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Abstract 

Offshore structures are generally subjected to harsh environment with strong tidal current and wind loading, 

which demands robust and reliable Structural Health Monitoring (SHM) to avoid any catastrophic failure. 

The growing size, complexity, and harsh environment of offshore structures lead to difficulties in sensor 

deployment and maintenance. Response at critical locations in complex offshore rigs are inaccessible 

during sensor deployment. Moreover, their operational environment demands frequent sensor maintenance 

for uninterrupted monitoring. Virtual sensing addresses these issues by estimating unmeasured responses 

with the help of measured responses. This dissertation delineates a virtual sensing method based on Kalman 

state estimator to combine multi-sensor data under non-stationary random excitation. The estimation 

algorithm effectively uses the FE model of a structure to predict and fuse different type of structural 

response (acceleration, strain, and angular displacement). This study investigates various combinations of 

sensor fusion to improve the estimation accuracy. In addition, an erroneous model is purposefully used to 

support the robustness and practicality of estimator. The performance of virtual sensing is successfully 

verified with numerical and experimental test over simply-supported and bottom fixed off-shore structure. 

Test results conclude that the unmeasured responses are reasonably recovered form measured responses. 
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Chapter 1  

 

INTRODUCTION 

 

Bottom-fixed offshore structures such as mono-piles, tripods, jackets, and gravity-based structures, have 

been widely utilized for the purpose of extracting oil and gas, supporting metrological towers and multi-

purpose ocean science platforms. They are expanding their applications for supporting ocean energy 

facilities including offshore wind turbines and tidal stream turbines. Indeed, the number of bottom-fixed 

offshore structures has been rapidly increased for the recent several years as the increase of the large-scale 

offshore wind farms. As these offshore structures are generally built in harsh environment with strong wind 

and tidal current that can expedite structural degradation and potentially cause critical damages. In addition, 

the quasi-periodic excitation forces due to the rotating devices including rotor, main shaft, and generators, 

can be a source of fatigue issues. Being more prone to structural failures due to the various external 

excitations, these offshore structures for OEFs are carefully maintained to prevent catastrophic collapses 

and prolong the lifetime. 

SHM provides an effective means for the appropriate maintenance of the offshore structures to assess the 

current status as well as the remaining lifetime. SHM is typically performed by collecting measured 

response data at the limited number of accessible locations using sensors such as accelerometers and strain-

gauges [1]. In monitoring offshore structures for OEFs, most of the fatigue-sensitive spots and critical 

members are located in inaccessible regions for direct measurements (e.g., at the mudline several meters 

below the water level). Thus, the sensor installation can be quite challenging for those important regions 

deep in the water. Moreover due to harsh environment, the sensors deployed in those critical locations are 

prone to damage. 

Monitoring fatigue is important for sustainable usage of off-shore structure. Accurate fatigue assessment is 

based on stress response time histories. Strain measurements are generally employed to obtain the stress 

time histories. In cases of complex offshore structures, strain measurements at several expected critical 

locations are required, it is practically and economically challenging to install strain gauges at all required 

locations. Thus, only limited physical sensor distribution is possible and a virtual sensing technique is 

required to obtain strain time history at other critical location.  

Recently, virtual sensing approaches are being actively developed to indirectly obtain responses at 

unmeasured locations. Various efforts for virtual sensing has been made such as finite element model 
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updating with modal expansion [2], natural input modal analysis [3], time varying auto-regressive model 

[4], and the model-based Kalman state estimator. Among these efforts, the Kalman state estimator 

associated with the FE model has been known as an effective tool to estimate the unmeasured responses. 

Papadimitriou et al. (2009) [5] used limited strain measurements in the numerical simulation to obtain strain 

in the entire body, which is subsequently utilized to estimate fatigue remaining life of the structural model. 

Smyth and Wu (2007) [6] used the Kalman filter to fuse acceleration and displacement with different 

sampling rates to produce more accurate displacements. Based on the idea that multi-sensor data has the 

potential to improve the performance of response estimation [7], [8], [9], and [10]. Jo and Spencer (2014) 

[11] numerically verified that the combination of acceleration and strain in conjunction with the Kalman 

filter better estimates unmeasured strains compared to the sole use of acceleration or strain. Yet, the virtual 

sensing using the model-based Kalman filter with multi-sensor data has not been fully explored but limited 

to ideal numerical simulations with analytical FE models, the sole combination of acceleration and strain, 

and non-stationary random inputs. 

Followed by exploring the possibilities of virtual sensing, the model-based virtual sensing technology has 

been adopted for SHM of off-shore structures. Iliopoulos et al. (2014) [2] proposed response estimation 

techniques using a modal decomposition and expansion algorithm and validated the performance of their 

method using measurement data obtained from a monitoring campaign on an offshore Vestas V90 3 MW 

wind turbine on a monopile foundation. This study is limited to zero mean responses. Van der Male and 

Lourens (2014) [12] proposed a strategy to monitor the accumulated fatigue damage in real-time, employing 

a joint input-state estimation algorithm. Measuring the operational vibrations at well-chosen locations 

enables the estimation of strain responses at unmeasured locations. The estimation algorithm is applied to 

a wind turbine on a lattice support structure, for which the response estimates of the lattice members are 

based on measurements on the turbine tower only. Their algorithm is verified only with the numerically 

simulated responses, while experimental results have not been reported in public domain.  

This study investigates a virtual sensing strategy based on the Kalman filtering associated with the finite 

element model tailored to the offshore structures under non-zero mean stochastic external loads. The multi-

metric sensor data fusion technique is recently highlighted to overcome the difficulties related to the non-

zero mean static response estimation from acceleration responses by means of fusion of sensors good for 

low frequency region and high frequency region such as strain and acceleration or inclination and 

acceleration and so on. The strain response of bottom-fixed offshore structures for OEFs consists of high 

level of strain responses due to mean thrust force and also high level of dynamic excitations from the 

turbulent effect and periodic operational loads from rotors. Therefore it is very difficult to extract accurate 
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responses from homogeneous sensor networks such as acceleration sensors network or strain sensors 

network. Hence the multi-metric sensor network is utilized and the signal processing are carried out based 

on the Kalman filtering to estimate the responses at unmeasured locations by incorporating the finite 

element model. The proposed method is numerically and experimentally verified using a simply supported 

beam and a four-leg portal frame in a circulating water channel. 
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Chapter 2  

 

BACKGROUND STUDY 

 

This chapter covers basic studies about SHM, random variables and Kalman filter. First section of this 

chapter illustrates the importance of health monitoring of off-shore structures. Followed by, importance of 

virtual sensing and how Kalman filter is used in virtual sensing. Finally, the data fusion technique employed 

to enhance the accuracy of virtual sensing is discussed. 

2.1 SHM in offshore structures 

SHM and damage detection techniques are widely used in the field of civil, offshore, wind turbine structures 

to reduce renovation costs, increase operational lifetime, and to prevent catastrophic failure [1]. Structural 

health monitoring is emerging with its application in both newly built complex structures to aging structures. 

Early research in SHM is about monitoring change in modal properties viz., Natural frequency and mode 

shape, before and after damage. This technique is still used for SHM of various structures, but recent 

developments in computing techniques made complex signal processing algorithms possible. Such 

examples are Monte Carlo simulation [13], Kalman Filter [14], Extended Kalman Filter [15], Uncented 

Kalman filter [16], etc.  

The application of SHM on offshore structures is important, as these structures are the large value to the 

economy and built in harsh environment. Typically offshore structures are subjected to strong wind and 

tidal current which provide them a harsh environment. In addition to this loading, sea water leads to material 

degradation and lack of strong foundation may lead to failure. Moreover, offshore structures being built on 

oceans, makes them inaccessible to maintain and retrofit frequently. Thus Structural health monitoring in 

offshore structures are ineluctable.         

2.2 Virtual sensing 

As the location of offshore structures are not easily accessible for maintenance, SHM system for offshore 

structures should be more reliable and robust. Virtual sensing improves the robustness of SHM system. 

Virtual sensing or proxy sensing shall be defined as, estimation of unmeasured responses with available 

measurements. In conventional SHM system, when a sensor is damaged or malfunctions the whole system 

stops and can be operational only when the sensors is replaced or retrofitted. Offshore structures being 
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subjected to harsh environment, sensors are damaged often and leads to collapse of complete SHM unit. 

When a virtual sensing algorithm is used in conjunction with existing SHM unit, it improves the robustness 

of monitoring. Frequent retrofitting or replacing of sensors are not required as virtual sensing algorithm can 

estimate the response from unmeasured locations.    

In addition to sensor malfunction, huge and complex offshore structure leads to large sensor network and 

inaccessible critical locations. Virtual sensing technique helps to reduce the number of sensors used, which 

eventually reduce the size of sensor network. Also, responses at critical locations shall be estimated using 

available measured responses. Thus using virtual sensing is inevitable to improve the robustness and 

reliability of SHM system. 

2.3 Kalman filter  

2.3.1 Random variables 

Unlike the common mathematical variable, random variables are values subjected to variations due to 

chance. In other words random variable are simply a numerical representation of a random process / 

outcome. Random variables are broadly classified into two types: Discrete and continuous.  

If a random variable can take only a finite number of possible values, then it is categorized as discrete. Best 

examples of discrete random variables are tossing a coin, rolling a die etc. In the case of continuous random 

variable it takes infinite number of possible values. Usually, measurements fall into this category. This 

section will discuss continuous random variables in detail. Random variables X  are bounded by limit, 

where a and b are some constants. The chance of a random outcome is given by a probability density 

function. Following section will discuss normal or G ( )P a x b  aussian distribution in detail, other type 

of distributions are beyond the scope of this dissertation. 

Figure 2.1. Shows probability density function of a normal distribution, a normal distribution is a very 

important statistical data distribution pattern occurring in many natural phenomena, such as height, blood 

pressure, lengths of objects produced by machines, etc.   Certain data, when graphed as a histogram (data 

on the horizontal axis, amount of data on the vertical axis), creates a bell-shaped curve known as a normal 

curve, or normal distribution.   

Normal distributions are symmetrical with a single central peak at the mean (average) of the data.  The 

shape of the curve is described as bell-shaped with the graph falling off evenly on either side of the mean.  

Fifty percent of the distribution lies to the left of the mean and fifty percent lies to the right of the mean. 
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The spread of a normal distribution is controlled by the standard deviation. The smaller the standard 

deviation the more concentrated the data. The mean and the median are the same in a normal distribution. 

 

Figure 2.1. Normal distribution. 

     

2.3.2 Kalman filter (state estimator) 

Kalman filter was developed by Kalman (1960) [14], which is a set of mathematical equations that provides 

an efficient computational (recursive) means to estimate the state of a process, in a way that minimizes the 

mean of the squared error. It also estimates the unknown states based on the covariance relationship of 

states among each other. This paper aims in using the state estimation property of Kalman filter to predict 

unmeasured response in structures. Following sections will illustrate the mathematical formulation for 

general Kalman filter based state estimator. 

Equation of motion of a linear dynamic system is given as:  

 ( ) ( ) ( ) ( ) ( )u t u t u p t ut t  M C K   (1.1) 

where  is the displacement; it’s time derivatives ( )u t  and ( )u t  are velocity and acceleration vectors, 

respectively; M , C , and K  are the mass, damping and stiffness matrices of the dynamic system, 

respectively; and ( )p t  is the input force vector. 

Let ( )x t  be the state vector given as  

X - 3 σ X - 2 σ X - 1 σ X X + 1 σ X + 2 σ X + 3 σ

Mean

~ 68% 

~ 92% 
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Then, equation of motion is expressed in the state-space form as 

 ( ) ( ) ( ) ( )x t x t p t w t  A B G   (1.3) 

 ( ) ( ) ( ) ( ) ( )y t x t p t w t v t   C D H   (1.4) 

where the matrices C  and D  in Eq. (4) are selected depending on the output of interest ( )y t ; Process and 

measurement noises ( )w t  and ( )v t  are assumed to be stationary, mutually uncorrelated stochastic process 

following the normal probability distribution   (0,Q)w N  and   (0,R)v N , respectively; the matrices G  

and H  are the coefficients of process noise. The system matrices A  and B  are defined as: 

 
1 1 
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For example, if all the displacement and acceleration are to be estimated, the matrices C  and D  can be 

defined as:   

 
-1 -1

I 0
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  (1.7) 
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0
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  (1.8) 

A Kalman filter-based state estimator can be built to estimate the state ( )x t  

  ˆ ˆ ˆA B L( C D )x x p z x p      (1.9) 

where x̂  is the estimated state of the state estimator, L  is the Kalman gain, and z is the limited physical 

measurement. The Kalman gain L  is defined as: 

 
1

*L C GQH R HQHT T TP


           (1.10) 



8 
 

 where the error covariance 
*P  is obtained by minimizing the steady state error covariance. 

    * ˆ ˆlim
T

t
P E x x x x


     (1.11) 

In summary, the above discussions provides information about Kalman filter in sate estimation. Note, in 

addition to state estimation, Kalman filter is also a better platform for data fusion. Data fusion basically 

means combining various sensor measurements. Usually sensors with contrasting performances are 

combined to compensate each other’s weakness. Generally piezo type of sensor (accelerometers) perform 

well in high frequency region. Where else sensors like Laser Displacement Sensor (LDS), strain gauges, 

ext. are good only in low frequency region. By combining these sensors measurements under a suitable 

platform (Kalman filter) can provide an overall better performance [17], and [18]. Park et al (2013), [19] 

used this technique to estimate displacement by combining strain and accelerometer further this technique 

is reported by many researchers to improve estimation accuracy.  
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Chapter 3  

 

DATA FUSION APPROACH FOR NON-STATIONARY RANDOM INPUTS 

 

Random input is common among mechanical and civil structures. These structures are subjected to 

environmental loadings such as wind, traffic, human load, earthquake, tidal current, etc. Unlike the other 

loadings, tidal and wind loading are mostly non-stationary random inputs. Offshore structures being 

subjected to non-stationary random inputs, it is important to analyze the behavior of structure under non-

stationary random input. Figure 3.1 shows the sample stationary and non-stationary random input. As the 

figure illustrates, for a stationary random input, the input history is distributed about zero (i.e. Mean of 

input history). In the case of non-stationary random input, mean of the input history is non-zero. This shows 

structures subjected to non-stationary input have higher chance of failure.   

 
 

(a) Stationary random input (b) Non-stationary random input 

Figure 3.1 Types of random input 

 

Monitoring the offshore structures under water is unique in that the sensor installation and maintenance 

associated with the data acquisition are quite challenging because critical structural members are often 

inaccessible. Furthermore, the repeated strong tidal current can easily cause sensor malfunctioning. 

Estimating structural responses at unmeasured important locations can be a powerful alternative to the 

direct measurement when it becomes unavailable. Despite the usefulness of the response estimation, it has 

not been fully explored in the literature yet. As this dissertation focuses on monitoring the offshore 

structures, we consider two major aspects that need to be appropriately addressed: 

1) Offshore structures are continuously subjected to non-stationary random input excitations 
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2) Sensors are prone to get damaged due to the harsh environment or difficult to install in some 

hot spots 

The input forces as well as the structural responses have a slowly varying, large amplitude trend according 

to the changing direction of the tidal current. Thus, the response estimation algorithm should be capable of 

handling non-stationary random inputs and estimate response with limited measurements [20]. 

The Kalman filter-based state estimator to capture structural responses due to the non-stationary random 

input is outlined here. The Kalman filter provides an efficient computational means to estimate the state of 

a process in a way that minimizes the mean of the squared error. This paper uses the state estimation 

property of Kalman filter to predict unmeasured response in a structure. Equation of motion of a linear 

dynamic system is given as: Q  

 ( ) ( ) ( ) ( )u t u t u t p t  M C K  ( )p t  (3.1) 

where ( )u t  is the displacement; it’s time derivatives ( )u t  and ( )u t  are velocity and acceleration vectors, 

respectively; M , C , and K  are the mass, damping and stiffness matrices of the dynamic system, 

respectively; and ( )p t  is the input force vector. 

Because the input information in offshore structures are practically impossible to measure, the algorithm is 

designed to work without input information. It is assumed that there is no input given to the system 

( ( ) 0p t  ) rather the input is assumed to be only from the process noise ( )w t . Furthermore, process noise 

covariance  is modified as the covariance of input  to incorporate the effect of non-zero mean input. (see 

Figure 3.2) 

 
Figure 3.2. Non-stationary random input with modified covariance 

 

Following Eqs. (3.2) and (3.3) give the state space model of the system.  
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 ( ) A ( ) B ( )x t x t w t    (3.2) 

 ( ) C ( ) D ( ) ( )y t x t w t v t     (3.3) 

where the matrices C  and D  in Eq. (3.3) are selected depending on the output of interest ( )y t ; Process 

and measurement noises ( )w t  and ( )v t  are assumed to be stationary, mutually uncorrelated stochastic 

process following the normal probability distribution (0, )w N Q  and (0, )w N R , respectively; the 

matrices A  and B  are system matrices. With the above state space model Kalman state estimator is 

constructed as  

 ˆ ˆ ˆ( ) A ( ) L( C ( ))x t x t z x t     (3.4) 

 ˆ( ) C ( )y t x t   (3.5) 

where z  is the measured responses and Kalman gain L  can be expressed as 

 
1

*C BQD R DQDT T TL P


           (3.6) 

where the error covariance 
*P  is obtained by minimizing the steady state error covariance. 

    * ˆ ˆlim
T

t
P E x x x x


     (3.7) 

*P  is obtained by solving the algebraic Riccati equation which uses the modified noise covariance Q . Note 

that for a given non-zero mean input, the response/output is expected to be non-zero mean which may 

include multiple steady state and transition stages in time domain. In order to estimate such a complex 

response, the error covariance 
*P  in Eq. (3.7) should minimize the steady state error covariance at all the 

stages in the response. The modified process noise Q  enables 
*P  to minimize steady state error covariance 

at all the stages in the response; this enables the formulation to handle non-zero mean input and responses 

properly. 

From Eq. (3.4), it can be inferred that value of filter gain L  determines the priority between model and 

measurements in response estimation. From Eq. (3.6) for a given model (A, B, C, and D) and process noise

Q , the filter gain L  is inversely proportional to the measurement noise covariance R . Thus, estimation 
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using sensors with lower noise level will depend more on measured responses than the given model and 

vice versa for sensors with higher noise floor. Thus, using sensors with lower noise floor gives better 

estimation in situations where available numerical model is not accurate. 

Thus, modifying Q  shall enable the algorithm to capture large deviations in states, but the major source 

that enables virtual sensing to handle non-stationary response is data fusion. Unlike the stationary random 

response, non-stationary responses have frequency content dominated near zero and at other resonate 

frequencies (see Figure 3.3), thus measured signals should be able to cover all the frequency content. Figure 

3.3 shows the frequency content of stationary and non-stationary random signal shown in Figure 3.1. From 

the figure it is clear that non-stationary random signals have frequency content dominated near zero and at 

other resonate frequencies. Hence the fundamental idea of this dissertation is to combine sensors that 

perform well in low and high frequency region to accomplish the task of handling non-stationary random 

responses.  

 

Figure 3.4 Frequency domain comparison of stationary and non-stationary random signal 

 

In the following validations, input information is assumed as unmeasured and input covariance is estimated 

from measured responses. In addition, four types of measurement combinations are used for the response 

estimation at the unmeasured locations: strain only, acceleration only, acceleration and strain, and 

acceleration and tilt. The combination of acceleration with strain or tilt (i.e., angular displacement) is 

considered for the data fusion, because acceleration captures the high frequency behavior of the structure 

in accuracy, while the strain and tilt can compensate the weakness in low frequency behavior and eventually 

increase the accuracy of estimation. For the four types of response combinations, the best combination is 

obtained by assessing the accuracies of the estimated responses.    
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Chapter 4  

 

NUMERICAL AND EXPERIMENTAL VALIDATION  

 

This chapter validates the Kalman filter-based virtual sensing method with a simply supported beam and a 

bottom fixed offshore model. Virtual sensing is validated both numerically and experimentally. Response 

under non-stationary random input is collected form limited locations and used in virtual sensing algorithm 

to estimate responses at unmeasured locations.  

4.1 Validation with simply supported beam 

4.1.1 Numerical validation 

In this section, a numerical model of a simply supported beam is considered to estimate strain responses 

from limited measurements using the modified Kalman state estimator. 

4.1.1.1 Simulation setup 

A simply-supported Finite Element beam model was developed using MATLAB. The beam is composed 

of 20 Euler-Bernoulli beam elements each of which has the length of 0.1 m as shown in Figure. 4.1. The 

element has a rectangular cross-section of 1cm thickness and 10 cm width. The Young’s modulus and 

density of the material were selected as 206 GPa and 7580 kg/m3 respectively. To analyze the effect of 

model error on the virtual sensing accuracy, another numerical model is prepared with slight perturbation 

from the actual model. Perturbation in the new model is introduced by changing the elastic modulus and 

moment of inertia. Figure. 4.2 shows the comparison of frequency response functions (FRFs) from the 

simulation model and a model used in the virtual sensing algorithm, where natural frequencies of both the 

model are different. 

The originally developed numerical model was used in MATLAB Simulink to simulate the acceleration, 

strain and angular displacement responses of the beam under a non-stationary random input shown in Figure 

4.3 is applied at node 18. These responses sampled at 853 Hz with elliptic AA filter were used as reference 

response. The accelerations, strains, and tilt from a few selected nodes were contaminated by white noise. 

Accelerations and tilt are contaminate by 2% noise in root mean square (RMS), while the strains are 

contaminated by 10% noise in RMS based on the experience of higher noise on the actual strain 

measurement.  
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Figure. 4.1 Simply supported beam model 

 

Figure. 4.2 Comparison of FRFs between the reference and the perturbed models 

 

Figure. 4.3 Non-zero mean input excitation 

 4.1.1.2 Simulation cases 

To verify the virtual sensing performance, four types of measurements are considered as shown in Figure. 

4.4. Cases 1 and 2 use strains and accelerations at nodes 5, 10, 15, and 18, respectively. Case 3 uses both 

accelerations and strains at nodes 15 and 18, and Case 4 uses two accelerations at nodes 15 and 18 and one 

tilt response at node 10. Node 12 is the unmeasured location whose strain is to be estimated. 
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(a) Case 1  

 

(b) Case 2 

 

(c) Case 3 

 

(d) Case 4 

Fig. 4.4 Four measurement cases 

 

4.1.1.3 Results 

Figures. 4.5 and 6 show the estimated strain at node 12 in the time and frequency domains, respectively. 

Figure. 4.5 shows the estimated strain responses that have non-stationary response in more or less accurate, 

except the Case 2 produces the zero-mean one whose quasi-static trend is unidentified. The result is 

consistent with the fact that given acceleration in the simulation does not contain the quasi-static behavior 

of the measured structure. Figure. 4.5 also shows that the multi-sensor cases (i.e., Cases 3 and 4) can better 

estimate the strain than the sole use of responses (i.e., Cases 1 and 2). Further comparing the multi-sensor 

data cases to each other, the combination of acceleration and tilt resulted in more accurate estimation than 

the combination of acceleration with strain. Eq. (2.9) infers that the Kalman gain gives priority to 

measurement (i.e., tilt) combined with acceleration than response predicted from the model, when the 
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measurements are less contaminated. Thus, Case 4 whose measurement has lower noise is less affected by 

the model error in the estimation than the other cases, as shown in Figure. 4.5.   

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

 

Figure. 4.5 Estimated and reference strain responses in time domain at node 12 

 

The accuracy that is visually assessed in time domain as shown in Figure. 4.5 is investigated in frequency 

domain (see Figure. 6). For all measurement cases, four peak frequencies under 100 Hz (i.e., 5.8, 23.3, 52.1, 

and 92.9 Hz) are exactly estimated despite the model used for the Kalman state estimator is inexact. This 

shows that the virtual sensing method has the robustness to the model error that is compensated due to using 

the measurements. The discrepancy is, however, observed in the anti-resonant frequency regions. In Figure. 

4.6(b), Case 2 that uses only acceleration data has poor agreement with exact strain in the low frequency 

region under the first peak frequency, which reveals the failure in capturing the quasi-static trend in the 

strain. Whereas Case 1 (see Figure. 4.6(a)) has comparatively good agreement near 0 Hz, it has a higher 

noise floor compared to the reference. Comparing to Cases 3 and 4 (see Figures. 4.6(c) and (d)), Case 4 that 

uses two accelerations with one tilt shows better agreement in both high and low frequency regions than 

Case 3 that uses two accelerations with two strains. 
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To investigate the consistency of the virtual sensing method based on the Kalman filter, the strain responses 

were estimated for all locations. Instead of showing all the estimated responses compared with the exact 

ones, root mean square errors (RMSEs) between reference and estimated strains were calculated as:  

 
 

 

2

2

est ref

ref

Error
 








  (4.1) 

where ref  is the reference strain and est  is the estimated strain.  

  
(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

Figure. 4.6 Estimated and reference strain responses in frequency domain at node 12 

 

Figure. 4.7 shows the RMSEs calculated for all nodes. Note that the RMSEs of Case 2 were quite large 

compared to the others due to inaccurate estimation of quasi-static strain component, and thus they were 

not plotted together. As to Case 1, the RMSEs are not consistent for all nodes and higher than those from 

Case 3 and Case 4, because during Kalman estimation of Case 1 a higher priority is given to erroneous 

model then the measurements due to higher noise floor. Case 4 has lower error for all nodes because the tilt 

contains lower level of noise than the strain used in Cases 1 and 3.  
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Figure. 4.7 Error of estimated strains at all nodes  

 

4.1.2 Experimental validation 

The section describes the laboratory-scale experiment for response estimation that is designed to replicate 

the numerical simulation. 

4.1.2.1 Simulation setup 

Figure. 4.8 shows the test beam whose length, width, and thickness are 2m, 10cm, and 1cm, respectively. 

The Young’s modulus and density of the beam are 206 GPa and 7860 kg/m3, respectively. Since the test 

beam resembles the numerical beam in Figure. 4.1, the node number is assigned for every 0.1 m as Figure. 

4.1. The test beam was excited with a non-zero mean force similar to Figure. 4.3 made by a shaker installed 

at node 18 (i.e., 0.2 m apart from the right support).  

Four different experimental cases are performed and sensor deployment in each case is similar as in section 

4.1. All the responses were sampled at 5 KHz using National Instruments data acquisition system (DAQ). 

Input voltage generated form DAQ was amplified using an amplifier and supplied to the shaker, and the 

responses from strain gauges, accelerometers and a tilt sensor were obtained simultaneously using the DAQ. 

Figure 4.9 shows the difference between the FRFs from the experiment and the numerical model. The 

disagreement of the FRFs clearly shows the eligibility of inaccurate numerical model used in response 

estimation.  
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Figure. 4.8 Experimental beam structure with sensor and actuator 

 

 
Figure. 4.9 Comparison of FRFs from experiment and numerical model 

 

4.1.2.3 Results 

Figure. 4.10 shows the estimated strain responses according to four measurement cases compared to the 

measured strain at unmeasured node 12. Similar to the numerical simulation, all Cases estimated the strain 

response at the unmeasured node with somewhat accuracy, except Case 2. 

Case 2 (see Figure. 4.10(b)) shows the inability of acceleration data to estimate the gradually increasing 

strain response. Case 1 (see Figure. 4.10(a)) resulted in the estimated strain with high noise level, while the 

multi-metric cases (i.e., Case 3 and Case 4) have lower noise levels (see Figures. 4.10(c) and 4.10(d)). 

Among the multi-metric Cases, Case 3 could not estimate exact quasi-static response, while Case 4 resulted 

in the estimated strain with better agreement to the measured strain due to lower noise level of the tilt sensor 

than the strain gauges in practice.  
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(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

(e)  

Figure. 4.10 Estimated and measured strain responses in time domain at node 12 

 

Figure. 4.11 is the comparison of estimated responses in the frequency domain. Note that the peak at 60Hz 

in the measured strain is from the electrical noise around the laboratory where the experiment was carried 

out. First, unlike the reference strain used in the numerical simulation, the measured strain to be used as a 

reference contains high level of noise represented by flatness at the anti-resonant regions. This is the 

evidence why the strain was contaminated by higher level of noises than the other responses in the 

numerical simulation. Figure. 4.11(b) clearly shows that Case 2 has poor agreement in the low frequency 

region (near 0 Hz) related to quasi-static component of strain compared to other methods. Figures. 

4.11(a,c,d) show reasonable agreement of resonant peaks at 6.4, 22.6, 50.0, and 88.8 Hz, while there are 

some differences in the anti-resonant frequency regions. Among the results, Case 4 (see Figure. 4.11(d)) 

has the lowest level of noises at anti-resonant regions.  
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(a) Case 1 (b) Case 2 

  
(c) Case 3 (d) Case 4 

 

Figure. 4.11 Estimated and measured strain responses in frequency domain at node 12 

 

Figure. 4.12 shows the RMSEs between estimated and selected measurement strains. Note that the RMSEs 

of Case 2 are much larger than the others due to inaccurate quasi-static strain components, and thus they 

are not plotted together. Similar to Figure. 7, RMSEs from the numerical simulation, Case 4 showed 

smallest RMSEs less than 5%. Cases 1 and 3 are influenced by model error and noisy strain measurement, 

and thus higher RMSEs are estimated. Note that the RMSEs of Case 3 is slightly larger than those of Case 

1 at several elements unlike the RMSEs of the numerical simulation shown in Figure. 4.7, because the 

reference strain used for comparison contains measurement noise in the experiment.  
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Figure.4.12 Error in estimated strain 

 

4.2 Validation with model of bottom fixed offshore structure 

This section validates the virtual sensing technique with a model of bottom fixed offshore structure. 

Validation is performed both numerically and experimentally. Both validations are delineated in the 

following sub-sections.  

4.2.1 Numerical validation 

In this section, a numerical model of offshore structure (see Figure. 4.13) is developed. This model is 

simulated with MATLAB Simulink under realistic input situation.  Limited responses where collected and 

used in Kalman filter based response estimation algorithm to estimate the unmeasured response. 

4.2.1.1 Simulation setup 

The model is composed of 24 frame elements each of which has the length of 0.2 m as shown in Figure. 

4.13. the columns (C1, C2, C3, and C4) has a circular cross-section of radius 3 cm. The Young’s modulus 

and density of the columns were selected as 1000 MPa and 953 kg/m3 respectively. Four frame members 

on top of the columns has Young’s modulus and density of 210 GPa and 7850 kg/m3. The developed 

numerical model was used in MATLAB Simulink to simulate the acceleration and strain responses under 

a non-zero mean input. Inputs are applied to first two nodes of each columns as shown in Figure. 4.13. to 

simulate the real situation columns in upstream and downstream experience similar forces. Responses are 
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sampled at 150 Hz with elliptic AA filter. The accelerations and strains from a few selected nodes were 

contaminated by white noise. Accelerations are contaminate by 2% noise in root mean square (RMS), while 

the strains are contaminated by 10% noise in RMS based on the experience of higher noise on the actual 

strain measurement. These limited responses are used to predict the input covariance and also the 

unmeasured responses.  

 

From chapter 3 it is clear that the input covariance information is important for response estimation. With 

the help of numerical model a transition matrix is constructed from strain to the input force. Using this 

relation, the measured strain responses can be transformed to the input forces.  

 ( ) ( )SPP t K t   (4.2) 

where KSP is the transition matrix from strain to the input force. To estimate input covariance, strain at 

unmeasured location is assumed to be same as nearest available strain response. With this assumption input 

time history is calculated from Eq. 4.2. As discussed in chapter 4 sensors with lower noise level enables 

Kalman filter to give higher priority to measurements thus even with inaccurate input covariance, Klaman 

filter could make a better estimate. Strain gauges are sensitive to electrical noises and local defects in the 

structure. Acceleration being a poor low frequency observer, the quasi-static trend of non-stationary 

responses is generally difficult to capture in comparison to strain gauges.  Thus Fusion of multi-metric data 

(strain and acceleration) will enhance the accuracy of response estimation [17], and [18]. 

 

Four simulation cases are considered here, in each case, one of the strain responses is estimated with the 

help of other strain and acceleration responses. For example in case 1, strain measurements near the root of 

column 2, 3 and 4 and acceleration on top (Ref. Figure. 4.13) are used to estimate the strain response in 

column 1.  
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Figure. 4.13. Numerical model 

 

4.2.1.2 Validation results 

Figure. 4.14 shows the estimated strain in each case. Each case is processed in two steps. Step 1: estimate 

the input covariance. Step 2: use the estimated input covariance and limited measurements in Kalman filter 

based state estimator to estimate the unmeasured response. In case 1, strain responses from nodes 8, 14 and 

20 with acceleration responses from node 6 are used to estimate the strain at node 2. During input covariance 

estimation step response at unmeasured node 2 is replaced by 8, as they experience a similar force. A similar 

procedure is followed to estimate strain response at other columns (Table. 4.1). From the Figure. 4.14 

estimated non-zero mean strain at each column is in good agreement with the reference strain. Column 3 

and 4 experience higher strain due to upstream force compared to column 1 and 2.  Figure. 4.15 shows the 

capability of algorithm to estimate the dynamic component of response.  

Table. 4.1. Measured and estimated response for each case. 

Case Measured strain location Measured acceleration location Estimated strain location 

1 8, 14, and 20 6 2 

2 2, 14, and 20 6 8 

3 2, 8, and 20 6 14 

4 2, 8, and 14 6 20 

( Accelerometer x - dir )

(Strain Gauge x - dir)

(Input force x - dir)

C1
C2C3

C4

x

y
z
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(a) Case 1 (b) Case 2 

  

(c) Case 3 (d) Case 1 

Figure. 4.14 Estimated and reference strain response in time domain 

 

Figure. 4.15 Estimated and reference strain response in column 1 (between 5 and 9 sec) 
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In addition to the comparison in the time domain, the estimated and measured strain responses are compared 

in the frequency domain by plotting their power spectra as shown in Figure. 4.16. Note that only case 1 is 

shown as all cases exhibit similar power spectra. From the Figure. 4.16, it can be observed that the estimated 

strain is in a good agreement with the reference strain. Their strong agreement near 0 Hz shows the 

capability of algorithm to handle non-zero mean responses.  

 
Figure. 4.16. Estimated and reference strain response in frequency domain. 

 

To investigate the consistency of the response estimation, root mean square errors (RMSEs) between 

reference and estimated strains were calculated as:  

 
 

 

2

2

est ref

ref

Error
 








  (4.3) 

where ref  is the reference strain and est  is the estimated strain. Figure. 4.17 shows the RMSEs calculated 

at each column. Error in estimation for each column is less than 1 %.  

 
Fig. 4.17. Error of estimated strain in each column. 
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4.2.2 Experimental validation 

This section experimentally validates the algorithm with a model of offshore structure. The experiment is 

conducted in a flume with controlled water current. Measured responses are used to validate the response 

estimation algorithm.  

4.2.2.1 Experimental setup 

Experiment was carried out in a circulating water channel as shown in Figure. 4.18. Length, width, and 

height of the circulating water channel are 24 m, 480 mm, and 900 mm respectively. Specimen was installed 

9 meters away from the sluice gate to avoid the effect of reflected water current from sluice gate and also 

to ensure a uniform flow from source. 

 

Fig. 

Figure 4.18. Circulating water channel setup 

Figure. 4.19 shows the dimension of specimen and the sensors deployed on it. The selected accelerometers 

are integrated circuit piezoelectric (ICP) Type 355B33, PCB Piezotronics, Inc. Strain gauges were deployed 

on each column at 150 mm from the root of the specimen. As the velocity of water current is lower at the 

root of column, Strain gauges are installed near the root to avoid getting damaged. Also, waterproof material 

was applied to avoid distortion of the strain response. Strain gauges are configured with half-bridge to 

improve its sensitivity. The acceleration and strain responses were measured with a sampling rate of 200 
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Hz by data acquisition devices (DAQ), produced by HBM, Inc., QuantumX 1601b and 1615b (Operation 

manual).  

 

 

Fig. 4.19. Specimen with deployed strain gauge and accelerometer 
 

Figure 4.20. Shows the specimen with and without water current. It can be observed that the upstream water 

level is higher than the downstream. Also the columns in the downstream experience some turbulence 

compared to other columns. Thus columns in upstream and downstream will experience different force.   

x
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z
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Figure. 4.20. Specimen with and without water current 

 

Table 4.2 shows material properties and the dimension for the top plate and columns which are parts of 

the experimental specimen.  

TABLE 4.2. Material properties and the dimension for the experimental specimen 

Properties Top plate Columns 

Material Steel HDPE (high-density polyethylene) 

Young’s modulus 210 GPa 1000 MPa 

Shear modulus 79.3 GPa 800 MPa 

Density 7850 Kg/m3 953 Kg/m3 

Size 430mm x 350mm x 9t D60mm x 5t  height : 1000mm 

Weight 
10.63kg 

(without accessories) 

0.823kg/each column 

(without connector) 

 

The experiment is carried out in 3 steps: Step 1: Initially the flume is filled with a water level of 400mm by 

shutting the sluice gate at the end of the water channel (see Figure. 4.18 ). Step 2: Now the pump is turned 
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on and also the sluice gate is controlled to maintain the same water level throughout the experiment. Step 

3: after few minutes pump is turned off and simultaneously sluice gate is controlled to maintain the same 

water level.  

4.2.2.2 Estimation results 

Figure. 4.21 compares the experimental and estimated strain response at each column. Validation cases here 

are similar to the cases seen in numerical validation. From the experimental strain response it can be 

observed that first 60 sec the water is still and after 60sec current velocity increases rapidly until 130 sec. 

the water velocity is maintained constantly for about 100 sec and gradually to zero. Response estimation 

algorithm uses the same FE model used in numerical validation.  The estimation consists of two steps. Step 

1: estimate the input time history on each column with limited responses (Eq. 4.2), strain at unmeasured 

location is assumed to be same as nearest available strain response. Step 2: Calculate input covariance with 

available input time history and use limited response in Kalman filter based response estimation algorithm 

to estimate unmeasured responses. Overall estimation from Figure. 4.21 is in good agreement with 

measured responses. As it is difficult to see the dynamic component of estimation from Figure. 4.21, Figure. 

4.22 shows the estimation between 130 and 140 sec.  

 

  

(a) Case 1 (b) Case 2 



  31 
 

  

(c) Case 3 (d) Case 4 

Figure. 4.21 Estimated and experimental strain response in time domain 

 

Figure. 4.22 Estimated and experimental strain response in column 4 (between 130 and 140 sec ) 

Unlike the reference strain from numerical model the strain data from experiment is subjected to small 

electrical noise (see Figure. 4.23), 60Hz peak can be observed. Where else in the estimated response the 

60Hz peak is relatively smaller than the experimental response. The reason is multi-metric fusion of 

acceleration with strain helps to reduce the noise component from strain gauge.   

 
Figure. 4.23. Estimated and experimental strain response in frequency domain 
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Figure. 4.24 shows the RMSE error in estimated strain at each column. Strain estimation in Column 1 and 

2 has higher error % which could arise based on strain deployment skills. The strain gauges should be 

deployed perpendicular to the plane of bending else the measured responses may not be accurate. Since the 

model and estimator assumes the strain measured are purely in x direction, the higher errors in column 1 

and 2 could be due to improper sensor deployment. Column 3 and 4 has about 1% error.  

 
Fig. 4.24 Error in estimated strain at each column  
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Chapter 4  

 

CONCLUSION, LIMITATION AND FUTURE SCOPE 

 

The virtual sensing strategy tailored to SHM of offshore structures was proposed in this study. As the 

important structural members of the offshore structures are located under water, the virtual sensing strategy 

can be a powerful alternative to the direct measurement, particularly when the structural responses are 

desired at locations of unavailable sensors. The problem formulation for the virtual sensing based on the 

Kalman filtering was provided with how the non-zero mean input excitation can be properly handled for 

accurate response estimation. Different types of responses, viz., acceleration, tilt and strain, were employed 

as the input to Kalman filter. The strain and tilt response contributes to the low frequency, large amplitude 

trend in the estimation, while the acceleration with good high frequency information is capable of reducing 

the random noise. The numerical simulation was conducted with the finite element model of the small scale 

offshore structure. The non-stationary random input excitation varying depending on time and height is 

introduced to simulate the tidal current. The simulation result from offshore model showed that the 

estimation was accurate with errors all less than 1%. The laboratory experiment is subsequently conducted 

with the small scale offshore structure installed in the water channel. The virtual sensing strategy was shown 

to successfully find a strain response using the other three strains and the acceleration on the top plate.  The 

numerical analysis and the experiment lead to the following conclusions:   

 The redesigned Kalman state estimator has successfully estimated the strain responses at the 

unmeasured locations excited by the non-stationary random inputs in the numerical and 

experimental validation tests, even with the erroneous model used in the Kalman state estimator. 

 The acceleration has been figured out to be improper to estimate the quasi-static trend of non-zero 

mean strain response excited by the non-zero mean input due to lack of accuracy in low frequency 

measurement near 0 Hz. 

 The virtual sensing strategy has the potential to be able to capture structural responses of the 

bottom-fixed offshore structures under the non-stationary random tidal current.  

 The fused use of the different types of measurements (i.e., strain and acceleration) can help to 

improve the estimation in lower and higher frequency regions.  

This virtual sensing technique has general limitations and also under special conditions.  
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 When there is a damage at the location of estimation, the estimated response may not be accurate. 

If the damage can make a significant change in other measured sensors, in such a case estimation 

shall be accurate. 

 The assumption of Gaussian distribution for random variables is also one of the limitation of this 

virtual sensing technique. Under some cases process noise distribution is not Gaussian.  

 Since virtual sensing algorithm is executed at every timestamp, computationally overall SHM 

system becomes heavy and thus it needs a better processing hardware.  

 

The virtual sensing strategy is seen to be quite useful for monitoring the offshore structures. Based on the 

findings in this dissertation, further study may include the use of the estimated response for the SHM 

purposes such as fatigue estimation and damage detection.  
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