffer is live from the beginning of ni until the end of nj . To model the live

range of a buffer, we introduce an integer array mt of size |V |, whose purpose is to keep track of

SPM size requirement at each node invocation time. To implement the buffer, we need reserve

R3(i, j) = xixjbij bytes of memory on SPM during t ∈ [i, j] only.
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iii) xi = xj = 0: Both are mapped to host processor. Buffer is implemented on global mem-

ory, and no DMA is necessary. Putting it all together, the SPM memory size requirement at

time t (mt) is determined as follows.

mt =
∑

(i,j)∈E
{R1(i, j) + R2(i, j)}+

∑
(i,j)∈E∧i≤t≤j

R3(i, j) + C (V.1)

Here C is the SPM size for constant arrays, or C =
∑

k ckuk, where the new binary variable

uk is 1 if array k is used by any node mapped to CGRA. Thus for any k, the following inequalities

hold: uk ≥ aikxi for ∀i, and uk ≤
∑

i aikxi. Then for the SPM size of M , we requiremt ≤M for

∀t. Finally the objective of the ILP is to maximize
∑

pixi. This formulation can be linearized

(see Section 4.1.5), but to linearize R2 we need to limit yij to Ymax, which is the maximum

stage difference across any edge in the graph.

5.1.4 ILP Formulation (A-A case)

In this case, we implement ILP formulation as we simply change the objective function and

add one constraint to S-A case. For input, we use execution time of MP (Mi) and CGRA (Ci)

instead of execution time difference (pi). To represent asynchronous operation of processors, we

optimally divide the total workload of stream graph to CGRA and MP using Mi and Ci. And

we represent divided workload as W, which is an integer variable. Finally, the objective function

is minimizing W and additional constraints are
∑

Mi(1 − xi) ≤ W and
∑

Cixi ≤ W . Except

for above condition, the formulation of A-A case is completely same to S-A case.

5.1.5 Linearization

The product of two binary variables, c = ab, can be linearized as follows: c ≤ a, c ≤ b and

c ≥ a + b − 1. And the exclusive-OR of two binary variables, d = a
⊕

b, can be linearized as

follows: d ≥ a − b, d ≥ b − a, d ≤ a + b , d ≤ 2 − a − b. Lastly, The product, z = ay, of a

binary variable a and an integer variable y, for which 0 ≤ y ≤ U holds, is a non-negative integer

variable and can be linearized as follows: z ≤ Ua, z ≤ y, and z ≥ y − U(1− a).

5.2 Increasing Task Granularity

We perform two optimizations to increase kernel granularity. First, frequently appearing

nested loops in stream graphs deserve dedicated optimization. Recently a number of techniques

for nested loops are proposed [9–11]. Since most of the loops we find in stream graphs are

imperfect loops, we take the approach of [9], which can handle imperfect loops. The idea is
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to apply loop coalescing technique to convert a multi-nested loop into single nested one. But

to minimize the overhead of newly added operations due to coalescing, they define a small

set of special operations such as iterator generator and accumulator that can do an additional

operation such as resetting the iterator on a regular basis, the period of which is configurable.

While this optimization involves hardware extension at the PE level, it is expected to increase

both kernel portion (p) and kernel granularity (thus reduce K). The second optimization targets

K. At the steady state, a stream graph is executed on a CGRA by running filters one at a time,

sequenced by the host processor. Since stream graphs run indefinitely, we can repeat each filter

ω times before executing the next filter without altering the correctness of the output. If there

is a feedback loop at the global level, it only sets an upper bound on the value of ω. One critical

drawback of the work count optimization is that it requires ω times larger buffers between filters.

Due to the limited local memory of CGRA, its effect is in direct conflict with the purpose of

kernel selection optimization. Hence one interesting issue here is whether it is possible that

combining work count optimization and kernel selection may generate better results for some

SPM size. Our preliminary results indicate that they need not be applied simultaneously; that

is, kernel selection is only necessary when SPM size is small, and work count optimization only

when SPM size is large. This is because mapping a kernel to CGRA generates much larger

performance improvement than that of increasing work count. Thus the former has a higher

priority in terms of memory allocation, and the latter needs to be considered only if all kernels

are mapped to CGRA.

5.3 Transparent Configuration Management

As mentioned earlier, the baseline configuration fetch mechanism uses on-demand fetch,

which, on receiving the CGRA call, checks if the requested configuration address exists on the

configuration cache, and brings it from the main memory if necessary. For stream graphs with

many filters, however, the configuration cache may not be able to retain all the configuration

data, and its performance may quickly deteriorates.

Fortunately for stream graphs, the schedule of the filters can be statically determined. One

issue is how to encode the information. We extend the CGRA call protocol to include the

address for prefetch configuration. The prefetch configuration address would be written to a

register (SFR) of the CGRA such that after the CGRA is invoked, prefetch can be started on

the DMA. Another issue is how to predict the next kernel. We use a static method, which selects

the one appearing next in (the C-converted version of) the stream program. This requires just
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one more parameter to be added to the kernel parameters, increasing the control overhead only

marginally.

5.4 Mapping Flow

After a stream graph is first converted into a C program, it is first analyzed for its mem-

ory requirement taking live ranges into account (using a method from [12]). If the memory

requirement is larger than the available SPM size, it proceeds to the kernel selection step, af-

ter obtaining detailed statistics such as runtime and buffer access information of each kernel.

Otherwise, all the kernels are mapped to CGRA, with the maximum work count possible. Then

the next step is to transform the original code into a form that is directly executable on CGRA

and Main Processor (MP), which involves partitioning the code, compiling the CGRA part, and

creating kernel invocation part in the MP code. The information obtained in the previous step

(selected kernels, work count) is also used for the code transformation. Finally, the transformed

code is compiled and simulated for evaluation.

————————————————————————
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CHAPTER VI

Experiments

6.1 Experimental Setup

To evaluate application level performance, we use SimpleScalar cycle-accurate simulator [8].

For accurate bus and memory timing, we integrate DRAMsim [13], and extend the simulator

with DMA and CGRA models. Table 1 summarizes key architecture parameters. The main

processor (MP) is modeled after ARM Cortex A8 running 720MHz [14]. In addition, our CGRA

has homogeneous PEs, but memory operations can be performed by four specific PEs only,

which are connected to the CGRA’s 4-bank local memory (64Kbytes in total) via a crossbar

switch. We set the timing parameters of caches and processors using Cacti 6.5 [15] and published

documents [14, 16, 17]. The load latency of CGRA is 4 CGRA cycles, fully pipelined. The

configuration cache has 128 entries, each of which can configure the PE array for one cycle.

The stream graphs are from the StreamIt benchmarks [6], which are mapped to the MP-CGRA

platform using the flow in Section 4.4. For compiler front-end we use LLVM [18], with a backend

implementing modulo scheduling based on [2] without rotating register file support, but with

predicated execution support for conditionals within loops. One application, serpent full, is not

used in our experiments because our compiler back-end fails to schedule some loops due to their

extremely large DFG sizes. Stream programs consist of two parts: the initialization part, which

is executed only once setting up constant tables, etc., and a global while loop, which is executed

indefinitely, representing the steady state. Only the latter is measured for the execution time in
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Table 6.1: Architecture parameters
Component Parameters
Main Proc 720 MHz, in-order, 2-instruction issue

Cache L1 (16+16KB), L2 (128KB)
CGRA 520 MHz, 4x4 PE array, mesh+diagonal

Bus+DRAM DDR-333 (32-bit), pipelined bus (64-entry)

Table 6.2: Power parameters
G8800 S1070 S2050 MP[19] MPCGRA[17]

Power(W) 105 120 135 0.70(active) 0.38(active)
0.071(idle) 0.048(idle)

Technology 65nm 55nm 40nm 65nm 90nm

all of our experiments, including the GP-GPU results.

6.2 Comparison with GP-GPUs

Stream graphs have been mapped to many different accelerators, the most recent of which

is GP-GPUs. In particular, we use the results of [12], which provides performance of several

stream graphs on three different GPUs. For the GPU power numbers (see Table 5.2) we assume

that the average power dissipation is 60% of the TDP value published by Nvidia, and divide

it by 4 for multi-GPU platforms (S1070 and S2050), since [12] uses only one of the four GPUs

present in each platform. The CGRA power includes its SPM and configuration cache power as

well as that of the PE array, and is assumed to increase by 13% due to special PEs [9].

Table 5.3 compares the (normalized) runtime and energy consumption for all the stream

graphs whose results are reported in [12]. Note that the GPU energy does not include Intel

CPU energy whereas CGRA energy does include that of the main processor (ARM Cortex A8).

Table 6.3: Runtime (T) and Energy (E) comparison with GP-GPUs
Application G8800 S1070 S2050 CGRA WC-opt

T bitonic-sort 1 0.593 0.327 26.29 4.27
DCT 1 0.733 0.280 2.07 1.55
DES 1 0.706 0.273 7.88 6.21
FFT 1 0.689 0.358 12.22 8.92

filterbank 1 0.801 0.404 98.23 93.97
FM 1 0.712 0.136 245.52 245.52

E bitonic-sort 44.05 29.83 18.49 6.83 1
DCT 140.10 117.34 50.37 1.41 1
DES 32.54 26.25 11.41 1.30 1
FFT 20.71 16.31 9.54 1.48 1

filterbank 2.43 2.22 1.26 1.07 1
FM 0.88 0.71 0.15 1.00 1
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Table 2: Power parameters

G8800 S1070 S2050 MP [19] CGRA [17]
Power (W) 105 120 135 0.70 (active) 0.38 (active)

0.071 (idle) 0.048 (idle)
Technology 65nm 55nm 40nm 65nm 90nm

Table 3: Runtime (T) and Energy (E) comparison with GP-GPUs

Application G8800 S1070 S2050 CGRA WC-opt
T bitonic-sort 1 0.593 0.327 26.29 4.27

DCT 1 0.733 0.280 2.07 1.55
DES 1 0.706 0.273 7.88 6.21
FFT 1 0.689 0.358 12.22 8.92

filterbank 1 0.801 0.404 98.23 93.97
FM 1 0.712 0.136 245.52 245.52

E bitonic-sort 44.05 29.83 18.49 6.83 1
DCT 140.10 117.34 50.37 1.41 1
DES 32.54 26.25 11.41 1.30 1
FFT 20.71 16.31 9.54 1.48 1

filterbank 2.43 2.22 1.26 1.07 1
FM 0.88 0.71 0.15 1.00 1

5.2 Comparison with GP-GPUs
Stream graphs have been mapped to many different accelerators,

the most recent of which is GP-GPUs. In particular, we use the re-
sults of [12], which provides performance of several stream graphs
on three different GPUs. For the GPU power numbers (see Ta-
ble 2) we assume that the average power dissipation is 60% of
the TDP value published by Nvidia, and divide it by 4 for multi-
GPU platforms (S1070 and S2050), since [12] uses only one of the
four GPUs present in each platform. The CGRA power includes its
SPM and configuration cache power as well as that of the PE array,
and is assumed to increase by 13% due to special PEs [9].

Table 3 compares the (normalized) runtime and energy consump-
tion for all the stream graphs whose results are reported in [12].
Note that the GPU energy does not include Intel CPU energy whereas
CGRA energy does include that of the main processor (ARM Cor-
tex A8). For the CGRA results all the optimizations are enabled
except for work count optimization, which is enabled in the last
column only.

First we see a great variation among the applications. Some ap-
plications run much faster on GP-GPUs (e.g., filterbank, FM) while
others can run on the MP+CGRA platform with only less than 10×
slowdown. But since the MP+CGRA platform dissipates much less
power, it beats the GP-GPUs in energy consumption for all but one
applications. The highest gain in energy consumption is 50× to
140× reduction (in DCT) whereas the biggest loss is 14% to 6.7×
increase (in FM), depending on the GP-GPU compared. Consider-
ing the difference in the technology used (see Table 2), our results
demonstrate that CGRAs can be significantly more energy-efficient
than GP-GPUs, as far as stream graphs are concerned.

5.3 Application Speedup
Figure 2 shows our simulation results for the four cases listed

in Table 4. The applications are listed in the order of decreasing
kernel portion. The runtime is broken down into multiple parts.

Table 4: Cases compared

Case Description HW Difference
A Main processor only MP only
B Naïve without configuration prefetch +CGRA
C Naïve with configuration prefetch +Prefetch
D Nested loop optimization +Special PEs
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Figure 2: Application runtimes, normalized to that of Case A.
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Figure 3: Performance decrease due to limited local memory.

The most interesting one is how kernel part is reduced to CGRA
cycles. Though this reduction is significant in all applications, it is
not as high as might be expected of a 4x4 CGRA. This is because
the kernel time on a CGRA also includes prolog/epilog overhead
due to software pipelining.

First we observe from Case A that the kernel portion is about
80.6% though it varies widely across applications.2 Application
vocoder has the smallest, which is due to the math functions used
in filters. As expected, kernel portion has a dominant effect on the
achievable speedup of a CGRA.

Case B represents the conventional approach of mapping only
the innermost loops to the CGRA. The impact of configuration
prefetch as opposed to on-demand configuration loading is not high
for most applications due to the large configuration cache size, but
for DCT and vocoder, it can reduce the application runtimes by
over 20% and 10%, respectively.

Overall, due to the large kernel portion, mapping innermost loops
only already gives the runtime reduction of over 50% (Case C over
Case A), or about 2X speedup over Case A. Performance can be
further improved by mapping entire loop nests to the CGRA, which
can reduce kernel invocation overhead such as control overhead and
DMA cycles as seen in the graph. It can also reduce the number of
non-kernel cycles, sometimes very dramatically (e.g., DCT). How-
ever, additional code inserted when there are sibling inner loops
may effectively increase the number of non-kernel cycles, which is
the case with FFT. On average, Case D gives an additional runtime
reduction of about 31% over Case C, and as compared with Case
A, generates about 3X speedup.

5.4 Effect of Limited Memory Size
Most of the original applications (except for tde_pp) have mem-

ory requirements that are small enough to fit in the SPM of our
target architecture. In order to see the effect of limited memory
2The kernel portion reported here can be different from the profil-
ing results in Section 3; this is because here the kernels are iden-
tified using LLVM compiler from the source code, whereas earlier
in profiling we use disassembly code to extract loops.

Figure 6.1: Application runtimes, normalized to that of Case A.

Table 6.4: Cases compared
Case Description Difference

A Main processor only MP only
B Näıve without configuration prefetch +CGRA
C Näıve with configuration prefetch +Conf. prefetch
D Nested loop optimization +Special PEs

For the CGRA results all the optimizations are enabled except for work count optimization,

which is enabled in the last column only.

First we see a great variation among the applications. Some applications run much faster

on GP-GPUs (e.g., filterbank, FM) while others can run on the MP+CGRA platform with

only less than 10x slowdown. But since the MP+CGRA platform dissipates much less power,

it beats the GP-GPUs in energy consumption for all but one applications. The highest gain

in energy consumption is 50x to 140x reduction (in DCT) whereas the biggest loss is 14% to

6.7x increase (in FM), depending on the GP-GPU compared. Considering the difference in the

technology used (see Table 5.2), our results demonstrate that CGRAs can be significantly more

energy-efficient than GP-GPUs, as far as stream graphs are concerned.

6.3 Application Speedup

Figure 5.1 shows our simulation results for the four cases listed in Table 5.4. The applications

are listed in the order of decreasing kernel portion. The runtime is broken down into multiple

parts. The most interesting one is how kernel part is reduced to CGRA cycles. Though this

reduction is significant in all applications, it is not as high as might be expected of a 4x4
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Table 2: Power parameters

G8800 S1070 S2050 MP [19] CGRA [17]
Power (W) 105 120 135 0.70 (active) 0.38 (active)

0.071 (idle) 0.048 (idle)
Technology 65nm 55nm 40nm 65nm 90nm

Table 3: Runtime (T) and Energy (E) comparison with GP-GPUs

Application G8800 S1070 S2050 CGRA WC-opt
T bitonic-sort 1 0.593 0.327 26.29 4.27

DCT 1 0.733 0.280 2.07 1.55
DES 1 0.706 0.273 7.88 6.21
FFT 1 0.689 0.358 12.22 8.92

filterbank 1 0.801 0.404 98.23 93.97
FM 1 0.712 0.136 245.52 245.52

E bitonic-sort 44.05 29.83 18.49 6.83 1
DCT 140.10 117.34 50.37 1.41 1
DES 32.54 26.25 11.41 1.30 1
FFT 20.71 16.31 9.54 1.48 1

filterbank 2.43 2.22 1.26 1.07 1
FM 0.88 0.71 0.15 1.00 1

5.2 Comparison with GP-GPUs
Stream graphs have been mapped to many different accelerators,

the most recent of which is GP-GPUs. In particular, we use the re-
sults of [12], which provides performance of several stream graphs
on three different GPUs. For the GPU power numbers (see Ta-
ble 2) we assume that the average power dissipation is 60% of
the TDP value published by Nvidia, and divide it by 4 for multi-
GPU platforms (S1070 and S2050), since [12] uses only one of the
four GPUs present in each platform. The CGRA power includes its
SPM and configuration cache power as well as that of the PE array,
and is assumed to increase by 13% due to special PEs [9].

Table 3 compares the (normalized) runtime and energy consump-
tion for all the stream graphs whose results are reported in [12].
Note that the GPU energy does not include Intel CPU energy whereas
CGRA energy does include that of the main processor (ARM Cor-
tex A8). For the CGRA results all the optimizations are enabled
except for work count optimization, which is enabled in the last
column only.

First we see a great variation among the applications. Some ap-
plications run much faster on GP-GPUs (e.g., filterbank, FM) while
others can run on the MP+CGRA platform with only less than 10×
slowdown. But since the MP+CGRA platform dissipates much less
power, it beats the GP-GPUs in energy consumption for all but one
applications. The highest gain in energy consumption is 50× to
140× reduction (in DCT) whereas the biggest loss is 14% to 6.7×
increase (in FM), depending on the GP-GPU compared. Consider-
ing the difference in the technology used (see Table 2), our results
demonstrate that CGRAs can be significantly more energy-efficient
than GP-GPUs, as far as stream graphs are concerned.

5.3 Application Speedup
Figure 2 shows our simulation results for the four cases listed

in Table 4. The applications are listed in the order of decreasing
kernel portion. The runtime is broken down into multiple parts.

Table 4: Cases compared

Case Description HW Difference
A Main processor only MP only
B Naïve without configuration prefetch +CGRA
C Naïve with configuration prefetch +Prefetch
D Nested loop optimization +Special PEs
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Figure 2: Application runtimes, normalized to that of Case A.
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Figure 3: Performance decrease due to limited local memory.

The most interesting one is how kernel part is reduced to CGRA
cycles. Though this reduction is significant in all applications, it is
not as high as might be expected of a 4x4 CGRA. This is because
the kernel time on a CGRA also includes prolog/epilog overhead
due to software pipelining.

First we observe from Case A that the kernel portion is about
80.6% though it varies widely across applications.2 Application
vocoder has the smallest, which is due to the math functions used
in filters. As expected, kernel portion has a dominant effect on the
achievable speedup of a CGRA.

Case B represents the conventional approach of mapping only
the innermost loops to the CGRA. The impact of configuration
prefetch as opposed to on-demand configuration loading is not high
for most applications due to the large configuration cache size, but
for DCT and vocoder, it can reduce the application runtimes by
over 20% and 10%, respectively.

Overall, due to the large kernel portion, mapping innermost loops
only already gives the runtime reduction of over 50% (Case C over
Case A), or about 2X speedup over Case A. Performance can be
further improved by mapping entire loop nests to the CGRA, which
can reduce kernel invocation overhead such as control overhead and
DMA cycles as seen in the graph. It can also reduce the number of
non-kernel cycles, sometimes very dramatically (e.g., DCT). How-
ever, additional code inserted when there are sibling inner loops
may effectively increase the number of non-kernel cycles, which is
the case with FFT. On average, Case D gives an additional runtime
reduction of about 31% over Case C, and as compared with Case
A, generates about 3X speedup.

5.4 Effect of Limited Memory Size
Most of the original applications (except for tde_pp) have mem-

ory requirements that are small enough to fit in the SPM of our
target architecture. In order to see the effect of limited memory
2The kernel portion reported here can be different from the profil-
ing results in Section 3; this is because here the kernels are iden-
tified using LLVM compiler from the source code, whereas earlier
in profiling we use disassembly code to extract loops.

Figure 6.2: Performance decrease due to limited local memory.

CGRA. This is because the kernel time on a CGRA also includes prolog/epilog overhead due

to software pipelining.

First we observe from Case A that the kernel portion is about 80.6% though it varies widely

across applications. Application vocoder has the smallest, which is due to the math functions

used in filters. As expected, kernel portion has a dominant effect on the achievable speedup of

a CGRA. Case B represents the conventional approach of mapping only the innermost loops

to the CGRA. The impact of configuration prefetch as opposed to on-demand configuration

loading is not high for most applications due to the large configuration cache size, but for DCT

and vocoder, it can reduce the application runtimes by over 20% and 10%, respectively.

Overall, due to the large kernel portion, mapping innermost loops only already gives the

runtime reduction of over 50% (Case C over Case A), or about 2x speedup over Case A. Perfor-

mance can be further improved by mapping entire loop nests to the CGRA, which can reduce

kernel invocation overhead such as control overhead and DMA cycles as seen in the graph.

It can also reduce the number of non-kernel cycles, sometimes very dramatically (e.g., DCT).

However, additional code inserted when there are sibling inner loops may effectively increase

the number of non-kernel cycles, which is the case with FFT. On average, Case D gives an ad-

ditional runtime reduction of about 31% over Case C, and as compared with Case A, generates

about 3x speedup.

19



Profiling for ILP input

ILP generator

Combining

Simplescalar

Simulated runtime

StreamIt Compiler

Streaming Application
(StreamIt)

C code regenerator

Flattening

C code regenerator

Streaming Application
(C code)

Executable C code 
on CGRA 

Flattened C code

ILP input (Section 4.1.1)

Scheduled 
mapping result

Scheduled Stream 
Application

Streaming Application
(Flattened, Executable 

on CGRA)

Streaming Application
(C code)

Figure 6.3: Framework of Section 5.5 experiment.

6.4 Effect of Limited Memory Size

Most of the original applications (except for tde pp) have memory requirements that are

small enough to fit in the SPM of our target architecture. In order to see the effect of limited

memory size, in this section we use the smallest SPM size in which the application fits and

multiply each application′s memory requirement by M times, varying M from 1 to 10. This is

effectively the same as reducing the SPM size by the same factor, without making the memory

size deviate from a power of 2. Figure 5.2 shows the performance, normalized to that of the

M = 1 case. As M increases, the performance decreases monotonically. The ILP solver (we

use open-source lp solve) generates solutions within several minutes in most cases, but in some

cases (the points with empty data on the graph) it took more than one hour, pointing to the

need for an efficient heuristic method, which remains for future work.
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Table 6.5: Limited SPM size
Application(A group) SPM size Application(B group) SPM size
tde pp 32768 filterbank 32768
vocoder 16384 dct 16384
bitonic-sort 256 ch vocoder 16384
fft 16384 fm 16384

6.5 Analysis on Combination of Synchronous/Asynchronous Pro-

cessors and DMA System in Limited Memory Size

To make SPM size small enough, we use the SPM size in Table 5.5 so that filters in stream

program are partially mapped to CGRA. Figure 5.3 shows the experiment framwork of this

section. First, we use c code of stream application which generated by StreamIt compiler [6].

Then the C code is automatically flattened by the script which we program using pycparser

2.0 that is a C parser in Python. The code executable on CGRA (in respect of simulator)

generated from flattened code by C code regenerator, which make code executable on CGRA

by taking parameters such as initial interval, stages etc. (see Section 5.1). From the streaming

application which generated in the first step and the flattened and executable C code, we profile

two codes for ILP inputs described in Section 4.1.1. And we get schduled mapping results with

ILP generator which solve ILP formulation using Gurobi Optimizer 6.5. We generate scheduled

stream application by taking each filter’s code from the two codes mentioned above. Finally, we

simulate the scheduled stream application with Simplescalar [8].

Figure 5.4 shows our simulation results for the cases, S-S, S-A and A-A (the three systems

is represented A, B and C respectively in Figure 5.2). The figure is divided into two groups.

One is the group A (tde pp, vocoder, bitonic-sort, fft) and group B (filterbank, dct, ch vocoder,

fm). In group A, see Figure 5.4(a), DMA overhead is completely eliminated by pipelining filters

and A-A platform can hide the computation overhead of a processor (host-processor or CGRA)

which takes lower amount of cycles during the runtime. the result of bitonic-sort has exceptional

results when N is 2 or 4, x-axis of Figure 5.4, which means the size of stream graph. Because the

size of steam graph is so small (8 – 10 filters) that the portion for improvement in communication

overhead of S-A and A-A case is much less than software pipelining overhead; Software pipelining

overhead is the additional instructions for double-buffering in which we increase a dimension

of buffers. If load/store operation on the buffers increases, software pipelining overhead also

increase.

In group B, A-A system generally fail to hide computation overhead completely with parallel

execution of processor because the execution cycle portion of CGRA occupies about half or above

50% of total cycles. On the other hand, communication overhead is eliminated in filterbank
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Figure 6.4: Application runtimes, normalized to S-S(A) case

but failed in fm due to software pipelining overhead. As a result, application-level performace

of A-A improve by 17.1% on average of 8 applications comparing to S-S system.
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CHAPTER VII

Conclusion

For many important target applications of CGRAs, stream graphs can provide very natural

and easy-to-use representations. While efficient mapping of stream graphs to CGRA-accelerated

platforms can be extremely useful and potentially widen the scope of CGRA applications, it

also comes with multi-dimensional challenges. In this paper we present a set of architecture-

compiler optimizations tailored for stream graphs considering all three aspects of computation.

Our application-level performance show 3x speed-up comparing to baseline. Also we show 17.1%

performace improvement on limited local memory using combinations of synchronous/asyn-

chronous hardware operation. Our detailed evaluation results using the StreamIt benchmark

suite suggest that CGRAs can be more energy-efficient than GPGPUs, ranging from 0.15x (6.7

times worse) up to 50x in terms of energy consumption, when low-cost optimizations are en-

abled. Our study also suggests the viability of stream graphs as a program representation for

CGRAs.
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